
Beneath the surface of centrality

A computational approach to network theory

Anne Bomer

Supervised by dr. Sarah Gaaf

A thesis presented for the degree of
Bachelor of Mathematics

Department of Mathematics
Utrecht University
The Netherlands

July 2018

Contents

1 Introduction 3

2 Network Properties 4
2.1 Introduction to network theory . 4
2.2 Graphs and Adjacency matrices . 5
2.3 Centrality and the exponential matrix function 6

2.3.1 Centrality measures . 7
2.3.2 Communicability . 7
2.3.3 Betweenness . 8

3 How to apply? 9
3.1 Example results . 9
3.2 Reformulation as an integral . 10
3.3 Gauss Quadrature Bounds . 12

3.3.1 Gauss Rule . 12
3.3.2 Gauss-Radau Rules . 12
3.3.3 Bounds . 13

3.4 Gauss Quadrature via Lanczos . 13
3.4.1 Interpolation . 13
3.4.2 Extending the equality . 14
3.4.3 Choosing the nodes . 15
3.4.4 Three facts . 16
3.4.5 Lanczos Algorithm . 16

3.5 Implementation in MATLAB . 18

4 Numerical experiments 20
4.1 Centrality computing times compared . 20
4.2 Communicability computing times compared 22
4.3 Betweenness computing times compared 25
4.4 Preliminary conclusions . 25

5 Case study 25
5.1 Comparison . 25
5.2 Overcoming differences . 26
5.3 Preliminary conclusions . 26

6 Conclusion & Discussion 27

References 28

2

1 Introduction

A perceptive reader might ask him or herself upon seeing the title: what more could
there be to a simple concept such as centrality? Everybody knows: Utrecht is the most
central place in the Netherlands. And for the average person this intuitive approach
is sufficient. But imagine a herring trader, who wants to transport his fish, using the
fastest route to maintain absolute freshness. He might store his fish in Utrecht, because
people told of its centrality. But the fisherman, who wants to make as much money as
possible, has many questions. Utrecht may be in the middle of the country, but is it well
connected to specific places in the Netherlands where most herring is sold? If I choose
to store herring in Utrecht, is there a good connection from the North Sea going into
Utrecht? If a main road leaving or going into Utrecht is closed, are there well-connected
alternatives? And which of the above issues will have the most impact on my business?
Especially in the Netherlands, with its complex and extensive infrastructure, these ques-
tions can quickly become mathematical problems. Meanwhile, in other large networks
the question of centrality is also worth serious examination, such as in on- or offline
social networks (who are the influencers?), public transport (scheduling, rescheduling,
rerescheduling), search engines (links between websites) or the interaction of cells of the
human body. The importance of these areas of life drove us to the following question:
how can we examine network connectivity and compute this in an actual, real-world sit-
uation? It turns out the mathematical concept of centrality is very helpful in answering
this, hence the emphasis in the title.

Now we have intuitively demonstrated the importance of the examination of centrality
above, we can assure the reader that centrality is actually a well-defined mathematical
concept. In this paper, we will first introduce this and related notions, and the mathe-
matics it is embedded in. Thereafter we deal with questions of how these concepts and
theory can be applied in a practical way, to proceed with some numerical experiments.
Finally, we contrast our mathematical frame with a case wherein the centrality concept
is used for determining port hierarchy, to conclude with an analysis of the implications
of the differences found. Thereafter we will share our findings and conclusions regarding
the research question.

During the research process, we emphasized the exploration of the subject’s practical
and applied sides, in order to engage the reader’s mind to the broader implications of a
scientific discipline that can be extremely theoretical, and for our study to be educational
and accessible for the reader that is a (relative) layman.

3

2 Network Properties

2.1 Introduction to network theory

In Applied Mathematics, it is often so that real-life problems have to be modeled in such
a way that we can get more information about this problem. A particular branch of
this modeling is network theory. Being a subdivision of graph theory, in network theory
one studies graphs as a model of symmetric or asymmetric relations between discrete
objects. To illustrate intuitively the general practice and value of such studies, we will
start with an example.

Example Consider nine cities, connected with a two-way road (so you can travel in
both directions) to at least one of the other cities. We can represent a possible network
between these cities with a graph:

1

2

3

4

5

6

7

8

9

Intuitively we can understand how the different cities are linked to one another, and
how you can get from one city to another. When a person from city 1 wants to do
grocery shopping in city 4, and then return, he or she can travel via city 2 to 4 and then
back to city 1 via 3. There are of course other options.

These types of networks, where different objects (in this case; cities) are in some way
connected to each other (in this case; with a road), are abundant in the world. Other
examples include:

• People connected through social networks

• Public transport routes

• Trade routes

Now we have introduced a basic notion of the subject we are dealing with, we progress
to a formal mathematical introduction.

4

2.2 Graphs and Adjacency matrices

The following basic definitions are commonly used in network theory. These are derived
from Handbook of Graph Theory [10].

Definition 2.1 A graph is an ordered pair G = (V,E) consisting of a set V of nodes
and a set E of lines. For nodes {x, y} ⊂ V that are connected by a line, there is an
element (x, y) ∈ E.

