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Abstract

The German mathematician Carl Runge (1856-1927) came up with a theorem that said that any
Diophantine equation in two variables satisfying a certain set of conditions has only finitely many integral
solutions. This thesis will provide a detailed proof of this theorem and some examples in which we can
apply it. This proof makes use of two theorems from abstract algebra: The Symmetric Function Theorem
and Newton-Puiseux’s Theorem. The statement and proof of these theorems will also be given. This
thesis will then introduce the Zariski Topology in all dimensions and show the strong connection between
the notion of Zariski density in two dimensions and the property of having finitely or infinitely many
integral solutions to a given Diophantine equation in two variables. The concept of Zariski density makes
it possible to formulate generalizations to Runge’s Theorem in higher variables. After this introduction
there will be an attempt of the writer to generalize Runge’s Theorem such that it can be applied to
Diophantine equations of three variables.
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1 Notation and Conventions

1.1 Notation

Notation Meaning
N The set of natural numbers {1, 2, . . .}
N0 The set of nonnegative integers {0, 1, . . .}
Z The set of integers
Q The set of rational numbers
R The set of real numbers
R>0 The set of positive real numbers
R≥0 The set of nonnegative real numbers
C The set of complex numbers
Q The set of algebraic numbers (as subset of C)
R[X1, . . . , Xn] The polynomial ring in n variables over the ring R
R[X,X−1] The ring of Laurent polynomials in X over the ring R
R[[X]] See Definition 4.1
R((X)) See Definition 4.4
k(X) See Definition 4.6
R[[X1, . . . , Xn]] See Definition 4.22
k((X∗)) See Definition 4.16
B = Bt[[X1, . . . , Xn]] See Definition 4.27
Kn = k[{X1, . . . , Xn}] See Definition 4.36
k({X}) See Definition 4.45
k({X∗}) See Definition 4.45
k(((X−1)∗)) See Definitions 4.16 and 4.52
k({(X−1)∗}) See Definitions 4.45 and 4.54
degX F See Definition 3.7
ht(F ) See Definition 3.8
D(F ) See Definitions 3.5,4.59 and 8.25
degλ F See Definition 3.10
Dλ(F ) See Definition 3.10
Fλ See Definition 3.10

D̃(F ) See Definition 3.11

F̃ See Definition 3.11
degµ,λ(F ) See Definition 8.25
Dµ,λ(F ) See Definition 8.25
Fµ,λ See Definition 8.25
||f ||t See Definition 4.25
ordXf See Definition 4.57
V (F) See Definition 7.1
T (F ) See Definition 7.10
S(F ) See Definition 7.10

1.2 Conventions

• When we talk about rings, we mean commutative rings that contain the multiplicative identity.

• When we talk about domains, we mean integral domains that contain the multiplicative identity.

• We will use multiple notations for elements in polynomial rings or any of its ring extensions. For
example we can write an element in R[X,Y ] as f or f(X,Y ) or even as f(Y ). The choice of notation
depends on how much emphasis we want to lay on these variables.
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2 Introduction

Since the 16th century, many mathematicians have been studying the concepts of Diophantine equations.
A Diophantine equation is a polynomial equation in two or more variables with integer coefficients. It is
called binary if it has exactly two variables. One can write a binary Diophantine equation as F (X,Y ) = 0,
with F ∈ Z[X,Y ]. There are many interesting questions about this equation. This thesis will focus on
the question: are there finitely or infinitely many possibilities for x, y ∈ Z such that F (x, y) = 0 holds?
This of course depends on F itself, as the following examples show.

Example 2.1. Let F = aX + bY + c, with a, b, c ∈ Z. We split the problem into multiple cases:

• If the constants a, b and c are all zero, we find that F (x, y) = 0 holds for all x, y ∈ Z.

• If a and b are zero and c is nonzero, we find that F (x, y) = c 6= 0 and therefore there are no x, y ∈ Z
with F (x, y) = 0.

• If a and b are not both zero, we let g be the greatest common divisor of a and b. By Bézout’s
identity, there exist x′, y′ ∈ Z, such that ax′ + by′ = g. If c is not a multiple of g, we see that for
all x, y ∈ Z we have that

F (x, y) ≡ c 6≡ 0 mod g,

which shows that F (x, y) = 0 has no integer solutions. If c is a multiple of g, there exists d ∈ Z
such that gd = −c. We then find that adx′ + bdy′ = gd = −c, so x = dx′, y = dy′ is a solution for
F (x, y) = 0. If we let e ∈ Z and take x = dx′ − be and y = dy′ + ae, we again have

ax+ by = adx′ − abe+ bdy′ + abe = gd = −c.

As any e ∈ N gives a different solution for x and y, we have infinitely many integer solutions to
F (x, y) = 0.

Example 2.2. Let F = X2 − 3Y 2. Suppose that x and y ∈ Z satisfy F (x, y) = 0. Then it follows that
x2 = 3y2. So 3y2 must be a perfect square. Since 3 is no perfect square, we find that y must be zero
and therefore x must be zero as well. We conclude that (x, y) = (0, 0) is the only integer solution to
F (x, y) = 0.

Example 2.3. Let F = X2 − 3Y 2 + 1. Suppose there exists x, y ∈ Z with F (x, y) = 0. Then we must
have

0 ≡ x2 − 3y2 + 1 ≡ x2 + 1 mod 3,

which shows that x2 ≡ −1 mod 3 holds and that −1 is a square modulo 3. This clearly fails and we
therefore see that there are no x, y ∈ Z with F (x, y) = 0.

Example 2.4 (Pell’s equation). Let F = X2− 3Y 2− 1. It can easily be seen that (x, y) = (2, 1) satisfies
F (x, y) = 0. By passing the equation F (X,Y ) = 0 to the ring extension Z[

√
3][X,Y ], we find

(X + Y
√

3)(X − Y
√

3) = 1. (2.1)

If for any n ∈ N0 we take xn, yn ∈ Z such that xn + yn
√

3 = (2 +
√

3)n, then we also have xn − yn
√

3 =
(2−

√
3)n and therefore we find that

(xn + yn
√

3)(xn − yn
√

3) = (2 +
√

3)n(2−
√

3)n = ((2 +
√

3)(2−
√

3))n = 1n = 1.

which shows that (xn, yn) also satisfies (2.1). Since |2 +
√

3| 6= 1, we see that these pairs are distinct for
different n. So we find infinitely many different solutions to the equation F (x, y) = 0.

Example 2.5. Let F = X2 − Y 3 + 1. It can be seen easily that (x, y) = (0, 1) satisfies F (x, y) = 0. It
becomes a bit harder to prove that this is the only integral solution. A proof of this can be find in Problem
1.3. on page 8 in [13]. This proof uses basic algebraic number theory.

These previous examples show that it is not always trivial or easy to prove whether some binary
Diophantine equation has finitely or infinitely many integral solutions. There are however methods and
theorems to help determine this for certain families of Diophantine equations. Section 3 will provide
some tools that are used by some of these theorems. Carl Runge has proved in 1887 [12] that certain
classes of Diophantine equations have only finitely many integral solutions. Runge’s Theorem is the main
theorem of this thesis. The statement of this theorem requires a number of definitions and results that are
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explained in detail further on in this thesis. The theorem is roughly as follows: Let F (X,Y ) ∈ Z[X,Y ]
be an irreducible polynomial. We can write F (X,Y ) as

F (X,Y ) =

d1∑
i=0

d2∑
j=0

ai,jX
iY j

for smallest d1 ∈ N0 and d2 ∈ N0. Runge’s Theorem requires d1 and d2 to be positive. We describe the
sets

D(F ) := {(i, j) | i ∈ {0, . . . , d1}, j ∈ {0, . . . , d2}, ai,j 6= 0}
and

D′(F ) := {(i, j) ∈ D(F ) | i/d1 + j/d2 = 1}.
We then let

F ′(X,Y ) :=
∑

(i,j)∈D′(F )

ai,jX
iY j .

suppose that the equation
F (x, y) = 0

has infinitely many solutions with x, y ∈ Z. Runge’s Theorem then asserts that all (i, j) ∈ D(F ) satisfy
i/d1 + j/d2 ≤ 1 and that F ′(X,Y ) is an integer times a power of an irreducible polynomial in Z[X,Y ].
We can, as a consequence of this theorem, prove that certain Diophantine equations only have finitely
many integral solutions by simply proving that one of these two properties does not hold. We consider
the following examples:

Example 2.6. Consider the irreducible polynomial F (X,Y ) = XY + 2X − Y − 7 ∈ Z[X,Y ]. We
then have d1 = d2 = 1. We find D(F ) = {(1, 1), (1, 0), (0, 1), (0, 0)}. For (i, j) = (1, 1) we see that
i/d1 + j/d2 = 2 > 1, so by Runge’s Theorem we conclude that F (x, y) = 0 holds for only finitely many
integers x, y ∈ Z.

Example 2.7. Consider the irreducible polynomial F (X,Y ) = Y 2 −X2 − 2X − 5 ∈ Z[X,Y ]. We then
have d1 = d2 = 2. We find D(F ) = {(0, 2), (2, 0), (1, 0), (0, 0)} and D′(F ) = {(0, 2), (2, 0)}. We therefore
have F ′(X,Y ) = Y 2 − X2 = (Y + X)(Y − X). We see that F ′ is not an integer times a power of an
irreducible polynomial, so by Runge’s Theorem we conclude that F (x, y) = 0 holds for only finitely many
integers x, y ∈ Z.

The proof of Runge’s Theorem uses Newton-Puiseux’s Theorem and a corollary of the Symmetric
Function Theorem. These are the main subject of Sections 4 and 5 respectively. The formal statement
of Runge’s Theorem with a proof can be found in Section 6. A rough sketch is as follows. We take an
irreducible polynomial F (X,Y ) ∈ Z[X,Y ] and assume that there are infinitely many integral solutions
to F (x, y) = 0. Newton-Puiseux’s Theorem then shows the existence of a function f(X), that is a
generalization of a analytic function, such that F (X, f(X)) = 0 and such that there are infinitely many
integer solutions to the equation y = f(x). We then use the information from f , our corollary of the
Symmetric Function Theorem, and some linear algebra to construct another polynomial P (X,Y ) ∈
Z[X,Y ] such that P (X, f(X)) = 0. In order to prove that P (X, f(X)) = 0, we first choose variables in
such a way that |P (x, f(x))| < 1/2 holds for all x ∈ C. For this we use the notion of convergence among
others. As a consequence we then find that F is a factor of P in Z[X,Y ] and this lets us find some
properties of F regarding its terms. These properties of F are then the result of Runge’s Theorem.
Runge’s Theorem only says something about polynomials in two variables. In this thesis we investigate if
we can generalize Runge’s Theorem to polynomials in three variables. For this we first need to know what
this generalization might say. Section 7 introduces the Zariski Topology and shows a strong connection
between the notion of Zariski Density and the property of having finitely or infinitely many integer
solutions to a given Diophantine equation in two variables. Because the notion of Zariski Density also
exists for Diophantine Equations in three (or more) variables, we will try to generalize Runge’s Theorem
in such a way that we can relate this to Zariski Density. Two attempts at generalizing Runge’s Theorem
have been made by the author. These are Theorem 8.23 and Theorem 8.28. Theorem 8.28 can be used to
show that the integer solutions to certain polynomials in three variables are not Zariski-dense within the
zero locus of this corresponding polynomial. For example let F (X,Y, Z) := Z2− (X2Y + 1)(X+Y )2Y ∈
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Z[X,Y, Z]. We then can use Theorem 8.28 to see that the set of integer solutions to the Diophantine
equation

F (x, y, z) = 0

is not Zariski-dense in the zero locus of F . The same can be said about F ′(X,Y, Z) = Z3−X2Y (XY 5+2).
These two examples are Example 8.30 and Example 8.31 respectively. Both Theorem 8.23 and Theorem
8.28 require a condition on the roots of the given polynomial that is about the notion of convergence. If
conjecture 8.15 holds, it follows that these conditions automatically follow from the other conditions. So
if conjecture 8.15 holds, we may know less about the given polynomial and still be able to apply these
two theorems.

3 Basic Properties

3.1 Decomposition into irreducible factors

Any binary Diophantine equation can be rewritten as F (X,Y ) = 0 for some F (X,Y ) ∈ Z[X,Y ]. We
want to know whether there are finitely or infinitely many integral solutions to such binary Diophantine
equations. This subsection will show us that this problem can be reduced to the case where F is
irreducible in Z[X,Y ].
Suppose that F ∈ Z[X,Y ] is the product of two polynomials F1, F2 ∈ Z[X,Y ], so

F (X,Y ) = F1(X,Y )F2(X,Y ).

It can be seen that if x, y ∈ C satisfy either F1(x, y) = 0 or F2(x, y) = 0, it also satisfies F (x, y) = 0.
Conversely, if x, y ∈ C satisfy F (x, y) = 0, either F1(x, y) = 0 or F2(x, y) = 0 must hold. In particular,
we have that the integral solutions to F (x, y) = 0 are the integral solutions to F1(x, y) = 0 combined
with the integral solutions to F2(x, y) = 0. We can also apply this reasoning when F is the product of
multiple factors, in particular irreducible factors. This yields the following lemma:

Lemma 3.1. Let F ∈ Z[X,Y ] be a polynomial and let F =
n∏
i=1

Fi be a factorization of F into n ∈ N

polynomials in Z[X,Y ]. For every x, y ∈ Z we have F (x, y) = 0 if and only if there exists an i ∈ {1, . . . , n}
such that Fi(x, y) = 0.

Proof. Let x, y ∈ Z. Suppose that F (x, y) = 0 holds. We then have that
n∏
i=1

Fi(x, y) = 0. Since Z is a

domain, we must have a factor that is zero. So Fi(x, y) = 0 for some i. Conversely, if Fi(x, y) = 0, then

F (x, y) =
n∏
i=1

Fi(x, y) = 0, as one of the factors of F (x, y) is zero.

Corollary 3.2. Let F ∈ Z[X,Y ] be a nonconstant polynomial. Then it has infinitely many integral
solutions to F (x, y) = 0 if and only if there exists an irreducible polynomial G ∈ Z[X,Y ] that is a factor
of F in Z[X,Y ] and has infinitely many solutions to G(x, y) = 0, where x, y ∈ Z.

Proof. Suppose that such G exists. As any solution to G(x, y) = 0 is also a solution to F (x, y) = 0,
we get that F also has infinitely many integer solutions to F (x, y) = 0. Conversely, suppose that every

irreducible factor G of F has only finitely many integer solutions to G(x, y) = 0. We let F =
n∏
i=1

Fi be a

factorization of irreducible polynomials in Z[X,Y ]. So every Fi has only finitely many integer solutions
to Fi(x, y) = 0. According to the previous lemma, the (finite) union of these finite solutions, which also
is of finite size, must consists of all the integer solutions to F (x, y) = 0. So F has only finitely many
integer solutions to F (x, y) = 0.

This corollary implies that in order to figure out if a polynomial F ∈ Z[X,Y ] has infinitely or only
finitely many integral solutions to F (x, y) = 0, we just need to check this for its irreducible factors. So
we have reduced the problem to figuring out if irreducible polynomials have infinitely or only finitely
many integral solutions. Later on we will use this fact and demand F to be irreducible.
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3.2 Small solutions

In this subsection we will focus on ’small’ solutions to binary Diophantine Equations. Let F (X,Y ) ∈
Z[X,Y ] be a polynomial in two variables. We can write F uniquely as

F (X,Y ) =

m∑
i=0

n∑
j=0

ai,jX
iY j , ai,j ∈ Z, (3.1)

for the smallest possible m,n ∈ N0. For convenience in a later stage, we will also define ai,j = 0 for all
i, j ∈ Q that do not satisfy i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}.
Lemma 3.3. Let F ∈ Z[X,Y ] be a polynomial and let a ∈ Z be an integer. There are infinitely many
integers b ∈ Z such that F (a, b) = 0, if and only if X − a is a factor of F in Z[X,Y ].

Proof. First suppose that X−a is a factor of F . So there exists a polynomial G(X,Y ) ∈ Z[X,Y ] such that
F (X,Y ) = (X − a) ·G(X,Y ). We see that any b ∈ Z satisfies F (a, b) = (a− a) ·G(a, b) = 0 ·G(a, b) = 0.
So indeed there are infinitely many integers b ∈ Z such that F (a, b) = 0. Conversely, suppose that there
are infinitely many integers b ∈ Z such that F (a, b) = 0 holds. We have that F (a, Y ) lies in Z[Y ]. Since
every nonzero polynomial in Z[Y ] has only finitely many roots, we must have that F (a, Y ) = 0 in Z[Y ].
We can write F as in (3.1) and by switching the summands, we get

F (X,Y ) =

n∑
j=0

( m∑
i=0

ai,jX
i

)
Y j .

From this we get that

0 = F (a, Y ) =

n∑
j=0

( m∑
i=0

ai,ja
i

)
Y j ∈ Z[Y ].

So the coefficient of Y j in F (a, Y ) must be zero for every j ∈ {0, . . . , n}. So we have for every such j
that

∑m
i=0 ai,ja

i = 0. So a is a root of the polynomial
∑m
i=0 ai,jX

i ∈ Z[X]. Because of this, we know
that X − a is a factor of

∑m
i=0 ai,jX

i, hence also a factor of
∑m
i=0 ai,jX

iY j . Since this holds for any
j ∈ {0, . . . , n}, we see that X − a is also a factor of F (X,Y ).

Corollary 3.4. Let F ∈ Z[X,Y ] and suppose that for every a ∈ Z we have that F (X,Y ) is not a multiple
of the polynomial X − a. Let R ∈ R be any real number. Then there are only finitely many x, y ∈ Z such
that F (x, y) = 0 and |x| ≤ R both hold.

Proof. There are only finitely many x ∈ Z such that |x| ≤ R holds. We take such an element x. It has
been given that X − x is not a divisor of F , so by Lemma 3.3 we have only finitely many possibilities for
y ∈ Z such that F (x, y) = 0 holds. From this we conclude that the equation F (x, y) = 0 has only finitely
many integral solutions where |x| ≤ R.

From this we can see that any nonzero irreducible polynomial F ∈ Z[X,Y ] that is not of the form
X−a for some a ∈ Z has only finitely many solutions x, y ∈ Z to F (x, y) = 0 such that x is ‘small’. This
corollary lets us choose what we consider small by changing R. By symmetric reasoning, if F is not of
the form Y − b for some b ∈ Z, then it has only finitely many solutions x, y ∈ Z to F (x, y) = 0 such that
y is small.

3.3 Newton dots, degrees and height

In this subsection we will introduce some concepts that we can apply to binary Diophantine equations.
We will start with the Newton dots.

Definition 3.5. Let F ∈ Z[X,Y ] and write it as in (3.1). We let

D(F ) := {(i, j) ∈ {0, . . . ,m} × {0, . . . , n} | ai,j 6= 0}

be the set of (two-dimensional) indices corresponding to nonzero coefficients of F . We will call these
indices Newton dots of F and will sometimes view them as coordinates on the xy-plane.
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For example, D(X3 + X2Y 2 − 3XY 2 + 2Y + 2) = {(3, 0), (2, 2), (1, 2), (0, 1), (0, 0)}. These Newton
dots have been plotted in Fig. 3.3. Note that D(F ) = ∅ exactly when F = 0.

x

y

1

2

3

0 1 2 3
•

••

•

•

Figure 1: The Newton dots of the polynomial X3 + X2Y 2 − 3XY 2 + 2Y + 2.

Remark 3.6. Any F ∈ Z[X,Y ] can now uniquely be written as

F =
∑

(i,j)∈D(F )

ai,jX
iY j , (3.2)

where ai,j ∈ Z is nonzero for each (i, j) ∈ D(F ). For convenience, we let ai,j = 0 for every pair of
rational numbers (i, j) ∈ Q2 with (i, j) 6∈ D(F ).

Next, we define the X-degree and the Y -degree of polynomials in Z[X,Y ].

Definition 3.7. Let F ∈ Z[X,Y ] be a nonzero polynomial written as in (3.1). We call degX F := m the
degree of F in X and degY F := n the degree of F in Y . We also call degX F the X-degree of F and
degY F the Y -degree of F . If F is the zero polynomial, we say that degX 0 = −∞ and that degY 0 = −∞.

If for example F (X,Y ) = 3X2 − 2X2Y 2 +XY 3 + Y − 1, then degX F = m = 2 and degY F = n = 3.
The following definition is about the coefficients of polynomials.

Definition 3.8. Let F ∈ Z[X,Y ] and write it as in (3.1). We call

ht(F ) := max
(i,j)∈Z2

|ai,j |

the height of F , which is the maximum absolute value of its coefficients.

For example, if F = 2X2 − 5X + Y 2 − 4, then ht(F ) = max{|2|, | − 5|, |1|, | − 4|} = 5. Also, we have
ht(0) = 0.

We now have introduced enough concepts to prove that a certain family of polynomials has, as a
Diophantine equation, only finitely many integer solutions.

Lemma 3.9. Let F (X,Y ) ∈ Z[X,Y ] be a polynomial that is not the multiple of a polynomial of the form
X − a or Y − b for any a, b ∈ Z. Write F as in (3.1). Suppose that am,n is nonzero, then there are only
finitely many integers x, y ∈ Z such that F (x, y) = 0 holds.

Proof. Suppose that F is a constant in Z. We then have F = a0,0 = am,n 6= 0. Example 2.1 then directly
shows us that there are no (hence only finitely many) integers x, y ∈ Z such that F (x, y) = 0 holds. Now
suppose that F is not constant. Let h := ht(F ) and R := h · ((m+ 1)(n+ 1)− 1). Note that R ≥ 1 holds.
Suppose that x, y ∈ Z satisfy F (x, y) = 0. Suppose additionally that |x| > R and that |y| > R. We then
have the following inequality for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} with (i, j) 6= (m,n):

|ai,jxiyj | = |ai,j ||x|i|y|j ≤ h|x|i|y|j ≤
{ h|x|m|y|n−1 < hR−1|x|m|y|n, if 0 ≤ j ≤ n− 1
h|x|m−1|y|n < hR−1|x|m|y|n, if 0 ≤ i ≤ m− 1

8



By using the triangular inequality, we then find:

|x|m|y|n ≤ | − am,n||x|m|y|n

= | − am,nxmyn|

= |
m∑
i=0

n−1∑
j=0

ai,jx
iyj +

m−1∑
i=0

ai,nx
iyn| (This follows from F (x, y) = 0.)

≤
m∑
i=0

n−1∑
j=0

|ai,jxiyj |+
m−1∑
i=0

|ai,nxiyn|

<

m∑
i=0

n−1∑
j=0

hR−1|x|m|y|n +

m−1∑
i=0

hR−1|x|m|y|n

= (m+ 1)(n)(hR−1|x|m|y|n) +m(hR−1|x|m|y|n)

= ((m+ 1)(n+ 1)− 1)hR−1|x|m|y|n

= |x|m|y|n.

This leads to a contradiction, so there are no solutions x, y ∈ Z to F (x, y) = 0 with both |x| > R and
|y| > R. By Corollary 3.4, there are only finitely many integer solutions to F (x, y) = 0 where |x| ≤ R. By
symmetric reasoning, there are also only finitely many integer solutions to F (x, y) = 0 where |y| ≤ R. We
therefore conclude that there are indeed only finitely many possibilities for x, y ∈ Z such that F (x, y) = 0
holds.

We used two important arguments in the previous lemma. First of all we have deduced that, for x
and y big enough, we have a term that outweighs all other terms in size, from which we see that the
terms can’t add up to zero. Second of all we have used that there are only finitely many integer solutions
to F (x, y) = 0 where either x and/or y is not big. Because of this, we want to find the terms of a
polynomial that tend to outweigh other terms as x and y get big. This asks for the following notion of
leading terms:

Definitions 3.10. Let F ∈ Z[X,Y ] be written as in (3.1). Let λ ∈ R>0. First, we call

degλ F := max
(i,j)∈D(F )

(i+ λj)

the λ-degree of F . Here we use the convention max ∅ = −∞. In particular we call degF := deg1 F the
total degree of F . We then let

Dλ(F ) := {(i, j) ∈ D(F ) | i+ λj = degλ F}

describe the indices of the (nonzero) terms of F with this maximal λ-degree. Finally, the λ-leading part
of F , denoted by Fλ, is defined to be the sum over the terms of F with indices in Dλ(F ). So

Fλ :=
∑

(i,j)∈Dλ(F )

ai,jX
iY j .

Note that Dλ(F ) = ∅ holds if and only if F = 0 and that we have D(Fλ) = Dλ(F ) for any F ∈ Z[X,Y ]
and any λ ∈ R>0.

Definitions 3.11. Let F ∈ Z[X,Y ]. We define D̃(F ) :=
⋃

λ∈R>0

Dλ(F ). We then define the leading part

of F , denoted by F̃ , to be the sum over all the terms of F that are also terms in the λ-leading part of F
for some λ ∈ R>0. So

F̃ :=
∑

(i,j)∈D̃(F )

ai,jX
iY j .

Example 3.12. Let F = X2 + 2X − 3Y − 1. We then find that D(F ) = {(2, 0), (1, 0), (0, 1), (0, 0)}. For
λ = 2 we find that degλ F = max(2 + 2 · 0, 1 + 2 · 0, 0 + 2 · 1, 0 + 2 · 0) = 2, that Dλ(F ) = {(2, 0), (0, 1)},
and that Fλ = X2− 3Y . For 0 < λ < 2 we find that degλ F = max(2, 1, λ, 0) = 2, that Dλ(F ) = {(2, 0)},
and that Fλ = X2. For 2 < λ we find that degλ F = max(2, 1, λ, 0) = λ, that Dλ(F ) = {(0, 1)}, and that

Fλ = −3Y . So we get D̃(F ) =
⋃

λ∈R>0

Dλ(F ) = {(2, 0), (0, 1)}. So we find F̃ = X2 − 3Y .

9



Example 3.13. Let F = Y 4 +XY 4 +X2Y 3 +X3Y 2 +XY +X4. The Newton dots of F are given by
D(F ) = {(0, 4), (1, 4), (2, 3), (3, 2), (1, 1), (4, 0)}. We find that

degλ F = max(4λ, 1 + 4λ, 2 + 3λ, 3 + 2λ, 1 + λ, 4) =


1 + 4λ if 1 ≤ λ
2 + 3λ if λ = 1

3 + 2λ if 1
2
≤ λ ≤ 1

4 if λ ≤ 1
2

and therefore find the following:

Dλ(F ) Fλ
1 < λ {(1, 4)} XY 4

λ = 1 {(1, 4), (2, 3), (3, 2)} XY 4 +X2Y 3 +X3Y 2

1
2
< λ < 1 {(3, 2)} X3Y 2

λ = 1
2

{(3, 2), (4, 0)} X3Y 2 +X4

λ < 1
2

{(4, 0)} X4

So we have D̃(F ) =
⋃

λ∈R>0

Dλ(F ) = {(1, 4), (2, 3), (3, 2), (4, 0)} and F̃ = XY 4 +X2Y 3 +X3Y 2 +X4.

Remark 3.14. We can also visualize these examples on the xy-plane as can be seen in Fig. 3.14. We
draw a point on coordinate (i, j) exactly when (i, j) ∈ D(F ). For any λ ∈ R>0, a point (i, j) ∈ D(F )
lies in Dλ(F ), exactly when no drawn points lie strictly above the line x + λy = i+ λj. Furthermore, a
point (i, j) ∈ D(F ) lies in D̃(F ) exactly when there is a line through (i, j) that is neither horizontal nor
vertical, such that no drawn points lie strictly above this line. The slope of such a line corresponds to a
λ ∈ R>0 such that (i, j) ∈ Dλ(F ).

x

y
1

0 1 2
••

•

• x

y

1

2

3

4

0 1 2 3 4

• •

•

•

•

•

Figure 2: The Newton dots and slopes of the polynomials from Examples 3.12 and 3.13 respectively.

The λ-degree and the λ-leading part of binary polynomials satisfy a certain addition and product
rule. These rules are given and proven in the following two lemmas.

Lemma 3.15. Let F = G+H, with G,H ∈ Z[X,Y ]. Let λ ∈ R>0. Then degλ F ≤ max(degλG,degλH).
Additionally, if degλH < degλG, then Fλ = Gλ.

Proof. We write G =
∑

(i,j)∈D(G) bi,jX
iY j and H =

∑
(i,j)∈D(H) ci,jX

iY j as in (3.2). We get

F = G+H

=
∑

(i,j)∈D(G)

bi,jX
iY j +

∑
(i,j)∈D(H)

ci,jX
iY j

=
∑

(i,j)∈D(G)∪D(H)

(bi,j + ci,j)X
iY j .
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Suppose that there exists (i, j) ∈ D(F ). It then follows from the equation above that (i, j) ∈ D(G) or
(i, j) ∈ D(H). Therefore i+ λj ≤ degλG or i+ λj ≤ degλH. So i+ λj ≤ max(degλG,degλH), hence

degλ F = max
(i,j)∈D(F )

(i+ λj) ≤ max(degλG,degλH).

Now assume degλH < degλG. From this is follows that G is nonzero, so Dλ(G) is nonempty. Let
(i, j) ∈ Dλ(G). Because degλH < degλG = i+ λj, we have (i, j) 6∈ D(H). So the coefficient of XiY j in
F must be bi,j . Since this is nonzero we have (i, j) ∈ D(F ) and therefore get

degλG = i+ λj ≤ degλ F ≤ max(degλG,degλH) = degλG,

hence degλ F = degλG. From this we also find Dλ(F ) = Dλ(G), so

Fλ =
∑

(i,j)∈Dλ(F )

(bi,j + ci,j)X
iY j =

∑
(i,j)∈Dλ(G)

(bi,j + 0)XiY j = Gλ.

Lemma 3.16. Let F = GH, with G,H ∈ Z[X,Y ]. Let λ ∈ R>0. Then degλ F = degλG + degλH.
Additionally, we have that Fλ = GλHλ.

Proof. Note that this is trivial if either G = 0 or H = 0 holds, so we will assume both to be nonzero.
We write G =

∑
(i,j)∈D(G) bi,jX

iY j and H =
∑

(i,j)∈D(H) ci,jX
iY j as in (3.2). We then have

F = GH =
∑

(i,j)∈D(G)

∑
(i′,j′)∈D(H)

(bi,jci′,j′)X
i+i′Y j+j

′
. (3.3)

If (i, j) ∈ D(G) and (i′, j′) ∈ D(H), then i+ λj ≤ degλG and i′ + λj′ ≤ degλH. So i+ i′ + λ(j + j′) ≤
degλG + degλH. We see from (3.3) that any (s, t) ∈ D(F ) must satisfy s = i + i′ and t = j + j′

for at least one combination of pairs (i, j) ∈ D(G), (i′, j′) ∈ D(H). Such (s, t) then must satisfy
s+ λt ≤ degλG+ degλH, hence

degλ F = max
(s,t)∈D(F )

(s+ λt) ≤ degλG+ degλH. (3.4)

We are now interested in the coefficients of exactly all terms of the form XsY t in F , where s, t ∈ N0

satisfy s + λt = degλG + degλH. Suppose that (i, j) ∈ D(G) and (i′, j′) ∈ D(H). Also suppose that
(i, j) 6∈ Dλ(G), then

i+ i′ + λ(j + j′) = i+ λj + i′ + λj′ ≤ i+ λj + degλH < degλG+ degλH.

So in this case, the term (bi,jci′,j′)X
i+i′Y j+j

′
does not contribute to any coefficient of our interest. The

same can be said when (i′, j′) 6∈ Dλ(H). So the coefficients in F that are of our interest are the same as
the corresponding coefficients in the polynomial∑

(i,j)∈Dλ(G)

∑
(i′,j′)∈Dλ(H)

(bi,jci′,j′)X
i+i′Y j+j

′
= GλHλ.

For any (p, q) ∈ D(GλHλ) we have that the coefficient of XpY q in GλHλ is nonzero and therefore
(p, q) = (i + i′, j + j′) must hold for at least one combination of pairs (i, j) ∈ Dλ(G), (i′, j′) ∈ Dλ(H).
So p + λq = (i + i′) + λ(j + j′) = degλG + degλH. So F has the same coefficient at XpY q as GλHλ,
which is nonzero, hence degλG+ degλH = p+λq ≤ degλ F . This combined with (3.4) gives our desired
equality degλ F = degλG+ degλH
We have also found that the coefficient of XpY q in GλHλ is zero when p+λq 6= degλG+degλH. As this
also holds for Fλ, we see that all the coefficients in Fλ and GλHλ are pairwise the same. We therefore
can conclude that Fλ = GλHλ.
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3.4 Monomials

In this subsection we will focus on polynomials that consist of only one term.

Definition 3.17. Let n ∈ N and let R be a ring. Let F ∈ R[X1, . . . , Xn]. We call F a monomial if it
can be written as F = aXp1

1 · · ·Xpn
n for some nonzero a ∈ R and with p1, . . . , pn ∈ N0.

Notice that F ∈ Z[X,Y ] is a monomial exactly when D(F ) contains precisely one element.

Lemma 3.18. Let n ∈ N and let F ∈ Z[X1, . . . , Xn] be a monomial. Then any factor of F in
Z[X1, . . . , Xn] is again a monomial.

Proof. Let G ∈ Z[X1, . . . , Xn] be such a factor. Note that Z[X1, . . . , Xn] is a unique factorization domain.
So G is a unit in Z[X1, . . . , Xn] (so a unit in Z) times the product of zero or more irreducible factors of F .
Since F is a monomial, we can write it as Xp1

1 · · ·Xpn
n for some nonzero a ∈ Z and with p1, . . . , pn ∈ N0.

We see that the irreducible factors of F are the prime divisors of a together with Xi (whenever pi > 0)
for any i ∈ {1, . . . , n}. This shows us that G = bXq1

1 · · ·Xqn
n for some nonzero b ∈ Z that divides a and

for some q1, . . . , qn ∈ N0 such that qi ≤ pi hold for all i ∈ {1, . . . , n}. So G is indeed a monomial.

Lemma 3.19. Let F ∈ Z[X,Y ]. Suppose that Fλ is a monomial for all λ ∈ R>0. Then F̃ is a monomial
as well.

Proof. As there are only finitely many elements in D(F ), there are only finitely many elements in D̃(F ) ⊂

D(F ). So there exist λ1 < λ2 < . . . < λr ∈ R>0 for some smallest r ∈ N, such that D̃(F ) =
r⋃
i=1

Dλi(F ).

If r = 1, we immediately see that F̃ = Fλ1 is a monomial. We will prove by contradiction that the case
r ≥ 2 never happens. So suppose that r ≥ 2. For each t ∈ {1, . . . , r} we have that Dλt(F ) consists
of only one element (ut, vt) since Fλt is a monomial. Let s, t ∈ N satisfy 1 ≤ s < t ≤ r. We have by
minimality of r that (us, vs) 6= (ut, vt). So we have the inequalities ut + λsvt < degλs(F ) = us + λsvs
and us + λtvs < degλt(F ) = ut + λtvt. This yields

λs(vt − vs) < us − ut < λt(vt − vs). (3.5)

As 0 < λs < λt, we have vt − vs > 0. We divide (3.5) by vt − vs and find

λs <
us − ut
vt − vs

< λt. (3.6)

We also have found that v1 < v2 < . . . < vr. We define

γ :=
u1 − u2

v2 − v1
. (3.7)

Then it follows from (3.6) that 0 < λ1 < γ < λ2. Multiplying (3.7) by v2− v1 and reordering terms gives
us u1 +γv1 = u2 +γv2. This shows that if Dγ(F ) contains either (u1, v1) or (u2, v2), it must also contain
the other, which is impossible since Fγ is a monomial. So Fγ(F ) can contain neither and therefore there
must exist (u, v) ∈ Dγ(F ) with u + γv > u2 + γv2. Since Dγ(F ) ⊂ D̃(F ), there is a t ∈ {1, . . . , r} with
(u, v) ∈ Dλt(F ) and thus (u, v) = (ut, vt). We already saw t 6= 1, 2, so 2 < t. From (3.6) we derive

γ < λ2 <
u2 − ut
vt − v2

.

We multiply by vt − v2 and reorder terms to get

ut + γvt < u2 + γv2,

which contradicts (ut, vt) ∈ Dγ(F ).

Lemma 3.20. Let F ∈ Z[X,Y ] be a nonzero polynomial of X-degree d1 ∈ N0 and Y -degree d2 ∈ N0.
Suppose that F̃ is a monomial. Then (d1, d2) ∈ D(F ) holds.
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Proof. Suppose (d1, d2) 6∈ D(F ). Since F is of X-degree d1, then there must exist a highest v ∈
{1, . . . , d2−1} such that (d1, v) ∈ D(F ). Analogously there must exist a highest u ∈ {1, . . . , d1−1} such
that (u, d2) ∈ D(F ). Let λ > d1, then for any (i, j) ∈ D(F ) we have

i+ λj ≤

{
u+ λd2 if j = d2.

d1 + λ(d2 − 1) < λd2 ≤ u+ λd2 if j ≤ d2 − 1.

This shows that (u, d2) ∈ Dλ(F ) when λ > d1. In a similar way we can show that (d1, v) ∈ Dλ(F )
when λ < d−1

2 . This shows that (d1, v), (u, d2) ∈ D̃(F ) = D(F̃ ) and F̃ is therefore not a monomial, a
contradiction. We conclude that (d1, d2) ∈ D(F ).

4 Newton–Puiseux’s Theorem

The proof of Runge’s Theorem uses a theorem that says that a certain field extension of the polynomial
field over an algebraically closed field is again algebraically closed. This theorem is called the Newton-
Puiseux Theorem. In this section we will describe this field extension and prove this theorem.

4.1 Formal power series

There is a version of the proof that talks about formal power series and a version that talks about
convergent power series. A proof of the formal case has been given by Bassel Mannaa and Thierry
Coquand [10]. We will follow this proof throughout this subsection.

Note that each polynomial F (X,Y ) ∈ Z[X,Y ] can be viewed as a polynomial in Y with coefficients
in Z[X]. So we can view Z[X,Y ] as Z[X][Y ]. We will often apply this fact. We begin by introducing
some definitions and some easy lemmas about generalizations of polynomials.

A formal power series generalizes the concept of a polynomial in the sense that is does not require a
highest exponent.

Definition 4.1. Let R be a ring. A formal power series over R is of the form
∑∞
i=0 aiX

i, where the
coefficients ai lie in R. We call R[[X]] the set of all these formal power series over R.

Remark 4.2. R[[X]] is a ring, with canonical addition and multiplication. As every polynomial is a
formal power series over R (where all but finitely many coefficients are zero), we may view R[X] as a
subset of R[[X]].

Lemma 4.3. Let R be a ring. Let f =
∑∞
i=0 aiX

i ∈ R[[X]] be a formal power series over R. Then f is
a unit in R[[X]] if and only if a0 is a unit in R.

Proof. First suppose that f is indeed a unit and that g =
∑∞
i=0 biX

i ∈ R[[X]] is its inverse. Then a0b0,
the constant term of fg, must be 1 and a0 is thus indeed a unit in R. Conversely, suppose that a0 is a
unit in R. Let b0 = a−1

0 ∈ R and inductively define bt = −a−1
0

∑t
i=1 aibt−i ∈ R for t ∈ N. The constant

term of fg is a0b0 = 1. For any t ∈ N, the coefficient of Xt in fg is

t∑
i=0

aibt−i = a0bt +

t∑
i=1

aibt−i = a0(−a−1
0

t∑
i=1

aibt−i) +

t∑
i=1

aibt−i = 0,

which shows that fg = 1. Therefore, f is a unit in R[[X]].

A formal Laurent series generalizes the concept of a formal power series in the sense that some
exponents may be negative.

Definition 4.4. Let R be a ring. A formal Laurent series over R is of the form
∑∞
i=m aiX

i, where the
coefficients ai lie in R and m ∈ Z. We call R((X)) the set of all these formal Laurent series over R.

Remark 4.5. The set R((X)) is in fact a ring, with canonical addition and multiplication. If k is a
field, then so is k((X)). In fact k((X)) is the quotient field of k[[X]].

