
Predicting Poverty of a Region from

Satellite Imagery using CNNs

Master Thesis

Author

Ratih Ngestrini

Supervisors

Dr. R.W. Poppe

Dr. A.J. Feelders

Computing Science

Department of Information and Computing Science

Utrecht University

16 January 2019

Abstract

Poverty in a socioeconomic context can be defined as the inability of individuals to meet their basic

needs. Measuring poverty is important to target efforts in places that need aids the most and evaluate

the effectiveness of government programs. However, it is difficult and expensive as it requires the collec-

tion of detailed data from the households. The development of machine learning-based techniques has

enabled the use of big data such as social media, mobile phone, and satellites for poverty measurement.

In this thesis, Convolutional Neural Network (CNN) models are evaluated to directly predict poverty

from daytime satellite imagery. Two approaches, naive and semantic segmentation, are proposed and

compared with the multistep learning approach that uses nighttime lights image. We perform experi-

ments using publicly available daytime and nighttime satellite images from Google Maps and NOAA.

The best model is achieved by combining the semantic segmentation approach and the night lights data.

Moreover, we test the generalizability of the models using higher-level administrative and out-of-country

data. The test reveals that we can use the models to estimate poverty in higher level administrative

region, but they are not robust to be used to predict poverty in other countries.

Keywords: poverty estimation, machine learning, Convolutional Neural Networks, deep learning,

satellite imagery

i

Contents

Abstract i

1 Introduction 1

1.1 Background . 1

1.2 Poverty Estimation from Satellite Imagery . 2

1.3 Research Goal . 3

1.4 Research Questions . 3

2 Literature Review 5

2.1 Poverty Measurement . 5

2.2 Machine Learning Methods . 6

2.2.1 Classification and Regression . 6

2.2.2 Convolutional Neural Network (CNN) . 9

2.2.3 Evaluation Metrics . 19

2.3 Related Works . 21

2.3.1 Applications of Satellite Data for Measuring Economic Indicators 21

2.3.2 Implementation of Convolutional Neural Network on Satellite Imagery 22

3 Methods 23

3.1 Data Description . 23

3.1.1 Poverty Data . 23

3.1.2 Daytime Satellite Imagery . 25

3.1.3 Nighttime Lights Image . 26

3.2 Methods . 27

3.2.1 Multistep Learning Approach (Baseline) . 27

3.2.2 Naive Approach . 28

3.2.3 Semantic Segmentation Approach . 29

4 Experiments and Evaluation 31

4.1 Experimental Setup . 31

4.2 Experiments and Results . 32

4.2.1 Multistep Learning . 32

4.2.2 Naive . 36

ii

iii

4.2.3 Semantic Segmentation . 41

4.2.4 Additional Model using Nighttime Lights Data . 46

4.2.5 Testing on Higher Level of Administrative Unit . 48

4.2.6 Testing on Out-of-country Data . 48

4.3 Evaluation of Results . 49

5 Conclusion 52

5.1 Discussion and Future Work . 53

6 References 55

Chapter 1

Introduction

1.1 Background

Poverty is one of the fundamental global issues that needs serious attention from governments, especially

in developing countries. The world is committed to ending poverty by 2030 as stated in one of the 17

Global Goals in The Sustainable Development Goals (SDGs) [1]. Poverty can be defined in many ways

referring to its various dimensions such as social, economics, and politics. However, poverty is often

defined in its socioeconomic context. It is described as the inability of individuals or households to meet

their basic needs including food, clothing, and shelter to ensure a decent life in a society. Typically,

poverty is measured to determine whether they are considered to be poor or not. The policy makers

rely on that measurement, either at regional or household level, to direct their efforts in places that

need aids the most. Moreover, they need the measurement to monitor and evaluate the effectiveness

of the programs designed to improve human livelihoods. A standard measurement is also required to

make comparisons between different time periods and regions. Most countries use household income or

consumption as a basis for determining the well-being of the poor [2]. A value called poverty line is set

and employed as a fixed threshold where those who fall below this value are considered as being poor,

and those above it are not [3]. Unfortunately, obtaining a timely and reliable measurement is difficult

and expensive as it requires the collection of detailed data directly from the households.

Given the difficulty of traditional data collection, in the past several years, the novel sources of data

which can potentially be harnessed to estimate poverty have been explored such as data from social

media, mobile phone, or satellites. The recent development of machine learning-based techniques has

enabled novel data-intensive approaches to the measurement of poverty [4]. Previous studies have shown

that search-engine and social media data can be used to forecast the value of economic indicators in

various sectors [5], [6]. Another approach using mobile phone metadata demonstrated that mobile phone

history could be used to predict the socioeconomic characteristics of an individual accurately, as well as

to reconstruct the distribution of wealth and poverty of an entire nation [7].

1

2

1.2 Poverty Estimation from Satellite Imagery

Satellite images for domain-specific analysis such as imagery, geophysics, demographics, climate, and

weather are publicly available [8]. It raises opportunities to use these data when there is a lack of

resources and infrastructure to produce reliable data. As producing such data is expensive and time-

consuming, a number of studies have been conducted to examine the potential use of publicly available

satellite data to augment or replace the existing data. The initial work of exploring satellite data for

measuring socioeconomic parameters is initiated with a research on night lights data. The data are

obtained by measuring the intensity of lights captured passively by satellite and introduced in the fields

of Economics as a supplement to the national survey data. The studies show that the brightness of visible

lights from satellite views is strongly related to both population density and economic performance of a

whole country or region. Furthermore, the luminosity contains useful information that can be utilized to

measure Gross domestic product (GDP) per capita at the national and subnational levels [9], [10]. The

night lights data are then used extensively in other researches to estimate the economic development

and growth [11]–[13], to investigate the economic implications of urban geometry [14], and to assess the

relative quality of GDP per capita [15]. The results of these studies tell us the extent in which satellite

data can give insights on economic development in regions across the world.

Meanwhile, daytime satellite imagery emerged as a new source of information on economic activity

[16]–[21]. Daytime imagery is taken at a much higher resolution than nighttime imagery. It contains

visible features such as building areas, roads, cars, crops, and roof types that make it possible to identify

the well-being of a region. Jean et al. introduced a novel deep learning approach to extract the landscape

features from daytime satellite imagery that are indicative of poverty. In this approach, a Convolutional

Neural Network (CNN) algorithm is applied first to learn the relationship between daytime and nighttime

satellite images. Then, a ridge regression model uses the extracted image features and survey data to

predict the average household consumption of enumeration areas. The resulted model predicts reasonably

well the spatial distribution of economic welfare across the five countries it is tested in [16]. While this

innovative method improves the performance of the model using the night lights data alone, it is not

necessarily optimal for predicting poverty. It can explain an average of 46 percent of the variation of

household consumption. Due to the scarcity of labeled survey data, this research applies a multistep

learning technique and uses the nighttime lights intensity as an intermediate explanatory variable for

estimating the average household consumption and asset wealth. In contrast to the nighttime lights

intensity, there is much less information about whether the landscape features in the satellite imagery

are also informative enough for estimating poverty. So far, there has been little discussion about the

direct application of CNN model to the daytime satellite imagery for this task.

3

Figure 1.1: Example of daytime satellite image (left) and nighttime lights image (right)

1.3 Research Goal

The goal of this thesis is to design and examine the CNN models to directly predict poverty from

daytime satellite imagery. Moreover, we intend to compare the performance of our models with a model

utilizing nighttime lights image. The image data required as the input model are publicly available

from Google Static Maps API and National Geophysical Data Center - NOAA. We use labeled training

poverty data from Indonesia socioeconomic survey data. Indonesia is a developing country with varied

geographic, demographic, and socioeconomic characteristics. No previous study has investigated the

poverty prediction using satellite imagery data from this country. We replicate the multistep learning

approach introduced by Jean et al. using the data from this country. Then, we compare the results with

our proposed methods. In the end, this study will provide insights on how to leverage new datasets and

machine learning for estimating poverty across Indonesia. The result of poverty measurement with big

data could also be used to complement the national survey data and bring new opportunities to capture

other socioeconomic conditions. Moreover, to examine the generalization of the fitted model, we test the

models using data from two other countries, namely Thailand and Sri Lanka. We want to see whether

the models that are trained using data and satellite image features from one country could be used to

estimate the well-being of regions in other countries.

1.4 Research Questions

In this thesis, we address the following research questions:

1. How good is the performance of the model if we estimate the poverty of a region only from the

satellite imagery?

We build CNN models using the satellite imagery and poverty data from Indonesia and evaluate

how well the models can predict poverty directly from daytime satellite images. We propose two

approaches to build the models: naive and semantic segmentation approaches. The multistep

learning approach by Jean et al. is used as a baseline in our research.

2. How well does the model perform in comparison to both the model using nighttime lights image

alone and the model using a combination of daytime and nighttime lights satellite images?

4

We build two other models that utilize nighttime lights satellite images. First, we build a regression

model using the night lights intensity as the only predictor. Second, we include that variable as

one of the predictors in the semantic segmentation approach. Then, we evaluate and compare the

performance of models with the models in RQ 1.

3. Which landscape features are most correlated with the measure of poverty?

In the semantic segmentation approach used in RQ 1, the landscape features are extracted first from

the satellite images and then used as predictors for estimating poverty. We analyze and evaluate

those features such as vegetation, ground, road, building, water, and other landscape structures to

see which features are highly predictive for poverty.

4. How does the level of region for training data affect the result of the model implemented in a higher

level of the administrative unit? How is the generalizability of the model to predict poverty in other

countries?

In this experimental study, we use the ground truth data in the municipality level. We also

examine if the model fitted using those data can predict well the poverty in a higher level of the

administrative unit, namely province. In addition, the models are tested using the satellite imagery

of Thailand and Sri Lanka. Since the training and testing countries have different units of poverty,

before the testing process, we standardize the ground truth poverty data. We assess whether the

performance in the testing set increases or decreases significantly compared to the test results in

RQ 1.

Different approaches and types of image are used in this research. We investigate whether our proposed

approaches (naive and semantic segmentation) will improve the existing approach (multistep learning)

and if the daytime satellite imagery is more relevant to the poverty estimation rather than the nighttime

lights data. We evaluate the results of each experiment to find the best solution for the described

problem.

The remaining part of this thesis proceeds as follows: Chapter 2 provides literature reviews describing

the standard poverty measurement, the theoretical background of a CNN model, and the studies that

are relevant to this research. Chapter 3 aims to explain the data and methods mentioned above in detail.

In this chapter, we also describe what we compare and how we conduct experiments to address each

research question. Finally, Chapter 4 comprises the discussion and conclusion of this research.

Chapter 2

Literature Review

In this chapter, we discuss the literature review of this study. First, we present the standard approach

for measuring poverty and then followed by the theoretical background of the machine learning models

that are used in the proposed methods discussed in the next chapter. Subsequently, we present some

related works that are relevant to this research. This information gives more insights on the poverty

prediction and the Convolutional Neural Network algorithm used in the experiments.

2.1 Poverty Measurement

A poverty line is calculated in order to determine the well-being of households. Those whose expenditure

(or income) falls below the line can be categorized as poor. There are three methods to construct that

measurement: the cost of basic needs, food energy intake, and subjective evaluations [2]. The cost of

basic needs is the most used approach. It first estimates the cost of acquiring enough food for adequate

nutrition (usually 2,100 calories per person per day) and then adds the cost of other essential needs

such as clothing and housing. When the price information is unavailable for the first approach, the food

energy intake method can be applied. This method plots expenditure (or income) per capita against food

consumption (in calories per person per day) to determine the expenditure (or income) level at which

a household obtains enough food. The last method, subjective evaluations, is based on asking people

about minimum income level that is needed just to make ends meet.

Practically, the construction of this poverty line is the most challenging step in the measurement of

poverty. Using the first method, poverty is seen as an economic inability to meet basic needs, including

food and nonfood, which are measured by expenditure. Once the consumptions are calculated, we need

to determine whether that amount of expenditure can put the household in poverty category or not.

Here, the poverty line acts as the decisive measure. It defines the level of expenditure required by an

individual to fulfill his basic food and nonfood needs in order to escape poverty. As the cost of living

across the world varies, the World Bank set the international poverty line $1.90 per person per day as

a global threshold. Those who have the average spending per capita per day below the threshold are

defined as poor [2], [22]. Using the basic needs approach, the poverty line (ZBN) can be formulated as

ZBN = ZF + ZNF (2.1)

5

6

The food poverty line (ZF) is the total value of expenditures from basic food commodities that are

measured based on the cost of basic needs concept. The cost to meet basic needs in each region will

undoubtedly varies because it is influenced by the market price and the number of commodities consumed.

The poverty line of each region will determine the number of the poor’s population and also represent

the level of welfare of the region. The formula to compute the food poverty line of a region d (ZdF) can

be written as follows

ZdF =

n∑
c=1

P rdQ
d
i =

n∑
c=1

V dc (2.2)

where c is the index of food commodity, P dc is the average price of food commodity c in region d, Qdc

is the average quantity of food commodity c consumed in region d, and V dc is the expenditure value of

food commodity c in region d. Meanwhile, the nonfood poverty line (ZNF) is the sum of the minimum

needs of selected nonfood commodities including housing, clothing, education, and health. The selection

of nonfood commodities, goods and services, is tailored to the consumption patterns of the residents.

ZrNF =

n∑
c=1

rdcV
d
c (2.3)

where c is the index of nonfood commodity, rdc is the ratio of commodity expenditure c for region d, and

V dc is the expenditure value of food commodity c in region d. The average price of commodity and the

consumed quantity of those commodities are obtained from the socioeconomic survey, while the ratio of

commodity expenditure are obtained from the basic needs commodities survey.

