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Abstract

We studied vacancies and interstitials in both body centered cubic (BCC) and face centered
cubic (FCC) crystals of point Yukawa particles. To this end, we used Monte Carlo simulations
combined with various types of thermodynamic integration and Wang Landau biasing. With
these methods we determined the concentration of both defects at the phase boundaries of
the system and looked at how the defects manifest themselves in the crystals. We found that
the concentration of vacancies is around the same order of magnitude as the concentration
of interstitials along both the fluid-BCC and the BCC-FCC/fluid-FCC phase boundary.
Furthermore we found that at the BCC-FCC phase boundary the concentration of vacancies in
a BCC crystal is between 2 or 3 orders of magnitude higher than the concentration in an FCC
crystal. We studied and explained this concentration difference by looking at how the particles
in the two crystals redistributed due to the presence of a vacancy. In the case of an interstitial
we saw that the crystal structures of both FCC and BCC crystals are distorted along all the
directions of the nearest neighbors of the interstitial. In the case of a BCC crystal this distor-
tion might be indicating a crowdion, however more research is needed to draw firm conclusions.
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Chapter 1

Overview of thesis project

From a theoretical point of view, a crystal is a perfectly ordered arrangement of particles. In
practice, however, imperfections, so called defects, disturb this perfect ordering. The variety
of possible defects is enormous and we usually classify them in three categories: point defects,
line defects and planar defects. Point defects include for example interstitials and vacancies,
denoting respectively a lattice site with an extra particle and a lattice site without a particle.
An example of a line defect is an edge dislocation, which is an extra half-plane of particles in
a lattice. Finally planar defects include for instance a grain boundary, where the crystal has
regions of differently oriented crystallites. Cartoons of some defects are displayed in Figure
1.1. Defects occur naturally in materials: it can be shown that at any finite temperature,
the equilibrium concentration of vacancies and interstitials is always finite [1]. However, the
concentration of defects is generally very low.

Although their concentration is low, the influence that defects can have on crystalline prop-
erties can be huge. Point defects for example can strengthen metals, and grain boundaries in
specific cases can make it possible for a material to be elongated extraordinarily [1]. Further-
more defects influence thermodynamical, mechanical and dynamical properties of materials.
Because of the influence defects have, we sometimes purposely create them in crystalline struc-
tures, establishing materials that have useful properties. An example of this is the process of
strengthening steel. By heating steel, one creates defects, resulting in a stronger material [2].

Defect concentration

Although it is clear that in real systems the influence of defects can be potentially very large,
in simulations and numerical studies it is often assumed that their existence can be ignored.
In some systems or for some purposes this assumption is indeed valid; take for example
the very basic single component hard-sphere model. Here, all particles are assumed to be
marble-like, meaning that the potential between particles is zero, except for when they try
to overlap, which results in an infinitely high potential at contact. Bennet and Alder have
looked at such a system and have obtained the vacancy concentration [3]. They found that
in a three-dimensional face centered cubic crystal at melting point the equilibrium vacancy
concentration is on the order of 10−4 [3]. Although this concentration is large enough to have
a small influence on the free energy, overall the assumption that the vacancies can be ignored
is quite accurate. Pronk and Frenkel subsequently looked at the interstitial concentration and
found it to be even smaller, on the order of 10−8 [4].

However, the assumption to ignore defects is not always justifiable. This becomes clear if
we look, for example, at a hard-sphere model with some slight alterations. In Ref. [5], for
instance, the researchers looked at a hard-cube system, where the particles are cubical instead
of spherical. They investigated the vacancy concentration and found a really surprising result:
for the first-order phase transition between a fluid and a simple cubic phase, the vacancy
concentration is on the order of 6 % [5]. A high number that, contrary to the the spherical
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8 CHAPTER 1. OVERVIEW OF THESIS PROJECT

Figure 1.1: Cartoon of different crystalline defects. The red circles/curve indicate the position
of the defect.

case, can definitely not be ignored.

Another system where defects cannot be ignored is a binary hard-sphere model, which consists
of two species of hard spheres with different radii. Van Der Meer and Filion considered
anti-site defects for such a system [6]. These defects occur when two particles of different
species switch position in the crystalline ordering. For a ratio between the two particle radii
of 0.82, they found that up to 2% of the larger particles was substituted by a smaller particle
in equilibrium [6]. This is a very big concentration that results in a significant change in the
phase diagram of the binary mixture.

From these examples it thus becomes clear that the concentration of defects hugely depends
on the specific system and the phase it is in.

Manifestation of Defects in Crystals

Apart from the topic of defect concentrations, another very interesting subject is how defects
manifest themselves in crystals. It turns out that defects change the arrangement of the
crystal and sometimes even interact with other defects, giving rise to interesting structures
such as defect strings [5].

Research on the way interstitials and vacancies manifest themselves has been conducted for
three-dimensional crystals. A very interesting result of this research is the forming of a so
called crowdion in a BCC lattice. A crowdion is, as stated in Ref. [7], the extended distortion
of the crystal in the 111 direction due to a single interstitial. This means that only along this
direction particles are pushed away from the interstitial; the rest of the crystal is unaffected.
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Aim of this thesis

We may conclude that the field of crystalline defects yields interesting and sometimes even
intriguing results. It is very worthwhile to gain more understanding on how defects are
formed, how they behave and how often they occur in specific systems.

In this thesis we will consider vacancies and interstitials in a system of charged colloidal
particles dispersed in a suspension of counter-charged ions. Colloidal particles, or colloids for
short, are particles that have typical dimensions between 1nm and 1µm, which means that
they are much larger than single atoms and molecules. In a colloidal system, the colloids,
dispersed in a suspension containing much smaller particles, can self assemble. Although these
colloidal systems are in general quite complicated, it is often possible to use relatively simple
models to describe them, such as the point Yukawa potential that we will use in this thesis.
This potential, that is one of the simplest extensions of the hard-sphere model, basically
describes a screened Coulomb interaction.

The aim of this thesis is to compute the vacancy and interstitial concentration along the phase
boundaries of the point Yukawa system and to get a basic picture of how these defects alter
the crystalline structures. In Chapter 2 we will briefly discuss some theory behind the Yukawa
potential and point defects. Thereafter, in Chapter 3 we will discuss the general methods used
in this thesis, which we will then specify in Chapter 4 for computing the free energies required
to obtain the defect concentration. We conclude with the results and corresponding discussions
and conclusions in Chapters 5 and 6.
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Chapter 2

Yukawa potential and point
defects

In this chapter we will discuss the Yukawa potential of soft-core particles. Furthermore we
will take a closer look at the point defects of interest and determine an expression for the
concentration of these defects in a crystalline system. It is by no means the purpose of this
chapter to give the reader an extensive discussion of these theories. The goal is mainly to
indicate which theories are used in this thesis and to give a quick overview of them.

2.1 Yukawa potential

Figure 2.1: Cartoon of a Yukawa system. In the left figure the system consists of colloids
(indicated as blue) and individual ions (indicated as red). The colloids and ions, although being
soft cored, are displayed as having a finite radius to indicate that the charge of the colloids is
bigger than the charge of the ions. In the right figure the solvent is modeled as a continuum
with a dielectric constant (where the exact distribution of course depends on the specifics of the
system), instead of being viewed as containing individual ions.

Sometimes when colloids are placed in a solvent, they lose ions, also called counter-ions to
the solvent due to chemical reactions. The colloid is then left with a charge opposite to the
released ions. In addition to the released counter-ions, the solvent itself can also contain added
salt, consisting of counter-ions and co-ions (having the same charge as the colloids). Due to
electrodynamics, the density of the counter-charged ions will be the highest in a band around
the colloids. Because of this band, the interactions between colloids become screened.
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12 CHAPTER 2. YUKAWA POTENTIAL AND POINT DEFECTS

Solving the dynamics of this system is very complicated due to the fact both the colloids and
the individual ions need to be taken into account in the computation. In order to simplify
the system, we therefore treat the solvent as a smooth continuum with a dielectric constant,
rather than treating the ions as point particles [8]. There are a lot of materials, for example
dusty plasmas, whose structures can be very well described using this simplification. In this
case, as mentioned earlier we furthermore assume the colloids to have no radius, implying
that their interactions are soft core.

Both the real, physical system and the Yukawa model are displayed in Figure 2.1. To obtain the
potential for the system with the assumptions mentioned above, one has to solve the so called
linearized Poisson-Boltzmann equations [9]. We will not state the derivation here, but just
present the results. The effective potential, also called the Yukawa potential, for the colloidal
particles in the system described above is given by [10]

φ(r) =
Q2

4πε0r
e−κDr =

ε

r
e−κDr, (2.1)

where Q is the charge of a colloid, ε0 is the permittivity in vacuum, ε is the interaction energy

defined by Q2

4πε0
, κD is the screening length of the system and r is the radial distance between the

particles. Physically, we can regard this potential as a normal Coulomb potential, indicated

by the Q2

4πε0r
term, multiplied with an exponentially decaying term, which accounts for the

screening that colloidal particles feel due to the oppositely charged solvent surrounding them.
Looking at Equation (2.1), one might expect that the phase behavior of the system depends

X

Figure 2.2: Phase diagram of Yukawa systems in the (κ,Γ) plane[10][11].

on three parameters: the number density ρ (which has an influence on the typical distance
between colloids), the screening length κD and the interaction energy ε. However, because we
look at point particles, the density is not an independent parameter and we can, by introducing
two specific dimensionless parameters, κ and Γ, reduce the number of independent parameters
to two. We define κ and Γ as [10]:

Γ =
ε

akBT
and κ = aκD,

where a =
(

4πN
3V

)− 1
3 is the Wigner Seitz radius. This radius is defined as the radius of the

spherical volume equal to the Wigner Seitz volume. Rewriting Equation (2.1) in terms of Γ,
κ and a, we find:
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φ(r)

kBT
= Γ

(a
r

)
e−κ(

r
a ). (2.2)

Figure 2.3: Crystal structures of FCC and BCC
crystals

Here we have introduced the reduced
length scale r

a , the temperature T and
the Boltzmann constant kB . Using these
dimensionless parameters has the advantage
that instead of a 3-dimensional phase di-
agram, the phase behavior can completely
be summarized in a 2-dimensional phase
diagram. This 2-dimensional phase diagram
is shown in Figure 2.2 [10][11]. As we can see
it consists of three phases: a fluid, an face
centered cubic (FCC) crystal and a body
centered cubic (BCC) crystal. Both crystals
are displayed in Figure 2.3. Since we are
interested in the concentration of defects at
the phase boundaries of a Yukawa system,
this means that we will consider both FCC
and BCC crystals in this thesis.

Later we will also need the force between particles due to the Yukawa potential. Using the fact
that ~F = −∇φ(~r), this force is given by

~F (r)

kBT
=
[
Γ
( a
r2

+
κ

r

)
e−κ(

r
a )
]
r̂, (2.3)

where r̂ is the unit vector in radial direction. As we can see, this force only has a radial
component.

2.2 Crystal structures and point defects

In this section we will take a closer look at the two point defects considered in this thesis,
namely interstitials and vacancies, and deduce expressions for their associated free energies
and concentrations. Both point defects are schematically displayed in Figure 2.4. As we see,
a vacancy indicates that there is a lattice site without a particle, whereas in the case of an
interstitial there is a lattice site that contains two particles.

Before we go to the real calculations, we first briefly discuss the physics that explains why
point defects occur in crystals. As stated in Chapter 1, the concentration of vacancies and
interstitials is finite for all finite temperatures. This might seem counter intuitive as creating
a defect increases the potential energy U. However, while it increases U, it also increases the
entropy, S. This increase of S explains the occurrence of defects: in the Helmholtz free energy,
F = U − TS, the terms U and S have a opposite sign, implying that defects can, in principle,
also lower the free energy. One can show that for T > 0 the lowest free energy is indeed always
found for a finite concentration of defects [1].