Under certain circumstances, a graph can be represented by an adjacency matrix.

Definition 2.2 When a graph G = (V,E) is finite (it has a finite number of nodes), it
can be represented by a square |V | × |V | matrix A where its elements aij = 1 if node i
and j are connected with a line, and aij = 0 if not. This matrix is called an adjacency
matrix. Note that for an adjacency matrix, it does not make a difference whether G has
multiple (or an infinite amount of) lines between the same nodes.

The adjacency matrix B of our example is the following:

B =



0 1 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0


In our example, one can travel both ways. Thus, we have an undirected graph; a
line (x, y) is not distinguished from (y, x). This means we have a symmetric adjacency
matrix (bij = bji). Also, no city is connected to itself, this makes sure that our diagonal
entries are zero. In the remainder of this paper, we will assume an adjacency matrix A
is symmetric and has diagonal entries equal to zero, unless noted otherwise.

Definition 2.3 A network is an undirected graph with N nodes. It can be represented
by adjacency matrix A ∈ RN×N .

5

2.3 Centrality and the exponential matrix function

In graph theory, the importance of a node is determined by its centrality. Before defin-
ing centrality, we should ask: what characterizes an important node? In our example,
should we choose the best-connected city (with the most roads connecting it to others),
or the city that is indispensable (necessary to pass through)? The best-connected city
is 4. City 5 has one connection less, but it’s the only connection from 7, 8 and 9 to the
other ones. So 4 is important for tourists who want to travel between different cities in
a short time, where 5 is important for workers that work in 1 but live in 9. Because of
these differing possibilities, different ways to define a centrality measure have emerged
in the literature.

In recent times, Estrada and Higham[9] have defined an influential centrality measure.
They first display a few centrality measures in the literature, after which they introduce
their own. In this paragraph, I will closely follow their treatment of the subject, with
the addition of my own explanations of how to interpret this in our example.

Definition 2.4 Given an adjacency matrix A of dimension N and the N × 1 vector e
with all values equal to one, the degree of node i is given by:

degi =

N∑
k=1

aik = (Ae)i (1)

This index corresponds with the number of lines that have i as an endpoint. In our
example, deg1 = 2.

They proceed to look at the meaning of a squared adjacency matrix. Defined as
A2
ij =

∑N
k=1 aikakj , it counts the number of nodes that are connected to both i and

j. In our example, city 2 and 3 are both connected to 1 and 4, so we get B2
14 = 2. To

develop this idea, the notion of a walk is introduced.

Definition 2.5 A walk of length n is a list of nodes i, k1, k2, . . . , kn−1, j such that
ai,k1 = ak1,k2 = . . . = akn−1,j = 1, that is, successive nodes are connected. The val-
ues k1, k2, . . . , kn−1 do not have to be different, and can be equal to i or j. For the case
that i = j, we have a closed walk.

Thus, A2
ij can be interpreted as the number of walks of length two from i to j. Then what

is the meaning of higher matrix powers? The authors introduce the following lemma as
an answer(for a proof see [9]):

Lemma 2.1 The identity

Anij =
n∑

k1=1

n∑
k2=1

· · ·
n∑

kn−2=1

n∑
kn−1=1

ai,k1ak1,k2 · · · akn−2,kn−1akn−1,j

6

counts the number of different walks (i 6= j) or closed walks (i = j) of length n between
nodes i and j.

2.3.1 Centrality measures

Now we have the tools to define some centrality measures. The authors argue that
the degree might not be a good option: The degree, however, paints a very localized
picture of a node’s importance; it does not distinguish between edges that connect to
well-connected or poorly connected nodes. [Estrada and Higham, 2010, pp. 698] Note
that A2

ii =
∑N

k=1 aikaki = degi. Thus, the degree may be interpreted as a closed walk
of length 2 in node i. They argue that longer closed walks also carry value; a better-
connected node should also be able to form longer ones. With this reasoning, they con-
sider (An)ii for all n = 2, 3, . . . of importance, although they argue that shorter walks
may be more important; information is passed more quickly and efficiently [Estrada and
Higham, 2010, pp. 698]. Thus they decide to scale closed walks based on length, choos-
ing 1/(n!) to do so. This results in the following centrality measure:(A2

2!
+
A3

3!
+ . . .+

Ak

k!
+ . . .

)
ii

Since aii = 0 (nodes are not self-connected) and the fact that relative ordering does
not change by adding a constant (say 1), we choose(
I +A+

A2

2!
+
A3

3!
+ . . .+

Ak

k!
+ . . .

)
ii

,

where I is an identity matrix of size N ×N . The above is equivalent to

(exp(A))ii, (2)

where exp (·) is the matrix exponential function.

Definition 2.6 The centrality of node i is equivalent to (exp(A))ii.

2.3.2 Communicability

The idea of the importance of weighted walks can be extended to walks that are not
closed. Walks of different length between some nodes i and j can provide knowledge of
how quickly and efficiently information is passed through different parts of a network.

