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Abstract

Counting triangles and enumerating trusses are fundamental graph analysis algorithms with
several applications. The 2018 Static Graph Challenge sought to improve the efficiency of these
algorithms, so that the time for graph analysis decreases and larger graphs can be analysed.
In this thesis we compared different serial algorithms on the CPU for both triangle counting
and truss enumeration. The algorithms for triangle counting can be divided into two categories:
(1) linear algebra based algorithms using the adjacency matrix of a graph, and (2) graph based
algorithms using the edge list and neighbourhoods of a graph. We concluded that the graph based
algorithms were faster and could handle larger graphs than the linear algebra based algorithms.
For enumerating trusses we concluded that treating 3-trusses as a separate case gave better
results because special properties of 3-trusses could be used. We also concluded that the runtime
for k-trusses did not strongly depend on k for k > 3.

After writing our own algorithms we looked at the champions of the 2018 Graph Challenge, as
well as the results for triangle counting of the 2017 Graph Challenge. The focus of the champions
was on improving the rate of edges processed per second by improving how the graph data is
partitioned for parallel computing and how the graph data is stored in memory. One of the
champions did this for linear algebra based algorithms on CPUs by improving the partitioning
of the adjacency matrix before doing masked sparse matrix matrix multiplication. Another
champion did it for a graph based algorithm on GPUs by improving how the graph partitions
are stored in memory before and during processing. The highest rate of edges processed per
second achieved for triangle counting in the 2018 Graph Challenge was 4.7 ·109 edges per second,
which is approximately a factor 104 higher than the rate that we achieved for the same graph.
The largest graph processed for triangle counting in the 2017 Graph Challenge has 2.7 · 1011

edges, which is approximately a factor 105 larger than our largest graph. These numbers are not
comparable due to differences in available computing power.
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1. Introduction

1.1 The Challenge

The amount of data collected and analysed with graph analytics is large and increasing rapidly.
There is also an increasing need to analyse evolving graphs in real-time. The structure of graph
data can make current graph analytics inefficient. The size of the graphs that can be processed
is limited by the size of the main memory and by the amount of processing required [1]. A new
graph analytics system needs to be developed to enable the possibility of analysing larger graphs
or more complex questions that require more processing. The Graph Challenge has as a goal
to make advancements in graph analytics systems. The main focus is to accelerate and expand
graph analytics algorithms by improving algorithms and their implementations [2].

The 2018 Graph Challenge consisted of two challenges:

• Static Graph Challenge: Subgraph Isomorphism, and

• Streaming Graph Challenge: Stochastic Block Partition.

This thesis focuses on the Static Graph Challenge. The Subgraph Isomorphism Problem is the
computational problem of determining whether a graph G contains a subgraph that is isomor-
phic to a graph H. This problem is known to be NP-complete, since the subproblem of finding
k-cliques is NP-complete [3]. However, there exist subproblems that have polynomial time com-
plexity.

The 2018 Static Graph Challenge focuses on algorithms that find triangles and k-trusses [1].
Triangle counting can be considered as a special case of the subgraph isomorphism problem
with a triangle as the subgraph of interest. Algorithms that find triangles do not find general
matching subgraphs, but can be a part of algorithms that do. Algorithms that find k-trusses can
be used for characterisation of (sub)graphs. If k-truss features of two (sub)graphs are inconsistent
this proves that these (sub)graphs are not isomorphic. Consistent k-truss features indicate that
additional examination is required to determine if an isomorphism exists. Improving the efficiency
of triangle counting and k-truss algorithms may therefore lead to improvements in efficiency of
subgraph isomorphism algorithms and was therefore the goal of the 2018 challenge [2].

1.2 Applications

Counting triangles and determining k-trusses of graphs is usually not directly interesting in
graph analytics, but they are both fundamental algorithms that may be part of more complex
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algorithms used in graph analytics. Triangle counting and k-truss determination are anticipated
to be useful for a fast initial analysis of the structure of large graphs and to point out regions of
interest for further analysis with slower, more complex algorithms [2].

There exist many important measures of a graph that are based on triangles, for example the
clustering coefficient and the transitivity ratio. The clustering coefficient is a measure for the
tendency of nodes to cluster together and for how much a graph resembles a so called small-world
graph. The transitivity ratio is the probability of three connected nodes to be a triangle [3].

Below are some examples of real world applications of graph analytics where triangle counting
or k-trusses can be applied.

• Spam detection: Local triangle counting, where for each vertex the number of triangles it
is part of is counted, can be used for detecting web spam. The distribution of the number
of triangles for a host is different for nonspam and spam hosts. This is used to detect if
spamming is present in large scale web graphs [4].

• Epidemiology: In preventing epidemics a fast identification of the pathogens and their
source is important. During an E. coli outbreak in 2011 in Germany it took more than a
month to identify the source correctly. This was too late to have a large impact on the
epidemic. Improved algorithms can decrease this time significantly to possibly less than
1 day [5]. Genetic sequencing is becoming faster so biome networks are created faster
and become larger. This means that improving the algorithms for analysing the biome
networks is necessary for faster detection of the source of an epidemic. Triangle counting
and k-trusses can be used for fast initial identification of different organisms in the biome
network. This is done by ”fingerprinting” of clusters in the network and comparing the
results to a database of ”fingerprints” [2].

• Brain mapping: MRI data of the human brain can be modelled as graphs where the nodes
represent regions in the brain and edges represent interactions between the regions. Graph
analytics are used to understand the structure and function of the brain and can maybe
even help detecting diseases. One of the measures used is the clustering coefficient where
triangle counting is important [6].

1.3 Graphs

In this section we give some definitions that are used in this thesis.
Definition. A directed graph is an ordered pair G = (V,E) where V is a set of vertices and E
a set of ordered pairs of vertices called edges denoted as (x, y). In an undirected graph edges are
unordered pairs of vertices denoted as {x, y}. This is equivalent with (x, y) ∈ E if and only if
(y, x) ∈ E.
Definition. A simple graph is an undirected graph with no multiple edges or loops {i, i}.
In this thesis only simple graphs are considered.
Definition. The adjacency matrix A of a graph G with nV vertices is the nV ×nV -matrix where
aij is the number of edges from i to j. Note that in an undirected graph the adjacency matrix
is symmetric.
Definition. In a graph G the neighbourhood of a vertex i are all vertices j ∈ V (G) such that
(i, j) ∈ E(G) and it is denoted as nbh(i).
Definition. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
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Definition. A simple graph G and a simple graph H are called isomorphic if an isomorphism
exists between them. An isomorphism from a simple graph G to a simple graph H is a bijection
f : V (G)→ V (H) such that {i, j} ∈ E(G) if and only if {f(i), f(j)} ∈ E(H).
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2. Triangles

In this chapter we will compare algorithms that count the number of triangles in a simple graph.
We first define a triangle in a simple graph as follows:
Definition. A triangle is a subgraph T of a simple graph G with vertex set V (T ) = {a, b, c} ⊆
V (G) and edge set E(T ) = {{a, b}, {b, c}, {c, a}} ⊆ E(G).

The example graph in Figure 2.1 contains 5 triangles, namely {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}
and {0, 1, 4}

Figure 2.1: This graph contains 5 triangles.

2.1 Algorithms

The algorithms for counting triangles in this section can be divided into two types depending on
the input used. The first type uses the adjacency matrix of a graph as input and the second type
uses the list of edges of a graph. To be able to compare the algorithms, we use implementations
that always use the list of edges as input. This choice is made because graph data is often
provided in the form of a list of edges. Such a list of edges has the directed edges in it, so for
undirected graphs both (i, j) and (j, i) are in the list if {i, j} is an edge of the graph.

Turning a list of edges into the equivalent adjacency matrix is done using Algorithm 1. It follows
directly from the definition of the adjacency matrix of a graph. Note that it only works for
graphs with no multiple edges.

Here, zeros(m,n) is an m × n matrix containing only zeros. We use max(E) to denote the
function max{i : {i, j} ∈ E}. In the graph data used, the vertices are numbered from 0 to nV −1
where nV is the number of vertices. Assuming that we have no isolated vertices we get that
nV = max(E) + 1.
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Algorithm 1 Implementation to determine the adjacency matrix of a graph.

