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Abstract

We introduce the concept of Minkowski normality; a new type of normality that is related
to the continued fraction expansion. Moreover, we use the ordering of rationals that is obtained
from the Kepler tree to show that the sequence
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can be used to give a concrete construction of an in�nite continued fraction expansion of which
the digits are distributed according to the Minkowski question mark measure. We de�ne an
explicit correspondence between continued fraction expansions and binary codes to show that
we can use the dyadic Champernowne number to prove normality of the constructed number.
Furthermore we provide a generalised construction that is based on the underlying structure of
the Kepler tree. �is generalisation shows that any construction that concatenates the continued
fraction expansions of all rationals, ordered increasingly, based on the sum of the digits of their
continued fraction expansion, results in a number that is Minkowski normal.
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Chapter 1

Introduction
All numbers are normal Lebesgue almost everywhere. �is was proved by Émile Borel in 1909,
who introduced the notion of a normal number. Informally, the normality of a number is de�ned
as a distribution property of an in�nite number expansion. For example, consider the irrational
number π. It is believed that the decimal expansion of π contains as many occurrences of 0s
as it contains occurrences of 1s, 2s, . . . or 9s. Moreover, it is strongly conjectured that any
�nite combination of digits occurs as o�en as any other �nite combination of digits of that
same length. If a number exhibits such a property, we say that the number is normal in base
10. In other words, normality corresponds to a distribution property of a number expansion.
In the case of a decimal expansion, the distribution is uniform and hence originates from the
Lebesgue measure. Although Borel proved that there is an abundance of normal numbers, the
only known normal numbers are arti�cial numbers. �e di�culty in studying the normality of
a number, is that one needs to consider the behaviour of an in�nite expansion. �e only way
to determine the distribution of an in�nite sequence of digits, is to recognise a pa�ern in the
expansion. However, most number expansions do not exhibit pa�erns and, if they exists, they
are hard to detect. As for π, we do not know whether or not there is a pa�ern, but there is a
conjecture that it is normal in base 10. Hence, one believes that it is normal, but cannot prove it.
Fortunately, there exist concrete numbers that are proven to be normal. �e most well known
example is

0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · · ,

which is obtained by concatenating all natural numbers. �is result is due to David Cham-
pernowne [9]. Other examples of normal numbers, include the number that is obtained by
concatenating all squares

0. 12 22 32 42 52 62 72 82 92 102 112 · · · ,

and the number obtained by concatenating all primes

0. 2 3 5 7 11 13 17 19 23 29 31 37 41 · · · .

�ese numbers have in common that they are constructed. �e underlying idea of such con-
structions is that, by de�ning a pa�ern, one knows the behaviour of the sequence. �erefore,
normality can be proved or disproved.

Over the years, many constructions have been done both of normal numbers, as introduced
by Borel, as for other types of normality. �ese di�erent types of normality correspond to
di�erent number expansions and di�erent measures. �e concrete constructions that have been
developed, are all associated to a distribution that results from the Lebesgue measure. However,
in this thesis, we consider a measure that is singular with respect to the Lebesgue measure.
�at is, we consider the Minkowski question mark measure. �is measure is speci�ed by the
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following distribution function

?(x) := 2
∞∑
i=1

(−1)i+1

2a1(x)+a2(x)+···+ai(x)
,

where ai(x) comes from the continued fraction expansion of x ∈ [0, 1), i ≥ 1. �at is, any real
number x can be represented as a - possibly �nite - continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
1

. . .

,

where ai(x) ∈ N for all i ≥ 1. Using this number expansion and measure, we introduce
a di�erent type of normality for the continued fraction expansion. We refer to this type of
normality as Minkowski normality. Informally, we say that a number x is Minkowski normal if
the digits (ai(x))i≥1 are distributed according to the Minkowski question mark measure.

�e main goal of the thesis is to construct a Minkowski normal number K. As such, we
construct an in�nite continued fraction expansion and show that the corresponding sequence
of digits is distributed according to the Minkowski question mark measure. �is forms the
main result of the thesis, which is stated in �eorem 4.13. Speci�cally, for the construction
we consider the ordering of rationals that is given by the Kepler tree. �is is a binary tree
that orders the rationals in the unit interval, based on the sum of the digits of their continued
fraction expansion. �e constructed number is obtained by concatenating the continued fraction
expansions of the rationals using the Kepler order. For the proof of normality, we show that
there is a correspondence between binary codes and rationals in the Kepler tree. Moreover, we
show that we can use binary codes to determine the distribution of the sequence of digits that
represent the constructed number.

�e thesis has the following structure. In chapter 2 we discuss the mathematics underlying
this thesis. �at is, we introduce ergodic theory, theory on continued fractions and some
background on the Minkowski question mark measure. Subsequently, chapter 3 contains a
literature study on normal numbers and related results. Here we formally de�ne di�erent
notions of normality and discuss results obtained so far. �e importance of this chapter lies
with the techniques that have been used in the proofs. Chapter 4 focusses on the construction
and proof that K is a Minkowski normal number. �en, we re�ect on the construction and
show that we can generalise our result. We also use this re�ection and generalisation to suggest
topics for further research. Finally, we summarise our results in chapter 6 .
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Chapter 2

Mathematical preliminaries
�e main goal of this thesis is to construct an in�nite sequence of digits that exhibits some
distribution property. In order to study the behaviour of sequences, we �rst discuss notions
and results from ergodic theory. In most cases we provide examples of these notions and results
directly a�er introducing them. Sometimes, however, this is not the case and the usefulness of
a notion or result becomes apparent in a future section. A�er we have become familiar with
ergodic theory, we introduce a type of number expansion called a continued fraction expansion.
�en, we introduce the Gauss map, which allows us to study the behaviour of the digits of the
continued fraction expansion. We conclude the chapter by introducing the Minkowski question
mark function, which speci�es the distribution of the constructed sequence.

2.1.0 Ergodic �eory
In this section we describe notions and results from ergodic theory that underlie this thesis.
�e mathematics involved can be related to numerous �elds. One of the central concerns is the
behaviour of systems that evolve over time. More speci�cally, ergodic theory is the study of
asymptotic behaviour of averages over space and time. Results from ergodic theory provide
conditions under which these averages coincide. As we work with probability spaces, we
introduce the notation and results from this perspective. �e main goal of this section is to
provide the reader with a general framework in ergodic theory that is su�cient to understand
the - underlying - mathematics that is used in future sections. �e section is based on [11,
Chapters 1-5].

Let (X,F , µ) denote a probability space, where the space X is formed by the collection of
all states of the system. �e dynamics of a system are then represented by a measurable map
T : X → X , such that for x ∈ X , Tx is the state of the system at time t = 1. Furthermore, we
de�ne the orbit of x as the sequence (T ix)i≥0. �en, for f ∈ L1(µ), we de�ne the time average
as

f̂(x) := lim
n→∞

1

n

n−1∑
i=0

f(T ix), (2.1)

and the space average as
f̄ :=

∫
X
fdµ. (2.2)

From these de�nitions it can be seen that the orbits play a central role when studying the
behaviour of dynamical systems. Ergodic theory is related to the question of when these limits
exist (a.e.) and under what conditions they coincide. For both cases, it turns out to be important
that the orbit is stationary. In other words, we want the map T to be measure preserving.

De�nition 2.1 (Measure preserving). [11, De�nition 1.2.1] Let (X,F , µ) be a probability space,
and T : X → X measurable. �e map T is said to be measure preserving with respect to
µ if µ(T−1A) = µ(A) for all A ∈ F . Furthermore, if T is measure preserving w.r.t. µ, then
(X,F , µ, T ) is called a measure preserving system.
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Chapter 2. Mathematical preliminaries

Example 2.2 (Bernoulli shi�). �is example is based on [11, Example 1.3.6].
Let X = {0, 1, . . . , b− 1}N and let Fb be the σ-algebra on X that is generated by the cylinders.
Furthermore, let pb = (p0, p1, . . . , pb−1) be a positive probability vector, which we use to de�ne
the Bernoulli measure µb := {p0, p1, . . . , pb−1}N. Given a cylinder set A = {x : x0 = a0, x1 =
a1, . . . , xn = an} ∈ Fb, its measure is

µb(A) = pa0pa1 · · · pan .

