
DevSecOps: Enabling Security
by Design in Rapid Software

Development

Amr Mustafa Ahmed

a.m.a.a.ahmed@uu.nl

First Supervisor
Dr. V. Moonsamy

v.moonsamy@uu.nl

Second Supervisor
Dr. S. Overbeek
s.j.overbeek@uu.nl

Daily Supervisor
C. Manadis

chris.manadis@accenture.com

January 30, 2019

Abstract

Context: Organizations have been using DevOps for several years now to
enable faster delivery of software to the market. End-to-end DevOps is be-
coming the goal of organizations. Within this rapid development, security
becomes a concern. Security has always been a separate silo that defines se-
curity requirements and demands for certain security controls to approve new
software code. In most cases, security is involved at a later stage when it is
expensive to make changes or apply fixes. Thus, it becomes an added layer
on top of the application, rather than an integrated part. Objective: The
goal of the research is to integrate security concepts in the development and
the operation phases of software production. This includes understanding the
meaning of application security and the risks that can be mitigated during the
DevOps process. Method: The main method used in this research is De-
sign Science Research as defined by Hevner and Chatterjee [55]. Further, the
following techniques were used; systematic literature review, interview, case
study and focus group. The research starts by understanding the problem
and the context where this problem emerges from. For this step, a literature
review and a round of interviews took place. This was followed by a design
science cycle where a solution of the problem is developed and improved based
on the knowledge collected in the previous step. The two created artifacts re-
sulted from a case study. To validate the results, a focus group session was
planned where experts gave their feedback on the artifacts and the final ar-
tifacts are created. The results are reported in this thesis report. Results:
This research results in two main artifacts, first the impact model. This model
shows the main areas that will be touched when trying to implement security
within a DevOps team. The second artifact is the DevSecOps framework
that illustrates what security measures can be introduced in DevOps pipeline.
Conclusion: It is possible to include security within a DevOps team. That
will require the team to learn a new set of skills and to add new tools to the
pipeline. It is cheaper to patch security issues as early as possible, therefore
focusing on security has to happen in the planning phase of each increment.

Keywords: DevOps, DevSecOps, DevOps Security, Software Security, Ap-
plication Security, Time to Market, Software Production.

List of Figures

1.1 OSI Model . 5

2.1 Research Questions Structure 9

3.1 Design Science Research, based on Henver [56] 12
3.2 Linear Iterative Activities . 13
3.3 Design Science Research in The Context of This Research . . . 16
3.4 Case Study Design based on Yin [106] 19
3.5 Case Study Analysis Tree of Nodes 21

4.1 DevOps Stages based on Rathod and Surve [83] 28
4.2 DevOps Outline . 29
4.3 DevOps in Practice . 38
4.4 DevSecOps in Literature and Practice 40

5.1 Impact Areas of DevSecOps 42

6.1 DevSecOps Initial Framework 49
6.2 OWASP Risk Classification 52
6.3 Risk Classification Action List 53
6.4 Penetration Testing Steps [37] 60

7.1 DevSecOps Impact Areas . 68
7.2 DevSecOps Proposed Framework 69

C.1 DevOps Stages based on Rathod and Surve [83] 101

i

List of Tables

3.1 Systematic Literature Review Results 17
3.2 Round 1 Interviewees List . 18
3.3 Round 2 Interviewees List . 20
3.4 Focus Group Participants List 22

4.1 Software Security Principles [38] [19] [87] 30

ii

Contents

1 Introduction 1
1.1 This Research . 1
1.2 Problem Statement . 3
1.3 Scope . 4
1.4 Relevance . 4
1.5 Structure . 6

2 Research Questions 7
2.1 Main Research Question . 7
2.2 Sub-Research Questions . 8
2.3 Relation between sub questions and main question 9

3 Research Approach 11
3.1 Research Method . 11
3.2 Design Science Research . 13

3.2.1 Environment . 13
3.2.2 Design Science . 14
3.2.3 Knowledge Base . 14
3.2.4 Rigor Cycle I . 14
3.2.5 Relevance Cycle I . 14
3.2.6 Design Cycle . 15
3.2.7 Rigor Cycle II . 15
3.2.8 Relevance Cycle II . 15

3.3 Literature Review . 16
3.4 Additional Literature . 17
3.5 Interviews . 17
3.6 Case Study Design . 18

3.6.1 Planning . 19

iii

3.6.2 Interviews . 20
3.6.3 Analysis . 21

3.7 Focus Group . 21

4 Background 23
4.1 Literature Review . 23

4.1.1 Agile and Software Production 23
4.1.2 DevOps . 24
4.1.3 DevOps Practices . 25
4.1.4 DevOps Stages . 27
4.1.5 Security in Software Production 29
4.1.6 Security Testing . 34
4.1.7 DevSecOps . 35

4.2 Interviews . 37
4.2.1 DevOps in Practice . 37
4.2.2 Security in Practice . 39

4.3 DevSecOps in Theory and Practice 40

5 Impact Areas of DevSecOps 41
5.1 Towards The Impact Area Model 41
5.2 People . 41

5.2.1 Culture . 42
5.2.2 Team . 43
5.2.3 Ownership . 44
5.2.4 Accountability . 44
5.2.5 Learning Process . 44

5.3 Tools . 45
5.3.1 Automation . 45

5.4 Values . 45
5.4.1 Measurement . 45
5.4.2 Velocity . 46
5.4.3 Control . 47

5.5 Processes . 47

6 DevSecOps Initial Framework 48
6.1 Initial Baseline Security . 48
6.2 Planning Board . 50

6.2.1 Security Requirements 50

iv

6.2.2 Security Classification 51
6.2.3 Threat Modeling . 53
6.2.4 Security Architecture Review 53

6.3 Development Environment . 54
6.3.1 Secure Coding . 54
6.3.2 Coding Guidelines . 55
6.3.3 Static Validation . 56
6.3.4 Dynamic Testing . 56

6.4 Testing Environment . 57
6.4.1 Vulnerability Scanning 58
6.4.2 Fuzz Testing . 58
6.4.3 Penetration Testing . 58

6.5 Production Environment . 59
6.5.1 Security Monitoring . 61
6.5.2 Configuration Check 62
6.5.3 Traceability . 62

6.6 Infrastructure Security . 63
6.6.1 Environment Segregation 63
6.6.2 Vulnerability Mapping 64
6.6.3 Patching and Update Management 64
6.6.4 Access Management 65
6.6.5 System-wide Traceability 65
6.6.6 Encryption . 65

7 Validation and Improved Artifacts 67
7.1 Impact Areas . 67
7.2 DevSecOps Proposed Framework 67

8 Discussion and Limitations 72
8.1 Discussion . 72
8.2 Limitations . 73

8.2.1 Construct Validity . 73
8.2.2 External Validity . 74
8.2.3 Reliability . 74
8.2.4 Evaluation . 74

v

9 Conclusion 75
9.1 Sub-Research Question 1 Answer: 75
9.2 Sub-Research Question 2 Answer: 76
9.3 Sub-Research Question 3 Answer: 76
9.4 Sub-Research Question 4 Answer: 77
9.5 Main Research Question . 77

10 Research Contribution and Future Work 79
10.1 Research Contribution . 79
10.2 Future Work . 80

Appendices 93

A Literature Review Protocol 94

B Interview Protocol 96

C Case Study Protocol 99

D Informed Consent 103

vi

Acknowledgment

“If you try, you risk failure. If you don’t, you ensure it.”

It is about two years now and I can’t believe I am already finishing this mas-
ter. What a journey! Now that I am at the finishing line, I look back at the
things I learned and the people I met and I feel proud that I finished. Very
challenging was this master, coming from a totally different educational back-
ground, language and culture. Now, I am definitely more confident about
my knowledge and my capabilities and ready for future.

Just like most of the students in the thesis phase, I had my own doubts
about the topic, research method or even myself. However, I was lucky that
I always had someone to ask or to talk to. Veelasha, Sietse, Chris, Arno and
Burhan, thank you very much for bringing the best in me, this wouldn’t have
been possible if it wasn’t for you, thank you for guiding me and pointing me
to the right direction. To all my teachers at Utrecht University and to every
single person who participated in my thesis, thank you. To my friends, Klea,
Baharak, Oka and the international group, big fat thank you for being there
through thick and thin, you made this master easier. I carry now memories
that I will never forget. Thanks to Robin, Thana, Faris, Abdulrahman and
Yannick who contributed directly or indirectly to my thesis, I appreciate the
support. I want to extend this thank-you note to Accenture for offering me
this amazing experience and to the GDPR interns and employees. Lastly,
my biggest thanks is to my family, mom, dad, brother and sisters no words
can express the gratitude I feel for your ultimate support all the way.

Amr Mustafa
January 14th, 2019
Accenture - Utrecht
The Netherlands

vii

Chapter 1

Introduction

This chapter provides a brief introduction on the concept of software devel-
opment. Thereafter specifying the scope, relevance, and overall structure of
the research.

1.1 This Research

Software development has changed dramatically in the past two decades.
New development languages, technologies and computing power have been in-
troduced and improved during the course of the years. Development method-
ologies are another driver of this development movement. Moving from
Waterfall-driven development [5] to Agile [6] enabled developers to address
market needs more precisely in reasonable time frames, and with a possibility
to iterate constantly as long as needed [6]. Further, DevOps was introduced
to leverage even faster development and deployment [71] [28]. DevOps is
based on the collaboration of two teams, Development and Operations, be-
coming one, allowing both teams to communicate better and work together
to solve problems. Additionally, DevOps fosters automation where possible
to enable faster cycles of operations and development, allowing organizations
to deliver value sooner to clients.

Software taxonomy includes a variety of software production and opera-
tion models based on many variables such as market [41], development en-
vironment [24], production environment [22] and licensing [22]. The value
delivered to the customer is highly based on these variables. For example, in
a cloud-based software, it is easier to rollout updates than a client-based soft-

1

ware. Updating cloud-based software requires installing updates on the cloud
and users can immediately access these updates. Whereas in a client-based
software, updates need to be installed on each client’s device separately. An-
other example is the licensing models. Software is considered as a service
when a subscription model is followed [49], while it is a product when users
are granted licenses. Many other models do exist to classify software. Within
all these alternatives, DevOps operates to deliver value faster to clients re-
gardless of the end deployment environment or licensing model. Clients get
fixes, updates and new features to their application as soon as they are ready
to be shipped.

As exciting as this sounds, security can become a major concern; data
breaches, account hijacking, malicious insiders to name a few [92]. Devel-
oping reliable software that can minimize these threats requires intensive
security tests. In a DevOps environment, rapid changes and updates are
deployed automatically into the production environment. Tens or even hun-
dreds of updates can be deployed everyday. In this hectic race of updates,
security might not be handled properly to keep up with the delivery time-
line. Normally, security is a slow process that requires time and resources,
therefore, slowing down the whole DevOps process, or they are simply over-
looked leaving not only the software at risk, but also all the clients’ data
stored or processed using the application. In practice, security tests, if exist,
take place at the testing stage. All security tests, as well as other tests are
conducted only during that stage. However, each stage in DevOps has its
own environment and therefor requires different tests.

DevSecOps is a new concept used for embedding the security perspective
into DevOps processes and embrace continuous security during all of the
DevOps stages. Continuous security was described by Fitzgerald and Stol
as:

“transforming security from being treated as just another non-
functional requirement to a key concern throughout all phases of
the development life cycle and even post deployment, supported
by a smart and lightweight approach to identifying security vul-
nerabilities” [78].

DevSecOps goes beyond providing tools, roles and activities to changing
the development and operations culture to ensure a higher level of security.
DevSecOps is not a final state, it is a journey.

2

1.2 Problem Statement

DevOps enables software to be delivered faster with smaller cycles called
“increments” or “iterations”. This well-established pace of producing soft-
ware is not expected to slowdown. It might rather get faster and faster.
At the same time, applications are expected to have robust security against
threats. They are also expected to recover quickly when security measures
fail to mitigate an attack. In a traditional working scheme, security tests are
performed after the development of code is concluded in so-called “Testing
Environment” or even later in the “Acceptance Environment”. Once an in-
crement passes the tests, it is labeled “secure” and shipped to customers, or
deployed to the production environment. This approach has several issues:

• Agility: Security tests require time. A tester needs to create test
cases and create a testing environment to prepare for the tests. If an
increment does not pass a test, the developers are notified and fixes are
applied to the increment. Afterwards, the tester creates new cases and
new environment to test again. This preparation for tests take a long
time when performed manually. Thus delaying the deployment stage
and clients can not receive the latest updates.

• One-time tests: Once an increment is labeled secure, it is deployed
into the production environment. However, no follow-up tests take
place, although new vulnerabilities are disclosed everyday. These one-
time tests do not guarantee that software is secure all the time. Which
leaves the whole application and the data it contains is serious risk.

• Security silos: Security is always the responsibility of the security
team. This team works in isolation of the other teams and with its
own pace. At the same time, the security team takes full responsibil-
ity in case of a security breach. This situation results in misalignment
between the security team who feels the pressure of securing the appli-
cation and the DevOps team who demands agility.

• An afterthought: when security is not considered at the start of an
increment, it is not an integrated part of the software. Security becomes
an added layer that is placed afterwards to only meet a regulation or a
policy. Security is considered too late in the process that it results in
high costs when applied.

3

The way of doing security has to be adapted to fit in this rapid DevOps
cycle to ensure the safety of clients, their data and the application. One data
breach can be very expensive for everyone and a real threat for the organi-
zation’s existence. Based on the aforementioned reasons, the problem state-
ment is stated as follows: “Software security is a slow process that hinders
rapid development in a DevOps framework. Yet, it is a critical requirement
to ensure the safety of the application and the clients’ data.”

1.3 Scope

DevOps as a method is widely adopted in the software market. It is flexible in
a way that each organization has its own implementation of DevOps. Security
on the other hand, from an application security perspective, is influenced by
the type of the application and the production environment. For example,
applications that run internally on a closed network are less likely to be
vulnerable than those which work on cloud.

The scope of this research has two dimensions, 1) Application develop-
ment based on DevOps and 2) Security. The direction of this research is
aiming for applications that are developed using DevOps in particular. This
includes, but not limited to, web based applications, cloud applications and
server-client applications. On the security dimension, security is considered
at the application layer. The International Organization for Standardization
(ISO) has developed a conceptual model named Open Systems Interconnec-
tion (OSI) that describes the conceptual levels of communication between
systems [63]. The model, shown in Figure 1.1, consists of 7 layers. Attacks
can happen at any of these layers. For example, on the network layer (layer
3), an attacker can target a router with a Black Hole attack [18] resulting
in permanent packet loss. This research focuses on the attacks that happen
on the application layer (layer 7) which are directly connected to software
development.

1.4 Relevance

Security is always looked at as an expensive and time consuming process
that is slowing down the development of software and works against the
main concept of DevOps of rapid cycles and immediate implementation of

4

Figure 1.1: OSI Model

fixes, updates and new features. The idea of including security at an earlier
stage of the process helps reduce the overhead time by doing the right things
in the first place. Eventually, all of these processes and measures aim to
comply with security standards and local regulations to protect users and
their data.

DevSecOps is a new concept derived from DevOps. While DevOps fo-
cuses on Development and Operations of software, DevSecOps adds a new
team to embrace security in this rapid process [76]. The need for the DevSec-
Ops concept emerged from the community working and adopting DevOps.
Gartner is expecting that more than 80% of rapid development teams will
use DevSecOps practices by 2021 [44]. This number is driven by high adop-
tion rate from security vendors who are developing security solutions that
take DevOps agility into account. The concept of including security within
DevOps has many keywords such as “DevSecOp, SecDevOps, DevOpsSec,
Secure DevOps, SecOps and rugged DevOps” [45]. Although the industry
has developed a foundation of the DevSecOps concept, the scientific research
is still very limited.

5

1.5 Structure

The following chapter, chapter 2, contains the main research question and
the sub-research questions. Chapter 3 describes the research approach and
the method used in this research. Additionally, it contains the scientific
ground for each research instrument used such as literature review and case
study. Chapter 4 contains the background information of the context of
the research, that is the literature review and the interviews conducted to
understand the research environment. Chapter 5 presents the impact areas
of including security in DevOps teams, which is the first artifact. Chapter 6
presents the DevSecOps framework which is the second artifact. In chapter 7,
the validated artifact are presented. It includes the main changes that has
been introduced to the initial models. Chapter 8 has the discussion and the
limitation of this research. The sub-research questions and the main research
question are finally answered in chapter 9. The last chapter, chapter 10,
presents the research contribution of this thesis and points out the following
steps for future research.

6

Chapter 2

Research Questions

This chapter details the questions used to direct this research. There is one
main research question that is broken down to four sub-research questions.

2.1 Main Research Question

The overall goal of the research is to integrate security concepts in the devel-
opment and the operation phases of software production. In present, security
is approached in the testing stage of an application and sometimes in pro-
duction depending on the application. For both stages penetration testing as
well as other tests and tools are used. However, security is not applied in all
the stages, therefore the main research question consists of two core aspects.
The first aspect is continuous security which indicates how security can be
involved during the whole cycle of DevOps and not only limiting security
to couple of control gates. The second aspect is rapid value delivery which
refers to how new updates that comply with security policies are deployed to
the production environment within DevOps time frame.

Main Research Question: How can security be added to a DevOps
framework to guarantee continuous security and rapid value

delivery?

7

2.2 Sub-Research Questions

The main research question is broken down into four sub-research questions.
The first one is a knowledge question while the other three are research
questions.

RQ1: How is security approached in DevOps framework in theory
and in practice?

The first sub-research question aims to position the research by exploring
security in DevOps teams from two perspectives: theory and practice. In the
theory part, the goal is to understand the scientific research around DevOps
and the stages where security controls take place. In the practical part, the
focus will be on how this theory is applied in real-life and what is the gap in
between. Additionally, the theory used will create the base for the proposed
artifacts.

