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Abstract

We demonstrated a proof-of-concept implementation of a map-based
system for leisure browsing of geo-tagged lifelogging images in VR. A pi-
lot study was performed, testing quantitative and qualitative aspects by us-
ing ten general users as well as the two active lifeloggers who created the
dataset that was tested. Our findings show that our map-based approach is
useful and applicable to lifelogging data, also due to the high performance
of our system, demonstrating its ability to browse very large image datasets
in real-time (n > 50000). The high entertainment value of our VR system
proves our system’s applicability for leisure browsing.

Figure 1: Example screenshot of the program, as seen in VR.
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1 Introduction

Over the years, the availability of camera devices and storage capabilities has
grown rapidly. This results in users having lots of images, and this is especially
true for those who wear lifelogging devices [17]. For lifelogging, people use a
small camera attached to their body that takes a picture at a short and regular
interval; for example, every 30 seconds. Traditional 2D gallery systems are be-
coming insufficient to access such image sets, because of their scale as well as
their very limited functionality. Lifelogging images also have different charac-
teristics than normal photos. On the one hand, the constant automatic capturing
leads to many photos that are, for example, awkwardly framed, blurry, or taken
under bad lighting conditions. On the other hand, because they represent one’s
personal life, people may associate them much more with meta context such as
location and time or events when they were taken. In the past 2-3 decades, many
researchers have therefore spent their time coming up with various interfaces and
systems on how to visualize and work with such large image sets, which will be
discussed in more detail in the next section on related work.

However, very few researchers use the potentially infinite space available in VR
(Virtual Reality), which seems like a good candidate to deal with the scaling issue
of current 2D gallery systems. In addition, anecdotic evidence suggests that many
people rarely look back at their old photos. While research has focused on ana-
lyzing photo content in order to make collections more structured and thus more
easily accessible, related evaluations are often solely focused on performance, but
neglect another important aspect that is needed to motivate people to explore their
data: using the system should be fun and enjoyable. Thus, there is a clear need
for research focusing on photo access systems optimized for leisure browsing and
entertaining user experiences.

Alternative interface designs for photo access include map-based visualizations,
which are particularly common on smartphones. However, the small screen size
of such handheld devices limits the user experience significantly [21, 24]. Our
approach addresses this issue by using VR to create an immersive environment
with potentially infinite space, that cannot be paralleled on smartphones or any
other device with a traditional 2D screen. By using a map-based approach, we
aim to address the location meta-context aspect of lifelogging images, as men-
tioned above. Because lifelogging images are geo-tagged and taken automatically
wherever the user goes, the location where they have been taken has an impor-
tant relevance. For example, people often associate events with locations in their
memory. Therefore, we expect map-based interfaces to be particularly useful for
lifelogging data.
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We present a novel approach for leisure access of lifelogging data that combines
the benefits provided by large, immersive VR “screens” with the advantages of
a map-based representation of these geo-tagged photo collections. A pilot study
demonstrates the usability of our system and supports our claims of its usefulness.
The major contributions of this work are therefore:

• The proof-of-concept implementation of a complex VR system that enables
users to access lifelogging images via a map-based representation.

Implementing a map-based system for the access of large photo sets in VR is
non-trivial. The complexity of the task along with the magnitude of design
options require a careful, well thought out, and optimized interaction design
and implementation. In addition, the handling of such huge data sets in real-
time results in tremendous challenges for system performance. This is not
only true for the thousands of lifelog images, but also the high-resolution
map that needs to be rendered at various levels of detail (“zooming”). Our
system has been demonstrated at the Lifelog Search Challenge 2018 (LSC
2018 [1]), where it was presented to an international audience [19]. Their
general reaction to the system suggested that it does indeed provide an en-
tertaining and engaging user experience, and the smooth operation of the
system proves the high performance of our implementation.

• The verification of the system’s usefulness and usability via a pilot study
involving common users as well as two active lifeloggers.

Using the data from the LSC 2018 [1], we performed a formal pilot study
with ten general users plus two active lifeloggers. These two lifeloggers are
also the creators of the LSC dataset, as it is their data being used. Using
qualitative and quantitative measures, we gained insight about the systems
usability as well as subjective user feedback. Our results indicate that the
system has indeed a high entertainment value, and that a map-based ap-
proach is a warranted way to represent and access lifelog data.
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2 Related work

There are numerous ways to create an image browsing system, but (in general)
they all have the shared goal of making datasets (with large amounts of images)
more organized and retrievable. So far, most of these systems can be categorized
as listed below.

1. Query By Example approach (henceforth QBE)

2. Query By Keyword/Category approach (henceforth QBK/QBC)

3. Hierarchical/clustering approach

We will discuss and compare these categories in the next section. Based on that
analysis, we will discuss open research areas and present our novel approach in
section 3.

Most papers fall into one of the three mentioned categories. However, some meth-
ods also have multiple subcategories. The subcategories that we will use will be
determined by the final visualization type, for example: 2D, 3D, or VR.

2.1 CBIR/QBE, Image browsing by example/querying

The largest amount of papers fall into this category: Content-Based Image Re-
trieval (CBIR). For most papers, this means that they use a QBE approach. A
nice starting point is the comparison done by Rodden [25], who did a compar-
ison/evaluation study on various similarity-based interfaces for image browsing.
His main findings showed that these interfaces were well-suited when the image
features (mostly low level, such as color, etc) used by the system, were benefi-
cial to the task being done by a user. However, these systems started lacking when
more high-level features (e.g. annotated concepts) were required to perform tasks,
because of the gap between low features, such as average color, and high level
features such as image concepts. Furthermore, because of the similarity-based
approaches, undirected or ‘relaxed’ browsing is not really possible.

2.1.1 2D visualizations for CBIR

There are a fair number of papers that address image browsing in 2D. For example,
Torres et al. [31] use visual structures to group similar images. This is also a paper
that uses querying by example, to come up with related images. The resulting
images are presented on rings or spirals, to indicate the distance from the query
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example. Results indicate that the approach is not significantly superior, however,
users preferred this method over traditional 2D image browsers. This is also one
of the few papers to address the problem of overlap, which is a problem that will
apply to our VR approach as well (presented in chapter 3). If the set of images is
too large, overlap will definitely occur, preventing clear presentation of individual
images. This was solved by scaling the relative distances between similar images,
which is something that our approach might also benefit from.

Another paper is the one by Rodden et al. [26], where images are positioned on a
2D plane based on their similarity to a certain example image or query. Color was
used for the similarity feature, and the images were positioned in such a way that
a certain direction from the query image represented a certain change in overall
color (e.g. more green). This is another one of the few papers that address the
problem of overlap, and it is solved by using a discrete 2D space of cells, and
filling in images accordingly. This resulted in slightly more space used for the
images, but the resulting overview was more effective in presenting an overview
of images.

An interesting paper by Combs et al. [14] tackles the question of whether zooming
improves the image browsing experience. Their 2D system has a query section,
and a results section. Users can zoom in the results section to determine how
many images are visible (and inherently, at what size), as well as zoom in to view
one image in full. Their (statistically significant) results show that zooming does
indeed improve image browsing, compared to various other image browsers. It
can be argued that the same concept of zooming to deal with scaling etc. can be
used in 3D, and hence, VR.

2.1.2 3D and VR visualizations for CBIR

An example of a CBIR system that uses a 3D space for graphical representation,
is [22]. Again, the user selects an example image as the initial query, and then
similar images are returned based on image features such as color, texture etc. A
separate feature ranking is used, so the user can give more or less importance to
some features. The 3D space is then used to position the similar images based on
their similarity with regards to the features of the original image compared to the
similar ones, taking into account the feature ranking. Optionally, clustering can be
enabled to show clusters of similar images, which can then be expanded to show
those images. This is an example of a more relaxed browsing system, instead
of one meant for performance based on some tasks. Although no results were
presented, the approach of the system is extendable/applicable to VR as well.
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Another CBIR system that uses a 3D space for visualization, is the one by Schae-
fer [27]. A 3D sphere is used to represent the HSV color space, with the rotational
axis representing color (hue), and the tilting axis representing brightness (value).
A hierarchical system is used to show more images when zooming in. The user
can also change the hierarchical tree structure (in real time) to modify the close
placement of dissimilar images, as a correction. Selecting a cell fills the sphere
again with all images from that cell. The method was tested qualitatively on 4500
images, since, as mentioned before, a standard test set and standard set of tasks
does not exist yet. Most test subjects preferred the HSV navigation, but no quan-
titative results are shown. An unique feature of this paper is their combination of
QBE with a hierarchical system. After 3 levels of the hierarchy, potential access to
roughly 23 million images is possible, indicating the potential for large scalability
(even so because of their O(n) approach for populating the HSV sphere). They
even made a VR version [28], but it was merely presented and thus untested.

2.2 Query By Keyword (QBK)

Yee is one of the few who used a multi-faceted approach to create an website-like
image browsing system that uses keywords as a search option, instead of an exam-
ple image [33]. Users can search for images based on hierarchical keywords and
categories. Relevant categories and keywords (as well as some images) are shown
for the resulting images, thereby giving an overview of the relative structure of
the image database. His qualitative results show that his category-based approach
is more preferred and flexible than a simple QBE system. It also helped the test
subjects learn more about the image database itself (a database with images and
descriptions on art). Users preferred his system, even though it was an order of
magnitude slower than the QBE baseline system.

Khanwalkar et al. also used a multi-faceted approach, as they introduced a VR
system that used a multi-dimensional metadata model to allow for navigating large
image datasets, based on various links between images[20]. Images were inter-
linked in a graph structure by time, location, people, and concepts. The actual
browsing system consisted of 2 navigational methods, but for both methods, the
images were wrapped around the user, as if inside a cylinder. The first method
used the graph structure directly, showing relevant images, as well as the image
metadata properties (location, time, etc). Users could navigate the large dataset by
using the edges of the graph (the interlinks such as location, time, etc) to navigate
to other categories of relevant images (e.g. from a specific location to specific
people). The second method used a pre-defined hierarchical structure based on
the image concepts (people, sports, etc), and allowed for hierarchical access to the
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dataset. The main advantage is that this paper uses a multi-faceted approach for
finding (relevant) images (with positive results from users for that aspect), how-
ever, they do not use the potentially infinite space available in VR.

