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Abstract

The use of machine-learning techniques in particle physics is relatively new and unexplored when
compared to more conventional methods that use rectangular cuts. This thesis has its focus on
the reconstruction of D± mesons in transverse momentum range 2 ≤ pT ≤ 24 GeV/c, that are
produced in proton-proton collisions at centre-of-mass energy

√
s = 5.02 TeV with ALICE. The goal

of this thesis is to try to reduce the current statistical uncertainties on the extraction of the D± raw
yield by leveraging boosted decision trees for signal selection. This is especially important because,
besides being an excellent test for (perturbative) quantum chromodynamics, this type of measurement
constitutes the baseline for the corresponding measurement in heavy-ion collisions. Currently the
uncertainties on the baseline measurement are a limiting factor when comparing to models, to shed
light on the in-medium energy loss of charm quarks in the quark-gluon plasma. A precise estimation
of the baseline helps with extracting key plasma properties and therefore it contributes to paint a
picture of the early Universe, only a few microseconds after the Big Bang, since it is believed that at
that point all the matter in the Universe was in the quark-gluon plasma phase. The results presented
in this thesis show a promising increase in significances, which directly correlates to an improved
statistical uncertainty, compared to those obtained from the topological selection cuts used for the
standard ALICE analysis, along with some interesting deviations in efficiency-corrected yields. The
stability of the results obtained from the use of boosted decision trees is shown to be high, especially
at mid-to-high pT.
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1 INTRODUCTION 1

1 Introduction

For centuries scientists have tried to uncover and understand the intrinsic nature of the world and Uni-
verse we live in. We have now arrived at a time where we can start to unveil the fundamental properties
of matter itself, including how it behaves at extremely high energy, pressure and temperature. This could
teach us about the structure of the early Universe, the origins of matter and the fundamental forces of
nature.

Analysing collision data recorded by A Large Ion Collider Experiment (ALICE) [1] at the Large Hadron
Collider (LHC) [2] at CERN in Geneva gives us a way to probe this behaviour of matter at high energy,
pressure and temperature. A new state of matter, the quark-gluon plasma, is expected to be created,
and current leading theories can be subjected to empirical testing.

This thesis will analyse proton-proton collision data with the help from Boosted Decision Trees (BDT’s) [3]

for signal selection, and compare it to the standard rectangular selection method that is used by the AL-
ICE collaboration. The focus of this analysis will be on the production of D+ mesons, which is of
fundamental importance to the verification of (perturbative) quantum chromodynamics. In addition,
proton-proton collisions are needed as a baseline measurement for probing the quark-gluon plasma which
is believed to be created during heavy-ion collisions at ALICE. For some of the current heavy-ion analy-
ses, the dominant uncertainty arises from this baseline measurement. It is desired to have the statistical
and systematic uncertainties as small as possible for these analyses, so the baseline measurements needs
to be improved. In this thesis, it is shown that the use of BDT’s can serve this need and bring the field
of heavy-ion physics a step closer to a deeper understanding of the properties of the quark-gluon plasma.

Before the analysis itself, the needed theory and background will be presented, along with details con-
cerning the experimental setup at ALICE, the Monte-Carlo simulations, and the used data from ALICE.
Following that, the latest ALICE D-meson analyses results will be shown, before moving on to the analysis
performed in this thesis using BDT’s and discussing the obtained results.
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2 Introduction to heavy-ion physics

2.1 The Standard Model

Any field of physics relies on theoretical models to describe the fundamentals of that field. Particle physics
is no exception and uses the so-called ‘Standard Model’ [4]. This model divides all fundamental particles
into two distinct classes: fermions and bosons. Here, fermions are what matter is made of, whereas
bosons are tied to the interactions that happen at the fundamental particle level. It should be mentioned
that this is only true for gauge bosons, the reason of it will be covered later. All (currently known)
fundamental particles are shown in Figure 1. Fermions are displayed on the left side, and bosons on the
right. Keep in mind that any particle also has a corresponding anti-particle, although some particles,
such as the photon, are their own anti-particle. When a particle is its own anti-particle it is called truly
neutral.

Figure 1: Elementary particles of the Standard Model [5].

2.1.1 Fermions and their generations

The fundamental fermions are again divided in two: quarks and leptons. The most important difference
between these two are that quarks need to be in a bound state, meaning that they don’t exist as single
and free particles. Leptons, on the other hand, can and do exist as single, free particles.

Next to this division into quarks and leptons, there is the important classification of generations. Each of
the generations has two quarks and two leptons. Of the two quarks there is a positively and a negatively
charged one. The two leptons consist of a negatively charged particle and its corresponding neutrino,
which is neutral. The three generations are ordered from lowest-mass to highest mass, which also means
that the higher the generation the more rare and unstable the corresponding particles are. Particles that
belong to the first generation are the only particles that have been observed outside of particle acceler-
ators, with the exception of neutrinos [6] and muons [7]. Why there are three generations, and why there
exist similarities between them, are questions that are still outstanding.
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Quarks can combine into baryons or mesons, the difference being that the first consist of three quarks
and the latter of a quark anti-quark pair. The most well-known baryons are the proton and neutron,
the particles which form the nucleus of an atom. Combined with the electron, a lepton, atoms can be
formed. The different type of quarks are referred to as flavours, these flavours are: up, down, strange,
charm, bottom (also known as beauty), and top. Even though quarks almost exclusively combine into
states that consist of two or three quarks, it is not impossible for other combinations to exist. In the last
years both pentaquark [8] and tetraquark [9] particles have been identified during the analysis of LHCb
data.

