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1 Introduction
Agents in Artificial Intelligence have to be able to act in environments with un-
certainties. For example, they may have to interact with other agents of which
they cannot be certain of how they will act. For agents to be able to reason about
these uncertainties they can use probabilistic reasoning. Bayesian networks are
models of joint probability distributions over sets of variables and are used for
probabilistic reasoning. In Bayesian networks we almost always use discrete
variables. However, there are many domains in which variables are actually con-
tinuous. One way to capture these continuous variables in a Bayesian network
is by discretization of the variables for which various methods exist. With dis-
cretization, a continuous interval is divided into subintervals or bins, by placing
so-called cut points. Most discretization methods focus on discretizing a single
variable and typically assume a data set with data points for this variable, which
are subsequently divided into bins. Variables, however, are often related to other
variables and this relation may be affected by discretization of one of the vari-
ables. In practice, relations between variables often are monotone, which means
that higher values for one of the variable gives a higher probability for higher
values for the other variable. Or conversely, higher values for the input variable
gives a higher probability for lower values for the output variable [9]. Monotonic-
ity is a property that we would like to preserve during discretization. Therefore,
we would like to know to which extent these properties of (non-)monotonicity are
affected by discretization. Although there are various papers related to mono-
tonicity ([7], [6], [10]) and to discretization methods ([2], [4]), to the best of our
knowledge there is no research describing the relation between discretization
and monotonicity.

Some widely used discretization methods, such as Equal Frequency and Equal
Width focus only on the variable that is to be discretized. Other popular methods,
such as ChiMerge [3] and MDLP [1] take other variables, typically a class vari-
able, which gives the class to which the observation belongs, into account when
discretizing a variable. For Equal Frequency and Equal Width the number of bins
should be predetermined b the user. For these methods we will discuss how the
number of bins should be chosen to best preserve monotonicity and we will give
guidelines for this. For ChiMerge and MDLP, we will investigate how they han-
dle (non-)monotonicity by examining some special cases theoretically and some
other (non-)monotone probability distributions with experiments. The discretiza-
tion methods prescribe between which values a cut point should be placed. With
exception of Equal Width, they use data points as the start and end points of the
bins. We will examine if there are other options to choose the placement of the
cut points that may give a better discretization.

In Chapter 2 we will present the preliminaries. In Chapter 3 we will discuss
monotonicity and we will examine when monotonicity is preserved or induced
upon discretization independent of which discretization method is used. In this
chapter we will also propose and study measures for a degree of monotonicity. In
Chapter 4, 5, 6 and 7 we will subsequently examine the discretization methods
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Equal Frequency, Equal Width, ChiMerge and MDLP. For each method we will
discuss the advantages and disadvantages. In Chapter 6 and 7 we will theoret-
ically study how ChiMerge and MDLP respectively work for some special cases.
In Chapter 8 we will examine how ChiMerge and MDLP work for some (non-
)monotone probability distributions by conducting experiments. Finally, in Chap-
ter 9 we will propose other suggestions to determine where a cut point should be
placed than what the methods prescribe.

2 Preliminaries
In this thesis we consider the discretization of stochastic variables based upon
datasets containing samples of their values. We assume that datasets are of finite
size, and as a result the number of different values recorded for a continuous
variable can be large, but is finite. We therefore assume that any variable can
be represented by a discrete stochastic variable X = {x1, ..., xn} for which there
exists some ordering ≺ on its values, such that x1 ≺ ... ≺ xn. The probability
distributions for these stochastic variables are estimated from the same datasets.

Definition 1. A dataset is a multiset DX = {xi,1 ≤ i ≤ n} which consists of all
data points for stochastic variable X , with n subsets Dxi = {xi ∈ DX }.
Similarly, multiset DX ,C = {(xi, c j)|1 ≤ i ≤ n,1 ≤ j ≤ m} is a dataset consisting of
all data points for the combination of variables X and C, with subsets Dxi ,c j =
{(xi, c j)|(xi, c j) ∈ DX ,C}

From the dataset DX , the probabilities for X can be estimated as follows:

Pr(X = xi)=
|Dxi |
|DX |

And the conditional probabilities for C:

Pr(C = c j|X = xi)=
|Dxi ,c j |∑m

k=1 |Dxi ,ck |
We illustrate the probability estimation with the following example dataset

DX ,C = {(1,1), (1,1), (2,1), (2,2), (2,2), (2,2), (3,1), (3,1), (3,1), (3,2)}. The probabili-
ties for X are estimated as follows:

Pr(X = 1)= 2
10

Pr(X = 2)= 4
10

Pr(X = 3)= 4
10

Pr(C = 1|X = 1)= 2
2

Pr(C = 1|X = 2)= 1
4

Pr(C = 1|X = 3)= 3
4

Pr(C = 2|X = 1)= 0

Pr(C = 2|X = 2)= 3
4

Pr(C = 2|X = 3)= 1
4

The purpose of discretization is to reduce the number of possible outcomes of
a variable X . To this end, discretization methods typically divide the complete
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range of values of X into so-called bins Bi, i ∈ {1,2, ..., t}, where t is the number
of bins. The bins are intervals of values of the original variable. For example, as-
sume that values of the stochastic variable X can be any percentage. Then, X is
a continuous variable. One way to get a discrete variable is to divide the values
in the following bins B1 = [0,25), B2 = [25,50), B3 = [50,75) and B4 = [75,100].
The original domain is cut into intervals and all values that lie in these intervals
are together considered as a single value for the newly discretized variable.
We will call the points at which these intervals are cut off cut points. Each dis-
cretization method differs in how it is decided where these cut points are placed.
These cut points can be values in the continuous domain of X . They are not nec-
essarily data points.
The choice for the value for t is for some methods free and needs to be prede-
termined by the user and for other methods the value of t is determined by the
method itself.

Some discretization methods determine all the cut points in one step, some
methods start by determining one cut point and add new cut points step-by-step
and yet other methods start by determining many cut points and then remove
some of these cut points.
Regardless of the actual implementation of a discretization method, each method
can be seen as a process that starts out with n bins, one for each data point, and
iteratively combines two bins into a new one. Each such iteration, which we will
refer to as a discretization step, basically creates a new variable with a new set
of values.

Definition 2. A discretization step for a variable X maps its values x1 ≺ ... ≺ xn
to the values x′1 ≺ ...≺ x′n−1 of a new variable X ′ such that for some i ∈ {1, ...,n−1}
we have that:
∀k ∈ {1, ..., i−1} : x′k = xk.
x′i = xi ∨ xi+1
∀l ∈ {i+1, ...,n−1} : x′l = xl+1

For example, suppose we have a variable X with x1 = 1, x2 = 2, x3 = 3, x4 = 4
and x5 = 5 and suppose the values x3 and x4 are merged together. Then, X ′
consists of the values x′1 = 1, x′2 = 2, x′3 = 3∨4 and x′4 = 5.

We will use this definition to study to what extent various methods can pre-
serve characteristics of the data.

Note that our definition for a discretization step does not coincide exactly with
the combining of bins. For our purpose, this definition is, however, easier to use.
For each value of X ′ the bin Bi will then be defined such that the smallest value
of the bin Bi is less or equal to the smallest value of x′i, the greatest value of the
bin Bi is greater or equal to the greatest value of x′i, the bins do not overlap and
all the bins together cover [x′1, x′n−1] The values of X ′ are x′1, ..., x′n−1 and for the
actual implementation of the data after discretization, the corresponding bins
will be used.
In this thesis, we will look at discretization in models for discrete probability
distributions. These can, for example, be represented by Bayesian Networks.

4



However, all remarks that are made hold for other models as well. We solely use
Bayesian Networks for the representation. In Bayesian networks we are mostly
concerned with the connection between multiple variables. In this thesis, we will
look at the effects of discretization on parts of the Bayesian network. A Bayesian
network is defined in Definition 3 [8].

Definition 3. A Bayesian network consists of a set of variables and a set of di-
rected edges between variables. The variables together with the directed edges
form an acyclic graph.
To each variable A with parents B1, ...,Bn a conditional probability table Pr(A|B1, ...,Bn)
is attached.

We will focus solely on parts of the Bayesian network. We define these parts
as relations

Definition 4. A relation X → C from stochastic variable X to stochastic variable
C is associated with an arc X → C in a Bayesian network where X is a parent of
C, as shown in Figure 1.

C

X

Figure 1: Relation with two variables

Definition 5. A relation X → C|Y1, ...,Yn from variable stochastic X to stochas-
tic variable C in the context of a specific value assignment of the stochastic vari-
ables Y1, ...,Yn is associated with an arc X → C in a Bayesian network where
X ,Y1, ...,Yn are parents of C, as shown in Figure 2

C

X Y1 ... Yn

Figure 2: Relation with more than two variables

In this thesis, we will also compare distributions on differently discretized
variables. For this we need a measure, and we will use the Kullback-Leibler
divergence[5]

Definition 6. Consider a variable X and the set of conditional distributions P(X )
and Q(X ). Then, we define the Kullback-Leibler divergence between P and Q as:
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KL(Q||P)= ∑
x∈X

Q(x) log
Q(x)
P(x)

When we are working with sets of conditional distributions for the same con-
ditioning variable, we will use this Kullback-Leibler divergence as well. We will
do this by summing over all conditioning contexts:

Definition 7. Consider two variables X and Y and the set of conditional distri-
butions P(Y |X ) and Q(Y |X ). Then, we define the total Kullback-Leibler diver-
gence between P and Q as:

KL
∑

(Q,P)= ∑
x∈X

KL(Qx||Px)

3 Monotonicity

3.1 Monotonicity
When a relation is monotone in distribution, it is either isotone in distribution or
antitone in distribution.

Definition 8. Let X and C be as before. A relation X → C is isotone in distribu-
tion if for every ck ∈ {c1, ..., cm} and every xi ∈ {x1, ...xn−1} it holds that

Pr(C ≤ ck|X = xi)≥Pr(C ≤ ck|X = xi+1)

Definition 9. Let X and C be as before. A relation X → C is antitone in distri-
bution if for every ck ∈ {c1, ..., cm} and every xi ∈ {x1, ...xn−1} it holds that

Pr(C ≤ ck|X = xi)≤Pr(C ≤ ck|X = xi+1)

Both Definitions 8 and 9 are generalized for a relation of the form X →
C|Y1, ...,Yl by conditioning all probabilities involved on values for Y1, ...,Yl .

3.2 Preserving monotonicity with discretization methods
By discretization of the variables in a Bayesian network, you can lose character-
istics of the data, one such characteristic is (non-)monotonicity. In this section we
will look at when (non-)monotonicity is preserved and when it is induced upon
discretization.

3.2.1 Relations with two variables

Consider the Bayesian network B with variable X with values x1, ..., xn such that
x1 ≺ ... ≺ xn, n > 1 and variable C with values c1, ..., cm such that c1 ≺ ... ≺ cm,
m > 1 and the structure as shown in Figure 1.

Suppose the probabilities Pr(c j|xi) are estimated from a dataset D = {(xi, c j)|1≤
i ≤ n,1≤ j ≤ m}, with subsets D i, j = {(xi, c j)|(xi, c j) ∈ D} for specific i and j, by fre-
quency counting. That is,
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Pr(c j|xi)=
|D i, j|∑m

k=1 |D i,k|
Theorem 1. If the relation X → C is isotone in distribution and a discretization
step is performed on X , where some xi and xi+1 are placed in a bin together, the
newly created relation X ′ → C will be isotone in distribution as well.

Proof. Suppose the relation X → C is isotone in distribution. Then, by definition,
for every ck ∈ C it holds that

Pr(C ≤ ck|X = xi−1)≥ Pr(C ≤ ck|X = xi)≥ Pr(C ≤ ck|X = xi+1)≥ Pr(C ≤ ck|X = xi+2)

Let
∑m

k=1 |D i,k| = a and
∑m

k=1 |D i+1,k| = b with a,b ∈N. Then P(X = xi)= a and
P(X = xi+1)= b. This gives us

Pr(C ≤ ck|X = (xi ∨ xi+1))=
k∑

l=1
Pr(C = cl |X = (xi ∨ xi+1))

=
k∑

l=1

Pr(C = cl ∧ X = (xi ∨ xi+1))
Pr(X = (xi ∨ xi+1))

=
k∑

l=1

Pr(C = cl ∧ X = xi)+Pr(C = cl ∧ X = xi+1)
Pr(X = xi)+Pr(X = xi+1)

=
k∑

l=1

Pr(C = cl |X = xi)Pr(X = xi)+Pr(C = cl |X = xi+1)Pr(X = xi+1)
Pr(X = xi)+Pr(X = xi+1)

= a ·∑k
l=1 Pr(C = cl |X = xi)+b ·∑k

l=1 Pr(C = cl |X = xi+1)

a+b

= a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi+1)
a+b

≥ a ·Pr(C ≤ ck|X = xi+1)+b ·Pr(C ≤ ck|X = xi+1)
a+b

=Pr(C ≤ ck|X = xi+1)

≥Pr(C ≤ ck|X = xi+2)
(1)

and, analogously

Pr(C ≤ ck|X = (xi ∨ xi+1))= a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi+1)
a+b

≤ a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi)
a+b

=Pr(C ≤ ck|X = xi)

≤Pr(C ≤ ck|X = xi−1)

(2)
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Performing the discretization step on X by placing the values xi and xi+1 in
a bin together, Equations 1 and 2 give us:

Pr(C ≤ ck|X ′ = x′i−1)≥ Pr(C ≤ ck|X ′ = x′i)≥ Pr(C ≤ ck|X ′ = x′i+1)

For all other values of X ′ the monotonicity is maintained as it did for X .
We conclude that the newly created relation X ′ → C is isotone in distribution as
well.

Theorem 2. If the relation X → C is antitone in distribution and a discretization
step is performed on X , where some xi and xi+1 are placed in a bin together, the
newly created relation X ′ → C will be antitone in distribution as well.