2.2.1 Concentrations of vacancies and interstitials in crystals

The method of deriving the free energy and concentration is almost the same for vacancies and
interstitials. In this section we will therefore focus our attention on the expressions concerning
vacancies and just state the results for interstitials at the end.
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Figure 2.4: Cartoon of defects in a crystal

To find the equilibrium concentration of vacancies we need to find the concentration for which
the system is in an energy minimum. It turns out that the expression for this concentration
becomes quite elegant if we obtain it using the Gibbs free energy. Because we cannot express
the Gibbs free energy of this crystal directly, we first express the Helmholtz free energy of the
system and then transfer to the Gibbs free energy.

For the free-energy calculation we make two assumptions. First of all we assume the vacancies
to be non-interacting and secondly we assume the pressure of a crystal with vacancies, P vac,
to be equal to the pressure of a perfect crystal P perfect. Both assumptions are expected to
hold as long as the concentration of vacancies is sufficiently low (something we do expect) and
they simplify the calculations considerably.

We first calculate the Helmholtz free energy of a system with vacancies and than switch to
the Gibbs free energy. Assume that the Helmholtz free energy of a perfect crystal is given
by F perfect(N,V, T ) with V the volume, T the temperature and N the number of particles.
We denote the number of lattice sites by M and number of vacancies by Nvac. For a perfect
crystal M is of course equal to N , but for a crystal with vacancies M > N and Nvac is given
by M − N . We express the free energy associated with one vacancy1 by fvac(ρm, T ), with
ρm = M/V the density of lattice sites.

Keeping the assumptions mentioned above in mind, we can define the Helmholtz free energy
of a crystal with vacancies. The total free energy of our system is now given by the free energy
of a perfect crystal, F perfect(N,V, T ), plus the free energy associated with the vacancies only,
FV(N,V, T ). We can write this last term as FV = −kBT log(Zvac), with Zvac the partition
function associated with the vacancies. We want to express this Zvac in terms of quantities
we know.

The partition function Zvac is in a canonical system defined as the sum of the Boltzmann
weights over all possible micro states. In this case the number of micro states is determined by
the number of ways the vacancies can distribute themselves over the crystal. All micro states
have an energy of Nvacfvac(ρM , T ), which means that,

Zvac =
∑

micro states

e−βN
vacfvac

=

(
M

Nvac

)
e−βN

vacfvac

. (2.4)

Working out the expression for FV(N,V, T ), using Equation (2.4), on finds that the Helmholtz

1This is the energy needed to change a perfect crystal into a crystal containing one.
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free energy, F vac, of a crystal with Nvac vacancies is given by

βF vac(N,V, T ) =

βMfperfect(N,V, T ) + β(M −N)fvac +N log
N

M
+ (M −N) log

M −N
M

, (2.5)

where fperfect(N,V, T ) ≡ F perfect(N,V, T )/M and where we have replaced Nvac by M − N .
We can understand this expression as follows: the first term is the energy associated with the
perfect crystal, the second term is the energy associated with removing Nvac particles out of
the system and the last terms are associated with the combinatorial terms due to the possible
positions of the vacancies.

Now that we have an expression for the Helmholtz free energy of a crystal with vacancies, we
will transform to the Gibbs free energy. To do so we use two of the definitions of G :

βG = βF + βPV = βµN,

where µ is the chemical potential of a particle. Using these definitions, we can write the Gibbs
free energy of a perfect crystal, Gperfect(N,P, T ) as

βGperfect(N,P, T ) = βMfperfect(N,V, T ) + βPV = βµperfect(P, T )M. (2.6)

To obtain subsequently the Gibbs free energy, Gvac, for a system with vacancies, we use the
definition of the Gibbs free energy together with Equations (2.5) and (2.6) and the assumption
that the pressure does not change when vacancies arise. With a bit of rearranging, we find

βGvac = βF vac(N,V, T ) + βPV,

= βMµperfect(P, T ) + β(M −N)fvac(ρM , T ) +N log
N

M
+ (M −N) log

M −N
M

,

= βNµperfect(P, T ) + β(M −N)µvac(P, T ) +N log
N

M
+ (M −N) log

M −N
M

,

(2.7)

where we have defined µvac ≡ fvac(ρM , T ) + µperfect(P, T ).

Using the Gibbs free energy of Equation (2.7), we can now obtain the equilibrium concentration
of vacancies denoted by

〈
M−N
N

〉
. To find this concentration we take the derivative of Equation

(2.7) with respect to the number of lattice sites M and set it to zero. We then obtain:

〈nvac〉 ≡
〈
M −N
N

〉
= exp[−βµvac], (2.8)

We can understand this expression as follows: to obtain a vacancy we first need to remove a
particle from the system, increasing2 the energy of the system by fvac(ρM , T ). That particle
then needs to be put away in an external, similar system, increasing the energy of that system
with µperfect(P, T ). Those two terms combined give the µvac term.

Equilibrium concentration of vacancies

The derivation for the equilibrium concentration of interstitials is almost the same, as stated
in the beginning of the chapter. Defining f int(ρM , T ) as the free energy associated with an
interstitial and using the same procedure as described above, we find that the equilibrium
concentration of interstitials is given by:

〈nint〉 ≡
〈
N −M
N

〉
= exp[−βµint], (2.9)

with µint = f int(ρM , T )−µperfect(P, T ). The minus sign in front of µperfect(P, T ) occurs because
in this case the interstitial particle is obtained from the external system, lowering the energy
of that system with µperfect(P, T ).

2Note that fvac(ρM , T ) can be negative, which means that it can actually lower the free energy of the
system.
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2.2.2 Parameters to obtain

Now that we have found expressions for the concentration of vacancies and intersti-
tials, we can write down the quantities needed in order to evaluate these expressions.
Using Equations (2.8) and (2.9), it becomes clear that we have to obtain values for
µperfect(P, T ), f int(ρM , T ) and fvac(ρM , T ). As said before, we will find these values by per-
forming computer simulations. In Chapter 4 we will take a closer look at the specific simulations
we need to obtain these free energies. However we first discuss some general background on
simulations and free-energy calculations in Chapter 3.



Chapter 3

Methods

In this chapter we will discuss different simulation methods and other techniques that we will
use for our simulations. In Section 3.1 we look at Monte Carlo simulations, in Sections 3.2 and
3.3 we discuss respectively thermodynamic integration and Wang Landau biasing. We then
end the chapter with Section 3.4 where we discuss the general characteristics of the simulations
used.

3.1 Monte Carlo simulation

In this thesis we will use Monte Carlo (MC) simulations as the basis for all our simulations.
Although MC simulations are used in a very wide range of applications, we will in this thesis
focus only on Monte Carlo simulations in thermodynamic ensembles [12]. In this setting MC
simulations are very useful to compute ensemble averages. Normally an ensemble average, say
for example 〈A〉, would be given by

〈A〉 = lim
n→∞

∑n
i=1 fc(~r

N
i )A(~rNi )

n
,

where fc(~r
N
i ) is the Boltzmann weight of configuration i, A(~rNi ) is the value of the quantity

A in configuration i and n indicates the number of generated configurations. A Monte Carlo
simulation generates completely random configurations, and then accepts or rejects them de-
pending on how likely the configuration is energetically. This means that states with a high
energy, or consequently a low Boltzmann weight, will be visited less often than lower energy
configurations. Using this procedure of generating configurations, the ensemble average is then
simply be computed by

〈A〉 = lim
n→∞

∑n
i=1A(~rNi )

n
.

Of course we can never have infinitely many steps, but for a large n, the result will still be
very accurate. We use Monte Carlo simulations in this thesis because they are quite easy to
program and it is simple to extend them to different ensembles.

Move acceptance

In our application of Monte Carlo simulations, configurations are are generated according to
their Boltzmann weight. We will now look at how these configurations are obtained in more
detail.

To ensure that the Monte Carlo simulation generates configurations according to their Boltz-
mann weights, the rule to accept a trial configuration must satisfy two conditions. First of
all, it must be in principle possible to visit all configurations. The second condition is the
so-called balance condition, which states that in equilibrium the probability of going into a

17



18 CHAPTER 3. METHODS

certain configuration must be equal to the probability of leaving that configuration. It is com-
mon, however, to impose an even stronger condition than the balance condition, namely the
detailed balance condition. This condition states that the number of accepted moves1 going
from state o to state n must be equal to the number of accepted moves going from state n
to state o, where n and o are random configurations. The mathematical expression for this
condition is given by

fc(~ro
N )π(o→ n) = fc( ~rn

N )π(n→ o), (3.1)

where fc(~ri
N ) is the probability of being in state i (which is equal to the Boltzmann weight)

and π(i → j), the transition matrix, is the probability of going from state i to state j. The
aim is now to find an acceptance rule, satisfying both conditions mentioned above, that states
whether to accept or reject a randomly generated move. To obtain this rule, we take a closer
look at the transition matrix.

This transition matrix can be broken into two terms, by writing it as

π(0→ n) = α(0→ n)acc(0→ n). (3.2)

In this equation α(o→ n) indicates the probability of trying a move and acc(o→ n) indicates
probability of accepting that move. This last term, acc(o → n), is the term we are interested
in for it holds the information whether to accept a move or not. We choose α(o → n) to be
equal to α(n → 0), which means that trying a move is symmetrical. Using Equations (3.1)
and (3.2), we then find

acc(o→ n)

acc(n→ o)
=
fc( ~rn

N )

fc(~ro
N )

(3.3)

Though we are free to choose any expression for acc(o→ n) that satisfies Equation (3.3), the
usual choice is [12]

acc(o→ n) = min

(
fc( ~rn

N )

fc(~ro
N )

, 1

)
. (3.4)

Different acceptance rules

The explicit form of Equation (3.4) depends on the sort of move the Monte Carlo simulation
tries to make. In this thesis we will do simulations in an NVT -ensemble, however we check
if the simulation of this ensemble works correctly by using an NPT -ensemble. This means
that we need to define the sort of MC moves attempted in both ensembles and then find the
corresponding acceptance rules for these moves.

During a Monte Carlo simulation of an NVT -ensemble, every step an attempt is made to
move a particle by a distance δr. Each component of this vector, denoted by δri, satisfies
|δri| ≤ δrmax for a defined value of δrmax. In an NPT -ensemble, in addition to the attempt
of moving particles, there is another move that tries to change the volume by an amount δV .
Again δV satisfies |δV | ≤ δVmax for a defined δVmax. We will discuss later how to find δVmax

and δrmax

As said before, the concrete expression of the acceptance rule defined in Equation 3.4 changes
depending on the type of move. We will not go through the entire computations of these rules,
but just state the results here. For a particle move, the acceptance rule is given by Ref. [12]

acc(o→ n) = min[ exp
[
−(β(U(rNn )))− β(U(rN0 ))

]
, 1], (3.5)

1We will later go into detail about what trying a move exactly means.
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while for a volume move it is given by

acc(o→ n) = min[ exp[−(β(U(rNn , Vn)))− β(U(rNo , Vo)) + P (Vn − Vo)+

Nβ−1 log

(
Vn
Vo

)
, 1]. (3.6)

Here Vo is the volume of the simulation box in state o, Vn is the volume of the simulation box
in state n, β is the Boltzmann weight defined by 1

kBT
, U(rNi ) is the potential energy of state i,

P is the pressure and N is the total number of particles. In an NVT ensemble the acceptance
rule thus only depends on the positions of the particles, whereas in an NPT ensemble the rules
depend on the particle positions as well as the volume.