2.2 Machine Learning Methods

Nowadays, data mining is extensively used in diverse areas. Data mining is not a technology push. The

rapid growth of data is one of the reasons why data mining is needed in this era of big data. Data mining

is used to discover patterns and relationships in the datasets to solve problems through data analysis.

There are different approaches to mine those properties of datasets. Machine learning is one of them

[23]. Basically, machine learning is a computer algorithm that learns the data without having to be

programmed explicitly. Simply put, given a model, or structure, that are defined by some parameters,

the algorithm will optimize those parameters using the training data. Then, we can use that model to

predict new data [24].

2.2.1 Classification and Regression

Machine learning algorithms are classified into categories according to their purposes such as supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement learning. However, the first

two categories are the most common ones. In supervised learning, the data used to train the algorithm

are already labeled with correct values. This process requires prior knowledge of what the output values

for our samples should be. The algorithm will learn the function that approximates the relationship

between input (X) and output (Y) observable in the data. Unsupervised learning, on the other hand,

only has the input data (X) and no corresponding output variables. The algorithm attempts to find

7

patterns within a dataset based on the natural structure such as similarity or dissimilarity between data

points.

Supervised learning problems can be further grouped into regression and classification tasks. A

classification problem is when the output variable is a category, such as Yes/No, True/False, or multi-

label cases. The model will estimate the probability of a given input data (X) belonging to each output

class (Y). Logistic regression is a well-known technique for classification task. The logistic function can

be defined as follows:

f(X) =
1

1 + e−θX
(2.4)

The function above is also called continuous log-sigmoid function. It takes any input in the range

of negative to positive infinity and maps it to output in the range of 0.0 to 1.0. The value can be

interpreted as the likelihood of a given example belonging to each class. The predicted probability then

can be converted into a class label by selecting the class that has the highest probability P (Y |X).

In contrast, a regression problem is when we want to map the input to a continuous output like weight,

value, or price. The model will estimate the mapping function that defines the relationship between the

independent variables X = [X1, ..., Xp]
T and the dependent variable Y . Regression, in general, is about

learning model f

Y = f(X) + ε (2.5)

where ε is some noise/error which describes everything that cannot be captured by the model. Specifically,

we view ε as a random variable that is independent of X, normally distributed and has mean zero

ε ∼ N (0, σ2
ε).

Linear regression (Ordinary Least Squares), which is a straightforward approach to regression, has a

linear (or affine) combination of the input variables X as its model f . Mathematically, the relationship

can be written as

Y ≈ β0 + β1X1 + β2X2 + ...+ βpXp + ε (2.6)

where the coefficients β0, β1, ..., βp are known as the parameters in the model. Even though the linear

regression is relatively simple, it is still surprisingly useful on its own. Furthermore, it constitutes an

important building block in more advanced algorithms such as deep learning or Convolutional Neural

Network (CNN) that will be explained in the next section. The task of regression is to estimate the value

of parameters β0, β1, ..., βp from training datasets D = {(xi, yi)}ni=1, so we can use the model to make a

prediction ŷ of some (not yet seen) output y for some test input x. The goal of the algorithm is to find

the model that fit the data well. There are a number of strategies to learn the unknown parameters β

such that the resulted regression line is as close as possible to all training data points. However, the most

common approach involves minimizing the least squares criterion. Let ŷi = β̂0 + β̂1x1 + ...+ β̂pxp be the

prediction of Y based on the value of X. Then ei = yi − ŷi represents the ith residual - the difference

between the true value and the predicted value of the ith observed data point by the linear model. The

residual sum of squares (RSS) can be defined as

RSS = e21 + e22 + ...+ e2n (2.7)

8

RSS =

n∑
i=1

yi − β̂0 − p∑
j=1

β̂jxij

2

. (2.8)

The least squares approach will choose β̂0, β̂1, ..., β̂p that minimize the RSS.

Even though the linear regression model may seem fairly rigid and non flexible, it is not necessarily

so. We can extend the model with nonlinear transformations, for instance, X,X2, ..., Xp as inputs, and

thus obtain a linear model which is a polynomial in X (nonlinear). When a model is too simple, it

might be inflexible in learning from the dataset and will produce poor predictions. At the same time, a

complex model may not perform well in testing datasets due to overfitting. We need to select the right

model in between simple and complex model.

To improve the linear model in terms of prediction accuracy and model interpretability, different

methods are proposed to find a better model. James et al. classifies three major model selection

techniques: subset selection, dimension reduction, and shrinkage [25]. Subset Selection builds a model

using least squares on the reduced set of variables that are most predictive to the response variable.

Meanwhile, the Dimension Reduction will transform the predictors and then fit a least squares model

using the transformed variables. Instead of combining or reducing the input variables, as an alternative,

we can fit the model using a technique that constrains or regularizes the coefficient parameters relative

to the least squares estimates, or equivalently, that shrinks the estimates β̂ towards zero. This shrinkage

(also known as regularization) has the effect of reducing variance, and it helps to handle the overfitting

problem. The idea is that the model with small parameter values should be preferred if it fits the

data almost as well as a model with larger parameter values [26]. The two best-known regularization

techniques are ridge regression and lasso.

Ridge Regression

Ridge regression (also known as Tikhonov regularization, `2 regularization, or weight decay) implements

minimization technique in a similar way as the least squares approach. While in the least squares we find

the coefficient by minimizing the RSS, the ridge regression coefficient parameters (β̂R) are the values

that minimize

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j , (2.9)

where λ is a tuning parameter, or also called hyperparameter. The minimization Equation 2.9 consists

of two terms. As the least squares, ridge regression tries to find coefficient parameters that fit the data

well by making RSS small. The second criteria or also called shrinkage penalty, λ
∑p
j=1 β̂

2
j , is small

when β̂0, β̂1, ..., β̂p are close to zero, and so it has the effect of shrinking the parameters of β̂j towards

zero. The regularization parameter λ is required to control the relative impact of these two terms on

the regression coefficient parameters. For λ = 0 this regularization method will result the same as the

original least squares, whereas if we set λ → ∞, the impact of the shrinkage penalty grows, and it will

force all parameters β̂j to approach zero. Selecting a good value for λ is critical, and it depends on each

regression problem. It can either be determined by manual tuning or in a more systematic fashion by

using cross-validation.

9

Lasso

As previously mentioned, ridge regression will include all the predictors in the final model. The shrinkage

penalty λ
∑p
j=1 β̂

2
j will shrink the regression coefficient to zero, but it will not be exactly equal to zero. It

improves the prediction accuracy, but it does not help to make the model more interpretable. It can create

a challenge to understand the model since the number of predictor variables is quite large. Tibshirani

introduced the lasso (Least Absolute Shrinkage and Selection Operator) technique, or equivalently L1

regularization, as a solution to the ridge regression problem [27]. Lasso is able to achieve both the

accuracy and model interpretability by forcing the coefficients of the less important features to zero,

which eventually will results in a simpler model that does not include those coefficients. The lasso

coefficients (β̂L) minimize

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj | (2.10)

As can be seen, the lasso and ridge regression have similar minimization formulas. The key difference

is that the lasso uses the absolute value of the coefficient as a penalty term to the function which is

called `1 penalty. The `1 penalty has the effect of forcing some of the coefficients to be set to zero when

the tuning parameter λ is sufficiently large. Therefore, much like the subset selection method, the lasso

performs feature selection. This technique is a great alternative when we are dealing with a large set

of features since it will only include a part of those features that are relevant to describe the response

variable. In addition to making the model easier to interpret, it enables the algorithm to work faster,

and ultimately also decreases overfitting. Moreover, as in ridge regression, selecting a good value of λ

for the lasso is also critical.

2.2.2 Convolutional Neural Network (CNN)

In the field of machine learning, artificial neural network is a model that inspired by biological neural

networks in the brain. It has two main components that follow the idea of how the brain works. The

first is a neuron (or node) that is like a biological neuron, they are stimulated by inputs. These neurons

will pass information they receive to other neurons, often with transformations. The second component

is the signal. The artificial neurons will be trained to pass forward the useful signals to achieve the larger

goals of the brain [28].

The behaviour of a neural network is described by its architecture. The neural network architecture

is shaped by the number of neurons, the number of layers, and the types of connection between layers.

The most well-known neural network is the feed-forward multilayer neural network, also often called deep

feed-forward network or multilayer perceptrons (MLPs). This topology has an input layer, one or many

hidden layers, and a single output layer. Each layer can have a different number of neurons, and the

neurons in each layer are fully connected to all neurons in the adjacent layer. The paths connecting the

neurons contain adaptive weights that can be tuned by the learning algorithm in order to improve the

model performance [29].

10

Figure 2.1: Multilayer Neural Network Topology

The input layer consists of the neurons that only receive the data and pass it on to the next layer. The

number of neurons in the input layer is equal to the number of features in the dataset. The nodes in the

hidden layers apply transformations to the inputs from previous layer before passing them on. As the

network is trained, those nodes that are found to be more predictive if the outcomes are weighted more

heavily. The output layer consists of a number of nodes depending on the type of model we are building.

Neural network can be used for both regression and classification models. Hence, the final output may

be a real-valued output (regression) or a set of probabilities (classification). In a classification model,

there will be one node for each classification label, while in a regression model there will be only a single

node that produces a value [30].

As any other machine learning models, a deep feed-forward network defines a mapping function

ŷ = f(x, θ) and learns the value of the parameters θ (or denoted by β in the previous section) that

results in the best function estimation of y. The models are called feed-forward because information

flows through the function being evaluated from x, through the intermediate computations used to

define f , and finally to the output ŷ. The capacity of a neural network is represented by its size. When

we increase the size of the input data and the number of layers in the network, the computational power

of the model will also improve. The combination of new software, hardware, parallel algorithms, and a

lot of training data enables the deep learning to be more powerful and makes a significant contribution

to the field of machine learning. Deep learning has excelled in many applications, including computer

vision, speech recognition, text generation, and language translation [26].

Gradient Descent

Machine learning algorithms train their models by solving optimization problems. Gradient descent is

an optimization algorithm used to find the parameters (θ) of a function (f) that minimizes a cost (error)

function. As previously explained, we expect the predicted value ŷ is close to the actual value of y in

the observed data. For example, in regression setting, we can use mean squared error (MSE) as the

measurement of the cost function (J(θ)).

11

J(θ) = MSE =
1

n

n∑
i=1

(yi − f̂(xi; θ))
2 (2.11)

Gradient descent is best applied when the parameters cannot be computed analytically using simple

linear algebra. A model performs optimization on the training data to find the lowest error function,

and we can check the performance of the model on the validation data.

In gradient descent, we imagine the function of the parameters (or called as weights) as a landscape.

The hills represent locations (parameter or weight values) that give a lot of prediction error (cost) and

valleys represent locations with less error (cost). Figure 2.2 below illustrates the cost function with

only one parameter (weight), while Figure 2.3 depicts the function with two parameters. The algorithm

basically does what we are doing by hand: change the weight value bit by bit, until we hopefully arrive

at a minimum cost. We select one point on that landscape to place our initial weight (orange point

in Figure 2.2) randomly or based on domain knowledge. The goal of the gradient descent is to move

that weight downhill to areas of lower error as quickly as possible [28]. Generally, it is easier to get a

better result when applying gradient descent on a convex function rather than on a non-convex function

which has one local minimum and one global minimum. It is because once the process falls into a local

minimum, it will be not easy to climb out and find the global minimum. If the function is convex, the

local minimum is the global one.

Figure 2.2: Weight (parameter) changes toward global minimum

Figure 2.3: The gradient descent to find the deepest valley in the cost function with two parameters (θ)

The process will repeatedly tweak that weight value, measure the cost, and select a new weight value

12

that has a lower cost until local or global minimum of the cost function has been reached (convergence).

To determine the new weight value in each iteration, gradient descent will compute the slope or gradient

∇ (the change in error caused by a change in the weight) so that we know the direction (sign +/-) to

move the weight value in order to get a lower cost in the next iteration. It does so by taking a derivative

of the cost function J(θ) with respect to the parameters.

∇t =
∂J(θ)

∂θj
(2.12)

where t is the iteration, and j is the j-th parameter. Once we have the direction, the new weight value

can then be updated. A learning rate parameter (η) must be specified to control how much the weight

value can change on each update.

wt+1 = wt − η∇t (2.13)

The process is repeated until the cost value is converged, or ∇t is zero or close enough to zero. As

mentioned previously, the purpose of gradient descent is to find the optimal weight as quickly as possible.

However, if we set the step size or the learning rate too big, we might not be able to find the minimum

because we will overshoot it. On the other hand, if it is too small, the process will take too many

iterations to get to the minimum, and we can get stuck in a local minimum.

Backpropagation Learning

The multilayer neural network is typically composed of multiple layers, each layer contains multiple

neurons (Ii, Hj , Oi) and biases (Bi), and they are connected by the weights (wi). Bias refers to the

constant nodes in a neural network as can be seen in Figure 2.4. Furthermore, activation functions

(HAi, OAi) are important features of the model. They decide whether a neuron should be activated or

not. In other words, they will determine whether the information received by the neuron is relevant for

the given information or it should be ignored [28], [31], [32].

Figure 2.4: Simple architecture of a neural network

A multilayer neural network model learns the data using backpropagation process. In the model above,

the data flows forward from the input layer to the output layer, and we compare the predicted results

with the actual results and calculate the total error by the cost function. Then, the model will use the

13

total error to modify the weights and biases in the network, working from the output neurons through

the hidden neurons to the input neurons or going backward. Once the entire data has gone through this

process, the final weights and biases can be used for prediction.