Let Tb : X → X be the transformation that is de�ned by Tbx = y, where yn = xn+1. We have
that T−1A =

⋃b−1
i=0{x : x0 = i, x1 = a0, . . . , xn+1 = an} ∈ Fb, which has measure

µb(T
−1A) =

b−1∑
i=0

pipa0pa1 · · · pan = pa0pa1 · · · pan
b−1∑
i=0

pi = pa0pa1 · · · pan = µb(A).

We conclude that the Bernoulli shi� Tb is a measure preserving transformation. �is map is also
referred to as the le� shi�.

�e notions of normality that are discussed in chapter 3 all result from the fact that the
distribution property comes from the distribution that is naturally associated to the type of
number expansion that is chosen. �e chosen expansion is associated to a measure preserving
transformation that generates the digits of the corresponding expansion. For a moment, let
T denote such a transformation and let (X,F , µ, T ) be a measure preserving system. �e
dynamics of this system are represented by T , which moves the points of X . �e uncertainty
of where T moves a point is also called randomness; “the quality or state of lacking a pa�ern or
principle of organization; unpredictability”1. One way to quantify the amount of randomness that
is generated by T , is by looking at the entropy of a transformation. �e entropy in the system
(X,F , µ, T ) varies for di�erent µ and the measure of maximal entropy is the distribution that
is naturally associated to a type of expansion.

However, in this thesis we do not consider entropy. Instead, we consider the in�uence of a
transformation T on a random variable Z that is de�ned on X . �is in�uence is described by
the Perron-Frobenius operator Pµ of T under µ. �is operator de�nes how the distribution of a
random variable Z evolves under iterations of T . �us suppose that Z admits a density h with
respect to µ, i.e.

P(Z ∈ A) =

∫
A
hdµ,

then T ◦ Z admits density P hµ with respect to µ

P(T ◦ Z ∈ A) = P(Z ∈ T−1A) =

∫
T−1A

hdµ =

∫
A
P hµ dµ, A ∈ B.

In other words, the Perron-Frobenius operator Pµ of T under µ is the bounded linear operator

1�e de�nition according to the Oxford dictionary
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2.1 . Ergodic Theory

in L1
µ that takes f ∈ L1

µ into P fµ ∈ L1
µ with∫

A
P fµ dµ =

∫
T−1A

fdµ, A ∈ B, (2.3)

see [19, Section 2.1]. De�ning ν(A) :=
∫
A P

f
µ dµ, A ∈ B, we �nd that ν is absolutely continu-

ous with respect to µ. �e Radon-Nikodym theorem then states that every measure ν that is
absolutely continuous with respect to µ is of this form [32, Chapter 6]. Hence, it follows that
the Perron-Frobenius operator of T under µ is a.e. given by the Radon-Nikodym derivative of ν
with respect to µ.

We now prove that measure preservingness corresponds to stationarity of the orbit. More-
over, we prove that for a measurable function f : X → R and a measure preserving transfor-
mation T , the sequence (f(T ix))i∈N is stationary.

Proof. Let r1, . . . , rn be integers. �en for all B1, . . . , Bn ∈ B and any k ≥ 1, we have that

µ
(
{x : f(T r1x) ∈B1, . . . , f(T rnx) ∈ Bn}

)
=µ
(
{x : T r1x ∈ f−1(B1), . . . , T rnx ∈ f−1(Bn)}

)
=µ
(
T−1{x : T r1x ∈ f−1(B1), . . . , T rnx ∈ f−1(Bn)}

)
=µ
(
{x : T (T r1x) ∈ f−1(B1), . . . , T (T rnx) ∈ f−1(Bn)}

)
=µ
(
{x : T r1+1x ∈ f−1(B1), . . . , T rn+1x ∈ f−1(Bn})

)
,

where we used the fact that T is measure preserving in line 2. Repeating the above steps k
times, shows that

µ
(
{x : f(T r1x) ∈B1, . . . , f(T rnx) ∈ Bn}

)
=µ
(
{x : f(T r1+kx) ∈ B1, . . . , f(T rn+kx) ∈ Bn}

)
.

We conclude that the sequence (f(T ix))i∈N is stationary.

�us if a transformation is µ-invariant, it follows that the distribution of a point x ∈ X does
not change over time. When studying the behaviour of the system, we are interested in its
dynamics, which can be studied by studying the orbits of points x ∈ X . In 1899, Poincaré
proved a simple, yet remarkable result about the behaviour of dynamical systems.

�eorem 2.3 (Poincaré Recurrence �eorem). [11, �eorem 1.4.1] Let (X,F , µ, T ) be a measure
preserving system. If A ∈ F such that µ(A) > 0, then almost all points of A return in�nitely
o�en to A under iterations of T .

�us, if a system starts in a state that has a positive measure, we know that the system will
return to that state in�nitely o�en. Hence, for x ∈ A, there exist in�nitely many n1, n2, . . . ∈ N
such that Tnix ∈ A. Moreover, suppose that A is such that T−1A = A. �en it follows that the
orbit of x stays withinA. �at is, (T ix)i≥0 ⊂ A for all x ∈ A. Moreover, as T−1(X\A) = X\A,
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Chapter 2. Mathematical preliminaries

we could study a system’s behaviour by decomposing it into two parts. When it is not possible
to decompose the state space into two invariant subsets of positive measure, we say that the
system is ergodic.

De�nition 2.4 (Ergodicity). [11, De�nition 1.6.1] Let (X,F , µ, T ) be a measure preserving
system. �e pair (T, µ) is ergodic if for every A ∈ F s.t. T−1A = A, we have µ(A) ∈ {0, 1}.

Example 2.5 (Ergodicity of Bernoulli systems). Example 2.2 shows that (X,Fb, µb, Tb) is a mea-
sure preserving system. Recall that Fb is generated by cylinder sets of the form
{x : x0 = a0, x1 = a1, . . . , xn = an}. Let

Ai := σ(xi, xi+1, xi+2, . . .), A :=
⋂
i≥1

Ai

and recall that A is the tail σ-algebra. Given A = {x : x0 = a0, x1 = a1, . . . , xn = an} ∈ Fb,
we have that T−ib A ∈ Ai, for all i ≥ 1. Moreover, for any Tb-invariant set A, we have that
A = T−ib A ∈ Ai, for all i ≥ 1 and hence A ∈ A. As Kolmogorov’s zero-one law states that
any set in the tail σ-algebra is trivial, we conclude that µb ∈ {0, 1} and hence that (Tb, µb) is
ergodic. A di�erent and more detailed proof of ergodicity can for instance be found in [11,
Example 1.8.2].

In 1931, the American mathematician D.G. Birkho� proved what is now known as the
Pointwise Ergodic theorem. �is theorem states that the time average exists a.e. Additionally,
he proved that the time average and space average coincide when the system is ergodic. A
proof can for instance be found in Kamae and Keane [20].

�eorem 2.6 (�e Pointwise Ergodic �eorem). [11, �eorem 2.1.1]. Let (X,F , µ, T ) be a
measure preserving system. �en, for all f ∈ L1(µ),

lim
n→∞

1

n

n∑
i=0

f(T ix) = f̂(x) (2.4)

exists almost everywhere, is T -invariant and
∫
X fdµ =

∫
X f̂dµ. Moreover, if (T, µ) is ergodic,

then f̂ is constant a.e. and f̂ =
∫
X fdµ.

We highlight the importance of this theorem at the end of this section. Furthermore, as
a consequence of the Pointwise Ergodic �eorem, we get the following characterisation of
ergodicity.

Proposition 2.7. Let (X,F , µ, T ) be a measure preserving probability system, and S a gen-
erating semi-algebra of F . �en (T, µ) is ergodic if and only if for all A,B ∈ S , it holds that

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B). (2.5)
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2.1 . Ergodic Theory

�is new characterisation of ergodicity can for instance be used to give an alternative proof
of Example 2.5.

Alternative proof of ergodicity of Bernoulli systems. Let A,B be two cylinders that generate Fb.
As cylinders depend on a �nite number of coordinates, ∃N such that ∀n ≥ N , T−nb A and B
are independent. Hence for all n ≥ N , it holds that

µb(T
−n
b A ∩B) = µb(A)µb(B).

By taking limits on both sides, we �nd that limn→∞ µb(T
−i
b A ∩B) = µb(A)µb(B). Hence

lim
n→∞

1

n

n−1∑
i=0

µb(T
−i
b A ∩B) = µb(A)µb(B).

We conclude from Proposition 2.7 that the Bernoulli shi� is ergodic.