Input: List of edges E of a graph G.
Result: Adjacency matrix A of G.
nV = max(E) + 1
A = zeros(nV , nV )
for (i, j) in E do
aij = 1

return A

Algorithm 2 uses the adjacency matrix of a graph to determine the number of triangles in the
graph. This algorithm is used as a baseline algorithm for how efficient we can calculate the
number of triangles. We are going to prove that the baseline algorithm indeed gives the number
of triangles in a graph G.

Algorithm 2 Baseline algorithm using the adjacency matrix of a graph.

Input: Adjacency matrix A of a graph G.
Result: Number of triangles in G.
B = A2 ◦A
nT = 1

6

∑
ij bij

return nT

where ◦ denotes element-wise multiplication

Proof. In the adjacency matrix A of a graph G the element aij is the number of edges from
i to j in the graph. Thus, aikakj is the number of ways to walk from i to k to j. Summing
over all different vertices k gives the number of ways to walk from i to j using exactly two
edges. If we multiply this with aij we get the number of triangles in which (i, j) is an edge.
So bij = aij

∑
k aikakj is the number of such triangles. When summing over all bij we count

each triangle {i, j, k} six times, namely once in bij , bji, bik, bki, bjk and bkj (see Figure 2.2). We
conclude that nT is exactly the number of triangles in the graph G.

In Algorithm 2 we counted each triangle six times and therefore had to divide by six in the end.
It would be more efficient to only count each triangle once. In Algorithm 3 we use that we are
only focusing on simple graphs. This means that the adjacency matrix is symmetric and that
we only need to count the triangles {i, k, j} with i < k < j. So the number of triangles in which
{i, j} is an edge becomes

aij
∑
i<k<j

aikakj .

In Algorithm 3 we also use the symmetry of the adjacency matrix to switch the indices so we
only use rows. This is done because in NumPy (Python) the default is row-major order, so using
rows instead of columns leads to more efficient use of cache for larger graphs. We also use the
fact that aij is either zero or one.

The adjacency matrix of a graph contains mostly zeros so using a sparse matrix uses less memory.
In Algorithm 4 we use the list of edges to create a sparse matrix in Dictionary of Keys (DOK)
format. Then we convert the sparse matrix into Compressed Sparse Row (CSR) format. This
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Figure 2.2: In Algorithm 2 each triangle is counted six times, once for every blue arrow.

Algorithm 3 Improved algorithm using the adjacency matrix of a graph. Note that it only
works for simple graphs.

Input: Adjacency matrix A of a graph G.
Result: Number of triangles in G.
nT = 0
for i < j do

if aij 6= 0 then
nT = nT +

∑
i<k<j aikajk

return nT

is done because sparse matrices are more easily constructed in DOK format but arithmetic
operations are more efficient in CSR format [7].

Algorithm 4 Algorithm using sparse matrices.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nV = max(E) + 1
ADOK =dok matrix(nV , nV )
for (i, j) in E do
ADOK(i, j) = 1

ACSR =csr matrix(ADOK)
BCSR = A2

CSR ◦ACSR

nT = 1
6

∑
ij bij

return nT

where ◦ denotes element-wise multiplication
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The algorithms described above all use the adjacency matrix of a graph. We are now going to
look at algorithms that use the neighbourhoods of the vertices of a graph. Turning a list of edges
into the neighbourhoods of the vertices is done using Algorithm 5.

Algorithm 5 Implementation to determine the neighbourhoods of vertices of a graph. We call
this function edges to nbh.
Input: List of edges E of a graph G.
Result: List with neighbourhoods of all vertices of G.
nE = |E|
nV = max(E) + 1
nbh = [{}] ∗ nV
for (i, j) in E do
nbh(i) = nbh(i) ∪ {j}

return nbh

Here, [{}] ∗ nV is a list of nV copies of an empty set. When edges to nbh is done the i-th set
in nbh is the neighbourhood of vertex i.

Algorithm 6 uses the neighbourhoods of the vertices in a graph to determine the number of
triangles in the graph. We are going to prove that this algorithm indeed gives the number of
triangles in a simple graph G.

Algorithm 6 Algorithm using the neighbourhoods of vertices in a graph.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nbh =edges to nbh(E)
count = 0
for (i, j) in E do
count = count+ |nbh(i) ∩ nbh(j)|

nT = count/6
return nT

Proof. Let {i, j} ∈ E be an edge of the graph G. A third vertex k forms a triangle with i and j
if and only if k is in the neighbourhoods of both i and j. So the number of triangles in which
{i, j} is an edge is |nbh(i)∩nbh(j)|. If we do this for every edge (i, j) ∈ E we count each triangle
{i, j, k} six times, namely once for each of the edges (i, j), (j, i), (i, k), (k, i), (j, k) and (k, j). So
nT is indeed the number of triangles in the graph G.

In Algorithm 6 we counted each triangle six times and therefore had to divide by six in the end.
It would be more efficient to only count each triangle once. In Algorithm 7 we only count the
number of triangles the edge (i, j) is in if i < j to only count the edge {i, j} once. We also
remove an edge {i, j} from the graph after we determined the number of triangles it is in. This
is done by removing j from the neighbourhood of i and i from the neighbourhood of j.

The time complexity of determining the intersection of two sets A and B is O(min{|A|, |B|})
because in Python sets are hashed [8]. So determining |nbh(i)∩ nbh(j)| is more time consuming
if both nbh(i) and nbh(j) are large sets. When we remove an edge {i, j} the sizes of both nbh(i)
and nbh(j) decrease by one. So if we start with the edges {i, j} where min{|nbh(i)|, |nbh(j)|} is
small, then by the time we reach the larger ones they have decreased significantly provided we

8



Algorithm 7 Improved algorithm using the neighbourhoods of vertices in a graph. It deletes
the edge after determining the number of triangles that edge is in.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nbh =edges to nbh(E)
nT = 0
for (i, j) in E do

if i < j then
nT = nT + |nbh(i) ∩ nbh(j)|
nbh(i) = nbh(i)− {j}
nbh(j) = nbh(j)− {i}

return nT

can delete edges in O(1) time. Deleting elements from a set is done in O(1) time in Python so
edges are deleted in O(1) time [8].

This idea is used in Algorithm 8. In this algorithm we sort the vertices by degree. Then we take
the vertex i with the lowest degree. For this vertex i we determine the number of triangles each
edge {i, j} with j ∈ nbh(i) is in. Then we take the vertex with the second lowest degree and do
this, etc. This algorithm should be faster than Algorithm 7 which uses a more or less random
order.

Algorithm 8 Algorithm using the neighbourhoods of vertices in a graph. It sorts the vertices
by degree before counting the number of triangles.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nV =max(E) + 1
nbh =edges to nbh(E)
p =sorted(range(nV ), key = lambda idx : |nbh(idx)|)
nT = 0
for i in p do

for j in nbh(i) do
nT = nT + |nbh(i) ∩ nbh(j)|
nbh(i) = nbh(i)− {j}
nbh(j) = nbh(j)− {i}

return nT

where the sorting function used is the degree of the vertex.

We are only dealing with simple graphs so if we have the edge (i, j) we also have the edge (j, i).
This means we can delete all edges (i, j) with i > j from the list of edges without losing any
information. This is done in Algorithm 9. We use a mask with all the indices of the edges (i, j)
with i > j so we can delete them all at the same time because this is more efficient than deleting
the edges one by one.