2.1.2 Gauge bosons

As mentioned before, gauge bosons play an important role in the interaction between particles. They are
thought of as force carriers, making it possible for particles to decay into and interact with one another.
Current physical knowledge tells us that there are four fundamental forces: electromagnetic, gravita-
tional, strong, and weak forces. Of these, only the gravitational force is not described by the Standard
Model.

Interactions between fundamental particles is done through the emitting and absorbing of the carriers of
the force at hand. Some decay processes also involve emitting a force carrier that consequently decays.

Electromagnetic interaction has the photon as its force carrier. This interaction has an infinite range and
is described by quantum electrodynamics (QED). All, and only, charged particles can emit and absorb
photons as part of their interaction with other particles.

The weak force has Z and W bosons as force carriers and has the shortest effective range of 10−18 m. A
very special property of these bosons is that they can change the flavour of a quark, as there is no other
way for this to happen. Two well-known processes where this flavour change takes place are the fusion
that takes place in stars and radioactive beta decay.

The strong force is tied to a property called colour charge, which applies only to quarks and their force
carrier. The force that comes with this colour charge is carried by the gluon and has an effective range
of 10−15 m. Colour charge and its behaviour is described by quantum chromodynamics (QCD).

2.1.3 Higgs boson

All the way on the right in Figure 1 we find the, famously postulated and recently found [10,11], Higgs
boson, which is classified as a scalar boson. It deviates in the fact that it is the only fundamental particle
with spin 0. Why it is called a scalar boson and how it is tied to the mass of other particles is beyond
the scope of this thesis. However one interesting consequence of the existence of the Higgs boson is the
possibility that at high energies the electromagnetic and weak force fuse into a so-called electroweak force
carried by massless W and Z bosons. This fusing is part of the grand unification theory, where at high
enough energies there is only one fundamental force left.

2.1.4 Spin

Each fundamental particle has a property called spin. It should be made clear that spin is mostly a
mathematical structure, which can be measured, and does not so much as directly describe what is phys-
ically going on. However it does help to classify particles and their behaviour. Spin is one of the so-called
quantum numbers, which help to define the quantum properties of a particle in a very compact way.
Now, spin can either be an integer (0, 1, 2, ...) or a half-integer (1/2, 3/2, 5/2 ...).

Spin is also important for the distinction between fermions and bosons. Fermions are characterised
by half-integer spin and bosons by integer spin. This means that when combining three quarks into a
baryon, that baryon will also have half-integer spin and therefore be a fermion. On the other hand, when
combining just two quarks to get a meson, one will find the resulting particle to be a boson since the spin
will always be an integer when adding two half-integer spins. This is the reason why it should be specified
what kind of fermion or boson is being considered, because combined particles are a whole different breed
than the fundamental ones that were discussed here.
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2.2 Quantum Chromodynamics

As mentioned before, QCD describes the way quarks and gluons interact via the strong interaction. Each
quark has a certain colour charge: red, green or blue and their respective anti-colours. When combining
quarks into baryons, mesons, or any other multi-quark particle, the resulting colour has to be the neutral
colour white. For baryons this means each colour is represented once, since red, blue and green together
make white. When combining a colour and its anti-colour, the resulting colour is neutral as well, which
makes it possible to have mesons.

Gluons can also carry colour charge, and in that way facilitate a quark changing colour charge by carrying
away colour- and anti-colour charge to and from other quarks. Next to facilitating interactions and colour
charge changes for quarks, gluons also interact with each other by exchanging gluons themselves. One
of the effects of this interaction is that gluons attract each other, resulting in a rubber-band-like term in
the potential. This rubber-band-like potential has an interesting consequence called confinement: single
quarks cannot be isolated when in a bound state. Imagine a quark anti-quark pair held together by the
strong force, which manifests itself in the constant exchange of gluons between the pair. When separating
these quarks, the attractive force increases as if one stretches a rubber band. When the potential energy of
the system exceeds that of two quark masses, the connection ‘snaps’ creating a new quark and anti-quark
that bind with the original quark anti-quark pair, forming two quark anti-quark pairs. [12]

2.3 Quark-Gluon Plasma

At extremely high temperature and/or energy density, regular hadronic matter breaks down into an
almost perfect fluid [13] consisting of unbound quarks and gluons, interacting with each other through the
strong force. This hot dense QCD matter is called the Quark-Gluon Plasma (QGP). A schematic view of
the temperature-density space including the QGP conditions is shown in Figure 2. It also indicates what
conditions the LHC can create, which has a clear overlap with those of the QGP. It is believed that the
matter in the early Universe, a few microseconds after the Big Bang, consisted of a QGP. This is why
experimentation on the QGP is of special interest to fundamental physics; it could help one understand
how and why the Universe formed the way it did.