Proposition 2.7 is one out of many characterisations of ergodicity. Di�erent characterisa-
tions make it possible to prove ergodicity in di�erent ways. For instance, Example 2.5 gives a
direct proof using probability theory and the previous example gives a more dynamical proof
using ergodic theory. As di�erent systems may require di�erent approaches when proving or
disproving ergodicity, we introduce some tools that may be helpful. Speci�cally, the follow-
ing lemma provides a useful tool when proving ergodicity of a system ([0, 1),B, T, µ), for µ
equivalent to the Lebesgue measure λ.

Lemma 2.8 (Knopp’s lemma). [11, Lemma 1.8.1]. Let λ denote the Lebesgue measure. If B is a
Lebesgue set and C a class of subintervals of [0, 1), satisfying

(a) every open subinterval of [0,1) is at most a countable union of disjoint elements from C,

(b) ∀C ∈ C, λ(B ∩ C) ≥ κλ(C), where κ > 0 is independent of C ,

then λ(B) = 1.

�e usefulness of this lemma can be seen from the case where B is such that T−1B = B.
�e lemma is particularly useful for proving ergodicity of systems that have a measure structure
that is equivalent to the Lebesgue measure. For more general cases, we introduce the following.

�eorem 2.9. [11, �eorem 1.6.1] Let (X,F , µ, T ) be a dynamical system. �e following are
equivalent.

(i) (T, µ) is ergodic.

(ii) If B ∈ F with µ(T−1B∆B) = 0, then µ(B) ∈ {0, 1}.

(iii) If A ∈ F with µ(A) > 0, then µ(∪∞i=1T
−iA) = 1.

(iv) If A,B ∈ F with µ(A) > 0 and µ(B) > 0, then there exists n > 0 s.t. µ(T−nA∩B) > 0.

(v) If f is measurable and a.e. T -invariant, then f is a constant a.e.

7



Chapter 2. Mathematical preliminaries

Besides providing di�erent tools for proving ergodicity, we can interpret these di�erent
characterisations to give intuition for ergodicity. Most importantly, ergodicity tells us something
about the behaviour of the system. Whereas Poincaré’s recurrence theorem tells us that for a set
of positive measure A, almost all points in A will revisit A in�nitely o�en under iterations of T ,
ergodicity tells us that almost all points in X will visit A in�nitely o�en (iii). �is is regardless
of where the system starts. Similarly, as x ∈ T−nA ∩B =⇒ Tnx ∈ A and x ∈ B, ergodicity
implies that points in a set of positive measure eventually visit other sets of positive measure (iv).

Most of the tools so far, are aimed at proving ergodicity of a measure preserving system by
only considering that system. However, we can also prove ergodicity by considering di�erent
systems and “extending” ergodicity from one system to the other. In the following theorem, we
consider di�erent probability measures on the same underlying measurable space. �e theorem
states two results relating the di�erent measures. �e �rst part of the theorem allows us to
extend ergodicity from one system to another. �e second part shows that, if both systems are
ergodic, the probability measures should either coincide or be mutually singular.

�eorem 2.10. [11, �eorem 2.1.2] Let (X,F , µ1, T ) and (X,F , µ2, T ) be measure preserving
systems.

(i) If (T, µ1) is ergodic and µ2 � µ1, then µ1 = µ2.

(ii) If both (T, µ1) and (T, µ2) are ergodic, then either µ1 = µ2 or µ1 ⊥ µ2.
�is theorem allows one to compare two di�erent measure preserving systems, where the

only di�erence in structure is the measure structure. It is also possible, however, to compare two
- seemingly - completely di�erent systems. For instance, it is o�en the case that two systems
seem to be completely di�erent, but behave in the same way. When this is the case, we say
that two systems are isomorphic. Let (X,F , µ, T ) and (Y,G, ν, S) be two measure preserving
systems, then an isomorphism is a map φ : (X,F , µ, T )→ (Y,G, ν, S) such that the following
holds.

(i) φ is bijective almost everywhere. �at is, there exists null sets NX ⊂ X and NY ⊂ Y
such that φ : X \NX → Y \NY is a bijection.

(ii) φ and φ−1 are measurable.

(iii) φ and φ−1 are measure preserving: ν = µ ◦ φ−1. �at is, ν(B) = µ(φ−1(B)) for all
B ∈ G. Analogous conditions should hold for φ−1.

(iv) φ and φ−1 preserve the dynamics: φ ◦ T = S ◦ φ. �is means that φ should be such that

x
T−−−−→ Tx

T−−−−→ T 2x
T−−−−→ · · · T−−−−→ Tnx

T−−−−→yφ yφ yφ yφ yφ
φ(x)

S−−−−→ S(φ(x))
S−−−−→ S2φ(x)

S−−−−→ · · · S−−−−→ Snφ(x)
S−−−−→

.

De�nition 2.11 (Isomorphism). [11, De�nition 3.1.1] Two dynamical systems (X,F , µ, T ) and
(Y,G, ν, S) are isomorphic if there exist measurable sets N ⊂ X and M ⊂ Y with:

8



2.1 . Ergodic Theory

• µ(X \N) = ν(Y \M) = 0 and

• T (N) ⊂ N,S(M) ⊂M ,

for which there exists a measurable map φ : N →M such that (i)–(iv) are satis�ed.

Loosely speaking, φ is a measure preserving map such that the following diagram commutes

(X,µ)
T−−−−→ (X,µ)yφ yφ

(Y, ν)
S−−−−→ (Y, ν)

.

As isomorphisms preserve dynamics, it follows that we can extend ergodicity from one system
to another by showing that they are isomorphic. In particular, we have the following.

Proposition 2.12. Let (X,Fb, µb, Tb) be a Bernoulli system and let (Y,G, ν, S) be a measure
preserving system. If (X,Fb, µb, Tb) and (Y,G, ν, S) are isomorphic, then (S, ν) is ergodic.

�is concludes the general notions and results on ergodic theory. Before turning to the next
section, we highlight the importance of �eorem 2.6. �e importance of the Pointwise Ergodic
�eorem can be illustrated as follows. Suppose that we have an ergodic probability system
(X,F , T, µ) and we consider the orbit of an arbitrary x ∈ X . More precisely, we consider the
asymptotic frequency of visits of x to a set A ∈ F under iterations of T . We can represent this
asymptotic frequency by the time average of the function f = 1A ∈ L1

µ. �en, by the Pointwise
Ergodic �eorem, we have that

lim
n→∞

1

n

n−1∑
i=0

1A(T ix) = f̂(x) =

∫
X
1Adµ = µ(A). (2.6)

�e second equality results from the fact that the system is ergodic and therefore constant a.e.
We conclude that the asymptotic frequency of visits to the set A is precisely the probability of
being in A. As the normality of a number is a distribution property of the sequence of digits
that represent this number, the previously described illustration will prove to be useful for
proving this property. To see this, think of A as a set of states that satis�es some condition.
Subsequently, if we can de�ne a transformation T that runs through the sequence of digits that
represent x, the le� hand side of (2.6) is the asymptotic frequency of digits that satisfy this
property. �ough it is practically impossible to evaluate this asymptotic frequency, for ergodic
systems we know that it is precisely the probability of the system being in a state that satis�es
this condition. �e next section starts by introducing continued fractions, which provides us
with a sequence representation of a number. Subsequently, we introduce the transformation
that runs through this sequence of digits and study it under two di�erent measures, of which
one is invariant and one is not.

9



Chapter 2. Mathematical preliminaries

2.2.0 Continued fraction expansions
Similar as to expressing a number in binary or decimal form, the continued fraction expansion
is just another way to represent a number. �ey are closely related to the Euclidian algorithm
and have some useful properties. Continued fractions can for instance be used to �nd “best”
rational approximations of irrational numbers. �ese and other relevant results on continued
fractions are explained in this section. �e results presented in this section can be found in [19,
Chapter 1], [27, Chapter 5] or any other handbook on continued fractions. From now on, let
X = [0, 1) and let B denote the Borel σ-algebra on X .

Any real number x ∈ [0, 1), can be represented by its continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
1

. . .

, (2.7)

where the partial quotiens ai(x) are integers for all i ∈ N. It is common to drop the dependence
on x and use the notation x = [a1, a2, a3, · · · ]. If x is rational, the continued fraction expansion
is �nite and non-unique. Non-uniqueness can be seen from the identity x = [a1, a2, · · · , an] =
[a1, a2, · · · , an − 1, 1]. �is result is summarised below.