We can consider backpropagation as the implementation of gradient descent in multilayer neural

network model. Backpropagation is basically an algorithm to compute the gradient that is needed to

find the optimal parameters used in the multilayer neural network. The gradient can be calculated by

taking its derivative with respect to the parameters (weights and the biases).

The pseudocode of the backpropagation algorithm for updating the weights in the network is presented

in Algorithm 1. It starts with initializing the neural network and starts looping through the input

examples (until it encounters a stopping condition or a maximum number of epochs or iteration). In

the neural network terminology, one epoch or iteration means one forward pass and one backward pass

of all the training examples. First, we compute the output of the current network for the current input

example. We compare this output to the true value of output associated with the input and compute the

error (example err). Then, it will iteratively compute the weight updates leading to the output layer

until the process is terminated [28].

Algorithm 1: Backpropagation algorithm for updating weights

Input : network, training-records, learning-rate

Output: network

1 network ← initialize weights (randomly)

2 start loop

3 foreach example in training-records do

/* compute the output for this input example */

4 network-output ← neural-network-output(network, example)

/* compute the error and the ∆ for neurons in the output layer */

5 example-err ← target-output - network-output

/* update the weights leading to the output layer */

6 wj,i ← wj,i + η × aj × Erri × g′(input sumi)

7 foreach subsequent-layer in network do

/* compute the error at each node */

8 ∆j ← g′(input sumj)
∑
i wj,i∆i

/* update the weights leading into the layer */

9 wk,j ← wk,j + η × ak ×∆j

10 end

11 end

12 end loop when network has converged

13 return network

14

Notation Description

i Index of neuron
j Index of neuron in previous layer connecting to neuron i
wj,i Weight on the incoming connection from previous layer neuron j to neuron i
Wi Vector of weights leading into neuron i
b Bias
g Activation function
g′ Derivative of the activation function
ai Activation value of neuron i (output of neuron i); = g(input sumi)
Ai Vector of activation values for the inputs into neuron i
input sumi Weighted sum of inputs to neuron i; = WiAi + b
input sumj Weighted sum of inputs for neuron j in previous layer (used in backpropagation)
η Learning rate
Erri Difference between the network output and the actual output value for the training example (cost)
∆j Error term for connected neuron j in previous layer
∆i Error term for neuron i; = Erri × g′(input sumi)

Table 2.1: Neural Network notation

Activation Functions

The activation function is a nonlinear transformation over the input of a neuron to determine if that

neuron should be activated or not. It is really important because it gives the neural network its nonlinear

capability. Without the function, the model would simply be a linear regression which has limited power,

and it would not be able to learn complicated, high dimensional, nonlinear, and big dataset such as

images, videos, audio, speech, etc. It basically maps the resulting values in between 0 to 1 or -1 to 1

depending upon the function. This transformed output is then sent as an input to the next layer of

neurons. The following are most commonly used activation functions [33].

Sigmoid Function It is usually implemented for classification setting in the output layer since it pro-

duces output between 0 and 1. Therefore, we can easily interpret the output as probabilities.

Figure 2.5: Sigmoid Function

Hyperbolic Tangent Function This function is similar to logistic sigmoid but having stronger gradi-

ents. The range of the function is from -1 to 1. The negative inputs will be mapped strongly negative,

and the zero inputs will be mapped near zero in the tanh graph. The output of the activation units will

be around zero.

15

Figure 2.6: Hyperbolic Tangent Function

Rectified Linear Unit (ReLU) The ReLU is the most used activation function, especially in convo-

lutional neural network. Since it has a lot of the properties of linear functions, it tends to work well on

most of the problems. Moreover, it was found to greatly accelerate the convergence of gradient descent

compared to the sigmoid and tangent functions. It has a range from 0 to ∞. The problem with this

function is that the derivative of this function is not defined when z = 0.

Figure 2.7: Rectified Linear Unit (ReLU)

Leaky Rectified Linear Unit This function overcomes the zero gradient issue from ReLU. Once a

ReLU ends up in this state, it is unlikely to recover, and gradient descent learning will not alter the

weights. Leaky ReLU with a small positive gradient for negative inputs when z < 0 are one attempt to

address this problem and give a chance to recover.

Figure 2.8: Leaky Rectified Linear Unit

16

Convolutional Network

Convolutional network, also known as convolutional neural network (CNN), is introduced to handle large

features in image and speech recognition tasks [34]. Those kind of tasks cannot be done only with

an ordinary fully connected feed-forward network. The ordinary neural network will understand the

mapping between inputs and outputs but not the patterns in the inputs. In image or speech data,

the features (or pixels) that are spatially or temporally nearby are highly correlated. Convolutional

network forces the extraction of those correlations (local features) to recognize the inputs. The CNN

has been tremendously successful in practical applications, especially in machine vision like self-driving

cars, robotics, drones, and treatments for the visually impaired. Similar to the ordinary neural network

described previously, the CNN is made up of neurons that have learnable weights and biases. It is a

variant of neural network specialized for processing data that has a grid-like topology like image and

audio that have a specific set of repeating patterns that are related spatially. In this section, we will

focus only on the image data.

Figure 2.9: High-level architecture of CNN

Figure 2.9 depicts three major parts of the CNN: input layer, feature-extraction (learning) layers, and

output layers [28]. In image recognition task, the input layer receives three-dimensional input in the

form of the size of the image (width and height) and the depth representing the color channels (generally

three for RGB color channels). The feature-extraction layers are composed of a repeating sequence

of convolutional and pooling layers with the Rectified Linear Unit (ReLU) as the activation function.

These layers extract a number of features in the images and progressively construct higher-order features.

Finally, the last components of CNN, output layers, have fully connected layers to take the higher-order

features and produce class probabilities for the classification task, or a real value for the regression.

Convolutional Layer

Convolutional layer is the core building block of CNN architectures. The goal of this layer is to learn

higher-order features in the data via a mathematical operation called convolution. Simply put, it trans-

forms the input data by using a square patch (kernel or filter) that is locally connected to the neurons

in previous layer. This layer will compute a dot product between the region of the neurons in the input

layer and the values in the kernel (weights).

In general form, convolution is defined as a mathematical operation on two functions of a real-valued

argument in order to merge them. In CNN terminology, the first argument refers to the input, the

17

second argument is the kernel, and the output of the convolutional is called feature map or activation

map. Figure 2.10 shows the example of the operation in which the values in the input are the pixel values

of the image [35].

Figure 2.10: Example of convolutional operation

The figure above illustrates how the kernel is slid across the input data to produce the convoluted

features. At each step, the dot product between the kernel and the input data values within its bound

is calculated, resulting in a single entry in the feature map.

The kernel is a smaller square matrix than the image itself whose function is to find patterns in the

image pixels. It is applied for every depth of the input volume, so the kernel has the same depth as the

input. For illustration, the input volume is of size 5× 5× 3 corresponding to an image with width = 5,

height = 5, and depth = 3. Then, we define the kernel that is smaller spatially but the depth must be the

same as the input, for example 3× 3× 3. The values in the kernel represent the weights in conventional

neural network. As a result of the convolutional operation, the two-dimensional layer feature map (also

called activation map) is created in which each unit is a set of units located in a small neighborhood in

the input space. This area in the input image is called local receptive fields, and it refers to the part of

the image that is visible to one kernel (filter) at a time. Hence, the feature map will contain elementary

visual features such as oriented edges, end-points, corner, etc. With the use of multiple kernels, we can

create multiple activation maps. Besides, we can also perform convolution with bias. Bias is the value

that we can add to each element in the activation map to add additional influence from neighboring

pixels.

Pooling Layer

Typically, hidden layers of CNN consist of three stages. First, the layer performs several convolutions to

produce a set of linear activations. Second, each linear activation is run through a nonlinear activation

function, such as the ReLU function. In the last stage, the pooling function is used to modify the output

of the layer further. This function is applied in the pooling layer to progressively reduce the spatial

18

size of the data representation over the network and help control overfitting. It usually uses the max()

operation to resize the input data. This operation is called max pooling. For example, if we have a 2 ×
2 filter size, the max() operation will take the largest of four numbers in the filter area.

Fully Connected Layer

The output of a convolution layer is a set of activation maps, each of which can be seen as a sheet of

neurons. An element or neuron in the activation map is corresponding to a small region in the image that

represents high-level features in the data. The fully connected layer will learn the non-linear combinations

of these features and result in a feature vector. This vector holds information that is vital and relevant

to the input. When the network gets trained, this feature vector is then further used for classification,

regression, or input for other networks.

Regularization

One aspect that must be considered in designing a machine learning model is avoiding overfitting. The

overfitting problem happens when a model fits the training data too well. The model learns the noise in

the training data resulting in a complex model that has low performance on unseen data. To avoid the

problem, regularization is applied to learning algorithms. In linear regression, it makes slight modifica-

tions to the learning algorithm such that the model generalizes better. Similarly, in CNN, by regularizing,

we want the weight of spurious features to be reduced, and only the good features that are generated.

The following are the regularization methods that can be applied in deep learning to prevent overfitting

[36].

Dropout Dropout is the most frequently used regularization technique in neural network. At every

iteration during training phase, it randomly selects some neurons and removes them along with their

connections. It helps to reduce interdependent learning amongst the neurons and prevents the neurons

from learning too much. Each iteration has a different set of neurons, and this results in a different set

of outputs so that we can view dropout as a form of ensemble learning. Ensemble method combines a

number of weaker models into one predictive model. It usually performs better than a single model as

they capture more randomness.

Batch Normalization Batch normalization means normalizing the input values of each layer during

the training phase in such a way that they have a mean output activation of zero and standard deviation

of one. It reduces overfitting because it has a slight regularization effect. Similar to dropout, it adds

some noise to activations in each hidden layer. It is better to use batch normalization together with

dropout [37].

Stochastic Depth Using stochastic depth, during the training phase, we randomly drop layers instead

of neurons like in dropout technique. It aims to shrink the depth of a network during training and bypass

their transformations through skip connections. It has a regularizing effect as dropout because the layers

cannot easily co-adapt. Moreover, using this technique is similar to training an ensemble of networks

with different depths. It reduces training time substantially and improves the test error significantly [38].

19

Transfer Learning

Several things determine the quality of the CNN model. One of these is the amount of data used to

fit the model. More training dataset will produce a model with better performance. However, it is

relatively rare to obtain large-scale datasets. Sufficient resources are also needed to develop the model

from scratch. A strategy to cope with the issues is to use a previously trained CNN model that had good

results and then train it further to perform another task. The idea is to take the knowledge learned in

the pre-trained model and apply it to our task. This is referred to as transfer learning. It is implemented

as a shortcut to speed up the training process and improve the performance of our deep learning model

[28].

A pre-trained model is a model created by someone else to solve a similar problem. Our training

dataset should share visual features with the base dataset used in the pre-trained model. The are lots

of existing models that are already trained for various tasks such as object recognition, face recognition,

semantic segmentation, ImageNet Large Scale Visual Recognition Challenge (ILSVRC) classification,

etc. [39]. Two use cases of the pre-trained model are as follows:

Using an existing convolutional model as a feature extractor We take a pre-trained convolutional

model, remove the last fully-connected layer, then treat the rest of the convolutional network as a fixed

feature extractor for the smaller new dataset.

Fine-tuning existing model The second use case is to not only replace and retrain the model on

top of the convolutional network on the new dataset but to also fine-tune the weights of the pre-trained

network by continuing the backpropagation.

The diagram below helps to decide on how to proceed on using the pre-trained model in our case.

Figure 2.11: The use of pre-trained CNN model

2.2.3 Evaluation Metrics

To assess the model performance, various metrics are used to compare the predicted values against the

actual values. Regression and classification problems will have different performance measures. R2 is

20

mostly used to measure the result of regression task.

R Squared (R2) is used for explanatory purposes and explains how well our independent variables

explain the variability in our dependent variable.

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

= 1−
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi − ȳi)2

(2.14)

The numerator is MSE (Mean Square Error) and the denominator is the variance in Y values. The

higher the MSE, the smaller the R2 and the poorer is the model.

For a classification task, we can create the confusion matrix as illustrated in the figure below and

calculate the True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)

cases in our matrix.

Figure 2.12: The confusion matrix

Accuracy is calculated as the portion of true labeled cases to total number of cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.15)

Precision is the number of correct prediction divided by the number of total predictions. In a multi-

class classification, it can be calculated separately for each class. For each row (class x), we take the

number on the diagonal, and divide it by the sum of all the values in the column.

Precisionx =
TPx

TPx + FPx
(2.16)

Recall is the number of correct predictions divided by the total number of cases present in that class.

For each column (class x), it is the value on the diagonal, divided by the sum of the values in the row.

Recallx =
TPx

TPx + FNx
(2.17)

F1 measurement is the harmonic mean of precision and recall, and acts as a combined measure of the

precision and recall.

F1x = 2× Precisionx ×Recallx
Precisionx +Recallx

(2.18)

21

2.3 Related Works

2.3.1 Applications of Satellite Data for Measuring Economic Indicators

In order to circumvent the lack of reliable data to measure economic development, works have been

done to study the possible use of new data source such as satellite images to supplement the existing

data. Most of the previous works using satellite images have used night lights as a proxy for economic

development. For estimating GDP at the national level, the sum of light (SOL) intensity was extracted

from the radiance-calibrated nighttime images at a spatial resolution of 1 km2 and regressed against the

official GDP value. Using this regression model, R2 greater than 0.9 was obtained for 36 administrative

units in China, India, Mexico, and the US used in the experiment [40]. In poverty measurement, the

stable nighttime lights image was used along with the LandScan population grid to develop the grid of

Poverty Index (PI) [41]. In another study, Average Light Index (ALI) was computed for a region on the

basis of the total number of lit pixels. Regression analysis between PI and ALI for the 31 provinces in

China gave an R2 of 0.85 [42]. This research proved yet again the significance of the nighttime images as

a proxy variable for analyzing poverty. In general, those research using nighttime lights image developed

regression models to learn the relationship between economic activity and lights data. In the studies

mentioned above, since these estimates can be made as spatially 1 km2 grids, the greatest advantage of

all these estimates is that they can be aggregated to any desirable mapping unit.