RQ2: What is the impact of implementing DevSecOps on
organizations?

The second sub-research question defines the main outline of DevSecOps.
Introducing security into DevOps teams will bring changes to how the teams
are formed. This question defines these areas so that they are highlighted
during a transformation process.

RQ3: What are the changes that DevSecOps introduces to a
DevOps team and how will those changes impact a DevOps team?

After answering this question, the next step is to create the DevSecOps
framework. DevOps theory is used to create the outline of DevSecOps. The
framework answers the questions of what will change in current DevOps
processes. This question dives deeper to DevSecOps’ stages and practices.

RQ4: How are the proposed artifacts validated by experts?

The last sub-research question is the validation question. The constructed
artifacts are to be validated and improved in an iterative cycle. The answer
of this question will include improvements of the constructed artifacts. The
artifacts will be ready to be applied in real-life.

8

Figure 2.1: Research Questions Structure

2.3 Relation between sub questions and main

question

The sub-research questions are divided in three groups. Figure 2.1 illustrates
how the sub-questions relate to each other. The bottom layer in the Figure,
which is RQ1, is mainly for creating a concrete background about the domain
of this research. The answer to this question is directing and influencing
the remainder of the research. The second layer includes the sub-research
questions of constructing the artifacts, answering the questions of what and
why. RQ2 is defining the main touch points of DevSecOps in an organization
by giving a high abstraction about the main change areas. RQ3 focuses in
detail on the processes of DevOps and what can be included from a security
perspective on the DevOps processes. Finally, RQ4 is focused on evaluating
these artifacts and explore the areas of improvements.

Each of the sub-research questions represents a part of the puzzle. While
the first question is creating a theoretical and practical base for the research,
the second and third questions aim to build theory on DevSecOps. While

9

the second question elaborates on the DevSecOps’ impact areas, the third
question explains in details the framework of DevSecOps. The last piece of
the puzzle is to validate how all these components hold together in the eyes
of experts.

10

Chapter 3

Research Approach

This chapter describes the research method, the different cycles it had and
the instruments used to conduct the research. It also includes the scientific
grounds of each of the instruments and the reasons they were selected for
this research.

3.1 Research Method

This research follows Design Science Research as defined by Hevner and Chat-
terjee [55]. Design Science Research is a solution-oriented method. While it
provides solutions to problems in the real-world, it also aims to provide it-
erative solutions that relate to the environment and the existing knowledge
around the problem. Design Science Research aims to carefully study the
problem environment, create solutions for that context and finally apply and
evaluate these artifacts [56] [81]. It is defined as a method that “seeks to
create innovations, or artifacts, that embody the ideas, practices, technical
capabilities, and products required to efficiently accomplish the analysis, de-
sign, implementation, and use of information systems.” [57].

Hevner has identified the processes involved in design science research [56].
Figure 3.1 illustrates these processes, referred to as “cycles”. These cycles
connect three main domains, Environment, which refers to the context
where the problem has emerged from. This includes people and organi-
zation, IT systems and infrastructure. Knowledge Base is the reference
point for all the knowledge that exists around the problem context including
scientific research, the experience of the people working in that specific prob-

11

Figure 3.1: Design Science Research, based on Henver [56]

lem domain and current alternative solutions. The Design Science is the
process of compiling the knowledge, or generating new knowledge, to solve
the problem and validating the proposed solutions. It is an iterative process
of building and validating how proposed solutions fit in the context. These
three domains are connected by three main bonding cycles and each cycle
has two main activities.

Relevance Cycle: in this cycle, there is a connection between the Envi-
ronment and the Design Science. In the beginning of the research, Environ-
ment is considered as the input of the Design Science. In this step, researchers
will collect requirements and build a context of the research, while towards
the end of the research, the Environment receives the results of the research,
the artifact, and applies it in the predefined context. The relevance cycles
ensures that the resulted artifact do indeed solve the problems.

Rigor Cycle: on the other side, a rigor cycle aims to ensure the novelty
of the proposed solution, connecting the design science with the knowledge
base. First, the researchers have to ground the research by looking for the
knowledge in the domain of the research. The knowledge includes scientific
research, experts’ opinion and existing solutions. Second, when a final solu-
tion is developed, this solution is added to the knowledge base and reused,
where applicable.

Design Cycle: the last cycle is an internal cycle which aims to combine
the knowledge with the environment and results in realistic solutions that are
innovative and applicable to the predefined context. Like the previous cycles,
the design cycle has also two activities building an artifact, and testing the

12

Figure 3.2: Linear Iterative Activities

artifact. In the building activity, researchers use all the knowledge collected
from the knowledge base and all the requirements from the environment into
account. Additionally, in the validation activity, the usefulness of the appli-
cation is tested. This is a continuous cycle that happens until satisfactory
results are reached.

3.2 Design Science Research

Figure 3.2 shows a linear sequence of iterative activities that are followed in
this research. Mainly, the steps are categorized in five cycles, where each
phase contains one or more activities. Each cycle connects two of the three
domains. Figure 3.3 shows how the framework of Hevner is applied. The
following sections elaborate in detail the three domains and the five cycles.

3.2.1 Environment

The Environment, where this research took place, was Accenture. A large
consulting company with more than 470,000 employees around the world.
Accenture is a leading company in technology and innovation market and
they have strategic partnerships with Amazon, Microsoft and other high
tech companies. As a consulting company, Accenture’s employees work at a
client to solve a problem. In this research context, participants worked at a
wide variety of sectors on software delivery projects.

13

3.2.2 Design Science

In the Design Science domain, the artifacts were created based on the data
collected from the other two domains. Further, they were validated with the
daily supervisor. Thereafter, the artifacts were formally validated on a focus
group session.

3.2.3 Knowledge Base

The Knowledge Base used for this research was mainly literature and ex-
perts. The literature review was based on a systematic literature review and
that is detailed in section 3.3. Additional literature sources were used to
support the ideas proposed in the interviews. For these supporting material,
google scholar was the main source. Finally, this thesis report is created and
published in the university thesis library.

3.2.4 Rigor Cycle I

In this phase, one main activity was performed, which was literature review.
The main task of this activity was to look up and summarize the current
knowledge of DevSecOps, DevOps and Software Security. Performing this
task requires collecting scientific papers from multiple search engines and
reading these papers to understand the state of the art. The detailed proto-
cols are reported in appendix A. The results and findings are reported in the
literature review section 4.1.

3.2.5 Relevance Cycle I

The aim of this first cycle of relevance is to understand the context of the
problem in practice. The focus is on the use of DevOps in software production
and security. Running this cycle includes interviews with experts in software
production, developers, testers and security experts.The interview protocol
of this interview is in appendix B. The results of this activity is reported in
section 4.2.

14

3.2.6 Design Cycle

Both of the previous phases are used as inputs in this core phase. This phase
results in the main output of the research. Two main activities are planned:
build artifacts and validate artifacts. In the build activity, two main outputs
are expected.

• Impact Areas: is an abstract model that represents the main touch
points that DevSecOps interacts with in the process of transforming to
DevSecOps. This model is introduced in section 5

• DevSecOps Framework: is a detailed view of the changes that hap-
pened within the DevOps process. The process itself does not change,
however, the activities that happen within this process encounters in-
troducing security measures. The DevSecOps framework is introduced
in section 6.

After creating these two artifacts, they were improved with the daily
supervisor. Afterwards, they were validated and improved in a focus group.
The attendees were composed of all DevSecOps teams namely: Development,
Operations and Security to provide a balanced validation. The artifacts were
improved afterwords.

3.2.7 Rigor Cycle II

Once these artifacts are built, validated and improved, they are reported in
this thesis report. These deliverables contribute to the scientific body and
add to the knowledge base. The artifacts are then available for reuse in
relevant contexts.

3.2.8 Relevance Cycle II

The main idea of this research was to solve a problem in real-life scenario.
The ideal situation is to apply the results in real-life, however applying the
results in real-life requires a long time to adopt a change, therefore it is out
of the scope of this research, yet, it is recommended to apply the results in
real-life and observe changes.

15

Figure 3.3: Design Science Research in The Context of This Research

3.3 Literature Review

The literature section in this research follows a systematic literature review.
Kitchenham [66] defined systematic literature review as a “means of identify-
ing, evaluating and interpreting all available research relevant to a particular
research question, or topic area, or phenomenon of interest.” This method
was selected because of two main reasons, first, a systematic literature review
is used to show a gap in research by summarizing current research work [12].
Second, it is used to form the base of the following steps of the research [66].
In this research, the goal is to identify the research done on DevSecOps and
verify the research gap. Additionally, the review will be used as a base for
the rest of the research and artifacts.

Three main phases are identified in Evidence-Based method by Kitchen-
ham et al. [67] and explained by Brereton et al. [10]. A review protocol is first
created [12] [10]. The protocol, which is attached in appendix A, includes the
strategy of the research such as the search engines, keywords used and the
limit of search results. Additionally, it contains the inclusion and exclusion
criteria of the literature found. Second, the literature review is conducted
and the search results are shown in table 3.1. The collected papers gave a
good foundation of the topic and the research, however, in some cases, addi-
tional sources were used. These additional resources do not necessary comply

16

Item Number of Papers
Total number of papers collected 161
Total excluded papers 61
Excluded because of: Not English 4
Excluded because of: Duplication 6
Excluded because of: Older then 2014 3
Excluded because of: Book 8
Excluded because of: Irrelevant 40

Table 3.1: Systematic Literature Review Results

with systematic literature review exclusion criteria. Third, the results of the
literature review are reported in section 4.1.

3.4 Additional Literature

The systematic literature review resulted in primary sources. However, ad-
ditional literature was required to explain the components of the artifacts.
Snowballing within systematic literature review is explained by Wolin [103].
This method was followed partly. First, the “Start Set” was the literature
found in the systematic literature review. The “Iterations” refers to the di-
rection of finding additional sources which can be Backward Snowballing or
Forward Snowballing. The backward snowballing means looking into the ref-
erences used in the primary sources to find additional sources, while the for-
ward snowballing means finding the literature which cite the primary sources.
In this research, backward snowballing was used because, the domain of this
research is new and forward snowballing does not result in relevant literature.
Finally, for the “Data Extraction” the sources were scanned and relevant in-
formation was reported.

3.5 Interviews

Interviews are conducted in two phases of the research. First in the rele-
vance cycle it is used to understand the context of the problem, which is
then used again in the design science cycle to validate the constructed arti-
facts. The second round of interviews is detailed in the case study section

17

Interviewee ID Code Role Years of
Experience

Interviewee 001 int.01 Tester 3 Years
Interviewee 002 int.02 Developer 10 Years
Interviewee 003 int.03 DevOps Coach 6 Years
Interviewee 004 int.04 Developer 3 Years

Table 3.2: Round 1 Interviewees List

3.6.2. Interviews are one of the main tools used in collecting data in qual-
itative research [90]. There are three main types as defined by Doody et
al. [27]: structured, unstructured and semi structured. For this research,
semi structured interviews were conducted. This type of interviews allows
researchers to ask additional follow-up questions for more clarification, which
in return enrich the quality of the interview and the research. The main pro-
tocol is created for each phase. The interviews are recorded, transcribed and
analyzed using Nvivo, a software used for qualitative research.

The first round of interviews was mainly focused on understanding how
security is applied in real DevOps projects. For this stage 4 interviewees were
asked about DevOps and Security. The full interview protocol is enclosed in
the appendix B. Table 3.2 shows details about the interviewees and the code
name that will be used for referring to them in the remainder of this thesis.
The interviewees were asked to sign an informed consent that is enclosed in
appendix D.

3.6 Case Study Design

The case study is conducted to answer RQ2 and RQ3. It was designed based
on the description explained by Wohlin et al. [104] and Yin [106]. They
defined case studies as “an empirical method aimed at investigating contem-
porary phenomena in their context” [104]. Additionally, they emphasized the
use of multiple sources of evidence. A case study might contain many other
research method elements such as interviews, surveys and experiments. The
results of the case study do not provide statistical significance, but rather
makes conclusions based on documents, figures and statements. The follow-
ing sections elaborate on the case study design in this research.

18

Figure 3.4: Case Study Design based on Yin [106]

3.6.1 Planning

A case study can be classified in one of four categories as demonstrated by
Yin [106]. Figure 3.4 illustrates that a case study can have a holistic or
embedded view. On another level, a case study can be performed on one
case or multiple cases. This research is applying an embedded analysis on
a single case design, which is highlighted in green in Figure 3.4. The case
is DevOps teams and the analysis units are Development team, Operations
team and Security team in the context of rapid software production. The
objective of the case study is to create an impact model as well as a DevSec-
Ops framework. The case does not particularly focus on one team rather on
the individuals in the teams and the process of applying DevOps stages. The
theory used to define the outline of the case study is the DevOps theory and
the theory of software security. A systematic literature review is conducted to
define this outline and it is presented in section 4.1. This planned case study

19

aims to answer sub-research questions two and three that are presented
in section 2. The methods used in this case study are interviews, literature,
security strategy documentations, standards and white papers. Finally, the
selection strategy consists of grouping content in three groups: Develop-
ment, Operations and Security, and conclusions will be based on making a
triangulation. This technique is used to cover all views of the case. The case
study protocol is enclosed in appendix C.

Interviewee ID Code Role Years of
Experience

Interviewee 005 int.05 Developer 3 Years
Interviewee 006 int.06 Software Architecture 10 Years
Interviewee 007 int.07 Tester 10 Years
Interviewee 008 int.08 Quality Engineer 7 Years
Interviewee 009 int.09 Application Security 8 Years
Interviewee 010 int.10 Application Security 8 Years
Interviewee 011 int.11 Security Operations 1 Years
Interviewee 012 int.12 Cybersecurity 3 Years
Interviewee 013 int.13 Operations 11 Years
Interviewee 014 int.14 Service Delivery 13 Years
Interviewee 015 int.15 Operations 12 Years
Interviewee 016 int.16 Containerization 1 Years

Table 3.3: Round 2 Interviewees List

3.6.2 Interviews

A second round of interviews is conducted as one of the data sources used.
The second round had a different line of questions that are enclosed in the
appendix C.5. The goal was to understand the main impact areas and also
to identify the security interventions that can be taken in each step of the
DevOps process. Interviewee selection was based on domain of experience
and knowledge about DevOps and software security. Table 3.3 shows the
interviewees who participated in this phase and the code names that will be
used in the remainder of this research. The interviewees were asked to sign
an informed consent that is enclosed in appendix D.

20

Figure 3.5: Case Study Analysis Tree of Nodes

3.6.3 Analysis

The Analysis of the case study required using Nvivo. In this application,
a tree of nodes was created to contain all parts of the artifacts. Figure 3.5
shows all the nodes created in 3 levels of abstraction. The framework branch
includes the perspectives of DevOps-stages in all roles, i.e. development,
security and operation. The same stage is compared across the teams and
conclusions are based on that. On the impact area model branch, four main
components are used to determine the impact area model, Culture, Automa-
tion, Team and Value. After analysis, the initial artifacts were created.

3.7 Focus Group

Focus group is a technique used to validate artifacts [104]. It is a direct
approach where experts are asked about their professional opinion on the
artifacts. However, the participants should have a background on the topic
and a good understanding of the artifacts and the context of the problem.

21

Participant ID Code Role
Participant 017 part.17 Daily Supervisor
Participant 018 part.18 Academic Supervisor
Participant 019 part.19 Operations
Participant 020 part.20 Agile Coach
Participant 021 part.21 Accenture Security
Participant 022 part.22 Accenture Security

Table 3.4: Focus Group Participants List

Unlike interviews, focus groups allow and encourage the discussion between
participants to validate the artifact on a holistic level, provided that the
session has a clear plan and an appropriate moderation. The final result of
the focus group session is to have improved artifacts that are applicable in
the problem environment.

In this research, the focus group is used to validate the artifacts created
in the case study. A small group of experts were invited for the session to
answer three main questions:

1. Are the models complete? The goal of this question is to under-
stand if the proposed models have all the components according to the
experts.

2. Are the models correct? The goal of this question is to understand
if all the components are placed in the correct location and have the
correct meaning.

3. What can be improved? The final question seeks general comments
on what can be improved about the models.

After presenting the case study results and explaining the context of
the problem, an open discussion took place to answer the aforementioned
questions. Participants were given a copy of the models and they were asked
to write down their ideas and discuss them. These copies, along with the
session’s recording, were used to create the final artifacts.

The final findings of this session are reported in section 7. The experts’
profile who participated in the focus group session is shown in table 3.4. Two
of the research supervisors attended the session. Besides, a couple of interns
and new employees have attended the session to observe, they did not engage
in the discussion.

22

Chapter 4

Background

This chapter provides an answer to the first sub-research question. The first
part is a literature review of the relevant topic to DevSecOps. The second
part reports on the first round of interviews. Both parts give a context on
how security is approached in literature and practice.

4.1 Literature Review

4.1.1 Agile and Software Production

Software Development took a sharp turn moving from a Waterfall approach
to Agile. This turn allowed developers to deliver software within a short
time frame [3]. Clients became more involved in the process and iterations
occurred more rapidly. Prior to this milestone change, developers followed
traditional project planning approaches to develop software. A project would
be broken down to phases: analyzing, designing, implementation, testing
and delivery to the client [5] [69]. As successful as this approach can be in
other fields, in software production following this waterfall model leads to
unsatisfactory results. The core issue with this model is that it is not able
to adapt to change. Clients usually come up with new requirements, that is
emerging from business, in the middle of a developing phase which can not
be included anymore. Additionally, clients were involved only in the start
of a project, when requirements are collected, and at the end of the project
when the final product is delivered. This limited interaction led to wasting
resources on developing software that is not needed. Agile was introduced

23

to change the whole process by allowing iterations, involving clients and
shortening the life cycle of software development to allow clients see through
what is coming and make iterations where needed [7].