�eorem 2.13. [27, �eorem 5.2] Any �nite continued fraction represents a rational number.
Conversely, any rational number x can be expanded in a �nite continued fraction in exactly two
ways.

On the other hand, the continued fraction expansion of an irrational x is in�nite and unique.
When we truncate the continued fraction expansion of x = [a1, a2, a3, · · · ] at the n-th digit,
we get a rational approximation that we call the n-th convergent

ωn =
pn
qn

= [a1, a2, · · · , an], (2.8)

where pn, qn ∈ N and gcd(pn, qn) = 1. �e integers pn and qn are called the continuants of x
and satisfy the equations

pn = anpn−1 + pn−2, (2.9)
qn = anqn−1 + qn−2, (2.10)

with p−1 = q0 = 1 and p0 = q−1 = 0. �e sequence (qi)i≥1 is monotonically increasing and
can be used to bound the error in the approximation

1

2qnqn−1
< |x− pn

qn
| < 1

qnqn+1
. (2.11)

10



2.2 . Continued fraction expansions

One of the properties of the continued fraction is that the n-th convergent is the best rational
approximation of x. �at is to say that there is no rational approximation with denominator
smaller or equal to qn that is closer to x. Furthermore, apart from bounding the approxima-
tion, we �nd that the sequence (qi)i≥1 also bounds the distance between two consecutive
approximations. We provide a short derivation below.

ωn − ωn−1 =
pn
qn
− pn−1

qn−1

=
pnqn−1 − pn−1qn

qnqn−1

=
pnqn−1 − pn−1(anqn−1 + qn−2)

qnqn−1

=
qn−1(pn − anpn−1)− pn−1qn−2

qnqn−1

=
−(pn−1qn−2 − pn−2qn−1)

qnqn−1

= . . .

=
(−1)n(p0q−1 − p−1q0)

qnqn−1
=

(−1)n+1

qnqn−1
.

Subsequently, note that

ωn =
n∑
i=1

ωi − ωi−1 =
n∑
i=1

(−1)i+1

qiqi−1
.

As (qn)n≥1 is monotonically increasing, the sequence ( 1
qiqi−1

)i≥1 is monotonically decreasing.
From Leibniz’ theorem, it follows that limn→∞ ωn exists. As we will be constructing a normal
number in chapter 4, this is an important result. In particular, because it implies the following:
when we are given a sequence of integers (a′i)i≥1 ⊂ N and de�ne ω′n as the rationals obtained
by forming the �nite continued fraction [a′1, a

′
2, · · · , a′n], then the sequence (ω′i)i≥1 converges.

Moreover, it converges to a unique irrational. �is leads to the following proposition.
Proposition 2.14. [11, Proposition 4.1.1] Let (ai)i≥1 be a sequence of positive integers, and
de�ne the sequence of rationals (ωi)i≥1 as

ωn := [a1, a2, · · · , an], n ≥ 1.

�en there exists a unique irrational number x ∈ (0, 1) such that

lim
n→∞

ωn = x.

Moreover, we have that x = [a1, a2, a3, · · · ].
Summarising the above, we get the following.

�eorem 2.15. [27, �eorem 5.11] Every irrational number x ∈ [0, 1) has a unique representation
as an in�nite continued fraction [a1, a2, a3, · · · ] and conversely. �e integers ai are positive

11



Chapter 2. Mathematical preliminaries

for i ≥ 1. �e n-th convergent ωn = pn
qn
, is the �nite continued fraction [a1, a2, · · · , an]. �e

denominators qi form a monotonically increasing sequence, for i ≥ 1. �e even and odd convergents
are monotonically increasing, respectively decreasing, with x as a limit

0 = ω0 < ω2 < ω4 < · · ·x · · · < ω3 < ω1 < 1.
�us, opposite to irrationals, rationals have a �nite continued fraction expansion. From this

point onwards, we use the convention that any continued fraction [a1, a2, · · · , an] is wri�en in
its reduced form. �at is, we use the convention that an ≥ 2, in which case rationals also have
“unique” continued fraction expansions. We next introduce the measurable map that generates
the digits of the continued fraction expansion.

2.3.0 �e Gauss map
In the previous section, we have provided basics results on continued fractions. From Proposi-
tion 2.14, we see that an in�nite sequence of digits (ai)i≥1 can be used to construct a unique
irrational number. �is is important because it ensures that the number that is constructed in
chapter 4 is indeed a unique irrational. In order to study the digits of the continued fraction
expansion, we introduce a measure preserving map that represents the dynamics of such a
number system.

Continued fractions are closely related to the Euclidian algorithm. One reason for this, is
that the digits of the continued fraction expansion can be generated through this algorithm.
However, rather than using a number theoretic approach, we use one from ergodic theory to
obtain the digits. As such, we introduce the Gauss map, show that it generates the digits of the
continued fraction expansion and discuss related results.

De�nition 2.16 (Gauss map). [11, Example 1.5.3] �e Gauss map is the measurable map
T : X → X with

T x =
1

x
mod 1 =

{
1
x − b

1
xc if x 6= 0,

0 if x = 0.
(2.12)

When we denote x by its - possibly �nite - continued fraction expansion [a1, a2, a3, · · · ]
and rewrite equation (2.12) for x 6= 0, we �nd that

T x =
1

[a1, a2, a3, · · · ]
−
⌊ 1

[a1, a2, a3, · · · ]

⌋
= a1 + [a2, a3, a4, · · · ]−

⌊
a1 + [a2, a3, a4, · · · ]

⌋
= [a2, a3, a4, · · · ].

In a similar fashion, we �nd that the n-th element of the orbit of x is given by

T n−1x = [an, an+1, an+2, · · · ]. (2.13)

When we invert this equation we see that

1

T n−1x
=

1

[an, an+1, an+2, · · · ]
= an + [an+1, an+2, an+3, · · · ],

12



2.3 . The Gauss map

0 1
2

1

1

Figure 2.1: �e Gauss map T .

from which it follows that the digits an are given by an = b 1
T n−1x

c. �at is, the partial quotients
are generated by the Gauss map. Lastly, it is useful to notice that due to (2.13), T is called a le�
shi� for the continued fraction and we have that

x = [a1, a2, · · · , an + T nx]. (2.14)

As we will be looking at the distribution of the sequence (ai)i≥1, we consider them to be
N-valued random variables de�ned on the probability space (X,B, µ). When studying these
random variables, we prefer a transformation T to be measure preserving with respect to the
probability measure µ. �is is due to the fact that measure preservingness ensures stationarity
of the sequence (f(T ix))i≥1, for all measurable f . Moreover, if we can �nd a measure µ such
that (T, µ) is ergodic, �eorem 2.6 ensures that time and space averages coincide. When we
consider the various probability measures, it is natural to �rst look at the Lebesgue measure.
However, it turns out that the Gauss map T is not measure preserving with respect to the
Lebesgue measure λ. In order to show this, we �rst introduce fundamental intervals.

De�nition 2.17 (Fundamental intervals). A fundamental interval of order n is the set of
numbers in [0, 1) that have the same �rst n digits in their continued fraction expansion. A
fundamental interval of order n is thus de�ned by

∆(a1, a2, · · · , an) := {x ∈ [0, 1) : x = [a1, a2, · · · , an, · · · ]},

a1, a2, · · · , an ∈ N.

In order to see that this is indeed an interval, notice that for any x ∈ ∆(a1, a2, · · · , an) we
have that x = [a1, a2, · · · , an + T nx], see (2.14). As T is de�ned on [0, 1), it follows that the
interval is de�ned by the endpoints [a1, a2, · · · , an] and [a1, a2, · · · , an + 1]. It is possible to

13



Chapter 2. Mathematical preliminaries

rewrite the endpoints using the convergents. Doing so leads to

∆(a1, a2, · · · , an) =


[pn
qn
,
pn + pn−1

qn + qn−1

)
if n is even,[pn + pn−1

qn + qn−1
,
pn
qn

)
if n is odd.

(2.15)

A more rigorous proof of the above can for instance be found in [19, �eorem 1.2.2]. Next, we
show that the Gauss map is not measure preserving with respect to the Lebesgue measure.

Example 2.18. Consider the fundamental interval of order one ∆(1). �en using (2.15) and
the fact that p−1 = q0 = 1 and p0 = q−1 = 0, it follows that

∆(1) = {x ∈ [0, 1) : x = [1, · · · ]} = [
1

2
, 1).