Definition 2.7 The communicability between node i and j is equivalent to

(exp(A))ij . (3)

7

2.3.3 Betweenness

In our example network, we noted a situation wherein city 5 was more important than
4, since without it some cities couldn’t be reached. This suggests it might be useful to
analyze changes in communicability when a node is removed. If for a node r, we let
A − E(r) indicate the adjacency matrix of the network with r removed, where E(r) is
an N ×N matrix with row and column r the same as A, and zeros elsewhere.

Definition 2.8 The betweenness of a node is equivalent to

1

(N − 1)2 − (N − 1)

∑∑
i 6=j,i6=r,j 6=r

(exp(A)ij)− exp(A− E(r))ij
exp(A)ij

, (4)

where (N − 1)2 − (N − 1) equals the number of terms in the sum, so we get a value
between 0 and 1. Also, N ≥ 3.

8

3 How to apply?

3.1 Example results

For our example, we can compute the above measures in MATLAB. Given adjacency
matrix A∗ ∈ R9×9 MATLAB computes (rounded to two decimal points):

exp(B) =



2.61 2.39 2.40 2.32 1.48 1.40 0.39 0.08 0.08
2.39 3.92 2.40 3.80 1.85 2.93 0.47 0.09 0.09
2.40 2.40 4.00 3.86 3.26 1.77 1.16 0.30 0.30
2.32 3.80 3.86 5.48 3.63 3.31 1.25 0.31 0.31
1.48 1.85 3.26 3.63 3.92 1.56 2.21 0.77 0.77
1.40 2.93 1.77 3.31 1.56 3.01 0.41 0.08 0.08
0.39 0.47 1.16 1.25 2.21 0.40 3.06 1.61 1.61
0.08 0.09 0.30 0.31 0.77 0.08 1.61 1.64 0.64
0.08 0.09 0.30 0.31 0.77 0.08 1.61 0.64 1.64


Betweenness is given by the following table:

Node Betweenness
1 0.0923
2 0.1956
3 0.3333
4 0.5136
5 0.6158
6 0.0983
7 0.4798
8 0.0253
9 0.0253

In our example, we can see the highest centrality, communicability and betweenness
indices are respectively given by B44 = 5.48, B34 = B43 = 3.86 and 0.62. This means
that, according to our definitions, city 4 has the best-connected closed walks, city 3 and
4 are have the best connected routes between each other compared to routes between
other cities, and city 5 is the most important for overall communicability between cities.

In many real situations, however, adjacency matrices may be of much bigger dimen-
sions than our example matrix. This does not constitute a problem per se, but the
command expm that is used to calculate the exponential matrix gets slower very rapidly
when matrix dimensions rise. On the next page we included a figure that illustrates this
for rising N .

9

Figure 1

We can see that the computing times of expm raise exponentially. Even for a relatively
small matrix (N = 5000) the computing time is already 10.4 seconds. From this we
conclude that for large matrices it is not feasible to calculate the matrix exponential
using the expm command in MATLAB, due to the large computation times. One method
to lower these is to approximate specific matrix elements, using a cheaper computational
method, which is what we will be doing. An often used method in the literature is based
on Gauss Quadrature and the Lanczos algorithm. The goal of this method is to produce
suitably tight lower and upper bounds for the desired values, namely the entries of f(A).
We will give a description of this method in the rest of this chapter, closely based on the
one in paragraphs 10.1 and 10.2 in Matrix Computations [6] by Golub and Van Loan.
Therefore, only when we present a specific or crucial detail or deviate from this source
we will use citations. Also, for reasons of simplicity, the notation in the book is kept the
same in this paper.

3.2 Reformulation as an integral

Assume there is a large sparse symmetric positive definite matrix A ∈ RN×N with
eigenvalues in some interval [a, b]. Then let f(λ) be a given smooth function defined on
this interval. Given some u ∈ RN , we can produce lower and upper bounds b and B
such that:

b ≤ uT · f(A) · u ≤ B. (5)

When we choose u = ei and f(A) = exp(A) we get b ≤ exp(A)ii ≤ B from the equation
above. However, with this choice of u we can only approximate the diagonal of exp(A).

10

For off-diagonal elements we can use the identity [12]

ei
T · f(A) · ej =

1

4

[
(ei + ej)

T · f(A) · (ei + ej)− (ei − ej)
T · f(A) · (ei − ej)

]
and choose u1 = ei + ej , u2 = ei − ej to produce two different bounds, which we can
substitute into the above equality.

Note that exp(A) is a smooth function defined on R, and since we are dealing with
large networks, it is reasonable to assume that A is sparse (most of its elements are
zero). Also, A is symmetric, finite and its elements are nonnegative, wherefore it has
N real eigenvalues contained in some interval [a, b]. We conclude that A satisfies the
conditions given by Golub [6] wherefore it is possible to derive bounds for this situation.