Once the Agile approach was proved useful, other approaches were cre-
ated on top to be more case specific. Scrum and Kanban are examples of
approaches that are based on Agile [40]. Although these two examples are
different in the details of the daily processes of software development they
both hold on the values that Agile provides. Both approaches are widely
adopted in the market and both have certification tracks. Lean![29] is yet
another concept that holds on to Agile values [100] and mainly focuses on
team collaboration, clients and quick feedback. These examples, and many
more, show how Agile changed the narrative of software development as more
and more companies apply Agile or a type of Agile.

4.1.2 DevOps

The early implementations of Agile were focused on improving the efficiency
of the development phase. These implementations introduced processes that
facilitate the development of a desired and working software in a reason-
able period of time. However those early implementations, the task of the
developer ends once a running code is committed. The following steps are
handled by another team, namely: operations, who is responsible for making
this committed code ready to use for the clients [11]. While the development
team seeks to change rapidly, the operations team wants to create a stable
environment for clients [59]. These two different goals were counterproduc-
tive. Miscommunication and misalignment between these two teams result in
longer periods of delay before deployment [31]. Enabling faster cycles meant
breaking the wall between these two teams to empower collaboration from
the start of the planning until it gets to users. DevOps is introduced, on top
of Agile, to solve the issue of delivering value to clients faster [31].

DevOps, which is a word coming from Development and Operations, is
yet another extension of Agile [64]. It is an approach that emerged from the
need of breaking the silos between the Development team and the Operations
team [32] [59] [91]. DevOps’ key enabler is the software delivery model. In
a traditional software development, software is delivered to clients based on
periodic releases. The release includes one or several updates to a running
software which might include new features, tools or fixing of bugs. All of
these updates are installed in one released package from development. This

24

model is known as Software as a Product (SaaP) [77] . In the case of web
applications and cloud, the delivery method is different. All new updates and
features can be directly deployed in the web application server or the cloud
and users can immediately use these updates. This delivery model, which
is called Software as a Service (SaaS), changed the release planning phase.
Updates are no longer bundled by type or importance rather than deploying
every feature as soon as it is ready for push.

In literature, there are several definitions of DevOps ranging from very
general to very specific. Jabbari et al. [64] conducted a literature review
about DevOps’ definition and practices where they identified eight compo-
nents from different definitions, 1) Development and operations, 2) Commu-
nication, collaboration and team working, 3) Bridging the gap, 4) Develop-
ment method, 5) Software delivery, 6) Automated deployment 7) Continuous
integration, 8) Quality assurance. Using these components, they came up
with a more holistic definition. They defined DevOps as

“A development methodology aimed at bridging the gap between
Development and Operations, emphasizing communication and
collaboration, continuous integration, quality assurance and de-
livery with automated deployment utilizing a set of development
practices.” [64].

The definition emphasizes the collaboration between teams continuous in-
tegration, and automation. First, team collaboration refers to how both
teams work together in continuous cycles of feedback to help and correct
each other [64] [91]. This collaboration creates an environment where ev-
eryone is responsible for the code and delivering value to the client [51].
Secondly, continuous integration means how software can move from a de-
velopment phase to an operation phase continuously and keep pushing new
updates to operations once they are ready [73]. Finally, to increase speed of
processes, automation is another driver. DevOps support automation wher-
ever applicable [59].

4.1.3 DevOps Practices

1. Collaboration: DevOps brings two different teams closer [91] [101] [52].
Developers not only write the code, but also process feedback from op-
erations about issues within the operation team which need adjustment
at the development stages. Operators on the other hand provide input

25

for developers and both teams become responsible for delivering a work-
ing code to clients [40]. Tools, like JIRA1, Slack2 and Trello3, do exist
to allow an effective collaboration between teams [11]. Yet, the main
issue is the change of culture [71] [40]. Organization’s culture in its
broader outline is defined by how an organization approaches its goals.
Hofstede [58] has identified the dimensions of organization’s culture.
One of these dimensions was the Individualism and Collectivism. Indi-
vidualism refers to how employees in organizations are more focused on
personal achievements rather than thinking as a team (Collectivism).
DevOps is guided by a cultural shift to collaboration [21] where infor-
mation sharing is the responsibility of both teams [71].

2. Automation: To achieve shorter cycles from development to opera-
tion, minimizing the manual work is essential [71]. Automation in De-
vOps appears in most stages: build automation, test automation [31],
integration automation [101], configuration automation [31] and de-
ployment automation [64]. These concepts collectively are referred to
as the delivery pipeline [101]. In a pipeline, an artifact goes through the
different stages, namely: build, test, integrate and deployment, hence
automatically reducing time, effort and manual errors. In case a test
was marked unsuccessful, the process is aborted [31]. Many tools ex-
ist to support automation, in fact, each of the mentioned areas has a
full set of tools, such as Jenkins4, puppet5 and Selenium6 to name a
few. Therefore, selecting a proper “tool chain” is a critical decision [11].
Tools are classified by the tasks they are performing, i.e. testing, build,
configuration, or by their source, i.e. open source or commercial tools.
They can also be classified by scale where some tools are good for small
organization, other tools work best on large-scale enterprise setting.

3. Continuity: Automation implied perpetuation of process throughout
the life cycle of an application. Continuous Integration and Continuous
Deployment (CI/CD) are fundamental concepts in DevOps. Powered
by automation tools, the process of integrating the code and deploying

1https://atlassian.com/software/jira
2https://slack.com
3https://trello.com/
4https://jenkins.io/
5https://puppet.com/
6https://docs.seleniumhq.org/

26

it becomes efficient [84]. Continuous Integration is the process of con-
necting the different components of a software on top of each other into
one working software. The components can have different sources or
produced by different teams [65]. Continuous Deployment, on the other
hand, is the process of delivering the final good code to the production
environment where it is ready for use [78]. The concept of continuous*
(pronounced: Continuous Star) emerged to extend over the need for
instant change beyond CI/CD. Continuous* includes not only build,
testing, integration, deployment but also goes further to cover other
DevOps processes such as continuous planning, continuous use, contin-
uous monitoring, continuous feedback and continuous security [40].

4. Monitoring and Measurement: Monitoring is part of the opera-
tions team tasks. It involves monitoring the running applications and
how resources are allocated. Additionally, it contains monitoring the
infrastructure and report problems when they arise and address them
if possible or notify a team member [71]. Monitoring is a process that
tells if a system is doing what it should be doing, or alerts the staff
when this is not the case. To be able to determine the Behavior of a
system, a concrete measurement model is needed [89]. This model is
based on success factors emerging from the business, if these are not
well defined, it is hard to determine how successful the implementation
of DevOps is and the whole monitoring purpose becomes pointless [40].
The results of monitoring are organized and used in the feedback loop
for the next development iteration.

4.1.4 DevOps Stages

DevOps has multiple frameworks. Each organization has its own approach
of adoption, chain of tools, principles and policies [32]. In general terms, the
DevOps cycle contains two main components: development and operation.
At the development stage, the team uses the feedback from the operations
stage, along with other sources, as input for their phase. On the other direc-
tion, the operation stage takes the code produced by the development stage
and deploy it in the production environment. The process takes place in sev-
eral virtual environments organized in a “pipeline”. Microservices represent
the independent features, bug fixes and quality enhancements to be devel-
oped and deployed. The development process, showed in Figure 4.1, starts by

27

Figure 4.1: DevOps Stages based on Rathod and Surve [83]

planning where the development team prioritizes requirements in the plan-
ning stage. Once tasks are selected, resources are assigned and coding starts.
In this second stage, the developer follows a predefined style of coding which
aligns with what other developers are working on. Before starting a build
process, teams peer-review each others code to ensure the quality of the code.
The build is the process of compiling the source code to produce a software
artifact. If the build has issues, the process is aborted however, if it was
successful, it continues to the last step in the development phase. Testing
is a process of examining if the produced code is behaving as expected and
handles unexpected situations without breaking the software. Testing is a
large process that contains functional tests, quality tests, security tests and
performance tests [59].

Applying DevOps requires automating development and operations pro-
cesses. In particular the build, test, release and deployment stages [91]. Once
a developer commits a code, the code goes through a pipeline of automated
processes. First, the server, i.e. Jenkins server , will pull the committed code
and creates a new build for the software. If succeeded, the code proceeds to
the testing environment [83]. In this stage, the code is tested against prepared
and updated tests for Quality Assurance (QA). Containers, such as Docker7,
can be used to create dynamic testing environment that is easily destroyed
after the test [50]. If the code did not pass the tests, the process is aborted
and the developer is notified. After passing the tests, the code is ready for
release and deployment. The code is moved once more to the production

7https://www.docker.com/

28

Figure 4.2: DevOps Outline

environment using a delivery model such as blue-green deployment [50]. All
of these processes can happen hundreds of time per day. DevOps outline is
summarized in Figure 4.2.

4.1.5 Security in Software Production

Simply producing a code that is performing the required task is no longer
enough. Security of applications is a critical factor for businesses to select
software vendors. Security breaches happen when a code is used unexpect-
edly to influence security principles: confidentiality , integrity, availability,
authentication, authorization and nonrepudiation of software [38] [23]. Such
behavior can harm users, businesses or governments. Security principles de-
fine the borderlines of security. Table 4.1 concludes how these principles are
defined in literature. Integrating security within the application is a chal-
lenging, yet required, task.

Starting from the very bottom, security requirements are considered part

29

Term Definition Attack Example
Confidentiality is the assurance that information

is not disclosed to unauthorized
individuals, processes, or devices.

SQL injection

Integrity is provided when data is un-
changed from its source and has
not been accidentally or mali-
ciously modified, altered, or de-
stroyed.

Deserialization at-
tack

Availability guarantees timely, reliable access
to data and information services
for authorized users.

DDoS attack

Authentication is a security measure designed to
establish the validity of a trans-
mission, message or originator, or
a mean for verifying an individ-
ual authorization to receive spe-
cific categories of information.

SQL injection

Authorization provides access privileges granted
to a user, program, or process.

Session hijacking

Nonrepudiation is the assurance that none of the
partners taking part in a transac-
tion can later deny of having par-
ticipated.

Repudiation attack

Table 4.1: Software Security Principles [38] [19] [87]

of the non-functional requirements which include performance, usability, ro-
bustness and many others. Security requirements are not the same for each
application or environment. Once identified, they are planned for develop-
ment and testing. However, the main observation is that security features are
slowing down the delivery process [73]. In traditional software development,
security tests are performed after the code is developed and tested. A tester
would eventually hand in a list of changes and bugs that must be fixed before
a release is approved [15]. Considering a DevOps approach where software
is rapidly changing, security hinders the overall process.

Vulnerabilities are defined as system characteristics that allow for a class

30

specific security breach [38]. In other words, they are weak points in the
system that enable attackers to compromise the security of an application.
These vulnerabilities can also exist in open source libraries [72] which de-
velopers reuse to build their own applications. Web applications and cloud-
based applications are more accessible to attackers than closed secret sys-
tems. Other emerging technologies such as payments systems, IoT and smart
phones in health introduce serious risks [20]. OWASP8 has identified the top
ten most potential threats in 2017 [1]. This open source project aims to
educate developers, product owners and web application community about
the baseline security quality to take in consideration when developing an
application. The following compiles the list of 2017.

1. Injection: is one of the most common types of attacks. The nature
of this attack can impact many software technologies such as SQL,
NoSQL and XML. The attack is based on sending untrusted commands
through a string parameter [17]. This data is then executed at the
server side resulting in unauthorized access, disclosure of data or denial
of service [80]. According to the OWASP metric [1], this exploit can be
easily launched, although more complex attacks can be created, and the
technical impact can be severe. Preventing this attack includes adding
extra layer of coding that examines the executed input and output.
Yet, the main challenge is how to distinguish attacks from legitimate
queries. For this, machine learning techniques can be used to create
classifiers that can identify the nature of the executed commands [99].

2. Broken Authentication: is an attack that aims to gain access to
a system through passwords, keys or session tokens. In particular, at-
tackers are using combinations of common user names and passwords or
by guessing them to gain access and compromise the system. This at-
tack is heavily based on password and key management. For example,
systems that create a predefined password for users are in high risk.
Additionally, session tokens are exploited if not configured properly.
Attackers can reuse authenticated tokens to gain access [54]. Covering
this weakness requires installing password mechanism, that checks for
weak passwords, and using multi-factor authentication. It also includes
reviewing the session management flows and use of Single Sign-On to-
kens (SSO) that expire after one use [1].

8https://www.owasp.org/

31

3. Sensitive Data Exposure: is targeted towards acquiring data from
servers (data at rest), in transit or at the client’s side, i.e through
browser. Attacks aim to get sensitive data such as credit card number
or personal identifiable information (PII) which is used to commit fraud
or identity theft, leaving users with severe impact [26]. Companies can
also be held accountable for not adhering to local personal regulations
like General Data Protection Regulation (GDPR)9. On the application
layer, this attack happens when text is not encrypted when transmitted
using HTTP, SMTP or FTP protocols or when old, weak encryption
algorithms are used. To improve an application against these attacks,
PII data must be classified and encrypted in all states. Besides, en-
cryption algorithms need to be updated, enhanced and enforced by the
application [1].

4. XML External Entities (XXE): is an XML attack. In fact, it
is a feature used in older versions of web applications to allow XML
parser to execute external code. However, like other injection based
attacks, when untrusted code is parsed, it results in a denial of service
attack. One example is the Billion Laughs attack [70] where a small
code can result in a DoS attack. Eliminating this vulnerability starts
with disabling External Entity parser on the web application if possible
and implementing a safe server-side validation and filtering of input.

5. Broken Access Control: is an attack aimed to get privileges in the
system. Either a user performing administrator-level functions or a
visitor performing users’ tasks. The access controls are not easily au-
tomatically detected. Some tests, like the static code analysis, can
indicate if the system has access controls, yet, it is not possible to
know if they are functioning properly. Attackers would bypass controls
by modifying URLs or use unauthorized API access. Such a breach can
result in data loss, disclosure or alteration. To defend against these at-
tacks, critical pages must not be accessible without authentication and
disabling the web server directory listing. Besides, on a defensive as-
pect, failed access controls are to be logged and admins are notified [1].

6. Security Misconfiguration: is yet another threat that can be pre-
vented with proper security and testing [34]. Applications come with

9https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IMM14202GBEN

32

predefined default parameters such as user names and password, ports,
unpatched applications and services. The unused parameters are searched
by attackers to take over a system. These default values can be on
the infrastructure level such as server OS, containers, web server, i.e.
apache, database, or the application itself [93]. A developer needs to
identify the services needed to perform the task of the application and
switch-off any unused service. Additionally, regular updates and se-
curity patches are to be taken seriously to ensure the highest level of
security.

7. Cross-Site Scripting (XSS): is one of the most widespread attacks
according to OWASP. The idea is to allow an attacker to execute a
script on the user’s browser allowing him to steal cookie or credentials
of the user. The attack starts by posting a malicious script to a vul-
nerable web application. Once a user accesses the web application, he
will get a response from the web application including the malicious
script [86]. The code will execute on the user’s machine and will ini-
tiate a connection with the attacker to send the information stored on
the browser. Preventing this attack has two layers. First, at the server-
side, applications need to isolate untrusted posted code from the active
application content. Second, at the user-side, browsers are improved
to escape executing malicious code and escape HTTP requests [1].

8. Insecure Deserialization: is a new item on the top ten list. Serial-
ization refers to the process of decomposing an object to byte stream
in order to be sent over a link for processing. In the reversing op-
eration, deserialization, the object is created back from its stream of
bytes. If there was no validation for the objects, an attacker can change
the values of the object. For example, in case of a cookie, an attacker
can change the role from (user) to (admin) bypassing the access con-
trol. This exploit is difficult to create and securing against this threat
includes limiting the use of serialization to basic data types and in-
clude validation of objects before and after serialization such as using
signatures [1].

9. Using Components with Known Vulnerabilities: is a threat
caused by using third party software or libraries. It is partially related
to threat number six, security misconfiguration. Yet, in this threat the

33

software itself is vulnerable. These known vulnerabilities make it eas-
ier for attackers to start a specific type of attacks, whilst knowing the
weaknesses makes it easier for security specialists to cover and guard
them [13]. Preventing these attacks start by having a list with all com-
ponents used and their versions. Updating components is very essential
to cover security issues and protect the application.

10. Insufficient Logging and Monitoring: is the last item on the list.
It refers to two different, yet connected, activities. “Logging” is the pro-
cess of creating an entry whenever an interesting event has happened
such as a failed login, while “monitoring” is the process of analyzing
these logs and making judgments based on them. The core issue here
is when logging is poorly implemented in a way that allows attackers
to have access to these logs or when the alerting thresholds are not
properly configured. In both of these cases, a breach or malicious ac-
tivity will not be recognized. To ensure the security of the application,
logging and monitoring must be introduced and managed throughout
the life cycle of an application [1].

The OWASP list provides an overall view of the currently faced threats,
however it is not a comprehensive list. This list can be considered as a
security baseline against most common threats and extra measures need to
be introduced on top to defend against more complex and targeted attacks.

4.1.6 Security Testing

Testing is a phase that follows development to examine the developed code.
It consists of running multiple manual or automated tests to measure the
over all quality of the code [38]. This broad term refers to different test
areas including functional testing and non-functional testing. In functional
testing, the testers check if the code is performing as expected and produces
the correct results. On the other hand, non-functional testing focuses more,
among many others, on performance, robustness and security [23] . Each has
its own methods and set of tools. Besides, not all types of tests are equally
important for all software. Some software can value performance more while
others might value security more.