Definition 4.6. Let k be a field. We denote the subfield of k((X)) that is the fraction field of k[X] by
k(X).
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Definition 4.7. Let R be a ring. Let f =
∑n
i=0 aiX

i be a polynomial in R[X] and let f ′ =
∑n
i=1 iaiX

i−1

be its derivative. We call f separable (over R) if there exist r, s ∈ R[X] such that

rf + sf ′ = 1.

Lemma 4.8. Let R be a ring and f = gh, with g, h ∈ R[X]. If f is separable over R, then so are g and
h.

Proof. If f is separable, we have rf + sf ′ = 1 for some r, s ∈ R[X]. By the product rule of derivatives,
we find f ′ = gh′ + g′h. This gives us

1 = rf + sf ′ = rgh+ s(gh′ + g′h) = (rg + sg′)h+ (sg)h′.

So h is separable. By symmetry of g and h, we have that g must be separable as well.

Lemma 4.9. Let R be a ring, u ∈ R a unit, a ∈ R any element of R and f(X) ∈ R[X]. If f(X) is
separable over R, then we have that f(uY − a) ∈ R[Y ] is separable over R as well.

Proof. If f is separable, we have
r(X)f(X) + s(X)f ′(X) = 1

for some r(X), s(X) ∈ R[X]. We take the derivative of f(uY − a) with respect to Y and by the chain
rule we find f(uY − a)′ = uf ′(uY − a). We now have

r(uY − a)f(uY − a) + u−1s(uY − a)f(uY − a)′ = r(uY − a)f(uY − a) + s(uY − a)f ′(uY − a) = 1.

Since r(uY − a) ∈ R[Y ] and u−1s(uY − a) ∈ R[Y ], we conclude that f(uY − a) ∈ R[Y ] is separable over
R.

Lemma 4.10. Let k be a field of characteristic zero. Let f ∈ k[Y ] be an irreducible polynomial. Then f
is separable over k.

Proof. Let f ′ ∈ k[Y ] be the derivative of f and let h ∈ k[Y ] be the greatest common divisor of f and f ′.
This means that there are r, s ∈ k[Y ] such that rf + sf ′ = h. If h is constant, we can divide by h (as
h is never zero) and get (h−1r)f + (h−1s)f ′ = 1, which shows that f is separable. Now suppose that h
is nonconstant. Since h divides f , there must exist g ∈ k[Y ] such that f = gh. Since f is irreducible, g
must be a unit, hence a constant in k. This shows that the degree of h is the same as f and thus bigger
than the degree of f ′. This contradicts the fact that h divides g.

Lemma 4.11. Let R be a ring. We have that R[[X]][Y ] ⊂ R[Y ][[X]] holds.

Proof. If F (X,Y ) ∈ R[[X]][Y ], we can write it as F (X,Y ) =
∑n
i=0 ai(X)Y i, for some n ∈ N0 and

ai(X) ∈ R[[X]]. Any ai(X) can then be written as
∑∞
j=0 ai,jX

j , with ai,j ∈ R, so we find

F (X,Y ) =
n∑
i=0

∞∑
j=0

ai,jX
jY i =

∞∑
j=0

n∑
i=0

ai,jY
iXj =

∞∑
j=0

( n∑
i=0

ai,jY
i

)
Xj ,

which indeed shows that F (X,Y ) ∈ R[Y ][[X]].

Lemma 4.12. Let R be a ring. Let F (X,Y ) ∈ R[Y ][[X]] be nonzero. We can write F =
∑∞
i=0 ai(Y )Xi,

where ai(Y ) ∈ R[Y ]. Suppose there exists a lowest n ∈ N such that all polynomials ai(Y ) have degree at
most n, then F lies in R[[X]][Y ] and has degree n as a polynomial in Y .

Proof. Suppose that this lowest n exists. Then we can write ai(Y ) =
∑n
j=0 ai,jY

j for each i. Since n is
the lowest, there must exist s ∈ N0 such that as(Y ) has degree n, so as,n is nonzero. We get

F (X,Y ) =
∞∑
i=0

n∑
j=0

ai,jY
jXi =

n∑
j=0

( ∞∑
i=0

ai,jX
i

)
Y j ,

which shows that F (X,Y ) ∈ R[[X]][Y ]. The degree of F in Y is n, as
∑∞
i=0 ai,nX

i is nonzero since as,n
is nonzero.
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An important part of the proof of Newton-Puiseux’s Theorem is Hensel’s Lemma. There exist many
different versions and formulations of Hensel’s Lemma. We will use two versions. The first one can be
applied to formal power series and is the following lemma. The second version of Hensel’s Lemma 4.44
can be applied only to convergent power series. Recall that a polynomial in one variable over a ring is
called monic if its leading coefficient is one.

Lemma 4.13 (Hensel’s Lemma). Let R be a ring and F (X,Y ) ∈ R[[X]][Y ] a monic polynomial in Y
of degree n ≥ 2, with coefficients in R[[X]]. Suppose that there exist G0, H0 ∈ R[Y ] of nonzero degrees
r, s respectively, such that F (0, Y ) = G0H0 and such that r + s = n. Suppose that there also exist
G∗, H∗ ∈ R[Y ] such that G0H

∗ + H0G
∗ = 1 holds. Then there exist G,H ∈ R[[X]][Y ], whose degree as

polynomials in Y are r, s respectively, such that F = GH.

Proof. By Lemma 4.11, F also lies in R[Y ][[X]], so we can write it as F (X,Y ) =
∑∞
i=0 Fi(Y )Xi,

where Fi ∈ R[Y ]. Since F is monic of degree n in Y , we can see that deg(Fi) < n for all i > 0 and
deg(F0) = n. We define G :=

∑∞
i=0Gi(Y )Xi and H :=

∑∞
i=0Hi(Y )Xi, where we still need to define

Gi(Y ), Hi(Y ) ∈ R[Y ] for all i > 0. We want to have F = GH, so for each q ∈ N0, we want that both
F and GH have the same coefficient at Xq. This gives the equation Fq =

∑q
i=0GiHq−i for each such q.

This already holds for q = 0, as F0 = F (0, Y ) = G0H0. To make sure that this also holds for higher q,
we will define Gq and Hq by induction on q. In this process we will also see that the degrees of Gq and
Hq will be strictly smaller than r and s, respectively. Let q ∈ N. Suppose that we have defined Gi and
Hi for all 1 ≤ i < q, such that deg(Gi) < r and deg(Hi) < s. Let

Uq := Fq −
q−1∑
i=1

GiHq−i.

Since deg(Fq) < n holds and

deg(GiHq−i) ≤ deg(Gi) + deg(Hq−i) < r + s = n

holds for every 1 ≤ i < q, we find that deg(Uq) < n. By using Euclidean division on polynomials,
we find that there exist polynomials Eq and Hq in R[Y ], with deg(Hq) < deg(H0) = s, such that
UqH

∗ = EqH0 +Hq. We then have

Uq = Uq · 1
= Uq(G0H

∗ +H0G
∗)

= G0UqH
∗ + UqH0G

∗

= G0(EqH0 +Hq) + UqH0G
∗

= H0(G0Eq + UqG
∗) +G0Hq.

This gives

deg(H0(G0Eq + UqG
∗)) = deg(Uq −G0Hq) < max(deg(Uq), deg(G0Hq)) < n.

Because F is monic in Y , so is F0 = F (0, Y ) = G0H0. Since deg(G0) + deg(H0) = deg(F0), we see that
the leading coefficient of H0 is a unit in R and thus not a zero divisor in R. Therefore we have

deg(H0(G0Eq + UqG
∗)) = deg(H0) + deg(G0Eq + UqG

∗).

We let Gq := EqG0 +G∗Uq and then find

r + deg(Gq) = deg(H0) + deg(G0Eq + UqG
∗) = deg(H0(G0Eq + UqG

∗)) < n,

hence deg(Gq) < n − r = s. So we have defined Hq, Gq such that deg(Gq) < r and deg(Hq) < s.
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Moreover, we have

Fq = Uq +

q−1∑
i=1

GiHq−i

= H0(G0Eq + UqG
∗) +G0Hq +

q−1∑
i=1

GiHq−i

= H0Gq +G0Hq +

q−1∑
i=1

GiHq−i

=

q∑
i=0

GiHq−i.

So in our process of defining G and H, we saw that F and GH have the same coefficient at Xq for
every q. Therefore F = GH. Also, by Lemma 4.12, G and H lie in R[[X]][Y ] and have degree r, s as a
polynomial in Y .

The proof of Newton-Puiseux’s Theorem has been divided in three parts. The first part applies
Hensel’s Lemma and is as follows.

Lemma 4.14. Let k be an algebraically closed field of characteristic zero. Let F (X,Y ) ∈ k[[X]][Y ] be a
polynomial in Y over k[[X]], which is monic of degree n ≥ 2 and separable over k((X)). Then there exist
m ∈ N and G,H ∈ k[[T ]][Y ] both nonconstant as polynomial over Y , such that

F (Tm, Y ) = G(T, Y )H(T, Y ).

Proof. We can write F (X,Y ) =
∑n−1
i=0 ai(X)Y i + Y n, where ai(X) ∈ k[[X]].

We start with the special case where an−1(X) is zero and where at(0) is nonzero for some 0 ≤ t < n− 1.
This gives us F (0, Y ) =

∑n−2
i=0 diY

i + Y n, where di = ai(0). In particular we see that dt is nonzero. Let
a ∈ k be a root of F (0, Y ) ∈ k[Y ]. Suppose that a is the only root, then we must have F (0, Y ) = (Y −a)n.
As dt is nonzero, a can not be zero, but if a is nonzero, we see that the coefficient of Y n−1 in (Y − a)n

is ±nan−1, which is nonzero and contradicts the fact that the coefficient of Y n−1 in F (0, Y ) is zero. So
there must be other roots apart from a. Suppose that a is a root of multiplicity p. So (Y − a)p divides
F (0, Y ), hence their exists nonconstant H ∈ k[Y ] such that F (0, Y ) = (Y − a)pH(Y ) where Y − a is
not a factor of H. Therefore (Y − a)p and H(Y ) share no common factors, hence their greatest common
divisor is 1. This assures the existence of H∗, G∗ ∈ k[Y ] such that (Y − a)pH∗ + HG∗ = 1. We can
apply Hensel’s Lemma 4.13 and indeed find G,H ∈ k[[X]][Y ] both nonconstant as polynomial over Y ,
such that F (X,Y ) = G(X,Y )H(X,Y ). So in this case the Lemma holds (we have m = 1). Note that in
this case we have not used the fact that F is separable.
We now drop the assumption that at(0) is nonzero for some 0 ≤ t < n − 1. We can write ai(X) =∑∞
j=0 ai,jX

j , with ai,j ∈ k. Consider the set {(n− i)/j | 0 ≤ i < n− 1, j ∈ N, ai,j 6= 0}. The set cannot
be empty as this would imply F (X,Y ) = Y n, which contradicts the fact that F is separable. The set has
a largest element: there are only finitely many possibilities for i < n− 1 and for any such i with ai(X)
nonzero, we see that (n− i)/j′ > (n− i)/j holds exactly when j′ < j. So we take the lowest j′ ∈ N with
ai′,j′ 6= 0 corresponding to an i′ with 0 ≤ i′ < n − 1 and ai′(X) nonzero, such that (n − i′)/j′ is the
largest. Now let m = n− i′ and p = j′. Since

F (X,Y ) =

n−2∑
i=0

ai(X)Y i + Y n =

n−2∑
i=0

∞∑
j=0

ai,jX
jY i + Y n,

we get

F (Tm, T pZ) =

n−2∑
i=0

∞∑
j=0

ai,jT
jm+ipZi + T pnZn.

For any ai,j nonzero, we have (n− i)/j ≤ m/p, so pn− pi ≤ mj, hence pn ≤ jm+ ip. This means that
Tnp divides ai,jT

jm+ipZi and therefore also F (Tm, T pZ). This shows that there exists a factorization

F (Tm, T pZ) = Tnp
(n−2∑
i=0

ci(T )Zi + Zn
)
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for some ci ∈ k[T ]. Also, we have ci′(0) = ai′,j′ 6= 0. So we can apply the special case to the polyno-
mial

∑n−2
i=0 ci(T )Zi + Zn to know that there exist G1(T,Z), H1(T,Z) ∈ k[[T ]][Z] both nonconstant as

polynomials over Z, such that

n−2∑
i=0

ci(T )Zi + Zn = G1(T,Z)H1(T,Z). (4.1)

Let l, q ∈ N0 be the Z-degree of G1(T,Z) and H1(T,Z) respectively. Then we see from (4.1) that
l + q = n. Also we find that if G(T, Y ) := T lpG1(T, Y/T p) and H(T, Y ) := T qpH1(T, Y/T p), then G
and H both lie in k[[T ]][Y ] and are both nonconstant as polynomials over Y . This gives us the desired
equality

G(T, Y )H(T, Y ) = T lp+qpG1(T, Y/T p)H1(T, Y/T p) = Tnp
(n−2∑
i=0

ci(T )(Y/T p)i + (Y/T p)n
)

= F (Tm, Y ).

At last we will now look at the general case where an−1(X) may be nonzero. We consider F (X,Z −
an−1/n) ∈ k[[X]][Z]. According to Lemma 4.9, this is also separable over k((X)). A quick inspection
shows that this polynomial is also monic of degree n when viewed as a polynomial over Z, and that
its coefficient at Zn−1 is zero. So we can apply the less general case and find F (Tm, Z − an−1/n) =
G1(T,Z)H(T,Z) for some G1, H1 ∈ k[[T ]][Z] nonconstant as polynomials over Z. We can take G(T, Y ) =
G1(T, Y + an−1/n) and H(T, Y ) = H1(T, Y + an−1/n) and find

G(T, Y )H(T, Y ) = G1(T, Y +an−1/n)H1(T, Y +an−1/n) = F (Tm, (Y +an−1/n)−an−1/n) = F (Tm, Y ),

which finishes our proof.

The previous lemma showed that F (Tm, Y ) is the factorization of two nonconstant polynomials over
k[[T ]] for a suitable m ∈ N. The following lemma uses this to show that F (Tm, Y ) can actually be fully
factorized into linear polynomials over k[[T ]] for a (perhaps different) suitable m ∈ N.

Lemma 4.15. Let k be an algebraically closed field of characteristic zero. Let F (X,Y ) ∈ k[[X]][Y ] be a
polynomial in Y over k[[X]], which is monic of degree n ≥ 1 and separable over k((X)). Then there exist
m ∈ N and fi(T ) ∈ k[[T ]] such that

F (Tm, Y ) =

n∏
i=1

(Y − fi(T )).

Proof. Note that this is trivial for n = 1. We will prove this by induction on n. Suppose that the
lemma holds for all n0 < n. By Lemma 4.14 we see that there exist m0 ∈ N and G,H ∈ k[[T0]][Y ] both
nonconstant as polynomials over Y , such that

F (Tm0
0 , Y ) = G(T0, Y )H(T0, Y ). (4.2)

Let r, s be the degrees in Y of G and H, respectively, let a be the coefficient of Y r in G and b the coefficient
of Y s in H. Since F is monic, we get from (4.2) that r + s = n and that 1 = ab. We will replace G by
bG and H by aH and see that (4.2) still holds and that additionally G and H are monic. Since F (X,Y )
is separable over k((X)), F (Tm0

0 , Y ) must be separable over k((Tm0
0 )) and therefore also over the bigger

field k((T0)). By Lemma 4.8, we find that G and H are also separable over k((T0)). Since r, s < n, we
can use the induction hypothesis to find m1,m2 ∈ N and gi(T1) ∈ k[[T1]] and hi(T2) ∈ k[[T2]] such that

G(Tm1
1 , Y ) =

r∏
i=1

(Y − gi(T1)) and H(Tm2
2 , Y ) =

s∏
i=1

(Y − hi(T2)) hold. We now take m = m0m1m2 and
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we take fi(T ) = gi(T
m2) for i ≤ r and fi(T ) = hi−r(T

m1) for i > r. We then indeed find

F (Tm, Y ) = F ((Tm1m2)m0 , Y )

= G(Tm1m2 , Y )H(Tm1m2 , Y )

= G((Tm1)m2 , Y )H((Tm2)m1 , Y )

=

r∏
i=1

(Y − gi(Tm2))

s∏
i=1

(Y − hi(Tm1))

=

r∏
i=1

(Y − fi(T ))

s∏
i=1

(Y − fi+r(T ))

=

n∏
i=1

(Y − fi(T )).

Definition 4.16. Let k be a field. We call k((X∗)) :=
⋃
m∈N

k((X1/m)) the field of formal Puiseux series

(in X) over k.

We are now ready to prove Newton-Puiseux’s Theorem.

Theorem 4.17 (Newton-Puiseux’s theorem). Let k be an algebraically closed field of characteristic zero.
Then k((X∗)) is also algebraically closed.

Proof. First, let F ∈ k((X∗))[Y ] be a nonconstant polynomial in Y over k((X∗)). We need to show that
this polynomial contains a root in k((X∗)). Since it contains a root exactly when one of its irreducible
components does, we may assume F to be irreducible. We can write F (X,Y ) =

∑n
i=0 ai(X)Y i, with

ai(X) ∈ k((X∗)). We may replace F by (an(X))−1F , as multiplying by a unit preserves roots and
irreducibility. We will therefore assume that F is monic, so an(X) = 1. Since

ai(X) ∈ k((X∗)) =
⋃
m∈N

k((X1/m)),

there are mi such that ai(X) ∈ k((X1/mi)). If we now take m =
n∏
i=0

mi, we get that ai(X) ∈

k((X1/mi)) ⊂ k((X1/m)). Let
G(T, Y ) = F (Tm, Y ). (4.3)

Then we see that G lies in k((T ))[Y ]. Note that G(T, Y ) is monic. It is also irreducible in k((T ))[Y ],
since F is irreducible in k((X∗))[Y ]. We can write G(T, Y ) =

∑n
i=1 gi(T )Y i. We let b(T ) ∈ k[[T ]] be the

product of the denominator of each gi(T ). We now find that

G(T, (b(T ))−1Z) = (b(T ))−nH(T,Z), (4.4)

withH(T,Z) :=
∑n
i=1 gi(T )b(T )n−iZi. Since the denominator of gi(T ) divides b(T ), we get gi(T )b(T )n−i ∈

k[[T ]] for each i, so H(T,Z) ∈ k[[T ]][Z]. Lemma 4.10 tells us that G is separable over k((T )). Lemma
4.9 then tells us that G(T, (b(T ))−1Z) ∈ k((T ))[Z] is separable over k((T )), hence by Lemma 4.8, so is
H(T,Z). As H(T,Z) is also monic and nonconstant, we can use Lemma 4.15 to see that there exist l ∈ N
and c(S) ∈ k[[S]] such that H(Sl, c(S)) = 0. This combined with (4.4) gives G(Sl, b(Sl)−1c(S)) = 0.
This combined with (4.3) gives F (Slm, b(Sl)−1c(S)) = 0. We replace S by X1/lm and get

F (X, b(X1/m)−1c(X1/lm)) = 0.

Since b(X1/m)−1c(X1/lm) lies in k((X1/lm)), it also lies in k((X∗)), so F does have a root that lies in
k((X∗)). We therefore see that k((X∗)) is indeed algebraically closed.
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4.2 Convergent power series

The subfield consisting of convergent Puiseux series over the complex numbers is also algebraically closed.
That is the second version of the Newton/Puiseux Theorem that we will prove. In order to do this, we
need to have a different version of Hensel’s Lemma. A proof of this has been given (in German) by H.
Grauert and R. Remmert[5]. In this subsection we will show this proof, after which we will prove that
the named subfield is indeed algebraically closed.

We start by introducing some definitions and easy lemmas that will be needed for this version of
Hensel’s Lemma.

Definition 4.18. Let k be a field. We will call a function |.| : k → R a norm when it satisfies the
following properties for all a, b ∈ k:

• |a| ≥ 0, and |a| = 0 exactly when a = 0.

• |ab| = |a| · |b|.
• |a+ b| ≤ |a|+ |b|.
If k has a norm, then k is a metric space where the metric is given by d(a, b) := |a− b|.

Example 4.19. Any subfield of the complex numbers C has the canonical norm given by |a + bi| =√
a2 + b2.

Definition 4.20. Let k be a field with a norm. We will call k a complete field if k is complete as a
metric space , i.e. when every Cauchy sequence with elements in k has a limit in k.

Example 4.21. The fields R and C are complete fields with their canonical norms.

Recall that for any ring R, the set of formal power series over R, called R[[X]], is again a ring. So
we can also look at R[[X1]][[X2]], the ring of formal power series over R[[X1]]. We can repeat this to get
the ring R[[X1]][[X2]] · · · [[Xn]] for any n ∈ N. Its elements can be written in the form

∞∑
i1=0

∞∑
i2=0

. . .

∞∑
in=0

ai1,i2,...,inX
i1
1 X

i2
2 · · ·X

in
n ,

with ai1,i2,...,in ∈ R. We will write this shorthanded as∑
i∈Nn0

aiX
i.

Note that for any f(X1, . . . , Xn) ∈ R[[X1]][[X2]] · · · [[Xn]] and any permutation Xσ1 , . . . , Xσn of the
variables X1, . . . , Xn, we still have f(Xσ1 , . . . , Xσn) ∈ R[[X1]][[X2]] · · · [[Xn]].

Definition 4.22. Let R be a ring. We write R[[X1, . . . , Xn]] for R[[X1]][[X2]] · · · [[Xn]] and call it the
ring of formal power series over R, in n variables.

Lemma 4.3 can be generalized in higher dimensions, as suggested by the following lemma.

Lemma 4.23. Let R be a ring and n ∈ N. Let f =
∑

i∈Nn0
aiX

i ∈ R[[X1, . . . , Xn]]. We have that f is

a unit in R[[X1, . . . , Xn]] if and only if a0 = a(0,...,0) is a unit in R.

Proof. We prove this by induction on n. We have already proved the case where n = 1 in Lemma 4.3.
Now suppose the statement holds for n− 1. Note that as R[[X1, . . . , Xn]] = R[[X1, . . . , Xn−1]][[Xn]], we
can view f as a power series in Xn over the ring R[[X1, . . . , Xn−1]]. We can thus write f =

∑∞
i=0 biX

i
n,

with bi ∈ R[[X1, . . . , Xn−1]]. By Lemma 4.3, f is a unit in R[[X1, . . . , Xn−1]][[Xn]] if and only if b0 is
a unit in R[[X1, . . . , Xn−1]]. Note that b0 =

∑
j∈Nn−1

0
djX

′j with dj = d(j1,...,jn−1) = a(j1,...,jn−1,0) and

X ′j = Xj1
1 X

j2
2 · · ·X

jn−1
n−1 . By the induction hypothesis, b0 is a unit in R[[X1, . . . , Xn−1]] if and only if

d(0,...,0) is a unit in R. Since d(0,...,0) = a(0,...,0), we see that indeed f is a unit in R[[X1, . . . , Xn]] if and
only if a(0,...,0) is a unit in R.

Definition 4.24. Let R be a ring and n ∈ N. Let f =
∑

i∈Nn0
aiX

i ∈ R[[X1, . . . , Xn]]. For any j ∈ N0,

let

fj :=
∑
i∈Nn0

i1+...+in=j

aiX
i.

We then call fj the j-th homogeneous component of f . We can write any such f as
∑∞
j=0 fj. This series

is called the sum of its homogeneous components.
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Definition 4.25. Let k be a field with a norm | · |, and let n ∈ N. Let f =
∑

i∈Nn0
aiX

i ∈ k[[X1, . . . , Xn]]

and let t = (t1, . . . , tn) ∈ Rn≥0 be an n-tuple of nonnegative real numbers. We define the series

||f ||t :=
∑
i∈Nn0

|ai|ti ∈ R ∪ {∞}, with ti = ti11 , . . . , t
in
n .

Lemma 4.26. Let k be a field with a norm, let n ∈ N and let t = (t1, . . . , tn) ∈ Rn>0 be an n-tuple
of positive real numbers. The function ||.||t : k[[X1, . . . , Xn]] → R ∪ {∞} described above satisfies the
following properties for all f, g ∈ k[[X1, . . . , Xn]] and a ∈ k:

• ||f ||t ≥ 0, and ||f ||t = 0 exactly when f = 0.

• ||af ||t = |a| · ||f ||t.

• ||f + g||t ≤ ||f ||t + ||g||t.

• ||fg||t ≤ ||f ||t · ||g||t.

Proof. The first three properties follow directly from applying the properties of the norm of k to the
definition of ||.||t, so only the last property remains to be proved. We take h := fg and write f =

∑∞
p=0 fp,

and g =
∑∞
q=0 fq and h =

∑∞
s=0 hs, as the sum of their homogeneous components. For each s ∈ N0, we

then have

hs =
∑
p,q∈N0
p+q=s

fpgq.

We write f =
∑

i∈Nn0
aiX

i and g =
∑

j∈Nn0
bjX

j . For each p, q ∈ N0, we find the inequality

||fpgq||t = ||
( ∑

i∈Nn0
i1+...+in=p

aiX
i

)( ∑
j∈Nn0

j1+...+jn=q

bjX
j

)
||t

= ||
∑
i∈Nn0

i1+...+in=p

∑
j∈Nn0

j1+...+jn=q

aibjX
i+j ||t

≤
∑
i∈Nn0

i1+...+in=p

∑
j∈Nn0

j1+...+jn=q

||aibjXi+j ||t

=
∑
i∈Nn0

i1+...+in=p

∑
j∈Nn0

j1+...+jn=q

|aibj |ti+j

=
∑
i∈Nn0

i1+...+in=p

∑
j∈Nn0

j1+...+jn=q

|ai| · |bj |ti+j

=

( ∑
i∈Nn0

i1+...+in=p

|ai|ti
)( ∑

j∈Nn0
j1+...+jn=q

|bj |tj
)

= ||fp||t · ||gq||t.

20



This gives us

||fg||t =

∞∑
s=0

||hs||t

=

∞∑
s=0

||
∑
p,q∈N0
p+q=s

fpgq||t

≤
∞∑
s=0

∑
p,q∈N0
p+q=s

||fpgq||t

≤
∞∑
s=0

∑
p,q∈N0
p+q=s

||fp||t · ||gq||t

=

∞∑
p=0

||fp||t ·
∞∑
q=0

||gq||t

= ||f ||t · ||g||t,

which indeed shows us that ||fg||t ≤ ||f ||t · ||g||t.

Definition 4.27. Let k be a field with a norm, let n ∈ N and let t = (t1, . . . , tn) ∈ Rn>0. We then let

Bt[[X1, . . . , Xn]] := {f ∈ k[[X1, . . . , Xn]] | ||f ||t <∞}.

Remark 4.28. Throughout this subsection we will let k be a complete field, n ∈ N a natural number
and t = (t1, . . . , tn) ∈ Rn>0. We also will use the abbreviations B for Bt[[X1, . . . , Xn]] and B′ for
Bt′ [[X1, . . . , Xn−1]], where t′ = (t1, . . . , tn−1).

If f ∈ B, we can write it as f =
∑∞
i=0 fiX

i
n, with fi ∈ k[[X1, . . . , Xn−1]]. These fi satisfy ||fi||t′ <∞,

as the following lemma shows.

Lemma 4.29. Let f =
∑∞
i=0 fiX

i
n ∈ B. Then fi ∈ B′ for all i ∈ N0.

Proof. We have that ||f ||t =
∑∞
i=0 ||fi||t′t

i
n < ∞. So for each i ∈ N0, we find ||fi||t′tin < ∞, hence

||fi||t′ <∞. So fi ∈ B′ for all i ∈ N0.

Lemma 4.30. We have the inclusion B′[Xn] ⊂ B.

Proof. Let f =
∑m
i=0 fiX

i
n ∈ B′[Xn]. As B′ ⊂ k[[X1, . . . , Xn−1]], it must hold that f ∈ k[[X1, . . . , Xn]].

Furthermore fi ∈ B′ holds, hence ||fi||t′ <∞ holds for all fi. So ||fi||t′tin <∞, hence

||f ||t =

m∑
i=0

||fi||t′tin <∞,

which shows that f ∈ B holds and that B′[Xn] indeed lies within B.

The properties from Lemma 4.26 show us that B is closed under multiplication and addition. We
also note that k ⊂ B. In fact, B is a metric space where the metric is given by d(f, g) = ||f − g||t. The
following lemma shows us that B is also complete as a metric space.

Lemma 4.31. The metric space B is complete.

Proof. Let (fj)j∈N, with fj ∈ B be a Cauchy sequence. So for any real ε > 0, there exists N ∈ N such
that ||fj − fp||t < ε holds for all j, p > N . We write fj =

∑
i∈Nn0

aj,iX
i, with aj,i ∈ k. For any j, p ∈ N

we have fj − fp =
∑

i∈Nn0
(aj,i − ap,i)Xi, hence ||fj − fp||t =

∑
i∈Nn0

|aj,i − ap,i|ti. Let i ∈ Nn0 . It then

follows that |aj,i − ap,i|ti ≤ ||fj − fp||t. In order to show that (aj,i)j∈N is a Cauchy sequence in k, let
ε′ > 0. Let ε := ε′ti, then there exists N ∈ N such that ||fj − fp||t < ε hold for all j, p > N . For
any such j and p, we now have |aj,i − ap,i| ≤ ||fj − fp||t/(ti) < ε/(ti) = ε′. So (aj,i)j∈N is indeed a
Cauchy sequence in k. Since k is a complete field, the limit ai := limj→∞ aj,i exists and lies in k. Now
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let f =
∑

i∈Nn0
aiX

i. We want to show that f = limj→∞ fj and that f ∈ B. Let ε > 0 be given. Then

there exists N ∈ N such that∑
i∈Nn0

|ap,i − aj,i|ti = ||fp − fj ||t < ε/2, for all j, p > N.

For any i = (i1, . . . , in) ∈ Nn0 , we define |i| := i1 + . . .+ in. Then for all s ∈ N and j, p > N ,∑
i∈Nn0
|i|≤s

|ai − aj,i|ti =
∑
i∈Nn0
|i|≤s

|ai − ap,i + ap,i − aj,i|ti

≤
∑
i∈Nn0
|i|≤s

|ai − ap,i|ti +
∑
i∈Nn0
|i|≤s

|ap,i − aj,i|ti

≤
∑
i∈Nn0
|i|≤s

|ai − ap,i|ti +
∑
i∈Nn0

|ap,i − aj,i|ti

<
∑
i∈Nn0
|i|≤s

|ai − ap,i|ti + ε/2

If we choose p to be high enough, we get∑
i∈Nn0
|i|≤s

|ai − ap,i|ti ≤ ε/2,

hence ∑
i∈Nn0
|i|≤s

|ai − aj,i|ti < ε

for all s ∈ N and j > N . We can thus take the limit for s→∞ and find

||f − fj ||t =
∑
i∈Nn0

|ai − aj,i|ti ≤ ε

for all j > N . This shows that f = limj→∞ fj . Furthermore, we have

||f ||t = ||f − fN + fN ||t ≤ ||f − fN ||t + ||fN ||t ≤ ε+ ||fN ||t <∞.

We therefore conclude that f ∈ B. So B is indeed complete as a metric space.

Lemma 4.32. Let a ∈ R>0 and let ε ∈ R with 0 ≤ ε < 1. For each j ∈ N0, let fj ∈ B such that
||fj ||t ≤ aεj. Then the limit

∑∞
j=0 fj exists and lies in B.

Proof. Note that
∑∞
j=0 ε

j = 1/(1− ε) since |ε| < 1. For any l ∈ N0, we define hl :=
∑l
j=0 fj . Let ε′ > 0
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and take N = dlogε(ε
′(1− ε)a−1)e, where d.e is the ceiling function. For any l′′ ≥ l′ > N we find

||hl′′ − hl′ ||t = ||
l′′∑

j=l′+1

fj ||t

≤
l′′∑

j=l′+1

||fj ||t

≤
l′′∑

j=l′+1

aεj

= εl
′+1a

l′′−l′−1∑
j=0

εj

≤ εNa
∞∑
j=0

εj

= εNa
1

1− ε
≤ ε′.

This shows that (hj)j∈N0 is a Cauchy sequence, and since B is complete by Lemma 4.31, we find that its
limit

∑∞
j=0 fj exists and lies in B.

Lemma 4.33. Let f ∈ B such that ||1− f ||t < 1. Then f is a unit in B.

Proof. With a = 1 and ε = ||1− f ||t, notice that ||(1− f)j ||t ≤ (||1− f ||t)j = aεj . We can apply Lemma
4.32 to find that

∑∞
j=0 (1− f)j exists and lies in B. We find that

f

∞∑
j=0

(1− f)j = (1− (1− f))

∞∑
j=0

(1− f)j =

∞∑
j=0

(1− f)j −
∞∑
j=0

(1− f)j+1 = (1− f)0 = 1.

So f is indeed a unit in B.

A big ingredient for the proof of Hensel’s Lemma for convergent power series is the Weierstrass
preparation theorem. This theorem follows indirectly from the Weierstrass Division Theorem, which is
as follows:

Lemma 4.34 (Weierstrass Division Theorem). Let g =
∑∞
i=0 giX

i
n ∈ B. Let b ∈ N and suppose that gb

is a unit in B′ such that
||Xb

n − gg−1
b ||t ≤ εt

b
n,

for some ε that lies in the open interval (0, 1). Let f =
∑∞
i=0 fiX

i
n ∈ B. Then there exist unique q ∈ B

and r ∈ B′[Xn] with degXn r < b, such that

f = qg + r.

We also have the inequality

||Xb
ngbq −

∞∑
i=b

fiX
i
n||t ≤

ε

1− ε ||f ||t. (4.5)

If additionally f, g lie in B′[Xn], with degXn g = b, then this q also lies in B′[Xn] and degXn q =
degXn f − b (except when degXn f − b < 0, in which case we trivially have q = 0).

Proof. First we need some notation. For any h =
∑∞
i=0 hiX

i
n ∈ B, we define ĥ ∈ B′[Xn] and h̃ ∈ B as

follows:

ĥ :=

b−1∑
i=0

hiX
i
n, h̃ :=

∞∑
i=b

hiX
i−b
n .
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So we have h = ĥ+Xb
nh̃ and degXn ĥ < b.

Because

||h||t =

∞∑
i=0

||hi||t′tin

=

b−1∑
i=0

||hi||t′tin +

∞∑
i=b

||hi||t′tin

= ||ĥ||t + tbn

∞∑
i=b

||hi||t′ti−bn

= ||ĥ||t + tbn||h̃||t,

we find that ||ĥ||t ≤ ||h||t and that ||h̃||t ≤ t−bn ||h||t must hold.
We now let v0 := f and inductively define vj+1 := (Xb

n − gg−1
b )ṽj for every j ∈ N0. For any j ∈ N0,

we find the inequality

||vj+1||t ≤ ||Xb
n − gg−1

b ||t · ||ṽj ||t
≤ εtbn · t−bn ||vj ||t
= ε||vj ||t.

So by repeating this inequality, we find ||vj ||t ≤ εj ||f ||t for all j ∈ N0. By using Lemma 4.32 with
a = ||f ||t, we find that

∑∞
j=0 vj ∈ B. By applying this lemma in a similar way, we also find that

q := g−1
b

∞∑
j=0

ṽj ∈ B, and that r :=

∞∑
j=0

v̂j ∈ B′[Xn].

Because degXn v̂j < b for all j ∈ N0, it follows that degXn r < b. We now find

f = v0 =

∞∑
j=0

(vj − vj+1) =

∞∑
j=0

(v̂j +Xb
nṽj − (Xb

n − gg−1
b )ṽj) =

∞∑
j=0

(gg−1
b ṽj + v̂j) = qg + r.

We also find the inequality

||Xb
ngbq −

∞∑
i=b

fiX
i
n||t = ||Xb

n

( ∞∑
j=0

ṽj − f̃
)
||t

≤ ||Xb
n||t · ||

∞∑
j=1

ṽj ||t

≤ tbn
∞∑
j=1

||ṽj ||t

≤ tbn
∞∑
j=1

t−bn ||vj ||t

≤
∞∑
j=1

εj ||f ||t

= ||f ||t · ε
∞∑
j=0

εj

=
ε

1− ε ||f ||t.

To prove uniqueness of q and r, we first look at the special case where f = 0, so qg + r = 0. We define
h := g · g−1

b −X
b
n. By assumption we have ||h||t ≤ εtbn. We also have g = gb(X

b
n + h), so

qgbX
b
n + qgbh+ r = 0,
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hence qgbX
b
n + r = −qgbh. Note that degXn r < b, so ||qgbXb

n + r||t = ||qgbXb
n||t + ||r||t. We therefore

find

M := ||qgb||t · tbn = ||qgbXb
n||t ≤ ||qgbXb

n + r||t = ||qgbh||t ≤ ||qgb||t · εtbn = εM.

Since ε ∈ (0, 1), we must have that M = 0, hence ||qgb||t = 0, and therefore qgb = 0, hence q = 0
and r = −qg = 0. So in the special case we see that q and r are uniquely determined. For general
f ∈ B we consider q′ ∈ B and r′ ∈ B′[Xn] that satisfy both degXn r

′ < b and f = q′g + r′. This gives
0 = f − f = (q− q′)g+ (r− r′). Because we have uniqueness in the special case, we must have q− q′ = 0
and r − r′ = 0. So q = q′ and r = r′ and we therefore also have uniqueness in the general case.

Suppose additionally that f, g lie in B′[Xn], with degXn g = b. Let m := degXn f and suppose

m ≥ b. We now have that gg−1
b is monic as a polynomial in Xn. Therefore degXn(Xb

n − gg−1
b ) < b.

Any h ∈ B′[Xn] satisfies degXn h̃ ≤ degXn h − b, as can be seen by the definition of h̃. We therefore

have degXn h̃(Xb
n − gg−1

b ) < degXn h. From this we can conclude by induction that degXn vj ≤ m and
degXn ṽj ≤ m − b for all j ∈ N0. And thus degXn q ≤ m − b as we can see by definition of q. If
degXn q < m− b, then

m = degXn f = degXn(qg + r) ≤ min(degXn(qg),degXn r) < m,

which leads to a contradiction. Hence degXn q = m− b, which finishes our proof.

The Weierstrass Division Theorem will be used twice in the following lemma.

Lemma 4.35. Let g =
∑∞
i=0 giX

i
n ∈ B. Let b ∈ N and suppose that gb is a unit in B′ such that

||Xb
n − gg−1

b ||t ≤ εt
b
n,

for some ε that lies in the open interval (0, 1
2
). Then there exist a unit e ∈ B and a monic polynomial

ω ∈ B′[Xn] of degree b, such that
g = e · ω.

If additionally g lies in B′[Xn], then so does e and in that case we have degXn e = degXn g − b.

Proof. We apply Lemma 4.34 with g = g and f = Xb
n. We therefore know that there exist q ∈ B and

r ∈ B′[Xn] with degXn r < b such that

Xb
n = q · g + r. (4.6)

Equation (4.5) then translates translates to

||Xb
ngbq −Xb

n||t ≤
ε

1− ε t
b
n.

Hence

||gbq − 1||t ≤
ε

1− ε <
1
2

1− 1
2

= 1.

We can now apply Lemma 4.33 and discover that gb · q is a unit in B. Since gb is a unit in B, so is q. We
can now take this unit e := q−1 ∈ B and also define ω := Xb

n − r. This combined with (4.6) gives us the
desired equation g = e · ω. Suppose additionally that g lies in B′[Xn], with degXn g = m. Notice that
ω is indeed a monic polynomial of degree b. We can apply Lemma 4.34 with f = g, g = ω. We already
know g = e · ω + 0, and since this pair (e, 0) is unique by this lemma and since g, ω lie in B′[Xn] with
degXn ω = b, we get the additional fact that e ∈ B′[Xn] with degXn e = degXn g − b, which ends our
proof.

For the Weierstrass Preparation Theorem and Hensel’s Lemma, we need the definition of convergent
Power series.