Acceptance ratio and finding δrmax and δVmax

The last thing we need to discuss is how to define the values of δrmax and δVmax. Their values
are quite important for they indirectly influence the number of moves that is accepted and
thus the speed of the simulation. As it turns out, the choice which is usually close to optimal
is [13],

Number of accepted moves

Number of attempted moves
∼= 0.3 for particle moves ,

Number of accepted moves

Number of attempted moves
∼= 0.1 for volume moves . (3.7)

One could compute the ratio Number of accepted moves
Number of attempted moves after each cycle and change δrmax and

δVmax accordingly to obtain the ratio’s given in Equation (3.7). However this procedure
would break detailed balance: the probability of going to a certain state after changing these
values is not the same as the probability of leaving that state before changing these values.
We can thus not measure quantities and change δrmax and δVmax simultaneously. To solve
this problem we use initialization cycles in which the correct values for δrmax and δVmax are
obtained. Note that δrmax and δVmax are restricted to a maximum value, otherwise the system
could grow unbounded. After the initialization cycles are concluded, the actual simulation
starts and measurements can be executed.

Whenever we calculate the ensemble average of a quantity in this thesis, we will simulate
configurations according to the acceptance rules given by Equations (3.5) and (3.6) (depending
on the ensemble we are in). Every step the required quantity is measured and in the end the
ensemble average is calculated by the mean value of these measurements.

3.2 Thermodynamic integration

One drawback of Monte Carlo simulations is that they generally do not give you direct access
to free energies. For this, MC simulations must be combined with other methods, such as
thermodynamic integration. Thermodynamic integration is an approach to find the free-
energy difference between two distinctive systems using an auxiliary Hamiltonian and potential.

We consider for example systems A and B with Hamiltonians HA and HB and potential
energies UA(rN ) and UB(rN ). With these two Hamiltonians we construct a new auxiliary
Hamiltonian and auxiliary potential

Hλ(Γ) = HA + λ (HB −HA) ,

Uλ(Γ) = UA + λ (UB − UA) = (1− λ)UA + λUB . (3.8)

Here Γ indicates a point and phase space and λ is the coupling parameter that allows us to
switch from system A to B : at λ = 0 the auxiliary potential is given by the potential of system
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A, while at λ = 1 potential is given by the potential of system B. Using this order parameter,
we can write down the free-energy difference between the two systems A and B :

Fλ=1 − Fλ=0 =

∫ 1

0

dλ
∂F (λ)

∂λ
, (3.9)

where F (λ) is the Helmholtz free energy of a system with the potential given in Equation (3.8).
Making use of the fact that F = −kBT lnZ, one can show that F (λ) is determined by,

exp[−βFλ(N,V, T )] =
1

N !Λ3N

∫
drN exp[−β (UA + λ (UB − UA))], (3.10)

where Λ is the Broglie wavelength. Rearranging Equation (3.10) and taking the derivative of
both sides with respect to λ, we find

∂F (λ)

∂λ
=

∫
rN exp [−β (UA + λ (UB − UA))] (UB − UA)∫

drN exp [−β (UA + λ (UB − UA))]

= 〈(UB − UA)〉λ , (3.11)

where 〈...〉λ means that we compute the ensemble average in a system with the Hamiltonian
given in Equation (3.8).

To find the free-energy difference between the two systems A and B, we only need to substitute
the expression stated in Equation (3.11) into Equation (3.9),

FB(N,V, T ) = FA(N,V, T ) +

∫ 1

0

dλ 〈(UB − UA)〉λ . (3.12)

In simulations, thermodynamic integration is implemented by performing a numerical integra-
tion, using values of the ensemble average 〈(UB − UA)〉λ determined by MC simulations for a
lot of different λ’s.

3.3 Wang Landau biasing

When using Monte Carlo simulations, one sometimes wants to obtain information about states
that have a really low Boltzmann weight. Because of the fact that configurations are generated
according to their Boltzmann weight, the simulation needs to run a long time before the
statistics of these rarely visited states become reliable. To solve this problem we can shorten
the simulation time by biasing the original potential such that unlikely visited states are visited
more often. Afterwards you only have to correct the measured values for the fact that they
were obtained in the biased system (something we will come back to later). There are different
sorts of bias techniques, but the method we will use here is Wang Landau biasing [14]. In the
following section we will describe the theory behind this biasing technique.

Obtaining a bias potential

To bias the system we define an ‘order’ parameter, corresponding to the quantity you want
to measure. For example, if you are interested in the average size of a particle, the radius of
that particle can be represented by the order parameter. The aim of Wang Landau biasing
is to add a biasing potential, ηi, to the potential of every order parameter state i, such that
all possible values of the order parameter (or sometimes multiple order parameters), have the
same probability. In other words, our aim is to obtain a uniform probability histogram for the
system along the order parameter.
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When adding a bias potential ηi, the acceptance rule in a Monte Carlo simulation for going
from state a to state b changes from Equation (3.4) to

acc(a→ b) = min

(
fc(~rb

N )

fc(~ra
N )

exp [−(ηa − ηb)] , 1

)
. (3.13)

To obtain ηi, we use a Monte Carlo simulation: at the start of the simulation ηi is set to zero
for all i. At every step an attempt is made to move to another configuration according to the
acceptance rule in Equation (3.13). Every n steps the current value of the order parameter
is monitored and the bias potential of that state is raised by a certain amount g. Because
favorable states are visited more often, the bias potential of these states will be increased more
frequently than the biased potential of the unfavorable states and therefore these favorable
states become less favorable. By executing this procedure over and over again, in the end one
will obtain an approximately uniform distribution.

We now specify the amount g we add to our biasing potential every n steps. To get a sufficiently
precise bias potential, it must be possible to have a small value of g : if it would only be possible
to add a relatively large value of g, subtle differences could never be obtained. However, if we
would start with a small g, the process of flattening the probability distribution would require
a lot of time. To solve this problem we allow g to change during the simulation. We start
with a relatively large value of g, keeping track of the visits each possible configuration gets.
Every n cycles, when we measure the value of the current order parameter and increase the
bias potential, we also increase the visits of the state we are in by one (where of course at the
beginning of the simulation all visits are set to zero). By doing so you keep track of the time
the system spends in a certain state. Whenever the ratio

visits of least visited configuration

mean visits of all configurations
> 0.8,

we set g → 1
2g and reset all visits to zero. By doing so we allow the system to both have high

and low values of g.

Wang Landau breaks detailed balance condition

If we use Wang Landau as stated above for measuring an ensemble average, there arises a
problem. By allowing η and g to change during the simulation, we break detailed balance. The
probability of going from state o to state n before changing η is not equal to the probability
of going from n to state o after changing η. Just as discussed before while choosing values
for δrmax and δVmax, we solve this problem by allowing g and η to change in initialization
cycles. When the biased probability histogram is sufficiently flat we fix η and start the real
simulation where we measure the desired quantities.

Then of course the question arises what sufficiently flat is and subsequently how long the
initialization cycles need to run. Ideally, to obtain a uniform distribution, we want to have g
very small (on the order of 10−8), but it turns out that this is computationally very expensive.
Fortunately, our goal to begin with was never to obtain a a perfectly flat probability histogram;
we only wanted to obtain reliable statistics for unfavorable states. Therefore we just use a large
number of initialization cycles and then assume the potential to be flat enough to have all states
visited approximately the same number. Of course one has to find out by trial and error what
this number of initialization cycles must be, for it depends on the potential you want to bias.

Regaining unbiased results

As already said in the beginning of the section, we need to correct the measured quantities
for the fact that the quantities were measured in the biased system. In this thesis, as we will
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discuss later, we are interested in the probability ratio between certain states. In the biased
system the ratio of probabilities between two states a and b is simply given by

Pbias(state a)

Pbias(state b)
=

visits(state a)

visits(state b)
,

where we measure the visits to each state during the actual simulation. To regain the proba-
bilities in our unbiased system, all we have to do is multiply Pbias(state i) by (exp[ηi])

−1
[14].

Our unbiased ratio is then given by

Punbias(state a)

Punbias(state b)
=

Pbias(state a) · exp[−ηa]

Pbias(state b) · exp[−ηb]
=

visits(state a) · exp[−ηa]

visits(state b) · exp[−ηb]
. (3.14)

Initial biasing

Sometimes you already have a clue what form the bias potential will have. Because it can take
a lot of time to generate the biasing potential from scratch you can start your Wang Landau
biasing with a trial potential η0 that has roughly the form of the expected potential.

3.4 General characteristics of the simulations

In the next Chapter we will discuss how we implement the techniques considered in this chapter
in the actual simulations. However, before we do that, we first need to discuss the general
characteristics of these simulation models, such as the treatment of system boundaries.

Figure 3.1: Cartoon of nearest image convention

Periodic boundary conditions and truncation

As mentioned before, all simulations are implemented with the Monte Carlo algorithm of an
NVT -system. The system of such an ensemble consists in this case of a cubic box with sides of
length L. We treat the boundaries of the simulation box using periodic boundaries which are
implemented via the so called nearest image convention. We illustrate this convention by using
the example of a one-dimensional box with sides L, displayed in Figure 3.1. In this figure the
actual box is indicated as the grey plane. Each particle in the actual system forms interaction
pairs with all the other particles. These interaction pairs can either be with particles in the
actual system (whenever their inter-particle distance is smaller than half the box length, L/2)
or with the periodic image of these particles (whenever the inter-particle distance with the
actual particle is larger than half the box length). This means that in the specific system
displayed in Figure 3.1, particle B forms an interaction pair with particle A’, instead of with
particle A. Using the same reasoning, particle A then forms an interaction pair with particle B’.

Using the nearest image convention implies that particles do not interact with particles at a
distance larger than half of the box length. This means that particles do not interact with
particles outside the nearest periodic image. When the inter-particle distance is larger than
L/2, we thus alter the original Yukawa potential and set the interaction energy of that particle
pair to zero. However by changing the potential we modify slightly the phase behavior of the
system. To solve this problem we need to make our system larger: our original potential goes
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to zero for large r, so when L/2 is big the change to the potential will be negligible. However,
we cannot make the system arbitrarily large for the simulation time depends cubically on the
value of L. Therefore we compromise by demanding the potential at L/2 is smaller than 10−5.
The number of unit cells is chosen such that this requirement is met.

By setting the interaction energy to zero for distances larger than L/2, there arises a new
problem: At L/2 there now opens a gap in the potential, making it discontinuous. To get
rid of this discontinuity we lower the potential for distances with r < L/2 by the value of the
potential evaluated at r = L/2. Our potential and force are then given by

φ(r)

kBT
= Γ

(a
r

)
· e−κ(

a
r ) − Ucutoff

~F (r)

kBT
=
[( a
r2

+
κ

r

)
· Γ · e−κ(

r
a ) − Fcutoff

]
r̂,

with,

Ucutoff = Γ

[
a

L/2

]
· e−κ(

a
L/2 ),

Fcutoff =

[
a

(L/2)2
+

κ

L/2

]
· Γ · e−κ(

a
L/2 ).

Wigner Seitz constraint

Figure 3.2: Wigner Seitz cell
is indicated by the square green
area.