Testing is categorized into two main branches, white-box testing and
black-box testing. Although these categories are valid for other tests, the

34

focus here is on security testing. In a white-box test, the tester, who is
playing the role of an attacker, has knowledge about the system and how
it is working and possibly the source code. He then uses this advantage to
create the security tests based on that knowledge with the goal of compro-
mising the system. The black-box testing, on the other hand, is from an
outsider prospective. The tester, or attacker, would have very limited knowl-
edge about how the system is handling processes. Therefore, the attacker
must be creative to break into the system [9] [23] [105]. These two broad
categories contain within many types of security tests that ensure that all
the vulnerabilities are secured.

Penetration testing is a type of tests aimed to stress the security of a
running software [17]. The goal of this test is to try exploit a running code and
find possible vulnerabilities and then report them back to the developers to be
patched [68]. The test simulates, in a safe environment, what a hacker might
do in order to exploit the software [94]. There are tools used to generate the
attacks automatically such as Zed Attach Proxy (ZAP)10 which is developed
by OWASP [43].

Penetration testing approaches such as fuzz testing and combinatorial
testing are also used in the functional testing field. Fuzz testing (Fuzzing)
is a randomly generated test aimed to find code vulnerabilities. The input
parameters are mutated or generated to test how an application will respond
to unexpected or invalid types of input parameter [43]. Fuzzing tools are
based on intelligent model-based test [94] [105]. Combinatorial testing is
yet another approach focused on test cases. The tested software, also called
system under test (SUT), is given “N” number of cases that cover the tests
that might result in unhandled exceptions. This test has evolved to cover
the issue of exponential grow of test combinations [105].

4.1.7 DevSecOps

DevOps is indeed well adopted in software development, yet the question of
how security is handled is a challenge. While DevOps is going for more speed
and agility, adding security tests and practices hinders the rapid processes
of DevOps [73]. DevSecOps, which is also called in some literature Secure
DevOps, is an initiative that aims to adapt security practices to fit in the
DevOps processes [77]. Gartner defines DevSecOps as

10https://www.zaproxy.org/

35

“The integration of security into emerging agile IT and DevOps
development as seamlessly and as transparently as possible, ideally
without reducing the agility or speed of developers or requiring to
leave their development tool-chain environment.” [45].

The definition has three main components 1) adapting security prac-
tices: indicates that security practices must be included in the DevOps
framework to ensure the security of the software and safety of the information
processed [15]. 2) maintaining DevOps teams speed and agility: this
concept refers to the need of refining security practices to fit-in DevOps and
not the other way around. Security practices need to adhere to the agility
of DevOps [46]. 3) maintaining the same development tool-chain:
indicates that security tool should be integrated into the development envi-
ronment and developers can use them without the supervision of a security
expert[44].

DevSecOps is an extension of DevOps. The concept of DevOps emerged
to solve the issue between two teams Development and Operations. On the
same way, DevSecOps is aiming to break silos between the DevOps team
and the Security team in all stages of the project and not only in the test-
ing stage [15]. This is identified by “shifting security left” [100] [73] [96].
Additionally, DevSecOps promotes the idea of software security is the re-
sponsibility of everyone and all members need to think about security at all
times. Developers in the development stage must be educated about the se-
curity threats and they must take these threats into account when developing
code [46]. The same applies to the operation team who must pay attention
to security threats such as misconfiguration and predefined passwords. It
requires both teams to synchronize efforts to improve the level of security.

The principles of DevSecOps are derived from DevOps principles. First
of all, DevSecOps changes the culture of all teams who are required to col-
laborate and plan security in the planning stage [77] [75]. Automation of
security tests is as important as automation of functional tests in DevOps to
keep up with the over all speed [77]. Test should not require security experts
to perform [44]. Additionally, security events must be recorded and moni-
tored by security teams [77]. These measurements are adjusted for different
audience and for different purposes [20]. Finally, the sharing environment in
a DevSecOps team is encouraged. The “security champion” model can be
used to stimulate sharing. The model implies training a developer on security
practices and then this developer becomes a security reference (champion)

36

for the whole development team [15].
On a practical level, DevSecOps promotes security-by-design concepts [25].

Security starts by creating a security policy that is considered as a refer-
ence point for software security. This policy is polished and improved along
course of the DevSecOps cycle. Authentication, data protection, logging and
monitoring, vulnerability and patch management are few examples that are
enforced by DevSecOps. Application’s security starts by planning the correct
security measures and proper security testing such as threat modeling [44].
These tests are not carried out only before deployment, but also during the
operation phase in what is called “continuous testing” [77]. Further, De-
vSecOps requires additional tools that handle security aspects, in particular,
tools that facilitate the automation of security test and monitoring of security
logs [75].

4.2 Interviews

The following section describes how DevOps is defined by practitioners and
where security is taking place in the process. Before the interviews, two as-
sumptions were made based on the literature review. First, each interviewee
will have a different definition for DevOps as pointed out by Elberzhager et
al. [32]. Second, security is not clearly defined within the team or it is the
responsibility of another team.

4.2.1 DevOps in Practice

In practice, DevOps is defined differently by the practitioners, while some
focused on the process of speeding delivery, others talked about culture and
collaboration. All interviewees mentioned that the whole idea is two bring the
development and operation teams together. These attributes are mentioned
in the definition of Jabbari et al. [64]. Further, the stages of DevOps in
practice are similar to the framework proposed by by Elberzhager et al. [32].

“I think for me personally, how I see DevOps and what it means
is a quick way to make a change along with the desired quality
...” [int.01]

“It is like a practice of developing and operating at the same
time. It requires 1) understanding the application requirements.

37

Figure 4.3: DevOps in Practice

2) Characteristics. This includes culture, automation and moni-
toring for the whole life cycle of the application. It works for small
releases, upgrades, bug fixes and new features. DevOps come hand
in hand with CI/CD (continuous integration / continuous deliv-
ery).” [int.02]

An interesting point of view is the T-shaped professional. The interviewee
demonstrated that DevOps team member should have two types of exper-
tise forming the letter T. A member, a developer for example, should have
variety of knowledge in development, testing, server management and many
others and that is the horizontal view. Yet, this developer should have deep
knowledge in his field forming vertical level of expertise.

Typically, a project would have 4 main environments as shown in Fig-
ure 4.3. 1) Development Environment is where all the coding and testing
take place. 2) Testing Environment is used to conduct all types of tests. 3)
Deployment Environment, which is also called Acceptance Environment, is
where all the working and approved code is integrated and stored. 4) Produc-
tion Environment is the environment that is accessible to users which is also
called production environment. Additionally, all interviewees pointed that
they worked with a different level of maturity of DevOps and not all steps
in the pipeline were fully automated because of the nature of the software or
the bureaucracy of procedures.

38

4.2.2 Security in Practice

Security was a task handled by the security team or the integration team.
All interviewees articulated that security was not the responsibility of the
DevOps team. A security test is usually conducted when the increment is to
be moved from the testing environment to the acceptance environment. Only
in that stage, the security team is involved with the process. This results in
two main issues. 1) The security team is involved when the code is already
built and tested. If the testing fails, pushing the increment will be definitely
delayed. 2) Being responsible for the increment is no longer valid, because
the team is not responsible for the security.

“The way we think about security is something that costs time,
something which we remember after we have defined our require-
ments. After we define the planning we realize that we need to
think about security. It did not feel at that time as part of our
responsibility but that there is other [team] which is [assigned] and
accountable for security and that we need to have their approval,
their go [and] signs for everything, this is how it felt... it is their
test, it is their thing and not our thing.” [int.03]

On one of the bigger projects, a company had a big release that will
improve the user experience of the application. This was an important release
that the higher management was involved on daily stand-ups to push the
efforts of creating a successful release. The project had many DevOps teams
working on a multi-layered application. There were many technical issues
and it was a challenge to finally and proudly submit the release 3 weeks
before the deadline, which was enough time to conduct all security tests.
The release failed terribly to meet GDPR requirements on different levels
and the release had to be delayed for 3 extra weeks and the release had to
be decided on the highest level. “...it was painful.” [int.03].

Including security in the earlier stages of planning an increment is key.
The interviewees stated that involving the security team in the planning
stages can reduce the probability that an increment fails because of security
related issues. Interviewee [int.04] stated that security team, with its knowl-
edge and tools, should be included in DevOps. On the other hand security is
handled by the “integration team” which is part of the operation team. Yet
the only note is that the integration team is involved very late in the process.

39

“Yes, we have a specialized team called integration team, they take
care of security and other things like deployment to put the code
into production we have a pipeline in place, but we don’t control
deployment to production.” [int.04]

Security on DevOps does exist on some applications, depending on how
critical the application is. However, in all cases they are involved very late in
the process and that results in failing increments. The concept of security is
exclusive for the security team who is eventually responsible and accountable
in case of a security breach.

4.3 DevSecOps in Theory and Practice

An over look into DevSecOps in theory shows that it is a new topic with
limited theory around it. The main papers shaped the main practices of De-
vSecOps. However, detailed view of the topic is still missing. On a practical
level, experts see the urge and need for such a concept, yet, there is no clear
view on what is it about or how to approach it in day to day activities. The
key points projected in this review that security needs to be involved in the
whole process of creating software, starting from the planning stage, then
testing and in production as security seen as a continuous process. Based on
that, different level of security checkpoints will take place along the pipeline
of creating software. Figure 4.4 summarizes how security is understood in
theory and in practice.

Figure 4.4: DevSecOps in Literature and Practice

40

Chapter 5

Impact Areas of DevSecOps

This chapter describes the first artifact. The DevSecOps impact model aims
to illustrate the main areas of change when adding security to DevOps. These
areas are inspired by DevOps practices in real-world organizations. Figure
5.1 shows these areas and the components of each area. This is not the final
artifact, a validated model is presented in section 7.1.

5.1 Towards The Impact Area Model

Figure 5.1 represents the impact area model as proposed by interviewees and
literature. The interviewees proposed these areas based on their experiences
in transformation to DevOps. Triangulation [104] is used to collect all the
areas from both interviews and literature. To make these areas easier to read,
they were grouped into four main groups namely: People, Tools, Values and
Processes. Part of these areas, such as measurement and automation, were
discussed in the literature review section. The interview protocol included
these items explicitly. However, other areas such as ownership and account-
ability were raised only during the interviews.

5.2 People

This concept includes different stakeholders working in the DevOps including
the management, DevOps team and end users. Each stakeholder will have a
role in enhancing and ensuring a certain level of security. Security does not
start or end with one party, rather the entire group of people is involved in

41

Figure 5.1: Impact Areas of DevSecOps

the process. Having a DevSecOps mindset ensures that security has a very
high priority as the people realize the consequences of not applying security
in place.

5.2.1 Culture

DevOps has extended the agile culture to allow the team to work dynamically
and autonomously. Adding security to DevOps team can have two different
views. In one hand, changing the mindset of teams to improve security can be
seen as a culture change. Teams are required to approach security on many
levels during the different stages of DevOps. On the other hand, DevSecOps
preserves and embraces the culture of agility and short delivery of software,
thus viewing it as the same culture.

“It should change the culture, it should change the mindset of the
team. It should change how the team think about functionality
and availability and to care also about how secure this is. I think
it should.” [int.09]

42

“In general, what we see is that security is seen as something sep-
arate. (Security is) seen as a part of the IT department, auditors
and checklists. But if it was part of the routine, part of the daily
testing cycle, people should not notice that they are doing security
even though they are.” [int.10]

DevSecOps culture is an extension of DevOps culture, it has the same
values, yet it has its own mindset where security comes at the core of building
software.

5.2.2 Team

When focusing on security, new skills are required from all the members in
the team. It is not obligatory that all team members have a deep knowledge
of security, however, they are required to have a certain level of understanding
of security. T-shaped professional, as mentioned, refers to how skilled a team
member can be. Looking at the letter “T”, on the horizontal level, a team
member should have some understanding on all the stages of DevOps. On
the vertical level, this same team member must have a very deep knowledge
in his own area of expertise. For example, for a tester, he should have a
good understanding of planning requirements, developing code, deploying
code to different environment. At the same time, this person must have a
deep knowledge on testing, his main core expertise [int.03] [int.15].

In this context, adding security to DevOps requires the team to add a
new specialty to their T-shaped profile. All team members will have at
minimum a basic understanding of security and threats that can risk the
application. This concept, the T-shaped profession, also implies that there
must be a person, who is part of the team and involved in the whole process
of DevOps, that can handle security. The security specialist can work with
multiple security teams at once, however, this depends on the application and
the level of complexity it has. This change in the team composition requires
re-integration of the team members so that no silos are created within the
DevSecOps team. Although a security member is included in the team,
security as a discipline should remain as an organizational structure. The
focus of this department is to provide a higher level of support for security
specialists within their teams.

43

5.2.3 Ownership

“In some companies, teams own small parts of the software which
are called microservices and everything is in their own hands, that
is the ownership.” [int.07]

The idea of ownership in DevOps indicates that a team is the owner of an
increment. In a microservice architecture, a team is the owner of the services
created by the team. This includes building and operating the service as well
as solving all future issues this service can generate. In practice, the team is
the owner of all parts related to their microservices, except for security which
is handled by the security department. In DevSecOps, ownership is extended
to include security. The whole team becomes owner to all the increments they
are producing end-to-end. Security issues will be handled within the team
just like other issues [int.05] [int.07].

5.2.4 Accountability

Accountability goes hand in hand with ownership. Now that the team mem-
bers are working independently end-to-end and becoming full owners of an
increment, they also become accountable to their work. In case of a faulty
software with security issues, the whole team is to take responsibility for their
work and the whole team has to work together in solving the issues [int.09].

5.2.5 Learning Process

People will also need time to learn. Security is just another skill that all team
members need to learn and apply in their domain of work, thus adding an
extra skill to the T-shaped profile. Security is a general term that includes
many concepts and areas. The members of the DevOps team will have differ-
ent areas of interest that best help them apply this knowledge in their work.
Additionally, training the team to develop secure code looks very expensive,
however, the cost of implementing security afterwards is higher [15] [int.08]
[int.10].

44

5.3 Tools

In a full end-to-end DevOps pipeline, many tools are used in each stage.
Tools are key in ensuring consistency, agility and automation. Security on
the other hand has its own set of tools that allows security experts to examine
the code and discover possible vulnerabilities. These tools are to be adopted
by the DevOps pipeline to facilitate the purpose of end-to-end DevOps.

5.3.1 Automation

Automation means that computers are used to execute tasks. What makes
computers powerful in automation is that they can execute the same tasks
multiple times in a very short time and in a consistent way. For example,
a tester might run a manual test perfectly the first time. However, when
performing the same test for the tenth time, it will not be as accurate. In
security this concept is amplified as similar tests will be executed during
the process of developing an increment. In a DevSecOps setting, security
tools that allow automation have a critical role in ensuring security while
preserving the team’s agility [int.08] [int.11].

“I always say, people should think, machines should execute.”
[int.05]

5.4 Values

5.4.1 Measurement

DevOps allowed teams to measure their improvements in a different way. At
each maturity level, the team is looking into a different set of (Key Perfor-
mance Indicators) KPIs that indicates the team’s capabilities. For example,
the number of builds created, the number of integrations per year and num-
ber of builds failing in a test environment. These measurements help the
team realize their strengths and weaknesses. When a team moves to a higher
level of maturity in DevOps, new KPIs are set in place [int.06] [int.14].

“Velocity is a common agile KPI, it says: only I commit some-
thing, and how good I am in estimating what I can commit. Then

45

the next level, you can start measure your technical depth. But
you should grow into that, you should not use them while learning
agile. You need to create a journey.” [int.14]

As an extension to DevOps, DevSecOps must preserve and brace these
measurements, at the same time introduce new KPIs that describe the se-
curity aspect of a software. As a start, teams need to apply security KPIs
that reflects their level of maturity in security. It is also crucial that these
measurements are thought of at the start of planning an increment, because
the measurement tools will be built along as well. When KPIs are an af-
terthought, it will take the team extra time to build or find the correct tool
to perform the monitoring afterwards. Taking testing as an example, a start-
ing point for measuring security tests is the percentage of automated tests
compared to manual tests. The percentage of automated security tests are
expected to increase as the team matures. In a higher level of maturity, the
focus will shift into how the application can recover in case of an incident or
how it should act while it is being attacked.

5.4.2 Velocity

Velocity refers to how fast a team can deliver. Whether it is a new feature, a
bug fix or improving current code, velocity is key in DevOps teams. Bring-
ing the development and operations has increased velocity and the initial
thoughts that adding security will increase velocity even more. Although the
initial thoughts of adding security to the team will result in extra steps that
costs the team extra time to finish a task, including security in the whole
DevSecOps process eliminates the need of consulting a security team before
going to production, less rollbacks and less technical debt. Thus increasing
the overall velocity of the team. At the beginning of applying DevSecOps,
teams are expected to lose a portion of their velocity as they have to go
through a learning curve. However, once that is accomplished, the velocity
will increase [int.14].

“... if we embed the security people in the team, we deliver the
product together and security becomes part of the delivery already,
so we have no external dependencies. We do not have to go to
another department to check if something is possible or not since
security ownership is part of the product delivery. I think that will
speed (up) the process. It will remove the dependencies.” [int.05]

46

5.4.3 Control

Control is related to ownership and accountability. Control in its broader
sense refers to how the team is managing a DevOps increment end-to-end,
from the start of the idea on a sprint planning until it is operational in a
production environment. In practice, a team would be in control of the whole
increment end-to-end. Except for security which is always outsourced to the
security department. This blind spot gives a DevOps team less control on
their own product and create dependencies which in turn impacts the velocity
of the team. When security is insourced within the team, dependencies are
removed and more control is given to the team [int.16].