Definition 4.36. Let n ∈ N and let f ∈ k[[X1, . . . , Xn]]. We say that f is a convergent power series (in
n variables) if there exists t ∈ Rn>0 such that f ∈ Bt. We name

k[{X1, . . . , Xn}] :=
⋃

t∈Rn>0

Bt

the set of convergent power series. We also will use the shorthand notation K = Kn := k[{X1, . . . , Xn}]
and K′ = Kn−1.
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Remark 4.37. It can be quickly seen that the above set Kn is in fact a subring of k[[X1, . . . , Xn]].
For any f ∈ Kn, we can choose to write f =

∑
i∈Nn0

aiX
i, with ai ∈ k. We can also choose to write

f =
∑∞
i=0 aiX

i
n, with ai ∈ k[[X1, . . . , Xn−1]]. Note that in this last form, since f ∈ Bt for some t ∈ Rn>0,

we have ai ∈ B′t, hence ai ∈ Kn−1.

Lemma 4.38. Let f ∈ k[[X1, . . . , Xn]] be a convergent power series. Then there exists a positive real
number R ∈ R>0 such that the series f(x1, . . . , xn) converges in k for all x1, . . . , xn ∈ k with |xj | < R
for all j ∈ {1, . . . , n}.

Proof. Since f =
∑

(i1,...,in)∈Nn0
ai1,...,inX

i1
1 · · ·Xin

n is convergent, there exists t = (t1, . . . , tn) ∈ Rn>0 such

that ||f ||t <∞. Now take R := min(t1, . . . , tn) and let x1, . . . , xn ∈ k with |xj | < R for all j ∈ {1, . . . , n}.
We have for any (i1, . . . , in) ∈ Nn0 that

|ai1,...,inx
i1
1 · · ·x

in
n | = |ai1,...,in | · |x1|

i1 · · · |xn|in < |ai1,...,in |t
i1
1 · · · t

in
n .

This shows us that∑
(i1,...,in)∈Nn0

|ai1,...,inx
i1
1 · · ·x

in
n | <

∑
(i1,...,in)∈Nn0

|ai1,...,in |t
i1
1 · · · t

in
n = ||f ||t <∞.

Since k is complete, we conclude that f(x1, . . . , xn) =
∑

(i1,...,in)∈Nn0
ai1,...,inx

i1
1 · · ·xinn converges in k.

Definition 4.39. Let g =
∑∞
i=0 giX

i
n ∈ K. Let b ∈ N. We say that g is Xn-generic of order b if

gi(0) = 0 for all i < b and gb(0) 6= 0.

Note that gi(0) = gi(0, . . . , 0) is the constant coefficient in gi(X1, . . . , Xn−1) ∈ k[[X1, . . . , Xn−1]],
when we view gi as a formal power series in n− 1 variables.

Lemma 4.40. Let g =
∑∞
i=0 giX

i
n ∈ K. Let b ∈ N. Suppose that g is Xn-generic of order b. Let

ε > 0. Then there exist δn > 0 and a function δ : (0, δn) → (0, δn) such that the following holds for any
t = (t1, . . . , tn) ∈ Rn>0 with tn < δn and t1, . . . , tn−1 < δ(tn):

• g lies in Bt.

• gb is a unit in B′t.

• ||Xb
n − g · g−1

b ||t < εtbn.

Proof. Since g is convergent, it must lie in some Bs for some s ∈ Rn>0. Note that any u ∈ Rn>0 satisfying
ui < si for all i also satisfies ||g||u < ||g||s and thus g ∈ Bu. Also note that for any h(X1, . . . , Xn) ∈ K we
have limt→0 ||h||t = h(0). As the constant term of gb(0)−1gb−1 is zero, we find limt→0 ||gb(0)−1gb−1||t =
0. So we can take a positive η < mini∈{1,...,n} si that is small enough such that

||gb(0)−1gb − 1||t < 1

for all t ∈ Rn>0 with t1, . . . , tn < η. For any such t we have gb(0)−1gb ∈ Bt and we then can apply
Lemma 4.33 to conclude that gb(0)−1gb is a unit in Bt. So gb is a unit in Bt. We can now consider
gg−1
b =

∑∞
i=0 g

−1
b giX

i
n. We let ci = gig

−1
b for all i ∈ N0. In particular we have cb = 1. We can choose δn

with 0 < δn < η small enough such that

||
∞∑

i=b+1

ciX
i
n||t =

∞∑
i=b+1

||ci||t′ · tin = tbn

∞∑
i=b+1

||ci||t′ · ti−bn ≤ ε

2
tbn

holds for all t ∈ Rn>0 with t1, . . . , tn < δn. Now note that ci(0) = gi(0)g−1
b (0) = 0g−1

b (0) = 0 for all
i < b. So limt′→0 ||ci||t′ = 0 for such i. This means that we can find δ(tn) ∈ R with 0 < δ(tn) < δn, such
that

||ci||t′ <
1

b

ε

2
tb−in

for all t ∈ Rn>0 with tn < δn and t1, . . . , tn−1 < δ(tn). For the same t, this leads to

||
b−1∑
i=0

ciX
i
n||t =

b−1∑
i=0

||ci||t′ · tin ≤
b−1∑
i=0

1

b

ε

2
tb−in tin =

ε

2
tbn.
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We now have for all t ∈ Rn>0 with tn < δn and t1, . . . , tn−1 < δ(tn) that g lies in Bt, that gb is a unit in
Bt′ , and that

||Xb
n − g · g−1

b ||t = ||Xn −
∞∑
i=0

ciX
i
n||t

= ||Xb
n −

b−1∑
i=0

ciX
i
n − cbXb

n −
∞∑

i=b+1

ciX
i
n||t

= ||
b−1∑
i=0

ciX
i
n||t + ||

∞∑
i=b+1

ciX
i
n||t

< εtbn.

Definition 4.41. Let ω = Xb
n + a1X

b−1
n + . . . + ab ∈ K′[Xn] be a monic polynomial over K′ in Xn of

degree b ∈ N0. We call ω a Weierstrass polynomial of degree b if ai(0) = 0 for all i ∈ {1, . . . , b}.
We are now ready to prove the Weierstrass Preparation Theorem.

Lemma 4.42 (Weierstrass Preparation Theorem). Let g =
∑∞
i=0 giX

i
n ∈ K. Let b ∈ N. Suppose that g

is Xn-generic of order b. Then there exist a Weierstrass polynomial ω ∈ K′[Xn] of degree b and a unit
e ∈ K such that g = e · ω. Additionally, if g ∈ K′[Xn], then e ∈ K′[Xn] with degXn e = degXn g − b.

Proof. We choose ε = 1/4 and apply Lemma 4.40. We find δn and δ : (0, δn) → (0, δn) such that for
any t ∈ Rn>0 with tn < δn and t1, . . . , tn−1 < δ(tn) it follows that g lies in Bt, that gb is a unit in Bt′

and that ||Xb
n − g · g−1

b ||t < 1/4tbn. We pick such a t and apply Lemma 4.35. This gives us the monic
polynomial ω ∈ B′t[Xn] and a unit e ∈ Bt such that g = e ·ω. Since Bt is a subring of K, e is also a unit
in K. As ω is a monic polynomial of degree b over B′t, it is also a monic polynomial of degree b over K′.
Notice that in the case where g ∈ K′[Xn], it also follows from Lemma 4.35 that e ∈ Bt′ [Xn] ⊂ K′[Xn]
with degXn e = degXn g − b. It remains for us to prove that ω is a Weierstrass polynomial. We write

ω = Xb
n + a1X

b−1
n + . . .+ ab. As e ∈ K ⊂ k[[X1, . . . , Xn]] is a unit, we can apply Lemma 4.23 to see that

e(0) 6= 0. We have

g(0, Xn) =

∞∑
i=0

gi(0)Xi
n =

∞∑
i=b

gi(0)Xi
n = Xb

n

( ∞∑
i=b

gi(0)Xi−b
n

)
.

So the coefficients of Xi
n with i ∈ {0, . . . , b− 1} in the formal power series

g(0, Xn) = e(0, Xn)(Xb
n + a1(0)Xb−1

n + . . .+ ab(0))

are zero. We can now inductively compare these coefficients to conclude that

a1(0) = a2(0) = . . . = ab(0) = 0.

This shows that ω is indeed a Weierstrass polynomial.

The following lemma is in fact a version of Hensel’s Lemma, but not exactly the version we want. We
do however require this lemma for our desired version.

Lemma 4.43. Suppose that k is a complete algebraically closed field. Let ω(X, Y ) = ω(X1, . . . , Xn, Y ) ∈
Kn[Y ] be any monic polynomial of degree b > 0. Let the factorization of ω(0, Y ) ∈ k[Y ] be given by

ω(0, Y ) = (Y − c1)b1 · · · (Y − ct)bt

such that the constants c1, . . . , ct ∈ k are all distinct. Then there exist ω1(X, Y ), . . . , ωt(X, Y ) ∈ Kn[Y ]
that are monic as polynomials in Y such that ω(X, Y ) = ω1(X, Y ) · · ·ωt(X, Y ) and such that ωi(0, Y ) =
(Y − ci)bi and degY ωi(X, Y ) = bi hold for any i ∈ {1, . . . , t}.
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Proof. We prove this by induction on t. If t = 1, we can trivially take ω1 = ω. So now suppose that
t > 1 and that the statement is true for t− 1. We let q(X, Y ) := ω(X, Y + ct). Note that q is also monic
in Y . We find

q(0, Y ) = ω(0, Y + ct) = (Y − (c1 − ct))b1 · · · (Y − (ct−1 − ct)bt−1Y bt .

Note that we can view Kn[Y ] as a subring of Kn+1. We see that q(X, Y ) is Y -generic of order bt. We
apply the Weierstrass Preparation Theorem 4.42 on q(X, Y ) to find a Weierstrass polynomial qt ∈ Kn[Y ]
of degree bt and a polynomial e′ ∈ Kn[Y ] that is a unit in Kn+1 and of degree b − bt in Y , such that
q(X, Y ) = e′(X, Y ) · qt(X, Y ). Because qt and q are monic polynomials in Y , so is e′. We have
qt(0, Y ) = Y bt as qt is a Weierstrass polynomial of degree bt. By Lemma 4.23 we have that e′(0, 0) is a
unit in k, hence e′(0, 0) 6= 0. We now define ωt(X, Y ) := qt(X, Y − ct) and ω′(X, Y ) := e′(X, Y − ct).
It then follows that

ω(X, Y ) = ω(X, Y − ct + ct) = q(X, Y − ct) = e′(X, Y − ct) · qt(X, Y − ct) = ω′(X, Y )ωt(X, Y ),

and that
ωt(0, Y ) = qt(0, Y − ct) = (Y − ct)bt .

Since e′(X, Y ) is monic in Y , so is ω′(X, Y ). We also have

(Y − c1)b1 · · · (Y − ct)bt = ω(0, Y ) = ω′(0, Y ) · ωt(0, Y ) = ω′(0, Y ) · (Y − ct)bt .

So ω′(0, Y ) = (Y − c1)b1 · · · (Y − ct−1)bt−1 . By our induction hypothesis, we find monic polynomials
ω1, . . . , ωt−1 ∈ Kn[Y ] such that ω′(X, Y ) = ω1(X, Y ) · · ·ωt−1(X, Y ) and such that ωi(0, Y ) = (Y −ci)bi
for all i ∈ {1, . . . , t− 1}. This gives the desired result.

We will now prove the version of Hensel’s Lemma that is about convergent power series.

Lemma 4.44 (Hensel’s Lemma). Suppose that k is a complete algebraically closed field. Let F (X, Y ) =
F (X1, . . . , Xn, Y ) ∈ Kn[Y ] be a monic polynomial in Y of degree n ≥ 2, with coefficients in Kn. Suppose
that there exist G0(Y ), H0(Y ) ∈ k[Y ] of nonzero degree r, s respectively, such that F (0, Y ) = G0(Y )H0(Y )
and such that r+ s = n. Suppose that there also exist G∗, H∗ ∈ k[Y ] such that G0H

∗ +H0G
∗ = 1 holds.

Then there exist G,H ∈ Kn[Y ], whose degree as polynomials in Y are r, s respectively, such that F = GH.

Proof. First note that the polynomials G(0, Y ) and H(0, Y ) share no common root, for if a ∈ k is such
a common root, we would have

1 = G0(a)H∗(a) +H0(a)G∗(a) = 0 ·H∗(a) + 0 ·G∗(a) = 0,

a contradiction. We first assume G0 and H0 to be monic. Now let
t∏
i=1

(Y − ci)bi and
p∏

i=t+1

(Y − ci)bi ,

with ci ∈ k and bi ∈ N be the factorization of G0 and H0 respectively. Note that r = degY G =∑t
i=1 bi and s = degY H =

∑p
i=t+1 bi. Note that we may assume that ci 6= cj holds for all i 6= j. So

F (0, Y ) =
p∏
i=1

(Y − ci)bi and we apply Lemma 4.43 to find the existence of Fi(X, Y ) ∈ Kn[Y ] for each

i ∈ {1, . . . , p}, such that Fi(0, Y ) = (Y − ci)bi and degY Fi(X, Y ) = bi hold for all such i, and such that
F (X, Y ) = F1(X, Y ) · · ·Fp(X, Y ). We now take G(X, Y ) := F1(X, Y ) · · ·Ft(X, Y ) and H(X, Y ) :=
Ft+1(X, Y ) · · ·Fp(X, Y ). We find degY G(X, Y ) =

∑t
i=1 bi = r and degY H(X, Y ) =

∑p
i=t+1 bi = s.

This gives the desired result.

With the convergent version of Hensel’s Lemma proven, we can now look at the convergent version of
Newton-Puiseux’s theorem. We will now restrict ourselves to the case where n = 1. SoK = Kn = k[{X}].
We will also define the field of convergent Puiseux series.

Definition 4.45. Let k be a complete field. We denote the quotient field of k[{X}] by k({X}). We call

k({X∗}) :=
∞⋃
m=1

k({X1/m}) the field of convergent Puiseux series (in X) over k. Since k[{X}] ⊂ k[[X]],

we may and will view k({X}) as subset of k((X)), the field of formal Puiseux series.

Theorem 4.46 (Newton-Puiseux). Suppose that k is a complete algebraically closed field of characteristic
zero. Then the field of convergent Puiseux series k({X∗}) is also algebraically closed.
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Proof. Let F ∈ k({X∗})[Y ] be a nonconstant polynomial in Y over k({X∗}). We need to show that
this polynomial contains a root in k({X∗}). Note that k({X∗})[Y ] ⊂ k((X∗))[Y ] and that k((X∗)) is
algebraically closed by Theorem 4.17. So there exists f(X) ∈ k((X∗)) such that F (X, f(X)) = 0. To
see that this f(X) actually also lies in k({X∗}), we can look at Subsection 4.1 and replace k[[X]] by
K[{X}], k((X)) by k({X}) and k((X∗)) by k({X∗}). We get that the statements are still true except
for Hensel’s Lemma 4.13. We replace that one by the convergent version of Hensel’s Lemma 4.44 and
indeed find that f(X) ∈ k({X∗}) holds.

As a direct consequence, we now see that the field C({X∗}) is algebraically closed. Because C({X∗})
and Q((X∗)) are both subsets of C((X∗)), we can say something useful about their intersection.

Definition 4.47. We call the set

Q({X∗}) := Q((X∗)) ∩ C({X∗})

the field of convergent Puiseux series over Q.

This set is actually also an algebraically closed field. This follows from the following lemma:

Lemma 4.48. Let H be a field and let F and K be two algebraically closed subfields of H. Let M = F∩K.
Then M is also an algebraically closed subfield of H.

Proof. It can be easily seen that M is a subfield of H as it contains 1 and is closed under addition,
subtraction, multiplication and division. To show that it is also algebraically closed, let f ∈ M [X] be a
nonconstant monic polynomial of degree n ∈ N. Because f ∈ F [X] holds and because F is algebraically
closed, we can factorize f as f = (X−a1) · · · (X−an) where a1, . . . , an ∈ F are uniquely determined (up
to order). This factorization is also a factorization in H as F ⊂ H. We can, in a similar way, factorize f
as f = (X − b1) · · · (X − bn) where b1, . . . , bn ∈ K are uniquely determined (up to order of the factors).
This second factorization is also a factorization in H. Since H is a field, it is a unique factorization
domain, so these two factorizations must be equal to one another (up to units in H and up to the order
of the factors). So for any i ∈ {1, . . . , n}, there exist a nonzero ci ∈ H and j ∈ {1, . . . , n} such that

(X − ai) = ci(X − bj) = ciX − cibj .

This gives us ci = 1 and bj = ai. So ai ∈ K, hence ai ∈ F ∩ K = M . This shows us that f =
(X − a1) · · · (X − an) is also a factorization in M . So M is indeed an algebraically closed field as any
nonconstant monic polynomial over M factorizes into linear monic polynomials over M .

Corollary 4.49. The set Q({X∗}) is an algebraically closed subfield of C((X∗)).

Proof. Because Q is an algebraically closed field of characteristic zero, we can apply Theorem 4.17 to
see that Q((X∗)) is algebraically closed. Since C is a complete algebraically closed field of characteristic
zero (with the canonical norm), we can apply Theorem 4.46 to see that C({X∗}) is algebraically closed.
These two fields are subfields of C((X∗)), so by the previous lemma we find that its intersection Q({X∗})
must be an algebraically closed subfield of C((X∗)) as well.

4.3 Puiseux expansions at infinity

Let f(X) ∈ C[{X}] be a convergent power series in X over C. We saw in Lemma 4.38 that f(x) converges
for x ∈ C when its norm |x| is small enough. For Runge’s Theorem we are actually interested in values
x ∈ C whose norm are big enough. In this subsection we solve this problem by making use of the inverted
variable X−1 and look at Puiseux series in X−1, or as we will (re)name them, Puiseux series at infinity
(in X).

Lemma 4.50. Let k be an algebraically closed field of characteristic zero. Let F (X,Y ) ∈ k[X,X−1][Y ]
be an n-th degree polynomial in Y over k[X,X−1] with n ∈ N. We can then factorize F (X,Y ) as

F (X,Y ) = g(X)

n∏
i=1

(Y − fi(X)), (4.7)

for some f1(X), . . . , fn(X) ∈ k(((X−1)∗)) and g(X) ∈ k[X,X−1]. If k is a complete field, then we also
have f1(X), . . . , fn(X) ∈ k({(X−1)∗}).
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Proof. We can write F (X,Y ) =
∑n
i=0 gi(X)Y i, with gi(X) ∈ k[X,X−1]. We let T := X−1 be the inverse

of the formal variable X. We then see that gi(T
−1) ∈ k[T−1, T ] holds for all i ∈ {1, . . . , n}. We then

define F ′(T, Y ) := F (T−1, Y ) =
∑n
i=0 gi(T

−1)Y i. We see that F ′(T, Y ) ∈ [T, T−1][Y ] ⊂ k((T ∗))[Y ]. By
Newton-Puiseux’s Theorem 4.17 we have that k((T ∗)) is algebraically closed. So we can write

F ′(T, Y ) = g′(T )

n∏
i=1

(Y − f ′i(T ))

for some g′(T ), f ′1(T ), . . . , f ′n(T ) ∈ k((T ∗)). We then have

F (X,Y ) = F ′(X−1, Y ) = g′(X−1)

n∏
i=1

(Y − f ′i(X−1)).

We take fi(X) := f ′i(X
−1) ∈ k(((X−1)∗)) and g(X) := g′ ∈ k(((X−1)∗)) and find (4.7). We only need

to check that g(X) lies in k[X,X−1]. This immediately follows from the fact that g(X) is the leading
coefficient of F (X,Y ), when we view F (X,Y ) as a polynomial in Y over k[X,X−1]. Now suppose that
k is also a complete field. We then use the convergent version of Newton-Puiseux’s Theorem 4.46 to see
that the elements f ′1(T ), . . . , f ′n(T ) also lie in k({T ∗}). From the same reasoning it then follows that
f1(X), . . . , fn(X) ∈ k(((X−1)∗)).

Definition 4.51. We call the roots f1(X), . . . , fn(X) from (4.7) the Puiseux expansions at infinity of
F .

Definition 4.52. Let k be an algebraically closed field of characteristic zero. We then call k(((X−1)∗))
the field of formal Puiseux series at infinity (in X) over k.

Remark 4.53. Note that k(((X−1)∗)) =
∞⋃
e=1

k(((X−1)1/e)) =
∞⋃
e=1

k((X−1/e)). Any f(X) ∈ k(((X−1)∗))

can thus be written as

f(X) =

∞∑
n=−m

anX
−n/e, (4.8)

with an ∈ k, m ∈ Z and e ∈ N. If f is nonzero, we let e and m be the smallest possible values such that
we still can write f(X) in the form of (4.8). In that case we have a−m 6= 0.

Definition 4.54. Let k be an algebraically closed complete field of characteristic zero. We then call
k({(X−1)∗}) the field of convergent Puiseux series at infinity (in X) over k.

Remark 4.55. We have that k((T ∗)) and k(((X−1)∗)) are field isomorphic, with the canonical iso-
morphism given by f(T ) 7→ f(X−1). Because of this we immediately see that k(((X−1)∗)) is also an
algebraically closed field. The same also holds for k({(X−1)∗}) by similar reasoning.

The following lemma shows that convergent Puiseux series at infinity actually converge for values
whose norms are big enough.

Lemma 4.56. Let k be a complete field and let f(X) ∈ k({(X−1)∗}). Then there exists an R ∈ R≥0

such that the series f(x) converges in k for all x ∈ k satisfying |x| > R.

Proof. Any g(T ) ∈ k({T}) can be written as T−m · h(T ), where m ∈ N and h(T ) ∈ k[{T}]. By the one
dimensional case of Lemma 4.38, there exists R′ ∈ R>0 such that the series h(t) converges in k for all
t ∈ k satisfying |t| < R′. Since t−m converges for all nonzero t ∈ k, we see that the product t−m · h(t)
converges for all nonzero t ∈ k satisfying |t| < R′. Now let f(X) ∈ k({(X−1)∗}). Then there exists e ∈ N
with f(X) ∈ k({X−1/e}). This shows us that there exists g(T ) ∈ k({T}) with f(X) = g(X−1/e). Let
R′ ∈ R>0 be such that the series g(t) converges for all nonzero t ∈ k satisfying |t| < R′. Take R := R′−e.
For any x ∈ k with |x| > R we then have

0 < |x−1/e| =
(

1

|x|

)1/e

< R−1/e = R′.

So f(x) = g(x−1/e) converges for all x ∈ k satisfying |x| > R.

We will now define the order of Puiseux series at infinity.
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Definition 4.57. Let k be a field. Let f(X) ∈ k(((X−1)∗)) be a nonzero formal Puiseux series at infinity
over k. We can then write f(X) as in (4.8) for some smallest m ∈ Z, e ∈ N and with an ∈ k for all
n ∈ {−m,−m+ 1, . . . ,∞}. We then define the order of f(X) in X to be ordXf := m/e. We also define
ordX0 = −∞.

Note that any polynomial in X over C is also a Puiseux series at infinity in X over C and that its
X-degree and order are always the same. The order of Puiseux series at infinity also satisfies some nice
rules, as the following lemma shows.

Lemma 4.58. The following rules hold for any f(X), g(X) ∈ k(((X−1)∗)):

• ordX(f + g) ≤ max(ordXf, ordXg).

• ordX(f · g) = ordXf + ordXg.

• If f is nonzero, then ordX(1/f) = −ordXf .

Proof. The proof of the first two rules are similar to the proof of Lemmas 3.15 and 3.16 and can be proven
in a very straightforward way. The third rule follows from 0 = ordX(1) = ordX(f · (1/f)) = ordXf +
ordX(1/f). Note that if f(X) is also a nonzero polynomial inX over k, then we have ordXf = degX f .

4.4 Coefficients of Puiseux expansions

Let k be a field of characteristic zero and let k be its algebraic closure. Throughout this subsec-
tion we let F (X,Y ) ∈ k[X,Y ] be an irreducible polynomial of Y -degree d2 ≥ 1, and we let f(X) =∑∞
n=−m anX

−n/e ∈ k((X−1/e)) be any of its Puiseux expansions at infinity. Our aim in this subsection

is to show that there exists a subfield l ⊂ k that is a finite field extension of k, such that all coefficients
an lie in l. The proof of this is inspired by a different proof to Newton-Puiseux’s Theorem 4.17 with the
restriction that the groundfield is C [1]. Since we already have proved the more general Newton-Puiseux’s
theorem, we have adapted this proof such that it contains only what we still want to prove and such that
it also works in cases where k 6= C.

First we will generalize the definition of a Newton dot such that it also works with fractional exponents
of X:

Definition 4.59. Let K be a field and let G(X,Y ) ∈ K((X−1/e))[Y ]. We can write G as

G(X,Y ) =

∞∑
i=−t

d2∑
j=0

ci/e,jX
i/eY j ,

for some t ∈ Z and d2 ∈ N0 and with ci/e,j ∈ K. We define ca,b = 0 for all (a, b) ∈ Q× Z where ca,b is
still undefined. We then define

D(G) := {(i/e, j) ∈ Q× Z | ci/e,j 6= 0}.

Remark 4.60. Using a similar proof of Lemmas 3.15 and 3.16, we can see that these lemmas not only
hold for polynomials in Z[X,Y ], but also for polynomials in the ring K((X−1/e))[Y ]. So we have in for
all G,H ∈ K((X−1/e))[Y ] and λ ∈ R>0:

• degλ(G+H) ≤ max(degλG,degλH).

• If degλG > degλH, then (G+H)λ = Gλ.

• degλ(GH) ≤ degλG+ degλH.

• (GH)λ = GλHλ.

Now let h(X) =
∑N
n=−m anX

−n/e ∈ k((X−1/e)), for some N ∈ N. So h(X) consists of the highest
order terms of f(X), where f(X) has been defined at the start of this subsection. Furthermore, let
G(X,Y ) := F (X,Y + h(X)) ∈ k((X−1/e))[Y ]. We are interested in its Newton dots. First of all we
let b/e be the largest order among the coefficients of G, where G is viewed as a polynomial in Y over
k((X−1/e)). Secondly, we observe that G is of the same Y -degree as F . Now let (i/e, j) be a Newton
dot of G. So cXi/eY j is a term of G for some nonzero constant c ∈ k. We therefore find that i/e ≤ b/e
and 0 ≤ j ≤ d2 must hold. We want to show that the value b/e is independent of N . To do this, we first
need to look at the following lemma.

31



Lemma 4.61. Let G(X,Y ) be defined as above and let L ≤ 0 be an integer. Let g(X) ∈ k((X−1/e))
be a formal Puiseux series at infinity whose order is less than L/e. Let i ∈ Z and j ∈ N0 such that
i/e ≥ b/e + L/e. Then the coefficient of Xi/eY j in G(X,Y + g(X)) is the same as the coefficient of
Xi/eY j in G(X,Y ).

Note that this last statement implies that (i/e, j) is a Newton dot of G(X,Y + g(X)) if and only if
it is a Newton dot of G(X,Y ).

Proof. We can write G(X,Y ) =
∑d2
t=0 qt(X)Y t where all qt(X) ∈ k((X−1/e)) are of order at most b/e.

This gives us

G(X,Y + g(X)) =

d2∑
t=0

qt(X)(Y + g(X))t =

d2∑
t=0

qt(X)Y t +

d2∑
t=0

qt(X)

t∑
s=1

(
t

s

)
g(X)sY t−s. (4.9)

The second part of the right-hand side consists of terms of the form qt(X)
(
t
s

)
g(X)sY t−s. The order of

the coefficient of any such term satisfies:

ordX(qt(X)

(
t

s

)
g(X)s) = ordX(qt(X)) + ordX(

(
t

s

)
) + s · ordX(g(X))

< b/e+ 0 + s · L/e
≤ b/e+ L/e

≤ i/e.

This shows us that the second part of the right-hand side of (4.9) does not contribute to the coefficient
of Xi/eY j . So only the first part may contribute. Since this first part is exactly G(X,Y ), we see that
G(X,Y ) and G(X,Y + g(X)) indeed have the same coefficient at Xi/eY j .

We now are able to prove that b/e is independent of N . Suppose we had taken a larger integer

N ′ > N . We then have corresponding h′(X) :=
∑N′

n=−m anX
−n/e and G′(X,Y ) := F (X,Y + h′(X)).

Let g(X) := h′(X) − h(X) =
∑N′

n=N+1 anX
−n/e. Then we see that the order of g(X) is smaller than

−N/e, hence smaller than zero. So according to the previous lemma, G(X,Y ) and G(X,Y + g(X)) =
F (X,Y + h(X) + g(X)) = G′(X,Y ) have the same Newton dots of the form (i/e, j) where i/e ≥ b/e.
This shows that G′(X,Y ) also has b/e as boundary. So b/e is indeed independent of N .

As F (X,Y ) is irreducible, f(X) must be a root of single multiplicity. Therefore, F (X,Y + f(X)) ∈
k((X−1/e))[Y ] must have Y = 0 as a root of single multiplicity. From this we can see that F (X,Y +f(X))
has, as a polynomial in Y , a zero constant term and a nonzero linear term (the coefficient of Y ). So
F (X,Y + f(X)) has no Newton dots on the x-axis, but it does have at least one Newton dot of the
form (p/e, 1) with p ∈ Z. We let p be the largest number with this property, so p/e is the order of the
coefficient of Y in F (X,Y + f(X)). Note that p/e is also independent of N .

We now demand N ∈ N to be large enough, such that N/e > b/e − p/e holds. Let q(X) :=∑∞
n=N+1 anX

−n/e ∈ k((X−1/e)). We then see that G(X,Y + q(X)) = F (X,Y + h(X) + q(X)) =
F (X,Y +f(X)). We have that q(X) is of order less than −N/e. So by Lemma 4.61, any (i/e, j) ∈ Q×N0

with i/e ≥ b/e−N/e is a Newton dot of G(X,Y ) exactly when it is a Newton dot of G(X,Y + q(X)) =
F (X,Y + f(X)). From N/e > b/e − p/e we get p/e > b/e − N/e. So (p/e, 1) is also a Newton dot of
G(X,Y ) and every (a, 1) ∈ Q × N0 with a > p/e is no Newton dot of G(X,Y ). Also, the coefficient of
Xp/eY 1 in G(X,Y ), which we will call d, is equal to the coefficient of Xp/eY 1 in F (X,Y + f(X)). In
particular we see that this coefficient is independent on N and nonzero.

We can now prove a lemma that is similar to the previous one.

Lemma 4.62. Let G(X,Y ) be as above (with N large enough, such that N/e > b/e − p/e holds) and
let L ∈ Z be a nonpositive integer such that L/e ≤ p/e − b/e holds. Let g(X) ∈ k((X−1/e)) be a formal
Puiseux series at infinity whose order is less than L/e. Let i ∈ Z satisfy i/e ≥ p/e + L/e. Then the
coefficient of Xi/eY 0 in G(X,Y + g(X)) is the same as the coefficient of Xi/eY 0 in G(X,Y ).

Proof. We can write G(X,Y ) =
∑d2
t=0 qt(X)Y t where all qt(X) are of order at most b/e and where q1(X)

is of order p/e. Note that we are only interested in the coefficients whose corresponding Newton dots lie
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on the x-axis. We therefore might as well look at G(X, 0) and G(X, g(X)) as the variable Y contributes
only to terms with Newton dots that lie above the x-axis. We find

G(X, g(X)) =

d2∑
t=0

qt(X)(g(X))t = q0(X) + q1(X)g(X) +

d2∑
t=2

qt(X)(g(X))t. (4.10)

The third part of the right-hand side of (4.10) consists of terms of the form qt(X)(g(X))t with t ≥ 2.
The order of any such term satisfies:

ordX(qt(X)(g(X))t) = ordX(qt(X)) + t · ordX(g(X)) < b/e+ t · L/e
≤ b/e+ 2L/e ≤ b/e+ L/e+ p/e− b/e = p/e+ L/e.

The order of the second part of the right-hand side of (4.10) satisfies

ordX(q1(X)g(X)) = ordX(q1(X)) + ordX(g(X)) < p/e+ L/e.

This shows us that the second and third part of the right-hand side of (4.9) do not contribute to the
coefficient of Xi/e. So only the first part may contribute. Since this first part is exactly G(X, 0), we are
done.

We now consider q(X) =
∑∞
n=N+1 anX

−n/e again. We have that q(X) is of order less than −N/e <
p/e − b/e. So by Lemma 4.62, any (i/e, 0) ∈ Q × N0 with i/e ≥ p/e − N/e is a Newton dot of
G(X,Y ) exactly when it is a Newton dot of G(X,Y + q(X)) = F (X,Y + f(X)). We saw that
F (X,Y +f(X)) has no Newton dots on the x-axis, so we find that G(X,Y ) = F (X,Y +

∑N
n=−m anX

−n/e)
has no Newton dots of the form (i/e, 0) with i/e ≥ p/e − N/e. If we now substitute N by N + 1,
we find that G′(X,Y ) := F (X,Y +

∑N+1
n=−m anX

−n/e) has no Newton dot of the form (i/e, 0) with

i/e ≥ p/e− (N + 1)/e. So in particular we have that the coefficient of Xp/e−(N+1)/e in G′(X,Y ) is zero.
Note that G′(X,Y ) = G(X,Y + aN+1X

−(N+1)/e).

Consider the elements a−m, a−m+1, . . . , aN . As they all lie in the algebraic closure of k and there
are only finitely many of them, there exists a subfield l of k that is a finite field extension of k and that
contains all these elements (for example the field l = k(a−m, a−m+1, . . . , aN )). If we can prove that aN+1

also lies in l, then by induction we have that all coefficients an of f(X) lie in l.

Because we have F (X,Y ) ∈ k[X,Y ] ⊂ l[X,Y ] and h(X) =
∑N
n=−m anX

−n/e ∈ l((X−1/e)), we

must have G(X,Y ) = F (X,Y + h(X)) ∈ l((X−1/e))[Y ]. Let us write G(X,Y ) =
∑d2
t=0 qt(X)Y t with

qt(X) ∈ l((X−1/e)). The coefficient of Xp/e−(N+1)/e in G′(X,Y ), which is zero, is the same as the
coefficient of Xp/e−(N+1)/e in G′(X, 0), because every term with Y does not contribute to the coefficient
of Xp/e−(N+1)/e. We have

G′(X, 0) = G(X, aN+1X
−(N+1)/e) =

d2∑
t=0

qt(X)(aN+1X
−(N+1)/e)t

= q0(X) + aN+1q1(X)X−(N+1)/e +

d2∑
t=2

qt(X)(aN+1X
−(N+1)/e)t.

(4.11)

We are interested in the coefficient of Xp/e−(N+1)/e in each term of the right-hand side of (4.11). For
each t ∈ {2, . . . , d2} we have

ordX(qt(X)(aN+1X
−(N+1)/e)t) = ordX(qt(X))− t(N + 1)/e

≤ b/e− 2(N + 1)/e < b/e−N/e− 2/e− b/e+ p/e < p/e− (N + 1)/e,

so the coefficient of Xp/e−(N+1)/e in the last term on the right-hand side of (4.11) is zero. Let cN ∈ l be
the coefficient of Xp/e−(N+1)/e in q0(X). We also defined d ∈ l to be the coefficient of Xp/e in q1(X),
which is nonzero and also the coefficient of Xp/eY 1 in F (X,Y + f(X)). We then see from (4.11) that
the coefficient of Xp/e−(N+1)/e in G′(X, 0) is cN + aN+1 · d. Since this coefficient was zero, this gives
us the equation cN + aN+1 · d = 0, hence aN+1 = −cN/d. We therefore have found that aN+1 ∈ l. By
induction we find that all coefficients an lie in l. We have thus proven the following two lemmas (for the
first one we have N ′ = b/e− p/e):
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Lemma 4.63. Let k be a field of characteristic zero and k an algebraic closure of k. Let F (X,Y ) ∈
k[X,Y ] be an irreducible polynomial with positive Y -degree. Let f(X) =

∑∞
n=−m anX

−n/e ∈ k((X−1/e))
be any Puiseux expansion at infinity of F (X,Y ). Then there exist N ′ ∈ N and p ∈ Z such that for all
N > N ′ we have that aN+1 = −cN/d, where cN ∈ k is the coefficient of Xp/e−(N+1)/e in the formal
Puiseux series at infinity F (X,

∑N
n=−m anX

−n/e) ∈ k((X−1/e)) and where d ∈ k is some coefficient of

F (X,Y +
∑N
n=−m anX

−n/e) ∈ k((X−1/e))[Y ]. We have that d is independent of N .

Lemma 4.64. Let k be a field of characteristic zero and k an algebraic closure of k. Let F (X,Y ) ∈
k[X,Y ] be an irreducible polynomial with positive Y -degree. Let f(X) =

∑∞
n=−m anX

−n/e ∈ k((X−1/e))
be any Puiseux expansion at infinity of F (X,Y ). Then there exists a finite field extension of k that is
included in k and contains all the coefficients an of f(X).

In the previous lemma we demand F to be irreducible. We may remove this restriction, as the
following lemma suggests:

Lemma 4.65. Let k be a field of characteristic zero and k an algebraic closure of k. Let F (X,Y ) ∈
k[X,Y ] be a polynomial with positive Y -degree. Let f(X) =

∑∞
n=−m anX

−n/e ∈ k((X−1/e)) be any
Puiseux expansion at infinity of F (X,Y ). Then there exists a finite field extension of k that is included
in k and contains all the coefficients an of f(X).

Proof. We decompose F into irreducible factors F1(X,Y ), . . . , Ft(X,Y ) ∈ k[X,Y ]. So F (X,Y ) =
F1(X,Y ) · · ·Ft(X,Y ). Since F (X, f(X)) = 0, we have that Fi(X, f(X)) = 0 must hold for some
i ∈ {1, . . . , t}. So f(X) is also a Puiseux expansion at infinity of Fi(X,Y ). We apply the previous
lemma with this Fi, which yields the desired result.

Corollary 4.66. Let F (X,Y ) ∈ Z[X,Y ] be a polynomial with positive Y -degree. Let

f(X) =

∞∑
n=−m

anX
−n/e ∈ Q((X−1/e))

be any Puiseux expansion at infinity of F (X,Y ). Then there exists an algebraic number field l ⊂ Q that
contains all the coefficients an of f(X).

5 The Symmetric Function Theorem

The proof of Runge’s Theorem uses a corollary from the Symmetric Function Theorem. In this section
we will prove this theorem, where we follow the proof given by K. Conrad [3]. First we must give some
definitions and small lemmas again.

Definition 5.1. Let R be a ring. A polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is called symmetric if
the equation

f(Xσ1 , . . . , Xσn) = f(X1, . . . , Xn)

holds for any permutation σ of {1, . . . , n}.
Example 5.2. The polynomials S1 := X1 + . . . + Xn and Sn := X1X2 · · ·Xn are symmetric polynomi-
als; after any permutation of the variables one can rearrange them back again as the variables know a
commutative addition and multiplication. In fact, for any k ∈ {1, . . . , n} it also holds that

Sk :=
∑

1≤i1<i2<...<ik≤n

Xi1 · · ·Xik (5.1)

is a symmetric polynomial.

Remark 5.3. Note that Tn − S1T
n−1 + S2T

n−2 − . . . + (−1)nSn is the expansion of the factorization
(T −X1)(T −X2) · · · (T −Xn).

We will define the lexicographic order on n-tuples of non-negative integers.

Definition 5.4. Let a = (a1, , . . . , an) and b = (b1, . . . , bn) be two n-tuples in Nn0 such that a 6= b. We
say that a < b holds if ai < bi holds for the lowest i ∈ {1, . . . , n} that satisfies ai 6= bi.
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It is called the lexicographic ordering as a dictionary uses the same ordering on every two words by
comparing the first letter that is different. It can easily be seen that this is a well-ordering and therefore
we can apply complete induction to it. Also, it can be seen that we have the implication

i < j =⇒ i + k < j + k (5.2)

for any i, j,k ∈ Nn0 , where the n-tuples have componentwise addition.

Remark 5.5. Let R be a ring and f ∈ R[X1, . . . , Xn]. We can write it as

f(X1, . . . , Xn) =
∑

i1,...,in∈N0

ai1,...,inX
i1
1 · · ·X

in
n ,

where the sum has only finitely many nonzero terms. We will write it shorthanded as
∑

i aiX
i, where

i = (i1, . . . , in) iterates over Nn0 and where Xi = Xi1 · · ·Xin . Note that if i, j are two multi-indices, we
have XiXj = Xi+j .