To proceed with a method based on quadrature, we must regard uT f(A)u as a Riemann-
Stieltjes integral. Given a real-valued integrand f(x) and weight function w(x), the
Riemann-Stieltjes integral is denoted by

I(f) =

∫ b

a
f(x)dw(x) (6)

and defined as a limit of sums of the form

SK =
K∑
µ=1

f(cµ)(w(xµ)− w(xµ+1))

where a = xK < · · · < x1 = b and xµ+1 ≤ cµ ≤ xµ.

Now suppose a = λN < · · · < λ1 = b and that

w(λ) =


wN+1, if λ < a

wµ, if λµ ≤ λ < λµ−1, µ = 2, . . . , n

w1, if b ≤ λ
(7)

where 0 ≤ wn+1 ≤ · · · ≤ w1. When we observe SK as K →∞, we find that∫ b

a
f(λ)dw(λ) =

N∑
µ=1

(wµ − wµ+1) · f(λµ) (8)

We will now illustrate that uT f(A)u can be considered as a Riemann-Stieltjes integral.
When we let A = XΛXT , we get

uT f(A)u = (XTu)T · f(Λ) · (XTu) =
N∑
µ=1

[XTu]2µ · f(λµ). (9)

11

When we choose weight function wµ = [XTu]2µ + · · ·+ [XTu]2N for µ = 1, . . . , n+ 1 and
combine equation (8) and (9) we get∫ b

a
f(λ)dw(λ) =

N∑
µ=1

[XTu]2µ · f(λµ) = uT f(A)u. (10)

We have now shown the desired equivalency. Now we know how to construe a Riemann-
Stieltjes integral we can approximate for all our desired matrix elements, we will proceed
to some Gauss approximation rules.

3.3 Gauss Quadrature Bounds

For the integral I(f) a Gauss quadrature rule is an approximation of an integral com-
puted by a weighted sum of f -values on its domain. The points (nodes) and weights
are suitably chosen to give an exact solution for polynomials up to a degree related to
accuracy parameter k. We will now introduce apposite rules for our research.

3.3.1 Gauss Rule

Compute weights w1, . . . , wk and nodes t1, . . . , tk such that

IG(f) =

k∑
i=1

wif(ti) = I(f) +RG(f) (11)

where the error RG(f) is equal to

−f
(2k)(η)

(2n)!

∫ b

a

[k∏
i=1

(λ− ti)
]2
dw(λ), a < η < b.

Note that for all polynomials of degree 2k − 1 or less, the error is equal to zero.

3.3.2 Gauss-Radau Rules

Compute weights wa, wb, w1, . . . , wk and nodes t1, . . . , tk such that

IGR(a)(f) = waf(a) +
k∑
i=1

wif(ti) = I(f) +RGR(a)(f) (12)

and

IGR(b)(f) = wbf(b) +

k∑
i=1

wif(ti) = I(f) +RGR(b)(f) (13)

where the errors RGR(a)(f) and RGR(a)(f) are respectively equal to

−f
(2k+1)(η)

(2n+ 1)!

∫ b

a
(λ− a)

[k∏
i=1

(λ− ti)
]2
dw(λ), a < η < b,

12

and

−f
(2k+1)(η)

(2n+ 1)!

∫ b

a
(λ− b)

[k∏
i=1

(λ− ti)
]2
dw(λ), a < η < b.

Note that for all polynomials of degree 2k or less, the errors are equal to zero.

3.3.3 Bounds

It is known [4, 6] that the Gauss and Gauss-Radau(b) rules can be used to compute a
lower bound, wheres the Gauss-Radau(a) rule can be used to compute an upper bound
on uT f(A)u, if f is strictly completely monotonic (s.c.m.) on the interval containing the
spectrum of A. A function is s.c.m. on an interval [a, b] ∈ R if f (2k) > 0 and f (2k+1) < 0
for all k = 0, 1, 2, . . ., where f (0) ≡ f . Since we are interested in exp (A), which is not
s.c.m., we can write exp (A) = exp (−(−A)), which is s.c.m. [4]. Thus, we can now
regard the bounds b and B in equation (5) as

IG(f) ≤ uT f(A)u ≤ IGR(a)(f). (14)

It is however not necessary to explicitly compute the Gauss nodes and weights, because
we can generate these with the Lanczos algorithm, which will be explained in the next
paragraph.

3.4 Gauss Quadrature via Lanczos

When we consider the Gauss Rule, the quantity we seek to compute has the form
k∑
i=1

wif(ti). This boils down to the computation of entries and spectral information

on a certain tridiagonal matrix that we can generate with the Lanczos algorithm. Golub
and Van Loan proceed immediately with a procedure to calculate this, so to understand
this connection, we will first provide some background information based on the arti-
cle Gaussian Quadrature and the Eigenvalue Problem [7] by John A. Gubner. We will
provide a brief summary for background, and direct the interested reader to Gubner’s
article for a more thorough explanation.