2.3 Other image browsing systems

There are more image browsing systems other than CBIR or QBE. Schaefer et al.
[23] did a short comparison on various such systems. They identified 2 types of
image browsing: horizontal, and vertical. Horizontal image browsing is the navi-
gation within a single plane of visualized images, whereas vertical image brows-
ing is the navigation using a hierarchical or otherwise relational structure. Four
more techniques to aid in image browsing were identified: panning, zooming,
magnification and scaling. Panning is used to move around the resulting set of
images, whereas zooming is used to change the visualized scale of the resulting
set of images. Magnification is used to enhance the size of 1 or more images that
are shown, whereas scaling is used relatively the same like zooming, by scaling
the sizes of all images. Unfortunately, no results were discussed. Schaefer et al.
did correctly identify the need for a standard set of images and tasks, as well as a
baseline, to assess the performance of various image browsers.

Yang was one of the first to do a direct comparison of a QBE system against a
map approach [32]. A hybrid approach is presented where images are presented
on a 2D plane. Those images are in fact example images for a QBE system. A
self-organizing map is used to cluster the images on the plane. This method tries
to tackle the problem of QBE not being an undirected browsing system, as well
as the limitation of being dependent on the quality of the resulting images based
on the initial query example image. His results showed that his map approach
is better than normal QBE, with test subjects finding more images faster, but not
with less queries.

Finally, Duane et al. created a prototype VR system for efficiently accessing lifel-
ogging photos, and were the first to create a lifelog access tool in VR, using the
same VR hardware that this paper used [16]. Their initial pilot study for that
system revealed a very interesting trend: user performance seemed mostly un-
affected when comparing their VR system to an almost identical, traditional PC
system [15] . Interestingly enough, they also used almost the same dataset that
was used by this paper, except it was the previous version of that dataset (NT-
CIR12 [2] instead of NTCIR13 [3]). Their system presented the lifelogging im-
ages based on temporal aspects, and allowed the user to filter the images based
on image concepts. Images were presented on a flat wall, and extended in two
directions ‘seemingly infinite’ (if enough images were shown). Users could query
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the lifelogging data by selecting a date and time range, and some concepts (e.g.
car, people, etc). This research is the most related so far, however, it does not use
the spatial (location) aspects of the dataset, and it is also not designed for relaxed
image browsing.

Furthermore, Marijn Mengerink is, at the time of writing, researching a map-
based system for image browsing in general, however it is not yet published. His
research includes implementing various types of map visualizations and interac-
tions, as well as evaluating them. Our work is related to his, however we are
focusing specifically on lifelogging data, and only use one map visualization and
type of interaction. Finally, the most direct relation between our work and his, is
the implementation of his system, as our implemented system is an offshoot of his
implementation, but in a different direction and with many changes.

2.4 Open research areas

In short, very few papers propose a system usable for relaxed or undirected brows-
ing, as most of them are about performance or accomplishing some task. Unfor-
tunately, no standard list of tasks, and no standard database of images (or baseline
data) seems to be available to be used for comparison. The sole exception is the
NTCIR lifelogging dataset and tasks that are made available [2, 3].

A handful of papers exist that claim to provide an image browser in VR, however,
they are not the Virtual Reality systems that we have come to know of in the
past few years. Instead, they use a regular 3D virtual environment, visualized on
a normal monitor. Furthermore, of the papers that actually do use VR, none of
them use the spatial aspect of image data, and also none focus on relaxed image
browsing.

Finally, very few papers use the concept of zooming, even though it is shown that
it improves the image browsing experience of users significantly, especially when
dealing with large image databases [14]. The concept of zooming can, and should,
also be used to retain a sense of overview, such that users do not get lost in the
system and the overwhelming amount of images.
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3 Research approach

Having identified open research areas and current research limitations, we will
improve on this by using multiple aspects from multiple papers. An undirected,
‘relaxed’ image browsing system will be presented and verified as a proof of con-
cept, where geolocation metadata is used to visualize and position images on a
map of our planet Earth. A VR headset will be used to look at the map and the
images, improving the immersion and experience of undirected image browsing.

3.1 Map-based approach

Multiple map visualizations are possible, but we stuck to a flat, 2D map, since
most people are familiar with the setup and layout of such maps, such as when
using physical maps or online variants, e.g. Google maps. Even though this limits
our map visualization space to ‘2D’ in VR, it has the more significant benefit that
users will not have to learn and adjust for moving in the third dimension, while
standing still in real-life and wearing the VR headset. Such a contradiction in
presented movement (via the headset) versus actual and/or expected movement
by users, is one of the main reasons of VR motion sickness [18]. Of course,
motion sickness is not beneficial to user experience, and in order to minimize or
even eliminate that, we opted for this type of map.

To navigate around the map, teleportation and zooming out will be used. It will
also be used to deal with the issue of scaling, by allowing the user to choose what
images will be visible at any time, while still retaining an overview of his position
on the map and the images around him. Of all possible (geo-)navigational meth-
ods, this one proved the most intuitive and least nausea-inducing when compared
to other methods such as flying, when tested by the researchers. This was also
confirmed by preliminary testing of Marijn Mengerinks research, as mentioned in
section 2.3.

3.2 Dataset

In order to test the system with appropriately labeled images, we use the LSC
2018 dataset [1]. This dataset contains the geo-tagged images that we need for
our system, as well as high-level annotated concepts classified from automated
computer vision programs (e.g. ‘car’, ‘water’, ‘airplane’, etc). It contains over
45 days of data from two active lifeloggers, and is actually the NTCIR-13 (NII
Testbeds and Community for Information access Research) Lifelog dataset [3].
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All lifelogging images were taken 45 seconds apart, and contain images of the
lifeloggers from the moment of waking up, until going to sleep, resulting in about
1500 images per day at most. All images are also GPS-annotated, meaning that
they have either a named geolocation, GPS coordinates, or both. For privacy rea-
sons, the exact GPS coordinates for the images with locations labeled as “HOME”
and “WORK” are removed (and thus not used in the system), and all faces on all
images are blurred. The dataset actually contains more information than listed
here (e.g. biometrics [1, 3]), but it was not used for this system.

Since this dataset contains actual, real-life lifelogging data, it should be reason-
ably representative of common lifelogging data, and therefore be a representative
dataset for our research. Furthermore, to our knowledge, it is also the only dataset
available of geo-tagged lifelogging images (excluding the LSC datasets of other
years), but it is a ‘standard’ dataset nonetheless, which could be used to compare
our approach to other systems.

However, due to our map-based approach and the relative repetitive nature of most
people’s lives, the dataset might not contain enough images at different locations
or with different contents. The majority of the images will likely be of the lifel-
ogging user performing ordinary every-day tasks, such as eating food, going to
work, working etc, which could all be at relatively the same location or close by.
This could lead to a very large concentration of images at only a few locations,
which would pose a serious limitation for our map-based approach.

When examining the dataset, it turned out that roughly half of the images were
labelled as “HOME” or “WORK” for both users, and were therefore not used
in the system due to their lack of GPS coordinates. For both users, it turned
out that the majority of their images were still in their respective home country,
with ordinary contents such as driving to work, eating food, etc. Fortunately, the
lifelogging data of the first user was reasonably spread out, having made two trips
abroad. For the second user, having only a single travel abroad, a similar scenario
was encountered, as most images were labelled as “HOME” or “WORK”.

Therefore, this distribution of image locations and the actual image contents may
impact the evaluation of our system when testing with local test subjects. Given
the complete lack of affinity to the LSC dataset, local test subjects may or may
not enjoy the system as much as the actual owners of the dataset, thus impacting
the experience negatively.
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3.2.1 Clustering

When dealing with lifelogging data, it is likely that many images will be at similar
locations, as mentioned in the previous section. Therefore, the actual dataset is put
in a cluster hierarchy, to handle these scaling issues for such a large dataset. By
clustering images that are close by, we limit the number of actual image locations
visualized on the map, and allow for fine-grained access. This cluster hierarchy
contains 5 levels, listed below, and is also depicted in image 2, from root to bot-
tom:

1. Base cluster, containing all images.

2. Clusters based on location, containing all images at a certain location and
those close by.

3. Clusters based on day, containing all images at a certain date.

4. Clusters based on hour, containing all images at a certain hour.

5. Clusters based on intervals of ten minutes, containing all images in a 10
minute interval.
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Figure 2: Overview of the clustering hierarchy, indicating that each
cluster can have multiple child or subclusters, or even none. The size
of each subcluster (the number of images) is at most the size of the
parent cluster. Also, images in child clusters cannot contain images
that are not present in its parent cluster, so subset 2 ⊆ subset 1, etc. Of
course, if a cluster has 2 child clusters, then the size of the two child
clusters are always less then that of the parent cluster.

These clusters are created together in a hierarchy tree, and filled with the LSC
dataset based on the metadata. As an example, consider that a cluster C1 has 1000
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images at a certain GPS location L. That cluster C1 can have 2 child clusters C2A
and C2B (thus C1 contains two days of images), e.g. 400 images for C2A and 600
images for C2B, with their sum yielding the original 1000 images of C1. Then,
cluster C2B, having all images at date B (and thus also at location L), could have
3 more child clusters C3A, C3B, C3C. Therefore, C3A has e.g. 200 images at a
certain hour of C2B’s day at C1’s location L, and so on. So, further down in the
hierarchy, less images are returned, but they will be more specific. The higher up,
the more images will be returned, but they will be less specific. This hierarchy can
be used to cluster, partition and thus navigate large sets of images easier. However,
in this research, due to time constraints, only the first two levels are visualized in
the system (location and date clusters).

3.2.2 Filtering

Finally, in order to further narrow down the dataset, (visualized) images can be
filtered based on high-level concepts (e.g. people, food, landscape, etc), to show
the images that users want. These filters will be the high-level annotated concepts
provided by the dataset (see 3.2). A filtering menu will be created that will be
used to filter the dataset, and will be explained in more detail in section 4.5.3. A
novel interface/system will be created that will use the HTC Vive and respective
controllers to perform this undirected image browsing approach.
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4 Implementation

In order to turn our research approach into an actual system, various steps needed
to be taken to create the system. A high-level overview is given in figure 3, and
each component as well as the overall implementation will be discussed next.