Note that now k is only in the neighbourhood of i if (i, k) is an edge of the graph and k > i.
Let (i, j) be an edge with i < j. Now |nbh(i) ∩ nbh(j)| is the number of triangles {i, j, k} with
i < j < k. This means that we only count each triangle once so nT is indeed the number of
triangles of the graph.
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Algorithm 9 Algorithm using the neighbourhoods of vertices in a graph. Of every edge {i, j}
it deletes (i, j) in the list of edges if i > j so only (j, i) is left in the list of edges.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nV =max(E) + 1
nE = |E|
mask = []
for i ∈ range(nE) do

if E(i, 0) > E(i, 1) then
mask.append(i)

E =delete(E,mask)
nE = |E|
nbh =edges to nbh(E)
nT = 0
for (i, j) in E do
nT = nT + |nbh(i) ∩ nbh(j)|

return nT

In Algorithm 10 we combine Algorithms 8 and 9. First all edges (i, j) with i > j are deleted
from the list of edges such as done in Algorithm 9. Then the vertices are sorted by degree such
as done in Algorithm 8. Combining these improvements should make this algorithm faster than
both Algorithms 8 and 9.

Algorithm 10 Algorithm using the neighbourhoods of vertices in a graph. Of every edge {i, j}
it deletes (i, j) in the list of edges if i > j so only (j, i) is left in the list of edges.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nV =max(E) + 1
nE = |E|
mask = []
for i ∈ range(nE) do

if E(i, 0) > E(i, 1) then
mask.append(i)

E =delete(E,mask)
nE = |E|
nbh =edges to nbh(E)
p =sorted(range(nV ), key = lambda idx : |nbh(idx)|)
nT = 0
for i in p do

for j in nbh(i) do
nT = nT + |nbh(i) ∩ nbh(j)|

return nT

where the sorting function used is the degree of the vertex.

Algorithm 11 is divided in three parts where the first and last part can be recognized from
Algorithm 9. The second part is based on the idea described above that sorting the edges should
make the algorithm more efficient. We sort the edges {i, j} by min{|nbh(i)|, |nbh(j)|} which we
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call the edge degree. The implementation is based on the counting sort algorithm. Here, deg is
the list with edges and their degrees and Es is the sorted list of edges.

Algorithm 11 Algorithm using the neighbourhoods of vertices in a graph. It sorts the edges by
minimum degree of the endpoints before counting the number of triangles.

Input: List of edges E of a graph G.
Result: Number of triangles in G.
nV =max(E) + 1
nE = |E|
mask = []
for k ∈ range(nE) do
i, j = E(k)
if i > j then
mask.append(k)

E =delete(E,mask)
nE = |E|
nbh =edges to nbh(E)

deg = zeros(nE , 3)
for k ∈ range(nE) do
i, j = E(k)
deg(k) = (i, j,min(|nbh(i)|, |nbh(j)|))

{Below a counting sort is done on the edge degree.}
count = [0] ∗ nV
for a in deg(:, 2) do
count(a)+=1

running count = [0] ∗ nV
for i ∈ range(1, nV ) do
running count(i) = running count(i− 1) + count(i)

Es =zeros((nE , 3))
for a ∈ range(nE) do
idx = running count(deg(a, 2))− 1
Es(idx) = deg(a)
running count(deg(a, 2))-=1

nT = 0
for (i, j) in Es do
nT = nT + |nbh(i) ∩ nbh(j)|

return nT

2.2 Results

The implementations are written in Spyder 3.2.8 using Python 3.6.5. The processor used is Intel R©

CoreTM i5-7200U CPU @ 2.50 GHz with 4 cores of which one is used for the computations. The
size of the main memory is 8 GB and the size of the cache is 3 MB.
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The graph data used for counting triangles is taken from the Stanford Large Network Dataset
Collection [9]. The characteristics of the graphs can be found in Table 2.1. Here nV is the
number of vertices, nE is the number of edges, davg = 2nE/nV the average degree of the vertices
and nT the number of triangles in the graph. These graphs are all simple graphs, i.e. the graphs
are undirected and do not contain loops or multiple edges.

Table 2.1: Characteristics of the graphs that were used.
Graph nV nE davg nT Description
0edges 348 2519 14.5 10740 Social circles from Facebook
tvshow 3892 17262 8.87 29092 Gemsec Facebook dataset
athletes 13866 86858 12.5 140537 Gemsec Facebook dataset
new sites 27917 206259 14.8 131010 Gemsec Facebook dataset
Brightkite edges 58228 214078 7.35 494728 Friendship network of Brightkite users
Gowalla edges 196591 950327 9.67 2273138 Friendship network of Gowalla users
roadNet-PA 1090920 1541898 2.83 67150 Road network of Pennsylvania
roadNet-CA 1971281 2766607 2.81 120676 Road network of California

In Table 2.2 the runtimes for the different algorithms using the adjacency matrix of a graph can
be found. The entries marked with * gave a memory error because the adjacency matrix did
not fit into main memory. Sparse matrices use less memory than arrays and therefore we do not
have this problem for Algorithm 4.

Table 2.2: Runtimes for the different algorithms using the adjacency matrix of the graph.
runtime runtime runtime

graph A2 (s) A3 (s) A4 (s)
0edges 0.0375 0.0266 0.0339
tvshow 40.9 2.01 0.188
athletes 1.84 · 103 24.5 1.04
new sites 1.59 · 104 98.3 2.70
Brightkite edges * * 2.65
Gowalla edges * * 21.6
roadNet-PA * * 17.0
roadNet-CA * * 30.4

We notice that Algorithms 3 and 4 are always faster than the baseline algorithm (Algorithm
2) which is what we expected. We also see that Algorithm 4 is faster than Algorithm 3 for
all graphs except the smallest graph 0edges. Using sparse matrices was expected to be faster
because they require less memory space than the corresponding array and they also perform
fewer operations. For small matrices this difference is relatively small. Together with the extra
conversion step, and therefore computation time, needed this could explain why Algorithm 3 is
faster than Algorithm 4 for the graph 0edges.

In Table 2.3 the runtimes for the different algorithms using the neighbourhoods of the vertices
of a graph can be found. Each time the average of 10 runs is taken. For each graph the fastest
algorithm is marked by the runtime in bold.

We notice that Algorithm 10 is the fastest algorithm for all graphs except for roadNet-CA where
Algorithm 9 is the fastest one. We expected that sorting the vertices by degree would be faster
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Table 2.3: Runtimes for the different algorithms using the neighbourhoods of the vertices of the
graph.

runtime runtime runtime runtime runtime runtime
graph A6 (s) A7 (s) A8 (s) A9 (s) A10 (s) A11 (s)
0edges 0.0145 0.00992 0.00835 0.00662 0.00573 0.0122
tvshow 0.0924 0.0660 0.0585 0.0424 0.0384 0.0794
athletes 0.502 0.393 0.356 0.221 0.204 0.415
new sites 1.39 1.06 0.973 0.547 0.510 1.01
Brightkite edges 1.16 0.911 0.816 0.601 0.578 1.10
Gowalla edges 9.99 8.36 7.91 6.65 6.55 8.90
roadNet-PA 5.05 5.50 6.21 4.13 3.92 7.44
roadNet-CA 9.23 9.86 9.62 6.91 7.02 13.5

than a random order. Therefore we expected Algorithm 8 to be faster than Algorithm 7 and Algo-
rithm 10 to be faster than Algorithm 9. We see that both hold except for the graphs roadNet-PA
and roadNet-CA. These graphs both have a much lower average vertex degree (davg = 2.8) than
the other graphs. Therefore sorting the vertices by degree leads to a smaller improvement in
runtime. The sorting process also costs time and apparently it costs more time than the im-
provement is. This could explain why sorting is not profitable for graphs with low average vertex
degree.

We expected Algorithm 7 to be faster than Algorithm 6 because it counts every triangle once
instead of six times. Looking at Table 2.3 we notice that this is correct for all graphs except
roadNet-PA and roadNet-CA.

We expected Algorithm 9 to be faster than Algorithm 7, and therefore expected Algorithm 10
to be faster than Algorithm 8, because we use half the number of edges. Looking at Table 2.3
we notice that this is correct for all graphs used.

We expected Algorithm 11 to be faster than Algorithm 9 because we expected that sorting the
edges by edge degree would be faster than a random order. In Table 2.3 we see that this is never
the case for the graphs we used. The time complexity of counting sort used on a list of length
n is O(n). This means that sorting the edges by edge degree is O(nE). The time complexity of
counting the triangles as done in Algorithm 9 is O(davg ·nE). Usually davg is relatively small, so
this means that sorting the edges is relatively expensive and, apparently, more expensive than
the improvement that we get from the sorting.