5.5 Processes

In the DevOps pipeline showed in Figure 4.1, there are stages that describe
roughly how DevOps is approached. This line of stages can be tailored per
organization or per application following the context and the technology used
in building an application. In DevSecOps, these stages remain unchanged
and the main changes are happening within each stage. These concepts are
detailed in the following chapter which is forming the DevSecOps framework.

47

Chapter 6

DevSecOps Initial Framework

This chapter describes the second artifact. DevSecOps framework is a repre-
sentation of both DevOps processes and security practices. The framework
indicates what security measures are to be taken in each stage. Not all of
these practices are required for each increment and that is going to be elab-
orated on in section 6.2.2. The framework is composed of three main areas:
the initial baseline security, the DevOps environments and stages, and finally
the infrastructure level of DevOps across environments. All of these compo-
nents are explained in the following sections. This is not the final artifact, a
validated model is presented in section 7.2.

6.1 Initial Baseline Security

Each application has its own context and its own level of security. Applica-
tions that are used for managing appointments will have a different level of
security when compared to applications that handle financial transactions.
An initial baseline of security is a set of rules, principles, and practices that
an organization develops and improves in response to the context and im-
portance of the application [47]. This initial baseline of security ensures that
an application has the minimum required security for each increment. One
example of this initial baseline security is standards and regulations. For an
application, being compliant to standards and regulations can ensure a level
of security, however, it does not mean the application has an appropriate
level of security [96].

For applications that have multiple DevOps teams, having this baseline

48

Figure 6.1: DevSecOps Initial Framework

policy is essential. When teams mature in DevOps, they start tailoring De-
vOps to their own and their application’s needs. They become professional
in creating their own processes, tools and checks. The risk is when each team
works in their own way to secure the application with no reference point that
ensures the unity of security levels across all DevOps teams. In this context,
having an initial baseline security means that all DevOps teams are expected
to have the same minimum security.

Security changes over time and teams need to adapt to change. When new
technologies emerge that can extend the teams capabilities, initial security
baseline must be updated to include these new technologies. One example
is the use of containers. Containerization is a new technology that empow-
ers a DevOps team by allowing them to create and destroy environments.
These environments come in with all required applications making it very

49

convenient for testing or operation. Yet, there are new risks that come along
and that might not be covered in the initial baseline. One of these risks is
kernel exploits where a container can take all host resources resulting in a
break down of hosts. Updating the initial baseline security allows the team
to use these new technologies and know their risk and how to approach it.
Updating the initial baseline security is achieved by a review that happens
throughout the pipeline stages where the team reviews if security changes
are to be improved. Changes will also impact other DevOps teams [int.09]
[int.12].

“You should have a baseline for all of your applications, then you
scale up based on how critical the application is based on the CIA
(Confidentiality, Integrity, Availability) model.” [int.12]

6.2 Planning Board

Before starting with an increment, a planning session will take place. In
Scrum1, it will be the sprint planning where the team decides which new fea-
tures are to be included in the next sprint. The product owner gives enough
room for the team to select the next set of items from the product’s backlog.
The selected items, whether they are new features or bug fixes, they will
bring a level of security risk that needs to be addressed within the planning
session and discussed within the team before proceeding. To approach this
purpose, a set of mandatory actions must take place in the planning stage
and these are the Security Requirements and Security Classification. The
other two items, namely: Threat Modeling and Security Architecture Re-
view can be optional, based on the results of the security classification. The
following is a detailed description of these items.

6.2.1 Security Requirements

“Developers who understand the security requirements are rare
and expensive, normal developers will look at security require-
ments as world evil and try to skip that somehow.” [int.13]

Security Requirements are non-functional requirements that captures and
mitigates security threats in software. They are created to preserve the

1https://www.scrum.org/resources/what-is-scrum

50

security concepts, namely: confidentiality, integrity, availability, authenti-
cation, authorization and non-repudiation [39], introduced in section 4.1.5.
These requirements are elicited and prioritized along the process of identify-
ing the functional requirements. Ramachandran [82] has described existing
techniques for specifying security requirements such as Attack Tree 2 and
Attack Pattern 3. There are also newer methods that model threats such as
the method described by El-Hadary and El-Kassas [30] where they require
modeling the system and identifying the threat and possible vulnerabilities.
Based on that, security requirements are built and connected to the system’s
functional requirements as constraints describing how the system will handle
the identified threats [int.06] [int.08] [int.11] [int.13].

Just like functional requirements, security requirements need to be ex-
plicit, complete, concise, understandable, and unambiguous [36].

6.2.2 Security Classification

Specifying the security requirements leads to a better understanding of the
risk introduced by a new feature. The requirements will explicitly state what
process flows, data or services that will be changed or altered. This leads to
the second major step which is classifying the security level of the feature.
Putting security labels on features determines the security controls and the
actions to be taken in the following DevOps stages. The urge of classifying
the security risk comes from the fact that not all features or changes will
introduce high risk, therefore making it inefficient to conduct all security
tests and perform all security controls to all features or changes [int.09].

Although an organization can have its own way of classifying risk, OWASP
has a classification model, Figure 6.2, that takes into account two main vari-
ables, impact and likelihood. Impact refers to how severe an attack can be
and likelihood refers to how likely an attack can happen, that often refers to
how easy launching an attack is or how wide spread the attack is. At the
intersection of these two variables is the risk of a feature. An abstract ex-
ample of using this model is a new feature with an API that handles client’s
authentication to view booking information, on the likelihood axis, this API
can produce SQL injection attacks which are very likely to happen. On the
impact axis, a successful attacker might gain access, however, they can only

2https://www.schneier.com/academic/archives/1999/12/attack trees.html
3https://www.us-cert.gov/bsi/articles/knowledge/attack-patterns/attack-pattern-

usage

51

Figure 6.2: OWASP Risk Classification

“view” booking details, resulting in a low impact. The overall assessment is
“Medium Risk”.

This example is missing context, however, it just illustrates how the model
can be used. Each organization can develop its own way of determining the
impact based on standards, regulations or market competition. Once the
security classification is set, the next step is to review what security actions
are to be followed in the following stages as shown in Figure 6.3. Again,
these actions are best determined within the team based on the application,
the data it is processing and the context it is working on.

The final result of this step is a full understanding of the security implica-
tions of each item on the functional requirements planned for the sprint and
what actions to take to mitigate these implications. Once that is finished,
the team can proceed to the following steps which can be followed fully in
case of a critical risk or partially in case of other types of risk.

52

Figure 6.3: Risk Classification Action List

6.2.3 Threat Modeling

Threat Modeling is an approach of specifying security requirements, however,
it approaches the system from the attackers perspective. In threat modeling,
threats are identified by creating scenarios of possible inside or outside attack,
with the goal of compromising systems’ assets such as data or processes [88].
Threat modeling includes four main steps according to Ingalsbe et al [62].
First, defining the scope which entails defining the target processes and/or
data sources. Second, the target is to be modeled using Data Flow Diagrams
and the roles of the involved stakeholders are defined keeping in mind the
business objective of the process and the uses cases. Then, a tool can be
used to generate threats that are assessed by the team and possible mitigation
approaches are defined. Finally, the threats are documented for the following
stages [int.11] [int.13] [int.15].

6.2.4 Security Architecture Review

On an enterprise level, where multiple DevOps teams work concurrently on
the same application, security architecture becomes as important as the soft-
ware architecture. For these teams, security is defined by the main initial
baseline security covered in 6.1. However, within these guidelines, each team
will have their own interpretations, resulting in a misaligned security within
the same application. The security controls used in each increment is mapped
to embrace the business value. By security architecture review, the team en-
sures that similar security controls are enforced by all teams. These reviews

53

are also used to update or change the initial baseline security when required
[int.10] [int.15].

“Enterprise security architecture is based on what is the business
objectives and you map that all the way down to security controls
they based on the business impact assessment and the application
... it all provides and security architecture reference, which shows
which controls to be implemented.” [int.10]

6.3 Development Environment

Development environment is where developers translate business require-
ments into a working software and build the code of new features of big
fixes. A developer has a main role in creating a working secure code for
every requirement keeping in mind the newly generated threats. He also
takes the responsibility of discussing issues with the team during feedback
sessions such as the stand up meetings in scrum. Security issues become
an integrated part of the requirements as any other functional requirements
that can be discussed when needed. There are two levels of abstraction in
the development environment, the first one is on an individual level per de-
veloper. The main concerns are how to ensure that a developer is developing
a secure code within the integrated development environment (IDE). This
includes a code that is generating vulnerabilities or is using outdated open-
source libraries. The second level of abstraction is on a team level as group
of developers how do we approach security and apply security guidelines for
each sprint. This refers to group feedback and reviews on flagged issues and
updating/improving the guidelines. Four main components are named in this
environment: secure coding, coding guidelines, static validation and dynamic
testing.

6.3.1 Secure Coding

Developing a secure code is easier said than done. A developer have to think
twice about the code, first how to deliver a business value or solve a problem
then think about how to do that securely. When creating an API, a developer
would create stubs that temporarily substitutes the other application the API
is communicating with. Stubs are created to simulate how the created API

54

would interact and handle communication with other applications. Once
ready, these stubs are to be removed. Similarly, a developer would hard-
code session tokens, private keys or even passwords to test if the application
would work if security factors are not in place. The real harm takes place
when forgetting to remove these from the code before committing the code.
An attack can gain access to the system and authentication schemes will fail
because of one, yet deadly, bad practice [int.05].

Secure coding is a learning process. A developer, as a team member, is
participating in planning the sprints. Therefore, he knows about the threats
each sprint is introducing. Addressing these threats requires knowledge and
skills to produce a working secure code. It is mentioned in section 5.2.5 that
a team needs to go through a learning process and secure coding is one of
the main areas where the team has to learn. For teams who are starting with
DevSecOps, forming a secure code academy can help not only developers, but
also the other team members on how they approach secure coding and how to
see applied in each sprint. The academy is a set of trainings that encourages
the team to discuss their own security-related mistakes. Another approach,
which can be used in parallel with the secure coding academy, is the security
champion model [15]. In this model, one developer, an ambassador, is trained
on secure coding and then he would act as a reference point for all within the
team with questions regarding software security. Such an approach depends
on the level of cooperation of the team members.

6.3.2 Coding Guidelines

Secure coding guidelines is not a long list of bad coding practices. It is an
application-specific, interactive documentation of coding best practices that
emerges from the secure initial security baseline 6.1 and coding 6.3.1. It is
also governed by regulations and standards. The documentation is updated
at each cycle and revisited during the planning and coding stages. The team
needs to be always refreshed about these guidelines.

Although each application will have its own context and requirements,
there are a general guidelines that can be the starting point at the beginning
of new projects. One example of these guidelines is the OWASP secure
coding practices4. In this document, there are different checklist-type of
guidelines to cover input validation, authentication and authorization, session

4https://www.owasp.org/images/0/08/OWASPSCPQuickReferenceGuidev2.pdf

55

management, file management, database security and many others [int.15].

6.3.3 Static Validation

The first real test to security starts in the development environment when it
is easier and cheaper to spot and fix vulnerabilities. In static validation the
code is not executed [36]. A tool is used where the input will be the source
code and the output will be security vulnerabilities, if exist. Such tools are
configured per application and in some cases, a security specialist needs to
jump in and explain the bug and why it could circumvent security [95]. One
example of these tools is SonarQube5. The new approach of these tools is
to be integrated to the IDE and give developers instant feedback on possible
issues. This type of tests can be fully automated. Instead of long session of
traditional security code review, a tool can instantly crosscheck all the code
as per the defined rules.

“Automation enables you to preserve consistency among all envi-
ronments and you are sure that all your systems are at the same
level of security and no manual human intervention involved that
could create problems.” [int.16]

Following Fairley’s understanding of static validation [36], the type of
issues discovered at this phase fall into two main categories. Assuming that
security requirements are explicit, complete, concise, understandable, and
unambiguous, the first issue would be not following the security requirements
as detailed in the planning, with no justification of doing so. The second
category is missing logical flow in coding the security requirements. With a
properly configured security static analysis tool, both of these issues will be
discovered and reported to the developer [int.07] [int.09] [int.14].

6.3.4 Dynamic Testing

Once the source code is bug free, it is time to test the compiled application.
Dynamic testing examines the code after being executed against security
attacks such as injection and cross site scripting. The tests observe how the
application is going to react [39] and the way an application handles specific
behavior from users. The dynamic tests are application specific tests that

5https://www.sonarqube.org/

56

are built along with the application to ensure that an application can handle
most types of user behavior without breaking the application or causing
unwanted results. These errors are not necessarily issues with the code but
rather how a software user can behave. For example, tests that check if a user
can access the admin panel by tampering URL values. If the test succeeded,
it is interesting for the tester to see how the application responded by for
example sending a notification to a monitoring application. These types of
tests are application-specific and a tool can not identify what a user can or
can not do [35], hence the tailored security tests. However, they execute
automatically [int.10] [int.15].

In software testing, static and dynamic tests are often combined. El-
berzhager et al. [33] did a systematic mapping for combining static and
dynamic testing techniques. They found two main categories for combin-
ing static and dynamic testing. The first one is compilation and it implies
that static and dynamic tests are carried out separately. The second one is
integration and this implies that static testing results are used as input for
dynamic testing. Under each of these categories, sub categories are defined
that describes in more details each technique.

In this framework, dynamic testing is an automated set of tests that can
be conducted autonomously or collectively. They can be implemented in the
development environment or in the testing environment or in both.

6.4 Testing Environment

The testing environment receives all the developed code and runs all the tests
required. It is normally a virtual environment created by Virtual Machine
or Containerization. In this controlled environment, the compiled code that
is developed by developers meets the tests prepared by testers. If any of the
tests fail, the code is rolled back to developers with appropriate reporting on
the issues to be fixed. For the purposes of testing dummy data is created,
real data must not be used in testing.

Besides the dynamic testing that is covered in section 6.3.4, testing en-
vironment can include vulnerability scanning, fuzz testing and penetration
testing. The first two tests are automated while the penetration testing de-
pends on the depth of the test and the type of application. The following
sections elaborate on each of these concepts.

57

6.4.1 Vulnerability Scanning

Vulnerability scanning checks a running software from the outside [35]. A
web application scanner takes the URL of the target application as an input.
Then it crawls to all the links looking for security issues. Finally, a report is
created for the tester. There are three levels for the depth and speed of these
scans, a quick scan looks into the first value of every parameter. The next
level is a heuristic scan where a scanner will determine which parts of the
application require more in depth scans. The last level is the extensive scan
where a scanner will check all possible combination of values for the whole
application. The time required to perform the scans increases as the depth of
the scan increases [85]. A scanning performs only information collection and
by itself it does not form any sort of attacks on the system. Additionally,
there exists tools like OWASP ZAP6 to perform this task, making it easy
and efficient to have these insights on both the testing and the production
environments. The reports can be used to improve the software (feedback for
developers), or it can be used as input for further tests and attacks (feedback
for testers) [int.09] [int.12].

6.4.2 Fuzz Testing

Fuzz testing, or fuzzing, is a type of dynamic test that examines a running
application by generating random input values with the aim of breaking the
software or disclosing a security vulnerability [48]. New fuzzing tools are
based on intelligent models test, making it easier to use these tools by non
security specialists [94]. Fuzzing is differentiated from other types of dynamic
tests as it is powered by tools that can be customized for each application.
In other words, the whole test is not developed from scratch but instead it is
generated from a tool. One of these tools is the JBroFuzz7, which is another
tool developed by OWASP [int.11].

6.4.3 Penetration Testing

Penetration testing, or pen test, is the highest level of security tests. It is
expensive and preparations for one test can take a long time, yet, it is the best
way of finding more complex vulnerabilities. Penetration testing is more of an

6https://www.zaproxy.org/
7https://www.owasp.org/index.php/JBroFuzz

58

art than science and it depends on the skills of the pentester to find security
issues [74]. Penetration is defined as a “process of simulating attacks on a
system in order to detect any potential vulnerabilities, and usually confirm
their existence by exploiting them” [79]. The people who perform these tests
are ethical hackers and they are granted permission from the application
owners to perform such attacks [int.06] [int.09] [int.11] [int.13].

Alam et al. [37] explained the four steps to be conducted in a penetration
testing as shown in Figure 6.4. First, a planning step takes place where the
goal and the scope of the test are defined. The goal for the test can be to have
access to admin panel or have access to the database. Creating a concrete
goal keeps the test and the testers focused on a clear goal. On the scope level,
the team decides if it will be a black-box where the attacking team does not
know much about the software, or a white-box. Additionally, in the scope it
is determined if the operations team will be notified about the test, or not.
Deciding these points manages the expectations of the involved teams. The
next step is to run a discovery process. The attackers will run vulnerability
scanning tools on the software for the purpose of exposing potential entry
points. Additionally, they can also send phishing emails, perform phone calls
(social engineering) and approach the staff, aiming for an entry points. All
the information gathered is then to be analyzed by the attacking team to
find weak points for the next step. The next step is to attack the system
using the information gathered while keeping the goal of the test in mind.
During the attack, new vulnerabilities might be revealed, these can be used
also to go further with the attack. The last step is to document all findings
and report back to the team.

Penetration testing can be risky and result in damaging the system. It
is possible to perform this on a testing environment, however, performing
penetration on production environment simulates what a hacker would really
do. Based on the sensitivity of the application, an organization can decide
on which environment this test shall take place.

6.5 Production Environment

In DevOps, production environment represents the end environment where
all code is deployed. It is the environment that is accessible for users and it
contains all the users’ data. The production environment is a busy environ-
ment. Although the focus here is on security, in production many players are

59

Figure 6.4: Penetration Testing Steps [37]

involved to handle all types of maintenance, load balancing and performance,
new deployments, business intelligence and monitoring. Each item of these
mentioned tasks has a team and a whole list of sub categories with specific
goals. The idea here is that many teams are involved, making security of all
these areas is also crucial for the overall security of the application. For high
availability application, conducting tests on production can be a disturbing
idea in case of a test failure [102].