3.4.1 Interpolation

Equation 10 shows that we have to calculate some integral
∫
f(x)dw(x). Quadrature is

the approximation of this integral by another integral
∫
f̂(x)dw(x) where f̂ is a function

close to f . We call f̂ an interpolating polynomial. Interpolation is an estimation of
a value within two known values in a sequence of values. Polynomial interpolation is
the interpolation of a given data set by the polynomial of lowest possible degree that
passes through the points of the dataset. [1, 2] Gubner shows that when an interpolating
polynomial is of degree less than k, which means that f̂(xi) = f(xi) for i = 1, . . . , k, the
second integral can be expressed as

k∑
i=1

wif(ti),

13

where nodes ti are in the range of integration and weights wi can be calculated. Also,
once arbitrary nodes are chosen in the integration interval, it is possible to choose weights
such that for any polynomial f of degree less than k∫

f(x)dw(x) =

∫
f̂(x)dw(x) =

k∑
i=1

wif(ti). (15)

With Gauss Quadrature the nodes are carefully chosen, which makes it possible to extend
this equality to polynomials of degree 2k−1 or less. How these nodes are chosen follows
from the next section.

3.4.2 Extending the equality

Our goal is to show that there is a way to choose nodes such that equation 15 holds for
polynomials up to degree 2k − 1. We will first remark that any polynomial f can be
written as

f = qζ + r, deg r < deg ζ = k, (16)

where ζ(x) := (x − x1) · · · (x − xk) is a k-degree interpolating polynomial, q is some
polynomial and r is some polynomial with deg r < k. [7]

Since deg r < k we get ∫
r(x)dw(x) =

k∑
i=1

wir(xi).

Also,
r(xi) = f(xi)− q(xi)ζ(xi) = f(xi),

since ζ(xk) = 0. Thus, ∫
r(x)dw(x) =

k∑
i=1

wif(xi).

So now we can write∫
f(x)dw(x) =

∫
q(x)ζ(x)dw(x) +

k∑
i=1

wif(xi).

Note that this last equation reduces to (15) if the first term on the right is zero. Thus,
for f with deg f ≤ 2k − 1 we want to choose our nodes such that

∫
q(x)ζ(x)dw(x) = 0.

Now suppose that (15) holds for all f of degree less than or equal to 2k − 1. Then,
for f = qζ this reduces to ∫

q(x)ζ(x)dw(x) = 0,

since ζ(xi) = 0 for i = 1 . . . k. Gubner then provides the following theorem:

14

Theorem 3.1 Let f be any polynomial of degree ≤ 2k − 1. Then,∫
f(x)dw(x) =

k∑
i=1

wif(xi) (17)

if and only if ∫
q(x)ζ(x)dw(x) = 0 (18)

holds for all polynomials q with degree smaller than k.

3.4.3 Choosing the nodes

Gubner proceeds to show that the polynomials constructed by the Gram-Schmidt method

ϕk(x) := xk −
k−1∑
i=1

〈xk, ϕi〉
〈ϕi, ϕi〉

ϕi(x) where ϕ0 = 1,

can be used to choose suitable nodes. Here, the inner product for polynomials p and q
is defined as

〈p, q〉 :=

∫
p(x)q(x)dw(x).

He shows ϕn is the ζ we need for (18) to hold. These polynomials have n distinct
roots and ϕi and ϕj are orthogonal for i 6= j. Also they satisfy a three-term recurrence
relation. Gubner states the following theorem and proves it in his paper:

Theorem 3.2 Suppose that ϕ0, ϕ1, . . . are orthogonal polynomials with deg ϕk = k and
leading coefficient one. For k ≥ 1 we have the three-term recurrence

ϕk+1(x) = (x− ak)ϕk(x)− bkϕk−1(x), (19)

where

an :=
〈xϕk, ϕk〉
〈ϕk, ϕk〉

and

bk :=
〈ϕk, xϕk−1〉
〈ϕk−1, ϕk−1〉

> 0.

Now to obtain our weights and nodes, we need to determine the roots xi of ϕn for our
nodes ti, and then proceed to calculate weights wi. However, there is one other way,
where the nodes and weights are calculated using a certain tridigiagonal matrix.

15

3.4.4 Three facts

Golub and Van Loan provide us three useful facts about orthogonal polynomials and
Gauss Quadrature, to determine the nodes. These are quoted below.

Fact 1. Given [a, b] and w(λ), there is a sequence of polynomials p0(λ), p1(λ), . . .
that satisfy ∫ b

a
pi(λ) · pj(λ) · dw(λ) =

{
1, if i = j

0, if i 6= j

with the property that the degree of pk(·) is k for k ≥ 0. The polynomials
are unique up to a factor of +- 1 and they satisfy a three-term recurrence

γkpk(λ) = (λ− wk)pk−1(λ)− γk−1pk−2(λ)

where p−1(λ) ≡ 0 and p0(λ) ≡ 1.

Fact 2. The zeros of pk(λ) are the eigenvalues of the tridiagonal matrix

Tk =



ω1 γ1 0 . . . 0

γ1 ω2
. . .

...

0
. . .

. . .
. . . 0

...
. . . ωk−1 γk−1

0 . . . 0 γk−1 ωk


.

Since the γi are nonzero, it follows from Theorem 8.4.1 that the eigenvalues
are distinct.