Proof. Suppose the relation X → C is antitone in distribution. Thus, for every
ck ∈ C holds

Pr(C ≤ ck|X = xi−1)≤ Pr(C ≤ ck|X = xi)≤ Pr(C ≤ ck|X = xi+1)≤ Pr(C ≤ ck|X = xi+2)

Analogously to the proof for Theorem 1 we find

Pr(C ≤ ck|X = (xi ∨ xi+1))=
k∑

l=1
Pr(C = cl |X = (xi ∨ xi+1))

= a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi+1)
a+b

≤ a ·Pr(C ≤ ck|X = xi+1)+b ·Pr(C ≤ ck|X = xi+1)
a+b

=Pr(C ≤ ck|X = xi+1)

≤Pr(C ≤ ck|X = xi+2)

(3)

And,

Pr(C ≤ ck|X = (xi ∨ xi+1))= a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi+1)
a+b

≥ a ·Pr(C ≤ ck|X = xi)+b ·Pr(C ≤ ck|X = xi)
a+b

=Pr(C ≤ ck|X = xi)

≥Pr(C ≤ ck|X = xi−1)

(4)

Performing the discretization step on X by placing the values xi and X i+1 in
a bin together, Equations 3 and 4 give us:

Pr(C ≤ ck|X ′ = x′i−1)≤ Pr(C ≤ ck|X ′ = x′i)≤ Pr(C ≤ ck|X ′ = x′i+1)

For all other values of X ′ the monotonicity is maintained as it did for X . We
conclude that, the newly created relation X ′ → C is antitone in distribution as
well.
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Theorem 3. If the relation X → C is monotone in distribution and a discretiza-
tion step is performed on C, the newly created relation X → C′ will be monotone in
distribution as well.

Proof. Suppose the relation X → C is isotone in distribution. Thus, for every
xl ≺ xl+1 and every ci ∈ C, it holds that

Pr(C ≤ ci|X = xl)≥Pr(C ≤ ci|X = xl+1)

We know that ci < ci+1. Thus, from C ≤ (ci ∨ ci+1) follows that C ≤ ci+1.
Therefore,

Pr(C ≤ (ci ∨ ci+1)|X = xl)=Pr(C ≤ ci+1|X = xl)

≥Pr(C ≤ ci+1|X = xl+1)

=Pr(C ≤ (ci ∨ ci+1)|X = xl+1)
(5)

Performing the discretization step gives

Pr(C′ ≤ c′i|X = xl)≥Pr(C′ ≤ c′i|X = xl+1)

For all other values of C′ the monotonicity is maintained as it did for C.We
conclude that the relation X → C′ is isotone in distribution as well.

If the relation X → C was antitone in distribution, the relation X → C′ would
be antitone in distribution as well. This can be proven in the same way as iso-
tonicity by replacing each ≥ by ≤.

Combining Theorem 1, Theorem 2 and Theorem 3 gives us the following prop-
erty:

Property 1. If a relation X → C is monotone in distribution, discretization of
either X or C will preserve the monotonicity.

However, if the relation X → C is non-monotone in distribution, discretization
of either X or C will not necessarily preserve non-monotonicity for the newly cre-
ated relation. This gives us the following property:

Property 2. If a relation X → C is non-monotone in distribution, discretization
of either X or C can cause monotonicity of the newly created relation.

The following two examples will show Property 2.

The first example will show that if the relation X → C is non-monotone in
distribution and a discretization step is perfomed on X , the relation X ′ → C can
be monotone in distribution.
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Consider the relation X → C with X = {x1, x2, x3, x4}, C = {c1, c2} and probabilities
as given in Table 1. Note that the relation is not monotone.

Table 1: Probabilities of the values of C given the different values for X

x1 x2 x3 x4
c1 0.3 0.5 0.2 0.1
c2 0.7 0.5 0.8 0.9

Now, perform one discretization step on X by taking x′1 = x1 ∨ x2.
Because the prior probabilities for the values of X are unknown, the probabilities
Pr(C ≤ c1|X ′ = x′1) and Pr(C ≤ c2|X ′ = x′1) can not be computed. We can, however
say something about how they relate to the other probabilities.

From Pr(C ≤ c1|X = x1) ≤ Pr(C ≤ c1|X = x2) and the proof for Theorem 2 it
follows that

Pr(C ≤ c1|X = (x1 ∨ x2))≥Pr(C ≤ c1|X = x1)

Thus, from this and the probabilities in Table 1 it follows that after the dis-
cretization step on X, where x1 and x2 are placed in a bin together, we have:

Pr(C ≤ c1|X = (x1 ∨ x2))≥ 0.3≥Pr(C ≤ c1|X = x3)≥Pr(C ≤ c1|X = x4)

After the discretization step, this gives:

Pr(C ≤ c1|X ′ = x′1)≥Pr(C ≤ c1|X ′ = x′2)≥Pr(C ≤ c1|X ′ = x′3)

And, because Pr(C ≤ c2|X = (x1∨x2))=Pr(C ≤ c2|X = x3)=Pr(C ≤ c2|X = x4)=
1, we have that, after the discretization step it holds that:

Pr(C ≤ c2|X ′ = x′2)≥Pr(C ≤ c2|X ′ = x′2)≥Pr(C ≤ c2|X ′ = x′3)

It follows that the newly created relation X ′ → C is isotone in distribution.
This shows that discretization of X can induce monotonicity of the newly created
relation.

The second example shows that if the relation X → C is non-monotone in dis-
tribution and a discretization step is performed on C, the relation X → C′ can be
monotone in distribution.
Consider X = {x1, x2}, C = {c1, c2, c3, c4} and probabilities as given in Table 2:
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Table 2: Probabilities of the values of C given the different values of X

x1 x2
c1 0.1 0.3
c2 0.4 0.1
c3 0.3 0.3
c4 0.2 0.3

This relation X → C is not monotone. Performing a discretization step on C
by taking c′1 = c1 ∨ c2 will give the probabilities as shown in Table 3:

Table 3: Probabilities of the values of C given the different values of X

x1 x2
c′1 0.5 0.4
c′2 0.3 0.3
c′3 0.2 0.3

From these probabilities, it follows that:

Pr(C ≤ c′1|X = x1)≥Pr(C ≤ c′1|X = x2)

Pr(C ≤ c′2|X = x1)≥Pr(C ≤ c′2|X = x2)

Pr(C ≤ c′3|X = x1)≥Pr(C ≤ c′3|X = x2)

Therefore, the newly created relation X → C′ is isotone in distribution. This
shows that discretization of C can induce monotonicity of the newly created rela-
tion.

In fact, if discretization makes both X and C binary-valued, then the relation
X → C is necessarily monotone. This is shown in Theorem 4.

Theorem 4. If both X and C are binary variables, the relation X → C is mono-
tone.

Proof. Assume that X and C are binary variables, so X = {x1, x2} and C = {c1, c2}.
This means that either Pr(C ≤ c1|X = x1) ≥ Pr(C ≤ c1|X = x2) or Pr(C ≤ c1|X =
x1)≤Pr(C ≤ c1|X = x2).
From Pr(C ≤ c2|X = x1)=Pr(C ≤ c2|X = x2)= 1 it follows that both Pr(C ≤ c2|X =
x1)≥Pr(C ≤ c2|X = x2) and Pr(C ≤ c2|X = x1)≤Pr(C ≤ c2|X = x2).
Then, if Pr(C ≤ c1|X = x1) ≥ Pr(C ≤ c1|X = x2), the network is isotone in distri-
bution and if Pr(C ≤ c1|X = x1) ≤ Pr(C ≤ c1|X = x2), the network is antitone in
distribution.
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3.2.2 Relations involving more than two variables

This section will be about relations involving more than two variables. First,
consider the relation X → C|Y . For this relation the following property holds:

Property 3. If the relation X → C|Y is monotone for a given value of Y , the
relation X → C can be non-monotone, isotone or antitone.

The following example shows this property. Consider the relation X → C|Y
with X = {x1, x2, x3, x4}, C = {c1, c2, c3}, Y = {y1, y2} and the probabilities for the
values of C given the values for the combinations of X and Y as shown in Table
4:

Table 4: probabilities for the values of C given the combinations of values for X
and Y

y1 y2
x1 x2 x3 x4 x1 x2 x3 x4

c1 0.9 0.8 0.3 0.2 0.2 0.4 0.6 0.7
c2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
c3 0.0 0.1 0.6 0.7 0.7 0.5 0.3 0.2

From these probabilities it follows that the relation X → C|Y = y1 is isotone
in distribution and the relation X → C|Y = y2 is antitone in distribution. Given
the probabilities for the values of Y and the probabilities from Table 4, the prob-
abilities for the values of C given only the values of X can be calculated. Taking
Pr(Y = y1) = 0.5 shows that the relation X → C can be non-monotone, as shown
in Table 5:

Table 5: Probabilities of the values of C given the different values of X when
Pr(Y = y1)= 0.5

x1 x2 x3 x4
c1 0.55 0.60 0.45 0.45
c2 0.10 0.10 0.10 0.10
c3 0.35 0.30 0.45 0.45

Taking Pr(Y = y1) = 0.8 shows that the relation X → C can be isotone, as
shown in Table 6:

Table 6: Probabilities of the values of C given the different values of X when
Pr(Y = y1)= 0.8

x1 x2 x3 x4
c1 0.76 0.72 0.36 0.30
c2 0.10 0.10 0.10 0.10
c3 0.14 0.18 0.54 0.60
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And, taking Pr(Y = y1) = 0.2 shows that the relation X → C can be antitone,
as shown in Table 7:

Table 7: Probabilities of the values of C given the different values of X when
Pr(Y = y1)= 0.2

x1 x2 x3 x4
c1 0.34 0.48 0.54 0.60
c2 0.10 0.10 0.10 0.10
c3 0.56 0.42 0.36 0.30

From this example, we can conclude that if the relation X → C|Y is monotone,
the relation X → C can be non-monotone, isotone and antitone.

From these examples, we can also deduce the next property:

Property 4. The fact that the relation X → C is isotone, does not imply that the
relation X → C|Y is isotone as well. Also, the fact that the relation X → C is
antitone, does not imply that the relation X → C|Y is antitone as well

This property can be found from the probabilities from Table 6. In this ex-
ample, the relation X → C is isotone. However, the relation X → C|Y = y2 was
antitone in distribution. In the example of Table 7 the relation X → C is antitone,
while the relation X → C|Y = y1 was isotone.

The monotonicity of the relation X → C given Y could be a characteristic of
the relation that should be maintained. Discretization of X or C will maintain
this characteristic, but it may be lost with discretization of Y .

Corollary 1. If the relation X → C|Y = yi is isotone/antitone in distribution for
some yi ∈ Y , the relation X ′ → C|Y = yi will also be isotone/antitone in distribu-
tion after one discretization step.

Proof. If the relation X → C|Y = yi is isotone in distribution, the fact that the
relation X ′ → C|Y = yi will also be isotone in distribution can be proven in the
same way as Theorem 1 by replacing each Pr(C = c j|X = xk) by Pr(C = c j|X =
xk ∧Y = yi).

If the relation X → C|Y = yi is antitone in distribution, the fact that the rela-
tion X ′ → C|Y = yi will also be antitone in distribution can be proven by making
the same replacement in the proof for Theorem 2

Corollary 2. If the relation X → C|Y = yi is isotone/antitone in distribution for
some yi ∈ Y , the relation X → C′|Y = yi will also be isotone/antitone in distribu-
tion after one discretization step.

Proof. This can be proven by replacing each Pr(C = c j|X = xk) by Pr(C = c j|X =
xk ∧Y = yi) in the proof for Theorem 3.
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Property 5. The fact that the relation X → C|Y = yi is monotone in distribution
for some yi ∈ Y , does not imply that the relations X → C|Y = (yi ∨ yi+1) and
X → C|Y = (yi−1 ∨ yi) are monotone in distribution as well.

This property is shown in the next example. In this example the relation
X → C|Y = y1 is isotone in distribution and the relation X → C|Y = y2 is antitone
in distribution. Assume X = {x1, x2, x3}, Y = {y1, y2, y3}, C = {c1, c2} and the follow-
ing probabilities for C given X and Y as shown in Table 8:

Table 8: Probabilities for the values of C given the combinations of values for X
and Y

y1 y2 y3
x1 x2 x3 x1 x2 x3 x1 x2 x3

c1 0.7 0.5 0.1 0.2 0.3 0.9 0.2 0.7 0.6
c2 0.3 0.5 0.9 0.8 0.7 0.1 0.8 0.3 0.4

Now, perform a discretization step on Y with y′1 = (y1 ∨ y2). Assume that
Pr(Y = y1|Y = y1 ∨Y = y2) = 0.5 and Pr(Y = y2|Y = y1 ∨Y = y2) = 0.5. This gives
the following probabilities, as shown in Table 9:

Table 9: Probabilities for the values of C given the combinations of values for X
and Y

y′1 y′2
x1 x2 x3 x1 x2 x3

c1 0.45 0.40 0.50 0.20 0.70 0.60
c2 0.55 0.60 0.50 0.80 0.30 0.40

From the probabilities in Table 9 it follows that the relation X → C|Y ′ = y′1 is
non-monotone. The monotonicity in the relation X → C|Y = y1 and in the relation
X → C|Y = y2 is lost by discretization of Y .

3.3 Degrees of monotonicity
Now, we have seen that monotonicity is preserved when data is discretized, but
how well is it preserved? To check this, we need to be able to measure some
degree of monotonicity. The next example will give an idea of what we want to
measure:

Let X = {10,20} and C = {c1, c2}.

Network 1:
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Pr(C ≤ c1|X = 10)= 0.4 Pr(C ≤ c1|X = 20)= 0.4
Pr(C ≤ c2|X = 10)= 0.7 Pr(C ≤ c2|X = 20)= 0.7
Pr(C ≤ c3|X = 10)= 1 Pr(C ≤ c3|X = 20)= 1

Network 2:
Pr(C ≤ c1|X = 10)= 0.8 Pr(C ≤ c1|X = 20)= 0.2
Pr(C ≤ c2|X = 10)= 0.9 Pr(C ≤ c2|X = 20)= 0.3
Pr(C ≤ c3|X = 10)= 1 Pr(C ≤ c3|X = 20)= 1

To investigate the degree of monotonicity we define step size between two proba-
bilities:

Definition 10. The step size between two probabilities from conditional distribu-
tions over C given consecutive values xi and xi+1 of X is given by |Pr(C = c j|X =
xi+1)−Pr(C = c j|X = xi)| for some c j ∈ C.