Figure 2: Schematic phase diagram of nuclear matter showing the phase transition into the quark-gluon
plasma [14].
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2.4 Probing the Quark-Gluon Plasma

The lifetime of the QCP at ALICE is around 10 fm/c or about 3.336 · 10−11 picoseconds [15]. Since this
is too little time to make direct observations, the only way to measure its properties is by probing the
outcome. As the formation time of a quark is inversely proportional to its mass, heavy quarks are formed
early in the collision, with charm quarks formed on a time scale of about 0.6 fm

c . The plasma is expected
to form later, at about 1 fm/c. So when measuring charmed particles that are creating during a QGP-
inducing collision, one has a very high certainty that those particles consist of charmed quarks formed
before the plasma. Quarks and gluons that traverse the plasma are prone to thermalisation, which is
caused by the loss of energy to gluon radiation and elastic scattering. For heavy quarks, gluon radiation
is greatly suppressed by the dead-cone effect, due to their large mass [16]. Therefore the heavy quarks are
expected to loose less energy than lighter quarks (and gluons) while traversing the plasma, and have a
thermalisation time longer than the lifetime of the QGP [17]. So the heavy quarks that are created before
the QGP formation can escape the plasma and hadronise forming the heavy-flavour particles that can
be observed in the ALICE detector. The aforementioned properties make heavy quarks, and therefore
heavy-flavour particles, ideal to probe the QGP.

To quantify the effects of the QGP on heavy quarks in heavy-ion collisions, a baseline measurement is
done by analysing collisions that do not produce the conditions needed for the plasma to form, but do
produce the heavy quarks of interest. This is where the analysis of D+ and D− mesons created during
proton-proton collisions, which lack the energy density required for the QGP, contributes to the currently
ongoing QGP research.
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3 A Large Ion Collider Experiment at CERN

Situated near Geneva is the European Laboratory for Particle Physics, or CERN. Historically this was
the European Council of Nuclear Research, from which (when translated to French) the acronym CERN
originates. At CERN all efforts are focused on research concerning what the Universe is made of and
how it works. For this they built the Large Hadron Collider (LHC), the worlds largest and most powerful
particle accelerator (at the time of writing). It accelerates particles in a circular ring, with circumference
of 27 km, to velocities close to the speed of light. Powerful and superconducting magnets are used to
keep the particles in the circular trajectory, and to ‘squeeze’ the particles together before collision. There
are multiple detectors and experiments at CERN to measure and understand what happens during these
collisions. This thesis will use data from ‘A Large Ion Collider Experiment’ (ALICE). The corresponding
detector is discussed in the next few sections. Probing the QGP is the main purpose of the ALICE
experiment. It should then be no surprise that the experiment is optimised for heavy-ion collisions and
for the highest possible LHC energy proton-proton collisions.

3.1 The ALICE detector

There are many sub-detectors within ALICE’s main detector, many of which are not directly relevant to
this thesis. Therefore only the detectors which are used to reconstruct heavy-flavour candidates will be
discussed shortly in the next sub-sections. For more in-depth information about ALICE’s detector and
its sub-detectors see the publication on ALICE at CERN [1].

Figure 3: The ALICE detector and its sub-detectors [18].

3.1.1 Inner Tracking System (ITS)

The ITS is located directly around the beam pipe where the collisions take place. It consists of six
cylindrical layers. The first two layers, at a radius of 3.9-7.6 cm, are the Silicon Pixel Detectors (SPD),
followed by two Silicon Drift Detectors (SDD) at 15.0-23.9 cm, and then finally two double-sided Silicon
micro-Strip Detectors (SSD) at 38.0-43.0 cm. Figure 3 shows a three-dimensional view of the ITS in the
top-right corner.

One of the main uses for the ITS is the localisation of the primary vertex of the collision, and the
decay vertices of short living resonances (like D-mesons or charmed baryons). Furthermore, the ITS is
well-suited to track and identify particles with momentum between 80 MeV/c and 200 MeV/c, and it
contributes to improve the momentum and angle resolution of the time projection chamber.
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Figure 4: Specific energy loss in the TPC as a function of momentum with superimposed Bethe-Bloch
lines for various particle species [19].

3.1.2 Time Projection Chamber (TPC)

Surrounding the ITS is the TPC, labelled ‘3’ in Figure 3. This cylindrical detector, with an inner radius
of about 85 cm and an outer radius of 250 cm, tracks all charged particles that move through its detection
gas comprised of Ne/CO2/N2 (90/10/5). It is the main tracking device of ALICE, giving up to 160 points
per track. The curvature of reconstructed tracks due to the active magnetic field is used to calculate the
momentum of a tracked particle. In addition the TPC assures particle identification via specific energy
loss, as the energy lost per distance dE

dx is an excellent identifier for different particle species. This energy
loss arises from ionizing the gas a charged particle is traversing, and is described by the Bethe Bloch
formula. Figure 4 shows the specific energy loss in the TPC as a function of momentum, along with
superimposed Bethe-Bloch lines for various particle species. The TPC can measure the specific energy
loss of a particle with a resolution between 5.5% and 6.8%.

3.1.3 Time Of Flight (TOF) detector

The TOF detector starts at a radius of 370 cm and ends at 399 cm. It consists of 90 modules, each with
24 Multi-gap Resistive-plate Chamber (MRPC) strips. These MRPC strips each have a time resolution
of 40 ps or better.