Fact 3. If
STTkS = diag(θ1, . . . , θk)

is a Schur decomposition of Tk, then the nodes and weights for the Gauss
rule are given by ti = θi, and wi = s21i for i = 1 : k. In other words,

IG(f) =
k∑
i=1

s21if(θi).

[Golub & Van Loan, Matrix Computations, p. 559]

3.4.5 Lanczos Algorithm

From [7] we know that we can choose pi = ϕi, ωi = ai, γi =
√
bi for i = 1, . . . , k, as in

Theorem 3.2.

Now the only thing holding us back from the production of bounds is the construc-
tion of Tk. We can use the basic Lanczos Tridiagonalization algorithm for this, which

16

can be shown to satisfy the same three-term recurrence as our polynomials. For the in-
terested reader, this can be explored more deeply in [6] and [12]. The Lanczos algorithm
is given below.

Given a symmetric matrix A ∈ RN×N and a unit 2-norm vector q1 ∈ RN ,
the following algorithm computes a matrix Qk = [q1] . . . [qk] with orthonor-
mal columns and a tridiagonal matrix Tk ∈ Rk×k such that AQk = QkTk.
The diagonal and superdiagonal entries of Tk are α1, . . . , αk and β1, . . . , βk−1
respectively. The integer k satisfies 1 ≤ k ≤ N .

k = 0, β0 = 1, q0 = 0, r0 = q1

while k = 0 or βk 6= 0

qk+1 = rk/βk

k = k + 1

αk = qTk Aqk

rk = (A− αkI)qk − βk−1qk−1

βk = ||rk||2

end

[Golub & Van Loan, Matrix Computations, p. 549]

The authors then proceed to show that if we choose q1 = u/||u||2 as our starting vector,
we can calculate IG(f) with the tridiagonal matrix Tk that is generated. This is then
done as follows:

1. The Lanczos algorithm with starting vector q1 = u/||u||2 is used to generate tridi-
agonal matrix Tk.

2. Schur decomposition STTkS = diag(θ1, . . . , θk) is computed.

3. IG(f) is computed as s211f(θ1) + · · ·+ s21kf(θk).

For upper bound IGR(a) we need to adjust Tk in such a way that

IGR(a) = s211f(θ1) + · · ·+ s21kf(θk) + s21(k+1)f(θk+1),

where
f(θk+1) = f(a). (20)

Thus, we extend Tk with one row and one column, establishing (k+1)×(k+1) tridiagonal
matrix T̃k+1 by including βk (which we have already calculated) on the superdiagonal,

17

and some α̃k+1 on the diagonal. Now, α̃k+1 must be chosen in such a way that a
is in the spectrum of T̃k+1, such that equation (14) holds. This is the case [6] for
α̃k+1 = a+ β2k+1e

T
k (Tk − aIk)−1ek , so IGR(a) is calculated as follows:

1. The Lanczos algorithm with starting vector q1 = u/||u||2 is used to generate tridi-
agonal matrix Tk.

2. Tk is extended with one row and column by including βk and α̃k+1, establishing
T̃k+1.

3. Schur decomposition ST T̃k+1S = diag(θ1, . . . , θk+1) is computed.

4. IGR(a) is computed as s211f(θ1) + · · ·+ s21(k+1)f(θk+1).

Note that eigenvalue a might not be known. In this case we can estimate it by choosing
a = −maxi degi [4].

Now we know everything to estimate centrality indices for large adjacency matrices,
and we can run some experiments in MATLAB.

3.5 Implementation in MATLAB

We have made use of CONTEST: A Controllable Test Matrix Toolbox [8] to generate test
matrices. Throughout all experiments we used two test matrices from the CONTEST
Toolbox, generated by commands erdrey and pref. These are sparse, symmetric, non-
weighted, non-directed and with a zero diagnal. Also, the estimation a = −maxi degi is
used throughout all experiments.

Now we need to decide when to stop the Lanczos algorithm. Logically, this should
be when the errors between the bounds and the real value is sufficiently small. But note
that we designed this method for a real-world case, in which the real values might not
even be known. It turns out that there is a relation between the difference between the
bounds and the real value, and the upper and lower bound themselves. This is illustrated
below, where we calculated relative bound differences and errors for the estimation of
exp(A)11 with N = 250.

18

Figure 2

Figure 3

19

As we can see in the figures above, the errors seem to be approximately the same size for
k ≥ 14 as the difference between the upper and lower bound. Thus, if this last difference
is sufficiently small, the errors are also. So we can redesign the basic Lanczos algorithm
to stop when the upper and lower bound are sufficiently close to each other. What is
sufficient, depends on the application we are dealing with, wherefore we will consider the
relative error (or: relative difference between bounds). Thus we designed the algorithm
to stop when the relative bound difference was smaller than ε = 10−10, with a maximum
of k = 30 iterations. The MATLAB code we used is included at the end of this paper.

4 Numerical experiments

The primary reason for using an estimation method was finding a faster alternative for
the expm command. So we will devise our experiments in order to answer the question:
given accuracy ε = 10−10, how many iterations are needed to reach this accuracy and
how long does this take to compute this in comparison to expm? Now, we will provide
a few illustrations in computing times with our test matrices for different N and some
incidental node.