Sorting the vertices by vertex degree the way it is done in Algorithm 10 has time complexity
O(nV log(nV )). This is typically smaller than O(nE) for real-life problems, so sorting the vertices
is faster than sorting the edges. Sorting the vertices can also be done by a counting sort with
time complexity O(nV ) to make the sorting even faster. We defined the edge degree of an edge
{i, j} by min{|nbh(i)|, |nbh(j)|} and sorted the edges by this. We count the triangles by starting
with the edge with lowest edge degree, and then continue with the edge with second lowest edge
degree, etc. When sorting the vertices i by vertex degree we sort them by |nbh(i)|. We count the
triangles by starting with the edges adjacent to the vertex with lowest degree, and then continue
with the edges adjacent to the vertex with second lowest degree, etc. These two ways of sorting
lead to the same order of going through the edges upon permutation of edges with the same
edge degree. Therefore, the two ways of sorting are equivalent and give the same improvement
in runtime. Sorting the edges costs more time than sorting the vertices so we expect Algorithm
11 to be slower than Algorithm 10. This is consistent with the results from Table 2.3.
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When we compare Table 2.2 with Table 2.3 we notice that all the algorithms using the neigh-
bourhoods of the vertices of a graph are faster than all the algorithms using the adjacency matrix
of a graph. This could be because less memory space is used and fewer operations are performed.

2.3 Conclusion

When looking at the algorithms that use the adjacency matrix of a graph to determine the
number of triangles we conclude that using sparse matrices makes it possible to analyse larger
graphs than when using arrays. We also conclude that using sparse matrices is also faster except
for small graphs.

When looking at the algorithms that use the neighbourhoods of the vertices of a graph we
conclude that it is faster to use only the edges (i, j) with i < j than all the edges of the graph.
We also conclude that, if the average vertex degree of the graph is not too small, it is faster to
sort the vertices by vertex degree before counting the number of triangles.

When comparing all algorithms together we conclude that the algorithms using the neighbour-
hoods of the vertices of a graph are faster than the algorithms using the adjacency matrix of a
graph.
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3. Trusses

In this chapter we will compare algorithms that enumerate the maximal k-trusses of a graph.
We first define a k-truss as follows:
Definition. Let k ≥ 3. A k-truss is a non-trivial, connected graph such that each edge is part
of at least k − 2 different triangles.

Here, non-trivial excludes the graph consisting of only a single vertex. A maximal k-truss of a
graph G is a k-truss that is not a proper subgraph of another k-truss.

Note that a maximal k-truss of a graph is a subgraph of a maximal (k−1)-truss of the graph. So
if we want to compute the k-trusses and l-trusses with k < l of a graph G it is faster to compute
a maximal k-truss Tk of G and then a maximal l-truss Tl of Tk than computing the l-trusses of
G because Tk is smaller than G. The truss Tl is also a maximal l-truss of G so this works.

In Figure 3.1 a graph together with its 3-truss and 4-truss is given. This graph does not contain
any k-trusses for k > 4.

Figure 3.1: The graph (a) together with its maximal 3-truss (b) and its maximal 4-truss (c).

The first introduction of a truss is by Cohen in [10]. Cohen was looking for a generalisation of
the clique of order k that is stricter than a (k− 1)-core. A clique of order k is a subgraph with k
vertices that are all adjacent to each other. Large cliques are not very likely to exist in real-life
problems and are expensive to compute. A (k − 1)-core is a maximal subgraph in which every
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vertex is adjacent to at least k− 1 other vertices in the subgraph. Computing the (k− 1)-core of
a graph is possible in polynomial time, but (k−1)-cores are not necessarily sets of high cohesion.

We are going to prove that a clique of order k is always a k-truss.

Proof. A clique of order k is a subgraph in which each edge joins two vertices. These two vertices
have exactly k − 2 common neighbours. So every edge is part of at least k − 2 triangles. Hence,
a clique of order k is a k-truss.

Note that a k-truss does not necessarily need to contain a clique of order k. An example of a
4-truss that does not contain a clique of order 4 can be found in Figure 3.2.

Figure 3.2: The octahedron is a 4-truss because each edge is part of two triangles. There are no
four vertices that are all adjacent to each other, so the octahedron does not contain a clique of
order 4.

We are going to prove that each k-truss of G is a subgraph of a (k − 1)-core of G.

Proof. Let T be a k-truss of G. Trusses contain no isolated vertices, so every vertex v in T has a
neighbour w. By the definition of a k-truss, the edge {v, w} must be in at least k − 2 triangles,
so v and w share at least k−2 neighbours. These neighbours together with w make at least k−1
vertices in T adjacent to v. So every vertex of T is adjacent to at least k− 1 vertices in T . Thus
T is a (k− 1)-core of G except possibly for maximality. The maximality of cores ensures that all
of T is in the same (k− 1)-core of G. Hence, each k-truss of G is a subgraph of a (k− 1)-core of
G.

Note that a (k−1)-core of a graph G does not necessarily need to contain a k-truss. An example
of a 3-core that does not contain a 4-truss can be found in Figure 3.3.
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Figure 3.3: The cube is a 3-core because each vertex has three neighbours. The cube does not
contain any triangles, so the cube does not contain any trusses.

3.1 Algorithms

We start by looking at the case k = 3, i.e. finding the maximal 3-trusses of a graph. Algorithm
12 gives the maximal 3-trusses of a graph G. It determines for each edge if it is part of a triangle.
If the edge is not part of a triangle it is removed. We are going to prove that this algorithm
indeed gives the 3-trusses of a simple graph G.

Algorithm 12 Algorithm to find the maximal 3-trusses of a graph.

Input: List of edges E of a graph G.
Result: List of edges E of the maximal 3-trusses of G.
nE = |E|
nbh =edges to nbh(E)
mask = []
for j ∈ range(nE) do
a, b = E(j)
if |nbh(a) ∩ nbh(b)| = 1 then
mask.append(j)

E =delete(E,mask)
return E

Proof. For each edge {a, b} of the graph G the number of common neighbours of a and b is
determined by |nbh(a) ∩ nbh(b)|. If this number is less than one then {a, b} is not part of a
triangle and if this number is at least one then {a, b} is part of a triangle. We use mask to store
the edges that are not part of a triangle. After we checked all the edges we remove the edges in
mask from the graph. Now the graph only contains the edges that were part of a triangle in the
original graph. If the edge {a, b} was part of the triangle {a, b, c} in the original graph, then the
edges {b, c} and {c, a} are also part of the triangle {a, b, c}. So none of the edges {a, b}, {b, c}
and {c, a} are removed from the graph. Hence, the triangle {a, b, c} is still part of the graph, so
{a, b} is still part of a triangle. We conclude that all the edges that are left in the graph after
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removing the edges in mask are part of at least one triangle, so we have a 3-truss left. The
3-truss is also maximal in G because all the edges that are removed are not part of a triangle in
G and can therefore not be part of a maximal 3-truss of G.

Algorithm 13 gives the maximal k-trusses of a simple graph G for a given value of k. We are
going to prove that this algorithm indeed gives the maximal k-trusses of a simple graph G.

Algorithm 13 Algorithm to find the maximal k-trusses of a graph.

Input: List of edges E of a graph G and the value for k.
Result: List of edges E of the maximal k-trusses of G.
nE = |E|
i = 1 {any value > 0 works}
while nE > 0 and i > 0 do
nbh =edges to nbh(E)
mask = []
for j ∈ range(nE) do
a, b = E(j)
if |nbh(a) ∩ nbh(b)| < k − 2 then
mask.append(j)

i = |mask|
E =delete(E,mask)
nE = |E|

return E

Proof. In each iteration Algorithm 13 removes all the edges that are not part of at least k − 2
triangles. This is repeated until no more edges are removed or until there are no edges left. If
there are no edges left the graph does not contain a k-truss. In each iteration mask is used to
store the edges that are going to be removed in that iteration. Therefore we use i = |mask|
to determine if any edges are removed. If no more edges are removed, each edge that is left is
part of at least k − 2 triangles. So each edge that is left can be part of a maximal k-truss of G.
Only edges that are part of less than k − 2 triangles are removed, so all edges that are removed
cannot be part of a maximal k-truss of G. Hence, when the algorithm terminates exactly the
edges that are part of at least k − 2 triangles are left. So the algorithm does indeed give the
maximal k-trusses of a simple graph G.