We might say that network 2 has a higher degree of monotonicity, because
the step size for C = c1 given consecutive values X = 10 and X = 20 is larger than
it is for network 1.

3.3.1 Proposals for measuring the degree of monotonicity

In the previous example, we would, intuitively, say that network 2 has a higher
degree of monotonicity. However, with other networks, it is much harder to de-
cide which one has a higher degree of monotonicity. To decide this, we need a
formal definition for the degree of monotonicity of a network.

To choose such a definition, we can look at the step sizes in the network. The first
proposal is to find the greatest step size, defined by GR(X ,C), between these two
probabilities in the network B:

Definition 11.

GR(X ,C)= max(abs(Pr(C ≤ ck|X = x j+1)−Pr(C ≤ ck|X = x j))|k ∈ {1, ...,m−1}, j ∈ {1, ...,n−1})

Another proposal is to find the average step size, defined by AV (X ,C), be-
tween these two probabilities in the network B:

Definition 12.

AV (X ,C)= ∑
k∈{1,...,m−1}
j∈{1,...,n−1}

|Pr(C ≤ ck|X = x j+1)−Pr(C ≤ ck|X = x j)|
(n−1)× (m−1)

Now, we can look at how these degrees of monotonicity will change after dis-
cretization.
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Theorem 5. If B1 is isotone in distribution and two values xi, xi+1 ∈ X are re-
placed by a new value xi,i+1 with xi,i+1 = xi ∨ xi+1 and there exists a j such that,
for some k ∈ {1, ...,m} holds

GR(B1)= |Pr(C ≤ ck|X = x j+1)−Pr(C ≤ ck|X = x j)|
with j 6= i. Then, GR(B2) of the newly created B2 can not be smaller than

GR(B1) of the original B1.

Proof. To show that GR(B2) can not be smaller than GR(B1), we have to show
that GR(B2) is at least as great as GR(B1).

Because B1 is isotone, it follows that Pr(C ≤ ck|X = x j+1) ≤ Pr(C ≤ ck|X = x j)
and thus

GR(B1)=Pr(C ≤ ck|X = x j)−Pr(C ≤ ck|X = x j+1)

.
We distinguish between the following three cases: j = i + 1, j = i − 1 and

j 6= i+1∧ j 6= i−1.

First, assume j = i+1. Thus,

GR(B1)=Pr(C ≤ ck|X = xi+1)−Pr(C ≤ ck|X = xi+2)

From Theorem 1 it follows that Pr(C ≤ ck|X = xi,i+1) ≥ Pr(C ≤ ck|X = xi+1).
Thus,

GR(B1)≤Pr(C ≤ ck|X = xi,i+1)−Pr(C ≤ ck|X = xi+2)

From the definition of GR(B) it follows that

GR(B1)≤Pr(C ≤ ck|X = xi,i+1)−Pr(C ≤ ck|X = xi+2)≤GR(B2)

Now, assume j = i−1. Thus,

GR(B1)=Pr(C ≤ ck|X = xi−1)−Pr(C ≤ ck|X = xi)

From Theorem 1 it follows that Pr(C ≤ ck|X = xi) ≥ Pr(C ≤ ck|X = xi,i+1).
Thus,

GR(B1)≤Pr(C ≤ ck|X = xi−1)−Pr(C ≤ ck|X = xi,i+1)

From the definition of GR(B) it follows that

GR(B1)≤Pr(C ≤ ck|X = xi−1)−Pr(C ≤ ck|X = xi,i+1)≤GR(B2)

Lastly, assume j 6= i+1∧ j 6= i−1. Then, in B2, the values j and j+1 still exist
and it follows directly that

GR(B1)=Pr(C ≤ ck|X = x j)−Pr(C ≤ ck|X = x j+1)≤GR(B2)
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4 Equal Frequency
Equal Frequency is a discretization method where the bins are constructed such
that each bin contains (approximately) the same number of data points. The
number of bins is chosen by hand.

Algorithm 1 AlgorithmEF(DX , t)
N is the number of data points in DX .
DX = {x1, ...xN } are the data points.
t is the number of bins in which you want to divide the data points.
Output: ci with i ∈ {1, ..., t−1} are the cut points for your bins.

1: Define each ci as the smallest element of X with ci > xk where k = di× N
t e

2: The first bin is given by the interval [x1, c1)
3: Each i-th bin for i ∈ {2, ..., t−1} is given by the interval [ci−1, ci)
4: The last bin is given by the interval [ct−1, xN ]

The following example with dataset DX = {1,2,3,4,5,6,7,8,9,10} will demon-
strate the algorithm as shown in Algorithm 1.

1. In this example, t=3.

2. Since t = 3, there will be 2 cut points, c1 and c2. First, calculate c1. Since
i = 1, this will give k = d1× 10

3 e = 4 and x4 = 4. The smallest element of X
greater than 4 is 5. Thus, c1 = 4.
In the same way we can calculate c2. This gives k = d2× 10

3 e = 7, x7 = 7 and
the smallest element of X greater than 7 is 8. Thus, c2 = 8.

3. The first bin is [1,4)

4. The second bin is [4,8)

5. The last bin is [8,10]

4.1 Problems with Equal Frequency
4.1.1 Problem due to the number of bins

There are two problems that make it impossible to divide a dataset into bins with
exactly equal frequencies.
The first is when the number of bins is not a divider of the number of data points.
Look for example at the following dataset: DX = {1,3,5,6,7,9,12}. Set t = 2, which
is not a divider of N = 7. Following the algorithm, we get the following discretiza-
tion:

interval [1,7) [7,12]
number of data points 4 3

This problem cannot be solved as the data points cannot be distributed evenly
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over the bins. However, if all data points are dissimilar, following the algorithm
will guarantee that the number of data points in the bins will differ by a maxi-
mum of 1. This problem can only be prevented by choosing the number of bins
such that it is a divider of the number of data points.

4.1.2 Problem due to recurring data points

The second problem happens with recurring data points. When there are no
recurring data points the number of data points in the bins will differ by a max-
imum of 1, as seen with the previous problem, there is no such guarantee with
recurring data points. The following (extreme) example will demonstrate what
might happen.
Take DX = {1,2,3,4,5,5,5,5,5,6,7,8,9,10,11}. There are 15 data points. Suppose
that t = 3. When there would be no recurring data points, dividing 15 data points
into 3 bins with Equal Frequency would give 3 bins of size 5. This would give
the following cut points for X : DX = {|1,2,3,4,5|,5,5,5,5,6|,7,8,9,10,11|}. When
data points are the same, they can never lie in different intervals. Therefore,
there can not be a cut point between two 5’s. Following the algorithm, this cut
point is placed after the last 5. Thus, setting t = 3 will give the following dis-
cretization:

bin B1 = [1,6) B2 = [6,7) B3 = [7,11]
number of data points 9 1 5

It is clear that in this case, the algorithm will not have anything to do with Equal
Frequency anymore. The data points are divided quite unevenly. This depends
heavily on the number of bins. Setting t = 4 for the same dataset will give the
following discretization:

bin B1 = [1,5) B2 = [5,6) B3 = [6,9) B4 = [9,11]
number of data points 4 5 3 3

By choosing t = 4 instead of t = 3, we see that the differences in size of the bins
are much smaller.

4.2 Choosing the number of bins
Previously, we found that, because of the problem due to recurring data points,
choosing the number of bins might greatly influence how evenly the data points
are divided. In this section we will discuss how we can check in advance how well
a chosen number of bins will divide the data points.

4.2.1 Avoiding bad cut points

Consider two datasets of the same size and with no recurring data points. If both
datasets are divided into the same number of bins, the size bin Bi will be equal
for both datasets for each i.
The next example shows this. Consider the following three datasets DX a,DX b
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and DX c. All datasets consist of 14 data points. Both DX a and DX b do not have
recurring data points and DX c does have recurring data points. Suppose that all
three datasets are divided into 4 bins. The vertical bars correspond with start
and endpoint of a bin:

DX a = {|1,2,3,4, |5,6,7, |8,9,10,11, |12,13,14|}
DX b = {|2,5,7,9, |13,15,20, |25,38,39,43, |45,50,51|}

DX c = {|1,2,3,4,4,4, |5, |6,7,8,9, |10,11,12|}
We see that for each i the bin Bi has the same size for Xa and Xb, but not

for X c. If bin B1 would have been size 4, like for Xa and Xb, the cut point would
have been within the sequence of 4’s. Therefore, the cut point is placed after the
last 4. To avoid these inequalities in bin size, these shifted cut points should be
avoided as much as possible. The following algorithm can test how many of these
"bad" cut points there will be when choosing a certain number of bins, where the
number of these bad cut points is denoted by z:

1. Take Y = {y1, ..., yN } with yi =
{

1
0

if i<N and xi=xi+1
else

2. Calculate z by z =∑
i∈{1,...,t} ydi× N

t e

Using this algorithm for DX c with t = 4 would give:

1. Y = {0,0,0,1,1,0,0,0,0,0,0,0,0,0}

2. z = y4 + y7 + y11 + y14 = 1+0+0+0= 1

Thus, choosing t = 4 for X c would give 1 bad cut point.

This algorithm returns the number of bad cut points. However, some cut points
are worse than others. Look, for example, at the next three datasets, which all
consist of 14 data points and are all divided into 3 bins:

DX a = {|1,2,3,4,5, |6,7,8,9,10, |11,12,13,14|}

DX b = {|1,2,3,4,5,5, |6,7,8,9, |10,11,12,13|}
DX c = {|1,2,3,4,5,5,5,5,5, |6, |7,8,9,10|}

In Xb and X c the cut point would have been between the first and second 5
if there were no recurring numbers. With the algorithm for both Xb and X c this
cut point would count as a bad cut point even though in the discretization of Xb
the cut point is only shifted 1 place and with the discretization of X c, it is shifted
4 places. As the discretization of X c is more unequal than the discretization of
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Xb, it seems that some cut points result in larger differences in bin sizes.

In the previous algorithm, all bad cut points were given by a 1. To also take
into consideration how bad a cut point is, we will give each cut point a number
based on how many places the cut point will shift. If, for example, the cut point
would only have to shift 1 place it would still be given a 1, but if the cut point
would have to shift 2 places it would be given a 2, etc.

1. Take Y = {y1, ..., yN } with yi = |{x j ∈ X | j > i∧ x j = xi}|
2. Calculate the frequency table for the values ydi× N

t e with i ∈ {1, ..., t}.

In this table can be found how many bad cut points a given number of t will give
and how bad they are.
Using this algorithm for X c with t = 3 would give:

1. Y = {0,0,0,0,4,3,2,1,0,0,0,0,0,0}

2. y5 = 4, y10 = 0 and y14 = 0. So the frequency table becomes:
number of cut point 0 4
frequency 2 1

Of course, a lot of datasets don’t consist of integers, but of decimal numbers and
there may not be as many recurring numbers. However, it may be preferred that
data points that differ very little from each other end up in the same bin. In this
case, both previous algorithms may be used with instead of counting a cut point
as a bad cut point when two data points are exactly the same, counting them as
a bad cut points when the difference between two data points is smaller than a
given difference.

4.3 Advantages and disadvantages of Equal Frequency
4.3.1 Advantages of Equal Frequency

• One advantage of Equal Frequency is that it is quite easy to compute the
discretization with this algorithm.

4.3.2 Disadvantages of Equal Frequency

• A disadvantage of Equal Frequency is that does not take the class-variable
into consideration. The next example will show why this can be a disad-
vantage.
Assume, we look at the relation X → C, where X = {1,2,3,4} and C = {1,2}
with dataset D = {(1,1), (2,1), (3,1), (4,2)}. Discretization on X into 2 bins
with the Equal Frequency algorithm would give the following two bins:
B1 = {1,2} and B2 = {3,4}. However, in this case it would be much more
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logical to place the values 1,2,3 into the first bin and 4 in the second bin as
these all have the same qualifiers.

• Another disadvantage is that the algorithm can work poorly when the data
consists of many recurring data points.

5 Equal Width
In this section we consider the Equal Width discretization method. With Equal
Width, the cut points are chosen such that each interval has the same length.
This means that only the smallest and the largest data points have any influence
on the discretization. For this discretization method, the number of bins t should
be predetermined. In this chapter we will look at how Equal Width works and
we will investigate if it is possible to choose the number of bins such that certain
properties of the data are preserved. We will start by giving a short overview of
the advantages and disadvantages of this discretization method. After this we
will give a guideline to overcome these disadvantages. Lastly, we will investigate
how well this guideline works.

Algorithm 2 AlgorithmEW(t, X )

X = {x1, ..., xN } is a stochastic variable.
t is the number of bins in which you want to divide the domain of X .

1: Calculate the length of each interval: k = xN−x1
t

2: The first bin is given by the interval [x1, x1 +k)
3: Each i-th bin for i ∈ {2, ..., t−1} is given by the interval [x1+(i−1)×k, x1+ i×k)
4: The last bin is given by the interval [x1 + (t−1)×k, xN ]

We will illustrate the Equal Width discretization algorithm, as shown in Al-
gorithm 2, using the example stochastic variable X = {1,2,3,4,5,6,7,8,9,10}. For
this example, we choose t = 3.

1. The length of each interval is then given by k = 10−1
3 = 3

2. The first bin is given by the interval [1,4)

3. The second bin is given by [1+1×3,1+2×3)= [4,7)

4. The third and last bin is given by the interval [1+2×3,1+3×3]= [7,10]

5.1 Advantages and disadvantages of Equal Width
In this section we will discuss the advantages and disadvantages of Equal Width
that we already can deduce from the algorithm.
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5.1.1 Advantages of Equal Width

• The biggest advantage of Equal Width is that it is very easy to apply this
method. With only knowing the smallest and largest value of X and the
number of bins, all the bins can be determined.

5.1.2 Disadvantages of Equal Width

• Equal Width does not take the class-variable into consideration. We have
already seen why this is a disadvantage with Equal Frequency. It does not
even take any data points into consideration, apart from the smallest and
largest value.

• The fact that Equal Width doesn’t consider actual data points can cause
empty bins (bins without data points). For example, consider the data set
DX = {1,2,5,6} assume we choose t = 3. Then, the bins would become B1 =
[1,3), B2 = [3,4) and B3 = [5,6]. Then there are no data points that lie in
the second bin. This is not a problem if these values actually don’t exist in
X , but it is a problem if we just did not find data points for these values.