In order to obtain the defect concentration, we need to find
the free energy associated with one defect at a specific point
in the crystal. This means that to obtain this free energy
we need to constrain defects to a specific lattice point, or
otherwise the defect could go wander through the crystal.
For our simulation this means that we need to constrain
particles to the Wigner Seitz cell of their corresponding
lattice sites. The Wigner Seitz cell of lattice site m is the
area enclosing all points in space that are closer to lattice
point m than to all the other lattice points. In the two
dimensional crystal of Figure 3.2, for example, the Wigner
Seitz area, is given by the green square.
Using a Wigner Seitz constraint gives rise to a certain
concern. In an NVT -ensemble we attempt to move particles
every step. However, when one particle at a time is moved,
the center of mass will start drifting. Because the Wigner
Seitz cells do not move, this means that the centers of the
Wigner Seitz cell no longer overlap with the equilibrium positions of the particles. The result
is that particles are confined to a volume smaller than the actual Wigner Seitz cell. To stop
the drifting of the center of mass we constrain it. In this thesis we do this by moving two parti-
cles simultaneously every MC step: one in the direction +δr and the other in the direction −δr.
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Chapter 4

Calculating the free energies

Now that we have some background on various simulation techniques, we can look at the
simulations required to obtain the free energies listed in Section 2.2.2, namely µperfect(P, T ),
f int(ρM , T ) and fvac(ρM , T ). In this chapter we discuss for each quantity separately how we
will compute it. As it will turn out, the methods of computing f int(ρM , T ) and fvac(ρM , T ))
are almost the same. Therefore we will look in detail at the vacancy case and then just state
the results for the interstitial case. In Section 4.1 we will look at how to compute µperfect and
in Sections 4.2 and 4.3 we will discuss respectively how to find fvac(ρM , T ) and f int(ρM , T ).

4.1 Chemical potential perfect crystal

We find µperfect via the Gibbs free energy of a perfect crystal. Both quantities are related via
the following formula,

Gperfect = µperfectN.

We cannot obtain Gperfect directly, but we can express it in terms of quantities that we can
measure, namely F perfect and P :

Gperfect = F perfect + PV.

By combining the two equations stated above, we find

µperfect =
F perfect + PV

N
. (4.1)

This means that in order to find µperfect we need to find both P and F perfect for a perfect
crystal. In the following two sections we will discuss how to obtain these quantities.

4.1.1 Helmholtz free energy for a perfect crystal

To find the free energy of a perfect crystal we use, as discussed in Section 3.2, thermodynamic
integration. In this case we start with a reference system of which we know the free energy
and then integrate from that system to our perfect Yukawa crystal. The reference system we
use in this case is the so-called Einstein lattice and therefore we refer to this thermodynamic
integration as Einstein integration [12]. In this hypothetical Einstein lattice all particles are
bound to their lattice sites by a harmonic spring with a certain spring constant α (we will
later discuss how to choose the value of α). In the Einstein lattice, the potential energy, called
Uharmonic, is given by

Uharmonic =

N∑
i=1

α(ri − ri,0)2,

25
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where ri,0 is the lattice position of particle i and ri is the particle position of particle i. We
rewrite the auxiliary potential, given in Equation (3.8), for this specific system,

U int(rN ) = (1− λ)U(rN ) + λUharmonic(rN ), (4.2)

where U(rN ) is the the potential energy of the Yukawa system given by Equation (2.2). Again
λ is the switching parameter that switches between the Yukawa crystal, when λ = 0, and the
Einstein lattice, when λ = 1.

Using Equation (3.12) we find

FYukawa = FEinstein −
∫ 1

0

dλ
〈
Uharmonic(rN )− U(rN )

〉
λ
. (4.3)

Fixed center-of-mass frame

When we use Equation (4.3), there arises a certain problem. Whenever λ is close to zero, the
springs do not constrain the particles to their lattice sites any longer, potentially causing the
center of mass to start drifting. Note that this is possible because in this case particles are
not bound to stay in a Wigner Seitz cell. The drifting of the center of mass causes

〈
r2
〉
, and

thus the potential energy difference
〈
Uharmonic(rN )− U(rN )

〉
λ→0

, to be potentially very big
compared to the rest of the computed energy differences. Due to this sharp energy peak, the
integral in Equation (4.3) becomes hard to evaluate. One way of solving this problem is by
requiring small integration steps for λ → 0. In this case, however, we adopt another method
and solve the problem by going to the center of mass frame. Note that it would also be possible
to fix the center of mass, however here we elect to go to the center of mass frame. By doing
so we bound the value of

〈
r2
〉

and thus reduce the peak of the integrand. Fixing the center of
mass changes Equation (4.3) to

FCM
Yukawa = FCM

Einstein −
∫ 1

0

dλ
〈
Uharmonic(rN )− U(rN )

〉CM

λ
, (4.4)

where FCM
Yukawa is the Helmholtz free energy of a Yukawa crystal obtained in a fixed center of

mass frame, FEinstein is the Helmholtz free energy of an Einstein crystal obtained in a fixed
center of mass frame. Here 〈...〉CMλ indicates that the ensemble average is calculated in the
center of mass frame and evaluated using the potential given in Equation (4.2).

The value of FCM
Yukawa however differs from FYukawa and we are interested in the latter. To regain

FYukawa out of FCM
Yukawa is quite a long calculation and it does not provide much insight for this

thesis. We therefore omit the derivation and only state the results. In Ref. [15] it is obtained,
using the expression of Equation (4.4), that for a three dimensional single component system
of identical particles and spring constant α, FYukawa is given by

βFYukawa =
3N

2
ln

(
αβΛ2

2π

)
−β
∫ 1

0

dλ
〈
Uharmonic(rN )− U(rN )

〉CM
λ
−

3

2
ln

(
αβ

2π

)
− 3

2
lnN + lnN/V, (4.5)

with Λ is the de Broglie wavelength. In this formula, the first term corresponds to FCM
Einstein and

the last three terms are corrections due to the fact that we are in the center-of-mass system.

Choosing parameters

Finally we need to specify how to choose the value for α. This value does not matter too
much, and there are only two requirements. First, the crystal may not melt for any value
of λ, which means α must be sufficiently high - something that can be tested by looking at
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snapshots of the particles during the simulation to check that the system stays a crystal. The
second requirement is that for λ → 1 the system must behave like an Einstein crystal. This
can be checked by computing the free energy of the Einstein crystal for λ’s close to 1 during
the simulation and comparing those with the theoretical values of an Einstein crystal.

To numerically evaluate the integral in Equation (4.5), we first make a change of variables to
flatten the integrand and then use a certain method called the Gaussian quadrature. What this
method basically does is choosing suitable points to evaluate the integral. We will not elaborate
any further on this method nor the change of variables, but the entire procedure is explained
very well in Chapter 10 of Ref. [12]. The only thing important for this thesis is that by making
the change of variables there occurs an extra parameter c that we choose such that the integral
is as flat as possible. There exists a tested code, written by Frank Smallenburg, that makes
the change in variables and then evaluates the integral using the Gaussian quadrature method.
In this thesis we will use this program to obtain the required values for βFYukawa.

4.1.2 Pressure of a perfect crystal

To find the pressure of a perfect crystal we use the virial expression for the pressure [16],

P

kBT
= ρ+

β

3V

∑
i<j

fij · rij , (4.6)

with ρ the density and fij and rij respectively the force, given by Equation (2.3), and the

distance between particles i and j. To obtain the β/(3V )
∑
i<j fij · rij term, we perform

a Monte Carlo simulation measuring the ensemble average of 〈
∑
i<j fij · rij〉 for a Yukawa

crystal. Because the simulation is performed in an NVT -ensemble, ρ is then determined by
the defined values of N and V.

Simulating the expressions of Equations (4.5) and (4.6) and then combining them via Equation
(4.1) for various values of κ and Γ, provides us with the required values for µperfect.

4.2 Calculating fvac - Free energy associated with one va-
cancy

In this section we will discuss the simulations we need to perform in order to obtain the free
energy fvac(ρM , T ). This free energy, is given by the difference between the Helmholtz free
energy of a perfect crystal and a crystal with one vacancy at a specific lattice site,

fvac(ρM , T )) ≡ F vacancy − F perfect.

To calculate this energy difference, we use two steps. First we calculate the energy difference,
f shrink, associated with the free energy between a crystal with one non-interacting particle
(i.e. an ideal gas particle with Γ = 0) and a perfect crystal and then we calculate the energy,
f remove, associated with removing this ideal particle from the crystal. In order words,

fvac(ρM , T )) = f shrink + f remove. (4.7)

The process described above is schematically displayed in Figure 4.1. In Section 4.2.1 we will
discuss how to obtain f shrink and in Section 4.2.2 we will discuss how to compute f remove.

4.2.1 Free energy of turning a particle into an ideal gas particle

In this section we will discuss how to compute the free energy f shrink. Because there is no data
available to check our obtained values with, we will to compute f shrink using two different,
independent ways. By checking if these two methods agree with one another, we can check if
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Figure 4.1: Schematic process of calculating fvac(ρM , T ). In the left figure we start with a
perfect crystal. The particle with no interactions is then represented as the grey particle in
the middle figure. Finally in the right figure, the non-interacting particle is removed from the
system. f shrink is the free energy difference between the first two figures and f remove is the free
energy difference between the last two figures.

no mistakes were made during the coding and simultaneously we can see which method works
best for the actual simulations. In the next chapter, Chapter 5, this choice of method will be
discussed. The two methods that we use, are thermodynamic integration and calculating the
ratio of probabilities between having a normal particle and a non-interacting particle. Both
methods will be discussed in the two following sections.

Method 1 - Thermodynamic integration

For the thermodynamic integration we again use the theory described in Section 3.2. In this
specific case Equation (3.8) is given by

Uλ(Γ) = (1− λ)Uperfect + λUvacancy, (4.8)

with Uperfect the potential energy of a perfect crystal, and Uvacancy the potential energy of a
crystal with one vacancy1. According to Equation (3.12), the free-energy difference between a
crystal with one non-interacting particle and a perfect crystal is then given by,

f shrink = F non-interacting − F perfect =

∫ 1

0

dλ 〈(Uvacancy − Uperfect)〉λ , (4.9)

with F non-interacting the Helmholtz free energy of a crystal containing one non-interacting
particle. The ensemble average, 〈...〉λ is evaluated using the auxiliary potential given in
Equation (4.8).

Although in theory this method works fine, in practice there arises a problem that requires the
simulation to run for a long time. When the system is at λ = 0 we are evaluating ∆U using the
potential Uλ=0 = Uvacancy. This means that without any energy penalty, the non-interacting
particle can come very close to other particles if those particles are near their Wigner Seitz
cell boundary. Because we compute the potential energy difference with the system where our
particle does have interactions, the term 〈(Uvacancy − Uperfect)〉λ=0 can become very large - in
the interstitial case even infinitely large. Duo to these (infinitely) large energy differences, the
simulation needs a long, or potentially even infinitely long, time to get a reliable answer for
the value 〈(Uvacancy − Uperfect)〉λ=0.

1Because the non-interacting particle contributes nothing to the potential energy, we can just use the po-
tential energy of a crystal with a vacancy instead of the potential energy of a crystal with one non-interacting
particle.
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Figure 4.2: Cartoon of defects in a crystal

To solve this problem we alter the potential.
Instead of letting it to diverge at r = 0 as it
normally would do, we assume that the po-
tential increases linearly below a certain de-
fined value ralter. By doing so the potential
has a finite value, Umax, at r = 0. The altered
potential is displayed in Figure 4.2 where we
have defined Ualter as U(ralter). If we evaluate
〈(Uvacancy − Uperfect)〉λ=0 for higher λ’s this al-
tered potential will not have any influence for
the particles will never have a distance r with
r < ralter due to the energy penalty. However
for small λ, we avoid the (infinitely) large en-
ergies. Because in the end we integrate over

the energy difference (see Equation (4.9)), this alteration to the potential will have no influ-
ence. The precise values for Umax and ralter do not matter that much, as long as we make sure
ralter is so small that for higher values of λ, r will almost never be smaller than ralter. We can
check this by running the same simulation twice for slightly different values of Umax and ralter.
If the values are chosen alright, they should give the same answer up to a reasonable accuracy.