Figure 3: High-level overview of the system.

As mentioned in section 2.3, our implementation is a direct offshoot from Marijn’s
work. The most notable changes include:

• The change from a web-based Flickr database of images, to local geo-
tagged lifelogging data, by using a SQLite database (green and orange
blocks in figure 3).

• The optimization of (rendering) performance and user interaction.

• The addition of an extensive, dynamic filtering menu.

• A dynamic map system (yellow block in figure 3).

• The improved visualization of images, by using an image wall.

• The clustering of images, by creating a hierarchy of clusters.

4.1 LSC Dataset

The dataset used in the program is the LSC 2018, or NTCIR-13 dataset as men-
tioned in section 3.2. It is divided into 3 parts; the first part contains the actual
image files, the second part contains an XML file with all the metadata, and the
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third part contains the detected concepts. These parts will be discussed in the
following subsections.

4.1.1 Images

The dataset contains 110782 images in total, for two lifelogging users. The first
lifelogging user (u1) has 90311 images, and the second user (u2) has 20471 im-
ages. Of those 110782 images, only 56450 have GPS coordinates, so the remain-
ing 54332 images are not used in the program. That means for user 1 and user 2,
only 42255 and 14195 of usable images are left, respectively.

Each image of user 1 has a resolution of 3264x2448 pixels and is encoded as a
JPEG image. Each image of user 2 has a resolution of 768x1024 pixels, and is
also encoded as a JPEG image. For u1, the images span from August 8th, 2016
until October 5th, 2016, and there are no days without images (but some days have
more or less images than others). For u2, the images span from September 9th,
2016 until October 11th, 2016, again without missing days. This part corresponds
to the green block, labeled ‘LSC Dataset (Images)’ in figure 3.

4.1.2 Metadata

The metadata XML file that is included has more information on the images, and
contains the following meta information:

1. Music listening history.

2. Biometrics information 24/7 (heart rate, calorie burn, steps, etc).

3. Blood pressure, measured daily in the morning before breakfast and exer-
cising.

4. Blood sugar levels, measured daily in the morning before breakfast and
exercising.

5. Semantic locations visited. Used to name the locations that the lifelogger
went to.

6. Exact locations visited from GPS coordinates, denoted as latitude and lon-
gitude values.

7. Physical activities (e.g. ‘walking’, etc).

8. Daily mood, according to Thayers 2 dimensional modal of mood [29].
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9. Diet log, manual logging of photos of food.

10. Computer input via keyboard and information consumed, per-minute (fil-
tered).

Of all that metadata, only items 5 and 6 are used. The metadata file also contains
an organization (per lifelogging user) per day, per minute, to indicate what images
were taken at what time, and at what location: either named, or with GPS coor-
dinates, or both. This is used to annotate images with a date and time, location,
and to assign them to user 1 or 2. All images that lack an exact GPS location with
latitude/longitude coordinates were omitted from the system, as it is impossible to
place them on the world map while this information is lacking. The only images
that actually lack GPS coordinates, are the ones for which the GPS location is
named ‘home’ and ‘work’, and they are omitted because of privacy reasons. This
part corresponds to the green block in figure 3, labeled ‘LSC Dataset (metadata)’.

4.1.3 Metadata Part 2: Concepts

Furthermore, there are a total of 633 unique tags or concepts (‘car’, etc) detected
by computer vision programs, provided by the dataset in the form of a CSV file.
The 5 most occurring tags are mentioned below:

1. ‘indoor’, with 53925 occurrences

2. ‘wall’, with 24746 occurrences

3. ‘person’, with 22089 occurrences

4. ‘computer’, with 14539 occurrences

5. ‘laptop’, with 10893 occurrences

Only 34146 images (roughly 60%) have tags associated with them, so the remain-
ing 22304 images do not have such computer-detected tags. There are 91 tags that
occur only once, and in order to limit such infrequently occurring tags, tags that
occur less than 10 times are omitted from the system. This leaves us with ‘only’
333 tags (slightly more than half of the original amount) to use for the filtering
aspect. All images without tags are not shown in the program by default, but they
can be made visible again via the filtering interface (more on that later in section
4.5.3). This part corresponds to the green block in figure 3, labeled ‘LSC Dataset
(metadata)’.
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4.2 Conversion to SQLite database

Using Python3, scripts were written to read and parse the metadata XML file, as
well as the concepts CSV file. Using these scripts, SQL statements were generated
and saved to a temporary file, to create and populate a SQLite3 database [7]. Using
the SQLite3 program, these statements were read from that file and the actual
SQLite3 database was created. Note that the actual LSC images are omitted from
the database, but read from disk instead, as illustrated by the orange block labeled
‘SQLite Database’ in figure 3.

This database is used as an intermediate metadata-representation between the LSC
data format and organization, and the main system in Unity. Unlike other database
systems such as MySQL or PostgreSQL, SQLite does not need a running server,
and runs entirely from the local database file only, which simplifies the end-system
significantly. The final output of this conversion step is a SQLite3 database file
containing 3 tables: one for the images, one for the tags, and one for the mapping
between images and tags.

4.2.1 Table schematics

The ‘Images’ table presented in figure 1, contains the general image metadata,
such as the path to the image file, what user it belongs to, and what date and time
it was taken. It also includes the GPS location with coordinates, and optionally a
named location. The image id is a primary key, and is later used as a foreign key
to relate tags to images.

image id path user id loc lat loc long loc name date time
1139 u1/2016-

08-
11/2016
0811
125340
000.jpg

u1 53.2890118 -6.2002897 Starbucks
Stillor-
gan

2016-
08-11
12:53:40

etc etc etc etc etc etc etc

Table 1: Table showing the SQLite schema for images, including an
example image.

The ‘Tags’ table presented in figure 2, contains a list of all tags, with an unique id
per tag, as well as how often a tag occurs. The tag id is a primary key, and is later
used as a foreign key to relate tags to images.
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tag id tag name tag occurrences
1 indoor 53925
3 person 22089
9 ceiling 6233
etc etc etc

Table 2: Table showing the SQLite schema for tags, including 3 ex-
amples.

The last table presented in figure 3, contains the n:m cardinality mapping, assign-
ing tags to images.

image id tag id
1139 1
1139 3
1139 9
etc etc

Table 3: Table showing the SQLite schema for tags assigned to im-
ages, including 3 examples.

4.3 Map Tiles

In order to create the map on which to place the images, a tile map was cre-
ated. The map uses the Spherical Pseudo-Mercator projection (also known as
Web Mercator) with equi-rectangular (square) tiles for simplicity, since they are
widely available as well as easier to implement than other systems [6]. This pro-
jection system uses the assumption that the Earth is modeled as if it were a perfect
sphere. The main reason for this projection system is to significantly reduce the
complexity of the computation of tile coordinates, at the cost of having less accu-
rate aspect ratios further away from the Equator, resulting in a fast and sufficiently
accurate map representation.

A tile map works by using x and y coordinates for the tiles, and a zoom parameter
to indicate the level of zoom (and detail) of the map. Tile maps use individual
tiles (images), and combine multiple tiles into a final image that represents a map,
or a portion of it. Given the fact that (usually) tiles have fixed image resolutions,
multiple tiles are used to create maps with more detail. In our case, the fixed
resolution is 256x256 pixels, as the tiles are provided by an external tile provider.
At zoom level z = 0, only one tile with coordinates x = 0 and y = 0 is available,
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and that single image contains the map of the whole world. Given the fixed tile
resolution, that single tile image is thus not very detailed, see image 4.

Figure 4: The single map tile at zoom level 0.

The actual tiles were downloaded from [5], by using a Python script to download
them automatically and save them to disk. The mentioned URL contains place-
holders, meaning that they need to be filled in to produce a working URL. There
are 4 servers (a-d) that serve the tiles, so the following URLs are valid:

• http://a.basemaps.cartocdn.com/dark all/0/0/0.png
• http://b.basemaps.cartocdn.com/dark all/6/31/32.png

4.3.1 Zoom levels

Each subsequent zoom level increases the number of tiles by 4, so zoom level
z = 6 already has 4096 tile images (x and y range from 0 to 63), taking up 4.8
MB of disk space. At z = 10, there are 1048576 tile images (x and y range from
0 to 1023), taking up a bit more than 1 GB of disk space. Since each subsequent
zoom level increases the number of tiles by 4 (and thus the storage requirements
for all those images), the maximum zoom level that is used for the system is
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capped at z = 10, so all levels combined take up 1.5 GB of disk space in total.
With the current size of the map in the system (in VR), higher zoom levels are not
necessary, as the map is not large enough (in VR) to warrant the extra increase in
disk usage and computation, as the added detail is barely to not visible. Figure 9,
7 and 10 demonstrate the map at various zoom levels, as seen in VR.

Initially, the system worked at a fixed map size and zoom level of z = 6, mean-
ing that the entire map had a fixed level of detail (and thus quality/resolution).
Moving too close to the map revealed the individual pixels of the tiles, therefore
a dynamic system was created (more on that later in section 4.5.2). Ideally, the
system would use a quadtree approach to load and unload images of higher/lower
zoom levels, to provide a dynamic map that changes its level of detail (and thus
quality) based on the users distance to those tiles. However, due to the nature of
the already complex system, as well as time constraints, this approach was not
used. Instead, the dynamic map system keeps the map fixed at 4096 tiles (‘sim-
ulating’ the original z = 6), and instead swaps out individual tiles based on the
users distance to those tiles. To facilitate this, Python scripts were written that
would combine multiple images from higher zoom levels (z = 7 and higher) into
the required 4096 tiles for the simulated z = 6. Likewise, images from lower zoom
levels (z = 5 and lower) were split into multiple images to form the required 4096
tiles. This approach changes the final resolutions of the tiles at different zoom lev-
els, with (the merged) higher zoom levels containing tiles of higher resolutions,
and (splitted) lower zoom levels containing lower resolution tiles. However, this
is not an issue, as these tiles are loaded as dynamic images into Unity textures
anyway (see section 4.5.2).