Definition 5.6. Let R be a ring and f =
∑

i aiX
i ∈ R[X1, . . . , Xn] a nonzero polynomial. The mul-

tidegree of f is mdeg(f) := max{i | ai 6= 0} ∈ Nn
0 , where we use the lexicographic ordering of Nn

0 . If
p = mdeg(f), then we call apT

p the leading term of f , and lead(f) := ap the leading coefficient of f .

Example 5.7. Let k ∈ {1, . . . , n} and consider Sk from (5.1). Since Sk is the sum of all distinct products
of k different variables, each multi-index corresponding to a nonzero coefficient of Sk is an n-tuple that
is 1 at k entries and is 0 at the other n − k entries. By comparing all those in the lexicographic order,
we find that the multi-index, where the first k entries are 1 and the others 0, is the highest of them all.
Therefore, mdeg(Sk) = (1, . . . , 1, 0, . . . , 0), where the first k entries are 1 and where the last n− k entries
are 0.

Lemma 5.8. Let R be a domain and f, g ∈ R[X1, . . . , Xn] both nonzero. Then mdeg(fg) = mdeg(f) +
mdeg(g) and lead(fg) = lead(f)lead(g).

Proof. If p, q are the multidegree of f and g respectively, then we can write f = apX
p +

∑
i<p aiX

i

and g = bqX
q +

∑
j<q bjX

j . This gives us

fg =

(
apX

p +
∑
i<p

aiX
i

)(
bqX

q +
∑
j<q

bjX
j

)
= apbqX

p+q +
∑
j<q

apbjX
p+j +

∑
i<p

aibqX
i+q +

∑
i<p

∑
j<q

aibjX
i+j .

Since R is a domain, apbq 6= 0, hence fg has a nonzero term of multidegree p+q. Now every other term
has multidegree p+ j, i+q or i+ j, where i < p and j < q. By (5.2), we see that all these multidegrees
are smaller than the multidegree p+q. This shows us that mdeg(fg) = p+q = mdeg(f) + mdeg(g) and
lead(fg) = apbq = lead(f)lead(g).

Lemma 5.9. Let R be a ring and f ∈ R[X1, . . . , Xn] nonzero. Let p = (p1, . . . , pn) be the multidegree
of f . If f is symmetric, then pi ≥ pj for all i, j ∈ N satisfying 1 ≤ i < j ≤ n.

Proof. This is trivial for n = 1, so we will assume n > 1. By contradiction, suppose that pi < pj for
some 1 ≤ i < j ≤ n. Let g be f(X1, . . . , Xn), but with the variables Xi, Xj swapped. Since ap is nonzero
by definition of p, so must the coefficient in g corresponding to

q := (p1, . . . , pi−1, pj , pi+1, . . . , pj−1, pi, pj+1, . . . , pn),

where q is the multi-index that is p, but then with the entries in the i-th and j-th spot swapped. We
see that p < q holds. Since f is symmetric, a swap of variables makes no difference, hence f = g. This
tells us that the coefficient aq in f is also nonzero, but that contradicts mdeg(f) = p < q by definition
of mdeg(f), which ends our proof.

We are now able to prove the Symmetric Function Theorem.

Theorem 5.10 (Symmetric Function Theorem). Let R be a domain and f ∈ R[X1, . . . , Xn]. If f is
symmetric, then it also lies in R[S1, . . . , Sn].
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Proof. This is trivial for f = 0, so we will assume f to be nonzero. We will prove the statement
by induction on the multidegree p = (p1, . . . , pn) of f . First we notice that any f having the lowest
multidegree mdeg(f) = 0 = (0, . . . , 0) must be a constant in R, which directly yields f ∈ R[S1, . . . , Sn].
Now let p 6= 0 and suppose that every nonzero symmetric polynomial g ∈ R[X1, . . . , Xn] with mdeg(g) <
p lies in R[S1, . . . , Sn]. We want to prove that every symmetrical polynomial f ∈ R[X1, . . . , Xn] with
mdeg(f) = d lies in R[S1, . . . , Sn]. If no such f exists, we are immediately done. Otherwise, we will take
such f and we can then write f = apT

p +
∑

i<p aiT
i, with ap ∈ R nonzero. By Lemma 5.9, we find that

pi > pi+1 holds for all i ∈ {1, . . . , n − 1}. So with di := pi+1 − pi for such i and dn := pn, we find that
di ≥ 0 for all i ∈ {1, . . . , n}. Additionally, we see that

∑n
i=j di = pj for all j ∈ {1, . . . , j}. Now consider

the polynomial Sd11 Sd22 · · ·Sdnn . We find by Lemma 5.8 in combination with Example 5.7 that

mdeg(Sd11 Sd22 · · ·S
dn
n ) = d1mdeg(S1) + d2mdeg(S2) + . . .+ dnmdeg(Sn)

= (d1 + . . .+ dn, d2 + . . .+ dn, . . . , dn)

= (p1, . . . , pn)

= p.

So if we take g := apS
d1
1 Sd22 · · ·Sdnn , then

mdeg(g) = mdeg(ap) + mdeg(Sd11 Sd22 · · ·S
dn
n ) = 0 + p = p,

and by Lemma 5.8, we have

lead(g) = lead(ap)

n∏
i=1

lead(Si)
di = ap.

So f and g have the same multidegree and the same leading coefficient, so their leading terms kill
eachother in f − g. If f − g = 0, then certainly f = g ∈ R[S1, . . . , Sn]. Otherwise, we have that f − g
consists of terms with multidegree smaller than p, so mdeg(f − g) < p. By Example 5.2, we see that g is
a symmetric function as it is the product of symmetrical functions Sk. Hence f − g is also a symmetric
function. By our induction hypothesis, f − g ∈ R[S1, . . . , Sn] holds, as f − g is symmetric of multidegree
strict less than p. Since g also lies in R[S1, . . . , Sn], so does f = (f − g) + g. This finishes our proof.

The following two corollaries from the Symmetric Function Theorem will be used in the proof of
Runge’s Theorem.

Corollary 5.11. Let R′ be a domain and let K be the field of fractions of R′. Let

f = Y n + b1Y
n−1 + . . .+ bn ∈ R′[Y ] ⊂ K[Y ]

be a monic polynomial of degree n ≥ 1. Let L be a field extension over K, in which f completely factors
into linear polynomials. So f(Y ) = (Y − a1)(Y − a2) · · · (Y − an), where the roots a1, . . . , an of f(Y ) all
lie in L. Let R be a domain that includes R′. Let g(Z) ∈ R[Z] be another polynomial, then the product
n∏
i=1

g(ai) lies in R.

Proof. Note that G(X1, . . . , Xn) :=
n∏
i=1

g(Xi) is a symmetric polynomial in R[X1, . . . , Xn]. By the

Symmetric Function Theorem 5.10, it follows that G(X1, . . . , Xn) ∈ R[S1, . . . , Sn]. If we expand the
polynomial (Y − X1)(Y − X2) · · · (Y − Xn), we get Y n − S1Y

n−1 + SnY
n−2 − . . . + (−1)nSn. So Sk

is (−1)k times the coefficient of Y n−k in the polynomial (Y − X1)(Y − X2) · · · (Y − Xn). If we now
substitute Xi for ai, we see that Sk, which depends on X1, . . . , Xn, becomes (−1)k times the coefficient
of Y n−k in the polynomial

(Y − a1)(Y − a2) · · · (Y − an) = f(Y ) = Y n + b1Y
n−1 + . . .+ bn.

So the Sk become (−1)kbk. Since bk ∈ R′ ⊂ R, we get
n∏
i=1

g(ai) ∈ R[−b1, b2,−b3, . . . , (−1)nbn] ⊂ R.

Corollary 5.12. Let R′ be a domain and K its fraction field, and let

f = Y n + b1Y
n−1 + . . .+ bn ∈ R′[Y ] ⊂ K[Y ]
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be a monic polynomial of degree n ≥ 1 such that bn is a unit in R′. Let L be a field extension over K in
which f has the factorization f(Y ) = (Y − a1)(Y − a2) · · · (Y − an), where the roots a1, . . . , an of f(Y )

all lie in L. Let R be a domain that includes R′. Let g(Z) ∈ R[Z,Z−1], then the product
n∏
i=1

g(ai) lies in

R.

Proof. We can write g(Z) = Z−kh(Z), for some k ∈ N and h(Z) ∈ R[Z]. Because bn is a unit in R′, we

have (
n∏
i=1

ai)
−k = (±bn)−k ∈ R′ ⊂ R. By the previous corollary we have that

n∏
i=1

h(ai) lies in R, hence

n∏
i=1

g(ai) =

( n∏
i=1

ai

)−k n∏
i=1

h(ai) ∈ R.

6 Runge’s Theorem

This section will focus on Runge’s Theorem which is the main theorem of this thesis. First we give the
statement after which we will look at examples that demonstrates the power of this theorem. After that
we will give a proof of this theorem.

6.1 Runge’s Theorem

Carl Runge has proved in 1887 [12] that certain classes of Diophantine equations have only finitely many
integral solutions. Runge’s Theorem (whose formulations differ in the literature) is as follows:

Theorem 6.1 (Runge’s Theorem [12]). Let F (X,Y ) =
∑d1
i=0

∑d2
j=0 ai,jX

iY j ∈ Z[X,Y ] be a polynomial
of positive X-degree d1 and positive Y -degree d2. Suppose that F (X,Y ) is irreducible in Q[X,Y ], and
suppose that the equation

F (x, y) = 0

has infinitely many solutions with x, y ∈ Z. Then the following properties hold:

1. In the xy-plane, no point of D(F ) lies above the line connecting (d1, 0) and (0, d2);

2. For λ = d1/d2, the λ-leading part of F satisfies∑
(i,j)∈Dλ(F )

ai,jX
iY j = apk,

where a ∈ Z, k ∈ N and p = p(X,Y ) ∈ Z[X,Y ] is an irreducible polynomial

One can see from this theorem that every irreducible F that does not satisfy both properties has
only finitely many integral solutions for the equation F (x, y) = 0. Before we prove this theorem, we will
investigate in what ways we can use this theorem. The proof of a particular case of Runge’s Theorem
6.1 has been given by Martin Klazar [8]. It can also be proven as a corollary of Runge’s Theorem. The
particular case is as follows:

Corollary 6.2 (Runge, a particular case). Let F ∈ Z[X,Y ] be a nonzero and irreducible polynomial in
Q[X,Y ]. Suppose that degF = n and that degY F = n for some integer n ≥ 2. Let f(X,Y ) := F1(X,Y )
be the leading degree n form of F (X,Y ). Suppose that f(1, Y ) is reducible in Q[Y ] and has only simple
roots. Then the equation

F (x, y) = 0

has only finitely many solutions x, y ∈ Z.

Proof. If we want to use Theorem 6.1, we must prove that m := degX F ≥ 1. Suppose that m = 0, then
f(1, Y ) = f(X,Y ) = cY n for some nonzero constant c, which has Y = 0 as root of higher multiplicity,
which leads to a contradiction and shows that indeed m ≥ 1.
Suppose that there are infinitely many integer solutions to F (x, y) = 0. We then have that F must
satisfy the two properties of Runge’s Theorem 6.1. We have m ≤ degF = n. We will consider two cases.
First assume that m < n, then the only lattice point (i, j), with i, j ≥ 0 and i+ j = n, that does not lie
above the line connecting (m, 0) and (0, n) is the point (0, n), as suggested by the picture below.
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By property 1 of Runge’s Theorem 6.1, we therefore have that f(X,Y ) = cY n, which again leads to a
contradiction. Now assume that m = n. We can then use property 2 of Runge’s Theorem 6.1, and write

f(X,Y ) =
∑

(i,j)∈D1(F )

ai,jX
iY j = apk

for some 0 6= a ∈ Z, k ∈ N and an irreducible polynomial p = p(X,Y ) ∈ Z[X,Y ]. In particular, we have

f(1, Y ) = ap(1, Y )k.

We can’t have k > 1, as f(1, Y ) only has simple roots and therefore can’t have a non-constant polynomial
as a factor of higher multiplicity. So we must have k = 1. Because the n-form f(X,Y ) is the homoge-
nization of f(1, Y ), we find that f(X,Y ) is reducible in Q[X,Y ]. This however contradicts with the fact
that f(X,Y ) is an integer times p, where p is irreducible in Z[X,Y ]. We conclude that F (x, y) = 0 has
only finitely many integer solutions.

One might wonder if such polynomials as described above actually exist. For this the example found
in [8] will be considered.

Example 6.3. Consider the equation of the form

Y n = (aX)n + an−1X
n−1 + . . .+ a1X + a0,

where n ≥ 2 and a, ai ∈ Z, with a 6= 0. If the polynomial on the right side is not a d-th power in Z[X]
for any divisor d ≥ 2 of n, then the equation holds for only finitely many integers x, y ∈ Z.

Proof. Let F = Y n − ((aX)n + an−1X
n−1 + . . . + a1X + a0) ∈ Z[X,Y ]. We see that n = degF =

degY F ≥ 2 and that f(X,Y ) = Y n − (aX)n. So

f(1, Y ) = Y n − an = (Y − a)(Y n−1 + aY n−2 + . . .+ an−2Y + an−1)

is reducible, whose solutions are of the form a ·ζ, where ζ is any n-th root of unity. So we have n different
solutions since a is nonzero, so f(1, Y ) has only simple roots. Obviously F is nonzero, so it only remains
for us to prove that F is irreducible in Q[X,Y ]. This follows from the fact that the right-hand side is
not a d-th power in Z[X] for any divisor d ≥ 2 of n. We can therefore apply the particular case of Runge
6.2 and see that F (x, y) = 0 indeed has finitely many integral solutions.

Let us look at some more examples where we can apply Runge’s Theorem.

Example 6.4. The equation
F (x, y) := x3 + x2y + y2 = 0

has only finitely many integral solutions.

Proof. We will use Runge’s Theorem 6.1. F (X,Y ) is irreducible in Z[X,Y ], so by Gauss’s lemma, it is
also irreducible in Q[X,Y ]. We look at the xy-plane, where we draw the Newton dots of F (X,Y ). We
also draw a line between points (0, degY F ) = (0, 2) and (degX F, 0) = (3, 0). We get the following:

x

y

1

2

0 1 2 3
•

•

•
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It can be seen that a Newton dot does in fact lie above the line. This violates property 1 of Runge’s
Theorem 6.1. We can conclude that F (x, y) = 0 holds for only finitely many integers x and y.
An alternative proof that does not use Runge’s Theorem 6.1 is as follows. Let x, y ∈ Z and suppose that
x3 + x2y + y2 = 0 holds. By the quadratic formula we get

y =
−x2 ±

√
x4 − 4x3

2
.

Since y is an integer, x4 − 4x3 = x2(x2 − 4x) must be a perfect square. Therefore x2 − 4x must be a
perfect square as well, so there exists a ∈ Z such that x2 − 4x = a2. By using the quadratic formula
again we get

x =
4±
√

16 + 4a2

2
= 2±

√
4 + a2.

Since x is an integer, 4 + a2 must also be a perfect square. So a2 must differ 4 with another perfect
square. Because large perfect squares do not lie close to other perfect squares, a must be small. A quick
inspection shows that a = 0 is the only possibility. This gives the two possibilities x = 0 and x = 4. If
x = 0, we have 0 = F (0, y) = y2, hence y = 0. If x = 4, we have

y =
−x2 ±

√
x4 − 4x3

2
=
−16±

√
256− 256

2
= −8.

So (x, y) = (0, 0) and (x, y) = (4,−8) are the only two integer solutions to F (x, y) = 0.

The previous example shows us that applying Runge’s Theorem is an easier way to prove that the
polynomial has only finitely many intergral solutions. Another example is the following:

Example 6.5. The equation
F (x, y) := x2 − xy − 2y2 + 2 = 0

has only finitely many integral solutions.

Proof. Again, F (X,Y ) is irreducible in Q[X,Y ]. Just like the previous example, we draw points on all
coordinates (i, j), where F (X,Y ) contains a term of the form ai,jX

iY j , where ai,j 6= 0. We also draw a
line between points (0,degY F ) = (0, 2) and (degX F, 0) = (2, 0). We get the following:

x

y

1

2
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•

•

•

It can be seen that no point lies above the line. So property 1 of Runge’s Theorem 6.1 is not violated.
We notice that the λ-leading part of F , with λ = degX F/degY F = 2/2 is

Fλ(X,Y ) = X2 −XY − 2Y 2 = (X + Y )(X − 2Y ).

This is a product of two irreducible factors that are not equal to eachother up to a constant factor. This
violates property 2 of Runge’s Theorem 6.1. We can conclude that F (x, y) = 0 holds for only finitely
many integers x and y.
One could also have seen this by noticing that the equation F (x, y) = 0 can be rewritten as (x+ y)(x−
2y) = −2. If x and y are integral solutions to this equation, both factors on the left hand side must be
integers as well. Because the product of these two factors is −2, there are the following 4 possibilities.

(x + y) (x− 2y) x y
−2 1 −1 −1
−1 2 0 −1
1 −2 0 1
2 −1 1 1

So there are exactly four, hence only finitely many, integral solutions to F (x, y) = 0.
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Let us now look at an example which does have infinitely many integral solutions.

Example 6.6. The equation
F (x, y) := x3 + xy + y2 = 0

has infinitely many integral solutions.

Proof. Similar with the previous example. We look at the xy-plane, where we draw the Newton dots
of F . We also draw a line between points (0, degY F ) = (0, 2) and (degX F, 0) = (3, 0). We get the
following:

x

y

1

2

0 1 2 3
•

•

•

We notice that no points lie above line `, so property 1 of Runge’s Theorem 6.1 has been satisfied by
F . Also, with λ = degX F/degY F = 3/2, we see that the λ-leading part of F , which is Fλ = X3 + Y 2,
is irreducible. So also property 2 of Runge’s Theorem 6.1 has been satisfied by F , where a = k = 1 and
p = X3 + Y 2. So we can’t use Runge’s Theorem to conclude that F (x, y) = 0 has only finitely many
integral solutions. As it happens this polynomial does have infinitely many integral solutions. We see
this because F (−k(k + 1), k(k + 1)2) = 0 and F (−k(k + 1),−k2(k + 1)) = 0 hold for any integer k, as
can be checked by a simple evaluation.

It is not the case that if an irreducible polynomial F ∈ Z[X,Y ] does satisfy both properties of Runge’s
Theorem 6.1, that it must have infinitely many integral solutions to F (x, y) = 0. The following example
shows this.

Example 6.7. The equation
F (x, y) := x2 − 2x+ y2 + 1 = 0

has only finitely many integral solutions.

Proof. Again we translate the terms of F to points on the xy-plane and draw the line connecting
(degX F, 0) and (0, degY F ). We get the following:

x

y

1

2

0 1 2
•••
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We notice that no points lie above this line and for λ = degX F/degY F = 1, we see that the λ-leading
part of F , which is Fλ = X2 +Y 2, is irreducible over Z[X]. So both properties of Theorem 6.1 have been
satisfied by F . But the equation F (X,Y ) = 0 can be rewritten as (x− 1)2 + y2 = 0. Suppose that x ∈ Z
and y ∈ Z satisfy this equation. Since a sum of perfect squares can only be zero if all perfect squares
are zero, we get that x − 1 = 0 and y = 0. This shows that we have only one integral solution, namely
(x, y) = (1, 0).

6.2 Proof of Runge’s Theorem

Lemma 6.8. Let R be a domain. Let g(Y ) =
∑s
i=0 aiY

i ∈ R[Y ] be an irreducible polynomial of degree
s ∈ N that is no multiple of Y . Let m, e ∈ N with gcd(m, e) = 1. Let G(X,Y ) = Xsmg(Y eX−m) ∈
R[X,Y ]. Then G is irreducible in R[X,Y ].
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Proof. Since this statement is trivial when g is constant, we assume that g is nonconstant. We have

G(X,Y ) = Xsm
s∑
i=0

aiX
−imY ie =

s∑
i=0

aiX
m(s−i)Y ie. (6.1)

Note that for λ := m/e we have m(s− i)+λie = ms for every i ∈ {0, . . . , s}. This shows us that Gλ = G.
We also see by the definition of G that it is not divisible by a nonunit in R, because neither is g. Suppose
that G is not irreducible in R[X,Y ], then we can write G(X,Y ) = F (X,Y )H(X,Y ) for two nonconstant
polynomials F,H ∈ R[X,Y ]. We have G = Gλ = FλHλ and degλG = degλ F + degλH by Remark 4.60.
Note that we can use this remark as R[X,Y ] is the subset of K((X−1))[Y ], where K is the field of fractions
of R. We can write Fλ =

∑
(i,j)∈Dλ(F ) bi,jX

iY j and Hλ =
∑

(k,l)∈Dλ(H) ck,lX
kY l with bi,j , ck,l ∈ R.

For each (i, j) ∈ Dλ(F ) and (k, l) ∈ Dλ(H) we have i + λj = degλ F and k + λl = degλH, hence
(i+ k) +λ(j+ l) = degλG = ms. We multiply this last equation by e and get (i+ k)e+m(j+ l) = mes.
Since gcd(m, e) = 1, this shows us that i + k ≡ 0 mod m and that j + l ≡ 0 mod e. For any other
(i′, j′) ∈ Dλ(F ), we also have i′ + k ≡ 0 mod m and j′ + l ≡ 0 mod e. We therefore have i = i′ ≡ 0
mod m and j = j′ ≡ 0 mod e for any (i, j), (i′, j′) ∈ Dλ(F ). Since g(Y ) is no multiple of Y , we in
particular have a0 6= 0. We also have as 6= 0 since g is of degree s. We use this to see from (6.1)
that X and Y do not divide G and therefore also do not divide Fλ. So in particular we must have
(degF , 0) ∈ Dλ(F ) and (0, λ−1 degF ) ∈ Dλ(F ). This shows us that for all (i, j) ∈ Dλ(F ) we have i ≡ 0
mod m and j ≡ 0 mod e. So any nonzero term bi,jX

iY j of Fλ can be written as bi,j(X
m)a(Y e)b for

some a, b ∈ N. We thus have Fλ(X,Y ) = F ′(Xm, Y e) for some F ′(X,Y ) ∈ R[X,Y ]. In the same way we
have Hλ(X,Y ) = H ′(Xm, Y e) for some H ′(X,Y ) ∈ R[X,Y ]. We now have the following:

F ′(1, Y e)H ′(1, Y e) = Fλ(1, Y )Hλ(1, Y ) = G(1, Y ) = g(Y e).

We substitute Y e by Y and get:
g(Y ) = F ′(1, Y )H ′(1, Y ).

We have F ′(1, Y ) = Fλ(1, Y 1/e) =
∑

(i,j)∈Dλ(F ) bi,jY
j/e, which is nonconstant since Fλ is nonconstant.

In the same way we have that H ′(1, Y ) is nonconstant, which shows that g(Y ) is reducible. This is a
contradiction from which we may conclude that G is indeed irreducible in R[X,Y ].

The next theorem has been described by Hilliker and Straus [7]. We will follow their proof here.

Theorem 6.9. Let f(X) ∈ K({(X−1)∗}) be a nonzero convergent Puiseux series at infinity over an
algebraic number field K ⊂ Q of degree s := [K : Q]. Write f as in (4.8). So

f(X) =

∞∑
n=−m

anX
−n/e,

with m ∈ Z, e ∈ N, and where all coefficients an lie in K such that a−m 6= 0. Then their exists nonzero
P (X,Y ) ∈ Z[X,Y ] such that the following properties hold:

• degY P ≤ se.
• If x ∈ Z and f(x) ∈ Z, then P (x, f(x)) = 0.

• Pλ is a monomial for every λ ∈ R>0 with λ 6= m/e.

• If λ = m/e > 0, then Pλ is a constant multiple of a power of X times a power of an irreducible
polynomial in Z[X,Y ].

• If the set {x ∈ Z | f(x) ∈ Z} is of infinite cardinality, then P (X, f(X)) = 0 in K({X−1/e}).

Proof. Let M ∈ N0 be the cardinality of the finite set

B := {(i, j) ∈ Z2 | 1 ≤ j < se,−jm/e ≤ i < 0}. (6.2)

Let N ∈ N satisfy
N ≥Me+ (se− 1)m.

Since K is an algebraic number field, there exists a monic irreducible polynomial G(X) ∈ Q[X] of
degree s which has a root θ1 ∈ K that generates K. So K = Q(θ1). Let L be the splitting field of G(X)
over K. So there exist θ2, . . . , θs ∈ L such that G(X) = (X − θ1) · · · (X − θs) in L[X]. Any c ∈ K can
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be uniquely written as c0 + c1θ1 + . . .+ cs−1θ
s−1
1 for some c0, . . . , cs−1 ∈ Q. We denote the polynomial

c0 + c1W + . . .+ cs−1W
s−1 ∈ Q[W ] by gc(W ). For σ ∈ {1, . . . , s}, we call

c(σ) := gc(θσ) = c0 + c1θσ + . . .+ cs−1θ
s−1
σ ∈ L

the σ-th conjugate of c in K. In particular we have c(1) = c.

Let ζ ∈ C be a primitive e-th root of unity. This means that ζe = 1 and that the elements ζ0, . . . , ζe−1

are all different solutions to Y e = 1. It follows that Y e − X−1, a polynomial in Y over Q[X,X−1],
factorizes over the field extension Q(ζ)(X−1/e) as

Y e −X−1 = (Y − ζ0X−1/e) · · · (Y − ζe−1X−1/e).

Notice that X−1 is a unit in Q[X,X−1]. We now consider the Laurent polynomial:

Y −
N∑

n=−m

gan(W )V n ∈ Q[X,X−1][Y ][W ][V, V −1].

By Corollary 5.12 we find that

e−1∏
E=0

(
Y −

N∑
n=−m

gan(W )(ζEX−1/e)n
)
∈ Q[X,X−1][Y ][W ].

By Corollary 5.11 we find that

s∏
σ=1

e−1∏
E=0

(
Y −

N∑
n=−m

gan(θσ)(ζEX−1/e)n
)
∈ Q[X,X−1][Y ].

We thus find for each β = 0, . . . ,M that

F (X,Y ;β) := Xβ
s∏

σ=1

e−1∏
E=0

(
Y −

N∑
n=−m

a(σ)n (ζEX−1/e)n
)
∈ Q[X,X−1][Y ]. (6.3)

If we write F (X,Y ;β) =
∑

(i,j)∈D(F (X,Y ;β)) bβ,i,jX
iY j ,we see from (6.3) that if (i, j) ∈ D(F (X,Y ;β)),

then 0 ≤ j ≤ se and i ∈ Z must hold. The terms bβ,i,jX
iY j of F (X,Y ;β) can thus be divided into the

following three categories:

• Terms bβ,i,jX
iY j with i ≥ 0.

• Terms bβ,i,jX
iY j with i < 0 and i+ jm/e ≤ −1/e.

• Terms bβ,i,jX
iY j with i < 0 and i+ jm/e ≥ 0.

Note that the terms in the first category lie in Q[X,Y ] and that the terms in the second category
satisfy ordX(bβ,i,jX

i(f(X))j) ≤ −1/e. The terms in the third category satify j 6= 0, as otherwise
i + jm/e = i ≥ 0 would contradict i < 0. They also satify j 6= se, as it would otherwise follow from
(6.3) that i = β ≥ 0, which again would contradict i < 0. We can conclude that the terms in the third
category satisfy (i, j) ∈ B as defined in (6.2). It can be seen that the terms in the first and second
category do not satisfy (i, j) ∈ B. We can add terms of the same category together and get

F (X,Y ;β) = P (X,Y ;β) + S(X,Y ;β) +
∑

(i,j)∈B

bβ,i,jX
iY j ,

with P (X,Y ;β) ∈ Q[X,Y ] and S(X,Y ;β) ∈ Q[X,X−1][Y ] with ordX(S(X, f(X);β)) ≤ −1/e. We want
to find c0, . . . , cM ∈ Z, not all zero, such that

∑M
β=0 cβbβ,i,j = 0 for all (i, j) ∈ B. This is a homogeneous

system of |B| = M linear equations in M + 1 variables. It therefore indeed has a solution. We may scale
these c0, . . . , cM by multiplying with any nonzero integer and still find a suitable solution. We scale by
a nonzero integer such that cβ · P (X,Y ;β) ∈ Z[X][Y ] for all β ∈ {0, . . . ,M}. This gives us

M∑
β=0

cβF (X,Y ;β) =

M∑
β=0

cβP (X,Y ;β) +

M∑
β=0

cβS(X,Y ;β),
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hence

Q(X,Y ) :=

M∑
β=0

cβP (X,Y ;β) =

M∑
β=0

cβF (X,Y ;β)−
M∑
β=0

cβS(X,Y ;β) ∈ Z[X,Y ].

We are interested in the order of Q(X, f(X)) ∈ K({(X−1)∗}). First note that

f(X)−
N∑

n=−m

a(σ)n (ζEX−1/e)n ∈ C((X−1/e))

holds for any E ∈ {0, . . . , e− 1} and σ ∈ {1, . . . , s}. We see that

ordX

(
f(X)−

N∑
n=−m

a(σ)n (ζEX−1/e)n
)
≤ max

(
ordXf(X), ordX

( N∑
n=−m

a(σ)n (ζEX−1/e)n
))

= max(m/e,m/e)

= m/e.

In the case where E = 0 and σ = 1 we find

ordX

(
f(X)−

N∑
n=−m

a(1)n (ζ0X−1/e)n
)

= ordX

( ∞∑
n=N+1

anX
−n/e

)
≤ −(N + 1)/e.

Together this gives us

ordX(F (X, f(X);β)) ≤ β + (se− 1)m/e− (N + 1)/e ≤M + (se− 1)m/e−N/e− 1/e ≤ −1/e.

We therefore have

ordX(Q(X, f(X))) = ordX

( M∑
β=0

cβF (X, f(X);β)−
M∑
β=0

cβS(X, f(X);β)

)
≤ max

β
(ordX(F (X, f(X);β)), ordX(S(X, f(X);β)))

≤ max
β

(−1/e,−1/e)

< 0.

Since f(X) is a convergent Puiseux series at infinity, so is Q(X, f(X)). So there exists R ∈ R such
that Q(x, f(x)) converges in C for all x ∈ Z with |x| > R. Because ordX(Q(X, f(X))) < 0, we see
that limx→±∞Q(x, f(x)) = 0. So there exists R′ > R such that for all x ∈ Z with |x| > R′, we have
|Q(x, f(x))| < 1

2
. There are only finitely many x ∈ Z with |x| ≤ R′, so there exists a nonzero polynomial

Q′(X) ∈ Z[X] with Q′(X) = 0 for all such x. We now take

P = P (X,Y ) := Q′(X)Q(X,Y )

and prove the properties.

First of all, we see that F (X,Y ;β) is of Y -degree se for all β ∈ {0, . . . ,M}. Because P (X,Y ;β)
consists of terms from F (X,Y ;β), it has a Y -degree that is at most se. Therefore Q(X,Y ) also has
Y -degree at most se. The same can then be said about P (X,Y ) as Q′(X) is of zero Y -degree.

Now let x ∈ Z such that f(x) converges and lies in Z. If x ≤ |R′|, then

P (x, f(x)) = Q′(x)Q(x, f(x)) = 0 ·Q(x, f(x)) = 0.

And if |x| > R′, then |Q(x, f(x))| < 1
2
. Since Q ∈ Z[X,Y ], we also have Q(x, f(x)) ∈ Z. This combined

gives us Q(x, f(x)) = 0, hence P (x, f(x)) = 0.

Now let λ ∈ R>0 with λ 6= m/e. Note that since Q′(X) ∈ Z[X,Y ] is a nonzero polynomial without
terms with Y as a factor, we must have Q′λ(X) = cXt for some nonzero c ∈ Z and t ∈ N0. We want to
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find Pλ using Remark 4.60. Let γ be the largest element in {0, . . . ,M} such that cγ 6= 0. First suppose
that λ > m/e. This gives (

Y −
N∑

n=−m

a(σ)n (ζEX−1/e)n
)
λ

= Y,

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. Therefore we have

F (X,Y ;β)λ = (Xβ)λ

s∏
σ=1

e−1∏
E=0

(
Y −

N∑
n=−m

a(σ)n (ζEX−1/e)n
)
λ

= XβY se.

So XβY se ∈ Q[X,Y ] is the term of Fβ that is of the highest λ-degree. This gives us

P (X,Y ;β)λ = XβY se,

and therefore we see that

Pλ = cXt

( M∑
β=0

cβP (X,Y ;β)

)
λ

= cXtcγP (X,Y, Z; γ)λ = ccγX
γ+tY se,

which indeed is a monomial. Note that this additionally shows that P is nonzero since its λ-leading part
is nonzero.

Now suppose that λ < m/e. From this, we can deduce that m > 0. This gives(
Y −

N∑
n=−m

a(σ)n (ζEX−1/e)n)λ = −a(σ)−m(ζEX−1/e)−m
)

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. Therefore we have

F (X,Y ;β)λ = (Xβ)λ

s∏
σ=1

e−1∏
E=0

(
Y −

N∑
n=−m

a(σ)n (ζEX−1/e)n
)
λ

= Xβ
s∏

σ=1

e−1∏
E=0

−a(σ)−m(ζEX−1/e)−m

= Xβ
s∏

σ=1

±(a
(σ)
−m)eXm

= dβX
β+ms,

where dβ ∈ Q is nonzero, since a−m is nonzero. We find in a similar way as in the previous case

P (X,Y ;β)λ = dβX
β+ms,

and therefore we see that

Pλ = cXtcγP (X,Y, Z; γ)λ = ccγdγX
γ+ms+t,

which also is a monomial.
Now suppose that λ = m/e. From this, we can deduce that m > 0. This gives(

Y −
N∑

n=−m

a(σ)n (ζEX−1/e)n
)
λ

= Y − a(σ)−m(ζEX−1/e)−m.

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. So

Pλ = cXtcγX
γ

s∏
σ=1

e−1∏
E=0

(Y − a(σ)−m(ζEX−1/e)−m) ∈ Q[X,X−1][Y ] ⊂ Q(X)[Y ].
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Let m1, e1 ∈ N be such that gcd(m1, e1) = 1 and m/e = m1/e1. Let h(Y ) ∈ Z[Y ] be the minimum
polynomial of ae1−m. So h(Y ) is irreducible in Z[Y ] and contains the nonzero element a−m

e1 as a root.
Therefore we see in particular that h(Y ) is no multiple of Y . Let b ∈ Z be the leading coefficient of h
and s1 the degree of h. Since h is irreducible, we have by Lemma 6.8 that

G(X,Y ) := Xm1s1h(Y e1X−m1) ∈ Z[X,Y ]

is irreducible in Z[X,Y ], and therefore also irreducible in Q(X)[Y ]. For any σ ∈ {1, . . . , s} and E ∈
{0, . . . , e− 1} we have

G(X, a−m
(σ)(ζEX−1/e)−m) = Xm1s1h((a−m

(σ)(ζEX−1/e)−m)e1X−m1)

= Xm1s1h((a−m
(σ))e1ζ−me1EXme1/e−m1)

= Xm1s1h((a−m
e1)(σ)ζ−m1eE )

= Xm1s1h((a−m
e1)(σ)(ζe)−m1E )

= Xm1s1h((a−m
e1)(σ))

= Xm1s1h(a−m
e1)(σ)

= Xm1s10(σ)

= 0.

Since all roots of Pλ, when viewed as a polynomial in Y , are roots of the irreducible polynomial G,
we conclude that Pλ has no irreducible factors in Q(X)[Y ] besides G. Since G is of Y -degree s1e1 and
Pλ of Y -degree se, it must follow that s1e1 divides se and that Pλ = dGse/(s1e1) for some d ∈ Q(X).
By looking at the leading coefficient of Pλ and Gse/(s1e1) when viewed as polynomials in Y , we see that
d = ccγX

γ+tb−se/(s1e1). So indeed Pλ is a constant (ccγb
−se/(s1e1)) times a power of X times a power of

an irreducible polynomial in Z[X,Y ].

Now suppose that the set {x ∈ Z|f(x) ∈ Z} is of infinite cardinality. Because f(X) ∈ K({X−1/e})
is an algebraic element over the subfield Q(X−1) ⊂ K({X−1/e}), so is P (X, f(X)). So there exists
a nonconstant polynomial S′′(X,Y ) ∈ Q(X−1)[Y ] with S′′(X,P (X, f(X))) = 0 ∈ K({X−1/e}). We
may assume S′′ to lie in Z[X−1, Y ] by multiplying it with the common denominators of the coefficients
of S′′, when we view S′′ as a polynomial in Y . We then let S′(X,Y ) be XqS′′(X,Y ), where q ∈ N0

is large enough such that S′(X,Y ) ∈ Z[X,Y ]. So we also have S′(X,P (X, f(X))) = 0. We then let
S ∈ Z[X,Y ] be an irreducible factor of S′ that also has P (X, f(X)) as root. Suppose that x ∈ Z satisfies
f(x) ∈ Z. Then we have P (x, f(x)) = 0 and thus 0 = S(x, P (x, f(x))) = S(x, 0). We see that x is
a root of the polynomial S(X, 0) ∈ Z[X]. Because the set {x ∈ Z|f(x) ∈ Z} is of infinite cardinality,
we see that the polynomial S(X, 0) has infinitely many roots. This implies that S(X, 0) = 0, so Y
is a divisor of S(X,Y ). Since S(X,Y ) was irreducible in Z[X,Y ], we have S = ±Y and therefore 0 =
S(X,P (X, f(X))) = ±P (X, f(X)). So we may conclude that indeed P (X, f(X)) = 0 ∈ K({X−1/e}).

We are now ready to give the proof of Runge’s Theorem. We will follow the proof described by
Hilliker and Straus [7] here.

Proof Runge’s Theorem. If degF = 1, we have d1 = d2 = 1 and we can write F (X,Y ) = aX+ bY + c for
some a, b, c ∈ Z such that a 6= 0 and b 6= 0. Property 1 of Runge’s Theorem then immediately follows.
We have λ = d1/d2 = 1, and the λ-leading part of F is aX + bY . Since this is irreducible in Q[X,Y ], we
have that the λ-leading part of F is indeed an integer times (a power of) an irreducible polynomial in
Z[X,Y ], which shows that Property 2 of Runge’s Theorem also holds. Now suppose that degF > 1. We
in particular have F ∈ Q[X,X−1][Y ]. Let f1(X), . . . , fd2(X) ∈ Q({(X−1)∗}) be the Puiseux expansions
at infinity of F . These expansions are all nonzero as otherwise Y would divide F . By Lemma 4.50, we
can factorize F as

F (X,Y ) = g(X)

d2∏
i=1

(Y − fi(X)),

where g(X) ∈ Z[X] is the leading coefficient of F , when F is viewed as a polynomial in Y . By Corollary
4.66, we also have that all fi lie in K({(X−1)∗}) for some algebraic number field K. Since all Puiseux
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expansions at infinity of F are convergent and there are only finitely many of them, there exists R ∈ R
such that fi(x) converges for all x ∈ C with |x| > R. Let a ∈ Z. Since F is irreducible in Z[X,Y ], we
have that F is a multiple of X − a only when F = ±(X − a). Since this would contradict degF > 1,
we see that F is not a multiple of X − a for any a ∈ Z. By the same reasoning it follows that F is not
a multiple of Y − b for any b ∈ Z. By Corollary 3.4 we see that there are only finitely many integral
solutions to F (x, y) = 0 with |x| ≤ R. So there must be infinitely many integral solutions to F (x, y) = 0
with |x| > R. For each such x, y we have

0 = F (x, y) = g(x)

d2∏
i=1

(y − fi(x)).