Henceλ(∆(1)) = 1
2 . As T is a le� shi�, we �nd that T −1(∆(1)) =

⋃
i≥1 ∆(i, 1) =

⋃
i≥1( 1

i+1 ,
1

i+ 1
2

).
Taking the Lebesgue measure of this set, we see that

λ(T −1∆(1)) = λ
(
∪i≥1 (

1

i+ 1
,

1

i+ 1
2

)
)

=
∑
i≥1

λ
(
(

1

i+ 1
,

1

i+ 1
2

)
)

=
∑
i≥1

1

i+ 1
2

− 1

i+ 1

= 2
∑
i≥1

1

2i+ 1
− 1

2i+ 2

= 2 log(2)− 1 6= 1

2
= λ(∆(1)).

Hence we conclude that T is not measure preserving w.r.t. λ.

�e above (counter)example implies that (X,B, λ, T ) is not a measure preserving system.
�erefore, the system is not ergodic. However, one of the measures that does satisfy our wishes
concerning measure preservingness and ergodicity, is the Gauss measure. �ough it remains
unknown how he came to the conclusion, it was Gauss who stated that the density of the partial
quotients (with respect to λ) is given by

1

log 2
· 1

1 + x
,

which leads to the de�nition of the Gauss measure γ

γ(A) :=
1

log 2

∫
A

1

1 + x
dx A ∈ B. (2.16)

14



2.3 . The Gauss map

As x ∈ [0, 1), we �nd that

1

2 log 2
λ(A) ≤ γ(A) ≤ 1

log 2
λ(A). (2.17)

Hence, we have that γ � λ (and λ� γ). It follows that the Perron-Frobenius operator of the
Gauss map under the Lebesgue measure is given by the Radon-Nikodym derivative of the Gauss
measure with respect to the Lebesgue measure. In order to show that, opposite to the Lebesgue
measure, the Gauss measure is preserved by the Gauss map, we note that it is su�cient to
prove invariance of an interval (a, b) ⊂ [0, 1). �is is due to the fact that the Borel σ-algebra is
generated by such intervals. We �nd that

T −1(a, b) = {x ∈ [0, 1) : T x =
1

x
− a1(x) ∈ (a, b)},

where a1(x) ∈ N. �erefore

T −1(a, b) =
⋃
i≥1

(
1

i+ b
,

1

i+ a
), (2.18)

and we �nd that

γ(T −1(a, b)) = γ
(
∪i≥1 (

1

i+ b
,

1

i+ a
)
)

=
∑
i≥1

γ
(
(

1

i+ b
,

1

i+ a
)
)

=
∑
i≥1

1

log 2

∫ 1
i+a

1
i+b

1

1 + x
dx

=
1

log 2

∑
i≥1

log(1 +
1

i+ a
)− log(1 +

1

i+ b
)

=
1

log 2

∑
i≥1

log
( i+ a+ 1

i+ a

/ i+ b+ 1

i+ b

)
=

1

log 2
lim
n→∞

n∑
i=1

log(i+ a+ 1)− log(i+ a) + log(i+ b)− log(i+ b+ 1)

=
1

log 2
lim
n→∞

log(i+ a+ 1)− log(1 + a) + log(1 + b)− log(i+ b+ 1)

=
1

log 2
log(

1 + b

1 + a
)

=
1

log 2

(
log(1 + b)− log(1 + a)

)
=

1

log 2

∫ b

a

1

1 + x
dx

15



Chapter 2. Mathematical preliminaries

= γ
(
(a, b)

)
.

We conclude that the Gauss map is measure preserving with respect to the Gauss measure.
Moreover, the Gauss map is ergodic under the Gauss measure. We show this through an
application of Knopp’s Lemma.

�eorem 2.19. [11, �eorem 4.2.1] �e pair (T , γ) is ergodic.

Proof. Note that equivalence of the Gauss and Lebesgue measure follows from (2.17). Further-
more, let [a, b) be a subinterval of [0, 1) and ∆n = ∆(a1, a2, · · · , an) be a fundamental interval
of order n. �en, analogous to (2.15), one can show that T −n(a, b) ∩∆n is the interval that is
speci�ed by the endpoints [a1, a2, · · · , an + a] and [a1, a2, · · · , an + b]

T −n(a, b) ∩∆n =


(pn−1a+ pn
qn−1a+ qn

,
pn−1b+ pn
qn−1b+ qn

)
if n is even,(pn−1b+ pn

qn−1b+ qn
,
pn−1a+ pn
qn−1a+ qn

)
if n is odd.

Without loss of generality, let n be even. �e Lebesgue measure of this interval can then be
rewri�en as

λ(T −n(a, b) ∩∆n) =
pn−1b+ pn
qn−1b+ qn

− pn−1a+ pn
qn−1a+ qn

=
(pn−1b+ pn)(qn−1a+ qn)− (pn−1a+ pn)(qn−1b+ qn)

(qn−1b+ qn)(qn−1a+ qn)

= (b− a)
pn−1qn − pnqn−1

(qn−1b+ qn)(qn−1a+ qn)

= (b− a)
pn−1qn − pnqn−1

qn(qn + qn−1)

qn(qn + qn−1)

(qn−1b+ qn)(qn−1a+ qn)

= λ(a, b)λ(∆n)
qn(qn + qn−1)

(qn−1b+ qn)(qn−1a+ qn)
.

Using the fact that 0 ≤ a < b < 1 and that (qi)i≥0 is monotonically increasing, we can bound
the la�er fraction from both above and below to see that

1

2
<

qn(qn + qn−1)

(qn−1b+ qn)(qn−1a+ qn)
< 2.

Combining this bound with the one in (2.17), we �nd that

γ(T −n(a, b) ∩∆n) ≥ log 2

4
γ(T −n(a, b))γ(∆n).

Moreover, for B such that T−1B = B and γ(B) > 0, it holds that

γ(B ∩∆n) ≥ log 2

4
γ(B)γ(∆n).
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2.4 . Minkowski’s ?(·) function

�erefore, the desired result is obtained by an application of Knopps lemma with C the collection
of all fundamental intervals ∆n and κ = log 2

4 γ(B).

�e main goal of this thesis is to construct a Minkowski normal number. As such, the last
part of the mathematical framework discusses the distribution that is associated with this new
type of normality: the Minkowski question mark function.

2.4.0 Minkowski’s ?(·) function
�e Minkowski ?(·) function is a strictly monotone, continuous and singular function. �e
function was �rst introduced in 1904 by Herman Minkowski, whose motivation was to illustrate
the following condition for quadratic irrationals [18]

“A real number is a quadratic irrational if and only if its continued fraction
expansion is in�nite and periodic; it is a rational if and only if its continued fraction
expansion is �nite. Minkowski’s function leads to the following criterion: x is a
quadratic irrational if and only if ?(x) is a non-dyadic rational; x is rational if and
only if ?(x) is a dyadic rational.”

�e question mark function can be constructed in several ways. We next present the basis
of the construction as in Salem [30], a�er which we formally de�ne the Minkowski question
mark measure and discuss some of its properties and related results. A generalised form of the
construction can be found in [18].

We construct the Minkowski question mark function ?(·) by de�ning a sequence of sets
(Mi)i≥0 and the corresponding values of ?(x) for all x ∈ Mn, n ≥ 0. LetM0 = {0

1 ,
1
1} and

de�ne the base condition
?(0

1) = 0 and ?(1
1) = 1.

At the next step, we take the mediant of 0
1 and 1

1 and add this toM0 to formM1 = {0
1 ,

1
2 ,

1
1}.

Subsequently, we de�ne

?(0+1
1+1) =?(1

2) = 1
2

(
?(0

1)+?(1
1)
)

= 1
2 .

�is results in the �rst order approximation of the function. By repeating process, we de�ne
the Minkowski question mark function for all x ∈ [0, 1]. �at is,Mn is formed fromMn−1 by
inserting the mediant between two adjacent fractions inMn−1. �e corresponding function
value is then given by the arithmetic mean of the function values of the fractions that make up
the mediant. Let pq and r

s be two adjacent fractions inMn−1 such that pq <
r
s . �en we insert

the mediant inMn, for which we have that

p

q
<
p+ r

q + s
<
r

s
.