Method 2 - Ratio of probabilities

For the second method for calculating fvac, we use the fact that the Helmholtz free energy of a
state is proportional to the logarithm of the partition function of that state. This means that
the free-energy difference between two states, A and B, is given by the logarithm of the ratio of
the corresponding partition functions, Z, and thus the ratio of the corresponding probabilities
of those states 2. This means that,

∆FAB ≡ FA − FB = kBT log
ZB

ZA
= kBT log

PB

PA
, (4.10)

where P i is the probability of being in state i. We can thus obtain the value f shrink, by finding
the ratio of probabilities between PA = P (Γvar = 0) and PB = P (Γvar = Γ), with Γvar the
dimensionless interaction energy of our shrinking particle.

We name the particle that turns into a non-interaction particle γ. One might think that we
can just compute the probability ratio by performing a Monte Carlo simulation where we allow
the interaction energy of γ to be in either a state with Γγ = 0 or a state with Γγ = Γ. However
unfortunately this is not the case for the energy the state where Γγ = 0 is much lower than
the state where Γγ = Γ. When we simulate this system, we would always end up in the non-
interacting state, meaning that the obtained statistics would be unreliable. In order to get the
correct probability thus alter our simulation:

1. First we allow the particle γ to have a range of different interaction energies between 0
and Γ. Every n Monte Carlo cycles we try to increase or decrease the current Γi to either
Γi+1 or Γi−1. By doing so, the energy barrier of switching to another Γi is smaller, which
makes the move more likely to happen compared to the case when it only could switch
between 0 and Γ. The precise number of possible Γi’s does not matter much as long as it
is not too small for then the energy barrier between different Γi’s is still too high.3 The
precise value of n does not matter either, as long as it is big enough for the system to
change in between switching attempts of Γi.

2. Secondly we apply the Wang Landau biasing discussed in Section 3.3. In this case the
order parameter is defined as the interaction energy of particle γ. We want to bias the

2The probability P i of being in state i is equal to Zi/
∑

i Z
i with

∑
i the sum over all possible states.

3Note however that one cannot choose an arbitrarily large number of possible Γi’s, because then the problem
arises that it will take too much time to visit all different Γi’s.
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potential such that the probability histogram of Γi is approximately flat. In the biased
system we then measure the ratio of probabilities.

By performing the Monte Carlo simulation with the two alterations mentioned above we can

obtain kBT log P (Γ=Γ)
p(Γvar=0) , providing us a with a second measurement of f shrink.

4.2.2 Energy of removing ideal gas particle

The second step in computing fvac(ρM , T ) is obtaining a value for the free energy, f remove,
associated with removing an ideal gas particle from the crystal. It can be shown that the free
energy of an ideal gas particle constrained to a Wigner Seitz cell is given by

f ideal gas = −kBT ln

(
VWS

Λ3

)
,

with VWS the volume of the Wigner Seitz cell. Removing such a particle from the system,
means that you lower the free energy of that system by an amount f ideal gas. Therefore we can
see that,

f remove = −f ideal gas = −
[
−kBT ln

(
VWS

Λ3

)]
. (4.11)

Because we are in an NVT -ensemble, the volume of a Wigner Seitz cell, defined by V/N ,
is just a constant. This means that we can obtain f remove without having to perform any
simulations.

With the expression in Equation (4.11) have now all the information we need to calculate
fvac(ρM , T ). In the last section of this chapter we turn our attention to the computation of
the energy associated with an interstitial.

4.3 Calculating f int - Free energy associated with one in-
terstitial

Figure 4.3: Schematic process of calculating f int(ρM , T )). In the left figure we start with a
perfect crystal. In the middle figure a particle with no interactions, represented as the grey
particle, is inserted in the system. Finally in the right figure, the non-interacting particle has
turned into a normal particle. f insert is the free-energy difference between the first two figures
and fgrow is the free-energy difference between the last two figures.

The method of calculating the free energy associated with one interstitial, f int, is, as already
said, almost the same as the method of calculating fvac. In this case we insert a non-interacting
particle into a specific Wigner Seitz cell of a crystal and then let the interaction energy of that
particle grow from 0 to Γ. This procedure is schematically displayed in Figure 4.3. Comparing
the process in the case of an interstitial with that of a vacancy, we see that there are only two
differences.
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1. The process of calculating f int is reversed compared to computing fvac . In this case
we insert a non-interacting particle into a Wigner Seitz cell and then let the interaction
energy of that particle increase.

2. The cell where we insert and grow the particle is not empty as it was in the vacancy case,
but already contains a normal interacting particle. This means that we need to include
this extra particle in our simulations.

The energy associated with an interstitial, f int, is now given by f insert + fgrow, where f insert

is the free energy associated with inserting a non-interacting particle to our system and fgrow

is the free-energy difference between a crystal with an interstitial and a crystal with a non-
interacting interstitial. In the following two sections we will briefly discuss how to obtain f insert

and fgrow using the same methods as we did in the vacancy case.

Method 1 - Growing a particle

We again use the fact that the logarithm of the ratio of probabilities is connected to a free-
energy difference. In this case fgrow is thus given the ratio of probabilities between having a
normal interstitial and an interstitial with no interactions:

fgrow = F interstitial − F non-interacting interstitial = kBT log
P (Γvar = 0)

P (Γvar = Γ)
,

with Γvar the interaction energy of the inserted particle. The procedure of finding this ratio of
probabilities is the same as in the vacancy case.

Method 2 - Thermodynamic integration

For the method of thermodynamic integration we again we use Equation (3.12), with in this
case Uλ = (1− λ)Uperfect + λUinterstitial. This means that

fgrow =

∫ 1

0

dλ 〈(Uinterstitial − Uperfect)〉λ ,

where we can use Uperfect as the potential energy of the crystal with the non-interacting particle,
for the non-interacting particle again contributes nothing to the potential. In this case again we
use the altered potential given in Figure 4.2 instead of our normal potential to avoid infinitely
large energies.

Free energy associated with inserting a non-interacting particle

The free energy associated with inserting a non-interacting particle is minus the energy asso-
ciated with removing that particle. Using Equation (4.11), we see that this means that

f insert = −kBT ln

(
VWS

Λ3

)
. (4.12)

This concludes our discussion of the various methods required for measuring µperfect(P, T ),
f int(ρM , T ) and fvac(ρM , T ). In the next chapter we will first discuss some checks we did to
verify the various simulations and then later turn our attention to the results.
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Chapter 5

Results & Discussion

As stated earlier, we begin this chapter with the discussion of various checks that we used to
validate the simulations. We verify these simulations for two reasons: first of all we check that
no mistakes were made during the coding and secondly we check if the applied methods work in
these specific cases. Although from a theoretical point of view all the methods described in the
previous chapter should work correctly, it turns out that in practice, due to the characteristics
of the specific system, not all simulations perform equally well. A program can, for example,
be computationally very expensive in a specific system, making the corresponding method not
suitable for that system. In Sections 5.1.1 and 5.1.2 we first briefly discuss some very basic
checks concerning respectively the simulation of an NVT -ensemble and Wang Landau biasing
and in Section 5.1.3 we then test the validity of the Einstein integration program.
After these checks we turn our attention in Section 5.2 to the discussion of which of the two
possible methods to compute f shrink and fgrow we will use. Finally, we end this chapter with
Section 5.3 where we list and discuss the computed defect concentrations and look at how the
defects manifest themselves in the crystals.

5.1 Validity checks

5.1.1 NVT -ensemble of Yukawa crystal

As said before, the basis of all our simulations is a crystal in an NVT ensemble with particles
interacting via a Yukawa potential. In order to find f shrink and fgrow, we therefore need to
make sure that we have this system working correctly. First we check if the simulation of an
NVT ensemble works correctly by simulating an NPT -ensemble (which has an NVT -ensemble
included) for hard spheres. In this simulation we calculate the equation of state and compare
the results with the theoretical approximation of the equation of state. This procedure is shown
in Appendix A. Thereafter we include the Yukawa potential of soft particles in the simulation
and compare the energy of this system with the data from the paper of Hamaguchi, Fraouki
and Dubin (1997) [10]. This comparison can be found in Appendix B. The conclusion of both
checks is that the simulation of a crystal with Yukawa particles living in an NVT -ensemble is
correct.

5.1.2 Wang-Landau biasing

Because the coding of the simulation to obtain the Wang Landau biasing is quite complicated,
we first check the simulation separately for a system where we already know what the original
potential looks like. We can then check whether the real potential and the bias potential
together form a uniform distribution and thus whether our simulation works correctly. This
test is shown in Appendix C and again the conclusion is that our simulation is working correctly.

33
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5.1.3 Validating Einstein integration

To ensure that the Helmholtz free energy of the Yukawa crystal, obtained via Einstein integra-
tion, is computed correctly, we check the simulation by comparing the results with the virial
pressure of the system. Besides the validation of the Helmholtz free energy, this check thus
also provides us with a check of the pressure computation. We know from thermodynamics
that in an NVT ensemble,

β
∂F

∂V
= −βP and dV = −N

ρ2
dρ.

This means that the difference in free energy between two systems with different densities, ρ1

and ρ2, is given by,

β
F (ρ2)− F (ρ1)

N
= −β

∫ ρ2

ρ1

dρ′
P (ρ′)

ρ′2
. (5.1)

For this test we obtain the free energies in the left hand site of Equation (5.1) by calculating
the Helmholtz free energy for two different densities (ρ1 and ρ2) via Einstein integration.
To obtain the integral of the right hand side of the equation, we compute the pressure for
a number different densities between ρ1 and ρ2 and perform a numerical integral using that
data. The pressure is computed using the virial expression given in Equation (4.6). Note
that because we look at how density influences the system, it is convenient to use the Yukawa
potential given in Equation (2.1) with the ‘normal’ parameters instead of the dimensionless
parameters. By checking if the simulated values of the left and the right hand side of Equation
(5.1) agree with each other we can validate that the Einstein integration works correctly.

We calculate F for two different values of ρ, namely ρ1 = 0.239 (corresponding to a Wigner
Seitz radius of 1) and ρ2 = 0.179 (corresponding to a Wigner Seitz radius of 1.1). The point
in the phase diagram we look at is determined by κD = 4 and ε = 13000, which means that
for both densities we are looking at an FCC-crystal. We obtain, using Einstein integration:

β
F (ρ2)− F (ρ1)

N
= 19.062 (5.2)

Figure 5.1: Integral over P (ρ′)
ρ′2 from ρ1 to ρ2

The data provided by the pressure cal-
culation is displayed in Figure 5.1. In
this figure, the value of the integral of
the right hand side of equation (5.1.3)
is schematically represented as the blue
surface area and is equal to1

−β
∫ ρ2

ρ1

dρ′
P (ρ′)

ρ′2
= 19.070 (5.3)

Comparing the numerical values of
Equations (5.2) and (5.3), we see
that the difference between the two
methods is 0.008. During the Einstein
simulations we saw that the chosen

constants (α and c) influence slightly the outcome of the Einstein integration on the order of
0.01. This most probably explains the difference between Equations (5.2) and (5.3). For the
calculations of the defect concentration we do not need precision up to second order decimals,
and therefore we can conclude that our Einstein integration and the pressure calculation
agree with each other up to the desired accuracy and thus that both simulations work correctly.

1We have calculated P with and without particles constrained to their Wigner Seitz cell. It turns out that
this constrain has no influence on the pressure
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5.2 Wang Landau Biasing versus thermodynamic integra-
tion

We now turn our attention to which of the two methods discussed in Section 4.2.1 we are going
to use to calculate f shrink and fgrow. In order to compare the two methods, we calculate f shrink

with both methods for a specific point in a BCC Yukawa crystal determined by κ = 3.0 and
Γ = 1300. In Figure 5.2 we display the data obtained with both methods. For the method
of thermodynamic integration, we plot in Figure 5.2a, β〈∆U〉 = β 〈(Uvacancy − Uperfect)〉λ as a
function of λ, with λ the earlier defined switching parameter. In Figure 5.2b the bias potential,
βη(Γ), obtained via Wang Landau biasing is plotted as a function of Γ.