4.4 HTC Vive and SteamVR

The HTC Vive was the hardware used to interact with the VR system, and the
SteamVR API allowed us to interact with that hardware, which can be seen in
figure 5. It includes 6-axis (positional and orientational) tracking of the two con-
trollers and the VR HMD (Head-Mounted Display, also known as the headset),
using 2 basestations. The basestations work together wirelessly to ensure cor-
rect tracking of the devices. The controllers feature a touchpad, a menu button, a
Steam button, a trigger, and a grip button, as well as haptic feedback. The headset
has two 1080x1200 resolution screens per eye, for a total of 2160x1200 pixels, and
a 90 degrees Field of View (FoV), at a refresh rate of 90 Hz. The latest SteamVR
driver was used to run the Vive (at the time of writing, version 1.1.4).
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Figure 5: The HTC Vive set, including 2 basestations, 2 con-
trollers, and the headset. Image taken from ArsTechnica at
https://arstechnica.com/gaming/2016/10/best-vr-headset-2016-psvr-
rift-vive/.

In order to interact with the program, the various buttons and their names are
visualized in figure 6.
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Figure 6: The buttons on the HTC Vive controller. Taken from
https://survios.com/rawdata/content/themes/rawdata/assets/img/vive-
userguide-white@2x.png

4.5 Unity

The actual program in which our system was created, is Unity (Personal edition,
version 2017.3.1f1) [8], and C# scripts were used to program the required func-
tionality of the system. It uses all previously explained components, as can be
seen in figure 3. The main project includes a single scene, with a few plugins to
ease development, listed below:

• SQLite plugin for interacting with our SQLite3 database [7].

• SteamVR plugin for interacting with the HTC Vive and controllers [10].

• Listview plugin for creating and managing list views, used for the filtering
menu [9].

• TaskParallel plugin for managing C# threads, used for loading images in
background threads [11].

At startup, the program loads in the SQLite3 database created from the LSC meta-
data (see section 4.2), and then does the following things:

1. Create a list of Tag objects from the ‘Tags’ table. This step also filters out
tags that occur less than 10 times.

2. Create a list of Image objects from the ‘Images’ table.
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3. Assign each Image object the appropriate Tags.

4. Calculate the GPS upper and lower bounds of all images..

5. Create a hierarchy of clusters based on the Image data, as explained in sec-
tion 3.2.1.

6. Create pins for each location cluster, to position them on the map.

7. Create the actual map, and place the previously created pins on them.

8. Initialize the VR environment, position the user above the center of the
dataset on the map, and run the program.

At step 7, the map is also cut off, based on the results of step 4. An extra 20%
of the bounds are added, and the map is scaled to be larger or smaller, based on
how large the final bounds are. This is done to ensure that maps do not have lots
of empty space, and are thus content-dependent. So, if the dataset is very spread
out, the ‘physical’ size of the tiles of the map are smaller in VR. If the dataset is
very dense, the ‘physical’ size of the tiles of the map are larger in VR.

4.5.1 Image access

When the program is running, the user is positioned above the map, at roughly the
center of the dataset. The user is then presented with an overview of the data, as
can be seen in figure 7.

Figure 7: Example screenshot, showing an overview of the images
(blue pins) positioned on the map, as seen in VR.
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Each blue pin represents one location cluster, and each location cluster contains
1 or more days of data (and thus 1 or more day clusters). Since a lot of images
are very close-by, their GPS locations differ only by the last few digits. In order
to reduce the number of visible clusters/pins, these GPS coordinates are rounded
down, to group images at relatively close-by locations. In our system, they are
rounded down to 2 digits, yielding an accuracy of up to 1.1 km (see appendix
section 10.1). This seemed an acceptable trade-off between accuracy and number
of clusters given the detail and scale of the map, which is roughly city-level.

When moving closer to those blue pins, they gradually change into image bill-
boards, showcasing an image at that location, and the billboard will rotate towards
the user so they are always visible, if in close proximity. These images are loaded
using background threads, and managed by the TaskParallel plugin [11].

If the user aims his controller at one of the blue pins, and presses the trigger button,
the images at that location are retrieved, and presented in an image wall around
the user’s controller, as can be seen in figure 8. The user can then navigate through
the images by using the touchpad. Each row of the image wall represents one day
of images at that location (the date is displayed below each row), and the actual
image details are displayed below the main, central (selected) image.

Figure 8: The image wall with various images per day, presented
when the user grabs the images from a blue pin or image billboard.

4.5.2 Map and geospatial navigation

When the program is started, the map is created, and all tile images are loaded
at the initial zoom level z = 6 (so, 4096 tiles/images). After the program is fully
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running, the distance of the user to each tile is calculated, but only a few tiles per
frame are calculated, to ensure responsive frame rates. If the quality of tiles needs
to be changed, this is done in a separate coroutine, as the Unity API is not thread-
safe, and actively blocks non-main-thread calls, so this cannot be done efficiently
in a background thread unfortunately. Figure 9 and 10 show the map at its lowest
(z = 3) and highest level of detail (z = 10) respectively.

Figure 9: The map of the system, showcasing the lowest zoom level
at z = 3 and thus the lowest level of detail. Notice how only country
names are readable.
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Figure 10: The map of the system, showcasing the highest zoom level
at z = 10 and thus the highest level of detail. Notice how individual
city names, and even smaller ones, are easily readable.

In order to navigate around the map, 2 methods are available. The first method
is ‘horizontal’ navigation, and allows the user to ‘teleport’ anywhere on the map.
When clicking and holding down the touchpad, a white cylinder appears, and the
user can aim the controller to move the cylinder (see figure 11). When letting go
of the touchpad, the user slowly flies towards the selected location. The white
cylinder also scales with its distance to the user, so the user can get a sense of the
distance to his destination.

The second method is ‘vertical’ navigation, and allows the user to fly upwards, to
get a better overview of his position on the world map. This is done by pressing
and holding the grip buttons, and it stops when the user lets go of the grip buttons.
The speed at which the user flies upwards starts low, and then grows linearly with
time, to ensure easy acclimation and no motion sickness.
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Figure 11: When clicking and holding down the touchpad, the user
can teleport around the map.

4.5.3 Filtering

Last but not least, the images in the dataset can be filtered, by enabling or disabling
certain tags (concepts). For this, a filtering menu was created that uses the listview
plugin [9]. The filtering menu consists of 3 parts, for easy filtering operations.
Figure 12 shows the filtering menu on the left controller.

The middle menu has the list of all tags shown, along with how often they occur,
as well as whether they are active or not. The left-most menu has a list of A to
Z, indicating the first letter of the tag to filter on. When clicked, it will select the
first tag with that letter (based on the sorting method used), so the user can easily
search for and find certain tags.

The right-most menu has special options, and includes an option to enable or dis-
able all tags at once. Also, all images without tags can be made visible or hidden
in this menu. Finally, the user can change how the middle menu is displayed, by
changing how the tags are sorted.
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Figure 12: Example result of using the filtering menu, which is shown
when the menu button is pressed. The left controller ‘holds’ the fil-
tering menu, and the right controller has grabbed an image. It also
shows an image billboard in-between the controllers, with its thumb-
nail being the same image as the right controller has grabbed.
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5 Evaluation

In order to examine the usability of this system as an entertainment-oriented (undi-
rected, relaxed) image browsing system, various aspects were evaluated. The ma-
jor focus is thus on exploratory search, and not on performance oriented (search)
tasks. The complete experiment setup consists of the following steps:

1. Pre-experiment actions (questionnaire and signing of consent form).

2. Qualitative testing.

3. Optional break.

4. Quantitative testing.

5. Post-experiment actions (survey and final questions).

For the evaluation, only the data of user 1 of the dataset will be used (see section
4.1.1, as they are more spread out over the world map, and also contain more
interesting images. When interacting with the program in VR, test subjects were
standing for the entire duration of the experiment, which lasted about 30 minutes
in total, per test subject. Each part of the experiment will be explained in more
detail in the next sections.

5.1 Pre-experiment actions

Before the experiment starts, the system and its purpose was explained to the test
subject. Also, the purpose of the experiment was explained, emphasizing that the
system needs to be tested, and not the test subject. It was mentioned that taking
a break, or stopping completely was always allowed. Since (VR) motion sickness
is always a possibility, test subjects needed to sign a consent form (included in the
appendix, section 10.2). Then, the following questions were asked:

1. Age, in years.

2. Sex, either Male, Female, or Unspecified/Rather not say.

3. Whether the test subject is left or right handed.

4. Whether the test subject has any eye deficiencies, such as glasses.

5. Test subject’s experience with VR, options are:

(a) I have never used VR.
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(b) I am familiar with it, e.g., tried it out a few times, but do not use it
normally.

(c) I occasionally use VR, e.g., a couple of hours per month.

(d) I use VR often, e.g., more than 10 hours per month.

6. Test subject’s experience with (online) map systems such as Google maps,
options are:

(a) I have never used them.

(b) I am familiar with it, e.g., tried it out a few times, but do not use it
normally.

(c) I occasionally use them, e.g., a couple of times per month.

(d) I use them often, e.g., more than 10 times per month.

7. Test subject’s experience with systems for image access, browsing and re-
trieval (e.g., their own digital photos), options are:

(a) I have never used them.

(b) I am familiar with it, e.g., tried it out a few times, but do not use it
normally.

(c) I occasionally use them, e.g., a couple of times per month.

(d) I use them often, e.g., more than 10 times per month.

This data was gathered to find out if certain groups of users (e.g. experienced
with VR but not with image browsing systems, or the other way around, etc) find
our program more or less enjoyable than others. It is also known that people
with glasses enjoy VR less than people without glasses, so we expect to see that
same bias in our results as well [12]. The results might also indicate that although
they enjoy VR less, they might find our program intuitive and enjoy it relatively
the same nonetheless. It was mentioned on the form that this data will solely be
used for the purposes of the experiment and deleted afterwards. As mentioned,
the purpose of the experiment was to test the system, and not the test subjects.
Therefore, they can take a break or stop at any time if they desire. If they wish to
continue the experiment, time spent taking a break will not be considered part of
the time it takes them to perform a task. If they did not fully finish the experiment,
they will have their test results excluded.
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5.2 Qualitative testing

Instead of only raw, numerical, quantitative data, we can use qualitative analysis to
investigate the subjective experience of users. This complements the quantitative
analysis, since low performance can also have an impact on experience, and vice
versa. To aid in this aspect, the computer screen, showing what the test subject
sees on his/her headset, will be recorded. These recordings will only be analyzed
manually, to find possible explanations for anomalous data, which cannot be ex-
plained normally, for example: Why did it take user X so much longer than others
to find image Y or similar images? By looking at that video, we could find that the
user spent some time re-orienting himself, or was just looking at random images
instead of searching for the one that was requested.