So either g(x) = 0 holds, or there must exist i ∈ {1, . . . , d2} such that y = fi(x) holds for these x and
y. Since g is a nonzero polynomial, it has only finitely many roots. So there must be an i ∈ {1, . . . , d2}
such that y = fi(x) holds for infinitely many x, y satisfying F (x, y) = 0 and |x| > R. This fi lies in
K({X−1/e}) for some e ∈ N. We can apply Theorem 6.9 to find nonzero P (X,Y ) ∈ Z[X,Y ] such that
P (X, fi(X)) = 0 in K({X−1/e}). When we view P and F as polynomials in Y over Z[X], we see that F
is irreducible and that one of its roots is also a root of P . Because of this we have that F is a factor of
P in Z[X,Y ]. So P = FH for some H ∈ Z[X,Y ]. By Lemma 3.16 we have Pλ = FλHλ for all λ ∈ R>0.
Suppose that Pλ is a monomial for all λ ∈ R>0. By Lemma 3.18 we then have that Fλ is a monomial
as well for all λ ∈ R>0. We then have that F̃ is a monomial by Lemma 3.19. We then apply Lemma
3.20 to see that (d1, d2) ∈ D(F ). We may in that case apply Lemma 3.9 and conclude that there are
only finitely many integral solutions to F (X,Y ) = 0, a contradiction. Therefore, there exists λ0 ∈ R>0

such that Pλ0 is not a monomial. By Theorem 6.9 we see that λ0 is uniquely determined and that Pλ0

is a constant multiple of a power of X times a power of an irreducible polynomial G(X,Y ) ∈ Z[X,Y ].
Since Fλ0 is a factor of Pλ0 , we see that Fλ0 is also a constant multiple of a power of X times a power
of G(X,Y ). Since Fλ0 is not a monomial, we have that G(X,Y ) is not a monomial. Because Fλ is
no monomial for only one value λ ∈ R>0, we must have λ = d1/d2. We now fix this λ to be d1/d2.
We now reverse the roles of X and Y : let F ′(X,Y ) := F (Y,X). We see that F ′(X,Y ) is of positive
X-degree d2 and of positive Y -degree d1. We also have degF ′ = degF and there are infinitely many
integral solutions x, y ∈ Z to F ′(x, y) = 0. By applying the same reasoning as with F , we see that with
λ′ = degX F

′/degY F
′ = d2/d1 = λ−1 we have that F ′λ′ = Fλ is a constant multiple of a power of Y

times a power of an irreducible polynomial G′(X,Y ) ∈ Z[X,Y ] that is not a monomial. Since Z[X,Y ] is
a unique factorization domain we conclude that G(X,Y ) = G′(X,Y ) and that Fλ is a constant times a
power of this irreducible G(X,Y ). This is the second property of Runge’s theorom. For the first property
we notice that since G(X,Y ) is irreducible and not a monomial, it is not divisible by X and therefore
there exists a ∈ N with (a, 0) ∈ Dλ(G). Furthermore, because Fλ is a constant times a power of G, we
have that (ka, 0) ∈ Dλ(F ) for some k ∈ N. We have the restriction ka ≤ d1 since F is of X-degree d1
and Dλ(F ) ⊂ D(F ). For any (i, j) ∈ D(F ) we now have i+ λj ≤ degλ(F ) = ka+ 0λ ≤ d1. This can be
rewritten as d2i + d1j ≤ d1d2, which shows that no point of D(F ) lies above the line connecting (d1, 0)
and (0, d2). This is the first property of Runge’s Theorem.

7 Zariski Density

In order to generalize Runge’s Theorem such that it works with polynomials in three variables, we need
to know what this generalized statement could look like. In the case with two variables we talked about
having infinitely or only finitely many integral solutions. With one extra variable one could expect a lot
more solutions. Having infinitely many integral solutions does not directly mean having ’enough’ integral
solutions anymore. To make sense of this we need to look at the Zariski topology and about the notion
of Zariski-density. The first subsection will introduce the Zariski topology in any finite dimension. The
second subsection will show the connection between the notion of Zariski-density and the property of
having infinitely many integer solutions to a binary Diophantine equation. As a consequence we can view
the property of being Zariski-dense as criterion for having enough integral solutions to such Diophantine
equation. Because the Zariski topology is also defined in three variables, we can apply the same criterion.
The third and fourth subsection will give some tools for determining Zariski-density that works for any
number of variables. The tools will come in handy in our attempt to generalize Runge’s Theorem.
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7.1 Zariski topology

We will here define the Zariski topology on algebraic varieties in the classical way. Those who are
interested in the Zariski topology defined on the spectrum of a ring may want to look at the book on
Commutative algebra by David Eisenbud [4].

Definition 7.1. Let k be an algebraically closed field and n ∈ N. Let F ⊂ k[X1, . . . , Xn] be a set of
polynomials in n variables over k. We call

V (F) := {(x1, . . . , xn) ∈ kn | f(x1, . . . , xn) = 0 ∀f ∈ F}

the variety of F .

Definition 7.2. Let k be an algebraically closed field and n ∈ N. We call a subset S ⊂ kn Zariski-closed
if there exists F ⊂ k[X1, . . . , Xn] such that S = V (F).

Lemma 7.3 (Zariski Topology). Let k be an algebraically closed field and n ∈ N. Then the Zariski-closed
subsets of kn define a topology on kn.

Proof. Note that V (∅) = kn and that V ({1}) = ∅. So kn and ∅ are Zariski-closed.

Now let S1, S2 ⊂ kn be Zariski-closed subsets. So there exists F1,F2 ⊂ k[X1, . . . , Xn] such that
V (F1) = S1 and V (F2) = S2. Take F = {f1 · f2 | f1 ∈ F1, f2 ∈ F2}. We want to prove that
S1 ∪ S2 = V (F), which shows that the union of any two Zariski-closed subsets is also Zariski-closed.
Let (x1, . . . , xn) ∈ S1 ∪ S2 and f ∈ F . We can write f as f1f2 with f1 ∈ F1, f2 ∈ F2. We
have f1(x1, . . . , xn) = 0 or f2(x1, . . . , xn) = 0 since (x1, . . . , xn) ∈ S1 ∪ S2 = V (F1) ∪ V (F2). So
f(x1, . . . , xn) = 0 holds and therefore we have that (x1, . . . , xn) ∈ V (F).
Conversely let (x1, . . . , xn) ∈ V (F). If (x1, . . . , xn) lies in S1, then certainly (x1, . . . , xn) ∈ S1 ∪ S2. If it
does not lie in S1 there must exist f1 ∈ F1 with f1(x1, . . . , xn) 6= 0. Now let f2 ∈ F2. Then f1f2 ∈ F ,
hence f1(x1, . . . , xn)f2(x1, . . . , xn) = 0. Since k is a field and therefore a domain, it must follow that
f2(x1, . . . , xn) = 0 for all f2 ∈ F2, hence (x1, . . . , xn) ∈ V (F2) = S2 ⊂ S1 ∪ S2. So we have that the
union of any two Zariski-closed subsets is indeed also Zariski-closed.

Now let I be a (possibly infinite) set of indices and let Si ⊂ kn be a Zariski-closed subset for each
i ∈ I. So there exists Fi ⊂ k[X1, . . . , Xn] such that Si = V (Fi). Let

F :=
⋃
i∈I

Fi.

We want to prove that

S :=
⋂
i∈I

Si = V (F),

which shows that the intersection of arbitrary many Zariski-closed subsets is again Zariski-closed. Let
(x1, . . . , xn) ∈ S and let f ∈ F . Then there exists i ∈ I with f ∈ Fi. Since (x1, . . . , xn) ∈ Si = V (Fi),
we have f(x1, . . . , xn) = 0. So indeed (x1, . . . , xn) ∈ V (F).
Conversely let (x1, . . . , xn) ∈ V (F) and let i ∈ I. Any f ∈ Fi also lies in F , hence f(x1, . . . , xn) = 0
hold for all such f , which shows that (x1, . . . , xn) ∈ V (Fi) = Si. This holds for any i ∈ I, hence
(x1, . . . , xn) ∈ S. So the intersection of arbitrary many Zariski-closed subsets is indeed again Zariski-
closed.

So the property of being Zariski-closed satisfies all axioms of being a topology. So we indeed have
found a topology on kn given by the Zariski-closed subsets of kn.

Remark 7.4. Note that any subset T ⊂ kn is again a topology with the induced subspace topology. If
T is Zariski-closed, then its Zariski-closed subsets are exactly all Zariski-closed subsets of kn that are
included in T .

The following lemma shows that finite sets are always Zariski-closed.

Lemma 7.5. Let k be an algebraically closed field and n ∈ N. Any finite subset of kn is Zariski-closed.
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Proof. We already saw that the empty set is Zariski-closed. Because the finite union of Zariski-closed
subsets of kn is again Zariski-closed, it suffices to prove that every subset consisting of exactly one element
is Zariski-closed. So suppose that S = {(x1, . . . , xn)} for some (x1, . . . , xn) ∈ kn. Let

F = {X1 − x1, . . . , Xn − xn} ⊂ k[X1, . . . , Xn].

It can easily be seen that S = V (F). So S is indeed Zariski-closed, which finishes our proof.

7.2 Connection with earlier problem

In order to show the connection between Zariski-density and having infinitely many integral solutions
to binary Diophantine equations, we first need to prove some lemmas and define the notion of Zariski-
density.

Lemma 7.6. Let k be an algebraically closed field and n ∈ N. Let F,G ∈ k[X1, . . . , Xn] both nonzero,
such that F and G share no nonconstant factors in k[X1, . . . , Xn]. Then there exists nonzero H ∈
k[X1, . . . , Xn−1] such that the points (x1, . . . , xn) ∈ kn satisfying F (x1, . . . , xn) = G(x1, . . . , xn) = 0 also
satisfy H(x1, . . . , xn−1) = 0.

Proof. Let r, s ∈ N0 be the Xn-degree of F and G respectively. We will prove this lemma by complete
induction on (r, s), using the lexicographic ordering (See Definition 5.4). First suppose that r = 0. We
then have F ∈ k[X1, . . . , Xn−1], so we simply take H = F and are immediately done. Now suppose
that (r, s) ≥ (1, 0). If s < r, we have (s, r) < (r, s) in the lexicographic ordering. Since the problem
is symmetric in G and F , we can swap these and find H by the induction hypothesis. So we may now
assume that r ≤ s. When viewing F and G as polynomials over Xn, let A ∈ k[X1, . . . , Xn−1] and
B ∈ k[X1, . . . , Xn−1] be their respective leading coefficients. We take

G′ := AG−BY s−rF.

Note that s′ := degXn G
′ < s. Let D ∈ k[X1, . . . , Xn] be the greatest common divisor of F and G′.

Then D must also divide AG. Since F and G share no common nonconstant factors, D must divide
A. So we have in particular that D ∈ k[X1, . . . , Xn−1]. This also shows us that G′ is nonzero, because
otherwise we would have D = gcd(F,G′) = gcd(F, 0) = F 6∈ k[X1, . . . , Xn−1]. We have that G′/D
and F/D are nonzero polynomials in k[X1, . . . , Xn] that share no nonconstant factors in k[X1, . . . , Xn].
Since (degXn(F/D), degXn(G′/D)) = (degXn F,degXn G

′) = (r, s′) < (r, s), we can use the induction
hypothesis and find nonzero H ′ ∈ k[X1, . . . , Xn−1] that satifies H ′(x1, . . . , xn−1) = 0 for all (x1, . . . , xn) ∈
kn such that (F/D)(x1, . . . , xn) = (G′/D)(x1, . . . , xn) = 0. Now take H := DH ′ ∈ k[X1, . . . , Xn−1],
which is nonzero as D and H ′ are nonzero as well. Let (x1, . . . , xn) ∈ kn such that F (x1, . . . , xn) =
G(x1, . . . , xn) = 0. Then it follows from the definition of G′ that G′(x1, . . . , xn) = 0. If D(x1, . . . , xn−1) =
0 then we directly have H(x1, . . . , xn−1) = 0. If D(x1, . . . , xn−1) 6= 0, we have (F/D)(x1, . . . , xn) =
(G′/D)(x1, . . . , xn) = 0 and therefore H ′(x1, . . . , xn−1) = 0, hence H(x1, . . . , xn−1) = 0.

Lemma 7.7. Let k be an algebraically closed field and let F (X,Y ) ∈ k[X,Y ] be an irreducible polynomial.
Let S = V ({F}) ⊂ k2 be the set of ordered pairs x, y ∈ k such that F (x, y) = 0. Then the Zariski-closed
subsets of S are exactly the set S combined with all finite subsets of S.

Proof. It is trivial that S is a Zariski-closed subset of S. By Lemma 7.5 and Remark 7.4 we see that
any finite subset of S is Zariski-closed in S. We want to show that there are no other Zariski-closed
subsets of S. Let S1 ( S be a proper Zariski-closed subset of S. We want to prove that S1 contains only
finitely many elements. Since S1 is Zariski-closed, there exists F1 ⊂ k[X,Y ] such that S1 = V (F1). Let
(x0, y0) ∈ S be an element that does not lie in S1 = V (F1). Then there must exist G ∈ F1 ⊂ k[X,Y ] such
that G(x0, y0) 6= 0. Since F (x0, y0) = 0, we have that G is not a multiple of the irreducible polynomial F .
So G and F share no nonconstant factors in k[X,Y ]. By Lemma 7.6, there exists nonzero H(X) ∈ k[X]
such that if x, y ∈ k satisfy F (x, y) = G(x, y) = 0 that H(x) = 0 must follow. Since H is nonzero, only
finitely many x ∈ k satisfy H(x) = 0. Now suppose that (x, y) ∈ S1 = V (F1). It then must follow that
G(x, y) = 0. We also have F (x, y) = 0 because (x, y) ∈ S. Therefore we must have H(x) = 0. Now
suppose there exists infitely many pairs (x, y) ∈ k2 with (x, y) ∈ S1. There are finitely many possibilities
for x, so there must exists a ∈ k such that (a, y) ∈ S1 holds for infinitely many possibilities for y ∈ k.
So G(a, y) = 0 and F (a, y) = 0 hold for infinitely many possibilities y ∈ k. Since Lemma 3.3 also holds,
with an analogue proof, when Z gets replaced by any field, we conclude that (X − a) is a factor of both
G and F , which is a contradiction. So S1 must consist of only finitely many elements.
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We now define the concept of being Zariski-dense.

Definition 7.8. Let k be an algebraically closed field and n ∈ N. Let T ⊂ kn be subspace of kn with
the induced Zariski topology. Let S be any subset of T . We call S Zariski-dense in T if T is the only
Zariski-closed subset of T that includes S.

Lemma 7.9. Let k be an algebraically closed field and n ∈ N. Let T ⊂ kn be subspace of kn with the
induced Zariski topology. Let S be any subset of T . Let S′ be any subset of S. If S′ is Zariski-dense in
T , then so is S.

Proof. Suppose that S is not Zariski-dense in T . Then there must exist a proper subset R ( T that is
Zariski-closed in T and that includes S. Therefore, we have that R includes S′ as well. As a consequence
we directly see that S′ is not Zariski-dense in T .

Definitions 7.10. let n ∈ N. Let F (X1, . . . , Xn) ∈ C[X1, . . . , Xn] be a polynomial. We define the sets

T (F ) := {(x1, . . . , xn) ∈ Cn | F (x1, . . . , xn) = 0}

and
S(F ) := {(x1, . . . , xn) ∈ Zn | F (x1, . . . , xn) = 0}.

We call T (F ) the (total) zero locus of F and S(F ) the integral zero locus of F .

Note that the zero locus of any polynomial is exactly the variety of the set that contains only this
polynomial. So we have T (F ) = V ({F}) for all F ∈ C[X1, . . . , Xn]. We are often interested whether
S(F ) is Zariski-dense in T (F ) for some F (X1, . . . , Xn) ∈ C[X1, . . . , Xn].

Lemma 7.11. Let F (X,Y ) ∈ Z[X,Y ] be a nonconstant polynomial, then we have the proper inclusion
S(F ) ( T (F ).

Proof. We immediately see from the definition of S(F ) and T (F ) that S(F ) ⊂ T (F ), so it rest us to prove
the this inclusion is proper. Because F is nonconstant we may without loss of generality assume that F
is of positive Y -degree. Write F as a polynomial in Y , so F (X,Y ) =

∑n
i=0 ai(X)Y i, where n ∈ N is the

Y -degree of F and where ai(X) ∈ Z[X] for all i ∈ {0, . . . , n}. In particular we have an(X) 6= 0 ∈ Z[X],
so an(X) has only finitely many complex roots. Let x ∈ C be a complex number that is not an integer
and also not a root of an(X). This shows that F (x, Y ) =

∑n
i=0 ai(x)Y i is a polynomial in C[Y ] of degree

n and therefore has n complex roots counting multiplicity. Let y ∈ C be such a root. We then have
F (x, y) = 0 with (x, y) ∈ C2 and (x, y) 6∈ Z2. This shows that (x, y) ∈ T (F ) and (x, y) 6∈ S(F ), hence
S(F ) ( T (F ).

The following lemma gives the connection between Zariski-density and having infinitely many integral
solutions to a binary Diophantine equation.

Lemma 7.12. Let F (X,Y ) ∈ Z[X,Y ] be an irreducible polynomial. Then S := S(F ) is Zariski-dense in
T := T (F ) if and only if there are infinitely many integral solutions to F (x, y) = 0.

Proof. Suppose that there are only finitely many integral solutions to F (x, y) = 0. Then S is a finite
subset of T and by Lemma 7.7 also a Zariski-closed subset of T . We can see from Lemma 7.11 that S 6= T .
This shows that T is not the only Zariski-closed subset of T that includes S. So S is not Zariski-dense
in T .
Now suppose that there are infinitely many integral solutions to F (x, y) = 0. Then S is an infinite subset
of T . Suppose that S is not Zariski-dense in T . Then there must exist a proper Zariski-closed R of T
that includes S. By Lemma 7.7 we see that R must be a finite subset, which contradicts the fact that R
includes the infinite set S. So S is indeed Zariski-dense in T .

7.3 Vanishing integral zero locus on a coprime polynomial

In this subsection we are interested in the connection between Zariski-density of a certain set and the
existence of a second polynomial that vanishes on this set. The following lemma directly tells something
about this.
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Lemma 7.13. Let k be an algebraically closed field and n ∈ N. Let F (X1, . . . , Xn) ∈ k[X1, . . . , Xn] and
let

T := {(x1, . . . , xn) ∈ kn | F (x1, . . . , xn) = 0} = V ({F}) ⊂ kn

be the variety of {F}. Let S ( T be a proper subset of T . Then S is Zariski-dense in T if and only if
there does not exist G(X1, . . . , Xn) ∈ k[X1, . . . , Xn] such that G(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ S
and such that there is some (x1, . . . , xn) ∈ T with G(x1, . . . , xn) 6= 0.

Proof. Suppose that such G does exist. Let R = T ∩V ({G}) ⊂ kn. Then R is Zariski-closed in T as it is
the intersection of a Zariski-closed subset with T . We have S ⊂ V ({G}) and thus S ⊂ R. Because there
is some (x1, . . . , xn) ∈ T satisfying G(x1, . . . , xn) 6= 0, we have R ( T . So there exists a Zariski-closed
proper subset of T that includes S. This shows that S is not Zariski-dense in T .
Conversely, suppose that S is not Zariski-dense in T , then we have S ⊂ R ( T for some proper Zariski-
closed subset R of T . Since R is Zariski-closed, there exists F ⊂ k[X1, . . . , Xn] such that R = V (F).
Because R is a proper subset of T , there must exist (x1, . . . , xn) ∈ T such that G(x1, . . . , xn) 6= 0 for
some G ∈ F . From S ⊂ R = V (F), we conclude that G(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ S.

Suppose that a polynomial F ∈ C[X1, . . . , Xn] is of zero Xn-degree. If we want to know whether the
integral zero locus of F is Zariski-dense in the total zero locus, we might as well view F as a polynomial
in C[X1, . . . , Xn−1]. The following lemma shows this.

Lemma 7.14. Let n ∈ N. Let F (X1, . . . , Xn) ∈ C[X1, . . . , Xn]. Let T := T (F ) and S := S(F ). Suppose
that degXn F = 0. Let F ′(X1, . . . , Xn−1) = F (X1, . . . , Xn−1, 0) ∈ C[X1, . . . , Xn−1]. Let

T ′ := T (F ′) = {(x1, . . . , xn−1) ∈ Cn−1 | F ′(x1, . . . , xn−1) = 0}

and
S′ = S(F ′) = {(x1, . . . , xn−1) ∈ Zn−1 | F ′(x1, . . . , xn−1) = 0}.

Then S is Zariski-dense in T if and only if S′ is Zariski-dense in T ′.

Proof. Suppose that S is not Zariski-dense in T . By Lemma 7.13 there then must exist G(X1, . . . , Xn) ∈
C[X1, . . . , Xn] such thatG(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ S and such that there exists (a1, . . . , an) ∈
T with G(a1, . . . , an) 6= 0. Note that degXn F = 0 implies that F (x1, . . . , xn−1, 0) = F (x1, . . . , xn−1, xn)
hold for all x1, . . . , xn ∈ C. Now let

G′(X1, . . . , Xn−1) := G(X1, . . . , Xn−1, an) ∈ C[X1, . . . , Xn−1].

Furthermore, let (x1, . . . , xn−1) ∈ S′. We then have

F (x1, . . . , xn−1, an) = F (x1, . . . , xn−1, 0) = F ′(x1, . . . , xn−1) = 0,

hence (x1, . . . , xn−1, an) ∈ S. Therefore we have

G′(x1, . . . , xn−1) = G(x1, . . . , xn−1, an) = 0,

so G′ vanishes at all elements in S′. We also have G′(a1, . . . , an−1) = G(a1, . . . , an) 6= 0, while

F ′(a1, . . . , an−1) = F (a1, . . . , an−1, 0) = F (a1, . . . , an−1, an) = 0.

So G′ does not vanish at the element (a1, . . . , an−1) ∈ T ′. By Lemma 7.13 we see that S′ is not Zariski-
dense in T ′.
Conversely suppose that S′ is not Zariski-dense in T ′. We use Lemma 7.13 and find G′(X1, . . . , Xn−1) ∈
C[X1, . . . , Xn−1] such that G′ vanishes on S′ but not on T ′, hence there exists (a1, . . . , an−1) ∈ T ′ with
G′(a1, . . . , an−1) 6= 0. Let G(X1, . . . , Xn) = G′(X1, . . . , Xn−1) ∈ C[X1, . . . , Xn]. For any (x1, . . . , xn) ∈
S we have

F ′(x1, . . . , xn−1) = F (x1, . . . , xn−1, 0) = F (x1, . . . , xn−1, xn) = 0,

so (x1, . . . , xn−1) ∈ S′. This gives us G(x1, . . . , xn) = G′(x1, . . . , xn−1) = 0, which shows that G vanishes
on S. We have F (a1, . . . , an−1, 0) = F ′(a1, . . . , an−1) = 0 and G(a1, . . . , an−1, 0) = G′(a1, . . . , an−1) 6= 0.
So G does not vanish at the element (a1, . . . , an−1, 0) ∈ T . We once again use Lemma 7.13 and see that
S is not Zariski-dense in T .
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The following theorem was discovered by David Hilbert and is called Hilbert’s Nullstellensatz. We
will use this theorem, but will not give its proof. A proof of this has been given by David Eisenbud [4].

Theorem 7.15 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and n ∈ N. Let F ⊂
k[X1, . . . , Xn] and G(X1, . . . , Xn) ∈ k[X1, . . . , Xn] be such that G(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
V (F). Then the ideal in k[X1, . . . , Xn] that is generated by elements in F contains some power of G.

Lemma 7.16. Let n ∈ N. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a nonconstant polynomial and
G(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] a nonzero polynomial such that they do not share a common nonunit
as factor in Z[X1, . . . , Xn]. Then there exists (x1, . . . , xn) ∈ Cn such that F (x1, . . . , xn) = 0 and
G(x1, . . . , xn) 6= 0.

Proof. Suppose that such (x1, . . . , xn) does not exist. So G(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
V ({F}) ⊂ Cn. From Hilbert’s Nullstellensatz 7.15 it then follows that there exists m ∈ N such that
Gm lies in the ideal in C[X1, . . . , Xn] that is generated by F . So F divides Gm in C[X1, . . . , Xn]. Let
f ∈ C[X1, . . . , Xn] be an irreducible divisor of F . Then f is also a divisor of Gm. Since f is nonconstant,
there exists i ∈ {1, . . . , n} with di := degXi f > 0. We may assume without loss of generality that
dn > 0. So when we view f as a polynomial in Xn, it is nonconstant. Therefore there exists a field
extension k over the fractionfield of C[X1, . . . , Xn−1] that contains a root of f . Since f divides F and G
in C[X1, . . . , Xn], we see that this root is also a root of F and G. Therefore F and G can’t be coprime
in Z[X1, . . . , Xn]. This contradicts the fact that F and G share no nonunits as factors in Z[X1, . . . , Xn],
so there indeed must exist (x1, . . . , xn) ∈ Cn such that F (x1, . . . , xn) = 0 and G(x1, . . . , xn) 6= 0.

As a corollary, we have found another connection between Zariski-density of a certain set and the
existence of a second polynomial that vanishes on this set.

Corollary 7.17. Let n ∈ N. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a nonconstant irreducible poly-
nomial. Let T = T (F ). Let S be a subset of T . Suppose that we find nonzero G(X1, . . . , Xn) ∈
Z[X1, . . . , Xn] such that G is no multiple of F in Z[X1, . . . , Xn] and such that G(x1, . . . , xn) = 0 for all
(x1, . . . , xn) ∈ S. Then S is not Zariski-dense in T .

Proof. Since F is irreducible and not a divisor of G in Z[X1, . . . , Xn], they do not share a common
nonconstant factor in Z[X1, . . . , Xn]. By Lemma 7.16 we find (x1, . . . , xn) ∈ Cn such that F (x1, . . . , xn) =
0 and G(x1, . . . , xn) 6= 0. We now apply Lemma 7.13 and conclude that S is Zariski-dense in T .

The following lemma shows that the integral zero locus of a nonzero polynomial in Z[X1, . . . , Xn]
is Zariski-dense in the total zero locus of this polynomial if and only if it holds for all nonconstant
irreducible factors of F . This reduces the question of Zariski-density to irreducible polynomials.

Lemma 7.18. Let n ∈ N0. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be nonzero. Let

F = c · F a11 · · ·F
am
m

be a factorization of F in Z[X1, . . . , Xn], where c ∈ Z is a nonconstant integer, and where F1, . . . , Fm
are pairwise coprime nonconstant irreducible factors in Z[X1, . . . , Xn]. So we have ai ∈ N for all i ∈
{1, . . . ,m}. It then holds that S(F ) is Zariski-dense in T (F ) if and only if S(Fi) is Zariski-dense in
T (Fi) for all i ∈ {1, . . . ,m}.

Proof. We derive the following from the definitions of the zero locus and the integral zero locus:

S(F ) =

m⋃
i=1

S(Fi)

and

T (F ) =

m⋃
i=1

T (Fi).

Now first suppose that S(F ) is not Zariski-dense in T (F ). By Lemma 7.13 there then must exists
G(X1, . . . , Xn) ∈ C[X1, . . . , Xn] such that G vanishes on S(F ), but not on T (F ). So there exists i ∈
{1, . . . ,m} such that G does not vanish on T (Fi). Since G does vanish on S(Fi) ⊂ S(F ), we can apply
Lemma 7.13 again to find that S(Fi) is not Zariski-dense in T (Fi). Conversely, suppose that there exists
i ∈ {1, . . . ,m} such that S(Fi) is not Zariski-dense in T (Fi). We apply Lemma 7.13 to find the existence
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of G(X1, . . . , Xn) ∈ C[X1, . . . , Xn] such that G vanishes on S(Fi), but not on T (Fi). In particular this
means that G is no multiple of the irreducible factor Fi and G and Fi are therefore coprime. Now define

G′ := G ·
m∏
j=1
j 6=i

Fj .

We see that G′ and Fi are coprime in Z[X1, . . . , Xn]. From Lemma 7.16 it then follows that there exists
(x1, . . . , xn) ∈ Cn such that Fi(x1, . . . , xn) = 0 and G′(x1, . . . , xn) 6= 0. This shows that G′ does not
vanish on T (Fi) and therefore especially does not vanish on T (F ). Because Fj vanishes on S(Fj) for each

j ∈ {1, . . . ,m} and since G vanishes on S(Fi), we find that G′ vanishes on their union
m⋃
i=1

S(Fi) = S(F ).

We can apply Lemma 7.13 again and conclude that S(F ) is not Zariski-dense in T (F ).

7.4 Partitioning integral zero locus

In order to determine whether the integral zero locus of an irreducible polynomial in Z[X1, . . . , Xn] is
Zariski-dense in its total zero locus, we may divide these integer solutions over finitely many subsets
and determine whether these subsets are Zariski-dense in the total zero locus. We will show this in this
subsection. For this we first need to prove some lemmas.

Lemma 7.19. Let n ∈ N0. Let F ∈ Z[X1, . . . , Xn] be nonzero. Let G,H ∈ C[X1, . . . , Xn] such that F =
GH. Then there exists nonzero γ ∈ C and an algebraic number field k ⊂ Q such that γG ∈ k[X1, . . . , Xn]
and such that γ−1H ∈ k[X1, . . . , Xn].

Proof. We prove this by induction on n. If n = 0, we have F ∈ Z[X1, . . . , X0] = Z and G,H ∈
C[X1, . . . , X0] = C with F = GH. Note that G and H also must be nonzero. We take γ = H and k = Q
and the results will then follow directly. We now assume n > 0 and that this lemma holds for n − 1.
Since C is an algebraically closed field of characteristic zero, we have by Newton-Puiseux’s Theorem
4.17 that C((X∗1 )) is also algebraically closed. Since this is also of characteristic zero, we can use this
theorem multiple times to find that C((X∗1 ))((X∗2 )) · · · ((X∗n−1)) is algebraically closed. The same holds
if we replace C with the algebraically closed subfield Q. Let dn ∈ N0 be the Xn-degree of F . We can
then write

F = f

dn∏
i=1

(Xn − fi),

where f ∈ Z[X1, . . . , Xn−1] is the leading coefficient of F , when viewed as a polynomial in Xn, and
where f1, . . . , fdn ∈ Q((X∗1 ))((X∗2 )) · · · ((X∗n−1)). For every i ∈ {1, . . . , dn} we have that (Xn− fi), being
a linear polynomial, is irreducible in C((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn]. We also have that f is a unit in
C((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn]. Since C((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn] is a unique factorization domain
that includes C[X1, . . . , Xn], we may assume that

G = g
t∏
i=1

(Xn − fi), and that H = h

dn∏
i=t+1

(Xn − fi),

for some t ∈ {0, . . . , dn} and g, h ∈ C((X∗1 ))((X∗2 )) · · · ((X∗n−1)) such that f = gh. Because g and h
are the leading coefficients of G and H respectively, when viewed as polynomials in Xn, we must have
g, h ∈ C[X1, . . . , Xn−1]. We apply the induction hypothesis on f = gh and find γ ∈ C and an algebraic
number field k′ ⊂ Q such that γg ∈ k′[X1, . . . , Xn−1] and such that γ−1h ∈ k′[X1, . . . , Xn−1]. In

particular we have γg ∈ Q[X1, . . . , Xn−1]. We also have
t∏
i=1

(Xn − fi) ∈ Q((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn].

So from this we find

γG ∈ Q((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn] ⊂ C((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn].

We also have
γG ∈ C[X1, . . . , Xn] ⊂ C((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn].

This combined shows us that

γG ∈ Q((X∗1 ))((X∗2 )) · · · ((X∗n−1))[Xn] ∩ C[X1, . . . , Xn] = Q[X1, . . . , Xn].

52



So γG is a polynomial in n variables with coefficients in Q. The same follows for γ−1H. Since G and H
both have only finitely many of these coefficients in Q, there exists an algebraic number field k ⊂ Q that
contains all these coefficients. So γG ∈ k[X1, . . . , Xn] and γ−1H ∈ k[X1, . . . , Xn].

Corollary 7.20. Let n ∈ N. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a nonconstant polynomial. If F is
reducible in C[X1, . . . , Xn], it is also reducible in k[X1, . . . , Xn] for some algebraic number field k ⊂ Q.

Proof. Suppose that F is reducible in C[X1, . . . , Xn]. Then we have some factorization F = GH, where
G,H ∈ C[X1, . . . , Xn] are both nonunits, hence nonconstant. We apply Lemma 7.19 and find nonzero
γ ∈ C and an algebraic number field k ⊂ Q such that G′ := γG ∈ k[X1, . . . , Xn] and such that H ′ :=
γ−1H ∈ k[X1, . . . , Xn]. We have F = G′H ′ and both G′, H ′ are nonconstant, and thus nonunits, in
k[X1, . . . , Xn]. This shows that F is also reducible in k[X1, . . . , Xn].

Lemma 7.21. Let n ∈ N. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be an irreducible polynomial. Suppose
that F is reducible in C[X1, . . . , Xn]. Then S(F ) is not Zariski-dense in T (F ).

Proof. By Corollary 7.20 we see that F is reducible in k[X1, . . . , Xn] for some algebraic number field k.
Let F (X1, . . . , Xn) = G(X1, . . . , Xn)H(X1, . . . , Xn) be a proper factorization in k[X1, . . . , Xn]. Then we
have for all (x1, . . . , xn) ∈ Zn that F (x1, . . . , xn) = 0 if and only if G(x1, . . . , xn) = 0 or H(x1, . . . , xn) =
0. So S(F ) = S(G) ∪ S(H). Let α be a primitive element of k. So k = Q(α). Let s = [k : Q] be the
degree of k over Q. We then can write G as

G(X1, . . . , Xn) =

d1∑
i1=0

. . .

dn∑
in=0

s−1∑
j=0

ai1,...,in,jα
jXi1

1 · · ·X
in
n

with ai1,...,in,j ∈ Q and d1, . . . , dn ∈ N0. We can then write

G(X1, . . . , Xn) = G0(X1, . . . , Xn) +G1(X1, . . . , Xn)α+ . . .+Gs−1(X1, . . . , Xn)αs−1,

with

Gj(x1, . . . , xn) =

d1∑
i1=0

. . .

dn∑
in=0

ai1,...,in,jX
i1
1 · · ·X

in
n ∈ Q[X1, . . . , Xn]

for each j ∈ {0, . . . , s − 1}. So the equation G(x1, . . . , xn) = 0 with x1, . . . , xn ∈ Z is equivalent to the
combined equations G0(x1, . . . , xn) = 0, . . . , Gs−1(x1, . . . , xn) = 0. If F divides all Gj in k[X1, . . . , Xn],
then F divides G, which contradicts the fact that F = GH was a proper factorization. So F does
not divide Gj in k[X1, . . . , Xn] for some j ∈ {0, . . . , s − 1}. There exists nonzero a ∈ Z such that
G′(X1, . . . , Xn) := a · Gj ∈ Z[X1, . . . , Xn]. Since a is a unit in k, the nonconstant F does not divide
G′ in k[X1, . . . , Xn] and therefore also not in Z[X1, . . . , Xn]. Note that G(x1, . . . , xn) = 0 implies
G′(x1, . . . , xn) = 0 for any x1, . . . , xn ∈ Z. In a similar way we find H ′(X1, . . . , Xn) ∈ Z[X1, . . . , Xn],
that is no multiple of F in Z[X1, . . . , Xn] and satisfies H ′(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ Z that
satisfies H(x1, . . . , xn) = 0. Since F is irreducible in Z[X1, . . . , Xn], we have that G′H ′ is no multiple of
F and vanishes on S(F ) = S(G)∪S(H). We can thus apply Corollary 7.17 to conclude that S(F ) is not
Zariski-dense in T (F ).

We can now show that we may split the problem of determining Zariski-density into finitely many
subsets. The exact statement is as follows:

Lemma 7.22. Let n ∈ N. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be an irreducible polynomial. Let m ∈ N.

Let S1, . . . , Sm be subsets of S(F ). Then S′ :=
m⋃
i=1

Si is Zariski-dense in T (F ) if and only if Si is

Zariski-dense in T (F ) for some i ∈ {1, . . . ,m}.

Proof. First suppose that S′ is not Zariski-dense in T (F ). Then we have by Lemma 7.9 that all of its
subsets S1, . . . , Sm are also not Zariski-dense in T (F ).
Conversely, suppose that S1, . . . , Sm are all not Zariski-dense in T (F ). We assume that S′ is Zariski-dense
in T (F ) and will reach a contradiction. Since S′ ⊂ S(F ) is Zariski-dense in T (F ), we have by Lemma
7.9 that S(F ) is Zariski-dense in T (F ) as well. Lemma 7.21 then tells us that F must be irreducible in
C[X1, . . . , Xn]. Let i ∈ {1, . . . ,m}. Since Si is not Zariski-dense in T (F ), we can apply Lemma 7.13 to
find Gi(X1, . . . , Xn) ∈ C[X1, . . . , Xn] such that Gi(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Si but not for
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all (x1, . . . , xn) ∈ T (F ). In particular this shows that Gi is not a multiple of F in C[X1, . . . , Xn]. Since F
is irreducible in C[X1, . . . , Xn], F and Gi share no common factor in C[X1, . . . , Xn]. This shows that the

polynomial G :=
s∏
i=1

Gi ∈ C[X1, . . . , Xn] satisfies G(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
m⋃
i=1

Si = S′ and

that G and F do not share a common factor in C[X1, . . . , Xn]. Since F is irreducible in C[X1, . . . , Xn],
this means that no power of G lies in the ideal generated by F so by Hilbert’s Nullstellensatz 7.15 we see
that there must exist (x1, . . . , xn) ∈ V ({F}) = T (F ) with G(x1, . . . , xn) 6= 0. We can now apply Lemma
7.13 to conclude that S′ is not Zariski-dense in T (F ); a contradiction.

8 Generalizing Runge’s Theorem to Three Variables

In this section we are interested in whether the integral zero locus of a polynomial in Z[X,Y, Z] is Zariski-
dense in the total zero locus. In the first subsection we will provide some examples of polynomials which
we already can solve quite easily. In the second and third subsection we will study the roots of these
polynomials. This will help us in our attempt in the fourth subsection to generalize Runge’s Theorem.
In this attempt, we see that we do need to be familiar with the roots of this polynomial, when viewed as
a polynomial in Z over Z[X,Y ] and that these roots are of a certain form.

8.1 First look

We start by showing a family of polynomials whose integral zero locus is Zariski-dense in its total zero
locus.

Example 8.1. Let H(X,Y ) ∈ Z[X,Y ]. Let F (X,Y, Z) := Z −H(X,Y ). Then S(F ) is Zariski-dense in
T (F ).

Proof. Suppose that this is not the case. By Lemma (7.13) we then find G(X,Y, Z) ∈ C[X,Y, Z] such
that G vanishes on S(F ), but not on T (F ). So there exists x0, y0, z0 ∈ Z with F (x0, y0, z0) = 0 and
G(x0, y0, z0) 6= 0. Now consider the polynomial

K(X,Y ) := G(X,Y,H(X,Y )) ∈ C[X,Y ].

Let a ∈ Z and b ∈ Z be any integers. We have F (a, b,H(a, b)) = 0 and H(a, b) ∈ Z, which shows us that
(a, b,H(a, b)) ∈ S(F ). We therefore have K(a, b) = G(a, b,H(a, b)) = 0. Since Lemma 3.3 also holds,
with an analogue proof, when Z gets replaced by any field, we see that X − a is a factor of K(X,Y ) in
C[X,Y ]. Since this holds for all a ∈ Z and since all these factors are unique up to multiplication with
units in C[X,Y ], we can use the fact that C[X,Y ] is a unique factorization domain to conclude that
K(X,Y ) must be the zero polynomial. We have 0 = F (x0, y0, z0) = z0 −H(x0, y0) and therefore

0 = K(x0, y0) = G(x0, y0, H(x0, y0)) = G(x0, y0, z0),

a contradiction. So S(F ) must indeed be Zariski-dense in T (F ).

In the previous section we saw some lemmas that are useful to determine whether S(F ) is Zariski-
dense in T (F ) for some F ∈ Z[X,Y, Z]. We see for example by Lemma 7.18 that we may assume F to
be irreducible. If F is of zero Z-degree, we see by Lemma 7.14 that we have reduced the problem to the
problem of Zariski-density in two dimensions. Because of this we may from now on assume that F is of
positive Z-degree. In a similar way we may assume that F is also of positive X-degree and of positive
Y -degree. There is even a stronger way to reduce the problem to the two-dimensional case. The next
lemma shows this.