Subsequently, we de�ne the corresponding question mark function value by

?(
p+ r

q + s
) =

1

2

(
?(
p

q
)+?(

r

s
)
)
. (2.19)
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�e �rst four sets of (Mi)i≥0 are

M0 = {0

1
,

1

1
},

M1 = {0

1
,

1

2
,

1

1
},

M2 = {0

1
,

1

3
,

1

2
,

2

3
,

1

1
},

M3 = {0

1
,

1

4
,

1

3
,

2

5

1

2
,

3

5

2

3
,

3

4
,

1

1
}.

Using equation (2.19), we �nd that the nth-order approximation of the question mark function
mapsMn to the set of dyadic rationals of order n; Dn = { k2n : k = 0, 1, . . . , 2n}. �e �rst four
levels of (Di)i≥0 are given below

D0 = { 0

20
,

1

20
},

D1 = { 0

21
,

1

21
,

2

21
},

D2 = { 0

22
,

1

22
,

2

22
,

3

22
,

4

22
},

D3 = { 0

23
,

1

23
,

2

23
,

3

23

4

23
,

5

23

6

23
,

7

23
,

8

23
}.

Figure 2.2: �e Minkowski question mark.

�e �gures in Appendix B show the approximations of orders n = 1, 2, 3 and 4. Figure 2.2
displays the Minkowski question mark function, which is obtained by the limit of the previously
described process. Note that the construction de�nes the Minkowski question mark function for
rationals. However, it follows from continuity that the function is de�ned for every x ∈ [0, 1]
[30].
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2.4 . Minkowski’s ?(·) function

�e �rst to provide a detailed study of the function, was Arnoud Denjoy [13]. Among
other things, Denjoy expressed the function as a summation and proved its singularity. We use
Denjoy’s summation to formally de�ne Minkowski question mark measure, a�er which we
discuss some properties and related results.

De�nition 2.20 (Minkowski’s question mark measure). �e Minkowski question mark measure
µ? is given by the distribution function ?(·) that is de�ned by

?(x) := µ?((0, x]) =


2

n∑
i=1

(−1)i+1

2a1+a2+···+ai
if x = [a1, a2, · · · , an].

2

∞∑
i=1

(−1)i+1

2a1+a2+···+ai
if x = [a1, a2, a3 · · · ],

(2.20)

with x ∈ [0, 1). Furthermore ?(0) = 0 and ?(1) = 1.

Note that for any fundamental interval ∆n = ∆(a1, a2, · · · , an), µ?(∆n) = 2−(a1+a2+···+an).

It follows from the construction that the Minkowski question mark function is continuous
and strictly monotone, which implies that it is di�erentiable almost everywhere. Although the
derivative exists almost everywhere, it is 0 a.e. In turn, this implies that the measure is singular
with respect to the Lebesgue measure. Moreover, the Radon Nikodym derivative does not
exist and there is no density function in the classical sense. However, Vepstas [36] provides an
explicit construction for the derivative of ?(x), expressing it as an in�nite product of piecewise
continuous functions. By doing so, they provide insight into the sets for which the derivative is
zero. �ey show that it vanishes for all rationals and is in�nite on the irrationals except on a
certain class of quadratic irrationals. A more precise description of these cases can be found in
[15].

�e fact that the Minkowski question mark measure is singular with respect to the Lebesgue
measure can be proved in di�erent ways. A direct proof of singularity can be found in [13] and
[30]. In what follows, we show that singularity follows from �eorem 2.10. We �rst prove that
the Gauss map is measure preserving with respect to the Minkowski question mark measure.
Subsequently, we prove that the pair (T , µ?) is ergodic and then show that singularity follows
from an application of �eorem 2.10(ii).

In order to prove that T is measure preserving with respect to µ?, we prove that the measure
of an arbitrary interval is preserved under T . For convenience, without loss of generality, let
(a, b) ∈ [0, 1) be an arbitrary interval with rational endpoints. In other words, let (a, b) be an
arbitrary interval that has endpoints that are de�ned by a �nite continued fraction. Suppose
that a = [a1, a2, · · · , an] and b = [b1, b2, · · · , bm]. We then have

µ?

(
(a, b)

)
=?(b)−?(a)

= 2

m∑
k=1

(−1)k+1

2b1+b2+···+bk
− 2

n∑
l=1

(−1)l+1

2a1+a2+···+al
.
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Using the preimage of the Gauss map, see (2.18), we �nd

µ?

(
T −1(a, b)

)
= µ?

(
∪i≥1 (

1

i+ b
,

1

i+ a
)
)

=
∑
i≥1

µ?

(
(

1

i+ b
,

1

i+ a
)
)

=
∑
i≥1

?
( 1

i+ a

)
−?
( 1

i+ b

)
=
∑
i≥1

?
(
[i, a1, a2, · · · , an]

)
−?
(
[i, b1, b2, · · · , bm]

)
=
∑
i≥1

(
2
( 1

2i
+

1

2i

n+1∑
l=2

(−1)l+1

2a1+a2+···+al−1

)
− 2
( 1

2i
+

1

2i

m+1∑
k=2

(−1)k+1

2b1+b2+···+bk−1

))

= 2
∑
i≥1

1

2i
( n+1∑
l=2

(−1)l+1

2a1+a2+···+al−1
−
m+1∑
k=2

(−1)k+1

2b1+b2+···+bk−1

)
= 2

∑
i≥1

1

2i
(m+1∑
k=2

(−1)k

2b1+b2+···+bk−1
−
n+1∑
l=2

(−1)l

2a1+a2+···+al−1

)
= 2

∑
i≥1

1

2i
( m∑
k=1

(−1)k+1

2b1+b2+···+bk
−

n∑
l=1

(−1)l+1

2a1+a2+···+al

)
=
∑
i≥1

1

2i
(
2

m∑
k=1

(−1)k+1

2b1+b2+···+bk
− 2

n∑
l=1

(−1)l+1

2a1+a2+···+al

)
=
∑
i≥1

1

2i
(
?(b)−?(a)

)
=
(
?(b)−?(a)

) ∞∑
i=1

1

2i

= µ?

(
(a, b)

)
.

In the last step we used the fact that the sum of the geometric series (2−i)i≥1 converges to 1. We
conclude that the Gauss map is invariant with respect to the Minkowski question mark measure.
We now prove ergodicity by showing that ([0, 1),B, µ?, T ) is isomorphic to a Bernoulli system.

�eorem 2.21. �e pair (T , µ?) is ergodic.

Proof. Let (X,Fb, µb, Tb) be the Bernoulli system with X = NN and Fb the product σ-algebra
on X . Furthermore, Tb is the Bernoulli shi� and we de�ne p = (p1, p2, p3, · · · ) as the in�nite
probability vector that induces the Bernoulli measure µb, where pn = 2−n.

As continued fraction expansions are unique for irrationals, but not for rationals, we need
to remove a suitable set of measure zero from X in order to de�ne a proper isomorphism. As
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such, we de�ne the set

B = {a1a2a3 · · · ∈ Xb : ∃N such that aN = 1 and ∀n > N, an = 0}.

and consequently de�ne the isomorphism φ : [0, 1) \ {0} → X \ (B ∪ {000 · · · }) by

φ([a1, a2, · · · , an]) = a1a2, · · · , an.

Clearly, φ is a bijection. Next, we check properties of an isomorphism by showing that it holds
on the cylinders. Let A = {x : x1 = a1, x2 = a2, . . . , xn = an} ∈ Fb. �en

φ−1(A) = ∆(a1, a2, · · · , an) ∈ B,

from which it follows that both φ and φ−1 are measurable. Furthermore, φ preserves the
measures

µ?(φ−1(A)) = µ?(∆(a1, a2, · · · , an)) = 2−(a1+a2+···+an) = 2−a12−a2 · · · 2−an = µb(A).

Lastly, let [a1, a2, a3, · · · ] denote the (possibly �nite) continued fraction expansion of an arbitrary
x ∈ (0, 1). �en as both T and Tb are le� shi�s, we have

(φ ◦ T )(x) = φ([a2, a3, · · · ]) = a2a3 · · · = Tb(a1a2a3 · · · ) = (Tb ◦ φ)(x).

�erefore, φ preserves the dynamics and we conclude that ([0, 1),B, µ?, T ) and (X,Fb, µb, Tb)
are isomorphic. As the la�er is a Bernoulli system, we conclude dat (T , µ?) is ergodic.

Corollary 2.22. �e Minkowski question mark is singular with respect to the Lebesgue mea-
sure.