The first, qualitative part is included with the purpose of getting users familiar
with the system and learning how to use it, at their pace. It is also a vital moment
to find out how intuitive the system and controls are. Also, because our system
is more designed for leisure and exploratory search, and less for performance-
focused targeted searches, qualitative statements on how people experience it, how
they like and enjoy it, are essential in verifying its usefulness.

5.2.1 Explanation of the system and controls

First, the controls and features of the system are explained and demonstrated, so
that the user knows them. They can ask the test administrator at any time for them
in the next steps, so that they can get to know the system and work with it to the
best of their ability. Then, the VR headset is put on, and the controllers handed to
the test subject.

5.2.2 Free-roaming

Then, the user is free to browse and explore the dataset for 5 minutes. This part is
subdivided further into 2 phases. The first phase (2-3 minutes at most) is to get the
user to familiarize himself with the controls, and the second phase is to explore
the data (2-3 minutes or more, depending on how long the first part takes). The
overall duration should be roughly 5 minutes (minor changes of up to 30 seconds
more are no problem). For the second phase, it is suggested to make use of the
features of the system to browse the images, with the controls learnt from the first
phase.
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Two questions will be asked with the intention of having the user examine more
than just a handful of images, and to make the user think about the data and how
it is organized on the map, as well as how possible filtering options might make
sense here. The answers to these questions do not need to be noted as these results
are not part of the actual test, and are used only to give the test subject a hint on
what to look for and how to do it. These questions are:

• The owner of the lifelogging images traveled abroad twice, which 2 places
did he visit?

• The images are positioned based on their GPS coordinates. There should
be ”gaps” or ”empty spots” on the map where there are no images, because
they are labeled as ”WORK” and ”HOME” and have no GPS coordinates
attached due to privacy reasons. Where do you think these 2 gaps are, so:
where do you think the owner works and lives?

After 5 minutes, the system is restarted by the researchers (to start with a clean
slate again), and the user is allowed an optional break of 1-2 minutes if he/she
wishes it.

5.2.3 Quantitative testing

To gather quantitative feedback about the usage of the system, test subjects had to
perform the following four tasks of the LSC 2018 challenge [1]:

1. Find the moments when I was looking at an airplane (and not sitting in one).

2. Find the moments when I was walking by the sea and taking photos.

3. Find the moments when I was eating lunch.

4. Find the moments when I was making juice using fruit and/or vegetables.

As can be seen from the tasks, only task 1 and 2 have a location aspect, and task 3
and 4 do not. The first two tasks were manually selected from the LSC challenge
because of their location-related aspect. The last two tasks were also manually
selected, because they seemed most representative of typical lifelog search tasks
(compared to other non-location-related tasks). The order of these tasks will be
random for each test subject, so that the overall task performance is not influenced
by performing the other tasks (and thus getting more used to the system).

The original LSC challenge featured 24 tasks, but many of them were of similar
nature, and these 4 were the most fitting for our research. Also, user 1, who has
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created more than half of the LSC dataset (see section 4.1.1), created these 24
tasks originally, including the four mentioned above.

We expect to see more images found with the first 2 tasks than with the second 2
tasks, as the location aspect of these first 2 tasks can aid the user into finding more
images within the allotted time because of the map-based approach of our system.
Users will get up to 1 minute per task to find the correct images (the time limit is
automated and enforced).

5.2.4 Tracking of interactions

Per task, the number of different actions that the user takes will be kept track of
by the system, with those being:

• Clicking on a pin or a billboard to get its stack of images counts as 1 action.
Letting go of a stack does not count as an action.

• Teleporting somewhere else, each teleportation act counts as 1 action. Also,
the teleportation distance is recorded.

• Enabling or disabling a tag/concept to filter the images. Using the special
case of enabling/disabling all tags counts as only 1 action. Re-ordering
the list of tags does not count as an action. Also, what filters are en-
abled/disabled is recorded, so we can track what filters were used by the
test subjects.

• Navigating through the image stack, left/right/up/down, each click counts
as 1 action for this case. Holding down the button to navigate faster through
the stack, will count as if it were many separate clicks (and is thus not treated
as special). Also, the number of images visited will be kept track of, both
unique and total.

5.2.5 Tracking of time

Along with those actions, per category, the time spent interacting with the system
will be kept track of:

• Time spent idling on the map, and likely just looking at pins/billboards (de-
tecting this looking at part is hard and out of scope for our research pur-
poses).

• Time spent geo-spatially navigating the map using teleportation. Physical
movement of the user will not be kept track of as this is much harder to
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determine; e.g. is the user actually moving, and thus stepping away, or
simply tilting his body slightly? Again this is out of scope for our research
purposes.

• Time spent navigating images using the image wall.

• Time spent using the filtering interface.

Given our unique approach/system design, its possible that the user can hold a
stack of images with 1 controller, and then teleport somewhere far away with the
other controller, after which that controller can be used (while teleporting/moving)
for the filtering interface. Since it is not our goal to determine if such methods are
used by the user, we simply keep track of the time spent per category, so the
cumulative tracked time spent for a task may well be over 1 minute.

5.2.6 Motivation of tracking

Summarizing, for a single test subject, the result for a single task looks like this
(using example values):

• Actual result of the test, number of correct images found: 8.

• Total number of unique images visited: 41, total: 57.

• Number of pin/billboard clicks: 7.

• Number of teleportations: 4, total distance 231.3.

• Number of filter operations: 2, tags used: all, food, airplane.

• Number of image wall navigations: 56.

• Time spent idling on the map: 15.6 seconds.

• Time spent navigating the map: 3.2 seconds.

• Time spent navigating the image wall: 45.4 seconds.

• Time spent using the filtering interface: 7.1 seconds.

These things will be kept track of with the purpose of measuring the usability
of our map-based approach in VR. For all users, these actions and times will be
plotted per task in a graph, indicating the average and spread of the values per
task. More specific graphs can be made where specific groups are compared to
the rest, e.g. as mentioned before (experienced VR/image-browsing users vs non-
experienced). This should give us a better understanding of the applicability of a
map-based approach in VR with regards to image browsing. Although the system

36



is not designed to be used as a system for performance search, it can be interesting
to see the results, and might reveal missing/wanted features of the image browsing
system.

5.3 Post-experiment actions

After all tests are done, a System Usability Survey using a Likert scale needs to be
filled in [13]. This will give us an indication of how intuitive the system is, based
on the final score from all test subjects. Afterwards, there are some final questions
to be filled in by the test subject.

5.3.1 Survey

The System Usability Scale (SUS) survey contains the following questions:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The answer scale of questions are as follows:

1. Strongly disagree.

2. Disagree.

3. No opinion.

4. Agree.

5. Strongly Agree.

37



SUS yields a single number representing a composite measure of the overall us-
ability of the system being studied, per test subject. Scores for individual items
are not meaningful on their own. To calculate the SUS score, the score contribu-
tions from each item are summed. Each item’s score contribution will range from
0 to 4. For items 1, 3, 5, 7 and 9, the score contribution is the scale position minus
1. For items 2, 4, 6, 8 and 10, the contribution is 5 minus the scale position. By
multiplying the sum of the scores by 2.5, we obtain the overall value of SU, which
can be between 0 and 100.

5.3.2 Final questions

The final SUS scores give us very important numbers indicating the usability of
the system, but the interpretation of it must be more nuanced as clear conclusions
cannot always be drawn. If our system has a low usability value, it might mean
that our system is not good enough, and not that map-based image browsing in VR
is a bad idea. To be able to give a better answer on the usability of our system and
map-based image browsing in VR in general, a number of final questions were
asked to complement and explain this number in more detail:

1. (Open) What did you like about the system and why?

2. (Open) What did you dislike about the system and why?

3. (Closed) Did you experience motion sickness, discomfort, headache, fa-
tigue, nausea, or disorientation? Answers can be chosen from this list:

(a) None of the above.

(b) Only a little bit, but it did not have an impact on the overall experience.

(c) Yes, and it was enough to have an impact on the overall experience.

4. (Closed/Open) When browsing through the system/images, what approach
did you use most? Answers can be chosen from this list (multiple answers
are possible):

(a) Browsing based on the map.

(b) Browsing based on the size/location/density of the pins/billboards.

(c) Browsing based on filtering tags.

(d) Something else, namely: To be filled in by test subject.

5. (Open) What would you use this system for?
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6. (Open) Any other comments?

These final questions will be used as support for the SUS score and the quanti-
tative measurements. From these (and in combination with the on-screen video),
it should be clear why certain results were obtained, e.g.: users did not find the
correct images for task X because they did not use the filtering interface correctly
or at all, or found it too cumbersome to use it. Some of these will be used directly
to explain certain results, and some of them might be noted as anecdotes. This
concludes the experiment setup.
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6 Results

The system was evaluated using ten test subjects from the University of Utrecht,
and consisted almost entirely of local, male students between 20 and 27 years
old. Of those ten test subjects, only one was female, and only one superseded the
age of 27 (being 56). Furthermore, the program was also tested with both owners
(‘users’) of the LSC dataset, namely user 1, and user 2. Both users underwent the
same experiment setup as the other test subjects, as described in section 5. The
only difference is that they also explored each others data in addition to their own
data, during the free-roaming phase as described in section 5.2.2. In order to avoid
confusion, the following terminology is used throughout the remaining sections:

• Local test subjects: Meaning all ten local test subjects from the University
of Utrecht. Does not include users 1 and 2.

• Users 1 and 2: The test subjects who are the original owners (and creators)
of the LSC dataset, as described in section 4.1.1.

• All test subjects: Meaning all twelve test subjects, so it includes the ten
local test subjects as well as users 1 and 2.