In Algorithm 13 every edge is checked in each iteration even though none of the adjacent edges
was removed. This is not necessary and it would be more efficient to only check an edge {a, b}
again if an edge is removed in one of the triangles that {a, b} is part of. This idea leads to
Algorithm 14.

Here, active is the set of edges that still need to be checked if they are part of at least k − 2
triangles, and passive is the set of edges that are checked and are part of at least k− 2 different
triangles. At the initialisation of the algorithm active contains all edges of the graph G, and
passive is an empty set. When active becomes empty all edges are checked and the edges of
passive together form the maximal k-trusses of the graph G.

As long as active is nonempty, an edge {a, b} is taken from active with the function active.pop().
The function active.pop() returns a random element from active and removes it from active at
the same time. It is a random element because the set active has no ordering, so there is for

18



Algorithm 14 Improved algorithm to find the maximal k-trusses of a graph.

Input: List of edges E of a graph G and the value for k.
Result: List of edges of the maximal k-trusses of G.
nbh =edges to nbh(E)
passive = {}
active = E
while |active| > 0 do
{a, b} = active.pop()
if |nbh(a) ∩ nbh(b)| < k − 2 then
nbh(a) = nbh(a)− {b}
nbh(b) = nbh(b)− {a}
for c ∈ nbh(a) ∩ nbh(b) do
active = active ∪ {{a, c}, {b, c}}
passive = passive− {{a, c}, {b, c}}

else
passive = passive ∪ {{a, b}}

return passive

example no first or last element. If the edge {a, b} is part of less than k − 2 triangles, i.e.
|nbh(a) ∩ nbh(b)| < k − 2, then the edge {a, b} is removed from the graph. All the edges {a, c}
and {b, c} with the vertex c a neighbour of both a and b need to be checked again, because
the number of triangles they are in is decreased, so they are added to active and removed from
passive. If the edge {a, b} is part of at least k − 2 triangles; it is added to passive.

If in Algorithm 14 an edge {a, b} is removed from the graph it can happen that an edge {a, c} is
moved from passive to active even though it is still part of at least k−2 triangles. When it is the
turn of the edge {a, c} to be checked it is moved back to passive. This makes for unnecessarily
moving around of edges which costs unnecessary computing time. In Algorithm 15 we prevent
this from happening by checking if the edge {a, c} is part of at least k − 2 triangles. If it is not
it is moved from passive to active. At the initialisation we only put the edges that are part of
less than k − 2 triangles in active and the others in passive. So in Algorithm 15 active is the
queue of edges that are going to be removed from the graph.

In Algorithm 15 we use a counter C({a, b}) for each edge {a, b} which represents the number of tri-
angles the edge is a part of. This is done because then we do not have to calculate |nbh(a)∩nbh(b)|
as often as before. Calculating |nbh(a) ∩ nbh(b)| has time complexity O(min(|nbh(a)|, |nbh(b)|),
while reading off or changing the value of C({a, b}) has time complexity O(1) because C({a, b})
is stored as a dictionary [8]. This, together with less moving around of edges, should therefore
make Algorithm 15 faster than Algorithm 14.
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Algorithm 15 Further improved algorithm to find the maximal k-trusses of a graph.

Input: List of edges E of a graph G and the value for k.
Result: List of edges of the maximal k-trusses of G.
nbh =edges to nbh(E)
nE = |E|
C = {} {C is an empty dictionary}
passive = {} {passive is an empty set}
active = {} {active is an empty set}
for i ∈ range(nE) do
{a, b} = edges(i)
C({a, b}) = |nbh(a) ∩ nbh(b)|
if C({a, b}) < k − 2 then
active = active ∪ {{a, b}}

else
passive = passive ∪ {{a, b}}

while |active| > 0 do
{a, b} = active.pop()
nbh(a) = nbh(a)− {b}
nbh(b) = nbh(b)− {a}
for c ∈ nbh(a) ∩ nbh(b) do
C({a, c}) = C({a, c})− 1
C({b, c}) = C({b, c})− 1
if C({a, c}) < k − 2 then
active = active ∪ {{a, c}}
passive = passive− {{a, c}}

if C({b, c}) < k − 2 then
active = active ∪ {{b, c}}
passive = passive− {{b, c}}

return passive

3.2 Results

The graph data used for enumerating trusses is the same data as used for counting triangles. So
the characteristics of the graphs used can again be found in Table 2.1. We do not use the road
network graphs because they are typically near planar and do not contain a lot of triangles and
therefore contain small and few trusses.

In Table 3.1 the runtimes for the different algorithms for determining the maximal 3-trusses of a
graph can be found. Each time the average of 10 runs is taken. Note that Algorithm 12 can only
be used to determine the 3-trusses of a graph. The other algorithms can be used to determine
the k-trusses of a graph for all k ≥ 3. We notice that Algorithm 14 is the fastest algorithm
for the three smallest graphs, and that Algorithm 12 is the fastest for the other graphs. We
expected Algorithm 12 to be the fastest algorithm for 3-trusses because it uses that we only need
one iteration for 3-trusses. We also notice that Algorithm 14 is always faster than Algorithm 13,
which we expected. It is also always faster than Algorithm 15, which we expect the other way
around.

In Table 3.2, Table 3.3 and Table 3.4 the runtimes for the different algorithms for determining
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Table 3.1: Runtimes for the different algorithms for determining the maximal 3-trusses of a
graph.

runtime runtime runtime runtime
graph A12 (s) A13 (s) A14 (s) A15 (s)
0edges 0.0187 0.0376 0.0145 0.0273
tvshow 0.126 0.225 0.116 0.201
athletes 0.668 1.21 0.661 1.12
new sites 1.69 3.13 1.89 2.99
Brightkite edges 1.52 2.59 1.66 2.89
Gowalla edges 11.4 20.9 12.3 18.2

respectively the maximal 4-trusses, 5-trusses and 6-trusses of a graph can be found. Each time
the average of 10 runs is taken. We notice that for the 4-trusses, 5-trusses and 6-trusses Algorithm
14 is the fastest algorithm, followed by Algorithm 15, and Algorithm 13 is the slowest one. We
expected Algorithm 15 to be faster than Algorithm 14. The reason that this is not the case is
probably due to the implementation of the algorithms.

We also notice that the runtimes for the 4-trusses, 5-trusses and 6-trusses are close to each other
for all the algorithms. The runtimes for the 3-trusses are also close to the runtimes of the other
trusses for Algorithms 14 and 15. This indicates that the time complexity of algorithms for
enumerating the k-trusses of a graph is not strongly dependent on k.

Table 3.2: Runtimes for the different algorithms for determining the maximal 4-trusses of a
graph.

runtime runtime runtime
graph A13 (s) A14 (s) A15 (s)
0edges 0.0704 0.0176 0.0284
tvshow 0.495 0.123 0.209
athletes 3.37 0.734 1.20
new sites 12.3 2.02 3.33
Brightkite edges 8.85 1.81 3.08
Gowalla edges 66.5 12.9 18.4

Table 3.3: Runtimes for the different algorithms for determining the maximal 5-trusses of a
graph.

runtime runtime runtime
graph A13 (s) A14 (s) A15 (s)
0edges 0.0671 0.0184 0.0278
tvshow 0.546 0.129 0.218
athletes 3.25 0.819 1.30
new sites 11.2 2.18 3.45
Brightkite edges 9.19 1.96 3.25
Gowalla edges 62.5 13.8 19.4

Comparing our algorithms with Cohen’s algorithms in [10] we see that our Algorithm 13 uses
the same idea as Cohen’s proof that trusses can be computed in polynomial time. He shows that
the time complexity of this method is bounded above by O(nV n

2
E + nV ) and therefore trusses
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Table 3.4: Runtimes for the different algorithms for determining the maximal 6-trusses of a
graph.

runtime runtime runtime
graph A13 (s) A14 (s) A15 (s)
0edges 0.109 0.0173 0.0293
tvshow 0.898 0.127 0.225
athletes 3.84 0.906 1.45
new sites 11.7 2.34 3.71
Brightkite edges 8.82 2.09 3.43
Gowalla edges 66.2 14.7 10.4

can be computed in polynomial time. We also see that our Algorithm 15 uses the same ideas
as Cohen’s algorithm removeUnsupportedEdges(G, j). However, we do not use the idea used by
Cohen to reduce the graph to its (k− 1)-cores first and then use that to determine the k-trusses
of the graph.