Measuring the time from collision to a particles arrival at the TOF detector is essential for the final
particle identification procedure for pions and kaons with momentum below 2.5 GeV/c and protons
with momentum below 4 GeV/c. This identification is done by using the time-of-flight of a particle to
calculate its velocity, which, when paired with the momentum of the particle, gives great identification
power. Figure 5 shows the particle velocity, in β = v

c , distribution as a function of momentum, along
with labels for the different particle species that can be identified.
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Figure 5: Particle velocity (β) distribution as a function of momentum, retrieved from Pb-Pb collisions
at centre-of-mass energy

√
s = 5.02 TeV [20].
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4 Introduction to decision trees and boosting

4.1 Decision trees

A decision tree is a structure used to make binary decisions depending on certain input variables. When
working with particle physics data this decision is whether a certain input should be classified as either
signal or background. In Figure 6 a simple two-layered tree is shown. This tree is merely an example
with some real variables, it does not make any useful selections. The exact physical meaning of these
variables will be discussed in a later section. When a data point is passed into it, it first checks the top
condition: whether the variable ‘pT’, which stands for the momentum of the candidate particle in the
transverse direction from the beam, is below the value of 5.2. If so, the data point is passed to the left,
if not it is passed to the right. On the left and right the same type of check is done, but with ‘invM’
(invariant mass of the candidate particle) and ‘cos p’ (cosine of pointing angle) as the variables being
checked, respectively. In the end, each data point will end up in the locations labelled ‘A’, ‘B’, ‘C’, or
‘D’ called ‘leaves’, where the data point is classified as either signal or background. For instance, if after
testing this tree on a dataset with known signal and background data points leaf ‘B’ is filled with 72%
signal, it will be a signal-type leaf. So when a data point ends up in this leaf ‘B’ it will be classified as
signal.

Figure 6: Simple example of a decision tree.

4.2 Growing a decision tree

Before one can grow a working decision tree, a training dataset is needed. The training set should be
representative for the actual data to which the tree will be applied. In the case of this thesis the training
data is obtained from Monte-Carlo simulations. Growing the tree starts by picking the first selection
criterium. The simplest way to do this is in a ‘greedy’ manner: pick the variable, and condition on that
variable, that splits the dataset the best. A good split is characterised by both resulting partitions of the
data having a good purity. After finding the best criterium, the same process is recursively applied to
the partitions. This algorithm stops when for instance the amount of maximum amount layers has been
reached, the amount of data in a leaf is too low or a partition can not be improved by splitting it, or any
other criterium that can be defined by the user.

4.3 Boosting

A single decision tree is very sensitive to changes in a dataset, leaving a lot desired to its performance.
An improvement to decision trees called ‘boosting’ can be very beneficial. In general boosting uses a
multitude of smaller trees (typically around 3-5 layers) to make decisions on the classification of a data
point. Given a certain input, the boosted decision tree (BDT) will output a real number between -1 and
1. The idea is that an output close to -1 describes a background-like data point and an output close to
1 a signal-like data point. Where to cut this output for the decision on a data point being background
or signal (the working point) is done afterwards by the user, or by the program when supplied by the
criteria to be optimised.

The boosting technique used in this thesis is called ‘gradient boosting’. The boosting procedure starts
with building a small decision tree on the training data. After this the quality of the tree is assessed with
a loss-function. The goal is to gradually reduce this loss function by sequentially adding the weighted
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output of differently trained trees. Every time a differently trained tree is added, it should increase the
performance on data points that were classified wrongly, without altering it on correctly classified data
points. At each step gradient descent is leveraged to both weight the data on which the new decision tree
is grown, and weight the new decision tree itself.

4.4 Testing

After training a BDT, one needs to test it before application. For this, part of a Monte-Carlo dataset is
used, which has not been used for training. The BDT is applied to this testing Monte-Carlo dataset, and
then compared to the results when applying the BDT on the training set. An important comparison is
the so-called ‘response’ from the BDT. Here, all output values from the BDT are plotted in a histogram
for both signal and background type data. If the response from the BDT differs too much, ‘overtraining’
could be in effect. Overtraining is when a machine learning tool has learned to give the right answer
specifically to the training dataset, and not to the general problem at hand.
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5 Implementing boosted decision trees

The implementation of BDTs in this thesis is done using ROOT [21] v6.14/08 and its Toolkit for Multi-
variate Variable Analysis (TMVA) [22]. All scripts are written in C++, all running on the Ubuntu Linux
distribution version 18.04.1 LTS.

5.1 Preprocessing

Before BDTs are used, the raw track info from the ALICE detector needs to be preprocessed. Using
standard ALICE filtering, an AOD friendfile is created, from which good D+ candidates are selected that
undergo some very loose topological cuts (so signal efficiency is basically 100%). All candidates are then
subjected to the topological selection cuts of the standard analysis and given a flag that tells whether
it is selected or not. The final result is a TTree that contains only candidates without any information
about the relevant collision events, which can be used as input in TMVA.

The D+-meson reconstruction is done from the track and PID data by selecting particle triplets that
match the decay products of the decay channel D+ → π+π+K− (and its anti-particle equivalent). A
schematic view of this reconstruction from a particle triplet is shown in Figure 7. The D+ decay vertex
(blue dot) and momentum vector is reconstructed from the track and kinematics information of the decay
products. The dashed line in Figure 7 shows the vector from the primary vertex (red dot, where the
collision took place) to the D+ decay vertex. The angle between this dashed line and the D+ momentum
vector is shown as θ, which is known as the ‘pointing angle’. Taking the cosine of this angle tells you how
much the two vectors point in the same direction, with a value of 1 being a perfect overlap, and a value
of -1 resulting from them pointing in exactly opposite directions. This makes it very useful for selection
in both earlier and later stages.