Lemma 8.2. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a nonconstant irreducible polynomial. Suppose that we can
write

F (X,Y, Z) = H(F1(X,Y, Z), F2(X,Y, Z)),

where H(U, V ) ∈ Z[U, V ] is a polynomial in two variables and where F1, F2 ∈ Z[X,Y, Z] are polynomials
such that either F1 or F2 is not a constant in Z plus a multiple of F in Z[X,Y, Z]. Suppose that the
equation H(u, v) = 0 holds for only finitely many u, v ∈ Z. Then S(F ) is not Zariski-dense in T (F ).
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Proof. Without loss of generality we may assume that F1 is not a constant in Z plus a multiple of F in
Z[X,Y, Z]. We will look at the set

M = {u ∈ Z | ∃v ∈ Z, H(u, v) = 0}.

Note that M is a finite set because the equation H(u, v) = 0 has only finitely many integral solutions.
So we can define the polynomial

G(X,Y, Z) =
∏
u∈M

(F1(X,Y, Z)− u) ∈ Z[X,Y, Z].

Let (x, y, z) ∈ S(F ). Then we find

0 = F (x, y, z) = H(F1(x, y, z), F2(x, y, z)).

So we have F1(x, y, z) = u for some u ∈ M . This shows that G(x, y, z) = 0, so G vanishes on S(F ).
Suppose that G is a multiple of F in Z[X,Y, Z]. Because F is irreducible, we see that F1 − u must
then be a multiple of F for some u ∈ M . This shows that F1 is the constant u plus a multiple of F ,
a contradiction. As a consequence, we see that G is not a multiple of F . We then may conclude by
Corollary 7.17 that S(F ) is not Zariski-dense in T (F ).

We can use this lemma for the following two examples

Example 8.3. Consider the polynomial of the form

H(X,Y ) := Y n − ((aX)n + an−1X
n−1 + . . .+ a1X + a0),

where n ≥ 2 and a, ai ∈ Z, with a 6= 0. Suppose that the polynomial (aX)n + an−1X
n−1 + . . .+ a1X + a0

is not a d-th power in Z[X] for any divisor d ≥ 2 of n. Let

F (X,Y, Z) := H(X + Z, Y − Z).

Then S(F ) is not Zariski-dense in T (F ).

Proof. Example 6.3 tells us that the equation H(x, y) = 0 has only finitely many integral solutions. The
proof of this example also tells us that H(X,Y ) is irreducible in Z[X,Y ]. As a consequence, we have
that F (X,Y ) = H(X + Z, Y − Z) is irreducible in Z[X,Y, Z]. Because F is of X-degree two and X + Z
is of X-degree one, we see that X + Z certainly is not a constant plus a multiple of F . The result then
automatically follows from Lemma 8.2.

Example 8.4. Let F ∈ Z[X,Y, Z] be the polynomial given by

F (X,Y, Z) := 3XZ − 6Y Z +X2 − 2Y 2 −XY + 2.

Then S(F ) is not Zariski-dense in T (F ).

Proof. When we view F as a polynomial in Z over Z[X,Y ], we see that F is a linear polynomial. Its two
coefficients 3(X − 2Y ) and X2 − 2Y 2 −XY + 2 are coprime in Z[X,Y ] and we therefore see that F is
irreducible in Z[X,Y, Z]. We define

H(X,Y ) := X2 − 2Y 2 −XY + 2.

The equation H(x, y) = 0 has only finitely many integral solutions as has been showed in Example 6.5.
We find

H(X + 2Z, Y + Z) = (X + 2Z)2 − 2(Y + Z)2 − (X + 2Z)(Y + Z) + 2

= X2 + 4XZ + 4Z2 − 2Y 2 − 4Y Z − 2Z2 −XY −XZ − 2Y Z − 2Z2 + 2

= X2 + 3XZ − 2Y 2 − 6Y Z −XY + 2

= F (X,Y, Z).

Because X + 2Z is not a constant plus a multiple of F , we can use Lemma 8.2 to conclude that S(F ) is
not Zariski-dense in T (F ).
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The following example is about Pythagorean triples. These are integers a, b, c ∈ N such that a2 +b2 =
c2.

Example 8.5. Let F (X,Y, Z) = Z2 −X2 − Y 2. Then S(F ) is Zariski-dense in T (F ).

Proof. Suppose that S(F ) is not Zariski-dense in T (F ). By Lemma 7.13 there then exists G(X,Y, Z) ∈
C[X,Y, Z] such that G vanishes on S(F ), but not on T (F ). We therefore see that G is no multiple of F in
C[X,Y, Z]. Because X2+Y 2 is not a square in C[X,Y ], we see that F (X,Y, Z) is irreducible in C[X,Y, Z].
This shows that G and F share no nonconstant factors in C[X,Y, Z]. We then can apply Lemma 7.6 to
find the existence of nonzero H(X,Y ) ∈ C[X,Y ] such that H(x, y) = 0 for all x, y, z ∈ S(F ). Because
(3, 4, 5) ∈ S(F ), we see that H(3, 4) = 0. So H cannot be a constant polynomial. We may without loss of
generality assume that d1 := degX H is positive. Let p ∈ N and let t ∈ {0, . . . , d1}. Let m = 2p+2d1+1−t

and n = 2t. So m and n are integers. We see that

F (m2 − n2, 2mn,m2 + n2) = (m2 + n2)2 − (m2 − n2)2 − (2mn)2 = 0.

So (m2 − n2, 2mn,m2 + n2) ∈ S(F ) and therefore we have H(m2 − n2, 2mn) = 0. We find

H(m2 − n2, 2mn) = H(22(p+2d1+1−t) − 22t, 2p+2d1+1−t+t+1)

= H(22t(22p+4d1+2−4t − 1), 2p+2d1+2).

Let b = 2p+2d1+2. We then see for any t ∈ {0, . . . , d1} that 22t(22p+4d1+2−4t − 1) is a root of the
polynomial H(X, b) ∈ C[X]. Since H(X,Y ) is of X-degree d1, we have that H(X, b) is of X-degree at
most d1. We see that 22t(22p+4d1+2−4t − 1) is different for each t ∈ {0, . . . , d1} because they all contain
different powers of 2 in their prime decomposition. So H(X, b) contains at least d1 + 1 different roots.
From this we conclude that H(X, b) = 0. Since Lemma 3.3 also holds, with an analogue proof, when
Z gets replaced by any field, we see that Y − b is a factor of H. Because b = 2p+2d1+2 is different for
each p ∈ N, we see that H has infinitely many different factors in C[X,Y ]. From this we conclude that
H(X,Y ) = 0, which leads to a contradiction. So S(F ) must indeed be Zariski-dense in T (F ).

We end this subsection by an example that makes uses of Pell’s equation 2.4:

Example 8.6. Let F (X,Y, Z) = Z2 − (X2 − 1)(Y 2 − 1). Then S(F ) is Zariski-dense in T (F ).

Proof. The start of the proof is similar as in the previous example. Suppose that S(F ) is not Zariski-
dense in T (F ). By Lemma 7.13 there then exists G(X,Y, Z) ∈ C[X,Y, Z] such that G vanishes on S(F ),
but not on T (F ). We therefore see that G is no multiple of F in C[X,Y, Z]. Because (X2 − 1)(Y 2 − 1)
is not a square in C[X,Y ], we see that F (X,Y, Z) is irreducible in C[X,Y, Z]. This shows that G and
F share no nonconstant factors in C[X,Y, Z]. We then can apply Lemma 7.6 to find the existence of
nonzero H(X,Y ) ∈ C[X,Y ] such that H(x, y) = 0 for all x, y, z ∈ S(F ). From Example 2.4 we see that
there are infinitely many different integers xn ∈ Z such that there exists yn ∈ Z such that x2n − 1 = 3y2n.
For each n ∈ N0 we pick such a xn and a corresponding yn. Now let i ∈ N0 and let j ∈ N0. We then have

F (xi, xj , 3yiyj) = (3yiyj)
2 − (x2i − 1)(x2j − 1) = 9y2i y

2
j − (3yi)(3yj) = 0.

So (xi, xj , 3yiyj) ∈ S(F ) and therefore we have H(xi, xj) = 0. We then can then use Lemma 3.3 to
conclude for each i ∈ N0 that X − xi is a factor of H. Because xi is different for each i ∈ N0, we see
that H has infinitely many different factors in Z[X,Y ]. From this we conclude that H(X,Y ) = 0, which
leads to a contradiction. So S(F ) must indeed be Zariski-dense in T (F ).

8.2 The form of its roots

We will inspire ourselves by Runge’s Theorem and attempt to generalize that proof to the case of three
variables. For this we will need to look at the roots of polynomials in Z over Z[X,Y ]. Here we are
interested in the form of such roots. We will use Newton-Puiseux’s Theorem 4.17 twice. First we note
that since Q is an algebraically closed field of characteristic zero, the formal Puiseux field Q((X∗)) must
be algebraically closed as well. Since it is a field extension over Q, it is also of characteristic zero. So
by using Newton-Puiseux’s Theorem again, we see that the field Q((X∗))((Y ∗)) is also algebraically
closed. Note that the fields Q(((X−1)∗))(Y ∗)), Q((X∗))(((Y −1)∗)) and Q(((X−1)∗))(((Y −1)∗)) are also
all algebraically closed by similar reasons. Note that Z[X,Y ] can be embedded in all these four fields.
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So any polynomial in Z[X,Y, Z] of positive Z-degree factorizes completely into linear factors over for
example the field Q(((X−1)∗))(((Y −1)∗)). Let f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)). We can then write f
as

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e, (8.1)

for some m ∈ Z, e ∈ N and with an(X) ∈ Q(((X−1)∗)). Each of these an(X) can then be written as

an(X) =

∞∑
l=−pn

an,lX
−l/qn ,

for some pn ∈ Z, qn ∈ N and with an,l ∈ Q. Notice that the denominator of the exponents of X may
differ for each an(X). We also see that the order of each an(X) may differ. And since there are infinitely
many coefficients an(X), there may not be a shared maximum for the order of each an(X). We therefore
see that the elements in Q(((X−1)∗))(((Y −1)∗)) can be quite complex. We can ask ourselves if the roots
in Q(((X−1)∗))(((Y −1)∗)) of polynomials in Z[X,Y ][Z] can be written in a more easy way. This question
will be dealt with in this subsection.

First of all we show that these roots can not necessarily be written in the nice way mentioned in the
following Remark, where we provide a counterexample.

Remark 8.7. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial in
Z over Z[X,Y ]. Let f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)) be a root of F . We can not generally write f as

f(X,Y ) =

∞∑
n=−m

∞∑
l=−p

an,lX
−l/qY −n/e, (8.2)

for some m, p ∈ Z, e, q ∈ N and with an,l ∈ Q.

Example 8.8. We prove the above statement by looking at the example F (X,Y, Z) := (Y −X)Z − Y .
Since the Z-degree of F is 1, there is only one root f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)). We see that this
root must be

f(X,Y ) =
Y

Y −X =
1

1− X
Y

.

We substitute W = X/Y in the identity (1−W )−1 = 1 +W +W 2 + . . . and find

f(X,Y ) =
1

1− X
Y

= 1 +XY −1 +X2Y −2 + . . . .

We see that f can’t be written as in (8.2), because there exists no upper boundary p/q on the exponent of
X for the terms of f(X,Y ).

Sometimes however, we can write the roots as in (8.2), as can be seen by the following example

Example 8.9. Let F (X,Y, Z) := (XY − 1)Z −XY . Since the Z-degree of F is 1, there is only one root
f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)). We see that this root must be

f(X,Y ) =
XY

XY − 1
=

1

1− 1
XY

.

We substitute W = 1/(XY ) in the identity (1−W )−1 = 1 +W +W 2 + . . . and find

f(X,Y ) =
1

1− 1
XY

= 1 +X−1Y −1 +X−2Y −2 + . . . .

So we can write f as in (8.2), with e = q = 1, m = p = 0 and where an,l = 1 exactly when n = l and
an,l = 0 otherwise.

We do know however that all terms of any root in Q(((X−1)∗))(((Y −1)∗)) of a polynomial in Z[X,Y, Z]
have a common denominator in the exponent of X. The proof is given below.
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Lemma 8.10. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial in
Z over Z[X,Y ]. Let f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)) be a root of F . Then we also have

f(X,Y ) ∈ Q((X−1/q))((Y −1/e)),

for some e, q ∈ N.

Proof. By the definition of formal Puiseux series we immediately have f(X,Y ) ∈ Q(((X−1)∗))((Y −1/e))
for some e ∈ N. We can write

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e

for some m ∈ Z and with an(X) ∈ Q(((X−1)∗)). Take the field k = Q(X−1). Then we have F ∈ k[Y,Z],
where F is of positive Z-degree. Since k is a subfield of the algebraically closed field Q(((X−1)∗)), there
must exist k ⊂ Q(((X−1)∗)) such that k is an algebraic closure of k. By Lemma 4.65, there then exists
a subfield l ⊂ k ⊂ Q(((X−1)∗)) that is a finite field extension of k such that l contains all coefficients
an(X). Since any finite field extension of characteristic zero is also a simple field, there exists α ∈ l such
that l = k(α). Since α ∈ Q(((X−1)∗)), we also have α ∈ Q((X−1/q)) for some q ∈ N. This combined
with k ⊂ Q((X−1/q)) gives l = k(α) ⊂ Q((X−1/q)). In particular all an(X) lie in Q((X−1/q)), which
shows that indeed f(X,Y ) ∈ Q((X−1/q))((Y −1/e)) holds.

We can find an even smaller field that contains f(X,Y ); We may replace Q by an algebraic number
field.

Lemma 8.11. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial in
Z over Z[X,Y ]. Let f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)) be a root of F . Then we also have

f(X,Y ) ∈ h((X−1/q))((Y −1/e)),

for some e, q ∈ N and some algebraic number field h ⊂ Q.

Proof. We adopt all notation in the proof of the previous lemma. Since k(α) is a finite field extension
over k = Q(X−1), α must be algebraic over k. Let s = [k(α) : k] be the degree of this field extension.
Then there exists a nonzero polynomial

g(X,Y ) = g0(X) + g1(X)Y + . . .+ gs(X)Y s ∈ Q(X−1)[Y ]

such that g(X,α(X)) = 0 in Q((X−1/q)). Since Q(X−1) is a fraction field of Z[X], we can multiply
g with the common denominator d(X) of g0(X), . . . , gs(X) to get g′(X,Y ) := d(X)g(X,Y ) ∈ Z[X,Y ].
This gives

g′(X,α(X)) = d(X)g(X,α(X)) = d(X) · 0 = 0.

So α(X) is a Puiseux expansion at infinity of g′. By Corollary 4.66 we see that α(X) ∈ h((X−1/q))
for some algebraic number field h. Since k ⊂ h((X−1/q)) holds, we also have l = k(α) ⊂ h((X−1/q)).
In particular all an(X) lie in h((X−1/q)), which shows that f(X,Y ) ∈ h((X−1/q))((Y −1/e)) indeed
holds.

Let F (X,Y, Z) ∈ Z[X,Y, Z] be a polynomial of positive Z-degree and let

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e ∈ Q(((X−1)∗))(((Y −1)∗))

be any of its roots. If F is as in Example 8.8 we can take e = 1, m = 0 and an(X) = Xn for
all n ∈ N0. This example shows us that there does not necessarily exist a maximum on the order
of the elements a−m(X), a−m+1(X), . . . ∈ Q(((X−1)∗)). We do however notice in this example that
ordXan(X) = ordXX

n = n for all n ∈ N0, so the order of an(X) grows linear with respect to n. We will
show for the general case that the order of an(X) does not grow faster with respect to n than in a linear
way. For this we first need the following lemma.
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Lemma 8.12. Let F ∈ Z[X,Y, Z]. Write F as

F (X,Y, Z) =

d1∑
i=0

d2∑
j=0

d3∑
k=0

ci,j,kX
iY jZk,

for some d1, d2, d3 ∈ N0 and with ci,j,k ∈ Z. Let p ∈ Z, e,N ∈ N and a−m, a−m+1, . . . , aN ∈ Q(((X−1)∗)).
Let cN be the coefficient of Y p/e−(N+1)/e in F (X,Y,

∑N
n=−m an(X)Y −n/e), when it is viewed as a formal

Puiseux series at infinity in Y over the field Q(((X−1)∗)). Let b ∈ R. Suppose that

i+

k∑
t=1

ordXant ≤ b

holds for any i, j, k ∈ N0 such that i ≤ d1, j ≤ d2, k ≤ d3 and for any n1, . . . , nk ∈ {−m,−m+ 1, . . . , N}
such that j +

∑k
t=1−nt/e = p/e− (N + 1)/e. Then we have that ordXcN ≤ b.

Proof. For this we will use Lemma 4.58 repeatedly. Consider

F (X,Y,

N∑
n=−m

anY
−n/e) =

d1∑
i=0

d2∑
j=0

d3∑
k=0

ci,j,kX
iY j(

N∑
n=−m

anY
−n/e)k.

We can also write this as finite sum of terms that are of the form

ci,j,kX
iY j

k∏
t=1

antY
−nt/e

with i, j, k ∈ N0 such that i ≤ d1, j ≤ d2, k ≤ d3 and such that ci,j,k 6= 0 and with n1, . . . , nk ∈
{−m,−m + 1, . . . , N}. Note that these terms are monomials when viewed as formal Puiseux series at
infinity in Y over the field Q(((X−1)∗)). We see that the exponent of Y in such terms are of the form
j
∑k
t=1−nt/e. So cN is the sum of terms that are of the form

ci,j,kX
i
k∏
t=1

ant

with i, j, k ∈ N0 such that i ≤ d1, j ≤ d2, k ≤ d3 and such that ci,j,k 6= 0 and with n1, . . . , nk ∈
{−m,−m+ 1, . . . , N} such that j +

∑k
t=1−nt/e = p/e− (N + 1)/e. Any such term satisfies

ordX

(
ci,j,kX

i
k∏
t=1

ant

)
= ordX(ci,j,k) + i+

k∑
t=1

ordXant = i+

k∑
t=1

ordXant ≤ b.

So therefore we also have ordXcN ≤ b.

Lemma 8.13. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial in
Z over Z[X,Y ]. Let f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)) be a root of F . Write f as

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e

for some m ∈ Z, e ∈ N and with an = an(X) ∈ Q(((X−1)∗)). Then there exists γ ∈ R and δ ∈ R≥0 such
that ordXan ≤ γ + nδ for all n ∈ {−m,−m+ 1, . . .}.

Proof. We can write

F (X,Y, Z) =

d1∑
i=0

d2∑
j=0

d3∑
k=0

ci,j,kX
iY jZk,

for some d1, d2, d3 ∈ N0 and with ci,j,k ∈ Z. We can use Lemma 4.63. This shows the existence of N ′ ∈ N
and p ∈ Z such that for all N ∈ N with N > N ′, we have that aN+1 = −cN/d, where d ∈ Q(((X−1)∗))
is nonzero and independent on N , and where cN ∈ Q(((X−1)∗)) is the coefficient of Y p/e−(N+1)/e in
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F (X,Y,
∑N
n=−m an(X)Y −n/e), when it is viewed as a formal Puiseux series at infinity in Y over the field

Q(((X−1)∗)). Let
A := max(N ′, d2e− p+ 1 + (d3 − 1)|m|) ∈ N.

Since a−m, a−m+1, . . . , aA ∈ Q(((X−1)∗)) are only finitely many elements, there exists M ∈ N0 such that
ordXan ≤M for all n ∈ {−m,−m+ 1, . . . , A}. Now let

δ := max(1, d1 + d3M − ordXd) ∈ N0.

This gives us the inequality d1 + d3M ≤ δ + ordXd. Let N ∈ N be such that N ≥ A. We let S(N) be
the following statement:
S(N): Let i, j, k ∈ N0 such that the inequalities i ≤ d1, j ≤ d2, k ≤ d3 all hold. Let n1, . . . , nk ∈
{−m,−m+ 1, . . . , N} such that

j +

k∑
t=1

−nt/e = p/e− (N + 1)/e. (8.3)

Then the following inequality holds:

i+

k∑
t=1

ordXant ≤ (N + 1−A)δ + ordXd. (8.4)

Note that for any N ≥ A such that S(N) holds, we can apply Lemma 8.12 to see that ordXcN ≤
(N + 1−A)δ+ ordXd holds, and therefore ordXaN+1 = ordX(cN/d) = ordXcN − ordXd ≤ (N + 1−A)δ
as well. We will prove by induction that S(N) holds for all N ≥ A. Suppose first that N = A. Then let
i, j, k ∈ N0 such that i ≤ d1, j ≤ d2 and such that k ≤ d3 and let n1, . . . , nk ∈ {−m,−m + 1, . . . , N}.
We then have

i+

k∑
t=1

ordXant ≤ d1 +

k∑
t=1

ordXM = d1 + kM ≤ d1 + d3M ≤ δ + ordXd = (N + 1−A)δ + ordXd.

So (8.4) holds in particular and the statement S(A) is therefore true. Now suppose that N ≥ A+ 1 and
as our induction hypothesis assume that the statement S(N) holds for all N ∈ N with A ≤ N < N . This
then implies that ordXan ≤ (n − A)δ for all n ∈ {A + 1, . . . , N}. We again let i, j, k ∈ N0 be such that
i ≤ d1, j ≤ d2 and such that k ≤ d3 hold and again let n1, . . . , nk ∈ {−m,−m+ 1, . . . , N} be such that
(8.3) holds. Note that because of symmetry we may assume that n1 ≤ . . . ≤ nk. Define n0 = −∞ and
nk+1 =∞. Let t′ ∈ {0, . . . , k} be such that we have

n0 ≤ . . . ≤ nt′ ≤ A < A+ 1 ≤ nt′+1 ≤ . . . ≤ nk+1.

We then find

i+

k∑
t=1

ordXant ≤ d1 +

t′∑
t=1

ordXant +

k∑
t=t′+1

ordXant

≤ d1 +

t′∑
t=1

M +

k∑
t=t′+1

(nt −A)δ

= d1 + t′M +

( k∑
t=t′+1

nt − (k − t′)A
)
δ

≤ d1 + d3M +

( k∑
t=t′+1

nt − (k − t′)A
)
δ

≤
( k∑
t=t′+1

nt − (k − t′)A+ 1

)
δ + ordXd.
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If we now can prove
k∑

t=t′+1

nt − (k − t′)A+ 1 ≤ N + 1−A,

then we have indeed found that (8.4) holds. To prove this, we consider three cases. First suppose that
t′ = k. This gives

k∑
t=t′+1

nt − (k − t′)A+ 1 = 1 ≤ N + 1−A.

Now suppose that t′ = k − 1. This gives

k∑
t=t′+1

nt − (k − t′)A+ 1 = nk −A+ 1 ≤ N + 1−A.

Now suppose that t′ ≤ k − 2. We rewrite (8.3) to

k∑
t=1

nt = je− p+N + 1

We then have

k∑
t=t′+1

nt − (k − t′)A+ 1 = je− p+N + 1−
t′∑
t=1

nt − δ(k − t′)A+ 1

≤ d2e− p+N + 1−
t′∑
t=1

−m− 2A+ 1

≤ d2e− p+N + 1 + t′m− 2A+ 1

≤ d2e− p+N + 1 + (k − 1)|m| − 2A+ 1

≤ d2e− p+N + 1 + (d3 − 1)|m| − 2A+ 1

≤ N −A+ 1

= N + 1−A.

So all three case result in (8.4). This shows that the statement S(N) holds. By induction we have now
found that ordXan ≤ (n−A)δ for all n ∈ N with n ≥ A+ 1. Now let

γ := max(0, ordXa−m − (−m)δ, ordXa−m+1 − (−m+ 1)δ, . . . , ordXaA − (A)δ).

This then gives
ordXan ≤ γ + nδ

for all n ∈ {−m,−m+ 1, . . .}.

8.3 Notion of convergence

Now that we are familiar with the form of any root f(X,Y ) of a nonconstant polynomial in Z over
Z[X,Y ], we will focus on the notion of convergence of such a root f(X,Y ). We want to know if there
exists R ∈ R such that f(x, y) converges in C for all x, y ∈ C with |x|, |y| > R. This is not always the
case. Let us again look at our example

f(X,Y ) =
1

1− X
Y

= 1 +XY −1 +X2Y −2 + . . . ,

which is the root of the polynomial F (X,Y, Z) := (Y − X)Z − Y . Since the series 1 + w + w2 + . . .
converges only for all w ∈ C with |w| < 1, we see that f(x, y) converges only for all x, y ∈ C
with |x/y| < 1, or in other words, when |x| < |y|. So f(x, y) does not converge when |x| is bigger
than |y|. We can however say something useful about convergence. First of all we have by Corol-
lary 4.49 that Q({X∗}) is an algebraically closed subfield of Q((X∗)). In the same way we have that
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Q({(X−1)∗}) is an algebraically closed subfield of Q(((X−1)∗)). So by Newton-Puiseux’s Theorem 4.17
we have that Q({(X−1)∗})(((Y −1)∗)) is an algebraically closed subfield of Q(((X−1)∗))(((Y −1)∗)). Since
Q({(X−1)∗})(((Y −1)∗)) includes Z[X,Y, Z], we see that for any nonzero F (X,Y, Z) ∈ Z[X,Y, Z] and any
of its roots f(X,Y ) ∈ Q(((X−1)∗))(((Y −1)∗)), that f(X,Y ) also lies in Q({(X−1)∗})(((Y −1)∗)). So if
we write

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e

for some m ∈ Z and with an(X) ∈ Q({(X−1)∗}), we see that an(X) is a convergent Puiseux series at
infinity for all n ∈ {−m,−m+ 1, . . .}. So for each such n, there exists Rn ∈ R such that an(x) converges
in C for any x ∈ C with |x| > Rn. We want to know whether we also may assume that Rn is independent
on n. This is not trivial if R = maxn∈{−m,−m+1,...}(Rn) does not exist as real number. Fortunately, this
is indeed the case, as the following lemma shows.

Lemma 8.14. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial in
Z over Z[X,Y ]. Let f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be a root of F . Write f as

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e

for some m ∈ Z, e ∈ N and with an(X) ∈ Q({(X−1)∗}). Then there exists R ∈ R such that an(x)
converges in C for all n ∈ {−m,−m+ 1, . . .} and for all x ∈ C with |x| > R.

Proof. We may assume F to be irreducible in Z[X,Y, Z], since its root f(X,Y ) must also be the root of
one of the irreducible factors of F . Since F is irreducible in Z[X,Y, Z], it is also irreducible in Q(X)[Y,Z]
by Gauss’s Lemma. let k = Q(X) and take the algebraic closure k of k that is included in the algebraically
closed field Q({(X−1)∗}). We make use of Lemma 4.63. This shows the existence of N ′ ∈ N such that for
all N ∈ N with N > N ′, we have that aN+1 = −cN/d, where d ∈ Q({(X−1)∗}) is independent on N and
where cN ∈ Q({(X−1)∗}) is one of the coefficients in F (X,Y,

∑N
n=−m an(X)Y −n/e), when it is viewed as

formal Puiseux series at infinity in Y over the field Q({(X−1)∗}). Since a−m(X), am−1(X), . . . , aN′(X)
and d−1(X) ∈ Q({(X−1)∗}) are finitely many convergent Puiseux series at infinity, there exists R ∈ R
such that a−m(x), am−1(x), . . . , aN′(x) and d−1(x) converge (in C) for all x ∈ C with |x| > R. We now
want to prove that for all N ∈ N with N > N ′ it also holds that aN (x) converges for all x ∈ C with
|x| > R. We do this by induction on N . Suppose that a−m(x), am−1(x), . . . , aN (x) converge for all
x ∈ C with |x| > R. We have aN+1(X) = cN (X) · d−1(X), where cN (X) is one of the coefficients in
F (X,Y,

∑N
n=−m an(X)Y −n/e), when it is viewed as formal Puiseux series at infinity in Y over the field

Q({(X−1)∗}). This shows that cN (X) lies in the ring Z[X, a−m(X), am−1(X), . . . , aN (X)]. So cN (X) is
the finite sum of products whose factors lie in Z[X] ∪ {a−m(X), am−1(X), . . . , aN (X)}. This shows that
cN (x) converges for all x ∈ C with |x| > R. Since the same hold for d−1(x), we see that aN+1(x) also
converges for all x ∈ C with |x| > R. So by induction we see that an(x) indeed converges in C for all
n ∈ {−m,−m+ 1, . . .} and for all x ∈ C with |x| > R.

If a root f(X,Y ) can be written as (8.2), we suspect that there does exist R ∈ R such that f(x, y)
converges. This is the following conjecture.

Conjecture 8.15. Let F ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a polynomial
in Z over Z[X,Y ]. Let f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be a root of F . Suppose that we can write f
as

f(X,Y ) =

∞∑
n=−m

∞∑
l=−p

an,lX
−l/qY −n/e, (8.5)

for some m, p ∈ Z, e, q ∈ N and with an,l ∈ Q. Then we suspect that there exists R ∈ R such that f(x, y)
converges in C for all x, y ∈ C with |x| > R and |y| > R.

The reason behind this conjecture is as follows: By Lemma 8.14 we see that there exists R1 ∈ R such
that

∑∞
l=−p an,lx

−l/q converges in C for all n ∈ {−m,−m+ 1, . . .} and for all x ∈ C with |x| > R1. For
such x and n we then have

∞∑
l=−p

|an,lx−l/q| <∞.
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By reversing the summands of (8.5), we get

f(X,Y ) =

∞∑
l=−p

∞∑
n=−m

an,lY
−n/eX−l/q,

which shows that f(X,Y ) ∈ Q(((Y −1)∗))(((X−1)∗)). Since Q({(Y −1)∗})(((X−1)∗)) is an algebraically
closed subfield of Q(((Y −1)∗))(((X−1)∗)) and since F ∈ Q({(Y −1)∗})(((X−1)∗))[Z], we find that f(X,Y )
also lies in Q({(Y −1)∗})(((X−1)∗)). We use Lemma 8.14 again and findR2 ∈ R such that

∑∞
n=−m an,ly

−n/e

converges in C for all l ∈ {−p,−p+ 1, . . .} and y ∈ C with |y| > R2. For such y and l we then have

∞∑
n=−m

|an,ly−n/e| <∞. (8.6)

Let x0 ∈ C satisfy |x0| > R1. Then we have

f(x0, Y ) =

∞∑
n=−m

( ∞∑
l=−p

an,lx
−l/q
0

)
Y −n/e ∈ C((Y −1/e))

and F (x0, Y, f(x0, Y )) = 0. So f(x0, Y ) is a root of the polynomial F (x0, Y, Z). Because C is complete,
we find by Lemma 4.50 that f(x0, Y ) ∈ C({Y −n/e}). By Lemma 4.56 there then exists R3 ∈ R such that

f(x0, y) =

∞∑
n=−m

( ∞∑
l=−p

an,lx
−l/q
0

)
y−n/e

converges in C for all y ∈ C with |y| > R3. For such y we thus have

∞∑
n=−m

|
( ∞∑
l=−p

an,lx
−l/q
0

)
y−n/e| <∞. (8.7)

This combined with (8.6) and (8.7) makes us suspect that there exists R > max(R1, R2, R3) such that

∞∑
n=−m

∞∑
l=−p

|an,lx−l/qy−n/e| <∞

for all x ∈ C and y ∈ C with |x| > R and |y| > R. If we assume that Conjecture 8.15 holds, we get the
following consequence:

Lemma 8.16. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a
polynomial in Z over Z[X,Y ]. Let f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be a root of F . Write f as

f(X,Y ) =

∞∑
n=−m

an(X)Y −n/e

for some m ∈ Z, e ∈ N and with an(X) ∈ Q({(X−1)∗}). Assume that Conjecture 8.15 holds. Then there
exists λ,R ∈ R such that f(x, y) converges in C for all x, y ∈ C with |x| > R and |y| ≥ |x|λ.

Proof. Lemma 8.10 tells us that there exists q ∈ N such that an(X) ∈ Q((X−1/q)) for all n ∈ {−m,−m+
1, . . .}. Lemma 8.13 tells us that there exists γ ∈ R and δ ∈ R≥0 such that ordXan ≤ γ + nδ for all
n ∈ {−m,−m+ 1, . . .}. Combined, this shows for each n that we can write an(X) as

an(X) =

∞∑
l=−(γ+nδ)q

an,lX
−l/q,

with an,l ∈ Q. So we can write f as

f(X,Y ) =

∞∑
n=−m

∞∑
l=−(γ+nδ)q

an,lX
−l/qY −n/e.
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If δ = 0, we have written f as in (8.5) with p = γq and we can then use Conjecture 8.15 to see that
there exists R ∈ R such that f(x, y) converges in C for all x, y ∈ C with |x| > R and |y| > R. We can
take λ = 1 and get the desired result. Now suppose that δ > 0. We apply the substitutions l′ = l+ nδq,
a′n,l′ = an,l and Y ′ = Y X−eδ. This gives us

f ′(X,Y ′) := f(X,Y ′Xeδ)

=

∞∑
n=−m

∞∑
l′=−γq

a′n,l′X
−(l′−nδq)/q(Y ′Xeδ)−n/e

=

∞∑
n=−m

∞∑
l′=−γq

a′n,l′X
−l′/qY ′−n/e.

From F (X,Y, f(X,Y )) = 0 in Q((X−1/q))((Y −1/e)), it follows that F (X,Y ′Xeδ, f(X,Y ′Xeδ)) = 0 in
Q((X−1/q))((Y ′−1/e)). So f ′(X,Y ′) is a root of the polynomial F ′(X,Y ′, Z) := F (X,Y ′Xeδ, Z) ∈
Z[X,Y ′, Z]. Note that F ′ is of positive Z-degree. So f ′(X,Y ′) ∈ Q({(X−1)∗})(((Y ′−1)∗)). We have
written f ′ as in (8.5) with p = γq and we can therefore apply Conjecture 8.15 to see that there exists
R ∈ R such that f ′(x, y′) = f(x, y′xeδ) converges in C for all x, y′ ∈ C with |x| > R and |y′| > R. We
may assume R ≥ 0. Now let λ = eδ + 1. Let x, y ∈ C with |x| > R and |y| ≥ |x|λ = |x|eδ+1. This means
that we have |yx−eδ| = |y| · |x|−eδ ≥ |x| ≥ R. Since yx−eδ ∈ C, we have that f ′(x, yx−eδ) = f(x, y)
converges, which was we wanted to prove.

We require another generalization of Newton dots

Definition 8.17. Let f(X,Y ) ∈ C((X−1/q))((Y −1/e)) for some e, q ∈ N. We can write f as

f(X,Y ) =

∞∑
n=−m

∞∑
l=−pn

ω−l/q,−m/eX
−l/qY −m/e

with n ∈ Z, pn ∈ Z and with ω−l/q,−m/e ∈ C. We take ωi,j := 0 for all i, j ∈ Q where ωi,j has not been
defined yet. We then define

D(f(X,Y )) := {(i, j) ∈ Z2 | ωi,j 6= 0}
to be the set of Newton dots of f , when we view f as an expression in two variables.

Remark 8.18. We can now write f(X,Y ) from previous definition as

f(X,Y ) =
∑

(i,j)∈D(f(X,Y ))

ωi,jX
iY j .

8.4 Generalization of Runge’s Theorem

We will now try to generalize Runge’s Theorem. We saw that the proof of Runge’s Theorem 6.1 greatly
depended on Theorem 6.9. It therefore seems logical to try to generalize this theorem. The next theorem
will do this by trying to replace Z from Theorem 6.9 by Z[X] and view f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗))
as Puiseux series in Y over Q. Because this theorem almost treats X as a constant, we will see that this
theorem can only say something about the integral solutions x, y, z ∈ Z where |x| is very small compared
to |y| and |z|. Note that this theorem requires an assumption that becomes redundant by Lemma 8.16
if we assume that Conjecture 8.15 holds.

Theorem 8.19. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a
polynomial in Z over Z[X,Y ]. Let f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be a nonzero root of F . Let
K ⊂ Q({(X−1)∗}) be a finite field extension over Q(X−1) of degree s := [K : Q(X−1)] such that
f(X,Y ) ∈ K(((Y −1)∗)). Write f as in (4.8). So

f(X,Y ) =

∞∑
n=−m

anY
−n/e,

with m ∈ Z, e ∈ N, and where all coefficients an lie in K such that a−m 6= 0. Suppose that there exists
µ′, R′ ∈ R such that f(x, y) converges in C for all x, y ∈ C with |x| > R′ and |y| ≥ |x|µ

′
. Then there

exists nonzero P (X,Y, Z) ∈ Z[X,Y, Z] and µ,R ∈ R such that the following properties holds
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• degZ P ≤ se.
• If x, y ∈ C with |x| > R and |y| ≥ |x|µ, then f(x, y) converges in C.

• If x, y ∈ Z with |x| > R and |y| ≥ |x|µ, and if f(x, y) ∈ Z, then P (x, y, f(x, y)) = 0.

• If the set {(x, y) ∈ Z2 | |x| > R, |y| > |x|µ, f(x, y) ∈ Z} is Zariski-dense in C2, then we have
P (X,Y, f(X,Y )) = 0 in K((Y −1/e)).

• When viewed as a polynomial in Y and Z, Pλ is a monomial for every λ ∈ R>0 such that λ 6= m/e.

• If λ = m/e > 0, then Pλ is an element in Z[X] times a power of Y times a power of an irreducible
polynomial in Z[X,Y, Z].

Proof. This proof is very similar to the proof of Theorem 6.9.

Let M ∈ N0 be the cardinality of the set

B := {(j, k) ∈ Z2 | 1 ≤ k < se,−km/e ≤ j < 0}. (8.8)

Let N ∈ N satisfy
N ≥Me+ (se− 1)m.

Since K is a finite field extension over Q(X−1), there exists a monic irreducible polynomial G(Y ) ∈
Q(X−1)[Y ] of degree s which has a root θ1 ∈ K that generates K. So K = Q(X−1)(θ1). Let L be the
splitting field of G(Y ) over K. So there exists θ2, . . . , θs ∈ L such that G(Y ) = (Y − θ1) · · · (Y − θs) in
L[Y ]. Any c ∈ K can uniquely be written as c0 + c1θ1 + . . .+ cs−1θ

s−1
1 with c0, . . . , cs−1 ∈ Q(X−1). We

denote the polynomial c0 + c1W + . . .+ cs−1W
s−1 ∈ Q(X−1)[W ] by gc(W ). For σ ∈ {1, . . . , s}, we call

c(σ) := gc(θσ) = c0+c1θσ+. . .+cs−1θ
s−1
σ ∈ L the σ-th conjugate of c in K. In particular we have c(1) = c.

Let ζ ∈ C be a primitive e-th root of unity. This means that ζe = 1 and that the elements ζ0, . . . , ζe−1

are all different solutions to Ze = 1. It follows that the polynomial Ze−Y −1 in Z over Q[Y, Y −1] factorizes
over the field extension Q(ζ)(Y −1/e) as Ze−Y −1 = (Z−ζ0Y −1/e) · · · (Z−ζe−1Y −1/e). Notice that Y −1

is a unit in Q[Y, Y −1]. We now consider the following Laurent polynomial

Z −
N∑

n=−m

gan(W )V n ∈ Q(X−1)[Y, Y −1][Z][W ][V, V −1].

By Corollary 5.12 we find that

e−1∏
E=0

(
Z −

N∑
n=−m

gan(W )(ζEY −1/e)n
)
∈ Q(X−1)[Y, Y −1][Z][W ].

By Corollary 5.11 we find that

s∏
σ=1

e−1∏
E=0

(
Z −

N∑
n=−m

gan(θσ)(ζEY −1/e)n
)
∈ Q(X−1)[Y, Y −1][Z].

We thus find for each β = 0, . . . ,M that

F (X,Y, Z;β) := Y β
s∏

σ=1

e−1∏
E=0

(
Z −

N∑
n=−m

a(σ)n (ζEY −1/e)n
)
∈ Q(X−1)[Y, Y −1][Z]. (8.9)

We view F (X,Y, Z;β) as a Laurent polynomial in Y and Z over the field Q(X−1) and write F (X,Y, Z;β) =∑
(j,k)∈D(F (X,Y,Z;β)) bβ,j,kY

jZk with bβ,j,k ∈ Q(X−1), we see from (8.9) that any (j, k) ∈ D(F (X,Y, Z;β))

satisfies 0 ≤ k ≤ se and j ∈ Z. The terms bβ,j,kY
jZk of F (X,Y, Z;β) can thus be divided into the fol-

lowing three categories.