Daytime satellite images have also been an alternative source for measuring economic activity. With

the development of machine learning techniques, machine learning has proven useful for a very large

number of applications in geosciences and remote sensing. Nonparametric regression and classification

can be used to tackle problems in that field of study using satellite imagery [43]. Same as nighttime

lights image, in most works, the econometric analysis was not directly conducted from the satellite

imagery. They used linear regression to estimate the economic parameters from variables extracted from

the images. A recent work introduced a new approach to poverty prediction using satellite images. A

multistep learning approach was proposed to overcome the scarcity of poverty data in African countries.

It uses convolutional neural network (CNN) to learn the relationship between million of daytime satellite

images and nighttime images. With the assumption that the features useful for predicting nighttime lights

intensity are also useful for predicting poverty levels, in the next step, it builds linear ridge regression

to predict poverty measures from the night lights feature vector output by the CNN. As the results,

this model can explain 55 to 75% of the variation in average household asset wealth and 37 to 55% in

average household consumption in the countries they examined [16]. The use of only publicly available

data for this prediction makes this technique become a baseline for similar researches. This method has

been applied in other countries [18], examined for other human development indicators [17], and has

been explored using different sources of satellite images [19]. However, when it is implemented in other

countries, the effectiveness of this approach depends on the tuning of algorithms used to derive features

from satellite imagery. The ability of the model to generalize the different geographical contexts or other

human development measures also becomes an issue and it needs additional testing before claims about

global generalizability can be made. These studies show that there is compelling potential for adapting

machine learning to describe poverty as a step forward in tackling the problem. Moreover, we can use the

much more detailed economic data available to explore that potential and refine the ways that satellite

data are used.

22

2.3.2 Implementation of Convolutional Neural Network on Satellite Imagery

The application of machine learning based methods continues to grow and expand in the geosciences

and remote sensing area. They are increasingly used for interpreting the remote sensing images. Prior

studies explored those images for solving problems in the field of environment, urban development, and

demography. The machine learning techniques such as artificial neural network, support vector machines,

decision trees, etc. become powerful approaches to handle this type of big data. They have notable effects

both on the predictive analytics and the classification purpose [43].

Due to the high variability inherent in satellite images, most of the traditional supervised learning

models are not suitable for handling satellite datasets. DeepSat was introduced as a classification frame-

work for satellite imagery. It combines the deep belief network and neural network to extract features

from images and use the normalized feature vectors to classify the images into barren land, none, grass-

lands, and trees. It produces an accuracy of 97.95% and 93.9% on the SAT-4 and SAT-6 datasets [44].

SatCNN was then presented as an agile CNN architecture to perform the same task. It uses deeper

convolutional layers and smaller kernels to build an effective architecture. It can be trained relatively

fast, achieving overall accuracies of 99.65% and 99.54%, which is the state-of-the-art for SAT datasets

[45]. The CNN using a two-stage framework (ImageNet pre-trained model and trainable CNN) was also

studied. The performance of the method using pre-trained network to classify aerial images into a set

of diverse land-use classes can surpass the result of the UCML benchmark, improving the accuracy from

83.1% up to 92.4% [46].

In addition to the task above, deriving value and insights from this kind of data is also a big challenge.

More knowledge can be extracted by analyzing each pixel in the images. Instead of labeling the images,

an approach was proposed for per-pixel classification in satellite images using SegNet (encoder-decoder

architectures). This approach introduced a multi-kernel convolutional layer that performs convolutions

with several filter sizes to aggregate multi-scale predictions. Basically, it is equivalent to averaging an

ensemble of multiple models sharing weights. It improves the accuracy of the models in the ISPRS

2D Vaihingen semantic labeling challenge by 1%. This technique was then combined with data fusion

with a dual-stream architecture to refine the prediction. The combination improves the previous result

with the multi-kernel technique from 89.4% to 89.8% [47]. Another approach used a pre-trained CNN

model with labeled pixels created using simple linear iterative clustering (SLIC). The model was then

fine-tuned for the task of per-pixel classification. The model implemented single CNN and multiple

CNNs on the multispectral orthography images. The combination of four CNNs achieves the best

classification accuracy of 94.49% [48]. Recent work adapted deep convolutional neural network for

semantic segmentation (pixel-wise classification) on multispectral imagery RIT-18. Almost the same as

the previous work, it creates synthetic images as the ground truth data by manual labeling the pixels using

software DIRSIG. Moreover, the experiments also use several pre-trained models. The results showed

that the synthetic imagery could be used to assist the training of end-to-end semantic segmentation

model when there is not enough annotated image data [49].

Chapter 3

Methods

In this research, we use several types of data. This chapter attempts to provide the general information

about the data, how we obtain and pre-process the data. Moreover, we present the overview of approaches

that will be used to answer the research questions defined in Chapter 1.

3.1 Data Description

3.1.1 Poverty Data

We conduct the experiments using the data from Indonesia. The poverty dataset is publicly available,

and it can be downloaded from Statistics Indonesia website [50]. It contains the poverty line measurement

of municipalities in Indonesia, and it will be used as the ground truth for the models (Ytrue) to estimate

the poverty of a region. The unit value of a poverty line is the country’s currency per person per month.

We use the latest poverty data from 2017. Besides, to test the model with a higher level of ad-

ministrative unit, we use the poverty data on the provincial level. We also evaluate the out-of-country

generalization of our model using the poverty data from Sri Lanka and Thailand. Since both countries

use different currencies than the training dataset, we first converted the poverty value using the Purchas-

ing Power Parity (PPP) metric. It can be defined as the number of units of the local currency required

to buy the same amounts of goods and services in the domestic market as the US Dollar would buy in

the United States. As mentioned in the previous chapter, the calculation of poverty line depends on

the price of goods and services in the country. We use the PPP rate constructed by the World Bank

to compare the economic well being between countries instead of exchange rate [51]. The tables below

show the summary of poverty measurement in the training and testing datasets.

23

24

Training Testing

Number of municipalities 50 25

Poverty line (Rupiah/Person/Month)
Minimum 211,485 200,663
Mean 377,023 353,428
Maximum 849,496 620,712

Log poverty line
Minimum 12.26 12.21
Mean 12.81 12.74
Maximum 13.65 13.34

Table 3.1: The summary statistics of poverty data (municipality level)

Testing

Number of provinces 25

Poverty line (Rupiah/Person/Month)
Minimum 333,200
Mean 417,400
Maximum 587,500

Log poverty line
Minimum 12.72
Mean 12.93
Maximum 13.28

Table 3.2: The summary statistics of poverty data (provincial level)

Sri Lanka Thailand

Number of regions 25 25

Poverty line (Rs/Person/Month) (Baht/Person/Month)
Minimum 4,181 2,053
Mean 4,437 2,361
Maximum 4,820 2,910

Log poverty line*
Minimum 12.80 13.44
Mean 12.86 13.58
Maximum 12.94 13.79

*Converted to Indonesia currency value using the PPP conversion factor 2017
(Indonesia = 4190.49, Srilanka = 48.37, Thailand = 12.52) [52]
Source: National Statistical Office of Thailand, Department of Census and Statis-
tics Sri Lanka

Table 3.3: The summary statistics of poverty data (out-of-country)

25

3.1.2 Daytime Satellite Imagery

The primary input of our models is satellite images provided by Google Satellite Maps. Although these

images are regularly updated, we cannot predict when the maps will be updated. The update happens

about once a month, but it can take months to process, verify, and set up the data before it is publicly

accessible. We confirmed that the last update of Indonesia map is in 2018 based on the date stamp

marking on the map. Since we use the poverty data 2017, we assume there is no significant temporal

difference in the landscape features within a year.

Daytime satellite imagery is extracted from Google Static Maps API. By providing an API key, we

are able to generate the high-resolution images given the geolocation information and the zoom level.

The geolocation consists of latitude and longitude value indicating a location of a place in the real world.

Meanwhile, the zoom level of Google Maps ranges from 0 to 19 describing the map scale. Google Maps

is built on a 256 × 256 pixel tile system where zoom level 0 is a 256 × 256 pixel image of the whole

earth. A 256 × 256 tile for zoom level 1 enlarges a 128 × 128 pixel region from zoom level 0 [53].

To provide inputs for the API, we generated random samples of coordinate points in each municipality

in Indonesia. Figure 3.1 illustrates the geographic coordinate samples in a municipality, and the line in

the figure represents the border of the municipality.

Figure 3.1: The sample coordinates in a municipality area

As illustrated in the figure above, we generated 10 random points for each region. Each point acts as

the center of a cluster, and 25 satellite images were extracted from each cluster. Hence, each poverty

data point is represented by 250 images. We set the resolution of the images 400 × 400 same as the

size used by the reference study. We use the zoom level 16 (1 pixel = 2.387 meter). It means that each

image covers ∼1 km in width and height. In the end, we have 12,500 images for training dataset and

6,250 images each testing dataset.

26

3.1.3 Nighttime Lights Image

The nighttime lights images were recorded by the Defense Meteorological Satellite Program (DMSP) in

US Air Force Weather Agency. The image and data processing were performed by the NOAA National

Centers for Environmental Information (NCEI). The data are cloud-free composites made using all

the available archived DMSP-OLS (Operational Linescan System) smooth resolution data for calendar

years. The products are 30 arc second grids, spanning -180 to 180 degrees longitude and -65 to 75

degrees latitude. The Version 4 DMSP-OLS Nighttime Lights Time Series can be downloaded for free in

GeoTIFF format on NOAA website [54]. With this format, we can extract images based on the latitude

and longitude of a location in this world. Even though the new data are added annually, the latest

update is in 2013. We use this version of nighttime lights image. Because the year of data differs from

daytime images, we assume that the luminosity in the nighttime images does not significantly change

during those different time periods.

Figure 3.2: The DMSP-OLS Nighttime Lights

The downloaded nighttime lights image has resolution 16,801 × 43,201 for the whole world. One pixel

in the image covers 1 km2 in the real world. Therefore, each daytime image will correspond to a single

pixel from the nighttime image. The pixel values are integers ranging from 0 to 63 representing the level

of nighttime lights intensity in a 1 km2 area. Figure 3.3 illustrates the nighttime image corresponding to

one cluster in the daytime image dataset. Table 3.4 summarizes the mean value of night lights intensity

per municipality (10 clusters) in the training and testing dataset.

Figure 3.3: The nighttime image of one cluster. A pixel (square) corresponds to one daytime image.

27

Training Testing

Mean of Luminosity/Municipality
Minimum 0.6 0
Mean 16.624 10.556
Maximum 61.524 63

Table 3.4: The summary statistics of the night lights intensity per municipality

3.2 Methods

We experiment with and evaluate different combinations of dataset and approach to estimate poverty.

In this section, we introduce and discuss the methods to be applied. We use the study by Jean et al.

as our baseline method [16]. We then present alternative techniques which also use a CNN model to

address our research questions. The first approach is the baseline method to be used as a comparison

with other approaches. The last two describe our proposed methods for predicting poverty.

3.2.1 Multistep Learning Approach (Baseline)

The multistep learning method introduced by Jean et al. has been used as the baseline model for similar

works [16]. For our experiment, we also replicate this method using our dataset as a comparison for the

proposed approaches. The method involves three main steps. First, we employ a VGG-F CNN model

that has been pre-trained on ImageNet, a large image classification dataset with 1000 different categories.

Second, we fine-tune that model on a new task to estimate the nighttime lights intensity corresponding

to input daytime satellite imagery. We treat this step as a classification problem to predict the lights

intensity classes.

Firstly we created classes that are determined by observing the histogram of nighttime lights inten-

sities in our training set.

Figure 3.4: The distribution of lights intensity (nighttime lights image) in the training set

As can be seen from the density plot above, there is a mixture of three Gaussian distributions to the

frequencies of the nighttime lights intensity values. Hence, by considering the balance of classes, we

28

divided the interval 0-63 into three classes: a low class corresponding to near 0 nighttime lights intensity,

a medium class corresponding to 6-16 range, and a high class corresponding to 17-63.

Pixel Value Class
Number of Daytime Images
Training Testing

0 - 5 0 (low) 3,890 3,181
6 - 16 1 (medium) 4,420 1,829
17 - 63 2 (high) 4,190 1,240

Total 12,500 6,250

Table 3.5: The number of cases in each lights intensity class

Figure 3.5: The example of daytime satellite images that correspond to a low class (left), a medium class
(middle), and a high class (right)

Finally, a regression model with ridge regularization will be trained to learn the poverty rate of a

region from the image features extracted by the CNN model stored in its last convolutional layer. The

expectation is that the high-level features would probably capture more information relevant to poverty

than low-level features.

3.2.2 Naive Approach

For the second method, we implement a naive approach to estimate the poverty rate. It is a straightfor-

ward approach by using the satellite images as the input of the CNN model to learn a regression task. To

predict a continuous poverty value, we include a regression layer at the end of the network. As explained

previously in the Literature Review chapter, the middle layers of the CNN network are the core CNN

architecture, where most of the learning and computation take place same as the baseline approach. The

final layers define the size and type of output data. In this regression task, we only have one output that

represents the predicted poverty rate.