3.3 Conclusion

When looking at the algorithms to enumerate the maximal 3-trusses of a graph we conclude that
the fastest algorithm is the one that only works for 3-trusses because it takes into account that
iteration is not needed and that it is enough to determine if an edge is part of a triangle or not.

When looking at the algorithms to enumerate the maximal k-trusses of a graph for general k ≥ 3
we conclude that it is faster to use ”active” and ”passive” edges than checking all the edges
during each iteration. We also conclude that the runtime for enumerating the k-trusses of a
graph is not strongly dependent on k for k > 3.
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4. Graph Challenge Champions

The champions of the 2018 Graph Challenge are [11]:

• Fast Triangle Counting Using Cilk - Abdurrahman Yasar, Sivasankaran Rajamanickam,
Michael Wolf, Jonathan Berry (Sandia), Umit V. Catalyurek (Georgia Tech),

• High-Performance Triangle Counting on GPUs - Yang Hu (GWU), Hang Liu (UMass
Lowell), H. Howie Huang (GWU),

• Update on Static Graph Challenge on GPU - Mauro Bisson, Massimiliano Fatica (Nvidia),
and

• K-truss decomposition for Scale-Free Graphs at Scale in Distributed Memory - Roger Pearce,
Geoffrey Sanders (LLNL).

Before reviewing the results and innovations of the 2018 Champions,1 we first take a look at the
results of the 2017 Graph Challenge.

4.1 The 2017 Graph Challenge

The 2017 Graph Challenge consisted of the same challenges as the 2018 Graph Challenge. The
organisers of the Graph Challenge compare the submissions of the 2017 Graph Challenge in [12].
They focus on triangle counting because it got the most submissions. The 2017 Graph Challenge
had 22 submissions of which 10 focused on triangle counting, 3 on k-truss enumeration and 4 on
both.

An important measure for comparing the results of triangle counting is the rate of edges processed
and is given by

Rate =
nE
Ttri

where nE is the number of edges and Ttri the triangle counting runtime. For each submission
there are two points of interest: (1) the highest rate (and the corresponding number of edges),
and (2) the largest graph processed (and the corresponding rate). The champions all had a high
rate on large graphs. Comparing the submissions the organisers conclude that the state-of-the-
art of graph analysis at that time was of the order 108 edges processed per second for graphs
with 108 edges. The largest graph processed has 2.7 · 1011 edges. As comparison, we achieved a
rate of 4 · 105 edges per second for the largest graph roadNet-CA with 3 · 106 edges.

1At the time of writing (November 2018) not all papers of the Champions have yet been published. Therefore
we only take a look at the ones that have been published.
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Another way of comparing the submissions is by fitting a model to the data of each submission
and then comparing these models. The model used is

Ttri = (nE/n1)β

where n1 and β are the parameters of the model. The parameter n1 can be interpreted as
the number of edges that takes 1 second to process. Submissions with larger n1 and smaller β
perform better. Most submissions have β = 4/3 for large values of nE , so the state-of-the-art

model is proportional to n
4/3
E for large values of nE .

4.2 Fast Triangle Counting Using Cilk

The authors of Fast Triangle Counting Using Cilk submitted to the 2017 Graph Challenge as well
and became champions [11]. They submitted a linear algebra-based triangle counting implemen-
tation called KKTri. They used sparse matrix-matrix multiplication followed by element-wise
matrix multiplication:

D = (L · L) ◦ L
where ◦ is the element-wise multiplication. Here, L is the lower triangle part of the adjacency
matrix of the graph. They found three optimizations that are all used again in this year’s
implementation: (1) performing masked sparse matrix-matrix multiplication, where the right
most L is used as mask, (2) using data compression on the middle matrix, and (3) ordering the
graph before constructing the adjacency matrix [13].

For the 2018 Graph Challenge the authors improved their implementation by load-balancing
using Cilk, an efficient, task-stealing, multi-threaded runtime. The new, improved algorithm is
therefore called KKTri-Cilk. Another improvement made is changing the parallelisation strategy.
KKTri used a simple way of partitioning by partitioning the matrix evenly into partitions with a
fixed number of rows. KKTri-Cilk also creates partitions of rows, but not into a constant number
of rows per partition. Instead it creates partitions such that the number of non-zero elements in
each partition is approximately the same.

To demonstrate that KKTri-Cilk is an improvement they compare it to KKTri and a graph based
implementation called TCM. KKTri-Cilk shows a speed-up of 5 times to 12 times compared to
KKTri, and 3 times to 7 times compared to TCM. The highest rate of edges processed achieved
is 1.14 · 109 which is about 2 times the best rate in the 2017 Graph Challenge.

4.3 High-Performance Triangle Counting on GPUs

The authors of High-Performance Triangle Counting on GPUs observed that modern GPU
servers have multiple powerful GPUs on a single machine. They also observe that those GPU
servers also have large enough CPU memories to hold large graphs. TriCore, the state-of-the-art
GPU-based triangle counting project, stores the entire graph in the secondary memory to get
no communication between different GPUs. The authors show that therefore the major limit-
ing factor in processing speed becomes the disk bandwidth and not the processing speed of the
GPUs.

Their solution is to buffer the graph in the CPU memory so that moving the data to the GPU
becomes faster (see Figure 4.1). The servers are split into workload balancing groups to make
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it possible to solve workload imbalance within the group. Each workload balancing group is
responsible for one partition set. This makes it possible to process graphs that are larger than
the CPU memory without using the slow disk memory.

Figure 4.1: (a) A graph with four partitions is grouped into two partition sets. (b) TriCore stores
the entire graph on the disk for each GPU. (c) The new approach stores each partition set in
CPU memory. Each machine holds a partition set instead of a single partition to make workload
stealing easier [14].

The authors show that their improvements lead to faster triangle counting. The highest rate of
edges processed per second obtained is 4.7 ·109 for the roadNet-CA graph. This is approximately
104 times higher than our rate for the same graph. As far as the authors know, their imple-
mentation is the first GPU-based triangle counting that can process graphs with more than 1010

edges. It is also the first triangle counting project to achieve a rate of more than 108 edges per
second for graphs with more than 1010 edges.
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5. Concluding Remarks

We first looked at different algorithms for triangle counting. We divided the algorithms into
two categories: (1) linear algebra based algorithms using the adjacency matrix of a graph, and
(2) graph based algorithms using the neighbourhoods of a graph. When looking at the linear
algebra based algorithms we concluded that using sparse matrices made it possible to analyse
larger graphs than when using arrays. We also conluded that using sparse matrices was faster for
large graphs. When looking at the graph based algorithms we concluded that it was faster to use
only the edges (i, j) with i < j than all the edges of the graph. We also concluded that sorting
the vertices by vertex degree before counting the triangles was faster if the average vertex degree
was not to small. When comparing the linear algebra based algorithms with the graph based
algorithms we concluded that the graph based algorithms were faster than the linear algebra
based algorithms.

After that we looked at enumerating maximal k-trusses. We treated the maximal 3-trusses as a
special case, so we could take into account special properties of the 3-truss. We concluded that
the algorithm that used the special properties was faster than the algorithms for general k-trusses
when enumerating maximal 3-trusses. When looking at the algorithms for general k-trusses we
concluded that it was faster to use ”active” and ”passive” edges than checking all the edges
during each iteration. We also concluded that the runtime for k-trusses did not strongly depend
on k for k > 3.