4.1 Centrality computing times compared

To construct the following figures, we calculated exp(A)11 using expm and Gauss Quadra-
ture via Lanczos for N = 100, 250, 500, 1000, 1750, 2500, 3250, 4000, 5000.

Figure 4

20

Figure 5

From both figures we can clearly see that while expm computing time rises exponentially,
the Lanczos estimation remains constant around a computing time between 10−1 and
10−2 seconds. In all cases, we needed between 9 and 20 iterations to reach the desired
accuracy.

To illustrate how our method compares to direct computation for larger N , we repeated
the experiment, this time evaluating at N = 500, 2500, 5000, 100000. The results are
provided on the next page.

21

Figure 6

In this figure it can be seen that our estimation method is clearly cheaper for large
N . We needed between 13 and 17 iterations to reach the desired accuracy, and this took
a maximum of 0.4516 seconds at N = 100000 to compute. For directly computing with
expm, we stopped at N = 5000 because the computing time was already at 10.9178
seconds and rising.

Given its accuracy and computational speed up to large N , we conclude that our esti-
mation method is viable in applications.

4.2 Communicability computing times compared

In this section we produced bounds for exp(A)12 by executing the Lanczos algorithm
twice with starting vectors (e1+e2) and (e1−e2). We noted that the accuracy ε = 10−10

could not be met with 30 iterations, or even with 200, so we chose ε∗ = 10−6 for com-
municability. The rest of the experiment remains the same.

The figures on the next page provide our results:

22

Figure 7

Figure 8

23

From both figures we can clearly see that while expm computing time rises exponen-
tially,the Lanczos estimation remains constant around a computing time between 10−1

and 10−2 seconds. In all cases, we needed between 12 and 65 iterations to reach the
desired accuracy.

To illustrate how our method compares to direct computation for larger N , we repeated
the experiment, this time evaluating at N = 500, 2500, 5000, 100000.

Figure 9

In this figure it can be seen that our estimation method is clearly cheaper for large
N . We needed between 12 and 35 iterations to reach the desired accuracy, and this took
a maximum of 20.6702 seconds at N = 100000 to compute. For directly computing with
expm, we stopped at N = 5000 because the computing time was already at 11.4584
seconds and rising.

Given its accuracy and computational speed up to large N , we conclude that our esti-
mation method may be viable in applications. The computing time is longer than when
computing centrality, but still much faster than direct computation.

24

4.3 Betweenness computing times compared

In this experiment it turned out to be impossible to calculate any estimate of betweenness
with the desired accuracy in under 60 seconds. For every N , estimating betweenness
takes much longer than calculating it directly, and the computation time rises expo-
nentially. In order to explain this slowness, recall from definition 2.8 that to calculate
betweenness, we need all elements of two different matrices to be known. This is in
stark contrast with centrality and communicability, where we just estimate one matrix
element. Thus, the Lanczos algorithm has to be executed N times for the diagonal
elements, and 2N times for the off-diagonal elements, for two different matrices, instead
of one or two times for one matrix. Evidently, this gets expensive very quickly.

4.4 Preliminary conclusions

We can conclude from the tests above that Gauss Quadrature via Lanczos is an excellent
way to estimate centrality and communicability indices for large N , in an accurate and
fast way. However, this is not the case for betweenness indices, because we have to
execute the Lanczos algorithm repeatedly, such that the time gains in estimating a
single matrix element are nullified.

5 Case study

We will now look at an application in the field of Transport Geography, concentrating on
the degree and centrality of ports, and connect our theoretical approach to the article
Maritime degree, centrality and vulnerability: port hierarchies and emerging areas in
containerized transport (2008–2010) by Laxe, Seoane and Montes [5].

5.1 Comparison

The method the authors use differs from our method in three important ways:

1. They do (probably) not use an estimation method but directly compute matrix
operations, due to the fact that their adjacency matrix is not very large.

2. Connections between nodes are not (always) two-way, thus their adjacency matrix
is not symmetric.

3. Centrality is defined as ∑
i 6=j 6=r 6=r

σij(r)

σij
(21)

where σij(v) is the number of shortest walks from i to j through r and σij is the
total number of shortest walks from i to j.

25

5.2 Overcoming differences

As for the first difference, if a matrix is small enough to compute it directly, it is proba-
bly faster to do any computation directly than to undergo the time-consuming practice
of studying and devising some estimation method that is cheaper. Therefore it is more
interesting to consider the question: what if their adjacency matrix was large? Then we
would have to use an estimation method, which leads to the other differences.

Note that the centrality measure of the authors looks similar to our definition of be-
tweenness. σij(r) in (15) can also be written as σij − σij(r̄) where σij(r̄) is equal to
the number of shortest walks from i to j that do not pass through r. Suppose that the
shortest walk from some i to j is equal to nij . Then, we can write (15) as:

∑∑
i 6=j,i6=r,j 6=r

A
nij

ij − (A− E(r))
nij

ij

A
nij

ij

(22)

where A is a non-symmetric adjacency matrix and E(r) is the matrix defined in definition
2.8. This can be seen as a non-normalized version of betweenness with f(A)ij = Anij

instead of f(A)ij = exp(A)ij .