(a) Thermodynamic integration (b) Wang Landau biasing

Figure 5.2: Two methods for calculating f shrink

Results

Figure 5.3: Cartoon of particle
position for Γ = 0

Figure 5.4: Visits to a certain
configuration as a function of
Γ. The big dots indicate the
visits of respectively Γ = 0 and
Γ = 1300

To obtain f shrink with the method that uses Wang Lan-
dau biasing, we use the values of the bias potential and
the number of visits, displayed in Figure 5.4, both at
Γ = 0 and Γ = 1300. With them we evaluate Equa-
tions (4.10) and (3.14). To find f shrink using thermo-
dynamic integration, we need to evaluate the integral
stated in Equation (4.9), graphically represented by
the area of the blue plane in Figure 5.2a. We obtain
the following results with both methods

βf shrink
Wang Landau = −62.51,

βf shrink
thermodynamic = −63.67.

As we can see they differ by around 1, which means
that they do not agree as well as we had hoped. Al-
though in principle this could mean that both methods
work incorrectly, we are almost positive we can ex-
plain this difference by the fact that the Wang Landau
method proves to be very slow in this system.
When we bias the system using Wang Landau biasing
we want all different values of the interaction energy
of the shrinking particle to have approximately the
same probability. Whenever a particle is constrained
to a small volume (due to a large value of Γ) it is
not that hard to bias the state: the potential that a
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particle feels does not change that much when the particle moves around in a small volume.
However in the case when Γ = 0, the shrinking particle can move through the entire Wigner
Seitz volume (see Figure 5.3). The potential that the particle feels depends enormously on
the position of the particle. This means that we can never find an perfect biasing potential.
Ideally in this case you would calculate a separate biasing potential for every possible position
of the shrinking particle (which means that you get an extra order parameter in your system),
however this is not feasible. The other option is to let your program run longer to improve
your statistics.

We tried to improve the statistics by letting the simulation run for a week, but even that
turned out to be too short to obtain enough data: the value of βf shrink

Wang Landau that we obtained

after half a week of running was equal to βf shrink
Wang Landau = −62.71. This results differs 0.2

from the value obtained after a week of running, implying that the system, even after a
week of running, had not obtained enough statistics. This conclusion is supported by the
data in Figure 5.4, where we look at the visits as a function of Γ obtained after a week of
running. Although a trend is clearly visible, the error of the visits is very big, indicating that
we do not have enough statistics. Concluding, it is most likely that the difference between
the two methods is due to the fact that Wang Landau biasing is not a good method for this
specific system. For some systems it is a very useful method, however when, for a constant
order parameter, the energy of the system fluctuates too much (as it does in this case) the
simulation needs too long of a time to run.

In contrast to the Wang Landau biasing method, the thermodynamic integration simulation
did have enough statistics after about 24 hours of running. It seems thus to be obvious that
thermodynamic integration is the best choice to compute fgrow and f shrink. However, before
we continue with this method, we need to check separately that no mistakes were made during
the coding. Because we can no longer compare it with the Wang Landau method we need to
check it with other independent checks. Berend van der Meer wrote a simulation that also
uses thermodynamic integration to compute f shrink and his result did agree with our result.
Thereafter Laura Filion used a separate method, namely Einstein integration, to compute the
energy associated with one interstitial2, f int. We compared her result with the value for f int

we found using thermodynamic integration and found that both values agree reasonably. We
may thus conclude that the code for thermodynamic integration works correctly and therefore
we will proceed with this method to calculate the concentration of defects.

5.3 Outcomes

Now that we may conclude that our simulations work correctly, we can turn our attention to
the actual questions we want to address. From Chapter 4 it became clear that to find the defect
concentrations we need to perform three different simulations: Einstein integration to obtain
FPerfect, thermodynamic integration to obtain fvac and f int and finally a simple Monte Carlo
simulation to obtain the pressure. Before we go to the results we first briefly discuss the initial
conditions used for each of these simulations. In Section 5.3.1 we will then list and discuss
the obtained defect concentrations and finally we end the chapter with Section 5.3.2 where
we look at how the crystalline ordering of particles changes due to the presence of point defects.

As said in the introduction, we are interested in the concentration of vacancies and interstitials
around both the fluid-BCC and BCC-FCC/fluid-FCC phase boundaries, as we expect that
the concentration will be the highest there. We obtain the phase points along the phase
boundary, using the coexistence lines stated in Ref. [11]. These curves, although fitted on
the coexistence points obtained in Ref. [10], do slightly differ from these points. It might
seem wrong to use the fitted curves because of this deviation. However it turns out that the

2Note that in the case of Einstein integration we do not use a perfect crystal as one of the endpoint of
thermodynamic integration, but a crystal with with an interstitial.
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Figure 5.5: Points where defect concentration is computed

actual model has a coexistence region rather than a coexistence line3 and therefore being a
little above or below the coexistence line or points presented in the papers does not make the
crystals immediately unstable. As long as we check that the simulated crystal is (meta) stable
by looking at snapshots of the simulation, it is therefore possible to use the points as well as
the curves as the phase points for our actual simulation. In this case we have chosen to simply
use the curve to obtain points along the phase boundary.

Figure 5.6: Yukawa potential plotted for different values of κ and Γ.

All the points for which we evaluated the concentration of vacancies, interstitials or both are
displayed in Figure 5.5. As one can see, we only look at respectively high values of κ (κ ≥ 2).
Going to lower κ, exponentially increases the interaction range and thus the system size and
simulation time. Due to lack of time we therefore could not go to the (very) low κ regimes.
To give some impression of how the potential looks like for different (κ,Γ)-points we plot the
potential in Figure 5.6 for some of the evaluated points.4 As we can see, going to higher
(κ,Γ)-points makes the potential steeper.

3The coexistence region is quite narrow compared to the the rest of the phase diagram and therefore we
display it as a line in the diagram.

4Note that these are unaltered potentials; no cutoff or truncation is used.
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Table 5.1: Cutoff values of simulations

κ Γ Cutoff BCC Cutoff FCC
2.0 442 8.12/a -
2.5 708 7.11/a -

3.0
1205 6.09/a -
1720 6.09/a 6.40/a

3.5
2143 5.08/a -
2565 5.08/a 6.40/a

4.0
3950 5.08/a -
4234 5.08/a 6.40/a

4.5 7438 - 6.40/a
5.0 14488 - 6.40/a

Initial conditions

We now give a general overview of the initial condition for each of the simulations (thermody-
namic integrations, Einstein integration and the pressure simulation). For the thermodynamic
integration and the pressure simulation the following initial conditions were used5:

• System size: As stated earlier, the system size was chosen such that the error due to the
cutoff of the potential was smaller than 10−5. In practice this meant that, depending on
the phase point and the crystal type, the simulations contained between 250 and 1024
particles. The values of the cutoff length in units of a are listed in Table 5.1 for all
evaluated points.

• Initialization cycles6: The number of initialization cycles used to obtain δrmax and δVmax

did lie around 10.000.

• Cycles: The simulation ran for between 3 · 105 cycles (for a vacancy simulation with λ
close to zero) and 2 · 106 cycles (for an interstitial simulation with λ close to one). For
each phase point it was checked that the system was well equilibrated.

• Umax and Ualter: For vacancies we used Umax = 3·104 and Ualter = 9·103. For interstitials
we used 5 · 104 ≤ Umax ≤ 8 · 104 and 3 · 104 ≤ Ualter ≤ 5 · 104. Here the lower regime
of Umax and Ualter was used for low values of κ and Γ and the higher regime was used
for high values of κ and Γ. We checked that for higher values of Umax and Ualter, the
concentration of vacancies or interstitials did not change significantly.

• Integration steps: We evaluated the thermodynamic integral using 34 points. In the
regime where the shrinking/growing particle behaved like it was non-interacting we used
∆λ = 0.01, whereas in regime where it had interactions we used ∆λ = 0.1.

For the Einstein integration simulation the following initial conditions were used.

• System size: The system size for each phase point in the Einstein integration simulation
was chosen such that it matched the system size in the corresponding thermodynamic
integration simulation.

• Cycles: The number of cycles used for each point was 105.

• As stated earlier the constants α and c were chosen such that the system did not melt
and the integrand was sufficiently flat. In this case we used α = 2000 and c = 1.

5Note that for a lot of these initial conditions the precise value does not matter much as long as you check
that the system is well equilibrated.

6In this case one cycle corresponds to N Monte Carlo steps with N the number of particles.
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• Gaussian points: We have not discussed the Gaussian quadrature method in this thesis,
but for the interested reader, the number of points used to evaluate the integral was equal
to 20.

5.3.1 Defect concentrations

The values obtained for the defect concentrations together with the values for µperfect(P, T ),
fvac(ρM , T ) and f int(ρM , T ) are displayed in Tables 5.2, 5.3 and 5.4. Points along the fluid-
BCC coexistence line can be found in Table 5.2 and points along the BCC-FCC/fluid-FCC
coexistence line can be found in Table 5.3. In Table 5.4 one can find the defect concentra-
tions for a point outside of the coexistence lines. Values in blue and red indicate respectively
that the concentration is calculated in a BCC and an FCC crystal. Looking at these defect
concentrations we can observe several interesting things which we will discuss below.

Table 5.2: Defect concentration along Fluid-BCC coexistence line. Blue text denote a BCC
crystal.

κ Γ Crystal βFPerfect βµperfect βfvac βf int 〈nvac〉 〈nint〉

2.0 442 BCC 50.6 131.4 −122.3 1 · 10−4

2.5 708 BCC 31.5 88.8 −80.5 97.5 2 · 10−4 2 · 10−4

3.0 1205 BCC 22.4 66.8 −58.3 75.2 2 · 10−4 2 · 10−4

3.5 2134 BCC 16.8 53.2 −44.9 61.9 2 · 10−4 2 · 10−4

4.0 3950 BCC 13.3 44.4 −36.4 53.1 3 · 10−4 2 · 10−4

Table 5.3: Defect concentration along BCC-FCC and fluid-FCC coexistence line. Blue and red
text denote respectively a BCC and an FCC crystal.

κ Γ Crystal βFPerfect βµperfect βfvac βf int 〈nvac〉 〈nint〉

3.0 1720
BCC 30.9 92.9 −79.3 107.7 1 · 10−6 3 · 10−7

FCC 30.9 92.9 −73.3 109.8 3 · 10−9 4 · 10−8

3.5 2565
BCC 19.7 62.5 −51.9 74.1 2 · 10−5 9 · 10−6

FCC 19.7 62.4 −47.6 75.8 3 · 10−7 2 · 10−6

4.0 4234
BCC 13.3 46.3 −38.3 57.0 3 · 10−4 2 · 10−5

FCC 14.2 47.0 −34.7 57.0 5 · 10−6 4 · 10−5

4.5 7483 FCC 11.0 38.1 −27.3 48.6 2 · 10−5 3 · 10−5

5.0 14488 FCC 9.4 33.6 −23.2 44.4 3 · 10−5 2 · 10−5
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Table 5.4: Defect concentration for a point away from the coexistence line. Blue text denote a
BCC crystal.

κ Γ Crystal type βPerfect βµperfect βfvac βf int 〈nvac〉 〈nint〉

3.0 1300 BCC 24.0 71.7 −62.2 8.0 · 10−5

Coexistence line

As we discussed earlier, the coexistence line we used slightly deviated from the calculated
points in Ref. [10]. By comparing the difference in free energy of the BCC and FCC crystal
along the phase boundary we can see what the influence of this deviation is on the free-energy
difference between the two crystal types. We see that for κ = 3.0 and κ = 3.5 the free energy
per particle of a perfect crystal is almost the same for FCC and BCC, indicating that these
phase points indeed lay on the actual coexistence line. For κ = 4.0 it turns out that BCC has a
lower free energy, meaning that the phase point we used actually lies slightly below the actual
coexistence line. However, looking at the snapshots of the particles in an FCC crystal during
the simulations we saw that the FCC crystal is at least still meta stable at this point.