Although extensive research has been carried out on the use of CNN for this purpose, no single

study exists which implement this direct approach. This approach aims to assess to which extent the

simple regression convolutional network is able to predict poverty. Since we do not use a large training

dataset, in this naive approach, we utilize the existing model which have been previously trained on

datasets from other domains (transfer learning). Same as the baseline approach, we employ the model

pre-trained on the ImageNet dataset, then further fine-tune it on our image dataset. Prior studies used

the ImageNet pre-trained model to help increase the accuracy of the CNN model to classify the satellite

images [46], [55]. The pre-trained model acts as a starting point to perform feature extraction in our

29

complete network. We maintain the weights of the pre-trained model since they capture general features

like curves and edges that might be relevant to our problem. Then, we refine the weights by learning

dataset-specific features from our training images. Furthermore, we customize the last layer to output

the estimation of poverty.

Figure 3.6: The naive approach

3.2.3 Semantic Segmentation Approach

The second proposed approach identifies the features in the daytime satellite images by performing

semantic segmentation. This approach consists of two steps: performing semantic segmentation to

derive the landscape features from the training images and building a regression model to estimate the

poverty from the extracted features.

Figure 3.7: The semantic segmentation approach. (1) CNN model to perform semantic segmentation,
(2) regression model to estimate the poverty rate from the extracted image features.

The semantic segmentation is referred to as per-pixel classification. It predicts the label for every

pixel so that each pixel is labeled with the class of its enclosing object or region [56]. We categorize the

features in an image into six categories: vegetation, ground, road, buildings, water, and miscellaneous

structure. The classes are similar to those used in a study on classification and segmentation of satellite

orthoimagery. That study classifies the geographical features into five categories: vegetation, ground,

road, building, and water [48]. We include a new class, miscellaneous structure, to capture landscape

structures that cannot be categorized into five other classes such as clouds or noises that are captured

in the satellite imagery.

To begin the first step, same as the first approach we use a CNN model pre-trained on ImageNet

dataset. The weights of the pre-trained model are then adapted and refined to the segmentation task

using our training images. To create the training dataset, we took 20 daytime satellite images and

30

created the ground truth by manually labeling the pixels using the semantic segmentation editor [57].

We converted the ground truth images to be single channel images in which each pixel is labeled with

its class. We then performed image augmentation to increase our dataset size. Table 3.6 presents the

augmentation techniques used to generate the new images. For the testing dataset, we randomly took

10 daytime satellite images and created the ground truth of those images using the same tool.

Dataset Number of Images

Training

Original 20

Image augmentation:
(1) Horizontal flip
(2) Rotate 90◦, 180◦, and 270◦

(3) Add random noise
(4) Rescale the intensity
(5) Gamma correction
(6) Combination of (2) and (1)
(7) Combination of (2) and (4)
(8) Combination of (2) and (5)

320

Total 340

Testing 10

Table 3.6: The number of training and testing images for semantic segmentation task

The figure below illustrates how the area of an image is segmented manually into six labels. The first

row of Figure 3.8 is the training images, and the second row is the finished labeled pixels. The labeled

pixels in the images serve as the explanatory variables for estimating the poverty of a region.

Figure 3.8: The illustration of satellite imagery segmentation

Following the segmentation step, a regression model is applied to learn the features (classes) outputted

by the CNN model to estimate the poverty rate. We take the percentage of each feature in the images

representing a region as the predictors. To get the best performing regression model, we apply different

regularization techniques and evaluate the results.

Chapter 4

Experiments and Evaluation

The main objective of our experiments is to investigate whether we can use the satellite imagery to mea-

sure the poverty of a region. We will evaluate how well the approaches described in the previous chapter

perform to meet this objective. For each approach, we built the model and measured its performance in

determining which approach provides the best prediction.

4.1 Experimental Setup

We built CNN models with different configurations on a machine with 24 × Intel Xeon(R) CPU X5650

@ 2.67 GHz, Memory 94.4 GiB, and GPU NVidia GeForce GTX 1080/PCIe/SSE2. The system runs on

64-bit version of Ubuntu 16.04.4 LTS.

We employed Caffe library to build the CNN models. The pre-trained models such as VGG F,

AlexNet, and ResNet used in the experiments were obtained from Caffe Model Zoo [58]. The tables

below provide the information on the training and testing setups of our experiment. We used the

training and testing datasets described in the previous chapter. We built the models using different

types of training dataset depending on what is needed by each approach. We also created another

regression model using the nighttime lights data. Furthermore, we performed generalization tests on the

province and out-of-country data.

Model Approach Training Dataset

1 Multistep Learning Daytime satellite images, nighttime lights image, and poverty data
2 Naive Daytime satellite images and poverty data
3 Semantic Segmentation Daytime satellite images and poverty data
4 Night lights model Nighttime lights image and poverty data

Table 4.1: The training setup

31

32

Model Testing Dataset Section

1 Daytime satellite images, nighttime lights image, and poverty data 4.2.1
2, 3 Daytime satellite images and poverty data 4.2.2 and 4.2.3
4 Nighttime lights image and poverty data 4.2.4
1, 2, 3 Daytime satellite images and poverty data (provincial level test) 4.2.5
1, 2, 3 Daytime satellite images and poverty data (out-of-country test) 4.2.6

Table 4.2: The testing setup

4.2 Experiments and Results

4.2.1 Multistep Learning

The first component of our baseline approach is the pre-trained CNN model. We utilized VGG F

convolutional network as illustrated in Figure 4.1. This model is a deep architecture introduced in 2013

and has been trained on ImageNet dataset to predict 1000 different classes with top-1 error 41.1% and

top-5 error 18.8% on the ILSVRC2012 validation data [59]. We fine-tuned this model on our training

dataset to predict the night lights intensity class of the daytime satellite image. The number of output

in the last layer of the pre-trained model was replaced from 1000 to 3 because we only use three classes

in our case study which are low, medium, and high.

Figure 4.1: 8-layer CNN model (VGG F)

As presented in Table 3.5, we have 12,500 training images and 6,250 testing images of size 400 × 400

(RGB bands). To prevent overfitting, we divided the training set into training and validation sets by a

ratio of 80% and 20% while maintaining the class balance to avoid bias in our results. Before feeding

them to the convolutional neural network, we transformed the input images by subtracting the mean

across every individual pixel in the data. Table 4.3 shows the configuration to build the CNN model.

CNN Configuration

Maximum iteration 1,000,000
Learning rate: base / final 1× 10−6/1.25× 10−7

Batch size: training / validation 32 / 8
Step size 50,000
Gamma 0.5
Momentum 0.9
Weight decay 0.0005

Table 4.3: The CNN model configuration

33

From the learning curve in Figure 4.2, it is apparent that the loss in both training and validation set starts

decreasing in the first few iterations, and it is more stable after 200,000 iterations. After performing

optimization until 1 million iterations, we decided to take the snapshot model at the 200,000th iteration

as our final model since there is no significant change in the loss after that iteration.

Figure 4.2: The learning plot

To evaluate the performance of the model, we used the constructed CNN model to predict the night

lights intensity of the testing images. The confusion matrix is given in Table 4.4, and the evaluation

metrics of our classifier are presented in Table 4.5. As shown in the matrix, there is still a confusion to

distinguish the low and medium class. There is a number of low class images that are misclassified as

the medium class, and vice versa. The same case also happens between medium and high classes, but

the misclassification rate is smaller than the previous one. The model achieves an accuracy of 0.75 on

the training set and 0.74 on the testing set. Furthermore, the precision and recall of the model do not

differ much from the accuracy.

Predicted
Low Medium High

True
Low 2,751 406 24
Medium 611 1,010 208
High 66 325 849

Table 4.4: The confusion matrix of the model over the test dataset

Accuracy
Precision Recall F1 score

Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

Training 0.75 0.75 0.76 0.76 0.75 0.75 0.75 0.75 0.75 0.75
Testing 0.74 0.74 0.73 0.73 0.74 0.70 0.74 0.74 0.71 0.74

Table 4.5: The performance evaluation on the dataset

The CNN model was then used to extract image features from the satellite images that are useful

for the poverty estimation task. It extracts 4096-dimensional feature vector in layer conv7 from each

34

input satellite image. Since we have 250 images representing a municipality, we then averaged those 250

extracted feature vectors to obtain one feature vector for each region, which was then used as input in

a ridge regression model for predicting poverty. Furthermore, we applied Principal Component Analysis

(PCA) to reduce the feature dimension. We can reduce the computational task and avoid the overfitting

problem by using only the relevant features. We experimented with both full (d = 4096) and reduced

features (d = 100). The result showed that the less complex model can retain the data variation since

both inputs gave almost the same correlation value between input and output. The model used nested

cross-validation to choose the best ridge regularization parameter (λ). The choice of regularization

parameter for each fold is determined in an inner cross-validation loop to preserve the integrity of the

hold-out test data. The reported R2 is the average of R2 across the cross-validation folds.

Algorithm 2: The regression model and configuration

1 d = 100 (dimension)

2 λlow = 1 (log of smallest λ)

3 λhigh = 5 (log of largest λ)

4 n = 10 (number of regularization parameters to try between λlow and λhigh

5 foreach fold (k = 10) do

6 split the data into training and testing sets

7 foreach inner fold (inner k = 10) do

8 split the training set into training and validation sets

9 get the best regularization parameter (λbest) using training and validation sets

10 end

11 build a regression model using λbest and training set

12 evaluate the model on testing set (compute R2
k)

13 end

14 R2 ← average of R2
k

15 return R2

The results may differ slightly with each run due to randomly splitting data as described in Algorithm

2. Therefore, we ran the model 100 times, and the prediction plot presented in Figure 4.4 is the better

average result obtained over 100 runs. Using the multistep learning, the image features can explain up

to 45 percent of the variation of poverty. This number is similar to the result of applying the same

technique in four African countries ranging from 37 to 55 percent [16]. Accordingly, we can say that we

have successfully replicated the multistep learning approach for our dataset, and we can use it as the

baseline for comparison.

35

Figure 4.3: The distribution of R2 over
100 runs Figure 4.4: The prediction plot

In addition, we investigated whether a better classifier in the first step will produce a better predictor

in the second step of this approach. During the construction of the CNN model, we built several models

with various levels of performance provided in Table 4.6. For each model, we observed its R2 distribution

over 100 trials, and Welch two sample t-test was used to compare the difference between two models [60].

Models Accuracy Precision Recall F1 score

Comp1 0.72 0.73 0.72 0.72

Comp2 0.70 0.70 0.71 0.70

Comp3 0.55 0.60 0.55 0.56

Table 4.6: The evaluation metrics of compared models

36

Figure 4.5: The comparison of R2 distributions of CNN model with different accuracy values

The statistical tests revealed that the result of the regression model appears to be unaffected by the

performance of the CNN model. There are several findings that can be pointed out from the table below.

First, with confidence level 95%, our CNN model that has a slightly better performance than Comp2 does

not produce a bigger R2 value than Comp2. Second, Comp1 that has accuracy 0.72 cannot outperform

the predictive power of features extracted by Comp3 with accuracy 0.55. As is the case with Comp2 and

Comp1. Although the difference in accuracy is very small between two classifiers, Comp2 predicts the

poverty better than Comp1. Therefore, it seems that the performance on the classification task can be a

rough indicator of the quality of the learned features, but it does not mean that the better performed

CNN model will always produce a more accurate prediction of poverty.

Alternative hypothesis: true difference in means is greater than 0
> Final Model Comp1 Comp2 Comp3

Final Model - 0.0006461 0.9996 6.744e-07
Comp1 0.9994 - 1 0.1299
Comp2 0.000395 4.236e-10 - 1.641e-15
Comp3 1 0.8701 1 -

Table 4.7: The p-value of t-test between two models (α = 0.05)

4.2.2 Naive

In this first proposed approach, we used the daytime satellite image features directly for estimating

poverty. We examined if the low-level image features are more relevant and meaningful to the poverty

than the high-level features derived in the multistep learning approach. We used a CNN model as the

only step to predict the output. The CNN will recognize the low image features such as pixel intensity,

pixel gradient orientation, and color from the satellite images and then directly use those raw features

37

to predict the poverty. It is different from the baseline approach which utilizes the CNN to learn and

combine that kind of features to produce high-level representations of the image and then uses them as

the input of the regression model.

Initially, we experimented with AlexNet, VGG16, and ResNet25 architectures. However, for the last

two architectures, the model cannot be built because the process was too big to fit in the GPU memory.

Because of that, we used shallower models of VGG and ResNet which are VGG F and ResNet10. In this

approach, we also utilized pre-trained CNN models to improve the performance of the resulted models.

Figure 4.6: AlexNet architecture

Figure 4.7: ResNet10 architecture

Figure 4.8: VGG F architecture

The figures above illustrate the architecture of AlexNet, ResNet10, and VGG F. The depth of AlexNet

and VGG F is quite similar. Unlike AlexNet, VGG F does not include any fully connected layer in the

model. On the other hand, ResNet10 includes several layers that sum two convolution layers element-

wise. It also uses batch normalization instead of Local Response Normalization (LRN) as applied in

38

AlexNet and VGG F. We customized the final layer of all CNN models by changing the number of

output to be 1. There is only one type of loss layer for regression task in Caffe library which is Euclidean

Loss (E). Therefore, we used it to compute the loss of the regression task in the learning process. The

loss can be written as

E =
1

2N

N∑
n=1

‖ŷn − yn‖2 =
1

2
MSE (4.1)

where MSE is the mean of the squares of the loss (ŷn− yn)2. The model hyperparameters are provided

in Table 4.8. Prior to training the models, we performed log transformation on the poverty value to make

the loss pattern more visible. The optimization was performed until 200,000 iterations. By considering

the available resource, we can only use the maximum batch size of 32 for the training set and 10 for the

validation set. As shown in Figure 4.9, the three models have the same loss curve even though the exact

loss value for each model is different. The ResNet10 has the smallest loss among the three models. We

can see from the learning plots that there is a clear trend of decreasing in the training and validation

loss, and they remain constant after approximately 10,000 iterations. In all CNN models, we took the

snapshot model at the 50,000th iteration to predict poverty.