Proof. As both (T , µ?) and (T , γ) are ergodic, it follows from �eorem 2.10 that µ? = γ or
µ? ⊥ γ. Suppose that µ? = γ and consider the fundamental interval ∆(1) = [1

2 , 1). �en

γ(∆(1)) =
1

log 2

∫ 1

1/2

1

1 + x
dx =

log 4
3

log 2
6= 1

2
=?(1)−?(1/2) = µ?(∆(1)),

which contradicts the assumption that µ? = γ. Hence we conclude that the Minkowski question
mark and the Gauss measure are singular. As the Gauss measure and Lebesgue measure are
equivalent, it follows from basic measure theory that Minkowski question mark and Lebesgue
measure are singular as well.

Recall that if two measures are singular, they have a di�erent support. Intuitively, this means
that singularity of measures tells us that we cannot compare these measures. However, by
constructing isomorphisms, we can show that two measure preserving systems can exhibit the
same dynamical behaviour even when the di�erence in measure structure lies in the singularity
of the measures. �is shows that although two measures are singular and not comparable, their
behaviour is comparable within some systems. We illustrate this with the following example.
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Example 2.23. On each interval [ 1
2n ,

1
2n−1 ), n ≥ 1, de�ne the measure preserving transforma-

tion S : [0, 1)→ [0, 1) by
Sx = 2nx− 1.

Also, let d(x) = n on [ 1
2n ,

1
2n−1 ) and dn(x) = d(Sn−1x). In particular, it follows that d1x = d(x)

and Sx = 2d(x)x− 1. By rewriting these equations, we �nd

x =
1

2d1(x)
+

Sx

2d1(x)

=
1

2d1(x)
+

1

2d1(x)

( 1

2d2(x)
+

Sx

2d2(x)

)
= ...

=
1

2d1(x)
+

1

2d1(x)+d2(x)
+ · · ·+ Snx

2d1(x)+d2(x)+···+dn(x)

=
∞∑
i=1

1

2d1(x)+d2(x)+···+di(x)
.

Note the similarity with ?(x). We brie�y show that ([0, 1), T ,B, µ?) and ([0, 1),B, λ, S) are
isomorphic. De�ning this isomorphism is similar to the one in the proof of ergodicity of (T , µ?)
. Let [a1, a2, a3, · · · ] be the - possibly �nite - continued fraction expansion of an arbitrary
x ∈ [0, 1). �en de�ne

φ(x) = φ([a1, a2, a3, · · · ]) =
∞∑
i=1

1

2a1+a2+···+ai
,

which is clearly a bijection. Furthermore, as the dyadic intervals generate the Borel σ-algebra,
we check the properties of an isomorphism by considering such an interval. Hence, let A be an
arbitrary dyadic interval

A =
[ n∑
i=1

1

2a1+a2+···+ai
,

n∑
i=1

1

2a1+a2+···+ai
+

1

2a1+a2+···+an

)
.

�en any x ∈ A is given by

x =
1

2a1
+

1

2a1+a2
+ · · ·+ 1

2a1+a2+···+an + · · · .

Moreover, we have that φ−1(A) = ∆(a1, a2, · · · , an) ∈ B and

µ?(φ−1(A)) = µ?(∆(a1, a2, · · · , an)) = 2−(a1+a2+···+an) = λ(A).

Lastly,

(φ ◦ T )(x) = φ([a2, a3, · · · ]) =

∞∑
i=2

1

2a2+a3+···+ai
= 2a1

∞∑
i=1

1

2a1+a2+···+ai
− 1
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= S
( ∞∑
i=1

1

2a1+a2+···+ai

)
= (S ◦ φ)(x).

We conclude that ([0, 1), T ,B, µ?) and ([0, 1),B, λ, S) are isomorphic.

�e previous example shows an important property of the Minkowski question mark. �at
is, the Minkowski question mark linearises the Gauss map. As linear systems are simpler
mathematical objects, this is a useful property. However, we do not need it in this thesis.

Summarising, the Minkowski question mark possesses some remarkable properties. Among
other things, it is strictly monotone, continuous and singular. When we consider the system
(X,B, µ?, T ), we �nd that is both isomorphic to a Bernoulli and a linear system. �is implies
that the Gauss map is ergodic under the Minkowski question mark and the question mark
linearises the Gauss map. �at is, the diagram

([0, 1), µ?)
T−−−−→ ([0, 1), µ?)yφ yφ

([0, 1), λ)
S−−−−→ ([0, 1), λ)

commutes. We use the Minkowski question mark to introduce a notion of normality for the
continued fraction expansion in chapter 4, which refer to as Minkowski normality. More
importantly, in �eorem 4.13, we prove Minkowski normality of a constructed number K, see
(4.10). First, however, we discuss normality results that have been obtained thus far.
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Chapter 3

Normal numbers and related develop-
ments
Numbers can be represented in numerous ways. Examples of representations include binary
representations, decimal representations and continued fraction expansions. Each such repre-
sentation corresponds to a �nite or in�nite sequence of digits that make up such representation.
When regarding these digits as random variables, we can consider the distribution of the se-
quence of digits - if it exists. Normality of a number is then characterised as a distribution
property of the (in�nite) sequence of digits that corresponds to this number. In this section,
we discuss several types normality and results that have been obtained since Borel introduced
the notion of normal numbers in 1909. �e results contain constructions of normal numbers as
well as proofs of existence. �e goal of discussing these constructions and existence results, is
to provide a historical framework on results on normal numbers, where the importance lies
with the techniques that have been used to obtain the construction results. Roughly speaking,
there are two techniques that are used when proving normality of a constructed number. We
introduce these techniques by considering two results in more detail. �e �rst technique is
shown by going over a result from David Champernowne, who was the �rst to explicitly con-
struct a normal number. �e second technique is due to Abram Besicovitch, which was used
by Copeland and Erdös to prove the �rst generalised construction. Both of these results are
discussed in the next section, where we focus on a type of normality as introduced by Borel. �e
section therea�er discusses a type of normality that is related to continued fraction expansions,
a�er which we discuss other normality results and provide some �nal remarks.

3.1.0 Constructions of numbers normal in a base

In 1909 Émile Borel introduced the notion of normality [16]. �e type of normality that he
introduced is related to a generalised form of decimal expansions. In this section, we de�ne this
type of normality and discuss important results that have been obtained so far. Among these
results are those of Champernowne, Copeland and Erdös, which are treated in more detail. �e
results that are discussed in this section are all related to the same type of normality, which we
de�ne as follows.

De�nition 3.1 (Normal in a base). Given an integer b ≥ 2, an irrational number

x =
∞∑
i=1

ai
bi

= 0.a1a2a3 · · · ∈ [0, 1) is called normal in base b if for any k ≥ 1 and any

block d = d1d2 · · · dk with di ∈ {0, 1, · · · , b− 1}, one has

lim
n→∞

1

n

n∑
i=1

1{aiai+1···ai+k−1=d1d2···dk} =
1

bk
. (3.1)

If the above holds for k = 1, then we say that x is simply normal in base b. Furthermore, when
x is normal in all bases b ∈ N, we say that x is absolutely normal.
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Chapter 3. Normal numbers and related developments

In the above type of normality, x is wri�en in its so-called b-adic expansion. �e digits of
the b-adic expansion are generated by iterations of the map Rx = bx mod 1, which is a le�
shi� for the b-adic expansion. Analogous to the proof of �eorem 2.21, one can prove that the
sytem (X,B, λ,R) is ergodic. �is and other results on this type of expansion can for instance
be found in [11, Example 3.1.2]. Furthermore, (3.1) implies that the asymptotic frequency of
occurrences of d in x is equal to b−k. Lastly, note that b = 2 and b = 10 correspond to the
binary, respectively, decimal expansion of a number x.

Remarkably, it turns out that almost all numbers are absolutely normal. �is was almost
proved by Émile Borel in 1909. He almost proved the theorem in the sense that he assumed
one of the in-between steps rather than proving it, leaving a gap in the proof. A year later
Faber [17] �lled the gap and therefore the proof was concluded. �e key observation in Borel’s
proof is that the digits of the b-adic expansion, seen as random variables, are i.i.d. uniformly
distributed. An argument similar to the strong law of large numbers then proves that almost all
numbers are simply normal. Subsequently, a similar analysis can be applied to blocks of length
k, proving normality. Using ergodic theory, one can also give a more direct proof.

�eorem 3.2. λ almost every number in [0, 1) is absolutely normal.