Concentration along the Phase Boundary

We see that along all coexistence lines the concentration of vacancies increases when Γ and
κ increase. Apparently the combination of an increased interaction energy and an increased
screening length increases the value of fvac more than it decreases the value of µvac, allowing for
the forming of more vacancies. For interstitials we do not see the same phenomenon happen.
Along the BCC-FCC the concentration of interstitials first strongly increases while going to
higher κ. However, when we go to κ ≥ 4 (which is approximately the point where we go
from BCC-FCC phase transition to a fluid-FCC phase transition) the concentration starts
decreasing. Along the fluid-BCC phase transition it seems like the interstitial concentration
just stays constant, however it becomes clear from the not rounded data (not shown here) that
actually in this case too the interstitial concentration starts decreasing for κ ≥ 3. For both
the fluid-BCC and fluid-FCC phase transition we thus see that, after a certain value of κ, the
interstitial concentration decreases.

Concentration of interstitials versus concentration of vacancies

When we compare the interstitial and the vacancy concentrations we see that they are of
around the same magnitude; they differ at most by one order of magnitude. Sometimes the
concentration of interstitials is even larger than the concentration of vacancies (see for example
the point determined by κ = 3.0 in an FCC crystal). The most striking thing about this result
is that it is completely different from the hard sphere case. In that system, as we mentioned in
Chapter 1, the interstitial concentration is a factor 10−4 lower than the vacancy concentration.
This big difference between the two systems may seem surprising, however when one thinks
about it a bit more it can make sense. Due to the high energy penalty in the case of overlap
in the hard-sphere model, you expect the concentration of interstitials to be quite low in that
system. Because the Yukawa system consists of soft-core particles it lacks that high energy
penalty due to overlap. Therefore it seems reasonable that the energy cost due to a interstitial
is lower, resulting in a higher interstitial concentration.

Concentration dependence on crystal structure

Maybe one of the most striking outcomes is the difference in vacancy concentration between
FCC and BCC crystals. Looking at Table 5.3 we see that this concentration at some points
differs by a factor of 103. Note that this big difference between the two crystals is only there
in the case of a vacancy; in the case of interstitials the concentration difference between FCC
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and BCC crystals is not that large. The question then of course arises what causes this big
difference in vacancy concentration? Because we are at the phase boundary, the value of
µperfect is equal for both crystals, which means that the origin of the difference in concentration
needs to lie in the values of fvac. Looking at these free energies we indeed see the values
evaluated in the BCC crystal are between 4 and 6 kBT lower than the corresponding values
evaluated in the FCC crystal.

Although there may be many subtle processes that change the value of fvac, the free-energy
difference is so big that our first guess is that the geometry of the crystals must have influence
(that is after all the main difference between the two crystals). To find the cause for the
free energy difference we therefore start by looking at the potential energy in a static crystal,
where the particles are not allowed to leave their lattice sites. We compute the potential energy
difference between a perfect crystal and a crystal with one vacancy for both the BCC and the
FCC crystal. The potential energies we find are:

β∆U static
FCC = 31.4,

β∆U static
FCC = 31.6.

These potential energy differences are almost the same, meaning that they cannot explain the
large concentration difference between both crystals. Therefore we look at the same potential
energy difference but now in a dynamic crystal, where the particles are now allowed to leave
their lattice sites7. The new energy differences we find are:

β∆Udynamic
FCC = 35.6,

β∆Udynamic
BCC = 42.9.

In the dynamic case there is definitely a difference in potential energy between the two crystals.
Apparently the redistribution of particles in a BCC crystal, due to a vacancy, allows for a larger
decrease in potential energy than the redistribution in an FCC crystal. This is a surprising
result and therefore it is interesting to take a closer look at how particles redistribute in the
presence of a defect, something we will do in the next section.

5.3.2 Crystal structures of systems with a defect

We want to make a quantitative analysis of the particle redistribution due to vacancies to
identify differences in the redistribution of particles in BCC and FCC crystals due to a vacancy.
Furthermore it is also interesting to look at the redistribution of particles due to an interstitial.
Although the concentration differences between the crystals are not big in the case of an
interstitial it is still interesting to see how the crystal structure changes due to an interstitial.
Before we can take a closer look at the redistribution of particles however, we first need to
briefly discuss the geometry of the FCC and BCC crystals and examine the inter-particle
distances in both crystals.

FCC and BCC crystals

Both the BCC and the FCC crystal are schematically represented in Figure 2.3. The FCC
crystal has unit cells consisting of 4 particles. Each particle has 12 nearest neighbors at a

distance
√

3
2 lFCC with lFCC the lattice constant. In a BCC crystal, a cell unit cell consists of

2 particles. Each particle has 8 nearest neighbors, all at a distance of 1√
2
lBCC. We want to

compare the nearest-neighbor distances of both crystals and therefore we express the lattice
constants in terms of the density ρ:

lFCC =

(
4

ρFCC

)1/3

and lBCC =

(
2

ρBCC

)1/3

. (5.4)

7However they are still confined to their Wigner Seitz cell.
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(a) BCC (b) FCC

Figure 5.7: Three-dimensional representation of the redistribution of particles due to a vacancy.
The red dot indicates the lattice position of the vacancy.

We can now express the nearest neighbor distances of both crystals in terms of their lattice
constants and compare them, however this becomes quite complicated because of the two
densities. Fortunately we can simplify things: as discussed in Chapter 2, we express all length
in units of the Wigner Seitz radius which means that our system does not depend on either ρ
or a. We are thus free to choose the two densities (or rather the two a’s) of the two crystals
to be the same, making the comparison between the two crystals a lot easier.8 Using this
simplification we can omit all factors of a and show, by using Equation (5.4), that the ratio of
nearest neighbor distances is given by:

xnnFCC

xnnBCC

=

√
3

2 lFCC

1√
2
lBCC

=
25/6

√
3
≈ 1.02.

We thus conclude that for the same density the nearest-neighbor distances in an FCC and a
BCC crystal have approximately the same value.

Redistribution of particles due to a vacancy

Now that we have discussed the basic geometry of both crystals, we turn our attention to
the redistribution of particles due to defects. With the use of simulations we obtain for
both crystals the mean particle positions in the presence of a vacancy. To illustrate this
displacement graphically, we make a three dimensional plot containing arrows originating from
the lattice sites, pointing in the direction of the new particle positions. The three dimensional
plots for both the BCC and the FCC crystal are displayed in Figure 5.7: the left figure
shows the displacement in a BCC crystal and the right figure shows the displacement in an
FCC crystal. These figures are only meant as a qualitative display: the size of the vectors is
exaggerated and the length ratio between different vectors is slightly off. However, the colors
of the vector do represent the value of the actual displacement. From the three dimensional
plot we take the displacement projection on two cross sections parallel to one of the sides of
the cube close to the vacancy and plot them on top of each other. In Figure 5.8 we show
these cross sections for each of the crystals: the left figure again shows the displacement in a
BCC crystal and the right figure shows the displacement in an FCC crystal. In the figures
the black and red dots represent the original lattice positions, where the black points indicate
the particles laying in the same plane as the vacancy and the red points indicate the particles

8When we choose to use different densities, we need to express everything in terms of a, which makes it
more complicated to work with. However in the end the analysis is the same.
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laying in a neighboring plane. The dotted circle indicates the vacancy lattice site.

From these figures we observe a few interesting things. When we look at the displacement
of the nearest and next nearest neighbors it becomes clear that the displacement of particles
in an FCC crystal is much smaller than the displacement in a BCC crystals; the ratio of
the maximum displacement between both crystals turns out to be a factor of 1/2. We
computed earlier that the ratio between nearest neighbor distances in FCC and BCC crystals
is approximately one so it really is the case that particles close to the vacancy have a bigger
displacement in a BCC crystal than in an FCC crystal.

Another interesting aspect is the exact way the particles redistribute. In the FCC crystal all
particles move inward toward the Wigner Seitz cell that ‘contains’ the vacancy. In the BCC
crystal we see that the nearest neighbor particles all move inward too, but the next nearest
neighbors move alternately in- and outward. Although it is hard to quantitatively link these
results to a decrease in potential energy, it is clear that the two crystals have a completely
different particle redistribution. This helps to explain why the vacancy concentrations in the
FCC and BCC crystal differ so much from each other.

(a) BCC crystal (b) FCC crystal

Figure 5.8: Displacement of particles due to a vacancy.

Redistribution of particles due to an interstitial

As said in the beginning of this section, we are also interested in how the crystal structure
changes due to an interstitial. Using the same procedure as in the vacancy case, we obtain the
mean displacement of particles from their lattice sites due to the presence of an interstitial.
The three dimensional plots that contain the displacement arrows are showed in Figure 5.9:
the left figure again shows the displacement in a BCC crystal and the right figure shows the
displacement in an FCC crystal. From these figures it becomes clear that in both crystals
the distortion is mainly along specific lines; from the perspective of the interstitial, particles
laying on the lines going through the nearest neighbors are by far influenced the most. In
Figures 5.10 and 5.11 we plot the specific displacement lines schematically for respectively a
BCC and an FCC crystal. In the following paragraphs, we will consider the displacement of
particles due to an interstitial for each crystal in more detail.

We first take a better look at the redistributions of particles in a BCC crystal. Figure 5.12a
displays the displacement along a cross section parallel to one of the sides of the cube (one
of the planes displayed in Figure 5.11) and Figure 5.12 displays the displacement along a
diagonal cross section (one of the planes displayed in Figure 5.10). Again the length of the
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(a) BCC (b) FCC

Figure 5.9: Three-dimensional representation of the redistribution of particles due to a inter-
stitial. The red dot indicates the lattice position of the interstitial.

vectors is exaggerated, but the colors represent the actual displacement. It is clear from these
figures that the displacement is foremost along the directions of the nearest neighbors. We
also see that the influence of the interstitial reaches quite far, even the particles almost at the
edge of the box are displaced slightly9.

Figure 5.10: Lines, indicated as arrows, of displacement due to an interstitial in a BCC crystal.
The place of the interstitial is indicated as the red dot. The nearest neighbor particles are
indicated as the blue, yellow and green particles surrounding the interstitial.

Finally we take a better look at the displacement of particles in an FCC crystal due to an
interstitial. In Figure 5.13 we display a cross-section of this three dimensional representation
parallel to one of the sides of the cube (one of the planes displayed in Figure 5.11). Again
the influence of the interstitial stretches quite far along the displacement lines. When we
compare Figure 5.13 with Figure 5.12b, we can conclude that the planes, except for the
fact the orientation of the plane itself is different, look quite the same. The fact that the
displacement looks the same in both crystals could explain why the interstitial concentrations
in both systems are quite similar. However, although the figures look the same, there are also
some small but potentially very important differences between the two crystals.

9Note that because of periodic boundary conditions the particles at the edge of the box feel both the real
interstitial as well as the periodic image of it with almost equally. This means that the real influence of the
interstitial at the particles close to the boundary is hard to tell. We will come back to this later.
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Figure 5.11: Lines, indicated as arrows, of displacement due to an interstitial in an FCC
crystal. The place of the interstitial is indicated as the red dot. The nearest neighbor particles
are indicated as the blue, yellow and green particles surrounding the interstitial.

Figure 5.12: Displacement of particles due to an interstitial in a BCC crystal. The left figure
contains particles laying in one of the planes indicated in Figure 5.10, the right figure contains
particles laying in one of the planes indicated in Figure 5.11. The actual length of vectors is
indicated by their color.