First, information about all test subjects is mentioned, showing the results of the
pre-experiment questions as mentioned in section 5.1. Then, the quantitative re-
sults are shown, showing the task, interaction, and time results, as well as com-
paring several groups of test subjects. After that, the qualitative results are shown,
showing the scores of the SUS survey [13] as mentioned in section 5.3.1. Finally,
the results of the open questions are mentioned.

6.1 Information on test subjects

The results of the pre-experiment questions are shown below. Figure 13 shows the
age distribution of all test subjects. As mentioned, most test subjects were local
students from the University of Utrecht.

The eye deficiencies of all test subjects is shown in figure 14. Even though it was
possible to select both ‘glasses’ and ‘lenzes’ as eye deficiencies, no test subject
had done so, meaning that there is no overlap between those two groups. Given
the fact that seven out of twelve test subjects have glasses, we expect them to
enjoy our program slightly less than others [12]. Interestingly enough, all test
subjects noted their right hand as their dominant hand, as shown in figure 15.
When examining the screen recordings, all users used the right controller (in their
right hand) dominantly as well.
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Figure 13: Age of all test subjects.

Figure 14: Eye deficiencies of all test subjects. Even though test sub-
jects could select both glasses and lenzes as deficiency, no test subject
had done so, meaning that there is no overlap between the two groups.
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Figure 15: Handedness of all test subjects.

When asked about their experience with VR, two-third of the test subjects an-
swered that they were familiar with it, but do not use it normally (see figure 16).
Only two subjects had never used VR before, and none of them use VR often. The
experience with map systems of all test subjects is shown in figure 17, and indi-
cates that all users are sufficiently familiar with such systems. Finally, figure 18
depicts the experience of all test subjects with image browsing systems, showing
a more divided result between the answers.

Figure 16: VR experience of all test subjects.
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Figure 17: Map system experience of all test subjects.

Figure 18: Image browsing experience of all test subjects.

6.2 Task results

For the task results, we will first mention the results of all test subjects, and then
discuss subgroups separately. It can be interesting to see the results of users 1 and
2 separately, since both users know each other and may also know about (parts
of) each others data. This separation makes even more sense for user 1, since all
tasks are based around the data of user 1. f
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6.2.1 All test subjects

The average task results of all 4 tasks is shown in figure 19, with error bars indi-
cating their standard deviation.

Figure 19: Average number of images viewed per task, for all test
subjects. No correct images were found for task 2 and 4. The error
bars indicate the standard deviation. Note how high some of these
deviations are, compared to their average values, indicating wide-
spread result values per test subject.

Interestingly enough, no test subject found images for tasks 2 and 4 within the
allotted time of 1 minute, and the reason for this is two-fold. First, the enforced
time limit of 1 minute is very short, as can be seen by the low number of correct
images found for tasks 1 and 3, compared to the total number of images viewed.
All test subjects so far were either surprised by how fast their time was up and/or
remarked that they would like more time. When looking through the video record-
ings, we observed that some test subjects found more correct images outside of
the time limit by only a few more seconds.

Secondly, tasks 2 and 4 were (deliberately) much harder than tasks 1 and 3, as
they required more fine-grained filtering or were less present in the dataset than
the other images. When looking at the screen recordings, most test subjects found
images for task 2 that only met the criteria halfway, as the images showed the
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lifelogging user looking at the sea, but not when taking pictures. However, no test
subject came close to finding the correct images for task 4.

In order to look for images with certain tags, all test subjects disabled all tags first,
and then enabled only the tags that they want. It should not come as a surprise,
that the most used tag for task 1 is ‘airplane’, with seven test subjects using it.
Second are ‘aircraft’ and ‘airport’, with four test subjects using it. Furthermore,
some test subjects enabled both ‘airplane’ as well as ‘aircraft’ (three uses). Finally,
two test subjects used ‘window blinds’ and ‘clouds’ exclusively, but did not find
any correct images using these tags. For task 2, the most used tags were ‘water’
(six times), followed by ‘shore’ and ‘phone’ (twice), and ‘cellphone’, ‘sandy’
and ‘phone (once). However, no correct images were found using this approach,
even though most test subjects found images that matched the required criteria
only halfway (e.g. only walking by the sea but not taking pictures). For task 3,
test subjects almost exclusively used the ‘food’ tag (nine times), and only 1 test
subject used ‘vegetable’ exclusively, while another used only ‘eating’. Since the
dataset contains lots of food pictures, finding correct images was relatively easy,
as test subjects only needed to look at the time of the images. For the last task, test
subjects used either ‘food’ or ‘vegetable’ again (four times), followed by ‘kitchen’
and ‘cooking’ (twice), and ‘cup’ (once). Again, as with task 2, no images were
found using this approach, but this time, no test subject came even close to finding
correct images.

Another interesting observation is the difference between unique images viewed,
and the total number of images viewed, per task, as can be seen in figure 19. For
tasks 1, 2 and 4, the difference is only minimal, but for task 3 the difference is
twice as much. This can be explained by the fact that there are simply much more
images that match the criteria for task 3 than for all other tasks. Users therefore
examined the same images a couple of times, because they seem omnipresent
in the dataset, which was also observed from the screen recordings. Thus, this
explains why test subjects found more images for task 3 than for task 1; there
are simply more images of food in the dataset, than e.g. images of the outside of
airplanes.

Finally, the standard deviation of these task results are relatively high compared to
the averages of the task results, as seen in figure 19. For the first task, this is mostly
caused by the results of user 2, which will be discussed in section 6.2.3. Figure
20 shows the same results as figure 19, except the results of the first task of user
2 are omitted. This shows how a completely different browsing approach would
influence such task results. However, the deviations still indicate that the task
performance of various test subjects differ greatly, as can be seen in both figures.
Therefore, we will now examine subgroups of test subjects in more detail.
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Figure 20: Average number of images viewed per task, for all test
subjects. It is the same figure as 19, except the results of the first task
from user 2 are omitted. Notice the significantly reduced standard
deviation for the results of the first task.

6.2.2 Influence of VR experience

Given our limited sample size, we consider the only two test subjects who men-
tioned that they use VR occasionally, as experienced with VR, since no one noted
that they use VR often. One of these two test subjects is user 1 (see section 4.1.1),
the other is a local student. Figure 21 shows the task results for both. As the aver-
age results for the first task are skewed because of user 2, comparing these results
to figure 20 as well clearly shows that they browsed more images and performed
better than the average test subject.
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Figure 21: Average number of images viewed per task, for two test
subjects experienced with VR. Again, no correct images were found
for task 2 and 4. The error bars indicate the standard deviation. Note
how low the deviations for the first task are, compared to the other
tasks, indicating similar performance.

Again, due to our limited number of test subjects, only two test subjects indicated
that they had never used VR before, and both were local students from the Uni-
versity of Utrecht. Figure 22 shows their task results, and clearly showed that
they browsed less images, and also performed worse than the average test sub-
ject. Again, their results should be compared to both figure 19 and 20, due to the
influence of the results of the first task from user 2.
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Figure 22: Average number of images viewed per task, for two test
subjects who had never used VR before. The novelty of VR greatly
impacted their task results, with less correct images found than the
average test subject.

6.2.3 Influence of dataset affiliation: user 1 and 2

Figure 23 and 24 show the individual task results for user 1 and user 2 respectively.
Interestingly enough, user 1 found practically the same amount of correct images
as all test subjects on average. We expected that user 1 would perform better
at these tasks, since it is his own, personal data. One reason for this might be
that the images were taken over 2 years ago, compared to when they were tested
with our system. Given the size of the lifelogging image collection of user 1,
it is understandable that not all images and their details are remembered clearly.
When examining the recordings from user 1, this was mentioned as well: “I don’t
remember about this”. Another reason for these similarly low amounts can be
attributed to the enforced time limit as well, which was clearly mentioned in the
recordings by user 1, when the time limit was reached: “What? That is not enough
time”.

However, user 2 did not find any correct images at all. When looking at the indi-
vidual statistics and screen recordings, we found that user 2 did not use the filter-
ing menu for the first task, but instead used a map-approach to determine where
user 1 made airport stops. For the remaining tasks, user 2 did use the filtering

48



menu, but did not use it fast enough and had difficulties remembering the controls
of the system, resulting in only very few browsed images. This also explains the
relatively high number of images viewed for the first task, as it is much lower for
the remaining three tasks and then also more consistent with the average numbers
for local test subjects.

Figure 23: Task results for user 1. Only correct images were found
for task 1 and 3, and were found in roughly the same amounts as the
average number of correct images found by local test subjects, as can
be seen in figure 19 and 20.
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Figure 24: Task results for user 2. Unfortunately, no correct images
were found for any task.

Furthermore, when browsing, user 1 used tags ‘airport’ and ‘airplane’ to find the
correct image(s), similar to the ones used by other test subjects. For tasks 2,
‘water’ and ‘sandy’ were used, yielding images that met the criteria halfway (only
walking by the sea), exactly the same as with the other test subjects since no
correct images were found. Interestingly, user 1 used the ‘eating’ tag for task 3
(no one else used it), and found 4 correct images using that approach. For the last
task, ‘cooking’ was used, but it did not yield correct images.

In contrast, user 2 barely used the filtering menu, and did not even use it for the
first task, being the only one who did not use it for a task. User 2 only used the
‘sale’ tag for task 2, but the interpretation of the tag contradicted its actual concept.
For task 3, the ‘food’ tag was used, but due to interaction mistakes (observed from
the recordings) and the enforced time limit of 1 minute, no correct images were
found. The tags used for the last task was ‘cup’, but again, it did not yield correct
images.

6.3 Interaction results

For the interaction results, users 1 and 2 were not separated from the local test
subjects, since their affiliation with the dataset likely does not influence how they
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interact with the program, since neither subgroups have used or seen the program
before.

Figure 25: Interaction results for all test subjects, per task.

Figure 25 shows the interaction results for all test subjects, per task. This time,
the standard deviation of most results is relatively low compared to their averages,
with the exception of the image wall interactions results, and, to a lesser extent,
the number of pin/billboard clicks. This figure indicates that for these tasks, all
test subjects used a similar approach of two steps. First, the filtering menu would
be used to enable only specific filters, and then the test subjects would teleport to
locations with active images. Second, the user would grab and navigate those im-
ages, in search for the correct ones for their current task. This was also confirmed
when examining the screen recordings. Only user 2 deviated from this approach
for the first task (but not for subsequent tasks) as explained in section 6.2.3, which
also explains why the number of image wall interactions had such a high standard
deviation for the first task.