쀃⬀ 쀃⬀

䬀ⴀ䐀⬀ 搀攀挀愀礀 瘀攀爀琀攀砀

䐀
⬀ 洀漀洀

攀渀琀甀洀

倀爀椀洀愀爀礀 瘀攀爀琀攀砀

렃

Figure 7: Schematic view of a D+-meson reconstruction from a particle triplet.

5.2 Training

5.2.1 Training and testing data

The data used for training and testing consists of two types: background and signal. All training data
is partitioned into the pT-bins [2,3], [3,4], [4,5], [5,6], [6,7], [7,8], [6,8], [8,10], [10,12], [12,16], and [16,24]
GeV/c. Background data is divided into 75% for training and 25% for testing. The signal dataset is
divided into 90% for training and 10% for testing, since there is less signal statistics available. The
testing set is used to evaluate over-training of the BDT and to retrieve signal and background efficiencies.
Each pT bin is trained separately, resulting in a BDT used only for application on data within that pT bin.

Signal data is taken from the Monte-Carlo simulation dataset (LHC18a4a cent), for which heavy-flavour

enriched events with forced D+(−) → K−(+)π+(−)π+(−) decay channels were generated with the Pythia
6.4.25 event generator [23] (using the Perugia 11 tune [24]). Background data, on the other hand, is taken
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from the ALICE dataset sidebands at three sigma from the mean1, for each pT-bin separately. This is
done to minimise any bias in the analysis, because the simulation does not match the data completely,
especially in the low pT regions. In Figure 8 the variables for a D+ candidate are shown, for both data
and MC, within pT range from 3 to 4 GeV/c. Each plot has a bottom panel that shows the data/MC
ratio, highlighting the extent of this mismatch.

5.2.2 Training variables and parameters

All variables used for training are shown in Table 1, along with their definitions. Even though redundant,
the transverse momentum of the candidate particle has been left in as training variable. For future refer-
ence, it is better practice to leave it out. Decay length (d len) is the distance from the point of collision
(primary vertex) to where the candidate particle decays (secondary vertex). The pointing angle is the
angle between the momentum of the candidate particle, and the path from primary to secondary vertex,
also known as the decay path, and is depicted as θ in Figure 7. The impact parameter is defined as the
transverse distance between the two colliding proton nuclei. Training is not done on the invariant mass,
since it would result in signal being strongly selected on the invariant mass creating a bigger invariant
mass peak which causes the fitting procedure to overestimate yield.

pt cand Transverse momentum of candidate
d len Decay length of candidate
d len xy Decay length of candidate in the plane perpendicular to the beam direction (xy-plane)
norm dl xy d len xy divided by its error
cos p Cosine of the pointing angle
cos p xy Cosine of the pointing angle in the xy-plane
imp par xy Impact parameter in the xy-plane
pt prong0 Transverse momentum of the first pion from the D+ decay
pt prong1 Transverse momentum of the Kaon from the D+ decay
pt prong2 Transverse momentum of the second pion from the D+ decay
sig vert Dispersion of the primary vertex

Table 1: All variables used for training and their definitions.

Each BDT is trained using gradient boosting for its boosting algorithm with a total number of 500 trees.
Each tree has a maximum depth of 2, and a minimum node size of 2.5%. Shrinkage, which controls how
much the learning rate is reduced at each step, is set to 0.10. Lastly, nCuts, the number of cuts done on
a variable to find a value with good separation, is set to 50. All training options and their meaning can
be found in TMVA’s user guide [22].

1Here, both sigma and the mean are taken from a fit to the Monte-Carlo pure signal invariant mass spectrum.
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Figure 8: Spectra for all training variables for a D+ candidate, for both data and MC. Histograms are
normalised by integration and plotted together for each variable, each with a bottom panel showing the
data/MC ratio after normalisation.
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5.3 Validation and application

Before applying a trained BDT, it must be validated. In this thesis the validation that takes place directly
after training is done by checking for over-training. As mentioned before, this is done by applying the
BDT to both the training and testing dataset, and comparing their responses. An example of such a
comparison can be seen in Figure 9, with all such comparison plots available in Figures 21 and 22 in
the Appendix. The plot shows a clear agreement between both responses, indicating that there is no
over-training. The final validation takes place after obtaining results, where the BDT is checked for its
stability with respect to the chosen cut value on its output.

Figure 9: An example of the over-training check by comparing the training and testing sample responses
of the BDT for 3 ≤ pT ≤ 4 GeV/c.

Data for application is taken from ALICE proton-proton collisions at centre-of-mass energy
√
s = 5.02

TeV in period LHC17p using the CENT with SDD reconstruction. Note that only one of the two
reconstructions2 is used, so there is more statistics available than used here. During application, each
D-meson candidate has its variables used as input for the BDT, generating a response which is saved
along with the values of all variables. This response is also added to a histogram to eventually display
the total response of the BDT. When classifying candidates, a cut value on the BDT response is chosen.
When the response for a candidate is higher than that cut value, it is classified as signal and added to
a histogram. When this is done for all candidates in a pT bin, the histogram is saved and the yield
extraction procedure can start.

2The FAST reconstruction is not considered.
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6 D+-meson signal extraction

After classifying the data, the next challenge is to extract the amount of signal and background in the
sample. For this a model needs to be fit to the invariant mass spectrum of the sample, after which we
can integrate the fitted function. After extracting the amount of signal in the sample, a correction needs
to be performed to retrieve the amount of signal in the pre-processed dataset. This is done by correcting
for the efficiency with which signal is selected. This entire procedure is described in the next subsections.