5.2 Choosing the number of bins
In the previous section we have seen an advantage and two disadvantages of the
Equal Width algorithm. The algorithm is quite simple, but we can see from the
disadvantages, that this comes with a price. In this section we will propose a
guideline that tries to minimize the effects of these disadvantages. This guide-
line helps in choosing the number of bins and the algorithm remains the same.
Therefore, the advantage of Equal Width is preserved.
With Equal Width, the choice for the number of bins is completely free. From
the literature we found that often we do not know what a good value for this
number of bins is [4]. One option for choosing the number of bins in Equal Width
could be choosing as many bins as possible with the limitation that the number
of bins should not be more than desired in the specific application. This can be
motivated by domain knowledge or by the observation that choosing too many
bins can, for example, make the model too complex. In general, more bins results
in less information loss. The disadvantages of the Equal Width method are that
it does not take the class-variable and the actual data points into consideration.
When we do want to take the class-variable into consideration we need to look
at relations between two stochastic variables, as done in Definition 4. Here, we
propose a guideline for choosing the number of bins for the discretization of X in
the relation X → C that does take this class-variable into consideration:

Guideline 1. Choose the bins such that consecutive values of X with a similar
relative frequency of occurrence for C given X in the data are placed in the same
bin.

Here, similar is not yet well-defined. To measure the similarity of these rel-
ative frequencies of occurrence we choose the standard deviation of the mean
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frequency of occurrence.
To illustrate the use of this guideline, we look at an example. Consider the

relation X → C with X = {1,2,3,5,7,8,9,12} and C = {1,2}. The data points in
DX ,C and their frequencies are shown in Table 10:

Table 10: frequencies for the combinations of values for X and C

C = 1 C = 2
X = 1 3 7
X = 2 7 3
X = 3 5 5
X = 5 9 1
X = 7 8 2
X = 8 7 3
X = 9 1 9
X = 12 2 8

Since the guideline works with relative frequencies we need to convert the fre-
quencies from Table 10 to relative frequencies (and therefore to estimated prob-
abilities). This gives the relative frequencies for C given X as given in Table
11:

Table 11: Probabilities Pr(C|X ) for the combinations of values for X and C

C = 1 C = 2
X = 1 0.3 0.7
X = 2 0.7 0.3
X = 3 0.5 0.5
X = 5 0.9 0.1
X = 7 0.8 0.2
X = 8 0.7 0.3
X = 9 0.1 0.9
X = 12 0.2 0.8

From Table 11 we can see that, for example, the relative frequencies of occur-
rence given X = 7 and X = 8 are closer to each other than the relative frequencies
of occurrence given X = 8 and X = 9. So, when we follow the guideline for this
example, we would rather choose the bins such that X = 7 and X = 8 would be in
the same bin instead of choosing the bins such that X = 8 and X = 9 would be in
the same bin.

A reason to follow this guideline is to get probabilities Pr(C|X ′) for the newly
created variable X ′ that are closer to the probabilities Pr(C|X ) for the original
value than when we would not follow this guideline.
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This example shows one case where it can be useful to follow the guideline,
when we want to minimize the distance between the original distribution and the
distribution after discretization.

We will again look at the example as given in Table 11. Using Algorithm 2 for
discretization of X with t = 3 as the number of bins gives the newly created vari-
able X ′ with the following bins: B1 = [1,4 2

3 ), B2 = [4 2
3 ,8 1

3 ) and B3 = [8 1
3 ,12]. Us-

ing Algorithm 2 for discretization of X with t = 4 as the number of bins gives the
newly created variable X ′′ with the following bins: B1 = [1,3.75), B2 = [3.75,6.5),
B3 = [6.5,9.25) and B4 = [9.25,12]. The standard deviations of the probabilities
Pr(C = 1|X ) (C = 2 would give the exact same standard deviations) within each
bin are given in Figure 3. For example, the standard deviation for bin B1 for X ′
is calculated as follows. First, the mean is calculated: 0.3+0.7+0.5

3 = 0.5. Then, the

standard deviation becomes
√

|0.3−0.5|2+|0.7−0.5|2+|0.5−0.5|2
3 = 0.163

Bin standard deviation
B1 0.163
B2 0.082
B3 0.05
Average 0.098

(a) Standard deviations of the probabili-
ties Pr(X |C = 1) in the bins corresponding
with X ′

Bin standard deviation
B1 0.163
B2 0
B3 0.309
B4 0
Average 0.118

(b) Standard deviations of the probabili-
ties Pr(X |C = 1) in the bins corresponding
with X ′′

Figure 3: standard deviations

From Figure 3 we can see that the average standard deviation for t = 3 is
smaller than the average standard deviations for t = 4. Thus, when we compare
t = 3 and t = 4, the guideline would prescribe t = 3. We will now show the effect of
choosing either t = 3 or t = 4 by comparing the distributions for both choices with
the original distributions.

To compare the distribution over C given X and the distributions over C given
X ′ we will use the Kullback-Leibler divergence. However, the Kullback-Leibler
divergence compares two distributions on the same variable. Therefore, we will
map the distributions Pr over C given X ′ to distributions Pr′ over C given X .
Recall that, the values of X ′ correspond with bins and that each value of the
original value X lies in one of the bins of X ′. Assume that x′k ∈ X ′ corresponds
with bin B j and that xi ∈ B j for some xi ∈ X . We will map Pr(C|X ′) to Pr′(C|X )
such that Pr′(C|X = xi)=Pr(C|X ′ = x′k)

Using this we can rewrite the distributions on X ′ as seen in Table 12.
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Table 12: Probabilities Pr(C|X ′) and Pr′(C|X ) given in terms of values for X and
C

Pr(C|X ′) C = 1 C = 2
X ′ = B1 0.5 0.5
X ′ = B2 0.8 0.2
X ′ = B3 0.15 0.85

Pr′(C|X ) C = 1 C = 2
X = 1 0.5 0.5
X = 2 0.5 0.5
X = 3 0.5 0.5
X = 5 0.8 0.2
X = 7 0.8 0.2
X = 8 0.8 0.2
X = 9 0.15 0.85
X = 12 0.15 0.85

The overall distance between the distributions Pr(C|X ) from Table 11 and the dis-
tributions Pr′(C|X ) from Table 12 is calculated by KL

∑
(Pr′,Pr)=∑

x∈X KL(Prx ||Pr′x).
For example, for X = 1 this gives:

DKL(
′

Pr
1
||Pr

1
)= ∑

c∈C

′
Pr
1

(c) log
Pr′1(c)
Pr1(c)

=
′

Pr
1

(1)log
Pr′1(1)
Pr1(1)

+
′

Pr
1

(2)log
Pr′1(2)
Pr1(2)

= 0.5log
0.5
0.3

+0.5log
0.5
0.7

≈ 0.08718

The overall distance between these distributions then becomes 0.26511.
We will now compare this distance with the distance for the discretization where
we use 4 bins instead of 3. The probabilities for the newly created relation
X ′′ → C are given in Table 13. These distributions Pr(C|X ′′) are again mapped
to distributions Pr′′(C|X ) the same way as above. This mapping is also given in
Table 13. The distance between these distributions then becomes 1.0097.

Table 13: Probabilities Pr(C|X ′′) and Pr′′(C|X ) for the combinations of values for
X and C

Pr(C|X ′′) C = 1 C = 2
X ′′ = B1 0.5 0.5
X ′′ = B2 0.9 0.1
X ′′ = B3

8
15

7
15

X ′′ = B4 0.2 0.8

Pr′′(C|X ) C = 1 C = 2
X = 1 0.5 0.5
X = 2 0.5 0.5
X = 3 0.5 0.5
X = 5 0.9 0.1
X = 7 8

15
7

15
X = 8 8

15
7

15
X = 9 8

15
7

15
X = 12 0.2 0.8
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We see that when we choose t = 3 we get a new distribution that is closer, in
terms of having a smaller overall KL distance, to the original distribution than
when we choose t = 4. Thus, in this example we benefit from choosing to follow
the guideline. This means that there are datasets where choosing to follow the
guideline can be useful. However, this example is an artificial example that we
created specifically for this purpose. Often, it will not be possible to follow this
guideline. We will now look into this a bit deeper.

Two reasons why we can not always follow this guideline are:

1. The data must allow being split according to this guideline. In our example,
when we chose t = 3, the data was divided such that the relative frequency
of occurrence of values within the same bin were quite similar. It is not
always possible to find a value for t such that this occurs.

2. In general, when we follow Algorithm 2, as soon as 1 cut point is chosen,
the number of bins is immediately completely determined and therefore all
the other cut points are determined as well. Thus, the freedom of choice
is very limited, even though the guideline might suggest more freedom of
choice.

To illustrate this second case, consider again the example from Table 11.
Here, the guideline prescribes a cut point between 3 and 5. Choosing t = 3 en-
sures that there is a cut point between 3 and 5. However, this also automatically
creates a cut point between 8 and 9. In this example, this creates only bins
where the relative frequencies of occurrence are quite similar. If we would have
the same example, with the exception that
Pr(C = 1|X = 12) = 0.9 instead of Pr(C = 1|X = 12) = 0.2, the relative frequencies
of occurrence within the last bin would much less similar. Thus, only changing
one probability would make it impossible to follow the guideline.

We have seen that there are cases where following the guideline could give a
better result. We will also investigate how this guideline handles monotonicity.
From Theorem 1 and Theorem 2, we know that if the relation X → C is monotone,
then, after discretization, the newly created relation X ′ → C will be monotone as
well. Thus, whether the guideline is followed or not, monotonicity will be pre-
served.
We will investigate non-monotone relations where monotonicity occurs on inter-
vals of the domain. This happens in the next example. Consider C = {1,2} and
X = {1,2,3,4,5,6,7,8,9,10,11,12}. The probabilities are given in Table 14
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Table 14: Probabilities Pr(C|X ) for the combinations of values for X and C

C = 1 C = 2
X = 1 0.3 0.7
X = 2 0.5 0.5
X = 3 0.7 0.3
X = 4 0.6 0.4
X = 5 0.4 0.6
X = 6 0.2 0.8
X = 7 0.4 0.6
X = 8 0.8 0.2
X = 9 0.9 0.1
X = 10 0.7 0.3
X = 11 0.5 0.5
X = 12 0.1 0.9

From Table 14, we can see that the relation X → C is non-monotone, but
monotone on the the following domains for X : [1,3], [4,6], [7,9] and [10,12]. We
could completely preserve this property by placing the cut points between 3 and
4, 6 and 7, and 9 and 10. However, this would mean that all those intervals would
then only consist of 1 value. Of course, this would that the monotonicity is pre-
served on these intervals, but all relations X → C where X consists of 1 value are
monotone. So, it seems that this approach does not really preserve the properties
of the original distribution. A consequence of this monotonicity on these intervals
is that, if the probability Pr(C|X ) is higher at the end of the interval than at the
start of the interval, it will be higher at the start of the next interval than at the
end of the next interval. (And, the other way around). To preserve this property,
we should put the cut points inside these intervals, such that the last values of
one interval and the first values of the next interval are put into the same bin.
This, however would mean that we are putting consecutive values with a similar
frequency of occurrence in the date into the same bin and therefore we are again
following the guideline. So, trying to preserve non-monotonicity does not give us
a better result than just using the guideline.

6 ChiMerge
ChiMerge [3] is discretization method used in classification problems where we
have a relation X → C. ChiMerge is used for the discretization of the observable
variable X and the method takes the class-variable C into account, in contrast to
Equal Frequency and Equal Width.
The algorithm is shown in Algorithm 3.
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Algorithm 3 AlgorithmChiMerge(DX ,C)

N is the number of data points.
X = {x1, ..., xn} is the observable variable.
C = {c1, ..., cm} is class-variable.
DX ,C is the dataset for X and C.

1: Create bins such that each data point with a unique x-value is put into its
own bin.

2: Compute the χ2-value for each pair of adjacent bins. The χ2-value is given
by:

χ2 =
2∑

i=1

m∑
j=1

(A i j −E i j)2

E i j

where
A i j = the number of data points in the i-th bin in the j-th class
Ri = the number of data points in the i-th bin
C j = the total number of data points in the j-th class in both bins

E i j = the expected frequency of A i j, given by Ri×C j
R1+R2

3: Merge the pair of adjacent bins with the lowest χ2-value
4: Repeat step 2-3 until all χ2-values exceed a given χ2 - threshold

The ChiMerge method starts by creating bins, where each unique x-value gets
its own bin. All the data points with this x-value are put into this bin. Then, the
χ2-value is calculated for each pair of adjacent bins. The pair of bins with the
lowest χ2-value is then merged. This process is repeated until all the χ2-values
exceed the threshold.
The threshold can be found from a table [3] based on the desired significance
level and the number of degrees of freedom. The number of degrees of freedom
is 1 less than the number of classes. The significance level is the probability that
the χ2-value is less than the threshold if X and C are independent. A higher
significance level gives a higher threshold and therefore more bins are merged
together.

The following example will illustrate steps 1-3 of the algorithm as shown in
Algorithm 3.
Consider X = {1,2,3,4} and C = {1,2,3}. The data points in DX ,C and their fre-
quencies are shown in Table 15

Table 15: frequencies for the combinations of values for X and C

C = 1 C = 2 C = 3
X = 1 1 2 7
X = 2 6 1 3
X = 3 8 1 1
X = 4 9 0 1
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For step 1, we have to create bins such that each data point with a unique
x-value is put into its own bin. This would give the following bins: B1 = [−∞,2),
B2 = [2,3), B3 = [3,4), B4 = [4,∞).
For step 2, we have to compute the χ2-value for each pair of adjacent intervals.
Here, we show the calculation for the bins B1 and B2:

χ2 = (1− 7×10
20 )2

7×10
20

+ (2− 3×10
20 )2

3×10
20

+ (7− 10×10
20 )2

10×10
20

+ (6− 7×10
20 )2

7×10
20

+ (1− 3×10
20 )2

3×10
20

+ (3− 10×10
20 )2

10×10
20

≈ 5.50

(6)

In the same way, the calculation for χ2 for B2 and B3 will give χ2 = 1.29 and
χ2 for B3 and B4 will give χ2 = 1.06.
If we use a significance level of 0.9, the threshold will be 4.6. So, the first two bins
that will be merged together are B3 and B4, as they have the lowest χ2-value and
this value does not exceed the threshold.