Of course, no test subject performed equal, as some looked at more images than
others during their tasks, furthermore explaining the deviation between the num-
ber of image wall interactions. However, a more interesting result is the number
of teleportations performed per task. Overall, test subjects teleported around the
map more for the first task, indicating that the map aspect might have played a
role for this task.

However, such a conclusion cannot be easily made in this case. When examining
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the screen recordings and the dataset, all (active) images showed a reasonably
similar spatial distribution on the map after initial filtering from the test subjects.
In other words; there are multiple locations that have images matching the filters,
at distances sufficiently far away that the user would need to teleport closer to
them in order to view and navigate them. However, for the first task, each location
had only a very small amount of matching images, in contrast to the results of e.g.
the third task, which had significantly more images at each location. Thus, this
means that users were more or less forced to visit other locations, as the images at
other locations were quickly exhausted.

6.4 SUS Scores

For the SUS scores, users 1 and 2 were again separated from all test subjects, since
their affiliation with the dataset likely does influence their opinion of the program,
and thus their SUS scores. In this subsection, we examine the results of all test
subjects, and then a few relevant subgroups again.

6.4.1 All test subjects

The SUS scores for all test subjects are shown in figure 26. The average SUS score
was almost 70, with a standard deviation of 15.6. Overall, the program was well-
received by almost all test subjects, with relatively high SUS scores, indicating
that the they found our system quite usable and intuitive.
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Figure 26: SUS scores for all twelve test subjects. The first ten scores
are from the ten local test subjects, the last two scores are from user 1
and user 2 respectively.

6.4.2 Influence of glasses

Figure 27 shows the average SUS score for the seven test subjects who noted that
they use glasses, versus the remaining five that did not use glasses. As mentioned
before, we expected that people without glasses would enjoy VR less than those
without glasses, and we can observe the same bias. This means that test subjects
with glasses enjoy our program nonetheless (as shown by their average SUS score
of 63.6), but do so less than those without glasses, very likely because of their
glasses.
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Figure 27: Average SUS scores for the subgroups of test subjects that
use glasses, versus those that do not. The error bars indicate the
standard deviation.

6.4.3 Influence of VR experience

Of the two test subjects who occasionally used VR, both gave the system high
SUS scores. The given scores were 70 and 77.5 respectively, shown in figure 26
as test subject 1 and 11 respectively. Interestingly enough, the two test subjects
who had never used VR before, gave even (slightly) higher SUS scores of 85 and
72.5 respectively (test subject 4 and 7 in figure 26).

It seems reasonable that this apparent difference can be attributed to the novel
experience of VR, rather than to our program. However, it also indicates, that our
system is sufficiently optimized (both performance-wise and interaction-wise), as
novel users rated our program as high as experienced users, despite their initial
learning curve of VR.

6.4.4 Influence of task performance

In order to evaluate the influence of task performance, an objective measure is
needed first, for consistency and clarity. Therefore, we define “bad task perfor-
mance” as the case when a test subject has not found a single correct image for
a task. Then, we define “good task performance” as the case when a test subject
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has found more correct images for a task than the average test subject. Given the
average task results, this means that a test subject performed well for the first task,
if he found 1 or more correct images. For the third task, a test subject performed
well if he found 5 or more correct images. The remaining two tasks will not be
used, since no test subject found correct images for it. We make this distinction,
so we can objectively compare both subgroups consistently.

When examining the individual results of all test subjects, we found that test sub-
jects 1, 2, 5, 10 and user 1 performed well on the first task, having found at least
1 correct image. For the third task, almost the same test subjects performed well,
except user 1 only found 4 correct images. When examining the screen recording
for the third task of user 1, more correct images were found just after the time
limit by half a second, which would have been found legitimately if user 1 did not
make an interaction mistake (teleporting instead of image grabbing). Therefore,
we consider test subjects 1, 2, 5, 10, and user 1, as the group of test subjects per-
forming well. On the other hand, test subjects 6, 8, and user 2 found no images
for any task, and will thus be considered the group of test subjects that performed
badly.

Figure 28: Average SUS scores for the subgroups of test subjects that
performed well versus those that performed badly. The error bars
indicate the standard deviation.

Figure 28 shows the SUS scores of both subgroups. Interestingly enough, and
completely against our expectations, test subjects that performed worse, did not
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give lower SUS scores than the other group that performed better. In fact, it seems
that test subjects who performed worse, actually gave higher scores. This may be
explained by our relatively small sample size and the high standard deviation of
these values. Perhaps our expectations will be met with larger sample sizes.

6.4.5 Influence of dataset affiliation: user 1 and 2

Users 1 and 2 gave our system a SUS score of 77.5 and 50 respectively. Since
both users are active lifeloggers, who might benefit from using a system such as
ours to look back on their old images, the first score of 77.5 is reasonably high.
It is even higher than the average SUS score of 70 as given by the average test
subject. However, the second score is not, but this can be partly explained by the
fact that user 2 did not perform well on the tasks, since no correct images were
found for any task.

6.5 Qualitative analysis

For the qualitative analysis, users 1 and 2 were again separated, since their affili-
ation with the dataset likely does influence their opinion of the program, and thus
their responses. In this subsection, we examine the results of the final questions
as discussed in section 5.3.2. We start with a more general analysis of all test
subjects, followed by the analysis of local test subjects, and finally users 1 and 2.

As can be seen from figure 29, not a single test subject experienced significant
motion sickness. Exactly half experienced none at all, whereas the other half only
experienced it a little bit. This is a clear indication that our program is optimized
sufficiently, and our approach sufficiently intuitive so motion sickness does not
happen severely.
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Figure 29: Answer to the motion sickness question for all twelve test
subjects, as described in section 5.3.2.

Furthermore, when browsing through the images, ten out of all twelve test subjects
browsed images using mostly a filtering approach when performing the tasks, as
seen in figure 30. This is in line with the general results on interaction statistics,
as most test subjects spent their time interacting with the filtering menu, as seen
in 6.3.
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Figure 30: Answers to the browsing approach question for all twelve
test subjects, as described in section 5.3.2. The last option should
read ‘Based on the distance to me (closer blocks are easier to click)’.

6.5.1 Local test subjects

Overall, the system was well received by the local test subjects, as can be seen
from the SUS scores in figure 26, as well as from the answers to the first open
questions from section 5.3.2. Most test subjects complimented the map approach
as well as their grouping by location and day, and found the system interesting and
fun to browse images with. They specifically liked the location-based approach,
as well as the precise placement of images. One test subject complimented the
system for its ease of use of scrolling through images, and thereby viewing the
images from a journey more clearly, which is great feedback for a system designed
for viewing lifelogging images such as ours. Another test subject, who had never
used VR before, liked the feeling of depth and moving through space, but did
not explicitly attribute this feedback to our approach, likely attributing it to (the
novelty of) VR. Furthermore, the filtering of images was very powerful and even
though they were automatic, they were found accurate (often) enough to be usable.

However, the actual interaction with the filtering aspect received more criticism, in
response to the second question of 5.3.2. Given the rather large dataset of 56450
images, test subjects found it took too long to navigate through all the photos.
Mostly, this was because they found the filtering menu not intuitive enough. Two
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of them expected that they could interact with the filtering menu by using the other
controller, which is not how it currently works. After getting used to the system,
they learned to interact with it properly, but found it unintuitive nonetheless. Oth-
ers found that there were too many irrelevant filters, as well as filters that were
difficult to interpret, suggesting more specific filters. A direct example for this is
the inclusion of the tag ‘vegetable’, but the absence of the tag ‘fruit’. Also, even
though all tags were auto-generated, test subjects would like the filters to be more
accurate, in order to find images faster and easier.

Furthermore, the teleportation speed was often too high for almost half of the test
subjects, but they found the speed of moving upwards too low. Finally, one test
subject explicitly mentioned that the (added) value of the system seems absent,
but also commented that looking back at images is not something the test subject
likes or would do.

In response to question 5 from the final questions of section 5.3.2, seven out of
ten test subjects would like to use this system for their own photos, and/or use it
to show their photos to others. One test subject suggested that the map could be
bigger, so as to show even more fine-grained image locations when showing im-
ages. Another test subject suggested the inclusion of (external) meta-information,
so that the program would show some interesting information about various places
that the user went to, e.g. historical or biological. The remaining three test sub-
jects would not use the system, all saying that they are not really interested in
using such a system and/or do not really look back at their old pictures.

Finally, in response to question 6 of section 5.3.2, a few test subjects suggested
that the usability and user-friendliness can be improved. Another suggested to in-
corporate a timeline feature, either as a filtering option, or as an animation. Others
commented their appreciation for the system, by e.g. saying “Great concept!” and
“Awesome! Great experience”.

6.5.2 User 1 and 2

In response to the first question of section 5.3.2, user 1 complimented the visual-
ization and exploration interface, saying that it was “easy to use, and looks great”.
When analyzing the recordings, user 1 was surprised by the image wall at first, but
after a couple of seconds, commented positively “ohhh, I could get used to this”.
User 2 even mentioned that “The map view makes perfect sense for lifelogging
data”. Both answers are great feedback for our system, and an indication that our
map-based approach seems warranted.

However, like the other test subjects, both users found the visual concepts not
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accurate enough. User 1 commented that the images on the poles (the white lines
connecting pins and images to a position on the map, not the Earth’s poles) were
too small to analyse its contents, and that their density was too high. Furthermore,
the filtering menu took user 1 “away from the image interaction to a new menu”,
degrading his experience.

User 2 disliked the number of buttons to control the navigation, and noted the
absence of time-based access functionality. Also, user 2 was the only test subject
to request a feature to rotate the map, which would likely be used to re-orient the
user, and to make the names of locations on the map readable from all angles.

In response to question 5 from the final questions of section 5.3.2, user 1 would
use our system for “entertainment, and to share his content with friends”. User
2 also wanted to use it to show his life experience to friends. Furthermore, it
would be used to remember trips and events, as well as people that user 2 met.
User 2 even commented that “The VR is entertaining to pull you out of reality and
relax”. Again, this is great feedback for our system, and an indication that our
leisure approach, in combination with VR, seems warranted.