CNN Configuration

Maximum iteration 200,000
Learning rate 1× 10−6

Batch size: training / validation 32 / 10
Step size 50,000
Gamma 0.5
Momentum 0.9
Weight decay 0.0005

Table 4.8: The CNN regression model configuration

39

Figure 4.9: The learning plot of naive approach

We evaluated the CNN models on the testing dataset. We have 250 images for each region, and each

of them will have the same true poverty value. The satellite images from 25 municipalities were then

fed into the model directly to obtain the estimation of poverty. The results obtained from AlexNet,

ResNet10, and VGG F are presented on the left side of the figures below. Comparing the three results,

it can be seen that AlexNet predicts almost the same value for all the input images. VGG F has slightly

better predictions since it produces more diverse poverty values for different regions. In contrast, the

variance of ResNet10 outputs is the highest among the three models. To compute the performance of

the model, we applied majority voting and averaging strategy. Using majority voting strategy, we took

the majority vote from 250 predictions for each region. Using averaging strategy, we calculated the

mean value of the multi-predictions as the estimated poverty of each region. We visualized the results

in the scatter plot on the right side of Figure 4.10, 4.11, and 4.12. The R2 for AlexNet, ResNet10, and

VGG F using majority voting are 0.11, 0.13, and 0.11, respectively. By applying averaging strategy, the

results are slightly better than majority voting. The resulted R2 are 0.13, 0.20, and 0.14 for AlexNet,

ResNet10, and VGG F, respectively. By far, AlexNet has the poorest performance. Moreover, the

difference between AlexNet and VGG F is very small, and both predict the poverty in almost uniform

values for all testing regions. ResNet10 performs better than the others, although it cannot outperform

the result of the previous approach. From these results, it can be seen that the depth of the network is

crucial in the CNN architectures. With the same setting of hyperparameters, ResNet10 having deeper

layers than the plain networks such as AlexNet and VGG F results in better performance.

40

Figure 4.10: AlexNet prediction result

Figure 4.11: ResNet10 prediction result

Figure 4.12: VGG F prediction result

Overall, the regression models in the naive approach do not produce better performance than the

baseline approach. The high-level features extracted from the multistep learning are more relevant than

the low-level features of satellite images to predict poverty of a region.

41

4.2.3 Semantic Segmentation

In the second proposed approach, firstly we implemented SegNet model for semantic pixel-wise segmen-

tation [61]. The model consists of an encoder network, a corresponding decoder network followed by a

pixel-wise classification layer. The encoder comprises convolutional layers with batch normalization and

a ReLU non-linearity followed by non-overlapping max-pooling. The decoder maps the low-resolution

feature maps resulted by the encoder to full input resolution feature maps. It uses pooling indices com-

puted in the max-pooling step of the corresponding encoder to perform non-linear upsampling. The

sparse upsampled maps are then convolved with trainable filters to produce dense feature maps.

Figure 4.13: The encoder-decoder architecture of SegNet [61]

We experimented using SegNet and SegNet-Basic architectures. The encoder in SegNet is topologi-

cally identical to the convolutional layers in VGG16. SegNet uses the first 13 convolution layers in the

VGG16 and removes the fully connected layers of VGG16. Each encoder layer in the architecture has a

corresponding decoder layer, and hence the decoder network also has 13 layers. The final decoder out-

put is fed to a multi-class Softmax classifier to produce class probabilities for each pixel independently.

Meanwhile, SegNet-Basic is smaller version of SegNet that has four convolution layers in both encoder

and decoder layers. In [61], it is shown that a reasonably good performance up to 82 percent of global

accuracy is achieved by SegNet-Basic. We investigated whether using the basic version is enough to do

the task rather than using network with lots of layers that require more computational resources. In

both SegNet and SegNet-Basic, batch normalization is used after each convolutional layer in the encoder

and decoder networks. ReLu is only used in the encoder, and it is not present in the decoder network.

We trained the models using 340 daytime satellite images (320 augmented images and 20 original

images) presented in Table 3.6 to segment the 400 × 400 pixels in the images into six classes: road,

building, vegetation, water, ground, and miscellaneous structure. For the SegNet network, we initialized

the weights of the encoder using the VGG16 model pre-trained on ImageNet dataset. Table 4.10 below

provides the configuration of the CNN models. Furthermore, since there is a large variation of the

number of pixels for each class in the training images, we used median frequency balancing to calculate

the weight assigned to each class in the Softmax layer. By doing so, we weighted the loss differently

based on the true label of the pixel.

42

Class Road Building Vegetation Water Ground Misc.
Frequency 1,665,082 11,929,291 25,721,102 2,791,434 7,606,140 4,686,951
Weight 3.691437 0.515248 0.238969 2.201931 0.808103 1.311417

Table 4.9: The weight assigned to each class that is calculated using median frequency balancing

CNN Configuration

Maximum iteration 40,000
Learning rate: : SegNet / SegNet-Basic 0.001 / 0.1
Batch size: SegNet / SegNet-Basic 2 / 4
Step size 100,000
Gamma 1
Momentum 0.9
Weight decay 0.0005

Table 4.10: The SegNet and SegNet-Basic model configuration

Due to the limited capability of the GPU, we only used the batch size of 2 for SegNet and 4 for SegNet-

Basic. It is a relatively small number for training a CNN model. However, the previous study also

experimented with a mini batch size of 5 to classify the pixels in the road scenes (11 classes) and a

batch size of 4 for indoor scenes (37 classes), and even the batch size of as low as 2 or 3 still trains well

[61]. Figure 4.14 plots the cross-entropy loss in each training iteration for SegNet-Basic and SegNet.

As shown in the plot, SegNet learns better than the SegNet-Basic. The loss produced by SegNet both

in training and validation decreases, and it converges after 30,000 iterations. Meanwhile, SegNet-Basic

has higher loss than SegNet. It is expected since SegNet has more layers to help extract and recognize

more features in our images which improves its performance. We selected the SegNet and SegNet-Basic

snapshots after 40,000 iterations of optimization as our models.

Figure 4.14: The learning plot of semantic segmentation approach

We evaluated the performance of the pixel-wise classifiers on the testing dataset that consists of

10 images with resolution 400 × 400 (1,600,000 pixels). The confusion matrices for both models are

presented in Tables 4.11 and 4.12. It is not surprising that SegNet performs better that SegNet-Basic

in this experiment since we already know from the learning plots that SegNet-Basic has a higher cross-

43

entropy loss than SegNet. By observing the confusion matrix in Table 4.11, it can be seen that SegNet-

Basic cannot distinguish the image feature well enough. All the predicted features are classified mostly as

vegetation. The applied class balancing cannot remedy the lack of modeling power of the SegNet-Basic.

It still biases towards the majority class which is vegetation. Furthermore, the model is confused to

classify road, building, and ground. For SegNet, we can see that this model performs well to identify the

image features. Most of the pixels in the testing images are classified correctly. However, if we inspect

the matrix in Table 4.12 closer, the model fails to identify the miscellaneous image feature such as the

clouds or shadows, and it is mostly recognized as vegetation. It is quite interesting since most of the

miscellaneous features in the training images have the contrasting RGB color (white) than other features.

It could be because clouds or shadows appear above the other feature pixels so that the color representing

the miscellaneous feature is not very clear and contains the characteristics from other features.

Predicted

Road Building Vegetation Water Ground Misc.

True

Road 0 0 40,463 0 87 0
Building 0 0 429,232 0 3,565 0
Vegetation 0 0 849,236 0 0 0
Water 0 0 91,653 0 0 0
Ground 0 0 158,511 0 7,544 0
Misc. 0 0 19,709 0 0 0

Table 4.11: The confusion matrix of SegNet-Basic (testing set)

Predicted

Road Building Vegetation Water Ground Misc.

True

Road 25,436 5,898 4,895 504 3,817 0
Building 34,488 317,935 44,900 54 35,420 0
Vegetation 12,621 40,900 738,316 22,409 34,990 0
Water 2,130 16 11,011 67,286 11,210 0
Ground 10,427 20,249 26,808 1,395 107,176 0
Misc. 3,854 449 15,406 0 0 0

Table 4.12: The confusion matrix of SegNet (testing set)

For each model, we computed the global accuracy, precision, recall, and F1 score based on the

confusion matrices. In Table 4.13, we reported the numerical results of our analysis on both the training

and testing datasets. By examining the performance metrics on both datasets, we can see if the models

are overfitted or not. As shown in the table, the models perform similarly in both datasets, and it

indicates that our models generalize well to our testing dataset. Moreover, we can also see that SegNet

outperforms SegNet-Basic in all the performance metrics. Since the number of cases in each class

varies, precision and recall computed from the micro-average method is more relevant in these results.

Overall, the results suggest that the use of more convolution layers and pre-trained model leads to better

performance. Besides, we also presented the comparison of the input and the predicted image using

SegNet in Figure 4.15.

44

Precision Recall F1 score
Model Accuracy

Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

Training
SegNet-Basic 0.48 0.48 0.16 0.29 0.48 0.17 0.48 0.48 0.12 0.31
SegNet 0.81 0.81 0.58 0.78 0.81 0.75 0.81 0.81 0.64 0.78

Testing
SegNet-Basic 0.54 0.54 0.20 0.35 0.54 0.17 0.54 0.54 0.13 0.38
SegNet 0.79 0.79 0.55 0.80 0.79 0.60 0.79 0.79 0.56 0.79

Table 4.13: The performance evaluation of the models on the dataset

Figure 4.15: The comparison of the input, ground truth, and predicted image using SegNet model (from
testing dataset)

In the second step of this approach, we built a regression model to predict the poverty value of a

region based on the image features identified by the SegNet model in the first step. For each region,

we aggregated the number of pixels of each landscape feature from 250 images representing that region

and calculated the percentage of each feature. We used the values as our predictor variables: % of road

area, % of building area, % of vegetation area, % of water-filled area, and % of ground area. We did not

include the last feature because there is no pixel predicted as miscellaneous landscape structure from our

dataset.

We experimented with a simple linear regression (OLS) as well as regularized regression models:

Lasso and Ridge regression. To make it comparable to the baseline approach, we used the same method

to calculate the R2 (Algorithm 2). Table 4.14 shows the model setting to obtain the results presented in

Figure 4.16.

45

Parameters OLS Ridge Lasso

Log of smallest λ - 0 0.00001
Log of largest λ - 3 1
Number of regularization parameters λ to try (n) - 5 100
Number of fold (k) 10 10 10
Number of inner fold (inner k) 10 10 10

Table 4.14: The setting of the regression models for Algorithm 2

The three regression models generate the predictions of poverty. The R2 values for OLS, Ridge, and

Lasso are 0.42, 0.47, and 0.48, respectively. In other words, a regression model with five image features

as the predictors can explain 42 to 48 percent of the variation of poverty in a region. By performing

regularization, the model can achieve better performance. It is apparent that our independent variables

are highly correlated. To put it another way, the data suffer from multicollinearity. An increase or

decrease in the percentage of an image feature will affect the value of other independent variables. Hence,

OLS will give a less accurate prediction of poverty. By adding a degree of bias to the estimation, Ridge

regression overcomes this problem and improves the prediction of the OLS by five percent. Furthermore,

the results of Ridge and Lasso are not much different in this experiment.

Figure 4.16: The prediction results of OLS, Ridge, and Lasso regression

46

A comparison of the three approaches reveals that the semantic segmentation approach gives the

better performance than the other two approaches. This approach improves the performance of the

multistep learning approach by 3 percent using Lasso regularization.

4.2.4 Additional Model using Nighttime Lights Data

In the baseline approach, we used the night lights data as a proxy to predict poverty. Our proposed

methods use only the daytime image features as the input. Therefore, we also built additional models to

test whether the model using the nighttime images alone will perform well to predict poverty compared

to the model using the daytime images. We experimented with two regression models, namely a model

with the night lights intensity as the only predictor and a model that also uses the semantic image

features other than the night lights data.

Figure 4.17: The scatter plot of the night lights intensity VS log poverty line

First, we built a simple regression model (OLS) using the mean of luminosity in Table 3.4 as the

predictor. Using the same algorithm as previous models (Algorithm 2), we created the OLS model with

10 fold (k) and 10 inner folds (inner k). The best reported cross-validated R2 from the model is 0.44

as can be seen in Figure 4.18. This result is almost similar to the performance of the model from the

baseline approach which is 0.45. It even outperforms the result of the naive approach which is 0.20.

Figure 4.18: The prediction results of OLS with the nighttime lights intensity as the only predictor

47

Second, we combined the mean of luminosity and the extracted image features in the semantic

segmentation approach as predictors for the regression model. In the end, we have six independent

variables to estimate the poverty of a region. We implemented the same configuration in the model as

described in Table 4.14. The results show that the nighttime lights and daytime image features can

explain up to 56 percent of the variance in log poverty lines. Furthermore, by adding the new feature,

the performance of the model increases in OLS, Ridge, and Lasso regression by 0.05, 0.03, and 0.08,

respectively. Of all the models that have been built, this model performs the best in predicting the

poverty line measurement of a region.