6.1 Fitting procedure and raw yield extraction

The combined background and signal fitting function is defined in Equation 1 as a Gaussian superposed
with a second-order polynomial, where the Gaussian represents the signal and the polynomial represents
the background:

f(x) =
A

σ ·
√

2π
· e

(x−µ)2

2·σ2 + a · x2 + b · x+ c. (1)

First the second order polynomial is fit on the sidebands three sigma from the Gaussian mean3, where
both the sigma and the mean values are extracted from a Gaussian fit on the appropriate Monte-Carlo
data. This is done to get good starting points for the parameters a, b, and c. Starting points for σ and µ
are also extracted from the fit to the Monte-Carlo data. For the parameter A, the amplitude is estimated
and divided by the normalisation factor to get a good starting point. Then the combined function is
fitted to the sample. An example of a completed fit is shown in Figure 10, where the combined function
is plotted in red. The polynomial, or background, part of the fitted function is plotted as a dashed black
line. The fit itself clearly follows the data, with a mean close to the mass of the D+-meson at 1869.5 ±
0.4 MeV/c2 [25].
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Figure 10: Fit to the invariant mass spectrum from the ALICE standard selection in pT range from 4 to
5 GeV/c.

With the function fitted to the data, the extraction of raw yield can start. The implementation of this is
taken directly from AliPhyscis, the standard software used by the ALICE heavy-flavour analysis group,
functions4. All signal and background yields are extracted from within three sigma around the mean
from the fitted Gaussian function.

For the raw background yield, the fitted background function is integrated and divided by the binwidth
of the histogram. The error is estimated by the average squared error of the bins in the three sigma
sidebands, normalised to the yield count. The raw signal yield is extracted by integrating the Gaussian

3this is done by excluding points that fall within three sigma of the mean.
4Functions are named ‘Signal’, ‘Background’ and ‘Significance’. They are available at https://github.com/alisw/

AliPhysics/blob/master/PWGHF/vertexingHF/AliHFInvMassFitter.cxx.

https://github.com/alisw/AliPhysics/blob/master/PWGHF/vertexingHF/AliHFInvMassFitter.cxx
https://github.com/alisw/AliPhysics/blob/master/PWGHF/vertexingHF/AliHFInvMassFitter.cxx
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signal function. The error is estimated by normalising the error of fit parameter A with respect to the
yield count.

The significance is computed as S√
S+B

, where S and B are, respectively, the extracted raw signal and

background yields. The error is estimated by propagating the errors of the raw signal and background
yields. This significance is directly related to the statistical uncertainty on the measurement, where a
higher significance indicates a more precise measurement. The signal-to-background ratio is computed
as S

B and errors are again estimated by propagation.

6.2 Efficiency correction

The efficiency is obtained by classifying the candidates from the testing data, and counting how many
signal and background entries are classified as signal or background. The formula used here is shown in
Equation 2, which can be applied to get both the background and signal efficiencies. The correction is
then done by dividing the raw yield by the corresponding efficiency, after which the errors are correctly
propagated. This gives the final efficiency-corrected yield.

Efficiency =
true positives

true positives + false negatives
. (2)

6.3 Choosing a BDT response cut

When classification is done using a BDT, a cut value on the output needs to be chosen. In this thesis
the choice is made to pick the value at which the significance is maximized. To do so, a ROOT function
is defined that cuts on the BDT output, goes through the fitting and yield extraction procedures and
returns the significance. This function is plotted in Figure 11 for 2 ≤ pT ≤ 3 GeV/c (left plot) and
4 ≤ pT ≤ 5 GeV/c (right plot). Finding the maximum of this function is then done by ROOTs build-in
functionality, of which the result is shown as a vertical blue line.
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Figure 11: Significance obtained at different boosted decision tree cut values, shown in two pT-bins. The
maximum-significance cut is shown as a vertical blue line in both plots.
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7 ALICE measurement of D+ meson production

During the development of the BDT analysis in this thesis, the ALICE collaboration has been writing a
paper based on the standard analysis, which was concluded in May of 2018. At the moment of writing
this thesis, only the Preliminary Physics Summary is available. They have measured the production of
D0, D+, D∗+, and D+

s mesons in proton-proton collisions at
√
s = 5.02 TeV. When compared to the

previous measurement at
√
s = 7 TeV, this measurement should allow for a more accurate determination

of the nuclear modification factor RAA, which is a measure for the ratio between the yields obtained in
lead-lead and proton-proton collisions. The data used in this thesis is a subset of the data used by this
analysis from ALICE, containing about half the statistics. Since only the D+-meson production is of
interest in this thesis, only those results will be discussed here.
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Figure 12: pT-differential production cross sections for prompt D+ mesons compared to pQCD calcula-
tions. The ratios of the data to the theoretical predictions are shown in the lower part of each panel. [26]

The measured prompt D+-meson pT-differential cross section is compared with the results of several
perturbative QCD (pQCD) calculations in Figure 12. For the FONLL [27,28] and GM-VFNS [29,30] calcu-
lations the measured cross sections fall within uncertainties, lying systematically on the upper edge of the
uncertainty band of the FONLL predictions. GM-VFNS tends to underestimate at low to moderate pT,
overestimating at higher pT. The kT factorisation model [31] starts overestimating at pT above 7 GeV/c,
describing the measurements at lower pT values.
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8 Results and comparison to standard ALICE selection