6.1 Advantages and disadvantages of ChiMerge
6.1.1 Advantages of ChiMerge

• An advantage of the ChiMerge method is that it does take the class-variable
into consideration.

6.1.2 Disadvantages of ChiMerge

• A disadvantage of the ChiMerge method as opposed to the Equal Frequency
and Equal Width methods is that the algorithm is harder to compute.

• Another disadvantage of the ChiMerge method is that it can not take mono-
tonicity into consideration. When the χ2-value is calculated, the order of
the adjacent intervals is not take into account. Therefore, it would give the
same value for the χ2-value if the order of the adjacent intervals would be
reversed. This makes it impossible to take monotonicity into account.

We will investigate how ChiMerge works for several probability distributions.
Because it is hard to say something in general, we will investigate some simple
distributions theoretically in this chapter. For the distributions that are more
complicated to investigate we will use experiments in Chapter 8.
In this chapter we will investigate the zero influence relation and the determin-
istic relation.
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Zero influence relation

Definition 13. The relation X → C is a zero influence relation if Pr(C = c j|X =
x1)=Pr(C = c j|X = x2)= ...=Pr(C = c j|X = xn) for all c j ∈ C

If X → C is a zero influence relation, the relation is isotone and antitone in
distribution. To investigate what happens if we use ChiMerge for the discretiza-
tion of X , where X → C is a zero influence relation, we first need to know what
the χ2-value of a pair of adjacent bins with the same probability distribution is.

Lemma 1. If for two adjacent bins Ba and Bb it holds that Pr(C = c j|x ∈ Ba) =
Pr(C = c j|x ∈ Bb) for each c j ∈ C, then the χ2-value of Ba and Bb is 0.

Proof. Assume that for two adjacent bins Ba and Bb it holds that Pr(C = c j|x ∈
Ba) = Pr(C = c j|x ∈ Bb for each c j ∈ C. For the first bin, Ba, Pr(C = c j|X ∈ Ba)

is calculated by A1 j
R1

, as seen in Algorithm 3 and for the second bin, Bb, Pr(C =
c j|X ∈ Bb) is calculated by A2 j

R1
. Since these two probabilities are equal, we have

that A1 j
R1

= A2 j
R2

. As a consequence R2 × A1 j = R1 × A2 j. We use this to show that
A1 j = E1 j for every j:

A1 j =
A1 j × (R1 +R2)

R1 +R2

= R1 × A1 j

R1 +R2
+ R2 × A1 j

R1 +R2

= R1 × A1 j

R1 +R2
+ R1 × A2 j

R1 +R2

= R1 × (A1 j + A2 j)
R1 +R2

= R1 ×C j

R1 +R2

= E1 j

(7)

In the same way it can be shown that A2 j = E2 j. Thus, for every pair of
adjacent bins, the χ2-value will be equal to zero, since A i j −E i j = 0 for every i
and j.

Theorem 6. If the relation X → C is a zero influence relation, upon discretization
of X , ChiMerge will place all values of X in a single bin.

Proof. Assume the relation X → C is a zero influence relation. With ChiMerge,
first all data points with a unique x-value are put into their own bins. In step
2, the χ2-value for each pair of adjacent bins is calculated. Because, X → C is a
zero influence relation, it holds that Pr(C = c j|x ∈ Ba)=Pr(C = c j|x ∈ Bb) for each
c j ∈ C and every two adjacent bins Ba and Bb. From Lemma 1 it follows that the
χ2-value of each pair of adjacent bins is 0. This means that all the bins will be
merged together resulting in only one bin.
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It might seem that this is a flaw of ChiMerge, but if the relation X → C is a
zero influence relation, it means that the value of X does not influence the value
of C. Therefore, there is no relation between X and C and we would not want
this relation in our model.

Deterministic relation

Definition 14. The relation X → C is a deterministic relation if for each value
xi of X , there is exactly one value of C associated with it. This means that each
Pr(C = c j|X = xi) is either 0 or 1. In this case, we will call c j the deterministic
outcome for xi.

Theorem 7. If the relation X → C is a deterministic relation, upon discretization
of X , ChiMerge will first merge every pair of adjacent bins that have the same de-
terministic outcome for C. After that, ChiMerge will merge every pair of adjacent
bins with a different deterministic outcome but with a combined number of data
points that is less than the threshold, as seen in Algorithm 3.

To prove Theorem 7 we need the following Lemma:

Lemma 2. If two adjacent bins have a different deterministic outcome, the χ2-
value for these two bins will be equal to the total number of data points in these
two bins.

Proof. Consider two adjacent bins with different deterministic outcomes. As-
sume without loss of generality that bin B1 has deterministic outcome c1 en bin
B2 has deterministic outcome c2. Then, because the relation is deterministic, we

31



have A11 = R1, A22 = R2, A12 = 0, A21 = 0, R1 = C1 and R2 = C2.

χ2 = (A11 −E11)2

E11
+ (A12 −E12)2

E12
+ (A21 −E21)2

E21
+ (A22 −E22)2

E22

=
(A11 − R1×C1

R1+R2
)2

R1×C1
R1+R2

+
0− R1×C2

R1+R2
)2

R1×C2
R1+R2

+
(0− R2×C1

R1+R2
)2

R2×C1
R1+R2

+
(A22 − R2×C2

R1+R2
)2

R2×C2
R1+R2

=
(R1 − R2

1
R1+R2

)2

R2
1

R1+R2

+
(−R1×R2

R1+R2
)2

R1×R2
R1+R2

+
(−R1×R2

R1+R2
)2

R1×R2
R1+R2

+
(R2 − R2

2
R1+R2

)2

R2
2

R1+R2

=
(

R2
1+R1×R2−R2

1
R1+R2

)2

R2
1

R1+R2

+
R2

1×R2
2

(R1+R2)2

R1×R2
R1+R2

+
R2

1×R2
2

(R1+R2)2

R1×R2
R1+R2

+
(

R2
2+R1×R2−R2

2
R1+R2

)2

R2
2

R1+R2

=
R2

1×R2
2

(R1+R2)2

R2
1

R1+R2

+
R2

1×R2
2

(R1+R2)2

R1×R2
R1+R2

+
R2

1×R2
2

(R1+R2)2

R1×R2
R1+R2

+
R2

1×R2
2

(R1+R2)2

R2
2

R1+R2

= R2
2

R1 +R2
+ R1 ×R2

R1 +R2
+ R1 ×R2

R1 +R2
+ R2

1
R1 +R2

= (R1 +R2)2

R1 +R2

= R1 +R2

(8)

Using Lemma 2 we can now prove Theorem 7.

Proof. Assume that the relation X → C is deterministic. If there exist adjacent
bins that are associated with the same value of C, these bins will be merged first.
This is because the χ2-value of these bins will be 0, which follows from Lemma 1
and because ChiMerge merges the pair of adjacent bins with the lowest χ2-value.

After this, if there still exists more than 1 bin, all adjacent bins will have a dif-
ferent deterministic outcome. From Lemma 2 it follows that the χ2-value of each
two adjacent bins will be equal to the total number of data points in these two
bins. Thus, only if there exists a pair of adjacent bins with a combined number of
data points that is less than the threshold, will they be merged together.

From Theorem 7 it follows that if the relation X → C is a deterministic re-
lation, ChiMerge will merge all the pairs of adjacent bins that have the same
deterministic outcome and the pairs of adjacent bins with a different determin-
istic outcome but with a combined number of data points that is less than the
threshold. Since, the threshold is usually quite low, this will not happen often.
For example, the threshold with a number of degrees of freedom of 10 and a sig-
nificance level of 0.99 equals 23.21. This means that the two bins are merged
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together, in this example, if the total number of data points is less than 24 and if
there are 11 different outcomes for C for these two bins. This might occur with
small data sets.

7 Minimum Description Length
MDLP [1] is a discretization method that, just as ChiMerge, takes the class-
variable into account. MDLP is based on entropies. The entropy of a dataset S is
given by

Ent(S)=−∑
i

Pr(i) log2(Pr(i))

The algorithm for MDLP is shown in Algorithm 4

Algorithm 4 AlgorithmMDLP(DX ,C)

X = {x1, ..., xn} is the observable variable.
C = {c1, ..., cm} is the output variable.
DX ,C is the dataset for X and C.

1: Put all the data points together in 1 bin.
2: For each possible cut point p calculate the information gain. The information

gain is given by:

IG = Ent(S)− |S1|
|S| Ent(S1)− |S2|

|S| Ent(S2)

where
S is the dataset.
S1 and S2 are the two subsets of S that are created by cut point p.

3: Add the cut point p with the highest information gain, if it holds that

IG > 1
|S|

[
log2(|S|−1)+ log2(3k −2)− (kEnt(S)−k1Ent(S1)−k2Ent(S2))

]
where
k,k1,k2 are the number of classes in respectively S,S1 and S2.

4: If a cut point is added, repeat steps 2-3 recursively on the separate bins until
no more cut points can be added.

The next example will illustrate steps 1-3 of the MDLP method. Consider
X = {1,2,3,5,7,8,9,12} and C = {1,2}. The data points in DX ,C are shown in Table
10.
For step 1, one bin in created: B1 = [1,12].
For step 2, the information gain for each possible cut point is calculated. The first
possible cut point is between 1 and 2. The information gain for this cut point is
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IG = (−42
80

log2(
42
80

)− 38
80

log2(
38
80

))

−10
80

(− 3
10

log2(
3
10

)− 7
10

log2(
7

10
))− 70

80
(−39

70
log2(

39
70

)− 31
70

log2(
31
70

))= 0.02130

The information gain for the other cut points are
between 2 and 3: 0.00060
between 3 and 5: 0.00108
between 5 and 7: 0.01633
between 7 and 8: 0.06466
between 8 and 9: 0.14518
between 9 and 12: 0.04588

The cut point with the highest information gain is the cut point between 8
and 9. For step 3, we have to check if this information gain is higher than the
threshold. This threshold is

1
80

[log2(79)− log2(32 −2)− (2×0.99820−2×0.93407−2×0.60984)]= 0.05735

Since the information gain for the cut point is higher than the threshold, this
cut point is added and the bins become: B1 = [1,8] and B2 = (8,12].

7.1 Advantages of MDLP
• An advantage of the MDLP method is that it does take the class-variable

into consideration.

7.2 Disadvantages of MDLP
• A disadvantage of the MDLP method as opposed to the Equal Frequency

and Equal Width methods is that the algorithm is harder to compute.

We will investigate how MDLP works for several probability distributions.

Zero influence relation We defined a zero influence relation in Definition 13.
In Chapter 6, we saw that ChiMerge puts all the values of X of a zero influence
relation into one bin. Discretization in the context of a zero influence relation
with MDLP gives the same result:

Theorem 8. If the relation X → C is a zero influence relation, upon discretization
of X MDLP will place all values of X in a single bin.

To prove Theorem 8, we first need the following Lemma:
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Lemma 3. If X → C is a zero influence relation, Pr(C = c j|X ∈ Bi)=Pr(C = c j|X =
x1) for each C j ∈ C and each possible bin Bi.

Proof. Assume X → C is a zero influence relation. Then, Pr(C = c j|X = x1) =
Pr(C = c j|X = x2) = ... = Pr(C = c j|X = xn) = a for all c j and some constant a ∈
[0,1]. We will show that Pr(C = c j|X ∈ Bi) = a for the specific subset Bi = {x1, x2}
of X :

Pr(C = ci|X = x1 ∨ X = x2)= Pr(C = ci ∧ (X = x1 ∨ X = x2))
Pr(X = x1 ∨ X = x2)

= Pr(C = ci ∧ X = x1)+Pr(C = ci ∧ X = x2)
Pr(X = x1 ∨ X = x2)

= Pr(C = ci|X = x1)Pr(X = x1)+Pr(C = ci|X = x2)Pr(X = x2)
Pr(X = x1 ∨ X = x2)

= Pr(C = ci|X = x1)Pr(X = x1)+Pr(C = ci|X = x1)Pr(X = x2)
Pr(X = x1 ∨ X = x2)

= Pr(C = ci|X = x1)(Pr(X = x1)+Pr(X = x2))
Pr(X = x1 ∨ X = x2)

= Pr(C = ci|X = x1)(Pr(X = x1 ∨ X = x2)
Pr(X = x1 ∨ X = x2)

=Pr(C = ci|X = x1)

= a
(9)

In the same way it can be shown for every other subset of X .

Using Lemma 3, we can now prove Theorem 8:

Proof. Assume X → C is a zero influence relation. In step 1 of the MDLP method,
all values of X are put together into one bin. In step 2, the information gain for
each possible cut point p is calculated. From Lemma 3, it follows that the proba-
bilities Pr(C = c j|X ∈ Bi) for each possible bin Bi and each c j ∈ C are equal. Since
the entropy is calculated solely from these probabilities, the entropy for each
subset will be equal to the entropy of the original set. Therefore, the information
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gain for each cut point will be equal to 0:

IG = Ent(S)− |S1|
|S| Ent(S1)− |S2|

|S| Ent(S2)

= Ent(S)− |S1|
|S| Ent(S)− |S2|

|S| Ent(S)

= Ent(S)− |S1|+ |S2|
|S| Ent(S)

= Ent(S)−Ent(S)

= 0

(10)

Since the information gain is zero for each cut point, no cut points will be
added and thus all values of X will still be in one bin after discretization.

As we already saw with ChiMerge, this is not a flaw of MDLP, but actually
the desired result.

Deterministic relation We defined a deterministic relation and a determin-
istic outcome in Definition 14. For ChiMerge, we investigated how the method
worked on a variable in a deterministic relation to the class variable. Since
ChiMerge starts with creating bins such that each data point with a unique x-
value is put into its own bin, when we first compute the χ2-values for these bins,
each pair of adjacent bins has either the same deterministic outcome or a differ-
ent deterministic outcome. This made it possible to investigate what happens
when we use ChiMerge for deterministic relation.
For MDLP, however, it is harder to investigate what happens with a determinis-
tic relations. This is because MDLP starts by putting all the data points together
into one single bin. Therefore, when we calculate the information gain for a pos-
sible cut point p, the values in a subsets that is created by the cut point p do
not necessarily have the same deterministic outcome. Thus, we cannot use the
deterministic characteristic to calculate the information gain. This makes the de-
terministic relation a less interesting special case to investigate for MDLP, even
though it was an interesting special case for ChiMerge.