• Terms bβ,j,kY
jZk with j ≥ 0.

• Terms bβ,j,kY
jZk with j < 0 and j + km/e ≤ −1/e.

• Terms bβ,j,kY
jZk with j < 0 and j + km/e ≥ 0.
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Note that the terms in the first category lie in Q(X−1)[Y,Z] and that the terms in the second category
satisfy ordY (bβ,j,kY

j(f(X,Y ))k) ≤ −1/e. The terms in the third category satisfy k 6= 0, as otherwise
j + km/e = j ≥ 0 would contradict j < 0. They also satify k 6= se, as it would otherwise follow from
(8.9) that j = β ≥ 0, which again would contradict j < 0. We can conclude that the terms in the third
category satisfy (j, k) ∈ B as defined in (8.8). It can be seen that the terms in the first and second
category do not satisfy (j, k) ∈ B. We can add terms of the same category together and get

F (X,Y, Z;β) = P (X,Y, Z;β) + S(X,Y, Z;β) +
∑

(j,k)∈B

bβ,j,kY
jZk,

with P (X,Y, Z;β) ∈ Q(X−1)[Y,Z] and S(X,Y, Z;β) ∈ Q(X−1)[Y, Y −1][Z] with ordY (Sβ(X,Y, f(X,Y )) ≤
−1/e. We want to find c0, . . . , cM ∈ Q(X−1), not all zero, such that

∑M
β=0 cβbβ,j,k = 0 for all (j, k) ∈ B.

This is a system of |B| = M linear equations in M + 1 variables over the field Q(X−1). It therefore in-
deed has a solution. We may scale these c0, . . . , cM by multiplying with any nonzero element in Q(X−1)
and still find a suitable solution. We scale our solution such that c1, . . . , cM ∈ Z[X] and such that
cβ · P (X,Y, Z;β) ∈ Z[X,Y, Z] for all β ∈ {0, . . . ,M}. This is possible since Q(X−1) is a fraction field of
Z[X]. This gives us

M∑
β=0

cβF (X,Y, Z;β) =

M∑
β=0

cβP (X,Y, Z;β) +

M∑
β=0

cβS(X,Y, Z;β),

hence

P = P (X,Y, Z) :=

M∑
β=0

cβP (X,Y, Z;β) =

M∑
β=0

cβF (X,Y, Z;β)−
M∑
β=0

cβS(X,Y, Z;β) ∈ Z[X,Y, Z].

Note that it can be seen from this definition that degZ P ≤ se holds. We are interested in the order
of P (X,Y, f(X,Y )) ∈ K(((Y −1)∗)) when viewed as a formal Puiseux series at infinity in Y . First note
that

f(X,Y )−
N∑

n=−m

a(σ)n (ζEY −1/e)n ∈ C(((X−1)∗))((Y −1/e))

holds for any E ∈ {0, . . . , e− 1} and σ ∈ {1, . . . , s}. We see that

ordY

(
f(X,Y )−

N∑
n=−m

a(σ)n (ζEY −1/e)n
)
≤ max

(
ordY f(X,Y ), ordY

( N∑
n=−m

a(σ)n (ζEY −1/e)n
))

= max(m/e,m/e)

= m/e.

In the case where E = 0 and σ = 1 we find

ordY

(
f(X,Y )−

N∑
n=−m

a(1)n (ζ0Y −1/e)n
)

= ordY

( ∞∑
n=N+1

anY
−n/e

)
≤ −(N + 1)/e.

Together this gives us

ordY (Fβ(X,Y, f(X,Y ))) ≤ β + (se− 1)m/e− (N + 1)/e ≤M + (se− 1)m/e−N/e− 1/e ≤ −1/e.

And we therefore have

ordY (P (X,Y, f(X,Y ))) = ordY

( M∑
β=0

cβFβ(X,Y, f(X,Y ))−
M∑
β=0

cβSβ(X,Y, f(X,Y ))

)
≤ max

β
(ordY (Fβ(X,Y, f(X,Y ))), ordY (Sβ(X,Y, f(X,Y ))))

≤ max
β

(−1/e,−1/e)

= −1/e.

(8.10)
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There exists µ′, R′ ∈ R such that f(x, y) converges in C for all x, y ∈ C with |x| > R′ and |y| ≥ |x|µ
′
.

Since P (X,Y, Z) ∈ Z[X,Y, Z], we have that P (x, y, f(x, y)) also converges for all such x, y ∈ C. We can
write

P (X,Y, f(X,Y )) =
∑

(i,j)∈D(P (X,Y,f(X,Y )))

ωi,jX
iY j

for suitable ωi,j ∈ C. We then have that ∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,jxiyj | <∞

for all x, y ∈ C with |x| > R′ and |y| ≥ |x|µ
′
. We can also write

P (X,Y, f(X,Y )) =

∞∑
n=−m′

ωn(X)Y −n/e

For suitable m′ ∈ Z and ωn(X) ∈ C((X−1/q)). From (8.10) we get m′ ≤ −1. Since f(X,Y ) is integral
over Z[X,Y ], so is P (X,Y, f(X,Y )). So there exists nonzero ϕ(X,Y, Z) ∈ Z[X,Y, Z] such that

ϕ(X,Y, P (X,Y, f(X,Y ))) = 0 ∈ Q({(X−1)∗})(((Y −1)∗)). (8.11)

We can apply Lemma 8.13 on ϕ(X,Y, Z) and P (X,Y, f(X,Y )) to find that there exists γ ∈ R and
δ ∈ R≥0 such that ordXωn ≤ γ + nδ for all n ∈ {−m′,−m′ + 1, . . .}. So any (i, j) ∈ D(P (X,Y, f(X,Y ))

satisfies qi, ej ∈ Z and i ≤ γ−jeδ and j ≤ −1/e < 0. Now let x0, y0 ∈ C with |x0| > R′ and |y0| ≥ |x0|µ
′
.

Let

A :=

(
2

∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,jxi0yj0|
)e
∈ R≥0.

Let R = max(1, |x0|, |Ay0|) ∈ R and µ = max(µ′, eδ + 1, e(δ + γ) + 1, 1) ∈ R. Let x, y ∈ C with |x| > R
and |y| > |x|µ and let (i, j) ∈ D(P (X,Y, f(X,Y )). If i < 0 we have

|x|i|y|j < |x0|i|x|jµ ≤ |x0|i|x|j < |x0|i|Ay0|j ≤ A−1/e|x0|i|y0|j .

If i ≥ 0, we have

|x|i|y|j < |x|i+jµ

≤ |x|γ−jeδ+jµ

= |x|γ+j(µ−eδ−1)+j

≤ |x|γ−(µ/e−δ−1/e)|x|j

< |x|γ−((e(δ+γ)+1)/e−δ−1/e)|Ay0|j

= |x|0|Ay0|j

≤ |x0|iA−1/e|y0|j

= A−1/e|x0|i|y0|j .

We therefore have found∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,jxiyj | =
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||x|i|y|j

<
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j |A−1/e|x0|i|y0|j

= A−1/e
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||x0|i|y0|j

= A−1/e 1

2
A1/e

=
1

2
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So this means that |P (x, y, f(x, y))| < 1
2
. If x, y and f(x, y) are all integers, we then must have

P (x, y, f(x, y)) = 0, since P (X,Y, Z) ∈ Z[X,Y, Z]. So we have found R,µ ∈ R such that P (x, y, f(x, y)) =
0 holds for any pair of integers in the set

S1 := {(x, y) ∈ Z2 | |x| > R, |y| > |x|µ, f(x, y) ∈ Z}.

Suppose that S1 is Zariski-dense in C2. We consider (8.11) again. We may assume that ϕ is irreducible
in Z[X,Y, Z]. We see that any (x, y) ∈ S1 satisfies 0 = ϕ(x, y, P (x, y, f(x, y))) = ϕ(x, y, 0). In particular
this shows that S1 ⊂ T (ϕ(X,Y, 0)) ⊂ C2. Because S1 is Zariski-dense in C2, we see by definition of
Zariski density that the Zariski-closed set T (ϕ(X,Y, 0)) must be equal to C2. So ϕ(x, y, 0) = 0 for all
(x, y) ∈ C2 and from this we see that ϕ(X,Y, 0) is the zero polynomial. So Z is a divisor of ϕ(X,Y, Z).
Since ϕ is irreducible, we therefore must have ϕ(X,Y, Z) = ±Z, and this gives

0 = ϕ(X,Y, P (X,Y, f(X,Y ))) = ±P (X,Y, f(X,Y )) ∈ K((Y −1/e)).

We will now view P (X,Y, Z) as a polynomial in Y and Z over the ring Z[X] and try to compute the
λ-leading part of P for all λ ∈ R>0. Here we have degλ P = max(j,k)∈D(P )(j + λk). For computing this
we will apply the rules from Remark 4.60. Let γ be the largest element in {0, . . . ,M} such that cγ 6= 0.
First suppose that λ > m/e. This gives(

Z −
N∑

n=−m

a(σ)n (ζEY −1/e)n
)
λ

= Z,

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. And therefore we have

F (X,Y, Z;β)λ = (Y β)λ

s∏
σ=1

e−1∏
E=0

(
Z −

N∑
n=−m

a(σ)n (ζEY −1/e)n
)
λ

= Y βZse.

So Y βZse ∈ Z[X,Y, Z] is the term of Fβ that is of the highest λ-degree. This gives us

P (X,Y, Z;β)λ = Y βZse,

and therefore we see that

Pλ =

( M∑
β=0

cβP (X,Y, Z;β)

)
λ

= cγP (X,Y, Z; γ)λ = cγY
γZse,

which indeed is a monomial when viewed as a polynomial in Y and Z. Note that this additionally shows
that P is nonzero since its λ-leading part is nonzero.

Now suppose that λ < m/e, from which can deduce that m > 0. This gives(
Z −

N∑
n=−m

a(σ)n (ζEY −1/e)n
)
λ

= −a(σ)−m(ζEY −1/e)−m).

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. And therefore we have

F (X,Y, Z;β)λ = (Y β)λ

s∏
σ=1

e−1∏
E=0

(
Z −

N∑
n=−m

a(σ)n (ζEY −1/e)n
)
λ

= Y β
s∏

σ=1

e−1∏
E=0

−a(σ)−m(ζEY −1/e)−m

= Y β
s∏

σ=1

±(a
(σ)
−m)eY m

= dβY
β+ms,

for some nonzero dβ ∈ Q(X−1). We find in a similar way as previous case

P (X,Y, Z;β)λ = dβY
β+ms,
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and therefore we see that

Pλ =

( M∑
β=0

cβP (X,Y, Z;β)

)
λ

= cγdγY
γ+ms,

which is also a monomial.
Now suppose that λ = m/e, from which can deduce that m > 0. This gives(

Z −
N∑

n=−m

a(σ)n (ζEY −1/e)n
)
λ

= Z − a(σ)−m(ζEY −1/e)−m.

for any σ ∈ {1, . . . , s} and E ∈ {0, . . . , e− 1}. So

Pλ = cγY
γ

s∏
σ=1

e−1∏
E=0

(Z − a(σ)−m(ζEY −1/e)−m) ∈ Q(X−1)[Y, Y −1][Z] ⊂ Q(X−1)(Y )[Z].

Let m1, e1 ∈ N be such that gcd(m1, e1) = 1 and m/e = m1/e1. Let h(X,Z) ∈ Z[X,Z] be the minimum
polynomial of a−m

e1 , when viewed as a polynomial in Z over Z[X]. So h(X,Z) is irreducible in Z[X,Z]
and contains Z = a−m

e1 as a root. Let b(X) ∈ Z[X] be the leading coefficient of h and s1 the Z-degree
of h. Since h is irreducible, we have by Lemma 6.8 that

G(X,Y, Z) := Y m1s1h(X,Ze1Y −m1) ∈ Z[X,Y, Z]

is irreducible in Z[X,Y, Z], and therefore also irreducible in Q(X)(Y )[Z]. For any σ ∈ {1, . . . , s} and
E ∈ {0, . . . , e− 1} we have

G(X,Y, a−m
(σ)(ζEY −1/e)−m) = Y m1s1h(X, (a−m

(σ)(ζEY −1/e)−m)e1Y −m1)

= Y m1s1h(X, (a−m
(σ))e1ζ−me1EY me1/e−m1)

= Y m1s1h(X, (a−m
e1)(σ)ζ−m1eE )

= Y m1s1h(X, (a−m
e1)(σ)(ζe)−m1E )

= Y m1s1h(X, (a−m
e1)(σ))

= Y m1s1h(X, a−m
e1)(σ)

= Y m1s10(σ)

= 0

Since all roots of Pλ, when viewed as a polynomial in Z, are roots of the irreducible polynomial
G, we conclude that Pλ has no irreducible factors in Q(X)(Y )[Z] besides G. Since G is of Z-degree
s1e1 and Pλ of Z-degree se, it must follow that s1e1 divides se and that Pλ = cGse/(s1e1) for some
c ∈ Q(X)(Y ). By looking at the leading coefficient of Pλ and G when viewed as polynomials in Z, we
see that c = cγY

γb−se/(s1e1). So Pλ is cγb
−se/(s1e1) times a power of Y times a power of an irreducible

polynomial in Z[X,Y, Z]. From and Pλ ∈ Z[X,Y, Z] we conclude that Pλ is an nonzero element in Z[X]
times a power of Y times a power of an irreducible polynomial in Z[X,Y, Z]. This finishes our proof.

The proof of Runge’s Theorem at some point switched the roles of the two variables and applied
Theorem 6.9 again. Here we want to switch the roles of Y and Z. In order to still fully apply Theorem
8.19 after switching the roles of Y and Z, we need to know for any (x, y, z) ∈ S(F ) that if |x| is very
small compared to |y|, that |x| is then also very small compared to |z|. For this we prove the following
lemmas.

Lemma 8.20. Let F (X) =
∑n
i=1 aiX

i ∈ Z[X] be a nonconstant polynomial of degree n ∈ N. Let

h := max(|a0|, . . . , |an|) ∈ N.

Suppose that x ∈ C is a root of F . Then it follows that |x| ≤ nh.
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Proof. If |x| < 1 we are immediately done, so suppose that |x| ≥ 1. We then have the inequality

|xn| ≤ |anxn| = |
n−1∑
i=0

aix
i| ≤

n−1∑
i=0

|aixi| ≤
n−1∑
i=0

h|xi| ≤ nh|xn−1|.

We divide on both sides by |xn−1| and this yields the result |x| ≤ nh.

Lemma 8.21. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a nonconstant irreducible polynomial of positive Y -degree
d2 ∈ N. Let T (F ) be the zero locus of F and S(F ) the intergral zero locus of F . Let S′ be any subset of
S(F ). Suppose that the set

AR,µ := {(x, y, z) ∈ S′ | |x| > R, |y| > |x|µ}

is Zariski-dense in T (F ) for all R,µ ∈ R. Then it follows that the set

BR,µ := {(x, y, z) ∈ S′ | |x| > R, |z| > |x|µ}

is also Zariski-dense in T (F ) for all R,µ ∈ R.

Proof. We can write F as
d1∑
i=0

d2∑
j=0

d3∑
k=0

ai,j,kX
iY jZk

for smallest possible d1, d3 ∈ N0 and with ai,j,k ∈ Z. Now let

h := max
(i,j,k)∈D(F )

(|ai,j,k|).

Let R ∈ R and µ ∈ R be real numbers. Let R′ := max(R, d2(d1 + 1)(d3 + 1)h) and let µ′ := max(µ, d3µ+
d1 + 1). We then have that AR′,µ′ is Zariski-dense in T (F ). We define the three subsets

S1 := {(x, y, z) ∈ AR′,µ′ | F (x, Y, z) = 0 ∈ Z[Y ]},

S2 := {(x, y, z) ∈ AR′,µ′ | z = 0}
and

S3 := {(x, y, z) ∈ AR′,µ′ | F (x, Y, z) 6= 0 ∈ Z[Y ], z 6= 0}.
Note that S1 ∪ S2 ∪ S3 = AR′,µ′ . We view F as a polynomial in Y and write

F (X,Y, Z) =

d2∑
j=0

aj(X,Z)Y i

for suitable aj(X,Z) ∈ Z[X,Z]. For any (x, y, z) ∈ S1 we then find that aj(x, z) = 0 for all j ∈ {0, . . . , d2}.
In particular this means that ad2 , when viewed as a polynomial in Z[X,Y, Z], vanishes on S1. Because ad2
is not a multiple of F in Z[X,Y, Z], we can apply Corollary 7.17 to conclude that S1 is not Zariski-dense
in T (F ). We apply Corollary 7.17 on F and on the polynomial Z to see that S2 is also not Zariski-dense
in T (F ). Because AR′,µ′ is Zariski-dense in T (F ) while S1 and S2 are not, we can apply Lemma 7.22 to
see that S3 then must be Zariski-dense in T (F ). For any (x, y, z) ∈ S3 and for any j ∈ {0, . . . , d2} we
find that

|aj(x, z)| = |
d1∑
i=0

d3∑
k=0

ai,j,kx
izk|

≤
d1∑
i=0

d3∑
k=0

|ai,j,kxizk|

≤
d1∑
i=0

d3∑
k=0

h|xizk|

≤ (d1 + 1)(d3 + 1)h|x|d1 |z|d3 .
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By Lemma 8.20 we then see that

|x|µ
′
< |y| ≤ d2(d1 + 1)(d3 + 1)h|x|d1 |z|d3 ≤ R′|x|d1 |z|d3 ≤ |x|d1+1|z|d3 .

This yields

|x|d3µ ≤ |x|µ
′−d1−1 < |z|d3

and therefore
|x|µ < |z|.

From this we see that S3 is a subset of BR,µ. We now apply Lemma 7.9 to conclude that BR,µ is
Zariski-dense in T (F ).

Lemma 8.22. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a nonconstant irreducible polynomial. Let (d1, d2, d3) =
(degX F,degY F,degZ F ) and suppose that d2 ≥ 1. Let T (F ) be the zero locus of F and S(F ) the integral
zero locus of F . Let S′ be any subset of S(F ). Suppose that the set

AR,µ := {(x, y, z) ∈ S′ | |x| > R, |y| > |x|µ}

is Zariski-dense in T (F ) for all R,µ ∈ R. Then it follows that (d2, d3) is no Newton dot of F when we
view F as a polynomial in Y and Z over Z[X].

Proof. We can write F as

F (X,Y, Z) =

d1∑
i=0

d2∑
j=0

d3∑
k=0

ai,j,kX
iY jZk.

Let
h := max

(i,j,k)∈D(F )
|ai,j,k|.

Suppose that (d2, d3) is a Newton dot of F when we view F as a polynomial in Y and Z over Z[X].
Let g(X) =

∑d1
i=0 ai,d2,d3X

i be its corresponding coefficient. Then g(X) is a nonzero polynomial and
therefore has at most d1 roots in Z. Let R ∈ R such that R is larger than all these roots and such that

R > ((d2 + 1)(d3 + 1)− 1)(d1 + 1)h. (8.12)

Let µ = d1 + 1. We will use results of the proof of the previous lemma. Note that F indeed satisfies the
conditions of said lemma. We saw for a certain R′ ∈ R and µ′ ∈ R with µ′ ≥ µ, that the set

S3 := {(x, y, z) ∈ AR′,µ′ | F (x, Y, z) 6= 0 ∈ Z[Y ], z 6= 0}

is Zariski-dense in T (F ) and is also a subset of

BR,µ := {(x, y, z) ∈ S′ | |x| > R, |z| > |x|µ}.

As a consequence we see that S3 must be nonempty. So there exists (x, y, z) ∈ AR′,µ′ ⊂ S(F ) such that

|x| > R, such that |z| > |x|µ and such that |y| > |x|µ
′
≥ |x|µ. In particular we have x, y, z ∈ Z and

F (x, y, z) = 0. For any j ∈ {0, . . . , d2} and k ∈ {0, . . . , d3} we have the inequality

|
d1∑
i=0

ai,j,kx
i| ≤

d1∑
i=0

|ai,j,kxi|

≤
d1∑
i=0

h|x|i

≤ (d1 + 1)h|x|d1 .

Now suppose that these j, k satisfy (j, k) 6= (d2, d3). If j 6= d2, we find
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|
d1∑
i=0

ai,j,kx
iyjzk| ≤ (d1 + 1)h|x|d1 |y|j |z|k

≤ (d1 + 1)h|x|d1 |y|d2−1|z|d3

< (d1 + 1)h|x|d1 |x|−µ|y|d2 |z|d3

= (d1 + 1)h|x|−1|y|d2 |z|d3

< (d1 + 1)hR−1|y|d2 |z|d3 .

If k 6= d3, we also find

|
d1∑
i=0

ai,j,kx
iyjzk| < (d1 + 1)hR−1|y|d2 |z|d3

by similar reasoning. By definition of R, we have g(x) 6= 0, so |g(x)| ≥ 1. We now find

|yd2zd3 | ≤ |g(x)yd2zd3 |

= |
d1∑
i=0

ai,d2,d3x
iyd2zd3 |

= |
d2−1∑
j=0

d3∑
k=0

d1∑
i=0

ai,j,kx
iyjzk +

d3∑
k=0

d1∑
i=0

ai,d2,kx
iyd2zk|

≤
d2−1∑
j=0

d3∑
k=0

|
d1∑
i=0

ai,j,kx
iyjzk|+

d3∑
k=0

|
d1∑
i=0

ai,d2,kx
iyd2zk|

< ((d2 + 1)(d3 + 1)− 1)(d1 + 1)hR−1|y|d2 |z|d3

< |y|d2 |z|d3

= |yd2zd3 |.

This gives a contradiction from which we may conclude that (d2, d3) is no Newton dot of F , when we
view F as a polynomial in Y and Z over Z[X].

We can now give our first attempt of generalizing Runge’s Theorem.

Theorem 8.23. Let F (X,Y, Z) =
∑d1
i=0

∑d2
j=0

∑d3
k=0 ai,j,kX

iY jZk ∈ Z[X,Y, Z] be a polynomial of pos-
itive X-degree d1 ∈ N, of positive Y -degree d2 ∈ N and of positive Z-degree d3 ∈ N. Suppose that
F (X,Y, Z) is irreducible in Q[X,Y, Z]. Let f1(X,Y ), . . . , fd3(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be the
roots of F . Suppose for each i ∈ {1, . . . , d3} that there exists Ri ∈ R and µi ∈ R such that fi(x, y)
converges for all x, y ∈ C with |x| > Ri and |y| ≥ |x|µi . Suppose that the set

AR,µ := {(x, y, z) ∈ S(F ) | |x| > R, |y| > |x|µ}

is Zariski-dense in T (F ) for all R,µ ∈ R. View F as a polynomial in Y and Z. Then the following two
properties hold:

1. In the yz-plane, no point of D(F ) lies above the line connecting (d1, 0) and (0, d2).

2. For λ = d2/d3, the λ-leading part of F satisfies

∑
(j,k)∈Dλ(F )

d1∑
i=1

ai,j,kX
iY jZk = apk,

where a ∈ Z[X], k ∈ N and where p = p(X,Y, Z) ∈ Z[X,Y, Z] is an irreducible polynomial.
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Proof. View F as polynomial in Y and Z over Z[X]. If degF = 1, we have d2 = d3 = 1 and we can
then write F (X,Y, Z) = aY + bZ + c for some a, b, c ∈ Z[X] such that a 6= 0 and b 6= 0. The first
property then immediately follows. We have λ = d2/d3 = 1, and the λ-leading part of F is aX + bY .
Since this is irreducible in Q(X−1)[Y,Z], we have that the λ-leading part of F is indeed an element in
Z[X] times (a power of) an irreducible polynomial in Z[X,Y, Z], which shows that the second property
also holds. Now suppose that degF > 1. We in particular have F ∈ Q({(X−1)∗})(((Y −1)∗))[Z]. Since
Q({(X−1)∗})(((Y −1)∗)) is algebraically closed, there exists g(X,Y ) ∈ Z[X,Y ] such that

F (X,Y, Z) = g(X,Y )

d3∏
i=1

(Z − fi(X,Y )). (8.13)

We have here that g(X,Y ) ∈ Z[X,Y ] is the leading coefficient of F , when F is viewed as a polynomial in
Z. If fi = 0 for some i ∈ {1, . . . , d3}, we see from (8.13) that Z would then be a factor of F , which leads
to a contradiction since F is irreducible of positive Y -degree. So fi is nonzero for all i ∈ {1, . . . , d3}. Take
the field k = Q(X−1). Then we have F ∈ k[Y,Z], where F is of positive Z-degree. Since k is a subfield of
the algebraically closed field Q(((X−1)∗)), there must exist k ⊂ Q(((X−1)∗)) that is an algebraic closure
of k. By Lemma 4.65, there then exists a subfield Ki ⊂ k ⊂ Q(((X−1)∗)) for each i ∈ {1, . . . , d3} that is
a finite field extension of k such that Ki contains all coefficients of fi, when viewed as a Puiseux series
at infinity in Y over Q({(X−1)∗}). Let R := max(R1, . . . , Rd2) and let µ := max(µ1, . . . , µd2). We then
see for each i{1, . . . , d3} that fi(x, y) converges in C for all x, y ∈ C with |x| > R and |y| ≥ |x|µ. We
consider the sets

Si = {(x, y, z) ∈ AR,µ | fi(x, y) = z}
for each i ∈ {1, . . . , d3} and the set

S′ = {(x, y, z) ∈ AR,µ | g(x, y) = 0}.

We see from (8.13) that S′ ∪ S1 ∪ . . . ∪ Sd3 = AR,µ. Because g(X,Y ) is no multiple of F in Z[X,Y, Z],
we see from Corollary 7.17 that S′ is not Zariski-dense in T (F ). Because AR,µ is Zariski-dense in T (F ),
it then follows from Lemma 7.22 that Si is Zariski-dense in T (F ) for some i ∈ {1, . . . , d3}. We fix this i.
From Lemma 8.19 it then follows that there exists nonzero P (X,Y, Z) ∈ Z[X,Y, Z] and e ∈ N such that
P (X,Y, fi(X,Y )) = 0 in Ki((Y

−1/e)). When we view P and F as polynomials in Z over Z[X,Y ], we see
that F is irreducible and that one of its roots is also a root of P . Because of this we have that F is a
factor of P in Z[X,Y, Z]. So P = FH for some H ∈ Z[X,Y, Z]. We now view P , F and H as polynomials
in Y and Z. By Remark 4.60 we have Pλ = FλHλ for all λ ∈ R>0. For λ 6= d2/d3 we have that Pλ
is a monomial. Entire Subsection 3.4 stays true when we replace Z by any other unique factorization
domain, in particular Z[X]. Therefore it follows from Lemma 3.18 that Fλ is a monomial as well. Now
let λ = d2/d3. Suppose that Fλ is also a monomial, we then have that F̃ is a monomial by Lemma
3.19. We then apply Lemma 3.20 to see that (d2, d3) ∈ D(F ). This however contradicts the result from
Lemma 8.22. Therefore, Fλ is not a monomial. We have by Theorem 8.19 that Pλ is a element in Z[X]
of a power of Y times a power of an irreducible polynomial G(X,Y, Z) ∈ Z[X,Y, Z]. Since Fλ is a factor
of Pλ, we see that Fλ is also an element in Z[X] times a power of Y times a power of G(X,Y, Z). Since
Fλ is not a monomial, we have that G(X,Y, Z) is not a monomial, when viewed as a polynomial in Y
and Z. We now reverse the roles of Y and Z: let F ′(X,Y, Z) := F (X,Z, Y ). We see that F ′(X,Y, Z) is
of positive Y -degree d3 and of positive Z-degree d2. We also have degF ′ = degF . By Lemma 8.21 we
have that the set

{(x, y, z) ∈ S(F ) | |x| > R′, |z| > |x|µ
′
}

is Zariski-dense in T (F ) for all R′, µ′ ∈ R. We have (x, y, z) ∈ S(F ) if and only if (x, z, y) ∈ S(F ′).
Therefore we have that the set

{(x, y, z) ∈ S(F ′) | |x| > R′, |y| > |x|µ
′
}

is Zariski-dense in T (F ′) for all R′, µ′ ∈ R. By applying the same reasoning as with F , we see that
with λ′ = degY F

′/ degZ F
′ = d3/d2 = λ−1 we have that F ′λ′ = Fλ is an element in Z[X] times a power

of Z times a power of an irreducible polynomial G′(X,Y, Z) ∈ Z[X,Y, Z] that is not a monomial when
viewed as a polynomial in Y and Z. Since Z[X,Y, Z] is a unique factorization domain we conclude that
G(X,Y, Z) = G′(X,Y, Z) and that Fλ is an element in Z[X] times a power of this irreducible G(X,Y ).
This is the second property of this theorom. For the first property we notice that since G(X,Y, Z) is
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irreducible and not a monomial when viewed as a polynomial in Y and Z, it is not divisible by Y and
therefore there exists a ∈ N with (a, 0) ∈ Dλ(G). Furthermore, because Fλ is an element in Z[X] times a
power of G, we have that (ka, 0) ∈ Dλ(F ) for some k ∈ N. We have the restriction ka ≤ d2 since F is of
Y -degree d2 and Dλ(F ) ⊂ D(F ). For any (j, k) ∈ D(F ) we now have j + λk ≤ degλ(F ) = ka+ 0λ ≤ d1.
This can be rewritten as d3j + d2k ≤ d2d3, which shows that no point of D(F ) lies above the line
connecting (d2, 0) and (0, d3). This is the first property of this theorem.

We can use this theorem in the following example

Example 8.24. Let F (X,Y, Z) = Z2 −X2 − Y 2. Then there exists R ∈ R and µ ∈ R such that the set

AR,µ := {(x, y, z) ∈ S(F ) | |x| > R, |y| > |x|µ}

is not Zariski-dense in T (F ).

Proof. The roots of F are given by f±(X,Y ) = ±
√
X2 + Y 2. Let g(V ) ∈ Q({(V −1)∗}) be any of the

two roots for W in the polynomial W 2 − 1− V 2 ∈ Z[V,W ]. These two roots exist by Theorem 4.46. So
(g(V ))2 = 1+V 2 and there exists R′ ∈ R such that g(v) converges for all v ∈ C with |v| > R′. So g(x−1y)
converges for all x, y ∈ C with x 6= 0 and |x−1y| > R′. This equation translates to |y| > R′|x|. We let
R1 = max(1, R′) and µ1 = 2. Any x, y ∈ C with |x| > R1 and |y| ≥ |x|µ1 then satisfies |y| ≥ |x|2 ≥ R1|x|.
We now have f±(X,Y ) = ±

√
X2 + Y 2 = ±X

√
1 +X−2Y 2 = ±Xg(X−1Y ). So f±(x, y) converges for

all x, y ∈ C with |x| > R1 and |y| ≥ |x|µ1 . F is irreducible in Q[X,Y, Z] because X2 +Y 2 is not a square
in Q[X,Y ]. We have d2 = degY F = 2 and d3 = degZ F = 2. We view F as polynomial in Y and Z over
Z[X] and find Fλ = Z2−Y 2 = (Z−Y )(Z+Y ). Since this is not an element in Z[X] times an irreducible
polynomial in Z[X,Y, Z], We then find the desired result by applying Theorem 8.23.

In the example above we find by symmetry of X and Y that there also exist R′ ∈ R and µ′ ∈ R such
that the set

BR′,µ′ := {(x, y, z) ∈ S(F ) | |y| > R′, |x| > |y|µ
′
}

is not Zariski-dense in T (F ). This does not necessarily mean that S(F ) is also not Zariski-dense in T (F ).
We saw in Example 8.5 that this is not the case.

Let F ∈ Z[X,Y, Z] be an irreducible polynomial of positive X-degree d1 ∈ N, of positive Y -degree
d2 ∈ N and of positive Z-degree d3 ∈ N. Also suppose that there exists R,R′, µ, µ′ ∈ R such that the sets

AR,µ := {(x, y, z) ∈ S(F ) | |x| > R, |y| > |x|µ}

and
BR′,µ′ := {(x, y, z) ∈ S(F ) | |y| > R′, |x| > |y|µ

′
}

are both not Zariski-dense in T (F ). Let G(X,Y, Z) =
R∏

a=−R
(X − a) ∈ Z[X,Y, Z]. We see that any

(x, y, z) ∈ S(F ) with |x| ≤ R satisfies g(x, y, z) = 0. We therefore see by Corollary 7.17 that the set

S1 = {(x, y, z) ∈ S(F ) | |x| ≤ R}

is not Zariski-dense in T (F ). By similar reasoning we see that the set

S2 = {(x, y, z) ∈ S(F ) | |y| ≤ R′}

is also not Zariski-dense in T (F ). We now consider the set

S3 = {(x, y, z) ∈ S(F ) | |x|µ
′−1

≤ |y| ≤ |x|µ}.

We note that
S(F ) = AR,µ ∪BR′,µ′ ∪ S1 ∪ S2 ∪ S3.

We use Lemma 7.22 to conclude that S(F ) is Zariski-dense in T (F ) if and only if S3 is Zariski-dense in
T (F ). We can divide S3 in n ∈ N smaller sets. We let α = (µ− µ′−1)/n and take

S′t = {(x, y, z) ∈ S(F ) | |x|µ
′−1+tα ≤ |y| ≤ |x|µ

′−1+(t+1)α}.
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We have
n−1⋃
t=0

S′t = S3.

We again apply Lemma 7.22 to see that S(F ) is Zariski-dense in T (F ) if and only if S′t is Zariski-dense
in T (F ) for some t ∈ {0, . . . , n − 1}. Because n ∈ N can be as large as we want, we see that S(F ) is
Zariski-dense in T (F ) if and only if there exists ε > 0 and λ ∈ R such that the set

{(x, y, z) ∈ S(F ) | |x|λ−ε ≤ |y| ≤ |x|λ+ε}

is Zariski-dense in T (F ). So the elements in this last set satisfy |y| ≈ |x|λ. Because of this we only need
to focus on integral solutions where |y| and |x| are roughly the same. In our second attempt to generalize
Runge’s Theorem 6.1, we do not want to have restrictions on the ratio between |x| and |y|. If f(X,Y )
is a root of F , we then want f(x, y) to converge in C for all x, y ∈ C such that |x| and |y| are bigger
then some constant. For our second attempt we need to generalize Newton dots and degrees to a case
with three variables. They are intuitively the same as the case with two variables and also satisfy similar
rules.

Definitions 8.25. Let

F (X,Y, Z) :=

d3∑
k=0

∞∑
n=−m

∞∑
l=−p

an,l,kX
−l/qY −n/eZk,

for some e, q ∈ N, d3 ∈ N0 and m, p ∈ Z and with an,l,k ∈ C. Let µ, λ ∈ R>0. We then define

D(F ) := {(−l/q,−n/e, k) | an,l,k 6= 0},

and
degµ,λ(F ) := max

(i,j,k)∈D(F )
(i+ jµ+ kλ)

and
Dµ,λ(F ) := {(i, j, k) ∈ D(F ) | i+ jµ+ kλ = degµ,λ(F )}

and

Fµ,λ :=
∑

(i,j,k)∈Dµ,λ(F )

a−ej,−qi,kX
iY jZk.

Remark 8.26. Let

G(X,Y, Z) :=

d3∑
k=0

∞∑
n=−m

∞∑
l=−p

an,l,kX
−l/qY −n/eZk,

for some e, q ∈ N, d3 ∈ N0 and m, p ∈ Z and with an,l,k ∈ C and let

G(X,Y, Z) :=

d3∑
k=0

∞∑
n=−m

∞∑
l=−p

bn,l,kX
−l/qY −n/eZk,

with bn,l,k ∈ C. We then have the following for all µ, λ ∈ R>0:

• degµ,λ(G+H) ≤ max(degµ,λG,degµ,λH).

• If degµ,λG > degµ,λH, then (G+H)µ,λ = Gµ,λ.

• degµ,λ(GH) ≤ degµ,λG+ degµ,λH.

• (GH)µ,λ = Gµ,λHµ,λ.

We now start a second attempt to generalize Theorem 6.9. Note that one requirement of this theorem
becomes redundant if Conjecture 8.15 holds.
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Theorem 8.27. Let F (X,Y, Z) ∈ Z[X,Y, Z] be a polynomial of positive Z-degree. We view F as a
polynomial in Z over Z[X,Y ]. Let f(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗)) be a nonzero root of F . Suppose
that we can write f as

f(X,Y ) =

∞∑
n=−m

∞∑
l=−p

an,lX
−l/qY −n/e, (8.14)

for some m, p ∈ Z, and for some e, q ∈ N and where all coefficients an,l lie in Q. Suppose that there
exists R′ ∈ R such that f(x, y) converges for all x, y ∈ C with |x| > R′ and |y| > R′. Suppose that there
exists ϕ ∈ R>0 and π1, π2 ∈ R such that

π1 < −l/q + (n/e)ϕ < π2 ∀n, l ∈ Z, an,l 6= 0. (8.15)

Then their exists nonzero P (X,Y, Z) ∈ Z[X,Y, Z] and u ∈ C such that the following properties hold
for all R ∈ R with R > |u|.
• f(x, y) converges in C for all x, y ∈ C with |x| > R and |y| > R.

• If x, y ∈ Z with |x| > R and |y| > R, and if f(x, y) ∈ Z, then we have P (x, y, f(x, y)) = 0.

• If the set {(x, y) ∈ Z2 | |x| > R, |y| > R, f(x, y) ∈ Z} is Zariski-dense in C2, then we have
P (X,Y, f(X,Y )) = 0 in Q({(X−1)∗})(((Y −1)∗)).

• Let µ ∈ R>0 and λ ∈ R>0 and H = degµ,λ(f(X,Y )). We consider three cases

– If H < λ, we have that Pµ,λ(X,Y, Z) is a monomial in Z[X,Y, Z].

– If H > λ, we have Pµ,λ(X,Y, Z) ∈ Z[X,Y ].

– If H = λ, we have that Pµ,λ(X,Y, Z) is a monomial in Z[X,Y ] times a power of an irreducible
factor in Z[X,Y, Z].

Proof. By Lemma 8.11 we see that all an,l lie in some algebraic number field K. Let s ∈ N be the degree
of this number field. Let E ∈ N be large enough, such that the linear inequalities

−1 + seqπ1 ≤ i− jϕ ≤ 1 + seqπ2

and
i+ j < −E

have no common solution (i, j) ∈ Z2 with either i > 0 or j > 0. Because f is nonzero, we may assume
m and p to be as small as possible, so there exists smallest possible n′, l′ ∈ Z with n′ ≥ −m and l′ ≥ −p
such that an′,−p 6= 0 and a−m,l′ 6= 0 both hold. Define the set

B := {(i, j, k) ∈ Z3 | 0 ≤ k ≤ seq,
min(i, j) < 0,

i+ j + (m/e+ p/q)k ≥ −E,
− 1 + (seq − k)π1 < i− jϕ < 1 + (seq − k)π2}.

(8.16)

by combining these inequalities, one can show that B is a finite set. Let M ∈ N be the cardinality of B.
For each β ∈ N0, we let

β := bβϕc ∈ N0,

where b.c is the floor function. As a consequence we have

|β − βϕ| < 1. (8.17)

Let T ∈ N0 be large enough, such that
T ≥ n′sq (8.18)

and such that
T = bTϕc ≥ l′se (8.19)

both hold. Let N ∈ N be large enough, such that

b(T +M)ϕc+ T +M + (seq − 1)(p/q +m/e) + max(m/e, p/q)−N < −E (8.20)
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and such that
N ≥ max(l′/q, n′/e) (8.21)

both hold.
Since K is a finite field extension over Q of degree s, there exists a monic irreducible polynomial

G(X) ∈ Q[X] of degree s which has a root θ1 ∈ K that generates K. So K = Q(θ1). Let L be the
splitting field of G(X) over K. So there exists θ2, . . . , θs ∈ L such that G(X) = (X − θ1) · · · (X − θs)
in L[X]. Any c ∈ K can uniquely be written as c0 + c1θ1 + . . . + cs−1θ

s−1
1 with c0, . . . , cs−1 ∈ Q. We

denote the polynomial c0 + c1W + . . .+ cs−1W
s−1 by gc(W ). For σ ∈ {1, . . . , s}, we call c(σ) := gc(θσ) =

c0 + c1θσ + . . .+ cs−1θ
s−1
σ ∈ L the σ-th conjugate of c in K. In particular we have c(1) = c and 0(σ) = 0.