When answering the last question of section 5.3.2, user 1 noted that the image
billboards should be larger, so that the content of the images would be easier to
analyze. Finally, both user 1 and 2 commented that voice commands should be
added, suggesting an alternative interaction method in addition to the HTC Vive
controllers, which “would be greatly helpful to explore lifelogging data”.

60



7 Conclusion

In this paper, we demonstrated a proof-of-concept implementation of a map-based
image browsing system, that allows for browsing geo-tagged lifelogging images
in VR. It allows for browsing very large image datasets in real-time, as well as dy-
namically filtering it via the use of concepts (keyword-based image content, e.g.
‘car’, ‘food’, etc.) detected from automated computer vision programs. The LSC
2018 dataset [1] was used as a representative test set, containing data from two
active lifeloggers, including the detected concepts from the computer vision pro-
grams. In order to provide easier and more fine-grained image access, a clustering
hierarchy was used to group images of similar locations, and present them per day
via the use of an image wall, which could be navigated by the user. Furthermore, a
high-resolution dynamic map was used, to show the world at various level of detail
(‘zooming’), and to provide content-dependent maps (map scaling), resulting in
accurately displayed locations of images. Even though our system was designed
for leisure browsing, a pilot study was performed that tested both quantitative and
qualitative aspects, using ten general users as well as the two active lifeloggers
who created the aforementioned LSC dataset.

7.1 Quantitative aspect

Our quantitative results indicate that the system does not excel in performance
search, mostly because it was not designed for this. The quantitative testing con-
sisted of four tasks, of which two had a location aspect, whereas the remaining
two did not. We expected that users would perform better for the tasks that have
a location aspect due to the map-based approach. However, users found more
images for a task that did not have a location aspect, because the dataset simply
contained more matching images for that task than for all others. Also, the nov-
elty of the system, in combination with the low amount of time allowed per task,
limited test subjects from finding many images and utilizing the map properly.

When examining subgroups of test subjects, we found that the test subject’s ex-
perience with VR greatly influenced their task results. When comparing test sub-
jects experienced with VR, to test subjects who are inexperienced with VR, results
showed a large increase in task performance for the first subgroup, even though
the sample size was limited. Given the novelty and the relative unfamiliarity with
VR of most test subjects, this posed a noticeable learning curve.

Interestingly enough, affiliation with the dataset did not show an increase in task
performance. The two lifeloggers whose data was used for the LSC dataset, did
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not perform better than the average test subject. This can be attributed to the fact
that the enforced time limit was limiting their performance. Also, the age of the
dataset (a two-year difference between its creation, and our testing) prevented one
lifelogger from remembering their context, which was explicitly mentioned: “I
don’t remember about this”.

7.2 Qualitative aspect

The results of a System Usability Survey (SUS) [13] showed that test subjects
found our system quite usable and intuitive, as indicated by a high average SUS
score of 68.75±15.6 (scaled 0-100). Furthermore, the influence of wearing glasses
noticeably lowered the average SUS score by more than ten points, compared to
test subjects that did not use glasses, thereby confirming our expected bias.

However, test subjects that performed better did not give a higher SUS score than
those who performed worse; in fact, they even gave a ten point higher average SUS
score. Given the high standard deviation of these average SUS scores (showing
great overlap from their averages), this could be attributed to our relatively low
sample size. Also, affiliation with the dataset did not influence the SUS scores
noticeably.

When examining the answers to our more qualitative-oriented questions, no test
subjects experienced motion sickness enough to impact the overall experience,
and none mentioned low system performance, proving the high performance of
our implementation. Most test subjects explicitly complimented the map ap-
proach, the VR aspect, and the grouping of images by location and day, as well as
the overall visualization. Its ease of use, and applicability to lifelogging images
was also mentioned, especially by one of the lifeloggers in particular, saying:
“The map view makes perfect sense for lifelogging data”. However, as mentioned
by most test subjects, the filtering aspect could be improved, suggesting more
accurate and specific filters, and better interaction with the filtering menu. Fur-
thermore, the teleportation speed was often found to be too high, whereas the
zooming out speed was too low.

Additionally, nine out of twelve test subjects would like to use our system for
their own photos, and/or to show their photos to others. The remaining three
indicated that they were not motivated to use it, and do not look back on their
photos in general, even though one test subject mentioned that the system was
“kind of fun” nonetheless. The “fun” aspect was mentioned by a few other test
subjects, complimenting the system by e.g. saying: “Awesome! Great experience”
or “Great concept!”.
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7.3 Final conclusion

Our findings indicate that our map-based approach seems warranted, and that our
system is useful for browsing lifelogging data. The high performance of our sys-
tem demonstrates its ability to browse very large image datasets consisting of tens
of thousands of images, such as lifelogging data. Even though our system was
not designed for performance search, test subjects found correct images within
strict time constraints nonetheless. The VR aspect contributes to the entertain-
ment value by successfully providing an immersive experience of browsing im-
ages, which cannot be paralleled by traditional 2D screens. Finally, the high en-
tertainment value of our system could motivate users to look back at their photos
more often, and thus proves our system’s applicability for leisure browsing.
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8 Discussion

Our results showed that our system has proven its claims with regards to the map-
based approach, the applicability to lifelogging data, and the high entertainment
value as well as the usefulness for leisure browsing. However, there is still room
for improvement. Most test subjects commented that the filtering aspect could
be improved in many ways, but the major issue was the accuracy of the filters.
Even though they were automatically generated using computer vision software,
the accuracy could be further improved. Also, more distinct and specific filters
could be used, e.g. ‘vegetable’ is present but ‘fruit’ is missing. The filtering menu
itself could also benefit from interaction improvements, as some test subjects did
not find it intuitive enough.

Furthermore, the system is currently limited with regards to the map. Since stor-
age requirements for map tiles grow quadratically, the system is currently limited
to a fixed level of map detail, as the map tiles are stored locally. If the map tile
system would be upgraded to a dynamic quad-tree system (as discussed in section
4.5.2), then tiles could be loaded at even higher levels of detail by fetching them
from the internet dynamically. Then, the ‘physical’ size of the map (in VR) could
also be more easily scaled, to allow for even more fine-grained location-based
image access.

Finally, clear conclusions about our system cannot always be drawn directly. For
instance, one test subject used a completely different approach than all others for
one task, thereby skewing the results significantly. Without the screen recordings,
this would not have been easily detectable. Another issue was the higher number
of teleportations for the first task compared to others, deceptively suggesting that
the map aspect played an important role for that task. However, each location had
only a small number of images after applying filters, thereby forcing test subjects
to visit other locations to examine more images. In addition, the relatively low
sample sample size cannot always be used to make clear conclusions.

8.1 Future work

Based on all given feedback, we suggest the following items for future work:

• The improvement of the filtering aspect, by using more accurate and specific
filters, and by improving the filtering menu itself, to allow for more efficient
image access.

• The improvement of the map aspect, to allow for a (bigger) map of even
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higher levels of detail, and thus more fine-grained image access based on
location.

• The addition of voice commands and/or other interaction optimizations, to
improve the user interaction of the system.

• The addition of a temporal aspect to the system, improving the meta-context
applicability to lifelogging data. Currently, this is ongoing research, but per-
haps a similar approach as done by Alice Thudt [30] can be integrated into
the system, which combines spatial and temporal information into ‘visits’.

• The addition of location information to the system, by showing general
information about certain locations, thereby adding to the entertainment
value.

• The addition of a personal aspect to the system (e.g. face recognition),
improving the meta-context applicability to lifelogging data.

• A more thorough evaluation, by testing more people and comparing our
system to other systems, verifying the applicability of our system and our
results.

We expect that the further optimization of the implementation, by improving the
filtering, interaction and map aspects etc., as well as the addition of a temporal
aspect, would greatly benefit the system. Such additions could lead to a system
that would still be as useful for leisure browsing, but could also be used more
effectively for performance search. Currently, the addition of a temporal aspect is
ongoing research at the University of Utrecht.
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10 Appendix

10.1 GPS Coordinates and precision

Table 4 shows the difference between the number of digits in a decimal degree,
and the precision [4].

Range of values Maximum precision
10 digits about 1000 km
1 digit about 111 km
1 decimal 11.1 km
2 decimals 1.1 km
3 decimals 110 m
4 decimals 11 m
5 decimals 1.1 m
6 decimals 0.11 m
7 decimals 11 mm
etc... etc...

Table 4: Table showing the relation between the number of digits, and
the precision. Here, km stands for kilometers, m for meters, and mm
for millimeters [4].

10.2 Consent Form

In order to waiver liability of the researchers, test subjects needed to sign a consent
form, included below.

Risks, Discomforts and Benefits
Be aware that when using virtual reality systems, some people may experience
some degrees of the following: Nausea, Vomiting, Sweating, Pallor, Headache,
Vertigo and/or Dizziness

Furthermore using VR applications and games have the possibility of creating
epileptic episodes, therefore people who are known to have suffered from epilepsy
are not allowed to volunteer.

Upon request, testing will be immediately terminated or if there are indications
that the discomfort becomes unbearable or abnormal responses occur. Participa-
tion in this study should be an interesting and enjoyable experience and the results
obtained are expected to assist computer science research.
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Confidentiality
Any information that is shared during the study will be treated strictly confidential
and once the study is completed, it will not be possible to identify individuals.
Throughout the study only the aforementioned researchers will have access to the
information.

Request for Further Information
You are encouraged to discuss any concerns regarding the study with the testing
researcher at any time, and to ask any questions that you might have.

Refusal or Withdrawal
You may refuse to participate in the study and if you do consent to participate then
you will be free to withdraw from the study at any time without consequence, fear
or prejudice. If you wish to withdraw from the event please contact the researcher
and all data pertaining to you will be destroyed.

I have read the information above YES / NO
I have had the opportunity to ask questions about
the procedure

YES / NO

All my questions were answered to my satisfac-
tion

YES / NO

I have received sufficient information about the
study

YES / NO

I understand and accept the risks associated with
the use of virtual reality

YES / NO

I certify to have no history of epilepsy YES / NO
Name
Date
Signature
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