For security, the production environment has the most risk as it has the
actual user data and it is facing the outside threats. Securing this envi-
ronment starts by securing the infrastructure and the network where the
application is working. For the application itself and following the security
checks that took place in the previous steps, many security measures can take
place. Starting with security monitoring where a dedicated team keeps an
eye on all security irregularities. Then, a configuration check is performed on
all application servers to ensure consistency of configuration. Additionally,
in the production environment, it is of high importance to create a traceabil-
ity logs that can identify the changes made in the application or application

60

configuration. Besides, there are measures that can continue in production,
namely: vulnerability scanning and penetration testing.

6.5.1 Security Monitoring

Although DevOps is advocating for end-to-end ownership, monitoring is one
of the areas where a centralized team is responsible for monitoring the whole
application or stack of applications at once. Monitoring requires looking at
the whole picture thus making it pointless to monitor individual features.
Monitoring is conducted in a Security Operations Center (SOC), that looks
into a stack of applications. They are responsible for spotting any malicious
activities and contacting the right team in case of an incident. Although
monitoring is performed in the last stage of DevSecOps, it is well thought of
at the start of each new feature. The planning includes how a feature will
be monitored and reported [int.05] [int.07] [int.12] [int.15].

“.. detect, that is monitoring where you are seeing what is hap-
pening in your application or product. Normally, you don’t do
that on one application, but companies do that on a SOC (Secu-
rity Operations Center) for all applications and infrastructure.”
[int.09]

Monitoring, in its broader term, is about observing the application and
identifying if the application is performing the way it should. However, us-
ing the right tools which are configured correctly is essential in having ef-
fective monitoring [89]. Monitoring includes logging and logging reviews.
Logs are activities that happens within the application such as creating new
accounts, creating admin accounts, accessing the database or failed authen-
tication. These logs can flag suspicious activities or in worst case scenario it
will show attackers trails after an attack. The level of details in these logs
depends on the application and regulations. For one application, logging
failed authentication can be enough while in others, the IP address of the
request is documented as well. Logging information can hold very valuable
information, making them a target on their own. At the same time, having
a long lists of logs is not the goal, a tool or a person has to look into these
lists and flag irregularities. Following a flagged log, there must be a course of
action to take place and that is incident management. A security incident is
defined as a “single or series of unwanted or unexpected information security

61

events that have a significant probability of compromising business operations
and threatening information security” [98]. The incident management has a
whole process of classifying the severity and urgency of an incident and esca-
lating actions until it is solved. Incidents are also a stream of feedback that
can help improve the application’s security in future iterations [14].

6.5.2 Configuration Check

In production, configuration is a big task. It is synonymous to develop a good
security system and then leave the front door open. Although this should
not be a problem, it is one of the top security breaches on the OWASP list
number 6. Configuration complexity grows with the application. Configu-
ration involves policy and management view that is eventually applied on
the whole system [8]. Failing to translate configuration correctly can result
in security vulnerabilities that is used to compromise the system. Configu-
ration can be seen at an application level, where an operator manages the
configuration within the application, for example expired user’s ID. It can
be also seen at an infrastructure level that an operator manages the flow of
the software in the pipeline to perform the pipeline tasks such as build, test
and deployment [4] [int.12] [int.14].

6.5.3 Traceability

Traceability is part of monitoring. It implies the ability of tracking changes
within the software. In case of security incidents, the security team will be
able to find the traces of the attack and identify the vulnerability used in the
attack. Goa et al. [42] defined five main traceability components. 1)Opera-
tional trace registers the interaction between the software components, such
as function calls. 2)Performance trace records performance data and bench-
marks which is used to define data-flow congestion and to tune the software
performance. 3)State trace reports the state of a component or data. 4)Event
trace documents the sequence of changes or the interaction with users in the
software. 5)Error trace records the generated errors or exceptions which are
reported back to the team.

“...it is important to be able to trace an incident. You need a
unique identifier to be able to determine what applications in-

62

volved in this process, traceability. That is also a form of secu-
rity...” [int.14]

6.6 Infrastructure Security

In DevOps, infrastructure is an enabler for software development and oper-
ations. All the day-to-day tasks take place in one of the main environments.
Each team member has a certain role within a specific environment and
preparing the infrastructure required for development is part of the tasks
handled by the team. Infrastructure refers to the application’s requirements
to run throughout its life cycle such as servers, virtual machines or contain-
ers. This includes three main tasks, first preparing and connecting required
machines physically or virtually. Second, install and configure the required
software for the application. Finally, install and prepare auxiliary services
that is required by the application [2]. There is a big room for automation in
infrastructure by developing scripts which are to be used and reused. The no-
tation used for that is Infrastructure as Code (IaC). It should be noted that,
although cloud is currently a trendy technology and most deployments would
be on cloud, infrastructure includes private clouds or on-premises servers.
The additional risk, that private clouds and on-premises servers bring, is
controlled by physical access, operating system, network configuration and
application vulnerabilities [60]. The debate of which solution is best can be
tricky and influenced by regulations, management strategy and application
risk.

In all cases, infrastructure type will always have additional risk that are
type-specific. However, in general there are main threats that can be looked
at regardless of the type of infrastructure used and these are environment
segregation, vulnerability mapping, patching and update management, ac-
cess management, system-wide traceability and encryption. The following is
a detailed description of all these concepts.

6.6.1 Environment Segregation

In DevOps, many environments are created for different purposes. While
here the focus was on development, testing and production environments,
organizations can have their own environment setting. In some cases there
will be an acceptance environment, where all the ready code is stored to be

63

pushed to production environment. In other cases, an application is depen-
dant on a third party application, therefore a special environment is created
for the vendor to troubleshoot problems. Environment segregation is a fea-
ture for containing contamination or a security breach. Although attacks
will be mainly targeting the production environment as stated earlier, a suc-
cessful attack on development or testing can allow attackers to tamper the
code by installing a backdoor before deployment. Creating dedicated en-
vironments for each stage with proper authentication minimizes the risk of
creating attacks at the source code. Additionally, when circumventing one
of the environments, the damage is limited to that environment from an in-
frastructure level. Finally, using multiple environments makes it easier to
destroy the environment once its task is completed.

6.6.2 Vulnerability Mapping

New vulnerabilities are reported everyday. Either it is reported on a public
vulnerability database, or it is discovered internally, these vulnerabilities in-
crease the level of risk of an application [53]. On the application level, static
analysis can disclose such vulnerabilities. However, on the infrastructure
level, many third-party software is used. Starting with the operating system,
moving down to the server services, firewalls and applications, DevOps uses a
pipeline that is fully dependant on such tools and applications. For example,
Apache server8, which is a widely used web server, has a known vulnerability
list. These vulnerabilities can be used to initiate attacks. Thus, knowing
and mapping such vulnerabilities is helpful in understanding the risk of such
tools and look for alternatives if possible. In this example, Apache is one
application. The mapping needs to happen on all of the used software.

6.6.3 Patching and Update Management

In a closed connection with the previous point, patching and update manage-
ment is the next step in covering vulnerabilities. Mapping the vulnerabilities
allows for an overview of the used application. In most cases, if a vulnera-
bility is discovered, the owners of the application will release a patch that
mitigates the vulnerability. Managing patches and updates is an art. A
pipeline is configured with many applications in place, changes can have an

8https://httpd.apache.org/security/vulnerabilities24.html

64

influence on the data flow between environments. Although the applications
owners will try to push fixes as soon as possible, installing these updates
at the end-point machines takes weeks or months. The main reason be-
hind that is the overflow of security patches to a point that security teams
are overloaded with patches. Besides, these patches can change the way an
application is working or remove a feature that is needed in the pipeline con-
figuration [16]. Therefore, creating an update and patching processes and
making use of tools to automate installation will allow the teams to quickly
assist and install updates and patches.

6.6.4 Access Management

In access management, two main areas are discussed: physical access to
servers and digital access [61]. Physical access refers to individuals having
access to the data center or server room where they can plug external de-
vices and have direct access to the infrastructure machines. In digital access,
authentication and authorization are the main concerns. The definitions of
these concepts were introduced in a previous chapter, in table 4.1. Access
has many shapes and forms, the simplest is user name and password creden-
tials that a user feeds into a login page. There are more complex approaches
such as Identity and Access Management IAM9 and Open Authentication
OAuth10. These systems perform the administration task of granting, track-
ing and invalidating access to certain or all parts of the infrastructure.

6.6.5 System-wide Traceability

As discussed in section 6.5.3, traceability helps understand the trigger of
issues and system errors. On the environments level, this component im-
plies the ability to trace changes on the infrastructure such as creating new
environments, containers or adding a new virtual machine to the stack.

6.6.6 Encryption

In the software infrastructure level, data has three states. The data can be
stored in a database or a server and that is known as data at rest11. The

9https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
10https://oauth.net/2/
11https://cloud.google.com/security/encryption-at-rest/default-encryption/

65

second state is when data is transferred to another server or end user, which
is referred to as data in transit12 and the final state is when the data is
being processed. For the first two states, applying encryption improves the
security of the infrastructure. Encryption is security control that does not
stop an attack, but makes the data collected useless by making it difficult
or near impossible to decrypt. An attacker can target the data when it
is being transferred. An example for encryption is the TLS13 (Transport
Layer Security) that aims to create a secure connection between two parties.
Encryption of data at rest has also many standards that were developed
over the year. The AES (Advanced Encryption Standard) is commonly used
as it is easy to encrypt and difficult to decrypt. Using encryption on the
infrastructure adds an extra layer of security.

12https://cloud.google.com/security/encryption-in-transit/
13https://tools.ietf.org/html/rfc5246section-2

66

Chapter 7

Validation and Improved
Artifacts

This chapter elaborates on the improvements that were introduced to the
artifacts in the previous chapters. For validation, a focus group was con-
ducted to improve the developed artifacts. The details of the focus group
setting is explained in section 3.7. The following section highlights the main
important improvements that were discussed in the validation session with
an illustration of the final proposed artifacts.

7.1 Impact Areas

The impact areas did not face a significant change. The discussion was about
why there was no process items introduced. The main reason of not including
these in the initial version was that, all the processes are represented by the
framework which is the second artifact. The connection between the two
artifacts was not clear, therefore in the final version the stages of DevOps
have been added to the processes block in the impact areas model. The final
model is presented in Figure 7.1

7.2 DevSecOps Proposed Framework

Unlike the first artifact, the framework had a couple of significant improve-
ments. These changes are listed below. Besides these changes, there were

67

Figure 7.1: DevSecOps Impact Areas

minor changes in naming and ordering of items. The final framework is
presented in Figure 7.2.

• Adding one more step before the initial security baseline: this
point was raised when talking about the coding guidelines which are
discussed in section 6.3.2. The guidelines themselves are developed in
an earlier process, preferably in the initial baseline security. Further,
the initial baseline security is derived from regulations, policies and
standards. These regulations can be local regulations of a country or
group of countries, such as the GDPR. They can also be specific to a
sector, for example the financial sector, or the health sector. Moreover,
policies are a reflection of the organization’s strategy. They are internal
documents that embrace values within the organization. Standards are
developed by specialized organizations to give validity and reliability to
products. Thus, based on the application context and the regulations,

68

Figure 7.2: DevSecOps Proposed Framework
69

policies and standards influencing the context the initial baseline will
be created [part.22] [part.18].

• Adding secure coding repositories: this concept is added to the
development environment. When coming across a problem while cod-
ing, a developer will use the internet to find a solution which can be a
library or a code sample. The code will be cleaned before it is used in
the software. The idea of this item is to create an internal repository for
the cleaned code so team members can used it again. Such repositories
allow the team to save time on looking for clean secure code [part.22].

• Integration and stress testing: integration testing is a quality as-
surance method to test how the different components of an application
are interacting. There are three main techniques, increment integra-
tion, top-down integration and down-top integration [97]. From a se-
curity perspective, one increment can be secured individually, however,
when this increment is used with another increment, a vulnerability is
created. A stress test, on the other hand, handles how the system is
behaving when it is under heavy traffic. In a microservice architecture,
if a service is stopped because of a DDOS attack, that could create a
vulnerability in the system. Stress tests creates scenarios about what
to do in case a failure happens [part.17].

• Adding the acceptance environment: in practice, acceptance en-
vironment is used as a staging environment. It is a type of repository
where all the tested code that is ready to be pushed is placed. This
environment is used for handoffs and final approvals from the higher
management or stakeholders. This bridging environment has no activi-
ties that can not be done somewhere else. In an ideal DevOps pipeline,
increments that are fully developed and successfully passed testing can
be directly and automatically pushed to the production environment,
that is known as end-to-end DevOps. This approach requires a high
level of maturity and trust within the team. The acceptance environ-
ment breaks this idea by requiring an approval before pushing new
increments. Although it is not a recommended approach, it is applied
widely in practice, therefore it is added to the model in shaded colors
as it can be skipped [part.19].

• Monitoring of application and infrastructure: while, it was dis-

70

cussed in section 6.5.1 that monitoring includes many concepts, moni-
toring includes even more concepts. The traceability and configuration
check were considered as parts of monitoring. Further, the power of
monitoring comes from the overall view with meaningful monitoring
metrics. It is more effective and efficient to perform monitoring over
all the infrastructure and the stack of applications all together. What
should be monitored is specific to the context of the application, keep-
ing in mind how useful the information on the dashboards and if we
are looking at the correct parameters [part.21].

• Adding log management: finally, logs that are created from events
on the infrastructure need to be looked at and processed. There will
be no meaning in creating a log with all types of information, if there
will be no one to look at them and elicit patterns, significant events or
malicious activity [part.21].

71

Chapter 8

Discussion and Limitations

This chapter discusses the main concepts in the thesis and articulates on the
artifacts presented in previous chapters. The second part talks about the
main limitations of the research and how they were mitigated.

8.1 Discussion

DevOps is being implemented widely in the past few years. Organizations can
see and feel the value DevOps is adding on their software product. However,
security, which is a different team, has a role in creating a secure application.
Yet, their involvement in the process is very limited, if not totally absent. In
the best case scenario, the security team will be involved from the start by
defining required security controls and then test them on a later stage before
going to production. Breaking this silo requires shifting security responsi-
bilities to the whole team and trying to produce a secure product from the
beginning instead of adding it on top.

Including security within a DevOps team is easier said than done. De-
vSecOps does not mean to have three teams talking three different languages,
rather than one team that takes security into account in each step. It re-
quires a cultural change and a mindset that takes security seriously and acts
on that. The culture of DevSecOps extends the DevOps culture by intro-
ducing security as an integrated part of the software and acknowledging that
security requirements are not less important than functional requirements.
The team dynamics and knowledge must allow the team to work seamlessly
in producing secure code. When security issues are raised that are beyond

72

the capabilities of the team, experts are consulted, however, these should
be the extreme cases. The normal case is that a team has sufficient knowl-
edge and training to handle most of the security issues. In practice, experts
look into security as an essential part that must be planned more thoroughly
in the beginning. Checking security requirements only at the testing stage
is risking hours of work and failing on the testing stage costs more to fix
compared to addressing these issues on an earlier stage.

The artifacts of this research are first steps in defining the outline of
DevSecOps. These artifacts help organizations understand what this topic
is about and the core concepts to think about when trying to implement
these concepts in practice. Scoring all of the components in the framework
for every increment is an overwhelming task. Thus, planning and classify-
ing increments is the first step to achieve reliable security with reasonable
resources.

8.2 Limitations

This section covers the context and the boundaries of the research. Three
main areas are relevant to this research as defined by Yin [106], contract
validity, external validity and reliability. Additionally, the last section talks
about the evaluation limitation.

8.2.1 Construct Validity

Construct validity tests if correct operational measures were followed to ar-
rive the claimed conclusions. In this research, several actions were taken
to ensure construct validity. First, this research uses multiple sources such
as interviews, literature and other documents. For interviews, interviewees
were grouped in three main groups, development, security and operations to
cover all points of view. In analysis, triangulation is used to cover all possible
components. Moreover, the interviewees came from different levels and roles,
where high level interviewees focused on strategic and enterprise components
and low level interviewees focused on the team component. The constructs
where validated in a focus group where the main questions where how correct
and complete the models were.

73

8.2.2 External Validity

External validity asks the question if the results can be generalized. In the
context of this research, the short answer is no for two main reasons. The
research was conducted in an organization, Accenture, where all the inter-
viewees are working. Although the interviewees work with a wide variety
of clients and this research is supervised by academic supervisors, the main
content of the research can be influenced by the culture of the organization.
Generalizing the results would require conducting the case study in different
organizations. The other reason is related to DevOps itself. At the start
of the research, it was discussed that DevOps has multiple definitions and
organizations can develop their own understanding of DevOps. In this re-
search, the focus was on one of these definitions and one possible pipeline
configuration. While many concepts are still the same across different types,
adjustments to the framework will be required based on the DevOps imple-
mentation.

8.2.3 Reliability

Reliability refer to the possibility of repeating the same research setting and
reaching to the same conclusions. In order to ensure reliability, the protocols
are documented and enclosed in the appendix. Conducting the same steps
will result in the same results given the research environment.

8.2.4 Evaluation

The method used in this research was Design Science Research. As indicated
in section 3.2.8, this method is used to solve a real-life problem. For this
purpose, the artifacts were created and validated with experts. However,
due to the limited time of this research, the results were not applied in a
real-life case. This step can be a start for a new research.

74

Chapter 9

Conclusion

This chapter covers the answers to the sub-research questions and the main
research question. The main research question was “How can security be
added to a DevOps framework to guarantee continuous security and rapid
value delivery?”. The main question was trying to shape the understanding
of the DevSecOps concept and how that can be joined in the current DevOps
pipeline. The sub-research questions focused on understanding what DevOps
means and what security controls can be highlighted in DevSecOps pipeline
along with main changes to team composition and tools. The following is a
detailed answer to all of the questions posed in section 2.