Let ζ1 ∈ C be a primitive q-th root of unity. This means that ζq1 = 1 and that the elements ζ01 , . . . , ζ
q−1
1

are all different solutions to Y q = 1. It follows that the polynomial Y q − X−1 in Y over Q[X,X−1]
factorizes over the field extension Q(ζ1)(X−1/q) as Y q − X−1 = (Y − ζ01X−1/q) · · · (Y − ζq−1

1 X−1/q).
Notice that X−1 is a unit in Q[X,X−1]. In a similar way we let ζ2 be a primitive e-th root of unity. We
now consider the following Laurent polynomial in V

Z −
eN∑

n=−m

qN∑
l=−p

gan,l(W )V lUn ∈ Q[X,X−1][Y, Y −1][Z][W ][U,U−1][V, V −1].

By Corollary 5.12 we find that

q−1∏
E1=0

(
Z −

eN∑
n=−m

qN∑
l=−p

gan,l(W )(ζE1
1 X−1/q)lUn

)
∈ Q[X,X−1][Y, Y −1][Z][W ][U,U−1].

We apply Corollary 5.12 again and find that

e−1∏
E2=0

q−1∏
E1=0

(
Z −

eN∑
n=−m

qN∑
l=−p

gan,l(W )(ζE1
1 X−1/q)l(ζE2

2 Y −1/e)n
)
∈ Q[X,X−1][Y, Y −1][Z][W ].

We now apply Corollary 5.11 we find that

s∏
σ=1

e−1∏
E2=0

q−1∏
E1=0

(
Z −

eN∑
n=−m

qN∑
l=−p

gan,l(θσ)(ζE1
1 X−1/q)l(ζE2

2 Y −1/e)n
)
∈ Q[X,X−1][Y, Y −1][Z]. (8.22)

For each β ∈ N0 we then define

F (X,Y, Z;β) := XβY β
s∏

σ=1

e−1∏
E2=0

q−1∏
E1=0

(
Z −

eN∑
n=−m

qN∑
l=−p

a
(σ)
n,l (ζ

E1
1 X−1/q)l(ζE2

2 Y −1/e)n
)
. (8.23)

From (8.22) we then find
F (X,Y, Z;β) ∈ Q[X,X−1][Y, Y −1][Z]. (8.24)

We can write

F (X,Y, Z;β) =
∑

(i,j,k)∈D(F (X,Y,Z;β))

bβ,i,j,kX
iY jZk,

for suitable bβ,i,j,k ∈ Q. We see from (8.23) and (8.24) that if (i, j, k) ∈ D(F (X,Y, Z;β)), that i, j, k ∈ Z
and 0 ≤ k ≤ seq must hold. Note that we may assume that π1 ≤ 0 as well as π2 ≥ 0 hold. For the case
where β = 0, we can use (8.15) and (8.23) to find that

(seq − k)π1 ≤ i− jϕ ≤ (seq − k)π2 ∀(i, j, k) ∈ D(F (X,Y, Z; 0)). (8.25)

For any β ∈ N0 we have

F (X,Y, Z;β) = XβY βF (X,Y, Z; 0)

= XβY β
∑

(i,j,k)∈D(F (X,Y,Z;0))

b0,i,j,kX
iY jZk

=
∑

(i,j,k)∈D(F (X,Y,Z;0))

b0,i,j,kX
i+βY j+βZk.
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From this we can see that (i, j, k) ∈ D(F (X,Y, Z;β)) holds if and only if (i−β, j−β, k) ∈ D(F (X,Y, Z; 0)).
We combine this with (8.25) and (8.17) and then find for every β ∈ N0 and every (i, j, k) ∈ D(F (X,Y, Z;β))
that

−1 + (seq − k)π1 < β − βϕ+ (i− β)− (j − β)ϕ

= i− jϕ

= β − βϕ+ (i− β)− (j − β)ϕ

< 1 + (seq − k)π2.

(8.26)

So i − jϕ is bounded above and below for all (i, j, k) ∈ D(F (X,Y, Z;β)). For any β ∈ {T, . . . , T + M}
we will divide the terms bβ,i,j,kX

iY jZk of F (X,Y, Z;β) into the following three categories.

• Terms bβ,i,j,kX
iY jZk with i, j ≥ 0.

• Terms bβ,i,j,kX
iY jZk with i < 0, or j < 0 and with i+ j + (m/e+ p/q)k < −E.

• Terms bβ,i,j,kX
iY jZk with i < 0, or j < 0 and with i+ j + (m/e+ p/q)k ≥ −E.

Note that the terms in the first category lie in Q[X,Y, Z]. We see from (8.26) that the terms in the third
category satisfy (i, j, k) ∈ B. The terms from the first and second category does not satisfy (i, j, k) ∈ B.
For each β ∈ {T, . . . , T +M} we can add terms of the same category together and get

F (X,Y, Z;β) = P (X,Y, Z;β) + S(X,Y, Z;β) +
∑

(i,j,k)∈B

bβ,i,j,kX
iY jZk,

with P (X,Y, Z;β) ∈ Q[X,Y, Z] and S(X,Y, Z;β) ∈ Q[X,X−1][Y, Y −1][Z]. For the elements (i, j, k) ∈ B
for which (i, j, k) 6∈ D(F (X,Y, Z;β)) we have defined bβ,i,j,k = 0.

We want to find cT , . . . , cM+T ∈ Z, not all zero, such that
∑M+T
β=T cβbβ,i,j,k = 0 for all (i, j, k) ∈ B.

This is a system of |B| = M linear equations in |{T, . . . ,M + T}| = M + 1 variables. It therefore indeed
has a solution. We may scale these cT , . . . , cT+M by any nonzero integer and still find a suitable solution.
We scale by a nonzero integer such that cβ · P (X,Y, Z;β) ∈ Z[X,Y, Z] for all β ∈ {T, . . . , T +M}. This
gives us

T+M∑
β=T

cβF (X,Y, Z;β) =

T+M∑
β=T

cβP (X,Y, Z;β) +

T+M∑
β=T

cβS(X,Y, Z;β),

We define

P = P (X,Y, Z) :=

T+M∑
β=T

cβP (X,Y, Z;β) =

T+M∑
β=T

cβF (X,Y, Z;β)−
T+M∑
β=T

cβS(X,Y, Z;β) (8.27)

and see that P (X,Y, Z) ∈ Z[X,Y, Z] holds.
We are interested in the terms of P (X,Y, f(X,Y )) ∈ K({(X−1)∗})(((Y −1)∗)). First we look at

D(f(X,Y )). If (i, j) ∈ D(f(X,Y )), we see by (8.14) that i ≤ p/q and j ≤ m/e, hence i+ j ≤ p/q+m/e.
We have the same boundaries for any

(i, j) ∈ D
(
−

eN∑
n=−m

qN∑
l=−p

a
(σ)
n,l (ζ

E1
1 X−1/q)l(ζE2

2 Y −1/e)n
)

for all E1 ∈ {0, . . . , q − 1}, E2 ∈ {0, . . . , e − 1} and σ ∈ {1, . . . , s}. We can add these Puiseux series
together and thus keep the same boundaries for any

(i, j) ∈ D
(
f(X,Y )−

eN∑
n=−m

qN∑
l=−p

a
(σ)
n,l (ζ

E1
1 X−1/q)l(ζE2

2 Y −1/e)n
)
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for all E1 ∈ {0, . . . , q− 1}, E2 ∈ {0, . . . , e− 1} and σ ∈ {1, . . . , s}. In the case with E1 = E2 = 0 and σ = 1
we find

f(X,Y )−
eN∑

n=−m

qN∑
l=−p

a
(σ)
n,l (ζ

E1
1 X−1/q)l(ζE2

2 Y −1/e)n

=

∞∑
n=−m

∞∑
l=−p

an,lX
−l/qY −n/e −

eN∑
n=−m

qN∑
l=−p

an,lX
−l/qY −n/e.

From this we can observe that its Newton dots (i, j) all satisfy either i < −N or j < −N . Together with
i ≤ p/q and j ≤ m/e, this tells us that i+ j < max(m/e, p/q)−N . So for all β ∈ {T, . . . , T +M} we see
from (8.23) that the Newton dots (i, j) in D(F (X,Y, f(X,Y );β)) satisfy the following inequality:

i+ j < β + β + (seq − 1)(p/q +m/e) + max(m/e, p/q)−N
≤ b(T +M)ϕc+ T +M + (seq − 1)(p/q +m/e) + max(m/e, p/q)−N
< −E.

So we have
i+ j < −E ∀(i, j) ∈ D(F (X,Y, f(X,Y );β)) (8.28)

for every β ∈ {T, . . . , T +M}.
We will now look at S(X,Y, f(X,Y );β) for each β ∈ {T, . . . , T +M}. We saw that S(X,Y, Z;β) only

consists of terms of the form bβ,i,j,kX
iY jZk, where i + j + (m/e + p/q)k < −E. We also saw that any

(i, j) ∈ D(f(X,Y )) satisfies i+ j ≤ p/q +m/e. Let (i, j, k) ∈ D(S(X,Y, Z;β)). We then find that every
(i′, j′) ∈ D(bβ,i,j,kX

iY j(f(X,Y ))k) also satisfies i′ + j′ ≤ i + j + (m/e + p/q)k < −E. This combined
with (8.27) and (8.28) gives

i+ j < −E ∀(i, j) ∈ D(P (X,Y, f(X,Y ))). (8.29)

Now let (i, j, k) ∈ D(P (X,Y, Z;β)) ⊂ D(F (X,Y, Z;β)). From (8.26) we have

−1 + (seq − k)π1 ≤ i− jϕ ≤ 1 + (seq − k)π2.

This combined with (8.15) shows that

−1 + seqπ1 ≤ i− jϕ ≤ 1 + seqπ2 ∀(i, j) ∈ D(P (X,Y, f(X,Y );β))

holds for any β ∈ {T, . . . , T +M}. And therefore we have

− 1 + seqπ1 ≤ i− jϕ ≤ 1 + seqπ2 ∀(i, j) ∈ D(P (X,Y, f(X,Y ))). (8.30)

We compare (8.29) and (8.30) to the definition of E to find

i ≤ 0 and j ≤ 0 ∀(i, j) ∈ D(P (X,Y, f(X,Y ))). (8.31)

There exists R′ ∈ R such that P (x, y, f(x, y)) converges for all x, y ∈ C with |x| > R′ and |y| > R′.
Because P (X,Y, Z) ∈ Z[X,Y, Z], we have that P (X,Y, f(X,Y )) also converges for such x and y. We
may assume that R′ > 1 holds. We can write

P (X,Y, f(X,Y )) =
∑

(i,j)∈D(P (X,Y,f(X,Y )))

ωi,jX
iY j

with ωi,j ∈ C. Let u′ ∈ C satisfy |u′| > R′. We then have∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u′|i|u′|j < ψ
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for some ψ ∈ R. Let k ∈ N. We then find∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||ku′|i|ku′|j =
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u′|i|u′|j |k|i+j

≤
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u′|i|u′|j |k|−E

= k−E
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u′|i|u′|j

< k−Eψ.

We will now choose k ∈ N large enough such that k−Eψ < 1/2. So for u := ku′ we have∑
(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u|i+j < 1/2.

Now let R ∈ R such that R > |u| > R′. Let x, y ∈ C satisfy |x|, |y| > R. Let (i, j) ∈ D(P (X,Y, f(X,Y ))).
We then have i ≤ 0 and j ≤ 0 by (8.31). This shows us that∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||x|i|y|j ≤
∑

(i,j)∈D(P (X,Y,f(X,Y )))

|ωi,j ||u|i+j

< 1/2.

Therefore we have |P (x, y, f(x, y))| < 1/2 for all x, y ∈ C with |x| > R and |y| > R. If additionally we
have x, y ∈ Z and f(x, y) ∈ Z we must have P (x, y, f(x, y)) ∈ Z and therefore P (x, y, f(x, y)) = 0. If the
set

{(x, y) ∈ Z2 | |x| > R, |y| > R, f(x, y) ∈ Z}
is Zariski-dense in C2, then P (X,Y, f(X,Y )) = 0 in Q({(X−1)∗})(((Y −1)∗)). The proof of this is similar
to the corresponding proof in Theorem 8.19.

Now let µ, λ ∈ R>0. Let

h(X,Y ;σ; E1; E2) :=

eN∑
n=−m

qN∑
l=−p

a
(σ)
n,l (ζ

E1
1 X−1/q)l(ζE2

2 Y −1/e)n (8.32)

for any σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e − 1} and E1 ∈ {0, . . . , q − 1}. Note that degµ,λ(h(X,Y ;σ; E1; E2))
and Dµ,λ(h(X,Y ;σ; E1; E2)) are independent on σ, E2 and E1. We have an′,−p 6= 0. We then see from
(8.21) that (p/q,−n′/e, 0) ∈ D(h(X,Y ;σ; E1; E2)). This Newton dot has the property that its first entry
p/q is the largest possible entry among all Newton dots in D(h(X,Y ;σ; E1; E2)), and that its second
entry −n′/e is the largest among all these Newton dots where the first entry is p/q. Also, its third entry
is always zero, because h(X,Y ;σ; E1; E2) does not depend on Z. We use (8.23) and then deduce for any
k ∈ {0, . . . , seq} and β ∈ {T, . . . , T +M} that

(β + (seq − k)p/q, β + (seq − k)(−n′/e), k) ∈ D(XβY β
s∏

σ=1

e−1∏
E2=0

q−1∏
E1=0

(Z − h(X,Y ;σ; E1; E2)))

= D(F (X,Y, Z;β))).

If −n′/e ≥ 0, we directly have β + (seq − k)(−n′/e) ≥ 0. Otherwise we use (8.18) and find

β + (seq − k)(−n′/e) ≥ T + (seq)(−n′/e) ≥ 0 (8.33)

for all k ∈ {0, . . . , seq} and β ∈ {T, . . . , T + M}. Now let (i, j, k) ∈ Dµ,λ(F (X,Y, Z;β)). Suppose that
j < 0. We then use (8.33) to find

degµ,λ(F (X,Y, Z;β)) = i+ jµ+ kλ

< β + (seq − k)p/q + (β + (seq − k)(−n′/e))µ+ kλ

≤ degµ,λ(F (X,Y, Z;β)).
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This leads to a contradiction from which we may deduce that j ≥ 0. Similar reasoning, where we use
a−l′/q,m/e 6= 0 and (8.19), yields i ≥ 0. As a consequence, we find by definition of P (X,Y, Z;β) that
(i, j, k) ∈ Dµ,λ(P (X,Y, Z;β)). Because D(P (X,Y, Z;β)) ⊂ D(F (X,Y, Z;β)) holds, we then find that

Fµ,λ(X,Y, Z;β) = Pµ,λ(X,Y, Z;β) (8.34)

for all β ∈ {T, . . . , T +M}.
We saw that degµ,λ(h(X,Y ;σ; E1; E2)) was independent on σ, E1 and E2. Let (n, l) ∈ Z2 such that

(−l/q,−n/e) ∈ D(f(X,Y )). We then have an,l 6= 0. Suppose that (−l/q,−n/e) 6∈ D(h(X,Y ; 1; 0; 0)).
We then see from (8.14) and (8.32) that n > eN or l > qN must hold. We also have n ≥ −m and l ≥ −p.
Suppose that n > eN . From (8.21) and an′,−p 6= 0 we then have

−l/q − n/eµ < p/q −Nµ
≤ p/q − n′/eµ
≤ degµ,λ(f(X,Y )).

From this we see that (−l/q−n/e) 6∈ Dµ,λ(f(X,Y )). By similar reasoning we reach the same conclusion
if l > qN . As a consequence we find

H = degµ,λ(f(X,Y )) = degµ,λ(h(X,Y ; 1; 0; 0)) = degµ,λ(h(X,Y ;σ; E1; E2))

for all σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e− 1} and E1 ∈ {0, . . . , q − 1}.
Now let γ ∈ {T, . . . , T +M} be the largest such that cγ 6= 0. We consider three cases: First suppose

that
H < λ.

We then have
(Z − h(X,Y ;σ; E1; E2))µ,λ = Z

for any σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e − 1} and E1 ∈ {0, . . . , q − 1}. We therefore see from (8.23) and
(8.34) that

Pµ,λ(X,Y, Z;β) = Fµ,λ(X,Y, Z;β) = XβY βZseq,

hence
Pµ,λ(X,Y, Z) = cγX

γY γZseq.

From this result we can see that Pµ,λ(X,Y, Z) is nonzero. Because the case H < λ is always possible by
taking λ large enough, we see from this that P is nonzero. Now suppose that

H > λ.

We then have
(Z − h(X,Y ;σ; E1; E2))µ,λ = −hµ,λ(X,Y ;σ; E1; E2)

for any σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e − 1} and E1 ∈ {0, . . . , q − 1}. We therefore see from (8.23) and
(8.34) that

Pµ,λ(X,Y, Z;β) = Fµ,λ(X,Y, Z;β) = XβY β
s∏

σ=1

e−1∏
E2=0

q−1∏
E1=0

−hµ,λ(X,Y ;σ; E1; E2).

This combined with P (X,Y, Z) ∈ Z[X,Y, Z] gives

Pµ,λ(X,Y, Z) ∈ Z[X,Y ].

Now suppose that
H = λ.

We then have
(Z − h(X,Y ;σ; E1; E2))µ,λ = Z − hµ,λ(X,Y ;σ; E1; E2)
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for any σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e − 1} and E1 ∈ {0, . . . , q − 1}. We therefore see from (8.23) and
(8.34) that

Pµ,λ(X,Y, Z;β) = Fµ,λ(X,Y, Z;β) = XβY β
s∏

σ=1

e−1∏
E2=0

q−1∏
E1=0

(Z − hµ,λ(X,Y ;σ; E1; E2)),

hence

Pµ,λ(X,Y, Z) = cγX
γY γ

s∏
σ=1

e−1∏
E2=0

q−1∏
E1=0

(Z − hµ,λ(X,Y ;σ; E1; E2)) ∈ Z[X,Y, Z]. (8.35)

Because P is nonzero, so is Pµ,λ(X,Y, Z). We see that hµ,λ(X,Y ; 1; 0; 0) is a root of Pµ,λ(X,Y, Z),
a nonzero polynomial in Z[X,Y, Z]. It therefore is also a root of an irreducible factor G(X,Y, Z) ∈
Z[X,Y, Z] of Pµ,λ(X,Y, Z). So

G(X,Y, hµ,λ(X,Y ; 1; 0; 0)) = G(X,Y,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(1)
n,l(ζ

0
1X
−1/q)l(ζ02Y

−1/e)n)

= 0.

We substitute X−1/q by X ′ and Y −1/e by Y ′. This yields

G(X ′−q, Y ′−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(1)
n,l(ζ

0
1X
′)l(ζ02Y

′)n) = 0. (8.36)

When we view

G(X ′−q, Y ′−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

gan,l(W )(ζ01X
′)l(ζ02Y

′)n) ∈ Q[W,X ′, Y ′].

as polynomial in X ′, Y ′ with coefficients in W , we see from (8.36) that each coefficient, as a polynomial
in W over Q, has θ1 as a root. As a consequence these coefficient must also have θσ as root for all
σ ∈ {1, . . . , s}. So we have

G(X ′−q, Y ′−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(σ)
n,l (ζ

0
1X
′)l(ζ02Y

′)n) = 0. (8.37)

for all σ ∈ {1, . . . , s}. We now let E1 ∈ {0, . . . , q − 1} and E2{0, . . . , e− 1} and substitute X ′ by ζE1
1 X ′′

and Y ′ by ζE2
2 Y ′′. We then find the following from (8.36):

G(X ′′−q, Y ′′−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(σ)
n,l (ζ

E1
1 X ′′)l(ζE2

2 Y ′′)n)

=G((ζq1 )−E1X ′′−q, (ζe2)−E2Y ′′−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(σ)
n,l (ζ

E1
1 X ′′)l(ζE2

2 Y ′′)n)

=G((ζE1
1 X ′′)−q, (ζE2

2 Y ′′)−e,
∑

(−l/q,−n/e)∈Dµ,λ(h(X,Y ;1;0;0))

a
(σ)
n,l (ζ

E1
1 X ′′)l(ζE2

2 Y ′′)n)

=0.

From this we find that
G(X,Y, hµ,λ(X,Y ;σ; E1; E2)) = 0

for all σ ∈ {1, . . . , s}, E2 ∈ {0, . . . , e − 1} and E1 ∈ {0, . . . , q − 1}. So every root of Pµ,λ(X,Y, Z), when
viewed as a polynomial in Z, is also a root of G. We therefore find that Pµ,λ(X,Y, Z) is an element in
Z[X,Y ] times a power of the irreducible polynomial G(X,Y, Z). To find this element in Z[X,Y ] we can
compare the leading coefficients of Pµ,λ and G(X,Y, Z), when we view them as polynomials in Z. The
leading coefficient of Pµ,λ is cγX

γY γ , as we can see by (8.35). Let b(X,Y ) ∈ Z[X,Y ] be the leading
coefficient of G. Since G is a factor of Pµ,λ, we also have that b(X,Y ) is a factor of cγX

γY γ . From
this we conclude that Pµ,λ is indeed a monomial in Z[X,Y ] times a power of an irreducible element in
Z[X,Y, Z].
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We can now start with our second attempt to generalize Runge’s Theorem 6.1.

Theorem 8.28. Let F (X,Y, Z) ∈ Z[X,Y, Z] be an irreducible polynomial of positive Z-degree d3. Let

f1(X,Y ), . . . , fd3(X,Y ) ∈ Q({(X−1)∗})(((Y −1)∗))

be the roots of F . Suppose that for each t ∈ {1, . . . , d3}, there exists ϕt ∈ R>0 and πt,1, πt,2 ∈ R such
that

πt,1 < i− jϕt < πt,2 ∀(i, j) ∈ D(ft(X,Y )).

Suppose for each t ∈ {1, . . . , d3} that there exists Rt ∈ R such that ft(x, y) converges for all x, y ∈ C with
|x| > Rt and |y| > Rt. If S(F ) is Zariski-dense in T (F ), then there exists Hµ ∈ R for any µ ∈ R>0 such
that the following holds for all λ ∈ R>0:

• If Hµ < λ, we have that Fµ,λ(X,Y, Z) is a monomial in Z[X,Y, Z].

• If Hµ > λ, we have Fµ,λ(X,Y, Z) ∈ Z[X,Y ].

• If Hµ = λ, we have that Fµ,λ(X,Y, Z) is a monomial in Z[X,Y ] times a power of an irreducible
factor in Z[X,Y, Z].

Proof. If F (X,Y, Z) = ±Z, we can take Hµ = 0 for each µ and this problem then becomes trivial. We
therefore will ignore this case and as a consequence find that the roots ft(X,Y ) are all nonzero. We take
R′ ∈ R such that R′ ≥ max(R1, . . . , Rd3 , 1). We can write

F (X,Y, Z) = G(X,Y )

d3∏
t=1

(Z − ft(X,Y )) (8.38)

where G(X,Y ) ∈ Z[X,Y ] is the leading coefficient of F , when viewed as a polynomial in Z over Z[X,Y, Z].
For each t ∈ {1, . . . , d2} we define

St := {(x, y, z) ∈ Z3 | |x| > R′, |y| > R′, z = ft(x, y)}.

We also define the sets
S′ := {(x, y, z) ∈ S(F ) |G(x, y) = 0}

and
SX := {(x, y, z) ∈ S(F ) | |x| ≤ R′}

and
SY := {(x, y, z) ∈ S(F ) | |y| ≤ R′}.

We see from (8.38) that we have

S(F ) = S1 ∪ . . . ∪ Sd3 ∪ S
′ ∪ SX ∪ SY .

From Lemma 7.22 we see that one of these subsets must be Zariski-dense in T (F ). We will show that
S′, SX and SY are not Zariski-dense in T (F ). Because G(X,Y ) is a nonzero polynomial in Z[X,Y, Z] of
zero Z-degree it is certainly no multiple of F . By definition of S′, we see that G vanishes on all points
in S′. We then use Corollary 7.17 to see that S′ is not Zariski-dense in T (F ). Now let

g(X,Y, Z) :=
∏

a∈{−R′,...,R′−1,R′}

(X − a) ∈ Z[X,Y, Z].

We directly see that g(x, y, z) = 0 for all |x| ≤ R′. We apply Corollary 7.17 again and see that SX
is not Zariski-dense in T (F ). The same holds for SY by similar reasoning. So St must be Zariski-
dense for some t ∈ {1, . . . , d3}. We fix this t and take f := ft. We can now apply Theorem 8.27 and
find the existence of nonzero P (X,Y, Z) ∈ Z[X,Y, Z] and u ∈ C such the properties from Theorem
8.27 hold for all R ∈ R with R > |u|. Because R and R′ are independent of eachother and because
both are only bounded from below, we may assume that R = R′. We now want to show that the set
S := {(x, y) ∈ Z2 | |x| > R, |y| > R, f(x, y) ∈ Z} is Zariski-dense in C2 = T (0). Suppose that this is not
the case. By Lemma 7.13 we then see that there must exist G′(X,Y ) ∈ C[X,Y ] such that G′ vanishes
on S, but not on C2. Now define

G(X,Y, Z) = G′(X,Y ) ∈ Z[X,Y, Z].
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Let (x, y, z) ∈ St. Because f(x, y) = z ∈ Z, we get (x, y) ∈ S. This shows that G(x, y, z) = G′(x, y) = 0.
So G vanishes on St. Because St is Zariski-dense in T (F ), we see by Lemma 7.13 that G must also vanish
on T (F ). Hilbert’s Nullstellensatz 7.15 then tells us that some power of G must have F as a factor.
This is not possible as F is of positive Z-degree while G is of zero Z-degree. We therefore see that S is
indeed Zariski-dense in C2. We therefore see from Theorem 8.27 that P (X,Y, f(X,Y )) = 0. So f(X,Y )
is a root of P , when viewed as a polynomial in Z. Because f(X,Y ) is also a root of the irreducible
polynomial F (X,Y, Z), we may conclude that F is a factor of P . By Remark 8.26 we then see for any
µ, λ ∈ R>0 that Fµ,λ is also a factor of Pµ,λ. Because Z[X,Y, Z] is a unique factorization domain, we
can use Theorem 8.27 and take Hµ := degµ,λ(f(X,Y )) to find the desired results. Note that Hµ does
not depend on λ since f(X,Y ) is of zero Z-degree.

Remark 8.29. In the previous theorem we required the existence of Rt ∈ R for each t ∈ {1, . . . , d3},
such that ft(x, y) converges for all x, y ∈ C with |x| > Rt and |y| > Rt. This requirement becomes
redundant if we assume that Conjecture 8.15 holds. This is because of the following: Let t ∈ {1, . . . , d3}.
Let (i, j) ∈ D(ft(X,Y )). From (8.1) we see that j is bounded from above. The inequality i < πt,2 + jϕt
then shows that i is also bounded from above. We therefore can write ft(X,Y ) as in (8.2). We then can
apply Conjecture 8.15 to see that there exists Rt ∈ R such that ft(x, y) converges in C for all x, y ∈ C
with |x| > Rt and |y| > Rt.

We can apply Theorem 8.28 to the following examples:

Example 8.30. Let
F (X,Y, Z) = Z2 − (X2Y + 1)(X + Y )2Y.

Then S(F ) is not Zariski-dense in T (F ).

Proof. We assume that S(F ) is Zariski-dense in T (F ) and will reach a contradiction. We view F as a
polynomial in Z and see that F is a quadratic polynomial whose coefficients 1, 0 and −(X2Y + 1)(X +
Y )2Y do not share a common irreducible factor in Z[X,Y ]. Because (X2Y +1)(X+Y )2Y is not a square
in Z[X,Y ] , we see that F is irreducible in Z[X,Y, Z]. Let g(V ) ∈ Q({(V −1)∗}) be any of the two roots
for W in the polynomial W 2 − 1 − V ∈ Z[V,W ]. So (g(V ))2 = 1 + V . Because g(V ) is a convergent
Puiseux series, there exists R ∈ R such that g(v) converges for all v ∈ C with |v| > R. We can write

g(V ) =
∑

t∈D(g(V ))

atV
t

for suitable at ∈ Q. We substitute V = X2Y and find

g(X2Y )(X + Y )Y 1/2 =
∑

t∈D(g(V ))

atX
2t+1Y t+1/2 +

∑
t∈D(g(V ))

atX
2tY t+3/2.

We also find

(g(X2Y )(X + Y )Y 1/2)2 = g2(X2Y )(X + Y )2Y = (1 +X2Y )(X + Y )2Y,

which shows that f(X,Y ) := g(X2Y )(X + Y )Y 1/2 ∈ Q({(X−1)∗})(((Y −1)∗)) is a root of F . If x, y ∈ C
satisfy |x| > max(R, 1) and |y| > max(R, 1) they also satisfy |x2y| > R. This shows that g(x2y) hence
f(x, y) converges for such x, y. We see that F has at most two roots since it is of positive Z-degree 2.
We had two choices for g and therefore have found both roots of F . If (i, j) ∈ D(f(X,Y )), there must
exist t ∈ D(g(V )) such that (i, j) = (2t + 1, t + 1/2) or such that (i, j) = (2t, t + 3/2). We take ϕ = 2
and find either

i− jϕ = 2t+ 1− (t+ 1/2) · 2 = 0.

or
i− jϕ = 2t− (t+ 3/2) · 2 = −2.

So we take π1 = −3 and π2 = 1 and find that

π1 < i− jϕ < π2

for all (i, j) ∈ D(f(X,Y )). We can therefore apply Theorem 8.28. We let µ = 1 and λ = 2. We then find

Fµ,λ(X,Y, Z) = Z2 −X2Y 2(X + Y )2 = (Z +XY (X + Y ))(Z −XY (X + Y )).
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This is not a monomial in Z[X,Y, Z], not an element in Z[X,Y ] and not a monomial in Z[X,Y ] times
a power of an irreducible factor in Z[X,Y, Z]. Theorem 8.28 then tells us that we have reached a
contradiction, from which we may conclude that S(F ) is not Zariski-dense in T (F ).

Example 8.31. Let
F (X,Y, Z) = Z3 −X2Y (XY 5 + 2).

Then S(F ) is not Zariski-dense in T (F ).

Proof. We assume that S(F ) is Zariski-dense in T (F ) and will reach a contradiction. We view F as a
polynomial in Z and see that F is a cubic polynomial whose coefficients 1, 0, 0, and −X2Y (XY 5 + 2)
do not share a common irreducible factor in Z[X,Y ]. Because X2Y (XY 5 + 2) is not a cube in Z[X,Y ]
, we see that F is irreducible in Z[X,Y, Z]. Let g(V ) ∈ Q({(V −1)∗}) be any of the three roots for W in
the polynomial W 3 − 2− V ∈ Z[V,W ]. So (g(V ))3 = 2 + V and g(v) converge for all v ∈ C with |v| > R
for some R. We can write

g(V ) =
∑

t∈D(g(V ))

atV
t

for suitable at ∈ Q. We substitute V = XY 5 and find

g(XY 5)X2/3Y 1/3 =
∑

t∈D(g(V ))

atX
t+2/3Y 5t+1/3.

We also find
(g(XY 5)X2/3Y 1/3)3 = g3(XY 5)X2Y = X2Y (XY 5 + 2),

which shows that f(X,Y ) := g(XY 5)X2/3Y 1/3 ∈ Q({(X−1)∗})(((Y −1)∗)) is a root of F . Any x, y ∈ C
with |x| > max(R, 1) and |y| > max(R, 1) also satisfy |xy5| > R. So g(xy5) hence f(x, y) converge for
such x, y. We see that F has at most three roots since it is of positive Z-degree 3. We had three choices
for g and therefore have found all three roots of F . If (i, j) ∈ D(f(X,Y )), there must exist t ∈ D(g(V ))
such that (i, j) = (t+ 2/3, 5t+ 1/3). We take ϕ = 1/5 and find

i− jϕ = t+ 2/3− (5t+ 1/3)/5 = 2/3− 1/15 = 3/5.

So we take π1 = 0 and π2 = 1 and find that

π1 < i− jϕ < π2

for all (i, j) ∈ D(f(X,Y )). We can therefore apply Theorem 8.28. We let µ = 1 and λ = 3. We then find

Fµ,λ(X,Y, Z) = Z3 −X3Y 6 = (Z −XY 2)(Z2 +XY 2Z +X2Y 4).

This is not a monomial in Z[X,Y, Z], not an element in Z[X,Y ] and not a monomial in Z[X,Y ] times
a power of an irreducible factor in Z[X,Y, Z]. Theorem 8.28 then tells us that we have reached a
contradiction, from which we may conclude that S(F ) is not Zariski-dense in T (F ).

It can be interesting to check whether all conditions on Theorem 8.28 are really necessary. The
previous examples show by contradiction that being Zariski-dense is a necessary condition. The following
example shows that being irreducible is also a necessary condition on F .

Example 8.32. Let F := (X + Z)(Y + Z). We see by Example 8.1 that S(X + Z) is Zariski-dense in
T (X+Z) and that S(Y +Z) is Zariski-dense in T (Y +Z). We then apply Lemma 7.18 to see that S(F )
is Zariski-dense in T (F ). As a polynomial in Z, we see that F has two roots, namely −X and −Y . They
both converge for all x, y. We directly find the existence of ϕ ∈ R>0 and π1, π2 ∈ R such that

π1 < i− jϕ < π2

holds for any (i, j) ∈ D(−X) = {(1, 0)} and for any (i, j) ∈ D(−Y ) = {(0, 1)}. But if we take µ = λ = 1,
we see that Fµ,λ = F = (X + Z)(Y + Z). This is not a monomial in Z[X,Y, Z], not an element in
Z[X,Y ] and also not a monomial in Z[X,Y ] times a power of an irreducible factor in Z[X,Y, Z].

The next example shows that the boundaries on the Newton dots are a necessary condition on F .
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Example 8.33. Let F := Y − (2X+Z)Z. After swapping the roles of Y and Z we can use Example 8.1
to see that S(F ) is Zariski-dense in T (F ). When we view F as a polynomial in Z, we use the quadratic
formula to see that its roots are given by

−2X ±
√

4X2 − 4Y

2
= −X ±X

√
X2 + Y .

We let g(V ) ∈ Q({(V −1)∗}) be any of the two roots for W in the polynomial W 2 − 1− V ∈ Z[V,W ]. So
(g(V ))2 = 1 + V . We can write

g(V ) =
∑

t∈D(g(V ))

atV
t

for suitable at ∈ Q. We substitute V = X−2Y and find

g(X−2Y )X =
∑

t∈D(g(V ))

atX
−2t+1Y t.

We also find
(g(X−2Y )X)2 = g2(X−2Y )X2 = X2 + Y,

which shows that f(X,Y ) := g(X−2Y )X −X ∈ Q({(X−1)∗})(((Y −1)∗)) is a root of F . We see that F
has at most two roots since it is of positive Z-degree. We had two choices for g and therefore have found
both roots of F . If (i, j) ∈ D(f(X,Y )), we either have (i, j) = (1, 0) or there must exist t ∈ D(g(V ))
such that (i, j) = (1 − 2t, t). Because the elements t ∈ D(g(V )) are not bounded from below we see that
1 − 2t is not bounded from above. So for any ϕ ∈ R>0 see see that there exists no upper boundary for
i− jϕ = 1− 2t− tϕ. So π2 from Theorem 8.28 does not exist. We let µ = 1/2 and λ = 1. We then find

Fµ,λ(X,Y, Z) = −2XZ − Z2 = −(2X + Z)Z.

This is not a monomial in Z[X,Y, Z], not an element in Z[X,Y ] and not a monomial in Z[X,Y ] times
a power of an irreducible factor in Z[X,Y, Z]. We therefore see that the boundary from Theorem 8.28 is
a necessary condition.

One might wonder if we can allow less strong boundaries for Theorem 8.28. Is it for example good
enough if the roots fi(X,Y ) of F (X,Y, Z) are of the form in (8.2)? This unfortunately is not the case
as the following example shows.

Example 8.34. Let F := Z2− (X2− 1)(Y 2− 1). We saw in Example 8.6 that S(F ) is Zariski-dense in
T (F ) and that F is irreducible. When we view F as a polynomial in Z, we use the quadratic formula to
see that its roots are given by

f±(X,Y ) = ±
√

(X2 − 1)(Y 2 − 1).

We let g(V ) ∈ Q({(V −1)∗}) be any of the two roots for W in the polynomial W 2−V 2 + 1 ∈ Z[V,W ]. So
(g(V ))2 = V 2 − 1 and there exists R ∈ R such that g(v) converges for all v ∈ C with |v| > R. We can
write

g(V ) =
∑

t∈D(g(V ))

atV
t

for suitable nonzero at ∈ Q. By doing the algorithm to find the Taylor expansion of g(V ), we find

g(V ) = ±
√
V 2 − 1 = ±(V − 1

2
V −1 − 1

8
V −3 − 1

16
V −5 − 5

128
V −7 − . . .)

and we see that ordV g(V ) = 1. We substitute V by X and by Y and find√
X2 − 1 =

∑
i∈D(g(V ))

aiX
i

and √
Y 2 − 1 =

∑
j∈D(g(V ))

ajy
j .
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We therefore have that the two roots of F (X,Y, Z) are given by

f±(X,Y ) = ±
√

(X2 − 1)(Y 2 − 1)

= ±
√

(X2 − 1)
√

(Y 2 − 1)

= ±g(X)g(Y )

= ±
∑

i∈D(g(V ))

aiX
i

∑
j∈D(g(V ))

ajy
j

= ±
∑

i∈D(g(V ))

∑
j∈D(g(V ))

aiajX
iY j .

We see that f±(x, y) = g(x)g(y) converge for all x, y ∈ C with |x| > R and |y| > R. Also, for any
(i, j) ∈ D(f±(X,Y )) we must have i ∈ D(g(V )) and j ∈ D(g(V )). So both i and j are bounded from
above. We therefore see that the roots f±(X,Y ) are of the form in (8.2). Now let µ = 1 and λ = 2. We
then find

Fµ,λ(X,Y, Z) = Z2 −X2Y 2 = (Z +XY )(Z −XY ).

This is not a monomial in Z[X,Y, Z], not an element in Z[X,Y ] and not a monomial in Z[X,Y ] times
a power of an irreducible factor in Z[X,Y, Z]. We therefore see that Theorem 8.28 does not work if we
weaken the boundary condition such that roots of the form in (8.2) get accepted.

The first drawback of Theorem 8.28 is that in order to apply this theorem we do need to know what
the form is of the roots of the polynomial F (X,Y, Z). We did not need to do such thing in Runge’s
Theorem 6.1. The second drawback is that the conditions are very strong. We therefore can not use this
theorem often. Remark 8.29 tells us that we can remove the condition that demands f(x, y) to converge
if Conjecture 8.15 is true.

9 Further Reading

Runge’s Theorem helps us to prove that certain binary Diophantine equations have only finitely many
integral solutions. In these cases, we might wonder whether one could find boundaries on the size of such
solutions. Hilliker and Straus [7] obtained such bounds. Let F (X,Y ) ∈ Z[X,Y ] be a polynomial such
that we can prove by Runge’s Theorem 6.1 that F (x, y) = 0 holds for only finitely many x, y ∈ Z. Let
d = maxdegX F,degY F and h = ht(F ). Hilliker and Straus have showed that

max |x|, |y| ≤

{
4(h+ 1)2 if d = 1.

(8dh)d
2d3

if d > 1.

An improvement on these boundaries has been made by P. Walsh [14]. He found the following boundary
on these x, y ∈ Z

max |x|, |y| ≤ (2d)18d
7

h12d6 .

In this thesis we have made an attempt to generalize Runge’s Theorem to Diophantine equations in
three dimensions. Enrico Bombieri [2] has given a theorem that, as pointed out by John Coates, may
be viewed as a generalization to Runge’s Theorem. This generalization works over all higher dimensions
and requires a fast knowledge of algebraic geometry. His generalization has been described by Aaron
Levin [9].
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