8 Experiments
In this chapter we will examine how ChiMerge and MDLP work for several prob-
ability distributions that differ in the extent of their monotonicity by conducting
experiments. In order to investigate how ChiMerge and MDLP handle mono-
tonicity we want to examine:

• the influence of the number of available data points. For this we define the
parameter αx as the number of times that x ∈ X occurs in the data.

• the influence of the magnitude of the step size between probabilities, where
step size is defined in Definition 10
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• when the resulting bins for ChiMerge and MDLP are the same and when
they are different

We will now explain why we choose to examine these three points.
When we examined the use of MDLP on a variable involved in a deterministic
relation with the class variable, we found that two adjacent bins with a different
deterministic outcome were only merged if the combined number of data points
was less than the threshold. Thus, it seems that the number of data points has
influence on the result of discretization. Therefore, the number of data points is
one of the parameters we vary in our experiments. Also, the probability that the
real relation is (non-)monotone is higher when we have more data points to base
our findings on.
When we examined the Equal Width method we proposed a guideline such that
consecutive values of X with a similar relative frequency of occurrence for C
given X in the data are placed in the same bin. This happens if cut points are
placed where the step size is the greatest. In all experiments we want to examine
if ChiMerge and MDLP do this too.
Lastly, when the resulting bins for ChiMerge and MDLP differ, we want to com-
pare the resulting bins in order to see if there is a reason to prefer one of these
discretization methods over the other when we want do discretize a variable in-
volved in a (non-)monotone relation.

8.1 Linear monotone relation
In this section we will examine the discretization of a variable involved in a linear
monotone relation, using experiments.

Definition 15. A relation X → C is linear monotone, if the relation is monotone
and for every ck and xi, 1≤ i ≤ n+1 we have that

Pr(C ≤ ck|X = xi)−Pr(C ≤ ck|X = xi+1)= a

for some constant a ∈R.

Since the step size between each pair of probabilities given consecutive val-
ues is equal for a linear monotone relation, we can use this relation to examine
the influence of the number of available data points on the results of discretiza-
tion. To test how ChiMerge and MDLP work for a linear monotone relation we
propose 7 experiments. We consider the discretization of variable X involved in
the relation X → C, with X = {1,2,3,4,5} and C = {1,2}. Throughout the exper-
iments we ensure that the probabilities Pr(C = ci|X = x j), i = 1,2, j = 1,2,3,4,5
are kept constant. We vary the absolute frequency of occurrence of the different
value combinations for X and C upon which the probabilities are based.

8.1.1 Data & Methods

For each experiment the probability Pr(C = 1|X = 1) is chosen to be 0.1. The step
size is chosen to be 0.2 for each pair of consecutive values of X , ensuring that the
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relation is linear monotone.
For our first experiment, Experiment 1.1, αx is 10 for each x ∈ X . The frequencies
and probabilities for the combinations of values for X and C for this Experiment
are shown in Table 16.
For Experiment 1.2, αx is 100 for each x ∈ X . The frequencies and probabilities
for the combinations of values for X and C for this Experiment are given in Table
18.
For Experiment 1.3, the αx for each x ∈ X is chosen at random from the interval
[1,100]. Then, the frequencies for the combinations of values for X and C are
chosen according to the intended probability for this combination. Since frequen-
cies are chosen to be integers the actual probabilities slightly differ from those
intended. The frequencies and probabilities for Experiment 1.3 are shown in Ta-
ble 20.
Experiment 1.4 until 1.7 are created in the same way as Experiment 1.3. These
experiments can be found in Appendix A.

In each experiment we apply ChiMerge and MDLP to the described data.
For the implementation we use R. We first use a significance level of 0.95 for
ChiMerge. If the number of bins returned differs for ChiMerge and MDLP, we
also consider another significance level for ChiMerge that gives the same number
of bins as MDLP. This significance level is found by first trying a significance
level of 0.99 and if this does not work, trying 0.999, then 0.9999 etc. until the
significance level is found that gives the same number of bins as MDLP. When
the results for ChiMerge and MDLP with the same number of bins are different,
i.e. the bins cover different intervals of data points, we also give the Kullback-
Leibler divergence between the original relation and the newly created relations,
as defined in 7. If, in this case, the relation X → C is monotone, the values
GR(X ,C) and AV (X ,C), capturing degrees of monotonicity, are provided, which
are defined in respectively Definition 11 and Definition 12.

8.1.2 Results

We will now give the results of Experiment 1.1 until 1.3. The results for Experi-
ment 1.4 until 1.7 can be found in Appendix A.

Table 16: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.1

C = 1 C = 2
X = 1 1 9
X = 2 3 7
X = 3 5 5
X = 4 7 3
X = 5 9 1

C = 1 C = 2
X = 1 0.1 0.9
X = 2 0.3 0.7
X = 3 0.5 0.5
X = 4 0.7 0.3
X = 5 0.9 0.1
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Table 17: resulting bins for Experiment 1.1; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.9999
MDLP

Experiment 1.1 The resulting bins for Experiment 1.1 for the different dis-
cretization methods are shown in Table 17.
We use horizontal bars to indicated for which values of X datapoints are included
in the same bin A gap thus indicates a cut point. Actual bins returned by the
methods range from inf ty rather than x1 and to +∞ rather than x5. We see
that, in Table 17 the resulting bins for the different discretization methods are
shown. For example, ChiMerge0.95 gives the two following bins: B1 = (−∞,4) and
B2 = [4,∞) with a cut point between 3 and 4. Both ChiMerge0.9999 and MDLP
put all values in a single bin.

Table 18: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.2

C = 1 C = 2
X = 1 10 90
X = 2 30 70
X = 3 50 50
X = 4 70 30
X = 5 90 10

C = 1 C = 2
X = 1 0.1 0.9
X = 2 0.3 0.7
X = 3 0.5 0.5
X = 4 0.7 0.3
X = 5 0.9 0.1

Table 19: resulting bins for Experiment 1.2; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.9999
MDLP

Experiment 1.2 The resulting bins for Experiment 1.2 for the different dis-
cretization methods are shown in Table 19. We can see that ChiMerge0.95 puts
each value into its own bin. Both ChiMerge0.9999 and MDLP created three bins,
but ChiMerge0.9999 put X = 2 and X = 3, and X = 4 and X = 5 into one bin
whereas MDLP put X = 1 and X = 2, and X = 3 and X = 4 into one bin.
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For Experiment 1.2, the difference in results between ChiMerge0.9999 and MDLP
can be explained, by the fact that the χ2-value of the bins corresponding with the
pair X = 2 and X = 3 is the same as the χ2-value of the bins corresponding with
the pair X = 3 and X = 4. For the result for ChiMerge0.9999 in Table 19 the bins
corresponding with X = 2 and X = 3 are chosen to be merged first, because they
are considered first by the implementation of the algorithm used. If we would
have merged the bins corresponding with the pair X = 3 and X = 4 first, the
result would be the same as the result for MDLP.

Table 20: frequencies and probabilities for the combinations of values Pr(C|X )
for X and C for Experiment 1.3

C = 1 C = 2
X = 1 10 85
X = 2 8 17
X = 3 34 34
X = 4 46 20
X = 5 17 2

C = 1 C = 2
X = 1 0.11 0.89
X = 2 0.32 0.68
X = 3 0.50 0.50
X = 4 0.70 0.30
X = 5 0.89 0.11

Table 21: resulting bins for Experiment 1.3; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.99999
MDLP

Table 22: two degrees of monotonicity and the Kullback-Leibler divergence for
Experiment 1.3

GR(X ,C) AV (X ,C) KL
∑

(Pr′,Pr)
before discretization 0.21 0.20
ChiMerge0.99999 0.48 0.48 0.49391
MDLP 0.48 0.48 0.36002

Experiment 1.3 The resulting bins for Experiment 1.3 are shown in Table 21.
ChiMerge0.95 created three bins whereas both ChiMerge0.99999 and MDLP cre-
ated two bins, albeit two different ones. To further study the difference between
these latter two discretizations, we computed the degree of monotonicity and the
Kullback-Leibler convergence, which are shown in Table 22. We can see that
GR(X ,C) and AV (X ,C) are the same for ChiMerge0.9999. Also, GR(X ,C) and
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AV (X ,C) are the same for ChiMerge0.9999 as they are for MDLP. The Kullback-
Leibler convergence is greater for ChiMerge0.99999 than it is for MDLP.

8.1.3 Analysis

When we compare the results from Experiment 1.1 and 1.2 we can see how the
number of data points influences the discretization, since all frequencies are mul-
tiplied by 10. For Experiment 1.2, both ChiMerge and MDLP return more bins
than for Experiment 1.1. It seems that a higher number of data points results in
more cut points.
With Experiment 1.3, we can examine how different values of αx influence the
discretization. For Experiment 1.3, ChiMerge starts by merging the bins with
the lowest combined number of data points and MDLP creates the bins such that
the number of data points are as evenly distributed over the bins as possible.
Analogous observations can be made for Experiment 1.4 until 1.7, which can be
found in Appendix A.
In some cases MDLP gives different resulting bins as ChiMerge with a signifi-
cance level that gives the same number of bins as MDLP. In Table 22 we can
see that for Experiment 1.3 the two degrees of monotonicity are the same for
ChiMerge0.99999 and MDLP. The Kullback-Leibler divergence between the orig-
inal distribution and the distribution resulting from MDLP is smaller than the
Kullback-Leibler divergence between the original distribution and the distribu-
tion resulting from ChiMerge0.99999. These results vary for Experiment 1.4 until
1.7. For Experiment 1.7, for example, the Kullback-Leibler divergence is smaller
for MDLP as well. However, for Experiment 1.4 and 1.6, the Kullback-Leibler
divergence is larger for MDLP. The degrees of monotonicity also vary for the dif-
ferent experiments. For experiment 1.4 and 1.6, both degrees of monotonicity are
smaller for MDLP. For Experiment 1.7, both degrees of monotonicity are larger
for MDLP. This means that we can not draw any conclusions about the difference
in performance of ChiMerge and MDLP from these results, considering preserv-
ing the degree of monotonicity or the distance between the original distribution
and the newly created distribution.

8.2 Monotone relation
In this section we will examine the discretization of a variable involved in a mono-
tone relation, using experiments. Recall that a relation X → C is monotone if it
is either isotone or antitone in distribution. An isotone relation is defined in
Definition 8 and an antitone relation is defined in 9.

With the experiments for the linear monotone relation, we already saw that,
generally, a larger number of data points results in more cut points. Since, for
the monotone relation the step size between the probabilities is not necessarily
equal, we can use this relation to investigate what the influence of the magnitude
of the step size between the probabilities is on the discretization of X .
To test how ChiMerge and MDLP work for a monotone relation, we propose the
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following experiments where we discretize a variable X in volved in the relation
X → C where X = {1,2,3,4,5,6,7,8,9,10} and C = {1,2}. The probabilities for the
experiments are chosen such that there are some small steps and some big steps
between the probabilities. We vary the frequency of occurrence of the different
value combinations upon which the probabilities are based.

8.2.1 Data & Methods

For Experiment 2.1, αx is 100 for each x ∈ X . The frequencies and probabilities
for Experiment 2.1 are shown in Table 23. Experiment 2.5 is created in the same
way as Experiment 2.1 and can be found in Appendix A.
Experiment 2.2 has the same probabilities as Experiment 2.1, but αx for each
x ∈ X are chosen at random from the interval [1,1000]. The frequencies and
probabilities for Experiment 2.2 are shown in Table 25.
Experiment 2.3 and 2.4 are created in the same way as Experiment 2.2 and can
be found in Appendix A.
Likewise, Experiments 2.6, 2.7 and 2.8 have the same estimated probabilities as
Experiment 2.5, but αx for each x ∈ X are chosen at random from the interval
[1,1000]. Experiments 2.6 until 2.8 can be found in Appendix A.
We now apply ChiMerge and MDLP to the above data using the same approach
as desribed in 8.1.1.

8.2.2 Results

We will now give the results of Experiment 2.1 and 2.2. The results for Experi-
ment 2.3 until 2.8 can be found in Appendix A.

Table 23: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.1

C = 1 C = 2
X = 1 5 95
X = 2 15 85
X = 3 40 60
X = 4 42 58
X = 5 45 55
X = 6 50 50
X = 7 80 20
X = 8 85 15
X = 9 90 10
X = 10 95 5

C = 1 C = 2
X = 1 0.05 0.95
X = 2 0.15 0.85
X = 3 0.40 0.60
X = 4 0.42 0.58
X = 5 0.45 0.55
X = 6 0.50 0.50
X = 7 0.80 0.20
X = 8 0.85 0.15
X = 9 0.90 0.10
X = 10 0.95 0.05
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Table 24: resulting bins for Experiment 2.1; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999
MDLP

Experiment 2.1 The resulting bins for Experiment 2.1 are shown in Table 24.
We can see that ChiMerge0.999 and MDLP give the same resulting bins.

Table 25: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.2

C = 1 C = 2
X = 1 3 54
X = 2 43 246
X = 3 349 523
X = 4 348 481
X = 5 194 237
X = 6 83 83
X = 7 323 81
X = 8 102 18
X = 9 753 84
X = 10 835 44

C = 1 C = 2
X = 1 0.05 0.95
X = 2 0.15 0.85
X = 3 0.40 0.60
X = 4 0.42 0.58
X = 5 0.45 0.55
X = 6 0.50 0.50
X = 7 0.80 0.20
X = 8 0.85 0.15
X = 9 0.90 0.10
X = 10 0.95 0.05

Table 26: resulting bins for Experiment 2.2; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99999
MDLP

Experiment 2.2 The resulting bins for Experiment 2.2 are shown in Table 26.
We can see that ChiMerge0.99999 and MDLP give the same resulting bins.