First of all we see that, compared to the FCC case, in the BCC crystal the interstitial pushes
particles further outwards10. Note however, as said earlier, that it is not possible to say
something about how far the influence of the interstitial really stretches, because the particles
at the edge of the system feel both the real interstitial as well as its periodic image with
approximately the same strength. To solve this problem we would have to look at larger systems
which was not possible in the time frame of this project. Another difference between both
crystals is the mean displacement of the particles associated with the interstitial (so the two
particles that are in the same Wigner Seitz cell). In the FCC crystal these mean displacements
are very small, almost negligible. However, in the BCC crystal these displacements clearly
have a non-zero length. This non zero displacement might seem as pure coincidence, due to a
spread in statistics. However we think something else might be causing it and we will take a
closer look at it in the next section.

10We can see this by looking at the colors of the the displacement vectors.
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Figure 5.13: Displacement of particles in an FCC crystal due to a vacancy. The figure contains
particles laying in one of the planes indicated in Figure 5.11. The actual length of vectors is
indicated by their color.

Crowdions

As a warning this section is somewhat hypothetical; more research is needed to make firm
claims. However we still discuss it because the current results are already quite interesting.
Our hypothesis is that in the BCC case, instead of the interstitial pushing out particles
simultaneously in all nearest neighbor directions (as most likely happens in the case in the
FCC crystal), a crowdion forms.

In Chapter 1 we already briefly mentioned crowdions as extended one-dimensional distortions
of the crystal lattice due to an interstitial in the 111 direction [7]. The four possible 111
directions are precisely indicated by the arrows in Figure 5.11 and it is thus clear that in a BCC
crystal the main particle displacements due to an interstitial are along these 111 directions.
However the important characteristic of crowdions is that they are one dimensional. With
this we mean that the distortion is in only one of the 111 directions at a time, leaving the rest
the crystal almost unaffected.

The fact that the mean displacement of the particles associated with the interstitial in the
BCC crystal is non-negligible might indicate the presence of crowdions. After all it could
mean that the system has spent more time in one of the 111 directions than in the others,
resulting in a non-zero mean displacement. However it is not possible to draw any further
conclusions by only looking at the mean particle displacements over a long time interval.
Even if there would be a crowdion present, the system would almost certainly have switched
multiple times between different 111 directions after running for a long time, making it look
like the displacement of particles is in all four directions simultaneously. We therefore look at
mean displacements during smaller time intervals. Although this means that you have less
statistics and thus a bigger error in the displacements, it still seemed the case that for many of
the time intervals the main displacement of particles was only in one of the 111 directions.11

As said earlier, we cannot end this section with any decisive conclusions to whether crowdions
form in our BCC crystal or not, however the results mentioned above do indicate that it is
indeed interesting to take an even closer look at the behavior of interstitials in BCC crystals
of point Yukawa particles in the future.

11We will not include these figures because we cannot draw any real conclusions from them due to the fact
that they are based on too little statistics.
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Conclusions & Outlook

In this thesis we investigated the concentration of vacancies and interstitials along several
points of the fluid-BCC and BCC-FCC/fluid-FCC coexistence line in a crystal with soft-core
Yukawa particles. Furthermore we looked at how defects change the crystalline structure. We
found that along the fluid-BCC phase boundary both the vacancy and interstitial concentra-
tions are of the order 10−4. Along the BCC-FCC/fluid-BCC boundary the concentrations in
the BCC crystal lies between 10−4 and 10−6, while in the FCC crystal the concentration lies
between 10−9 and 10−5. Although we now have quite a good picture of the concentration of
defects in the Yukawa system, we did not consider very long range interaction regimes (κ ≤ 2).
In the future this regime also needs to be studied. We are aware of the fact that the for higher
κ’s the phase points we used turned out to be slightly away from the real coexistence line.
However because the crystals we looked at were still metastable the results we obtained still
give a good indication of the defect concentrations of the crystals.

From the outcomes of the concentration calculations we could draw several conclusions. First
of all we conclude that the concentration of vacancies and interstitials is almost on the same
order of magnitude. This outcome is very different from the archetypical hard-sphere case
where the concentration difference between both defects is on the order of 104 [4]. Furthermore
it became clear that the type of crystal has a very large influence on the vacancy concentration
along the phase boundary; for some phase points the concentration in the BCC crystal was
about 103 times higher than the concentration in the FCC crystal. We found that this large
concentration difference is due to the distinctive redistribution of particles in the presence
of a vacancy. In the case of a BCC crystal this redistribution allows for a larger decrease in
potential energy than in the case of an FCC crystal, resulting in a higher vacancy concentration.

We also looked at how an interstitial influenced the redistribution of particles. It turned
out that in both types of crystal it causes a distortion along the directions of the nearest
neighbors. Especially in the BCC crystal this distortion effects the particles along these lines
up to quite a large distance1. Although after running the simulation for a long time the
mean displacement of particles in both crystals looked approximately the same, we suspect
that when we look at smaller time intervals the displacement might look different in both
crystals. Our hypothesis is that, similar to the system discussed in Ref. [7], crowdions form
in the BCC crystal. If this is the case the distortion due to the interstitial is one-dimensional,
meaning that it exists only along one of the 111 direction at a time instead of along all four
111 directions simultaneously. This hypothesis is supported by the fact that when we look at
smaller time intervals it seems like the distortion occurs only along one of the 111 directions.
Another indication that crowdions are forming is the fact that, contrary to the FCC crystal,
the mean displacement of the particles associated with the interstitial is negligible. Although
the phenomena we looked at support the crowdion hypothesis, we cannot draw any firm
conclusions yet, due to the limited scope of these first series of simulations. However because

1We cannot say exactly how far the distortion extends due to the small size of our system
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the possibility of the formation of crowdions in a BCC crystal of point Yukawa particles is
very interesting we will conduct more research in the future to give a definitive answer to
whether crowdions really exist in this system. To do this we first need the modeled system
to be bigger, because we need to see how far the influence of the interstitial really stretches.
Furthermore we need to look at the distortion of the particle positions in the system as a
function of time to see whether this distortion really is one-dimensional. Of course these
results need to be compared with the FCC crystal to see whether the phenomena are really
different from each other.

Another conclusion we can draw from this thesis is that in these types of systems, Wang Landau
biasing does not perform well. Although this method in general is very useful it does not work
in systems where the energy of the system fluctuate heavily for constant order parameters .
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Appendix A

NPT and NVT ensemble

For the simulations in this thesis we need a working Monte Carlo simulation of an NVT
ensemble. To check whether this simulation works correctly, we do an NPT Monte Carlo
simulation of hard spheres with a potential

φ(r) =

{
0 if r > σ,

∞ if r ≤ σ,

with σ the particle diameter. Because the simulation of an NPT ensemble has an NVT -
ensemble embedded in it, verifying that our NPT code works, also verifies that we have a
working NVT ensemble. To check the simulation, we compare the simulated equilibrium
density for a given value of the pressure, βP , with the theoretical density.

Theory

The phase diagram of hard spheres consists of a fluid and an FCC phase. For hard spheres in
an FCC configuration, the equation of state is well approximated by [17]

PV

NkBT
=

3

1− z
− a(z − b)

z − c
, (A.1)

with P the pressure, V the volume, N the number of particles, kB the Boltzmann constant,
T the temperature, z = (N/V )σ3/

√
2, a = 0.5921, b = 0.7072 and c = 0.601.

For hard spheres in a fluid phase the equation of state is well approximated by the Carnahan-
Starling Equation [18]:

PV

NkBT
=

1 + η + η2 − η3

(1− η)3
, (A.2)

with η the packing fraction.

The program is run multiple times for different values of βPσ3. Around βPσ3 ≈ 11 a phase
transition occurs between a fluid and an FCC crystal and it depends on the initial configuration
whether the simulation will result in a fluid or an FCC crystal. Therefore around βPσ3 = 11
the program uses both fluid and crystal initial configurations. In Figure A.1 we plot the values
obtained for βPσ3 for different values of ρσ3, together with the theoretical equations of state
given by Equations (A.1) and (A.2). Clearly, from Figure A.1, we find excellent agreement
between the approximations and our simulations. Hence we conclude we have a working NPT
simulation.
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Figure A.1: Equation of state for hard spheres. Blue lines indicate the theoretical Equations of
state (A.1) and (A.2). Orange dots indicate data acquired by simulations.



Appendix B

Yukawa crystal

To check the simulation of a soft-core Yukawa crystal, we compute a quantity quite similar
to the potential energy in our system and compare it with the data given in the paper of
Hamaguchi, Fraouki and Dubin (1997) [10]. The quantity we look at is defined by:

U

NkBT
= Γ

 1

N

N−1∑
j=1

N∑
k=j+1

Φ
(rjk
a

)
− 3

2κ2
− κ

2

 , (B.1)

where Φ(r) is given by 4πε0aφ(r)/Q2, with φ(r) defined in Equation (2.2) and where rij is the
distance between particles i and j. Equation (B.1) can be rewritten as:

U

NkBT
= Γ

 1

N

N−1∑
j=1

N∑
k=j+1

Γ

(
a

rjk

)
exp[−κ

(
a

rjk

)
]− 3

2κ2
− κ

2

 , (B.2)

We compute Equation (B.2) for both the FCC and BCC crystal at the phase point determined
by κ = 4.0 and Γ = 13.000. For our system we use the truncation of the potential as discussed
in Section 4, however for the data in the paper it is not clear what sort of truncation is used.
According to the paper the values should be:

UFCC
kBTNΓ

∣∣∣∣
κ=4.0,Γ=13000

= −2.091193± 0.000004

UBCC
kBTNΓ

∣∣∣∣
κ=4.0,Γ=13000

= −2.091169± 0.000003

In our simulations we find

UFCC
kBTNΓ

∣∣∣∣
κ=4.0,Γ=13000

= −2.091193± 0.000006

UBCC
kBTNΓ

∣∣∣∣
κ=4.0,Γ=13000

= −2.091230± 0.000006

For the FCC crystal the two results are the same up to the used precision, while in the BCC
case the numbers, although quite similar, differ more than the range of the error bars. Given
the fact, however, that the truncation that is used in the simulations of the paper is unknown,
such a small difference as we see in the FCC case could be expected. Hence we can conclude
that the simulation of our crystal with Yukawa particles works correctly.
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Appendix C

Wang Landau biasing

(a) Original potential (b) Bias potential

(c) Transposed bias potential (d) Figures (a), (b) and (c) plotted together

Figure C.1: Check of the Wang Landau biasing potential.

To see if our Wang Landau biasing simulation works correctly, we test it by biasing a system
where we know the original potential in advance. If the biased potential and the original poten-
tial together form a uniform distribution, we can conclude that our biasing code works correctly.

In our case we look at a system of one particle that has a variable size. The order parameter is
in this system represented by the radius r of the particle, where we let the radius can fluctuate
between 0 and 100. The potential we impose on the system depends only on the radius of the
particle and has the shape of a uniform distribution,

φ(r) =
1000√
2π152

e−
(r−50)2

2·152 .
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We run the program with an initial g of 1 and let the initialization loops run until g < 10−6.
If the bias potential and original potential together indeed form a uniform distribution, we can
use geometry to show that the following must be true: the biased potential, mirrored in the
horizontal line through the intersections of the two potentials, must overlap with the original
potential perfectly. In Figures C.1a, C.1b, C.1c we plot respectively the original potential,
the biased potential and the transposed bias potential separately and in Figure C.1d we plot
all three together. It is clear from this figure that the bias potential indeed overlaps perfectly
with the original potential and therefore we may conclude that our Wang Landau biasing works
correctly.
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