9.1 Sub-Research Question 1 Answer:

How is security approached in DevOps framework in theory and
in practice?

This sub-research question is answered by conducting a literature review and
interviews with practitioners. DevOps by its definition can have many vari-
ations based on the organization, application and local regulations. DevOps
as a concept has a sufficient literature that not only describes abstract con-
cepts like culture, value and team qualities, but also details the processes
and tooling. Security, on the other hand, has a well-established literature
that details security controls at the application layer. In practice, many or-
ganizations have already reached an advanced level of DevOps maturity in
the Dutch market. The same applies to security. Yet, the integration of se-
curity within DevOps is missing. Currently, most organizations are not full

75

end-to-end automated DevOps. In most cases, there will be a management
approval for new deployments. Security is handled as a different department
that is consulted when security approvals are needed to deploy. DevSecOps
as a concept is still new and there is limited scientific research around it,
yet many practitioners acknowledge the value of including security within
DevOps. The findings of this question are reported in section 4.

9.2 Sub-Research Question 2 Answer:

What is the impact of implementing DevSecOps on organizations?

This sub-research question is answered by conducting a case study. The
initial result of this question is visualized in Figure 5.1. The impact of in-
tegrating security within DevOps has four main areas, people, tools, values
and processes. These main areas include other core concepts such as culture,
team, ownership, automation, control along with the DevOps stages. The
first impact area is people, which refers to the persons involved, mainly the
team. It was discussed how would they approach this new mindset and how
does it change the current way of working. The change also impacts the
setting of pipeline and the tools used to create the pipeline. New tools have
to be introduced to perform the security related tasks. The third area is the
values and that represents the business side. This area discusses the added
value DevSecOps brings to the team and the organization. Finally, the pro-
cesses, which is the DevOps stages, have changed. The change is detailed in
the following sub-research question.

9.3 Sub-Research Question 3 Answer:

What are the changes that DevSecOps introduces to a DevOps
team and how will those changes impact a DevOps team?

This sub-research question was also answered by the case study. The initial
results are presented in section 6. This framework shows the extra compo-
nents that need to be considered to include security in DevOps. The frame-
work does not propose changes to the DevOps stages, but rather adds extra
components for each stage that brings security into focus. The framework

76

has three main areas, the DevOps stages which are represented by the cor-
responding environments, the initial baseline security and the infrastructure
security. There are security controls that can be applied at each of these
areas.

9.4 Sub-Research Question 4 Answer:

How are the proposed artifacts evaluated by experts?

This last sub-research question aimed to improve the initial artifacts. It was
answered by conducting a focus group session where the initial models were
presented and improved. The results are presented in section 7. For the
impact areas, no major changes are introduced. However, for the framework
a number of improvements were discussed. First, an acceptance environment
is added, although it is not ideal, but it is applied widely in practice. Moni-
toring is performed on both the infrastructure and application levels at the
same time. Further, smaller improvements in naming were discussed. The
validation itself was positive and the experts thought it is a good start for
understanding the DevSecOps topic.

9.5 Main Research Question

How can security be added to a DevOps framework to guarantee
continuous security and rapid value delivery?

The main research question can be answered as follows. Security is seen
as an enabler not a dependency. Adding security to DevOps empowers the
team and helps producing secure application that have security built-in not
bolted on. Including security within the team increases the agility of the
team. The team will produce better software and they can do that faster.
Security controls are divided along the pipeline aiming to catch security is-
sues as early as possible where they are easier to fix. The artifacts produced
in the research give a high level overview of the main areas to look at when
deciding to implement DevSecOps. However, they can be further tailored
per application or per context. A customized version will include the spe-
cific detailed processes which in turn will be used to configure the pipeline.

77

Although an automated end-to-end pipeline is always recommended, orga-
nizations will start with small changes to the pipeline and improve their
automation coverage overtime.

78

Chapter 10

Research Contribution and
Future Work

This section describes how this research is contributing to the body of knowl-
edge and explores the areas of future research around the topic of DevSecOps.

10.1 Research Contribution

This research aimed to understand the context of how security is approached
in highly rapid teams that use DevOps. DevOps has proven how value can
be delivered to clients in short time spans. The goal was to understand what
DevOps is, what security is and how these two can play in one team called
DevSecOps. The knowledge in this research is collected from both litera-
ture and practice. The first contribution of this research is the Impact Areas
model 7.1. This model illustrates the main areas that will be touched when
trying to implement DevSecOps. Understanding these areas helps in identi-
fying the required changes in culture, team, tools and processes. The second
contribution is the DevSecOps framework 7.2. The framework illustrates the
main components of including security in DevOps and how to distribute the
effort of security across environments aiming to catch vulnerabilities as far
to the left as possible where it is cheaper to fix and patch. Nevertheless, the
framework is a high level abstraction that can be tailored per organization
and per application. In fact, understanding the context, where DevSecOps
is to be implemented, is very crucial in specifying the components of each
item in the framework.

79

10.2 Future Work

The first step for future research is to apply the framework in a context and
observe the results. According to the method used for this research, design
science research, the artifacts should be applied in the environment. This can
be in a form of a case study, where a team is trained for the new concepts and
then apply the artifacts in three to five sprints. During this time important
KPIs, such as velocity and broken builds, are closely monitored. According
to the DevSecOps definition, the first few sprints might reduce the velocity,
however the learning process will build up and velocity goes back to normal.
The results of this experiment and study are used to improve the artifacts
further.

Another vital research area is to include the other stakeholders. In the
context of this research, the main focus was on the development, security and
operations. However, software production has more people involved in the
process. First, from an organizational perspective, the higher management
and organization strategy can influence the direction of how DevSecOps is to
be shaped. On the other side, the customers’ needs and market requirements
can have their influence on security. For some applications, such as financial
and health applications, adhering to local regulations must be taken into
account when designing the security of the application. In this research,
DevSecOps was taken in isolation for simplicity and in order to introduce the
first ideas about DevSecOps, however, taking into account other stakeholders
is needed to get the full picture.

The artifacts presented in this research include general concepts. For
organizations that require security support, translating these concepts into
detailed processes that are fitted per application. The processes will include
tooling and pipeline configuration as well as areas where automation is pos-
sible. Besides, DevSecOps is about the journey towards secure application.
A maturity model gives organizations a view of the current state in security
and where to head next.

80

Bibliography

[1] Andrew van der Stock, Brian Glas, N. S. T. G. The ten most
critical web application security risks. OWASP Foundation (2017).

[2] Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., and
Tamburri, D. A. Devops: introducing infrastructure-as-code. In
Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th
International Conference on (2017), IEEE, pp. 497–498.

[3] Artac, M., Borovssak, T., Nitto, E. D., Guerriero, M., and
Tamburri, D. A. Devops: Introducing infrastructure-as-code. In
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing Companion (ICSE-C) (May 2017), pp. 497–498.

[4] Bartusevics, A., Novickis, L., and Leye, S. Models and methods
of software configuration management. Applied Computer Systems 17,
1 (2015).

[5] Bassil, Y. A simulation model for the waterfall software development
life cycle. CoRR abs/1205.6904 (2012).

[6] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., et al. Manifesto for agile software devel-
opment.

[7] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., et al. Manifesto for agile software devel-
opment.

81

[8] Bellovin, S. M., and Bush, R. Configuration management and
security. IEEE Journal on Selected Areas in Communications 27, 3
(April 2009), 268–274.

[9] Bouquet, F., Peureux, F., and Ambert, F. Model-Based Testing
for Functional and Security Test Generation. Springer International
Publishing, Cham, 2014, pp. 1–33.

[10] Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.,
and Khalil, M. Lessons from applying the systematic literature
review process within the software engineering domain. Journal of
Systems and Software 80, 4 (2007), 571 – 583. Software Performance.

[11] Bucena, I., and Kirikova, M. Simplifying the devops adoption
process. vol. 1898. cited By 0.

[12] Budgen, D., and Brereton, P. Performing systematic literature
reviews in software engineering. In Proceedings of the 28th Inter-
national Conference on Software Engineering (New York, NY, USA,
2006), ICSE ’06, ACM, pp. 1051–1052.

[13] Cadariu, M., Bouwers, E., Visser, J., and van Deursen, A.
Tracking known security vulnerabilities in proprietary software sys-
tems. In 2015 IEEE 22nd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER) (March 2015), pp. 516–
519.

[14] Cao, J., and Zhang, S. Itil incident management process reengi-
neering in industry 4.0 environments. In Proceedings of the 2nd In-
ternational Conference on Advances in Mechanical Engineering and
Industrial Informatics (AMEII 2016) (2016), vol. 73, pp. 1011–6.

[15] Carter, K. Francois raynaud on devsecops. IEEE Software 34, 5
(2017), 93–96.

[16] Cavusoglu, H., Cavusoglu, H., and Zhang, J. Security patch
management: Share the burden or share the damage? Management
Science 54, 4 (2008), 657–670.

82

[17] Ceccato, M., Nguyen, C. D., Appelt, D., and Briand, L. C.
Sofia: An automated security oracle for black-box testing of sql-
injection vulnerabilities. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (New York,
NY, USA, 2016), ASE 2016, ACM, pp. 167–177.

[18] Cerda1, B., Martinez-Belmares, E., and Yuan, S. Protection
from black hole attacks in communication networks.

[19] Chiang, T.-C., and Huang, Y.-M. Group keys and the multicast
security in ad hoc networks. In 2003 International Conference on Paral-
lel Processing Workshops, 2003. Proceedings. (Oct 2003), pp. 385–390.

[20] Christofferson, D. Managing Cybersecurity Risk for the Coming
Decade. Springer International Publishing, Cham, 2018, pp. 23–46.

[21] Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., and
Larrucea, X. A case analysis of enabling continuous software de-
ployment through knowledge management. International Journal of
Information Management 40 (2018), 186 – 189.

[22] Comino, S., and Manenti, F. M. Dual licensing in open source
software markets. Information Economics and Policy 23, 3 (2011), 234
– 242.

[23] Cruzes, D. S., Felderer, M., Oyetoyan, T. D., Gander, M.,
and Pekaric, I. How is security testing done in agile teams? a cross-
case analysis of four software teams. In Agile Processes in Software
Engineering and Extreme Programming (Cham, 2017), H. Baumeister,
H. Lichter, and M. Riebisch, Eds., Springer International Publishing,
pp. 201–216.

[24] Dearle, A. Software deployment, past, present and future. In Future
of Software Engineering, 2007. FOSE ’07 (May 2007), pp. 269–284.

[25] Donaldson, S. E., Siegel, S. G., Williams, C. K., and Aslam,
A. Enterprise Cybersecurity and the Cloud. Apress, Berkeley, CA,
2015, pp. 105–117.

83

[26] Dong, X., Li, R., He, H., Zhou, W., Xue, Z., and Wu, H.
Secure sensitive data sharing on a big data platform. Tsinghua Science
and Technology 20, 1 (Feb 2015), 72–80.

[27] Doody, O., and Noonan, M. Preparing and conducting interviews
to collect data.

[28] Dyck, A., Penners, R., and Lichter, H. Towards definitions for
release engineering and devops. In 2015 IEEE/ACM 3rd International
Workshop on Release Engineering (May 2015), pp. 3–3.

[29] Ebert, C., Abrahamsson, P., and Oza, N. Lean software devel-
opment. IEEE Software, 5 (2012), 22–25.

[30] El-Hadary, H., and El-Kassas, S. Capturing security require-
ments for software systems. Journal of Advanced Research 5, 4 (2014),
463 – 472. Cyber Security.

[31] Elberzhager, F., Arif, T., Naab, M., Süß, I., and Koban,
S. From agile development to devops: Going towards faster releases
at high quality – experiences from an industrial context. In Software
Quality. Complexity and Challenges of Software Engineering in Emerg-
ing Technologies (Cham, 2017), D. Winkler, S. Biffl, and J. Bergsmann,
Eds., Springer International Publishing, pp. 33–44.

[32] Elberzhager, F., Arif, T., Naab, M., Süß, I., and Koban,
S. From agile development to devops: Going towards faster releases
at high quality – experiences from an industrial context. In Software
Quality. Complexity and Challenges of Software Engineering in Emerg-
ing Technologies (Cham, 2017), D. Winkler, S. Biffl, and J. Bergsmann,
Eds., Springer International Publishing, pp. 33–44.

[33] Elberzhager, F., Münch, J., and Nha, V. T. N. A systematic
mapping study on the combination of static and dynamic quality as-
surance techniques. Information and Software Technology 54, 1 (2012),
1 – 15.

[34] Eshete, B., Villafiorita, A., and Weldemariam, K. Early de-
tection of security misconfiguration vulnerabilities in web applications.
In 2011 Sixth International Conference on Availability, Reliability and
Security (Aug 2011), pp. 169–174.

84

[35] Esposito, D., Rennhard, M., Ruf, L., and Wagner, A. Ex-
ploiting the potential of web application vulnerability scanning. In
ICIMP 2018, Spain, July 22-26, 2018 (2018), IARIA, pp. 22–29.

[36] Fairley, R. E. Tutorial: Static analysis and dynamic testing of
computer software. Computer 11, 4 (April 1978), 14–23.

[37] Farah, T., Alam, D., Kabir, M. A., and Bhuiyan, T. Sqli
penetration testing of financial web applications: Investigation of
bangladesh region. In 2015 World Congress on Internet Security
(WorldCIS) (Oct 2015), pp. 146–151.

[38] Felderer, M., and Fourneret, E. A systematic classification of
security regression testing approaches. International Journal on Soft-
ware Tools for Technology Transfer 17, 3 (Jun 2015), 305–319.

[39] Felderer, M., Zech, P., Breu, R., Büchler, M., and
Pretschner, A. Model-based security testing: a taxonomy and sys-
tematic classification. Software Testing, Verification and Reliability 26,
2, 119–148.

[40] Fitzgerald, B., and Stol, K.-J. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software 123 (2017),
176 – 189.

[41] Gallaugher, J. M., and Wang, Y.-M. Understanding network
effects in software markets: Evidence from web server pricing. MIS
Quarterly 26, 4 (2002), 303–327.

[42] Gao, J., Zhu, E. Y., Shim, S., and Chang, L. Monitoring soft-
ware components and component-based software. In Proceedings 24th
Annual International Computer Software and Applications Conference.
COMPSAC2000 (Oct 2000), pp. 403–412.

[43] Garn, B., Kapsalis, I., Simos, D. E., and Winkler, S. On
the applicability of combinatorial testing to web application security
testing: A case study. In Proceedings of the 2014 Workshop on Joining
AcadeMiA and Industry Contributions to Test Automation and Model-
Based Testing (New York, NY, USA, 2014), JAMAICA 2014, ACM,
pp. 16–21.

85

[44] Gartner. 10 things to get right for successful devsecops, 2017.

[45] Gartner. Hype cycle for application security, 2018.

[46] Gartner. Top 10 strategic technology trends for 2018: Continuous
adaptive risk and trust, 2018.

[47] Ge, X., Paige, R. F., Polack, F. A., Chivers, H., and
Brooke, P. J. Agile development of secure web applications. In
Proceedings of the 6th International Conference on Web Engineering
(New York, NY, USA, 2006), ICWE ’06, ACM, pp. 305–312.

[48] Godefroid, P., Levin, M. Y., Molnar, D. A., et al. Automated
whitebox fuzz testing. In NDSS (2008), vol. 8, pp. 151–166.

[49] Godse, M., and Mulik, S. An approach for selecting software-as-
a-service (saas) product. In 2009 IEEE International Conference on
Cloud Computing (Sept 2009), pp. 155–158.

[50] Greising, L., Bartel, A., and Hagel, G. Introducing a deploy-
ment pipeline for continuous delivery in a software architecture course.
In Proceedings of the 3rd European Conference of Software Engineering
Education (New York, NY, USA, 2018), ECSEE’18, ACM, pp. 102–107.

[51] Gruhn, V., and Schäfer, C. Bizdevops: Because devops is not
the end of the story. In Intelligent Software Methodologies, Tools and
Techniques (Cham, 2015), H. Fujita and G. Guizzi, Eds., Springer
International Publishing, pp. 388–398.

[52] Gupta, V., Kapur, P., and Kumar, D. Modeling and measuring
attributes influencing devops implementation in an enterprise using
structural equation modeling. Information and Software Technology
92 (2017), 75 – 91.

[53] Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta,
L. R., Rangamani, A., Hamilton, L. H., Centeno, G. I., Key,
J. R., Ellingwood, P. M., McConley, M. W., Opper, J. M.,
Chin, S. P., and Lazovich, T. Automated software vulnerability
detection with machine learning. CoRR abs/1803.04497 (2018).

86

[54] Hassan, M. M., Nipa, S. S., Akter, M., Haque, R., Deepa,
F. N., Rahman, M., Siddiqui, M. A., Sharif, M. H., et al.
Broken authentication and session management vulnerability: A case
study of web application. International Journal of Simulation–Systems,
Science & Technology 19, 2 (2018).

[55] Hevner, A., and Chatterjee, S. Design Science Research in In-
formation Systems. Springer US, Boston, MA, 2010, pp. 9–22.

[56] Hevner, A. R. A three cycle view of design science research. Scan-
dinavian journal of information systems 19, 2 (2007), 4.

[57] Hevner, A. R., and March, S. T. The information systems re-
search cycle. Computer 36, 11 (Nov 2003), 111–113.

[58] Hofstede, G. Dimensionalizing cultures: The hofstede model in
context. Online readings in psychology and culture 2, 1 (2011), 8.

[59] Hüttermann, M. Beginning DevOps for Developers. Apress, Berke-
ley, CA, 2012, pp. 3–13.