8.2.3 Analysis

For Experiment 2.1, the frequencies for each value of X are equal. Therefore,
we can examine the influence of the step size with this experiment. We can see
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in Table 23 that the two largest step sizes are between X = 2 and X = 3 and be-
tween X = 6 and X = 7. Both ChiMerge0.999 and MDLP put cut points between
these values. ChiMerge0.95 puts cut points between X = 1 and X = 2, X = 2 and
X = 3, X = 6 and X = 7 and between X = 8 and X = 9. These cut points include or
coincide with the largest step sizes, as expected. It seems that, if the frequencies
for each value of X are equal, both ChiMerge and MDLP put cut points where
the step size is the largest. Analogous observations can be made for Experiment
2.5.

For Experiment 2.2, we can examine the influence of varying the frequency
of occurrence for values of X . For the monotone relations, we expect that cut
points will be placed between values where the step size is the biggest with both
ChiMerge and MDLP. Whenever cut points are different from expected, we have
indicated the expected cut points in the tables using vertical lines (see e.g. Table
26). In the cases where there is a cut point where we would not have expected it
or no cut point where we would have expected it, looking solely at the step sizes
between the probabilities, this can be explained by a large or a small number of
data points.
For example, for Experiment 2.2, there is no cut point between X = 1 and X = 2,
as we can see in Table 26. This can be explained by the relatively small number of
data points for X = 1. It seems that, generally, both ChiMerge and MDLP put cut
points where the step size is the largest. However, if two bins have a relatively
small number of data points they are more likely to be merged together, and if
two bins have a relatively large number of data points they are less likely to be
merged together. Analogous observations can be made for Experiment 2.3, 2.4
and 2.6 until 2.8.

8.3 Non-monotonic relation
In this section we will examine the discretization of a variable involved in a non-
monotone relation, using experiments.

To test how ChiMerge and MDLP work for a non-monotonic relation, we pro-
pose the following experiments where we discretize a variable X involved in the
relation X → C where C = {1,2} and X = {1,2,3,4,5,6,7,8,9,10}. For all experi-
ments, the frequencies for the combinations of X and C are chosen at random.
The probabilities are calculated from these frequencies.

8.3.1 Data & Methods

For Experiment 3.1, the frequencies for all combinations of X and C are chosen
at random from the interval [0,100]. The frequencies and probabilities for Ex-
periment 3.1 are shown in Table 27.
For Experiment 3.2, the frequencies are the frequencies of Experiment 3.1 mul-
tiplied by 10. The frequencies and probabilities are shown in Table 29.
Experiment 3.3 and 3.5 are created in the same way as Experiment 3.1 and can
be found in Appendix A.
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The frequencies for Experiment 3.4 and Experiment 3.6 are the frequencies of
Experiment 3.3 and 3.5 respectively multiplied by 10. These Experiments can be
found in Appendix A.
We now apply ChiMerge and MDLP to the above data using the same approach
as desribed in 8.1.1.

8.3.2 Results

Table 27: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.1

C = 1 C = 2
X = 1 45 19
X = 2 61 50
X = 3 79 6
X = 4 96 85
X = 5 93 97
X = 6 3 8
X = 7 78 53
X = 8 1 45
X = 9 46 18
X = 10 86 27

C = 1 C = 2
X = 1 0.70 0.30
X = 2 0.55 0.45
X = 3 0.93 0.07
X = 4 0.53 0.47
X = 5 0.49 0.51
X = 6 0.27 0.73
X = 7 0.60 0.40
X = 8 0.02 0.98
X = 9 0.72 0.28
X = 10 0.76 0.24

Table 28: resulting bins for Experiment 3.1; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99
MDLP

Experiment 3.1 The resulting bins for Experiment 3.1 are shown in Table 28.
We can see that ChiMerge0.99 and MDLP give the same resulting bins.
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Table 29: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.2

C = 1 C = 2
X = 1 450 190
X = 2 610 500
X = 3 790 60
X = 4 960 850
X = 5 930 970
X = 6 30 80
X = 7 780 530
X = 8 10 450
X = 9 460 180
X = 10 860 270

C = 1 C = 2
X = 1 0.70 0.30
X = 2 0.55 0.45
X = 3 0.93 0.07
X = 4 0.53 0.47
X = 5 0.49 0.51
X = 6 0.27 0.73
X = 7 0.60 0.40
X = 8 0.02 0.98
X = 9 0.72 0.28
X = 10 0.76 0.24

Table 30: resulting bins for Experiment 3.2; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99
MDLP

Experiment 3.2 The resulting bins for Experiment 3.2 are shown in Table
30. We can see that ChiMerge0.99 and MDLP give the same resulting bins.
ChiMerge0.95 puts each value of X into its own bin.

8.3.3 Analysis

For Experiment 3.1, ChiMerge0.99 and MDLP put cut points where the step size
is the largest. With ChiMerge0.95, there is a cut point between X = 1 and X = 2,
even though the step size would suggest that cut points between X = 5 and X = 6,
and X = 6 and X = 7 would be chosen prior to a cut point between X = 1 and
X = 2. This can be explained by the relatively small number of data points for
X = 6 (11). Analogous observations can be made for Experiment 3.3 and Experi-
ment 3.5.
When we compare Experiment 3.2 with Experiment 3.1, we can examine the in-
fluence of the number of data points. The frequencies for Experiment 3.2 are the
frequencies for Experiment 3.1 multiplied by 10. We notice that Experiment 3.2
results in a lot more bins for each discretization method than Experiment 3.1. It
seems that, generally, more data points results in more bins. Analogous obser-
vations can be made when we compare Experiment 3.4 with Experiment 3.3 and
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Experiment 3.6 with Experiment 3.5

8.4 Non-monotonic relation with obvious peaks
In this section we will examine the discretization of a variable involved in a non-
monotone relation with obvious peaks, using experiments.

To test how ChiMerge and MDLP work for a non-monotonic relation with
obvious peaks, we propose the following experiments in which we discretize a
variable X involved in the relation X → C where X = {1,2,3,4,5,6,7,8,9,20} and
C = {1,2}. The probabilities are created such that there are some small step sizes
and some large step sizes.

8.4.1 Data & Methods

For Experiment 4.1, the frequencies for each value of X are chosen at random
from the interval [1,100]. The frequencies and probabilities for Experiment 4.1
are shown in Table 31.
For Experiment 4.2, the frequencies are the frequencies of Experiment 4.1 mul-
tiplied by 10. The frequencies and probabilities for Experiment 4.2 are shown in
Table 33.
For Experiment 4.3 and 4.5, the frequencies for each value of X are chosen at
random from the interval [1,100]. For Experiment 4.4 and 4.6, the frequencies
are the frequencies of respectively Experiment 4.3 and 4.5 multiplied by 10. Ex-
periments 4.3 until 4.6 can be found in Appendix A. We now apply ChiMerge and
MDLP to the above data using the same approach as described in 8.1.1.

8.4.2 Results

Table 31: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.1

C = 1 C = 2
X = 1 9 78
X = 2 5 10
X = 3 17 66
X = 4 7 1
X = 5 56 3
X = 6 9 2
X = 7 4 16
X = 8 4 33
X = 9 21 20
X = 10 26 17

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.33 0.67
X = 3 0.20 0.80
X = 4 0.88 0.12
X = 5 0.95 0.05
X = 6 0.81 0.19
X = 7 0.20 0.80
X = 8 0.11 0.89
X = 9 0.51 0.49
X = 10 0.60 0.40
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Table 32: resulting bins for Experiment 4.1; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.9999
MDLP

Experiment 4.1 The resulting bins for Experiment 4.1 are shown in Table 32.
We can see that ChiMerge 0.9999andMDLPgivethesameresultingbins.

Table 33: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.2

C = 1 C = 2
X = 1 90 780
X = 2 50 100
X = 3 170 660
X = 4 70 10
X = 5 560 30
X = 6 90 20
X = 7 40 160
X = 8 40 330
X = 9 210 200
X = 10 260 170

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.33 0.67
X = 3 0.20 0.80
X = 4 0.88 0.12
X = 5 0.95 0.05
X = 6 0.81 0.19
X = 7 0.20 0.80
X = 8 0.11 0.89
X = 9 0.51 0.49
X = 10 0.60 0.40

Table 34: resulting bins for Experiment 4.2; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999999
MDLP

Experiment 4.2 The resulting bins for Experiment 4.2 are shown in Table 32.
We can see that ChiMerge0.9999 and MDLP give the same resulting bins and that
ChiMerge0.95 puts each value of X into its own bin.
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8.4.3 Analysis

For Experiment 4.1, ChiMerge0.95, ChiMerge0.9999 and MDLP all put cut points
where the step size is the largest. Analogous observations can be made for Exper-
iment 4.3. For Experiment 4.5, there is a cut point between X = 5 and X = 6, even
though we would have expected a cut point between X = 2 and X = 3. This can
not be explained by the number of data points. However, the step size between
X = 5 and X = 6 is the second largest step size and only 0.006 smaller than the
step size between X = 2 and X = 3.
When comparing Experiment 4.2 with Experiment 4.1, we can examine the in-
fluence of the number of data points, since the frequencies for Experiment 4.2
are the frequencies for Experiment 4.1 multiplied by 10. We notice that for all
discretization methods, the number of bins is larger for Experiment 4.1 than for
Experiment 4.1. Again, it seems that more data points results in more bins.
Analogous observations can be made when comparing Experiment 4.4 with Ex-
periment 4.3 and when comparing Experiment 4.6 with Experiment 4.5.

8.5 Analysis and discussion
With these experiments we wanted to examine how ChiMerge and MDLP handle
(non-)monotone relations. In order to do this, we wanted to study:

• the influence of the number of available data points. For this we define the
parameter αx as the number of times that x ∈ X occurs in the data.

• the influence of the magnitude of the step size between probabilities, where
step size is defined in Definition 10

• when the resulting bins for ChiMerge and MDLP are the same and when
they are different

To examine the influence of the number of available data points we compared
experiments where each αx for the first experiment was multiplied by 10 to cre-
ate each αx for the other experiment. In all these cases, we noticed that the
experiments with a larger number of data points, for both discretization meth-
ods, always resulted in more bins.
We also examined the influence of the number of available data points by compar-
ing experiments where αx was constant for each x ∈ X with experiments where
we varied αx for each x ∈ X . We noticed that adjacent bins with a relatively small
combined number of data points were more likely to be merged together and that
a cut point was more likely to be put between two adjacent bins with a relatively
large combined number of data points.

To examine the influence of the magnitude of the step size between probabili-
ties, we varied these step sizes. For example, with the monotone relation, we
noticed that in general, both ChiMerge and MDLP put cut points where there is
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a relatively large step size. When this did not happen, the unexpected cut points
could be explained by the number of data points.

To examine the difference in results for ChiMerge and MDLP, we used both
ChiMerge and MDLP for all experiments. To be able to make a good compar-
ison, we used a significance level for ChiMerge such that the number of bins
for the discretization with ChiMerge was the same as for the discretization with
MDLP. For all experiments where the relation was monotone, non-monotonic or
non-monotonic with obvious peaks, ChiMerge and MDLP resulted in the same
bins. ChiMerge and MDLP only gave different results for the experiments where
the relation was linear monotone. We could not conclude which method gave a
better result in these cases. It seems that, in general, both ChiMerge and MDLP
give the same results. The advantage that ChiMerge has over MDLP is that by
varying the significance level you can control the number of bins. With MDLP
the number of bins is completely determined by the algorithm.

To preserve (non-)monotonicity, it seems that there is no reason to prefer
ChiMerge or MDLP. In most cases, the resulting bins were the same for both
methods.

9 Cut Points

9.1 Proposals for determining cut points
Discretization methods, as we have seen previously, determine cut points. With
the exception of Equal Width, they always use data points as the start and
end point of each bin. With Equal Frequency for example, we have seen that
the discretization of X = {1,2,3,4,5,6,7,8,9,10} into 3 bins (t = 3) gave the bins
[1,5), [5,8), [8,10]. All the start and end points of the bins (1,5,8 and 10) are points
in the dataset. However, if we would have taken [1,4.1), [4.1,7.1), [7.1,10], each
corresponding bin would still contain the same number of data points. To main-
tain the same number of data points in each bin in this case the only requirement
is that the first cut point lies between 4 and 5 and the second cut point lies be-
tween 7 and 8. It seems that the placement of this cut point is chosen arbitrarily.

Depending on the context there might be better ways to determine the cut points.
In the previous example the first cut point should lie between 4 and 5, but we can
choose how we want to divide the space between 4 and 5. A first proposal to di-
vide this space between the two data points in a different way is to divide it
evenly. In the example of X with Equal Frequency and 3 bins, this would give
[1,4.5), [4.5,7.5), [7.5,10]. The cut points are placed exactly between 4 and 5 and
between 7 and 8.

The first proposal might seem fair for the previous example, but this could be
different when there is more variation in the differences between the data points.
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Consider Y = {1,5,100,200}. Here, the differences between the data points are re-
spectively 4, 985 and 100, while in the previous example all the differences were
1. The discretization of Y with Equal Frequency, t = 2 and dividing the space
between the data points evenly as per the previous proposal would give [1,49),
[49,200], instead of [1,100), [100,200] as per the algorithm for Equal Frequency.
In some applications it might seem unfair that the space between 5 and 100 is
divided evenly between the bins even though the difference between 1 and 5 is
much smaller than the difference between 100 and 200. Another proposal it so
divide the space proportionate to the difference between the data points. As we
want to achieve Equal Frequency, the first bin should contain the data points 1
and 5 and the second bin should contain 100 and 200. The space that has to
be divided between the bins is 100-5=95. The difference between the first two
data points is 5− 1 = 4 and the difference between the last two data points is
200−100= 100. If we divide the space to ratio of the difference between the data
points, the cut points will be 5+ 4

104 ×98 = 8.77. The discretization will then be-
come [1,8.77), [8.77,200].

The problem with these proposals is that they can not be justified, because there
is no data in this open space. When deciding which proposal to use, the specific
application should be taken into consideration. Domain knowledge can be very
useful in this decision.