Figure 4.19: The prediction results of regression models that include the nighttime lights intensity

The significance test of the OLS coefficient was performed to see the relevance of the features and

the poverty. In the table below, t is the t-statistics, and P > |t| is the 2-tailed p-value used in testing the

null hypothesis that the coefficient is zero. A p-value of less than 0.05 is considered to be statistically

significant. As reported in the table, the coefficient for all predictors is significantly different from zero

because its p-value is smaller than 0.05. It means that there is an association between the six features

and the poverty line measurement of a region. Furthermore, we presented the R2 decomposition in Table

4.16. The relative importance is an averaging of the sequential sum-of-squares obtained from all possible

orderings of the independent variables. The metric in Table 4.16 shows that the mean of luminosity

contributes the most to the R2 by 38.71 percent. Meanwhile, the other five predictors share a total of

61.29 percent to the predictive power of the model to predict poverty.

48

Features Coefficient Est. t P < |t|
(Intercept) 12.8446 51.625 0.000
% road 0.00567 9.873 0.000
% building -0.00572 31.684 0.000
% vegetation -0.00239 188.221 0.000
% water 0.00577 38.632 0.000
% ground -0.00332 50.423 0.000
Mean of luminosity 0.01072 2.672 0.009

Table 4.15: The hypothesis testing of least squares coefficient estimates

Features Relative Importance
% road 0.0995
% building 0.1682
% vegetation 0.1614
% water 0.1212
% ground 0.0626
Mean of luminosity 0.3871

Table 4.16: Share of variance explained (R2) by each feature

4.2.5 Testing on Higher Level of Administrative Unit

In order to assess the generalization of the models, we tested the models on the provincial level dataset

described in Table 3.2. The testing dataset covers the administrative area one level higher than the

training dataset. As described earlier, we used the municipality level data to train and build the models.

We evaluated whether the models can make poverty predictions for different administrative level. We ran

the tests using the models from the multistep learning, naive, and semantic segmentation approaches.

The results obtained from each approach are summarized in the table below. The image features from

municipality level imagery can explain 60, 31, and 75 percent of the poverty line variation in the provincial

level using multistep learning, naive, and semantic segmentation approaches, respectively. Overall, the

R2s increase compared to the test results using municipality level data. These results indicate that we

can use the models to predict poverty in higher level administrative data.

Approach R2

Multistep Learning 0.60
Naive 0.31
Semantic Segmentation 0.75

Table 4.17: The test on the provincial level data

4.2.6 Testing on Out-of-country Data

We also evaluated the out-of-country generalization of the models. The landscape features of each

country in this world could be very different. We examined whether our models trained using the

landscape features from Indonesia can be used to estimate poverty in another country. We used the data

from Sri Lanka and Thailand provided in Table 3.3 as our testing datasets. Table 4.18 presents the test

49

results for each approach. As we can see from the table below that the overall out-of-country evaluation

gives us poor prediction results. Most of the resulted R2s in Table 4.18 are really small and decline

significantly from our initial testing. Using the baseline approach, multistep learning, the value of R2

has decreased significantly to 0.14 and 0.17 for the two testing countries. Using the naive approach,

there is almost no correlation between the Indonesia landscape features and poverty line of Sri Lanka

illustrated by the small value of R2 which is 0.08. However, the naive model gives us better prediction

when tested using Thailand data. On the contrary, the semantic segmentation model predicts poverty in

Sri Lanka better than in Thailand. We have tried to tune the hyperparameters of the regression model

for the multistep learning and semantic segmentation approaches, but the results are not much different

from the values presented in the table. Overall, these results suggest that the models built using the

three approaches are not robust to be used to predict poverty in other countries.

Approach
R2

Sri Lanka Thailand

Multistep Learning 0.14 0.17
Naive 0.08 0.46
Semantic Segmentation 0.41 0.04

Table 4.18: The test on the out-of-country data

4.3 Evaluation of Results

We conducted experiments to evaluate the capability of our baseline (multistep learning) and proposed

approaches (naive and semantic segmentation) to estimate the poverty of a region. The multistep learn-

ing model uses the extracted high-level image features from the CNN used to predict the night lights

intensity. Instead of using a two-step predictive model, the naive approach uses only one step by directly

predicting poverty from satellite imagery. Different from the two approaches, the semantic segmenta-

tion approach performs pixel-wise classification to extract five features related to the area type (road,

building, vegetation, water, ground) that are used as the predictors.

We used the experimental results to answer the research questions presented in the first chapter.

1. How good is the performance of the model if we estimate the poverty of a region only from the

satellite imagery?

The results presented in the previous section indicate that our semantic segmentation approach

gives the best performance compared to the multistep learning and naive approaches. The best

reported R2 achieved by the multistep learning, naive, and semantic segmentation are 0.45, 0.20,

and 0.48, respectively. Put differently, the models can explain the variation of log poverty line by

45 percent using the multistep learning approach, 20 percent using the naive approach, and 48

percent using the semantic segmentation approach.

The naive approach fails to make improvement to the baseline approach. Using the CNN model

to directly make predictions from daytime satellite images results in lower performance than the

multistep learning. The difference is quite large, which is 0.25. It indicates that high-level satellite

50

features contain more information relevant to poverty than low-level features. On the other hand,

the second proposed approach which is semantic segmentation outperforms the baseline approach

by 3 percent. Even though it is a relatively small improvement, there are several advantages to

this approach compared to the multistep learning. First, this approach needs a smaller number of

training images to build the CNN model. Both approaches employ two steps for estimating poverty

in which the CNN model built in the first step is used to derive the image features. In our exper-

iment, we used 12,500 training images for multistep learning. For the semantic segmentation, we

only used 340 training images that were created from the augmentation of 20 original ground truth

images. Second, the regression model of our proposed approach is much simpler than the baseline

approach. The multistep learning uses the extracted 100 features (reduced from 4096 features using

Principal Component Analysis) to build the regression model. Our proposed approach uses only

five semantic features to predict poverty. Therefore, in terms of interpretability, it is better than

the multistep learning. The interpretation of its linear model is possible since we know the meaning

of each feature. Besides, having much less features could mitigate the overfitting problem. Taken

together, our approach appears more capable to predict the variation of poverty than the baseline

approach.

A comparison of the three approaches reveals that the semantic features derived from satellite

imagery can explain the variation of poverty in a region better than the low-level and high-level

image features. This result confirms that it is possible to estimate poverty using only the daytime

satellite imagery with a performance that is not inferior to the multistep learning model which also

uses nighttime lights in addition to the satellite imagery.

2. How well does the model perform in comparison to both the model using nighttime lights image

alone and the model using a combination of daytime and nighttime lights satellite images?

The nighttime lights image is used only by the baseline approach as a proxy for predicting the

economic well-being. To evaluate the direct use of nighttime lights to estimate poverty, we extracted

the mean of luminosity of each region from the nighttime lights image, and then we built a simple

regression model using luminosity data as the only independent variable. The reported R2 achieved

by the model is 0.44. What is interesting about the result is that the model performs almost the

same as the baseline approach (0.45). This finding is unexpected and suggests that the nighttime

lights intensity contains the same predictive power as the daytime image features used in the

multistep learning approach. If we compare the two techniques in terms of their goal to predict

poverty, this could be a disadvantage to the multistep learning approach. As explained previously,

it requires more efforts to accomplish the task using the multistep learning approach, but its

performance is almost similar to a model that merely utilizes the luminosity data. Furthermore,

since we know that the nighttime lights variable is relevant to poverty estimation, we experimented

with another model that includes the mean of luminosity as one of the predictors other than the

landscape features from the semantic segmentation approach. We found that using nighttime lights

as the additional information beyond the five semantic features indeed improves the performance of

the model by 8 percent. Thus far, this is our best-performed model, and it can explain 56 percent

the variance of poverty.

3. Which landscape features are most correlated with the measure of poverty?

51

From the regression model in semantic segmentation approach, we found that the extracted seman-

tic features and luminosity are correlated to the poverty. We calculated the contribution percentage

of the correlated predictors to the value of R2. The result shows that the luminosity is the biggest

contributor. As the most important variable in the model, it contributes 38.71 percent to the

predictive power. The remaining 61.29 percent is shared by the other five landscape features. The

building, vegetation, and water variables each explain 12 to 16 percent variation of the poverty.

While road and ground variables contribute the smallest by 6 and 10 percent, respectively. These

results confirm that although landscape features explain a share of the variation, they are less

correlated to the measure of poverty than the luminosity variable.

4. How does the level of region for training data affect the result of the model implemented in a higher

level of the administrative unit? How is the generalizability of the model to predict poverty in other

countries?

We examined the generalization capability of the models to fit the higher-level administrative and

out-of-country data. The tests of models using provincial level data do not show any significant

decrease in the value of R2. It occurs in all approaches used to build those models. However,

poor generalization was identified when the models were used to predict poverty in other countries.

Since we only used two countries for testing, it is difficult to make a conclusion from the results.

Using the naive approach, the value of R2 is stable for Thailand but not for Sri Lanka data, while

using semantic segmentation approach, the opposite happens. From the experiments, we can say

for now that the models can be used in higher-level administrative data, but they are not robust

for out-of-country data.

Chapter 5

Conclusion

In the previous chapters, we have discussed and compared multistep learning, naive, and semantic

segmentation approaches to predict poverty of a region. We investigated how well the direct use of

daytime satellite imagery in the naive and semantic segmentation approaches compared to the use of

night lights as a proxy for poverty estimation in the multistep learning. Moreover, we assessed whether

the daytime satellite imagery is more relevant to poverty rather than the nighttime lights image.

We experimented with publicly available satellite imagery from Google Maps and NOAA. We ana-

lyzed the images using various convolution networks such as VGG F, AlexNet, Resnet10, and SegNet

architectures. We also implemented transfer learning strategy to build the models. We utilized the CNN

models that have been previously trained on ImageNet dataset to initialize the weights of our CNNs.

The fine-tuning of the pre-trained model was successful as it is able to improve the performance of our

models. This result supports the idea that the visual filters from general images such as ImageNet can

be used as a starting point for processing satellite images.

This study has found that in general, the semantic segmentation approach gives a better result than

the multistep learning approach. The landscape features such as road, building, vegetation, water, and

ground appear to be more predictive than the high-level image features extracted by the CNN model in

the multistep learning. Those landscape features explain collectively 48 percent of the variance in the

log poverty line. It surpasses the result of the multistep learning which is 45 percent. Furthermore, the

simplicity of the model using only five features also becomes an advantage of this approach. In contrast,

the naive model that directly perform prediction from satellite images cannot outperform the result of

multistep learning. The naive model can only explain the poverty line variation up to 20 percent. We also

performed an evaluation of model performance against night lights. The night lights model surprisingly

performs in the way that is almost similar to the multistep learning. The night lights variable alone can

explain poverty by 44 percent. The best model in our experiments that achieves 56 percent of R2 value

was obtained by combining the semantic segmentation approach and the night lights data.

Moreover, we calculated the relative importance of each feature in that model. The metric reveals

that the luminosity is more relevant to poverty estimation than the landscape features. It contributes

38.71 percent to the predictive power of the regression model, while the share of each landscape feature

ranges from 6 to 16 percent. It is expected that the luminosity is more important than other features

52

53

since adding it as a predictor increases the performance of model significantly. This finding is also clearly

supported by the resulted performance of the night lights model presented earlier.

5.1 Discussion and Future Work

The findings of this study raise several questions for further work:

• Will more data help to obtain a better prediction?

The size of the municipalities used as the training set varies with a range of 10.77 to 45,000 km2.

Taking randomly 10 clusters of 5 km by 5 km area (250 km2) for each region can be considered

as a small sample. Moreover, there is a temporal difference between the poverty data and satellite

images. It could affect the accuracy of the estimation. The cross-validated prediction of our best

model explains up to 56 percent the variation of log poverty lines. It performs fairly well considering

those spatial and temporal factors. However, those could be the weakness of this study. Further

studies are needed to assess the improvement of model performance with a larger sample. Even,

if the poverty data are available in lower level administrative units such as village or household,

further research might explore the potential of satellite imagery for small area poverty estimation.

The generalizability of the models is subject to certain limitation. We have shown that the models

of three approaches overall are not robust to predict poverty in other countries. This may be partly

due to the fact that the testing countries have different geographic characteristics than the training

country, and the landscape features in training country cannot represent other countries. Further-

more, using only two countries might be not enough for testing the out-of-country generalization of

the models. Considerably more testing countries will be needed to understand the extent in which

the models can generalize to different landscape features.

• Will a deeper CNN or different feature extractions improve the result of the naive approach?

Due to the limited GPU capability, we only used shallow convolution networks in our experiments.

More experiments using deeper network architectures with larger batch size might provide a more

accurate prediction, especially for the naive approach. Besides, in naive approach, we extracted the

low-level satellite features using CNN. Experiments using other feature extractions such as RGB,

HOG, or color histogram could also be conducted to determine the effectiveness of this approach.

• Will a better prediction of area type help to improve the poverty estimation?

The effectiveness of semantic segmentation approach depends on the visibility of landscape features

in the satellite imagery. It cannot be applied in the region with only blurry satellite images

available since the CNN model might not be able to identify the class of each pixel correctly. As

in the multistep learning, the performance of the CNN to perform semantic segmentation in this

approach is a rough indicator that determines the result of poverty estimation. The landscape

features have been proven to be relevant to poverty. Therefore, it would be better to improve

the performance of the CNN model that derive those features. Larger training dataset and batch

size could result in more accurate SegNet model, and it is ultimately expected to also improve the

poverty estimation result.

54

• Will more category of landscape feature improve the performance of the model?

Since we utilized the satellite images from Google Maps with limited visible landscape features, we

can only categorize the landscape features into six categories. Further experiments using higher

resolution satellite imagery from different sources could be conducted to extract more features other

than those six features. If they are relevant to poverty prediction, the model could have better

performance.