In order to calculate appropriate bounds for the above value we can let f(A) = An

for some n in equation (5). Since An is not s.c.m. we can write A−(−n). The next step is
to determine nij and calculate A

nij

ij for all i 6= j 6= r. We are able to determine nij with
the Dijkstra algorithm, but we cannot use the Lanczos Tridiagonalization Algorithm to
calculate Gauss nodes and weights for bounds on Anij if A is not symmetric [6]. Lanczos
Bidiagonalization and the Arnoldi iteration are options to be explored here [11] [3]. Also,
since the computing time of betweenness with the Lanczos Tridiagonal Algorithm far
exceeds the expm computing time, it is important to make sure this estimation method
is considerably cheaper.

5.3 Preliminary conclusions

We have seen that when A is not symmetric, there are alternatives for the Lanczos
Tridiagonalization Algorithm for calculating Gauss nodes and weights. Also, Dijkstra’s
algorithm can be used for determining the shortest path of length nij between two nodes
i 6= j. Furter, we can choose f(A) = A−(−n) and adjust our betweenness definition to
calculate the centrality measure that is used in [5].

26

6 Conclusion & Discussion

At this point our research is finished and we can conclude the following. We have seen
that it is possible to represent graphs as adjacacency matrices, and under certain con-
ditions, determine the importance of different nodes using various centrality measures.
When a matrix is large, a faster option than directly calculating a centrality measure
can be to use an estimation. In this paper we showed that Gauss Quadrature via the
Lanczos Tridiagonalization algorithm is an estimation method that can be effectively
used for these means. With some numerical experiments we showed that for estimating
centrality and communicability this method was an accurate and fast one and can be
easily applied in real-world cases. However, in estimating betweenness this method is
slower than direct calculation and at best just as accurate, making it inefficient. The
reason the betweenness estimate calculates slowly is because all exponential matrix el-
ements need to be estimated, causing the Lanczos Algorithm to execute many times,
which slows computation times. So as a rule this method is mainly useful for estimating
single matrix elements. This means that if we want to efficiently use it, we already need
to have an idea which nodes will be important. Thus, we need to use some method of
prior analysis to target specific nodes. This may be an interesting subject for future
research. Also, it may be useful to investigate different estimation methods to calculate
all exponential matrix elements rapidly and accurately.

The case study showed a different approach to analyzing adjacency matrices and cen-
trality measures, and that each application demands its own definitions. In the end, this
thesis shows the many possibilities in analyzing a network. This branch of mathematics
can be of real value in applied situations, and the end of this exploration is not yet in
sight.

27

References

[1] url: https://whatis.techtarget.com/definition/extrapolation- and-

interpolation.

[2] url: https://archive.org/stream/IoNewsVolume1Number5#mode/2up.

[3] David Bau. Lecture 39: Biorthogonalization Methods. 1997. url: https://www.
globalspec.com/reference/72093/203279/lecture-39-biorthogonalization-

methods (visited on 12/07/2018).

[4] Michele Benzi & Paola Boito. “Quadrature rule-based bounds for functions of
adjacency matrices”. In: Linear Algebra and its Applications 433.3 (2010), pp. 637–
652.

[5] Maria Jesus Freire Seoane Fernando González Laxe and Carlos Pais Montes. “Mar-
itime degree, centrality and vulnerability: port hierarchies and emerging areas
in containerized transport (2008–2010)”. In: Journal of Transport Geography 24
(2012), pp. 33–44.

[6] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins
Series in the Mathematical Sciences 3. The Johns Hopkins University Press, 1989.

[7] John A. Gubner. Gaussian Quadrature and the Eigenvalue Problem. 2014. url:
http://gubner.ece.wisc.edu/gaussquad.pdf (visited on 12/11/2018).

[8] Desmond Higham. CONTEST: A Controllable Test Matrix Toolbox for MATLAB.
http://outreach.mathstat.strath.ac.uk/outreach/contest.

[9] Ernesto Estrada & Desmond J. Higham. “Network Properties, revealed through
Matrix Functions”. In: SIAM Review 52.4 (2010), pp. 696–714.

[10] Ping Zhang Jonathan L. Gross Jay Yellen. Handbook of Graph Theory. 2. CRC
Press, 2004.

[11] James V. Lambers. A Crash Course on Matrices, Moments and Quadrature. 2010.
url: https://pdfs.semanticscholar.org/presentation/5a64/19754dd41cd3af3fe28b8aa02b947cb4a265.
pdf (visited on 07/12/2018).

[12] Gene H. Golub & Gérard Meulant. Matrices, Moments and Quadrature with Ap-
plications. Princeton University Press, 2009.

Source UU Logo on the title page: http://www.uu.nl/organisatie/huisstijl/downloads/logo.

28