10 Conclusions & Further research
In this thesis we set out to examine the relation between discretization and mono-
tonicity. For relations involving two variables, we found that monotonicity is
preserved upon discretization, independent of which discretization method we
use. We also found that discretization can induce monotonicity when the relation
was non-monotone prior to discretization. When we examined relations involv-
ing more than two variables we found that we could not make many predictions
about what would happen with monotonicity.
Monotonicity is a relation between two (or more) variables. Both Equal Frequency
and Equal Width do not take any other variable into consideration than the vari-
able under discretization. This means that the only statements about Equal
Frequency and Equal Width in relation to monotonicity are the statements that
we already found when we examined relations involving two variables. For both
methods, the number of bins should be predetermined. We proposed guidelines
on how to choose the number of bins.
Both ChiMerge and MDLP do take the another variable into consideration. We
investigated some special cases for these methods to find out how they handle
(non-)monotonicity for different probability distributions. From this, we found
two parameters that seemed to influence the resulting bins for ChiMerge and
MDLP. Namely, the number of data points and the step size between probabili-
ties. Subsequently we performed experiments in which we varied these parame-
ters to examine how ChiMerge and MDLP handle different probability distribu-
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tions. We found that adjacent bins with a relatively small combined number of
data points were more likely to be merged and that a cut point was more likely
to be put between two adjacent bins with a relatively large combined number of
data points. We also found that, in general, both ChiMerge and MDLP put cut
points where there is a relatively large step size. These experiments were also
used to compare the results for ChiMerge and MDLP and we found that in almost
all cases ChiMerge and MDLP give the same result.

In this thesis we limited our research to artificial examples. For future re-
search it will be interesting to look at real data. Moreover, in the experiments we
only considered relations with binary output variables C. This made it easier to
examine the influence of the step size. However, in real applications the output
variable can have more than two values. It will be interesting to examine these
relations to see if the results we found with the experiments also hold for rela-
tions where the output variable has more than two values. Finally, in this thesis
we proposed two measures for a degree of monotonicity. We could test these de-
grees with artificial and real data. Preferably, the degrees would also work for
non-monotone relations. If this is not the case for our degrees, we could try to find
another degree that would work for both monotone and non-monote relations.
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Appendices
A Experiments
Experiment 1.4

Table 35: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.4

C = 1 C = 2
X = 1 1 13
X = 2 9 21
X = 3 41 40
X = 4 63 27
X = 5 58 6

C = 1 C = 2
X = 1 0.07 0.93
X = 2 0.30 0.70
X = 3 0.51 0.49
X = 4 0.70 0.30
X = 5 0.91 0.09

Table 36: resulting bins for Experiment 1.4; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.99999
MDLP
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Table 37: two degrees of monotonicity and the Kullback-Leibler divergence for
Experiment 1.4

GR(X ,C) AV (X ,C) KL
∑

(Pr′,Pr)
before discretization 0.22 0.21
ChiMerge0.99999 0.46 0.46 0.37746
MDLP 0.38 0.38 0.54206

Experiment 1.5

Table 38: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.5

C = 1 C = 2
X = 1 2 15
X = 2 3 7
X = 3 34 34
X = 4 15 6
X = 5 16 2

C = 1 C = 2
X = 1 0.12 0.88
X = 2 0.30 0.70
X = 3 0.50 0.50
X = 4 0.71 0.29
X = 5 0.89 0.11

Table 39: resulting bins for Experiment 1.5; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.999
MDLP

Experiment 1.6

Table 40: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.6

C = 1 C = 2
X = 1 6 55
X = 2 21 50
X = 3 22 22
X = 4 36 16
X = 5 9 1

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.30 0.70
X = 3 0.50 0.50
X = 4 0.69 0.31
X = 5 0.90 0.10
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Table 41: resulting bins for Experiment 1.6; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.999
MDLP

Table 42: two degrees of monotonicity and the Kullback-Leibler divergence for
Experiment 1.6

GR(X ,C) AV (X ,C) KL
∑

(Pr′,Pr)
before discretization 0.21 0.20
ChiMerge0.999 0.45 0.45 0.36952
MDLP 0.44 0.44 0.37073

Experiment 1.7

Table 43: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 1.7

C = 1 C = 2
X = 1 9 85
X = 2 1 3
X = 3 39 39
X = 4 21 9
X = 5 15 2

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.25 0.75
X = 3 0.50 0.50
X = 4 0.70 0.30
X = 5 0.88 0.12

Table 44: resulting bins for Experiment 1.7; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5
ChiMerge0.95
ChiMerge0.999
MDLP
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Table 45: two degrees of monotonicity and the Kullback-Leibler divergence for
Experiment 1.7

GR(X ,C) AV (X ,C) KL
∑

(Pr′,Pr)
before discretization 0.25 0.20
ChiMerge0.999 0.49 0.49 0.57037
MDLP 0.50 0.50 0.36697

Experiment 2.3

Table 46: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.3

C = 1 C = 2
X = 1 39 741
X = 2 52 295
X = 3 236 354
X = 4 420 579
X = 5 437 535
X = 6 43 42
X = 7 714 179
X = 8 66 12
X = 9 346 38
X = 10 411 22

C = 1 C = 2
X = 1 0.05 0.95
X = 2 0.15 0.85
X = 3 0.40 0.60
X = 4 0.42 0.58
X = 5 0.45 0.55
X = 6 0.51 0.49
X = 7 0.80 0.20
X = 8 0.85 0.15
X = 9 0.90 0.10
X = 10 0.95 0.05

Table 47: resulting bins for Experiment 2.3; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999
MDLP

Experiment 2.4
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Table 48: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.4

C = 1 C = 2
X = 1 45 862
X = 2 36 206
X = 3 56 85
X = 4 293 405
X = 5 223 272
X = 6 282 281
X = 7 5 1
X = 8 343 60
X = 9 270 30
X = 10 832 44

C = 1 C = 2
X = 1 0.05 0.95
X = 2 0.15 0.85
X = 3 0.40 0.60
X = 4 0.42 0.58
X = 5 0.45 0.55
X = 6 0.51 0.49
X = 7 0.83 0.17
X = 8 0.85 0.15
X = 9 0.90 0.10
X = 10 0.95 0.05

Table 49: resulting bins for Experiment 2.4; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999
MDLP

Experiment 2.5

Table 50: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.5

C = 1 C = 2
X = 1 10 90
X = 2 12 88
X = 3 15 85
X = 4 20 80
X = 5 55 45
X = 6 60 40
X = 7 63 37
X = 8 80 20
X = 9 85 15
X = 10 90 10

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.12 0.88
X = 3 0.15 0.85
X = 4 0.20 0.80
X = 5 0.55 0.45
X = 6 0.60 0.40
X = 7 0.63 0.37
X = 8 0.80 0.20
X = 9 0.85 0.15
X = 10 0.90 0.10
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Table 51: resulting bins for Experiment 2.5; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
MDLP

Experiment 2.6

Table 52: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.6

C = 1 C = 2
X = 1 82 740
X = 2 117 856
X = 3 75 422
X = 4 118 474
X = 5 21 18
X = 6 405 270
X = 7 293 87
X = 8 484 121
X = 9 247 43
X = 10 837 93

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.12 0.88
X = 3 0.15 0.85
X = 4 0.20 0.80
X = 5 0.54 0.46
X = 6 0.60 0.40
X = 7 0.63 0.37
X = 8 0.80 0.20
X = 9 0.85 0.15
X = 10 0.90 0.10

Table 53: resulting bins for Experiment 2.6; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99
MDLP

Experiment 2.7

58



Table 54: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.7

C = 1 C = 2
X = 1 51 459
X = 2 90 662
X = 3 100 567
X = 4 57 228
X = 5 515 422
X = 6 95 64
X = 7 325 192
X = 8 218 54
X = 9 97 17
X = 10 338 37

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.12 0.88
X = 3 0.15 0.85
X = 4 0.20 0.80
X = 5 0.55 0.45
X = 6 0.60 0.40
X = 7 0.63 0.37
X = 8 0.80 0.20
X = 9 0.85 0.15
X = 10 0.90 0.10

Table 55: resulting bins for Experiment 2.7; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.9999
MDLP

Experiment 2.8

Table 56: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 2.8

C = 1 C = 2
X = 1 94 846
X = 2 91 665
X = 3 44 252
X = 4 50 199
X = 5 489 400
X = 6 395 264
X = 7 72 43
X = 8 793 198
X = 9 715 126
X = 10 429 48

C = 1 C = 2
X = 1 0.10 0.90
X = 2 0.12 0.88
X = 3 0.15 0.85
X = 4 0.20 0.80
X = 5 0.55 0.45
X = 6 0.60 0.40
X = 7 0.63 0.37
X = 8 0.80 0.20
X = 9 0.85 0.15
X = 10 0.90 0.10

59



Table 57: resulting bins for Experiment 2.8; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.9999
MDLP

Experiment 3.3

Table 58: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.3

C = 1 C = 2
X = 1 71 75
X = 2 7 45
X = 3 25 55
X = 4 50 21
X = 5 93 52
X = 6 20 56
X = 7 64 48
X = 8 27 53
X = 9 59 10
X = 10 98 1

C = 1 C = 2
X = 1 0.49 0.51
X = 2 0.13 0.87
X = 3 0.31 0.69
X = 4 0.70 0.30
X = 5 0.64 0.36
X = 6 0.26 0.74
X = 7 0.57 0.43
X = 8 0.34 0.66
X = 9 0.86 0.14
X = 10 0.99 0.01

Table 59: resulting bins for Experiment 3.3; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99999999
MDLP

Experiment 3.4
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Table 60: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.4

C = 1 C = 2
X = 1 710 750
X = 2 70 450
X = 3 250 550
X = 4 500 210
X = 5 930 520
X = 6 200 560
X = 7 640 480
X = 8 270 530
X = 9 590 100
X = 10 980 10

C = 1 C = 2
X = 1 0.49 0.51
X = 2 0.13 0.87
X = 3 0.31 0.69
X = 4 0.70 0.30
X = 5 0.64 0.36
X = 6 0.26 0.74
X = 7 0.57 0.43
X = 8 0.34 0.66
X = 9 0.86 0.14
X = 10 0.99 0.01

Table 61: resulting bins for Experiment 3.4; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999
MDLP

Experiment 3.5

Table 62: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.5

C = 1 C = 2
X = 1 19 71
X = 2 46 2
X = 3 92 94
X = 4 76 79
X = 5 99 12
X = 6 76 16
X = 7 60 12
X = 8 9 34
X = 9 41 17
X = 10 62 71

C = 1 C = 2
X = 1 0.21 0.79
X = 2 0.96 0.04
X = 3 0.49 0.51
X = 4 0.49 0.51
X = 5 0.89 0.11
X = 6 0.83 0.17
X = 7 0.83 0.17
X = 8 0.21 0.79
X = 9 0.71 0.29
X = 10 0.47 0.53

61



Table 63: resulting bins for Experiment 3.5; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99999
MDLP

Experiment 3.6

Table 64: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 3.6

C = 1 C = 2
X = 1 190 710
X = 2 460 20
X = 3 920 940
X = 4 760 790
X = 5 990 120
X = 6 760 160
X = 7 600 120
X = 8 90 340
X = 9 410 170
X = 10 620 710

C = 1 C = 2
X = 1 0.21 0.79
X = 2 0.96 0.04
X = 3 0.49 0.51
X = 4 0.49 0.51
X = 5 0.89 0.11
X = 6 0.83 0.17
X = 7 0.83 0.17
X = 8 0.21 0.79
X = 9 0.71 0.29
X = 10 0.47 0.53

Table 65: resulting bins for Experiment 3.6; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
MDLP

Experiment 4.3
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Table 66: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.3

C = 1 C = 2
X = 1 22 2
X = 2 7 1
X = 3 83 11
X = 4 27 7
X = 5 4 8
X = 6 11 11
X = 7 53 44
X = 8 3 24
X = 9 1 19
X = 10 7 15

C = 1 C = 2
X = 1 0.92 0.08
X = 2 0.88 0.12
X = 3 0.88 0.12
X = 4 0.80 0.20
X = 5 0.33 0.67
X = 6 0.50 0.50
X = 7 0.55 0.45
X = 8 0.11 0.89
X = 9 0.05 0.95
X = 10 0.32 0.68

Table 67: resulting bins for Experiment 4.3; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.99
MDLP

Experiment 4.4

Table 68: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.4

C = 1 C = 2
X = 1 220 20
X = 2 70 10
X = 3 830 110
X = 4 270 70
X = 5 40 80
X = 6 110 110
X = 7 530 440
X = 8 30 240
X = 9 10 190
X = 10 70 150

C = 1 C = 2
X = 1 0.92 0.08
X = 2 0.88 0.12
X = 3 0.88 0.12
X = 4 0.80 0.20
X = 5 0.33 0.67
X = 6 0.50 0.50
X = 7 0.55 0.45
X = 8 0.11 0.89
X = 9 0.05 0.95
X = 10 0.32 0.68
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Table 69: resulting bins for Experiment 4.4; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999999
MDLP

Experiment 4.5

Table 70: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.5

C = 1 C = 2
X = 1 18 41
X = 2 12 34
X = 3 34 40
X = 4 32 37
X = 5 5 5
X = 6 27 12
X = 7 4 1
X = 8 18 4
X = 9 32 13
X = 10 52 27

C = 1 C = 2
X = 1 0.31 0.69
X = 2 0.26 0.74
X = 3 0.46 0.54
X = 4 0.46 0.54
X = 5 0.50 0.50
X = 6 0.69 0.31
X = 7 0.80 0.20
X = 8 0.82 0.18
X = 9 0.71 0.29
X = 10 0.66 0.34

Table 71: resulting bins for Experiment 4.5; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.999999
MDLP

Experiment 4.6
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Table 72: frequencies and probabilities Pr(C|X ) for the combinations of values
for X and C for Experiment 4.6

C = 1 C = 2
X = 1 180 410
X = 2 120 340
X = 3 340 400
X = 4 320 370
X = 5 50 50
X = 6 270 120
X = 7 40 10
X = 8 180 40
X = 9 320 130
X = 10 520 270

C = 1 C = 2
X = 1 0.31 0.69
X = 2 0.26 0.74
X = 3 0.46 0.54
X = 4 0.46 0.54
X = 5 0.50 0.50
X = 6 0.69 0.31
X = 7 0.80 0.20
X = 8 0.82 0.18
X = 9 0.71 0.29
X = 10 0.66 0.34

Table 73: resulting bins for Experiment 4.6; subscript of ChiMerge indicates sig-
nificance level used

X 1 2 3 4 5 6 7 8 9 10
ChiMerge0.95
ChiMerge0.9999
MDLP
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