8.1 Comparing the results

To properly compare the BDT analysis to the standard ALICE analysis, the only step that should differ
is that of signal selection. As mentioned before, during the pre-processing each D+ meson candidate is
given a flag that indicates whether it passes the standard ALICE cuts or not. A simple C++ ROOT
script takes the data, cuts it on the pT values depending on which pT bin is requested, and then cuts on
the before mentioned flag generating a signal and a background histogram which are saved in a .root file.
The signal histogram then undergoes the same fitting and signal yield extraction procedure as the BDT
generated histogram would. Finally the efficiency correction is applied, where the efficiency is calculated
from the same Monte-Carlo dataset that is used for the BDT efficiency calculation. A comparison be-
tween the signal histogram of the standard ALICE and the boosted decision tree selection is shown in
Figure 13. Both show a clear signal-like Gaussian peak, with the ALICE standard selection showing a
little lower Gaussian peak and a bigger amount of entries in the sidebands, which is especially prominent
on the left side.
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Figure 13: Invariant mass spectra of D+ candidates with 3 ≤ pT ≤ 4 GeV/c after ALICE standard (left)
and boosted decision tree (right) signal selection.

Moving to the pT-differential prompt production cross section of D+ mesons would give a result that is
directly comparable to most theoretical and other analyses at the same centre-of-mass energy. However,
in this thesis the focus is a comparison between BDT-obtained results and that of the standard ALICE
analysis. The equation for this cross section is:

d2σD

dpTdy
=

1

c∆y(pT)∆pT

· 1

BR
·

1
2fprompt(pT) ·ND+D,raw(pT)||y|<yfid(pT)

(Acc× ε)prompt(pT)
· 1

Lint
. (3)

Here the raw signal yield (ND+D,raw) is multiplied by the fraction of signal created by the main collision
(fprompt) and halved, since both particle and anti-particles are measured. It is then divided by the
fraction of signal measured by the detector and the signal efficiency, the branching ratio of the decay
(BR), the width of the pT-bin and the correction factor for rapidity correction (c∆y), and the integrated
luminosity (Lint) which is a measure for the number of collisions. All these factors are the same for both
the BDT and ALICE standard selection, except for fprompt, which is assumed to not be too different.
For the standard analysis values of fprompt are normally of the order 0.95. Feed-down D+ production is
about 50 times less probable to occur, and the extracted signal of both analyses is of the same order,
which all together support the assumption. When moving to the inclusive cross section, there should be
no differences.
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8.2 Raw yield

All obtained raw signal and background yields are shown in, respectively, the upper and lower plot of
Figure 14. For all but the lowest pT-bin, the boosted decision tree selection results in a higher raw signal
yield than that of the ALICE standard selection. The raw background yield results show lower values for
the ALICE standard selection when pT ≥ 5 GeV/c. Plots of the fits are shown for 4 ≤ pT ≤ 5 GeV/c
and 12 ≤ pT ≤ 16 GeV/c in Figure 15. A complete collection of all fits relevant to this thesis is available
in the appendix in Figures 23 and 24.
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Figure 14: Raw signal yield (left) and raw background yield (right) obtained by the boosted decision tree
and ALICE standard analysis.

The significance of the results is shown in the upper plot of Figure 16, with the signal-to-background
ratio shown in the lower plot. The significance obtained with the BDT selection follows roughly the
same shape as that from the ALICE standard selection, and has central values higher in all pT bins.
There is an overlap of the uncertainty bands in the last two bins, with all other bins having a clear gap
between between them. Signal-to-background ratio hovers around 1 for the BDT selection, ranging from
just below 0.9 to just above 1.2. The ALICE standard selection shows a slowing increase of this ratio,
starting at just below 0.2 and stabilising for pT ≥ 10 GeV/c around a ratio of 1.1.

The mean (µ) and sigma (σ) of the Gaussian fit are displayed in Figure 17 in the upper and lower plot,
respecively. Values for µ and σ obtained from fitting pure Monte-Carlo signal in the appropriate pT bin
are also displayed. All BDT and ALICE standard obtained values for µ fall within their uncertainties,
both mostly deviating from the Monte-Carlo values. Almost all σ values follow the Monte-Carlo values
within uncertainty bands. The exception here is the ALICE standard obtained value with 10 ≤ pT ≤ 12
GeV/c, which falls below the value of both the BDT and Monte-Carlo values. However, since the gap
between the uncertainty bands is not very large compared to the uncertainty itself, and the amount of
signal in this bin is relatively low, this could be attributed to statistical fluctuation. Furthermore, this
lower value with relation to the Monte-Carlo is always observed in D-meson analyses in ALICE.
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Figure 15: Fits on the invariant mass spectra from the ALICE standard (left side) and boosted decision
tree (right side) selections for 4 ≤ pT ≤ 5 (upper plots) and 12 ≤ pT ≤ 16 (lower plots) GeV/c.
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Figure 16: The significance (left) and signal-to-background ratio (right) obtained by fitting the boosted
decision tree and ALICE standard selection invariant mass spectra.