In the last part we looked at the champions of the 2018 Graph Challenge, as well as the results for
triangle counting of the 2017 Graph Challenge. The largest graph processed for triangle counting
in the 2017 Graph Challenge has 2.7 ·1011 edges. Although incomparable, the largest graph that
we processed has 3 · 106 edges. When reading the available papers of the 2018 champions we
conclude that they focused on improving the triangle counting algorithms by improving how the
graph data was partitioned before using parallel computing, and by how the graph data was
stored in memory. One of the 2018 champions did this for linear algebra based algorithms on
CPUs by improving the partitioning of the adjacency matrix before doing masked sparse matrix
matrix multiplication. Another 2018 champion did it for a graph based algorithm on GPUs by
improving how the graph partitions are stored in memory before and during processing. The
highest rate of edges processed per second achieved for triangle counting in the 2018 Graph
Challenge was 4.7 · 109 edges per second. Although incomparable, we achieved a processing rate
of 4 · 105 edges per second for the same graph.

Our results cannot be compared to the results of the champions due to differences in available
computing power. The most important difference is the hardware that was used, for example
different processors and memory. Other differences can be the software used and the implemen-
tation of the algorithms. To be able to correctly compare the algorithms of the champions and
our algorithms, the same hardware and software needs to be used.
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A. Python Code for Triangle Counting

import numpy as np
import s c ipy . spar s e
import time
import csv

def t s v t o e d g e l i s t ( f i l e ) :
matrix =[ ]
with open ( f i l e ) as t s v f i l e :

r eader=csv . r eader ( t s v f i l e , d e l i m i t e r=’ \ t ’ )
for row in reader :

row int =[ ]
for i in range ( l en ( row ) ) :

row int . append ( i n t ( row [ i ] ) )
matrix . append ( row int )

return np . array ( matrix )

def edge s to ad ja c ency ( edges ) :
n ver=np . amax( edges )+1
A=np . z e ro s ( ( n ver , n ver ) , dtype=i n t )
for i in range ( l en ( edges ) ) :

A[ edges [ i , 0 ] , edges [ i , 1 ] ] = 1
return A

def edges to dok ( edges ) :
n ver=np . amax( edges )+1
A dok=sc ipy . spar s e . dok matrix ( ( n ver , n ver ) , dtype=i n t )
for i in range ( l en ( edges ) ) :

A dok [ edges [ i , 0 ] , edges [ i , 1 ] ] = 1
return A dok

def edges to nbh ( edges ) :
n edges=len ( edges )
n ver=np . amax( edges )+1
nbh=[ s e t ( ) ] ∗ n ver
for i in range ( n edges ) :

nbh [ edges [ i , 0 ] ] = nbh [ edges [ i , 0 ] ] | { edges [ i , 1 ] }
return nbh
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#%% Adjacency matrix based a l go r i t hms

def n t r i a n g l e s b a s e l i n e ( edges ) :
A=edge s to ad ja c ency ( edges )
B=A @ A ∗ A
count=B. sum()//6
return count

def n t r i a n g l e s m a t r i x ( edges ) :
A=edge s to ad ja c ency ( edges )
n rows=len (A)
count=0
for i in range ( n rows ) :

for j in range ( i +1, n rows ) :
i f A[ i , j ] ! = 0 :

count+=np . sum(A[ i , i +1: j ]∗A[ j , i +1: j ] )
return count

def n t r i a n g l e s s p a r s e ( edges ) :
A dok=edges to dok ( edges )
A sparse=sc ipy . spar s e . c s r mat r i x ( A dok )
B=A sparse . mul t ip ly ( A sparse ∗A sparse )
count=B. sum()//6
return count

#%% Neighbourhood based a l go r i t hms

def n t r i a n g l e s n b h ( edges ) :
nbh=edges to nbh ( edges )
n edges=len ( edges )
count=0
for k in range ( n edges ) :

i=edges [ k , 0 ]
j=edges [ k , 1 ]
count+=len ( nbh [ i ]&nbh [ j ] )

return count //6

def n t r i ang l e s nbh improved ( edges ) :
nbh=edges to nbh ( edges )
n edges=len ( edges )
count=0
for k in range ( n edges ) :

i=edges [ k , 0 ]
j=edges [ k , 1 ]
i f i<j :

count+=len ( nbh [ i ]&nbh [ j ] )
nbh [ i ] −= { j }
nbh [ j ] −= { i }
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return count

def n t r i ang l e s nbh improved2 ( edges ) :
n ver=np . amax( edges )+1
nbh=edges to nbh ( edges )
permutation=sor t ed ( range ( n ver ) , key=lambda idx : l en ( nbh [ idx ] ) )
count=0
for i in permutation :

nbhi=nbh [ i ]− s e t ( )
for j in nbhi :

count+=len ( nbh [ i ] & nbh [ j ] )
nbh [ i ] −= { j }
nbh [ j ] −= { i }

return count

def n t r i ang l e s nbh improved3 ( edges ) :
n edges=len ( edges )
mask =[ ]
for i in range ( n edges ) :

i f edges [ i ,0]> edges [ i , 1 ] :
mask . append ( i )

edges=np . d e l e t e ( edges , mask , 0 )
n edges=len ( edges )
nbh=edges to nbh ( edges )
count=0
for k in range ( n edges ) :

i=edges [ k , 0 ]
j=edges [ k , 1 ]
count+=len ( nbh [ i ]&nbh [ j ] )

return count

def n t r i ang l e s nbh improved4 ( edges ) :
n ver=np . amax( edges )+1
n edges=len ( edges )
mask =[ ]
for i in range ( n edges ) :

i f edges [ i ,0]> edges [ i , 1 ] :
mask . append ( i )

edges=np . d e l e t e ( edges , mask , 0 )
n edges=len ( edges )
nbh=edges to nbh ( edges )
permutation=sor t ed ( range ( n ver ) , key=lambda idx : l en ( nbh [ idx ] ) )
count=0
for i in permutation :

for j in nbh [ i ] :
count+=len ( nbh [ i ] & nbh [ j ] )

return count

def n t r i ang l e s nbh improved5 ( edges ) :
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n ver=np . amax( edges )+1
n edges=len ( edges )
mask =[ ]
for i in range ( n edges ) :

i f edges [ i ,0]> edges [ i , 1 ] :
mask . append ( i )

edges=np . d e l e t e ( edges , mask , 0 )
n edges=len ( edges )
nbh=edges to nbh ( edges )
edge degree s=np . z e r o s ( ( n edges , 3 ) , dtype=’ i n t ’ )
for k in range ( n edges ) :

i=edges [ k , 0 ]
j=edges [ k , 1 ]
edge degree s [ k ]=[ i , j , min ( l en ( nbh [ i ] ) , l en ( nbh [ j ] ) ) ]

count =[0]∗ n ver
for a in edge degree s [ : , 2 ] :

count [ a]+=1
running count =[0]∗ n ver
for i in range (1 , n ver ) :

running count [ i ]= running count [ i−1]+count [ i ]
s o r t e d e d g e s=np . z e r o s ( ( n edges , 3 ) , dtype=’ i n t ’ )
for a in range ( n edges ) :

deg=edge degree s [ a , 2 ]
idx=running count [ deg ]−1
s o r t e d e d g e s [ idx ]= edge degree s [ a ]
running count [ deg]−=1

n t r i =0
for k in range ( n edges ) :

i=s o r t e d e d g e s [ k , 0 ]
j=s o r t e d e d g e s [ k , 1 ]
n t r i+=len ( nbh [ i ]&nbh [ j ] )