[60] Ibrahim, A. S., Hamlyn-Harris, J., and Grundy, J. Emerg-
ing security challenges of cloud virtual infrastructure. arXiv preprint
arXiv:1612.09059 (2016).

[61] Indu, I., Anand, P. R., and Bhaskar, V. Identity and access
management in cloud environment: Mechanisms and challenges. Engi-
neering Science and Technology, an International Journal 21, 4 (2018),
574 – 588.

[62] Ingalsbe, J. A., Kunimatsu, L., Baeten, T., and Mead, N. R.
Threat modeling: diving into the deep end. IEEE software, 1 (2008),
28–34.

[63] ISO. Information processing systems – open systems interconnection
– basic reference model – part 4: Management framework, 1989.

[64] Jabbari, R., bin Ali, N., Petersen, K., and Tanveer, B. What
is devops?: A systematic mapping study on definitions and practices.
In Proceedings of the Scientific Workshop Proceedings of XP2016 (New
York, NY, USA, 2016), XP ’16 Workshops, ACM, pp. 12:1–12:11.

87

[65] Kim, S., Park, S., Yun, J., and Lee, Y. Automated continuous
integration of component-based software: An industrial experience. In
2008 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (Sept 2008), pp. 423–426.

[66] Kitchenham, B. Procedures for performing systematic reviews.
Keele, UK, Keele University 33, 2004 (2004), 1–26.

[67] Kitchenham, B. A., Dyba, T., and Jorgensen, M. Evidence-
based software engineering. In Proceedings of the 26th International
Conference on Software Engineering (Washington, DC, USA, 2004),
ICSE ’04, IEEE Computer Society, pp. 273–281.

[68] Kwon, O.-H., Lee, S. M., Lee, H., Kim, J., Kim, S. C., Nam,
G. W., and Park, J. G. Hacksim: An automation of penetration
testing for remote buffer overflow vulnerabilities. In Information Net-
working. Convergence in Broadband and Mobile Networking (Berlin,
Heidelberg, 2005), C. Kim, Ed., Springer Berlin Heidelberg, pp. 652–
661.

[69] Laukkarinen, T., Kuusinen, K., and Mikkonen, T. Regu-
lated software meets devops. Information and Software Technology
97 (2018), 176 – 178.

[70] Loise, T., Devroey, X., Perrouin, G., Papadakis, M., and
Heymans, P. Towards security-aware mutation testing. In ICST
Workshops (2017), pp. 97–102.

[71] Lwakatare, L. E., Kuvaja, P., and Oivo, M. Dimensions of
devops. In Agile Processes in Software Engineering and Extreme Pro-
gramming (Cham, 2015), C. Lassenius, T. Dingsøyr, and M. Paasi-
vaara, Eds., Springer International Publishing, pp. 212–217.

[72] Mackey, T. Building open source security into agile application
builds. Network Security 2018, 4 (2018), 5 – 8.

[73] Mansfield-Devine, S. Devops: finding room for security. Network
Security 2018, 7 (2018), 15 – 20.

88

[74] McDermott, J. P. Attack net penetration testing. In Proceedings of
the 2000 Workshop on New Security Paradigms (New York, NY, USA,
2000), NSPW ’00, ACM, pp. 15–21.

[75] Mohan, V., and Othmane, L. B. Secdevops: Is it a marketing buz-
zword? - mapping research on security in devops. In 2016 11th Inter-
national Conference on Availability, Reliability and Security (ARES)
(Aug 2016), pp. 542–547.

[76] Myrbakken, H., and Colomo-Palacios, R. Devsecops: A mul-
tivocal literature review. In Software Process Improvement and Ca-
pability Determination (Cham, 2017), A. Mas, A. Mesquida, R. V.
O’Connor, T. Rout, and A. Dorling, Eds., Springer International Pub-
lishing, pp. 17–29.

[77] Myrbakken, H., and Colomo-Palacios, R. Devsecops: A mul-
tivocal literature review. In Software Process Improvement and Ca-
pability Determination (Cham, 2017), A. Mas, A. Mesquida, R. V.
O’Connor, T. Rout, and A. Dorling, Eds., Springer International Pub-
lishing, pp. 17–29.

[78] Neely, S., and Stolt, S. Continuous delivery? easy! just change
everything (well, maybe it is not that easy). In 2013 Agile Conference
(Aug 2013), pp. 121–128.

[79] Ottosson, H., and Lindquist, P. Penetration testing for the in-
experienced ethical hacker : A baseline methodology for detecting and
mitigating web application vulnerabilities. Master’s thesis, Linköping
University, Database and information techniques, 2018.

[80] Pawar, R. G. Sql injection attacks. KHOJ: Journal of Indian Man-
agement Research and Practices (2015), 125–129.

[81] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. A design science research methodology for information
systems research. Journal of Management Information Systems 24, 3
(2007), 45–77.

[82] Ramachandran, M. Software security requirements management as
an emerging cloud computing service. International Journal of Infor-
mation Management 36, 4 (2016), 580 – 590.

89

[83] Rathod, N., and Surve, A. Test orchestration a framework for con-
tinuous integration and continuous deployment. In 2015 International
Conference on Pervasive Computing (ICPC) (Jan 2015), pp. 1–5.

[84] Riti, P. Cloud and DevOps. Apress, Berkeley, CA, 2018, pp. 209–220.

[85] Sagala, A., and Manurung, E. Testing and comparing result
scanning using web vulnerability scanner. Advanced Science Letters
21, 11 (2015), 3458–3462.

[86] Salas, M., and Martins, E. Security testing methodology for vul-
nerabilities detection of xss in web services and ws-security. Electronic
Notes in Theoretical Computer Science 302 (2014), 133 – 154. Pro-
ceedings of the XXXIX Latin American Computing Conference (CLEI
2013).

[87] Sani, A. S., Yuan, D., Jin, J., Gao, L., Yu, S., and Dong,
Z. Y. Cyber security framework for internet of things-based energy
internet. Future Generation Computer Systems (2018).

[88] Scandariato, R., Wuyts, K., and Joosen, W. A descriptive
study of microsoft’s threat modeling technique. Requirements Engi-
neering 20, 2 (Jun 2015), 163–180.

[89] Schlossnagle, T. Monitoring in a devops world. Queue 15, 6 (Dec.
2017), 10:35–10:45.

[90] Schultze, U., and Avital, M. Designing interviews to generate rich
data for information systems research. Information and Organization
21, 1 (2011), 1 – 16.

[91] Senapathi, M., Buchan, J., and Osman, H. Devops capabilities,
practices, and challenges: Insights from a case study. In Proceedings
of the 22Nd International Conference on Evaluation and Assessment
in Software Engineering 2018 (New York, NY, USA, 2018), EASE’18,
ACM, pp. 57–67.

[92] Subramanian, N., and Jeyaraj, A. Recent security challenges in
cloud computing. Computers Electrical Engineering 71 (2018), 28 –
42.

90

[93] Sulatycki, R., and Fernandez, E. B. Two threat patterns that
exploit ”security misconfiguration” and ”sensitive data exposure” vul-
nerabilities. In Proceedings of the 20th European Conference on Pattern
Languages of Programs (New York, NY, USA, 2015), EuroPLoP ’15,
ACM, pp. 46:1–46:11.

[94] Takanen, A. Proactive Security Testing and Fuzzing.
Vieweg+Teubner, Wiesbaden, 2010, pp. 312–319.

[95] Thomas, T. W. Security Code Review with Static Analysis Techniques
for the Detection and Remediation of Security Vulnerabilities. PhD
thesis, The University of North Carolina at Charlotte, 2018.

[96] Topper, J. Compliance is not security. Computer Fraud Security
2018, 3 (2018), 5 – 8.

[97] Tsai, W. T., Bai, X., Paul, R., Shao, W., and Agarwal,
V. End-to-end integration testing design. In 25th Annual Interna-
tional Computer Software and Applications Conference. COMPSAC
2001 (Oct 2001), pp. 166–171.

[98] Tøndel, I. A., Line, M. B., and Jaatun, M. G. Information
security incident management: Current practice as reported in the lit-
erature. Computers Security 45 (2014), 42 – 57.

[99] Uwagbole, S. O., Buchanan, W. J., and Fan, L. Applied ma-
chine learning predictive analytics to sql injection attack detection and
prevention. In 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM) (May 2017), pp. 1087–1090.

[100] Verona, J. Practical DevOps. Packt Publishing Ltd, 2016.

[101] Wettinger, J., Andrikopoulos, V., and Leymann, F. En-
abling devops collaboration and continuous delivery using diverse ap-
plication environments. In On the Move to Meaningful Internet Sys-
tems: OTM 2015 Conferences (Cham, 2015), C. Debruyne, H. Panetto,
R. Meersman, T. Dillon, G. Weichhart, Y. An, and C. A. Ardagna,
Eds., Springer International Publishing, pp. 348–358.

91

[102] Williams, C. L., McClintock, D. S., and Balis, U. G. The
case for an entropic simian in your laboratory: The case for labora-
tory information system failure scenario testing in the live production
environment. Journal of pathology informatics 9 (2018).

[103] Wohlin, C. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering (New York, NY, USA, 2014), EASE ’14, ACM, pp. 38:1–
38:10.

[104] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. Experimentation in software engineer-
ing. Springer Science & Business Media, 2012.

[105] Wotawa, F. On the automation of security testing. In 2016 Interna-
tional Conference on Software Security and Assurance (ICSSA) (Aug
2016), pp. 11–16.

[106] Yin, R. K. Case study research and applications: Design and methods.
Sage publications, 2017.

92

Appendices

93

Appendix A

Literature Review Protocol

Document Created on Week30 / 2018

A.1 Goal

This literature review aims to achieve:

• Explorer the state of the art on DevOps concepts and Security Testing.

• Position the direction of the research.

• Create the base conceptual model for this research’s output.

A.2 Strategy

Collecting the papers will be through online scientific research engines. The
first 10 papers for each keyword, that are published after 2014, will be col-
lected for the literature review. The data collection is performed on week
31/2018. All the papers will go through the inclusion and exclusion criteria
based on the abstract of the paper. The final list will be studied for analysis.

A.3 Search Engines

The search engines used for this analysis are:

• ACM digital library https://dl.acm.org/

94

• Scopus https://www.scopus.com

• Springer Link https://link.springer.com

• Science Direct https://www.sciencedirect.com/

• Gartner

A.4 Keywords

The following keywords will be used ordered from specific to general:

• DevSecOps

• DevOps

• Continuous Integration AND Delivery

• Security Testing AND Automation

A.5 Inclusion Criteria

All material will be included unless they are satisfying one or more of the
exclusion criteria.

A.6 Exclusion Criteria

• Not English

• Redundancy, one version will be eventually considered

• Published before 2014

• Books

• Irrelevant to Computer Science

• Irrelevant to Software Production

95

Appendix B

Interview Protocol

The main objective of this interview is to identify the current state of Security
and DevOps in the industry. The focus is on how security is defined and
how it is approached in rapid DevOps teams. This interview is designed
for DevOps practitioners and Security experts. The planned time for this
interview is between 45 - 60 minutes.
For the purpose of further analysis, I want to record this interview. May I
record this interview for further analysis? All information will be anonymized.
:: Start Recording ::
Just for the record, do you approve the recording of this interview?
Section I: Introduction of DevOps as a framework of developing applica-
tions.

1. Would you please briefly introduce yourself and your domain of exper-
tise?

2. How do you define DevOps?

3. Which type of organizations / applications DevOps is best for?

(a) And which is not?

(b) Can you give me examples?

4. What is the added value that DevOps provide?

5. Why is added value important?

6. According to your role, how do you define the stages/steps of DevOps?

96

Section II: In this section, the questions will be focusing on the security
aspects of software production.

1. Where does security take place in these mentioned steps?

2. How is the security testing is planned and executed?

(a) Who is involved?

3. What types of tests / security tests are performed in your team?

4. How the results of tests are interpreted?

(a) In which situations security test results can stop deployment?

(b) Who decides on aborting deployment? Who decides if an incre-
ment passed the test, or not?

5. What is your team’s strategy on software security?

(a) How do you prioritize threats?

(b) When do you review this strategy?

6. What is the role of the other teams (Development and Operations) in
deciding these priorities?

(a) Are they involved in the process of security policy?

Section III: This section aims to understand the role of security within the
DevOps team.

1. Is the security team involved in deciding development requirements?

(a) Yes? What is their tasks?

(b) No? Why not?

2. How are security measures decided for an increment?

Section IV: This section is to get an overview about the main concepts of
security in DevOps.

1. What is your understanding of the concept Security by Design?

97

2. What is your understanding of the concept Shifting Security Left?

3. What is you understanding of the concepts DevSecOps?

Thank you very much for this valuable information. I will transcribe this in-
terview and further analyze its content. All the information will be anonymized.
May I get back to you should I have further questions? Do you have any
other questions or comments?
Thank you very much.
:: Stop Recording ::

98

Appendix C

Case Study Protocol

C.1 Background

The case study is designed to answer the sub-research questions 2 and 3.
The RQ2 aims to identify the impact areas of implementing DevSecOps,
while RQ3 aims to create a framework of DevSecOps. Scientific research
presented in the literature review is used as a base of this case study and for
the proposed framework.

C.2 Design

Following Yin’s classification of case studies, this case study is designed as a
single case with multiple analysis units. This design is selected because the
case is the DevOps process itself rather than a specific team or teams. The
units of analysis are Development, Operations and Security.

C.3 Data Collection

Data will be collected using 4 techniques:

1. Interviews.

2. Scientific Publications (Literature) and White Papers from companies.

3. Strategy documents.

99

4. Standards.

All the collected material will be classified in 3 main categories representing
the analysis units.

C.4 Analysis

All data us analyzed using Nvivo, a qualitative research analysis tool. In
this environment, all data is inserted and coded into three main nodes each
representing one of the DevSecOps perspectives. Triangulation is used to
draw conclusions.

C.5 Case Study Interview Protocol

The goal of this interview is to understand the main components of DevSec-
Ops framework and the impact areas. The planned time for this interview is
about 60 minutes. For the purpose of further analysis, I want to record this
interview.
May I record this interview for further analysis? All information will be
anonymized.
:: Start Recording ::
Just for the record, do you approve the recording of this interview?

C.5.1 Section I:

1. Would you please briefly introduce yourself and your domain of exper-
tise?

2. How long have you been working in this field?

3. Do you define yourself as Development, Security or Operations?

4. How do you define DevOps? What does DevOps mean to you?

5. Where does security take place in the whole picture?

100

Figure C.1: DevOps Stages based on Rathod and Surve [83]

C.5.2 Section II:

1. Why do we need to secure applications? What happens if we don’t
include security?

2. Is the size of the application, or the data it is processing, important for
determining the need for / type of security and how complex can this
security be? If yes, what is an appropriate size?

3. How can an organization realize the value of DevSecOps? (i.e. cus-
tomer trust, less security related issues in testing?)

4. How DevSecOps helps organizations adhere to security regulations?
(e.g. GDPR)

5. How DevSecOps helps organizations comply to security standards?
(e.g. ISO:27034)

6. How can DevSecOps impact the agility of software delivery?

C.5.3 Section III:

1. Starting with the DevOps concepts, what would change in the DevOps’
team culture?

2. Is it necessary to add a team member who is responsible about security?
What would be his tasks? If not, why?

101

3. Security has a blue team and a red team, each has a specific task.
Should a DevSecOps team include any of them? Or both?

4. Why is automation important in security? What tools exist?

5. How can DevOps maturity impact the implementation of DevSecOps?

6. Looking into Figure C.1, we see the stages of DevOps. In a perfect
DevOps implementation: What security measures would you include
in:

(a) Plan stage?

(b) Code stage?

(c) Build stage?

(d) Test stage?

(e) Release stage?

(f) Deploy stage?

(g) Operate stage?

7. For the validation of the results, there will be a focus group where you
can validate my results, would you be interested in participating?

Thank you very much for this valuable information. I will transcribe this in-
terview and further analyze its content. All the information will be anonymized.
May I get back to you should I have further questions?
Do you have any other questions or comments?
Thank you very much.
:: Stop Recording ::

102

Appendix D

Informed Consent

This interview is planned as part of my master thesis research in Utrecht
University. I am doing my thesis in Accenture as an internship. The main
topic of this thesis is DevSecOps and how security can be implemented in high
speed teams. Through this interview, I am aiming to gain theoretical and
practical knowledge about how security is handled in day-to-day activities
and compare that to scientific research conducted in this area. The main
goal is to develop a framework that structures DevSecOps.

The interview will be recorded, transcribed and analyzed to draw scien-
tific conclusions. All of the information, people, companies and examples
mentioned in the interview will be confidential and used only for scientific
research. The interview will always be looked at in the context it is represent-
ing. The recording will be private, it will not be shared with other employees
inside or outside Accenture nor other organizations. Entities mentioned in
the interviews will be anonymized to ensure confidentiality. The recordings
will be permanently deleted after the research is completed and the concluded
results will be used in my thesis.

The interview does not aim to harm you nor your organization, therefore,
you have all the right to stop the recording or the whole interview at any
point if you feel uncomfortable to continue the interview. Participating in
this interview is totally voluntary and only for supporting scientific purposes.

If you have read the above statement and agree with it, please sign below.

Interviewee
Name:

103

Date:
Place:
Signature:

Researcher
Name:
Date:
Place:
Signature:

104

	Introduction
	Research Questions
	Research Approach
	Background
	Impact Areas of DevSecOps
	DevSecOps Initial Framework
	Validation and Improved Artifacts
	Discussion and Limitations
	Conclusion
	Research Contribution and Future Work
	Appendices
	Literature Review Protocol
	Interview Protocol
	Case Study Protocol
	Informed Consent