8 RESULTS AND COMPARISON TO STANDARD ALICE SELECTION 21

5 10 15 20 25
)c (GeV/

T
p

1.864

1.866

1.868

1.87

1.872

1.874

)
2

c
 (

G
e

V
/

µ

MonteCarlo

Boosted Decision Tree

ALICE Standard

5 10 15 20 25
)c (GeV/

T
p

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

)
2

c
 (

G
e

V
/

σ

MonteCarlo

Boosted Decision Tree

ALICE Standard

Figure 17: The Gaussian mean (left) and sigma (right) obtained by fitting the boosted decision tree and
ALICE standard selection invariant mass spectra.

8.3 Efficiency-corrected yield

All results from correcting the raw signal yields for efficiency are shown in Figure 18. The efficiencies used
for this correction are presented in Figure 19. The BDT and ALICE standard efficiency-corrected yields
follow a similar shape, with the BDT analysis consistently producing lower central values. Most bins have
values with clearly, or close to, overlapping uncertainty bands. The only pT-bin that shows a significant
difference between the obtained value is that of 5 to 6 GeV/c. In Figure 20 the efficiency-corrected yield
in this bin is shown as a function of BDT cut value, including a line that marks the optimal significance
cut value that is used in this thesis. This plot shows a consistent and stable output for cut values from
-0.75 up to 0.85, solidifying the choice of the BDT cut at 0.66. A collection of this type of plot for all
pT-bins is available in the Appendix in Figure 25. The relatively big jump in BDT signal efficiency for
5 ≤ pT ≤ 6 GeV/c in Figure 19 could be a hint at the root cause of the much lower efficiency-corrected
yield produced by the BDT in that bin, since the corresponding raw yield in Figure 14 does not show a
relatively big fall compared to the ALICE standard fall and surrounding data points.
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Figure 18: Efficiency-corrected yield obtained by the boosted decision tree and ALICE standard analysis.
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Figure 19: Signal efficiency for the boosted decision tree and ALICE standard selection.
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Figure 20: Efficiency-corrected yield obtained at different cut values on the boosted decision tree output.
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9 Conclusion, Discussion, and Outlook

This thesis has shown that a boosted decision tree is able to make useful selections on ALICE D+ meson
candidates for raw yield extraction purposes, resulting in higher significance values than obtained with
the ALICE standard selections and high signal efficiency for mid to high pT. The efficiency-corrected
yields have shown to be relatively stable when varying the cut value that is applied to the BDT output. A
tension with the ALICE standard analysis is observed for 4 ≤ pT ≤ 7 GeV/c, where efficiency-corrected
yields are lower. This may raise questions about the reliability of the BDT-produced invariant mass
spectra. Sadly, any further investigation lies outside of the scope of this thesis. A possibly interesting
use-case for the BDT-based selection, which was briefly considered for this thesis, would be to make a
distinction between prompt and feed-down D+ meson production. This would give a way to indirectly
measure beauty quark energy loss in the QGP, which is very valuable since a direct measurement is
extremely hard for ALICE. Furthermore, it would give yet another probe of the QGP that is expected
to have even less energy loss when traversing the plasma than charm quarks.

An estimation of the systematic uncertainties is needed to properly quantify the extent of the observed
deviations in efficiency-corrected signal yield, and better assess the overall quality of the BDT-produced
selections. Calculating the D+ meson pT-differential prompt production cross-section should be done for
a more in-depth comparison of the results, giving the option to include theoretical prediction models and
results obtained by other researchers. There is also room for optimisations to be done on the training
variables, as some variables can be excluded without losing functionality. One of the biggest limitations
when using a BDT lie in the used Monte-Carlo dataset. This thesis has shown the extent to which
variables from ALICE and Monte-Carlo data disagree. BDTs, and most other basic machine-learning
techniques, are particularly sensitive to training data that does not properly match real-world data. It
could therefore be beneficial to apply some cuts to the Monte Carlo data before training to minimise the
impact of some variables that have too large of a mismatch. New and improved Monte-Carlo simulations
are being worked on, leveraging machine-learning for the simulation itself. This is a great outlook for
both the application of BDTs and the ALICE standard selection procedure, especially in low pT regions.

All in all, the use of a boosted decision trees instead of the standard rectangular cuts has shown to
be promising for obtaining an even more precise pt-differential cross section measurement due to the
higher significances on the extracted raw yields, validating the current ongoing development of BDT-
based analysis for ALICE and giving a great prospect at supplementing the tools that particle physicists
work with today.
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A Appendix

A.1 Plots

Figure 21: Over-training check in the first six pT-bins.



A APPENDIX 25

Figure 22: Over-training check in the last four pT-bins.
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Figure 23: All fits from the ALICE standard analysis.
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Figure 24: All fits from the boosted decision tree analysis.
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Figure 25: All efficiency-corrected yields as function of BDT cut plots.
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A.2 Files and scripts

The used ALICE data and Monte-Carlo files are available at https://drive.google.com/drive/folders/
1VPpj18n8NAJO2bO2EXNhTW2c92biR5Y0?usp=sharing.

All C++ ROOT scripts are available at https://github.com/CHBKoenders/BONZ_ALICE_BDT.

https://drive.google.com/drive/folders/1VPpj18n8NAJO2bO2EXNhTW2c92biR5Y0?usp=sharing
https://drive.google.com/drive/folders/1VPpj18n8NAJO2bO2EXNhTW2c92biR5Y0?usp=sharing
https://github.com/CHBKoenders/BONZ_ALICE_BDT
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