return n t r i

#%% Test ing the a l go r i t hms

t e s t e d g e s =[ ’ 0 edges . t sv ’ , ’ tvshow . t sv ’ , ’ a t h l e t e s . t sv ’ , ’ n e w s i t e s . t sv ’ ,
’ B r i g h t k i t e e d g e s . txt ’ , ’ Gowal la edges . txt ’ , ’ roadNet−PA. txt ’ , ’ roadNet−CA. txt ’ ]
n ver=np . z e r o s ( l en ( t e s t e d g e s ) , dtype=i n t )
n edges=np . z e ro s ( l en ( t e s t e d g e s ) , dtype=i n t )
d=np . z e ro s ( l en ( t e s t e d g e s ) )
n t r i a n g l e s=np . z e r o s ( l en ( t e s t e d g e s ) , dtype=i n t )
runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 3 ) )
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
n ver [ i ]=np . amax( edges )+1
n edges [ i ]= l en ( edges )/2
d [ i ]=2∗ n edges [ i ] / n ver [ i ]
s t a r t=time . time ( )
n t r i a n g l e s s p a r s e ( edges )
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runtimes [ i ,2 ]= time . time ()− s t a r t
for i in range ( 4 ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
n t r i a n g l e s [ i ]= n t r i a n g l e s b a s e l i n e ( edges )
runtimes [ i ,0 ]= time . time ()− s t a r t
s t a r t=time . time ( )
n t r i a n g l e s m a t r i x ( edges )
runtimes [ i ,1 ]= time . time ()− s t a r t

print ( n ver , n edges , d , n t r i a n g l e s )
print ( runtimes )

runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 6 ) )
x=10
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
for in range ( x ) :

n t r i a n g l e s n b h ( edges )
runtimes [ i , 0 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

n t r i ang l e s nbh improved ( edges )
runtimes [ i , 1 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

n t r i ang l e s nbh improved2 ( edges )
runtimes [ i , 2 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

n t r i ang l e s nbh improved3 ( edges )
runtimes [ i , 3 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

n t r i ang l e s nbh improved4 ( edges )
runtimes [ i , 4 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

n t r i ang l e s nbh improved5 ( edges )
runtimes [ i , 5 ]=( time . time ()− s t a r t )/ x

print ( runtimes )
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B. Python Code for Truss Enumeration

import numpy as np
import csv
import time

def t s v t o e d g e l i s t ( f i l e ) :
matrix =[ ]
with open ( f i l e ) as t s v f i l e :

r eader=csv . r eader ( t s v f i l e , d e l i m i t e r=’ \ t ’ )
for row in reader :

row int =[ ]
for i in range ( l en ( row ) ) :

row int . append ( i n t ( row [ i ] ) )
matrix . append ( row int )

return np . array ( matrix )

def edges to nbh ( edges ) :
n edges=len ( edges )
n ver=np . amax( edges )+1
nbh=[ s e t ( ) ] ∗ n ver
for i in range ( n edges ) :

nbh [ edges [ i , 0 ] ] = nbh [ edges [ i , 0 ] ] | { edges [ i , 1 ] }
return nbh

#%% Truss enumeration a l gor i t hms

def t r u s s 3 ( edges ) :
nbh=edges to nbh ( edges )
n edges=len ( edges )
mask =[ ]
for j in range ( n edges ) :

a , b=edges [ j ]
i f l en ( nbh [ a]&nbh [ b])==0:

mask . append ( j )
edges=np . d e l e t e ( edges , mask , 0 )
return edges

def k t r u s s ( edges , k ) :
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n edges=len ( edges )
i=l en ( edges )
while n edges>0 and i >0:

nbh=edges to nbh ( edges )
mask =[ ]
for j in range ( n edges ) :

a , b=edges [ j ]
i f l en ( nbh [ a]&nbh [ b])<k−2:

mask . append ( j )
i=l en (mask )
edges=np . d e l e t e ( edges , mask , 0 )
n edges=len ( edges )

return edges

def k trus s improved ( edges , k ) :
nbh=edges to nbh ( edges )
pa s s i v e=s e t ( )
a c t i v e=s e t ( )
for i in range ( l en ( edges ) ) :

a c t i v e |= { f r o z e n s e t ( edges [ i ] . t o l i s t ( ) )}
while l en ( a c t i v e )>0:

a , b=a c t i v e . pop ( )
i f l en ( nbh [ a]&nbh [ b])<k−2:

nbh [ a ] −= {b}
nbh [ b ] −= {a}
for c in nbh [ a]&nbh [ b ] :

a c t i v e |= { f r o z e n s e t ( [ a , c ] ) , f r o z e n s e t ( [ b , c ] ) }
pas s i v e −= { f r o z e n s e t ( [ a , c ] ) , f r o z e n s e t ( [ b , c ] ) }

else :
p a s s i v e |= { f r o z e n s e t ( [ a , b ] ) }

return pas s i v e

def k truss improved2 ( edges , k ) :
nbh=edges to nbh ( edges )
n edges=len ( edges )
C={}
pas s i v e=s e t ( )
a c t i v e=s e t ( )
for i in range ( n edges ) :

m, n=edges [ i ]
C[ f r o z e n s e t ( [m, n ] ) ]= l en ( nbh [m]&nbh [ n ] )
i f C[ f r o z e n s e t ( [m, n ]) ]<k−2:

a c t i v e |= { f r o z e n s e t ( [m, n ] ) }
else :

p a s s i v e |= { f r o z e n s e t ( [m, n ] ) }
while l en ( a c t i v e )>0:

a , b=a c t i v e . pop ( )
nbh [ a ] −= {b}
nbh [ b ] −= {a}
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for c in nbh [ a]&nbh [ b ] :
C[ f r o z e n s e t ( [ a , c ])]−=1
C[ f r o z e n s e t ( [ b , c ])]−=1
i f C[ f r o z e n s e t ( [ a , c ] ) ]<k−2:

a c t i v e |= { f r o z e n s e t ( [ a , c ] ) }
pas s i v e −= { f r o z e n s e t ( [ a , c ] ) }

i f C[ f r o z e n s e t ( [ b , c ] ) ]<k−2:
a c t i v e |= { f r o z e n s e t ( [ b , c ] ) }
pas s i v e −= { f r o z e n s e t ( [ b , c ] ) }

return pas s i v e

#%% Test ing t r u s s a l go r i t hms

t e s t e d g e s =[ ’ 0 edges . t sv ’ , ’ tvshow . t sv ’ , ’ a t h l e t e s . t sv ’ , ’ n e w s i t e s . t sv ’ ,
’ B r i g h t k i t e e d g e s . txt ’ , ’ Gowal la edges . txt ’ ]
runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 4 ) )
x=10
k=3
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
for in range ( x ) :

t r u s s 3 ( edges )
runtimes [ i , 0 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t r u s s ( edges , k )
runtimes [ i , 1 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved ( edges , k )
runtimes [ i , 2 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved2 ( edges , k )
runtimes [ i , 3 ]=( time . time ()− s t a r t )/ x

print ( runtimes )

runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 3 ) )
x=10
k=4
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
for in range ( x ) :

k t r u s s ( edges , k )
runtimes [ i , 0 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
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for in range ( x ) :
k t rus s improved ( edges , k )

runtimes [ i , 1 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved2 ( edges , k )
runtimes [ i , 2 ]=( time . time ()− s t a r t )/ x

print ( runtimes )

runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 3 ) )
x=10
k=5
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
for in range ( x ) :

k t r u s s ( edges , k )
runtimes [ i , 0 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved ( edges , k )
runtimes [ i , 1 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved2 ( edges , k )
runtimes [ i , 2 ]=( time . time ()− s t a r t )/ x

print ( runtimes )

runtimes=np . z e ro s ( ( l en ( t e s t e d g e s ) , 3 ) )
x=10
k=6
for i in range ( l en ( t e s t e d g e s ) ) :

edges=t s v t o e d g e l i s t ( t e s t e d g e s [ i ] )
s t a r t=time . time ( )
for in range ( x ) :

k t r u s s ( edges , k )
runtimes [ i , 0 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved ( edges , k )
runtimes [ i , 1 ]=( time . time ()− s t a r t )/ x
s t a r t=time . time ( )
for in range ( x ) :

k t rus s improved2 ( edges , k )
runtimes [ i , 2 ]=( time . time ()− s t a r t )/ x

print ( runtimes )
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