Further experiments with a greater focus on the list discussed above could produce interesting find-

ings that account more for the effectiveness of the proposed approaches. Finally, notwithstanding the

relatively limited sample and resource, the findings of this research provide insights that there is a pos-

sibility to utilize novel data sources such as satellite image to predict poverty of a region. Moreover, it

might be possible to use our proposed methods to estimate other socioeconomic indicators.

Chapter 6

References

[1] The sustainable development goals. United Nations Publications, 2017.

[2] Introduction to poverty analysis (English). World Bank Group, 2014.

[3] J. Feng, “How should we measure poverty?”, World Economic Forum, Nov. 2014. [Online]. Avail-

able: https://www.weforum.org/agenda/2014/11/how-should-we-measure-poverty/.

[4] J. E. Blumenstock, “Fighting poverty with data”, Science, vol. 353, no. 6301, pp. 753–754, 2016.

[5] A. Llorente, M. Garcia-Herranz, M. Cebrian, and E. Moro, “Social media fingerprints of unem-

ployment”, PloS one, vol. 10, no. 5, e0128692, 2015.

[6] H. Choi and H. Varian, “Predicting the present with google trends”, Economic Record, vol. 88,

no. s1, pp. 2–9, 2012.

[7] J. Blumenstock, G. Cadamuro, and R. On, “Predicting poverty and wealth from mobile phone

metadata”, Science, vol. 350, no. 6264, pp. 1073–1076, 2015.

[8] Google. (-). Google earth engine - datasets. (accessed July 2, 2018), [Online]. Available: https:

//earthengine.google.com/datasets/.

[9] V. Henderson, A. Storeygard, and D. N. Weil, “A bright idea for measuring economic growth”,

American Economic Review, vol. 101, no. 3, pp. 194–99, 2011.

[10] X. Chen and W. D. Nordhaus, “Using luminosity data as a proxy for economic statistics”, Pro-

ceedings of the National Academy of Sciences, vol. 108, no. 21, pp. 8589–8594, 2011.

[11] S. Michalopoulos and E. Papaioannou, “Pre-colonial ethnic institutions and contemporary african

development”, Econometrica, vol. 81, no. 1, pp. 113–152, 2013.

[12] ——, “National institutions and subnational development in africa”, The Quarterly Journal of

Economics, vol. 129, no. 1, pp. 151–213, 2013.

[13] M. L. Pinkovskiy, “Growth discontinuities at borders”, Journal of Economic Growth, vol. 22, no. 2,

pp. 145–192, 2017.

[14] M. Harari, “Cities in bad shape: Urban geometry in india”, February. http://real. wharton. upenn.

edu/˜ harari/Harari Papers/CityShapeHarariMarch2016 updated. pdf, 2016.

55

https://www.weforum.org/agenda/2014/11/how-should-we-measure-poverty/
https://earthengine.google.com/datasets/
https://earthengine.google.com/datasets/

56

[15] M. Pinkovskiy and X. Sala-i-Martin, “Lights, camera. . . income! illuminating the national accounts-

household surveys debate”, The Quarterly Journal of Economics, vol. 131, no. 2, pp. 579–631, 2016.

[16] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, “Combining satellite imagery

and machine learning to predict poverty”, Science, vol. 353, no. 6301, pp. 790–794, 2016.

[17] A. Head, M. Manguin, N. Tran, and J. E. Blumenstock, “Can human development be measured

with satellite imagery?”, in Proceedings of the Ninth International Conference on Information and

Communication Technologies and Development, ACM, 2017, p. 8.

[18] P. K. Suraj, A. Gupta, M. Sharma, S. B. Paul, and S. Banerjee, “On monitoring development using

high resolution satellite images”, arXiv preprint arXiv:1712.02282, 2017.

[19] A. Perez, C. Yeh, G. Azzari, M. Burke, D. Lobell, and S. Ermon, “Poverty prediction with public

landsat 7 satellite imagery and machine learning”, arXiv preprint arXiv:1711.03654, 2017.

[20] R. Engstrom, J. S. Hersh, and D. Newhouse, “Poverty from space: Using high-resolution satellite

imagery for estimating economic well-being”, 2017.

[21] B. Klemens, A. Coppola, and M. Shron, “Estimating local poverty measures using satellite images:

A pilot application to central america”, 2015.

[22] BPS-Indonesia. (-). Kemiskinan dan ketimpangan (indonesia). (accessed June 28, 2018), [Online].

Available: https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html.

[23] X. Amatriain. (2016). What’s the relationship between machine learning and data mining? (ac-

cessed January 16, 2018), [Online]. Available: https://medium.com/@xamat/what- s- the-

relationship-between-machine-learning-and-data-mining-8c8675966615.

[24] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[25] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning. Springer,

2013, vol. 112.

[26] F. Lindsten, N. Wahlström, A. Svensson, and T. B. Schön, “Statistical machine learning”, 2018.

[27] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the Royal Statistical

Society. Series B (Methodological), pp. 267–288, 1996.

[28] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s Approach. ” O’Reilly Media, Inc.”,

2017.

[29] A. Castrounis. (2016). Artificial intelligence, deep learning, and neural networks, explained. (ac-

cessed June 25, 2018), [Online]. Available: https://www.kdnuggets.com/2016/10/artificial-

intelligence-deep-learning-neural-networks-explained.html.

[30] T. Keenan. (2017). Neural networks demystified. (accessed June 25, 2018), [Online]. Available:

https://www.upwork.com/hiring/data/neural-networks-demystified/.

[31] K. Chen. (2017). Gradient descent and backpropagation. (accessed June 28, 2018), [Online]. Avail-

able: https://www.linkedin.com/pulse/gradient-descent-backpropagation-ken-chen.

[32] D. Gupta. (2017). Fundamentals of deep learning – activation functions and when to use them?

(accessed June 28, 2018), [Online]. Available: https://www.analyticsvidhya.com/blog/2017/

10/fundamentals-deep-learning-activation-functions-when-to-use-them/.

https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html
https://medium.com/@xamat/what-s-the-relationship-between-machine-learning-and-data-mining-8c8675966615
https://medium.com/@xamat/what-s-the-relationship-between-machine-learning-and-data-mining-8c8675966615
https://www.kdnuggets.com/2016/10/artificial-intelligence-deep-learning-neural-networks-explained.html
https://www.kdnuggets.com/2016/10/artificial-intelligence-deep-learning-neural-networks-explained.html
https://www.upwork.com/hiring/data/neural-networks-demystified/
https://www.linkedin.com/pulse/gradient-descent-backpropagation-ken-chen
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/

57

[33] S. Sharma. (2017). Activation functions: Neural networks. (accessed June 28, 2018), [Online].

Available: https://towardsdatascience.com/activation- functions- neural- networks-

1cbd9f8d91d6.

[34] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time series”, The

handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[35] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016,

vol. 1.

[36] S. Jain. (2018). An overview of regularization techniques in deep learning (with python code).

(accessed July 1, 2018), [Online]. Available: https://www.analyticsvidhya.com/blog/2018/04/

fundamentals-deep-learning-regularization-techniques/.

[37] F. Doukkali. (2017). Batch normalization in neural networks. (accessed July 1, 2018), [Online].

Available: https://towardsdatascience.com/batch-normalization-in-neural-networks-

1ac91516821c.

[38] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic depth”,

in European Conference on Computer Vision, Springer, 2016, pp. 646–661.

[39] MatConvNet. (2017). Pretrained models. (accessed July 25, 2018), [Online]. Available: http://

www.vlfeat.org/matconvnet/pretrained/.

[40] T. Ghosh, S. J. Anderson, C. D. Elvidge, and P. C. Sutton, “Using nighttime satellite imagery as

a proxy measure of human well-being”, Sustainability, vol. 5, no. 12, pp. 4988–5019, 2013.

[41] C. D. Elvidge, P. C. Sutton, T. Ghosh, B. T. Tuttle, K. E. Baugh, B. Bhaduri, and E. Bright,

“A global poverty map derived from satellite data”, Computers & Geosciences, vol. 35, no. 8,

pp. 1652–1660, 2009.

[42] WorldBank. (2013). Dc big data exploration final report. (accessed July 9, 2018), [Online]. Avail-

able: https://www.scribd.com/doc/142012481/DC-Big-Data-Exploration-Final-Report?

cid=CTR_TwitterWBopenfinances_D_EXT.

[43] D. J. Lary, A. H. Alavi, A. H. Gandomi, and A. L. Walker, “Machine learning in geosciences and

remote sensing”, Geoscience Frontiers, vol. 7, no. 1, pp. 3–10, 2016.

[44] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani, “Deepsat: A

learning framework for satellite imagery”, in Proceedings of the 23rd SIGSPATIAL International

Conference on Advances in Geographic Information Systems, ACM, 2015, p. 37.

[45] Y. Zhong, F. Fei, Y. Liu, B. Zhao, H. Jiao, and L. Zhang, “Satcnn: Satellite image dataset classi-

fication using agile convolutional neural networks”, Remote Sensing Letters, vol. 8, no. 2, pp. 136–

145, 2017.

[46] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth observation classification

using imagenet pretrained networks”, IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1,

pp. 105–109, 2016.

[47] N. Audebert, B. Le Saux, and S. Lefèvre, “Semantic segmentation of earth observation data using

multimodal and multi-scale deep networks”, in Asian Conference on Computer Vision, Springer,

2016, pp. 180–196.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
http://www.vlfeat.org/matconvnet/pretrained/
http://www.vlfeat.org/matconvnet/pretrained/
https://www.scribd.com/doc/142012481/DC-Big-Data-Exploration-Final-Report?cid=CTR_TwitterWBopenfinances_D_EXT
https://www.scribd.com/doc/142012481/DC-Big-Data-Exploration-Final-Report?cid=CTR_TwitterWBopenfinances_D_EXT

58

[48] M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, “Classification and segmentation of satellite

orthoimagery using convolutional neural networks”, Remote Sensing, vol. 8, no. 4, p. 329, 2016.

[49] R. Kemker, C. Salvaggio, and C. Kanan, “Algorithms for semantic segmentation of multispectral

remote sensing imagery using deep learning”, ISPRS Journal of Photogrammetry and Remote

Sensing, 2018.

[50] -. (2017). Poverty data. (BPS - Statistics Indonesia, accessed July 12, 2018), [Online]. Available:

https://bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html.

[51] W. Bank. (2018). Povcalnet: An online analysis tool for global poverty monitoring. (accessed

November 18, 2018), [Online]. Available: http://iresearch.worldbank.org/PovcalNet/home.

aspx.

[52] I. C. P. d. World Bank. (2018). Ppp conversion factor. (accessed November 18, 2018), [Online].

Available: https://data.worldbank.org/indicator/PA.NUS.PPP.

[53] -. (2018). Google maps platform - maps javascript api. (accessed July 18, 2018), [Online]. Available:

https://developers.google.com/maps/documentation/javascript/maptypes#WorldCoordinates.

[54] ——, (2013). Version 4 dmsp-ols nighttime lights time series. (NOAA’s National Geophysical Data

Center, accessed May 23, 2018), [Online]. Available: https : / / ngdc . noaa . gov / eog / dmsp /

downloadV4composites.html.

[55] A. Albert, J. Kaur, and M. C. Gonzalez, “Using convolutional networks and satellite imagery to

identify patterns in urban environments at a large scale”, in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 1357–1366.

[56] J. Lee. (2018). How to do semantic segmentation using deep learning. (accessed July 20, 2018),

[Online]. Available: https://medium.com/nanonets/how-to-do-image-segmentation-using-

deep-learning-c673cc5862ef.

[57] H. Automotive and I. Laboratory. (2018). Semantic segmentation editor. (accessed September

1, 2018), [Online]. Available: https://github.com/Hitachi- Automotive- And- Industry-

Lab/semantic-segmentation-editor.

[58] Caffe. (2018). Model zoo. (accessed October 1, 2018), [Online]. Available: https://github.com/

BVLC/caffe/wiki/Model-Zoo.

[59] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al., “Deep face recognition.”, in BMVC, vol. 1, 2015,

p. 6.

[60] Stephanie. (2015). Welch’s test for unequal variances. (accessed January 16, 2018), [Online]. Avail-

able: https://www.statisticshowto.datasciencecentral.com/welchs-test-for-unequal-

variances/.

[61] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder

architecture for image segmentation”, arXiv preprint arXiv:1511.00561, 2015.

https://bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html
http://iresearch.worldbank.org/PovcalNet/home.aspx
http://iresearch.worldbank.org/PovcalNet/home.aspx
https://data.worldbank.org/indicator/PA.NUS.PPP
https://developers.google.com/maps/documentation/javascript/maptypes#WorldCoordinates
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor
https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://www.statisticshowto.datasciencecentral.com/welchs-test-for-unequal-variances/
https://www.statisticshowto.datasciencecentral.com/welchs-test-for-unequal-variances/

	Abstract
	Introduction
	Background
	Poverty Estimation from Satellite Imagery
	Research Goal
	Research Questions

	Literature Review
	Poverty Measurement
	Machine Learning Methods
	Classification and Regression
	Convolutional Neural Network (CNN)
	Evaluation Metrics

	Related Works
	Applications of Satellite Data for Measuring Economic Indicators
	Implementation of Convolutional Neural Network on Satellite Imagery

	Methods
	Data Description
	Poverty Data
	Daytime Satellite Imagery
	Nighttime Lights Image

	Methods
	Multistep Learning Approach (Baseline)
	Naive Approach
	Semantic Segmentation Approach

	Experiments and Evaluation
	Experimental Setup
	Experiments and Results
	Multistep Learning
	Naive
	Semantic Segmentation
	Additional Model using Nighttime Lights Data
	Testing on Higher Level of Administrative Unit
	Testing on Out-of-country Data

	Evaluation of Results

	Conclusion
	Discussion and Future Work

	References