Proof. Let x ∈ [0, 1) and consider the ergodic system (X,B, λ,R). �en for any k ≥ 1 and any
block d = d1d2 · · · dk, di ∈ {0, 1, · · · , b− 1}, it follows from �eorem 2.6 that

lim
n→∞

1

n

n−1∑
i=0

1Cd(R
ix) = λ(Cd) =

1

bk
a.e.,

whereCd = [d1b + d2
b2

+ · · ·+ dk
bk
, d1b + d2

b2
+ · · ·+ dk+1

bk
) is the cylinder set containing d. Moreover,

as a countable union of sets of measure zero has measure zero, it follows that almost all numbers
are absolutely normal.

In order to see that the asymptotic average in the proof is equivalent with the asymptotic
condition for normality, we refer to the last paragraph of section 2.1. �e cylinder set Cd is
the set of numbers of which the �rst k digits are speci�ed by d. Hence, as R is a le� shi� and
1Cd(R

ix) = 1 if and only if Rix ∈ Cd, we count the number of times that the �rst k digits of
Rix coincide with d, i ≥ 1. �erefore, the asymptotic average in the proof is the asymptotic
frequency of occurrences of d in x, which is precisely the le� hand side in (3.1).

In order to prove normality of an irrational number, one needs to know the corresponding
in�nite expansion or recognise a pa�ern in its expansion. Apart from the fact that in most
cases it is practically impossible to consider an in�nite sequence of digits, irrational numbers
usually do not exhibit repetition and if pa�erns exist, they are hard to detect. Hence, for the time
being, a construction is the only way to explicitly exhibit a normal number. Many constructions
have been developed, both of normal numbers as introduced by Borel, as for other types of
normality that have been introduced a�er 1909. �e most well-known construction of a normal
number is due to David Champernowne. He proved that the decimal number that is obtained

26



3.1 . Constructions of numbers normal in a base

by concatenating the natural numbers is normal in base 10. �at is, Champernowne proved
that the number

C10 := 0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · · , (3.2)

is normal in base 10. In order to prove this, he �rst proves two more general theorems. In what
follows, we state and prove these theorems. Moreover, we follow [9] and provide details of
the proofs. �e key takeaway is the technique that is used in the proofs, which is based on
asymptotics and combinatorics.

3.1.1 Champernowne and counting for normality

Let 0.S be a decimal and denote its sequence of digits by S. �en 0.S is normal in base 10 if for
any k ≥ 1 and any block d = d1d2 · · · dk with di ∈ {0, ..., 9}, the asymptotic relative frequency
of d in S is 10−k. De�ne Gn(S, d) as the number of occurrences of d in the �rst n digits of S.
�en, 0.S is normal in base 10 if and only if

Gn(S, d) = 10−kn+ o(n), (3.3)

as n→∞. We next introduce some other de�nitions and notation

• |y| denotes the number of digits in the sequence y;

• sr denotes the sequence of 10r possible permutations of r digits, concatenated in lexico-
graphical ordering. For reasons of convenience, we place comma’s between the di�erent
elements of sr . E.g. s2 = 00,01,02,. . . , 19, 20, 21, . . . , 92, 93, 94, 95, 96, 97, 98, 99. Also, note
that there are 10r − 1 commas within sr and that |sr| = r10r;

• Sr and S denote the �nite, respectively in�nite, sequences, s1s2 · · · sr and s1s2s3 · · · .
Note that |Sr| =

∑r
i=1 |si| =

∑r
i=1 i10i.

Using the above, we prove the following theorems:

�eorem 3.3. [9, �eorem I] Let sr be de�ned as above. �en 0.S = ·s1s2s3 · · · is normal in
base 10.

�eorem 3.4. [9, �eorem II] Let sr be de�ned as above and, for ρ ∈ N, let ρsr denote the sequence
that is formed by concatenating sr ρ times. �en 0.ρS = 0.ρs1ρs2ρs3 · · · is normal in base 10.

�eorem 3.5. [9, �eorem III] C10 is normal in base 10.

Note that �eorem 3.3 is a speci�c case of �eorem 3.4, namely with ρ = 1. We will show that
normality of Champernowne’s number follows almost directly from �eorem 3.4. �e proofs of
these theorems are quite elegant and rely mostly on combinatorial arguments. �e idea is to
count the number of occurrences of an arbitrary block d (of �nite length) in sr and extend this
to the number of occurrences in Sr . Subsequently, we count the number of occurrences of d in
the �rst n digits of sr, which is then used to count the number of occurrences in S. Another
key aspect of the proof is to distinguish the following cases.
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• �e block d occurs without any comma between its digits. In this case we say that d
occurs undivided.

• �e block d occurs with a comma between two of its digits. In this case we say that d
occurs divided.

For example, suppose d = 92 and we consider the occurrences of d in s2. �en d occurs
undivided in the element 92 and divided at . . . , 19, 20, 21, . . .. We are now ready to give proof
of �eorem 3.3.

Proof of �eorem 3.3. Let d be a block of length k and consider an arbitrary permutation of
length r, i.e. an arbitrary element of sr. For r < k, the block d cannot occur undivided.
However, if r ≥ k, the �rst digit of d can occur on any of the �rst r − k + 1 positions. Subse-
quently, the remaining r − k digits can be chosen in 10r−k ways. Hence d can occur exactly in
(r − k + 1)10r−k ways.

Next, we give an upper bound for the number of ways that d can occur divided in the sequence
sr. As sr consists of 10r elements, there are 10r − 1 commas within sr. Similarly, as d con-
sists of k digits, there are k − 1 positions at which d can be divided. �us, there are exactly
(k − 1)(10r − 1) ways that d can occur divided.

From the above we conclude that

G|sr|(sr, d) = (r − k + 1)10r−k +O(10r)

= 10−kr10r + (−k + 1)10−k10r +O(10r)

= 10−k|sr|+ o(|sr|),

as r →∞. We extend this to an estimate for G|Sr|(Sr, d).

G|Sr|(Sr, d) =
r∑
i=1

G|si|(si, d) +O(r)

=
r∑
i=1

10−k|si|+ o(|si|) +O(r)

= 10−k
r∑
i=1

|si|+ o(|sr|)

= 10−k|Sr|+ o(|Sr|),

as r →∞. Note that the termO(r) results from the possibility that d can occur divided between
consecutive elements of Sr, namely si and si+1 for i = 1, ...r − 1. �e next step in the proof
is to count the number of occurrences of a block d within the �rst n digits of sr, which we
then extend to the number of occurrences in the �rst n digits of S. We consider the number of
undivided occurrences of d in the �rst n digits of sr . As sr is the concatenation of all possible
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permutations of r digits (in lexicographical order), we may suppose that the n-th digit of sr
occurs within an element pr−1pr−2 · · · p0 of sr , where pi ∈ {0, . . . , 9} for i = 0, . . . , r − 1. As
the elements of sr are ordered lexicographically, we can express the n-th digit as

n = r
r−1∑
i=0

pi10i + θr, 0 < θ ≤ 1. (3.4)

�e intuition behind this is that, due to the lexicographical ordering, for every pi the subsequent
i digits (within the element of sr) pi−1 · · · p0 can be chosen in 10i ways. Summing over all
possible j’s, we get a count of the number of elements of sr that preceed the one with the
n-th digit. As each element of sr is a sequence of r digits, (3.4) correctly expresses n. Now let
Gn,j(sr, d) denote the number of times that d can occur undivided in the �rst n digits of sr
such that the �rst digit of d is the j-th digit of an element in sr = pr−1 · · · p0. I.e. d1 = pr−j−1.
Trivially, if j > r − k + 1, then Gn,j(sr, d) = 0. If j ≤ r − k + 1 and we �x the position of d
in an element of sr , then we can choose the successive r − k − j + 1 digits of the element in
10r−k−j+1 ways. �e j − 1 digits preceding d can be chosen in either

r−1∑
i=r−j+1

pi10i+j−r−1 or

r−1∑
i=r−j+1

pi10i+j−r−1 + 1

ways. �e argument here is similar to the one used for (3.4), the di�erence being that we
cannot freely choose all subsequent i elements pi−1 · · · p0, but only the digits pi−1 · · · pr−j for
i = r− j + 1, . . . r− 1. �is amounts to a total of (i− 1)− (r− j) = i+ j − r− 1 digits. We
conclude that the number of undivided occurrences of d in the �rst n digits of sr is given by

Gn,j(sr, d) = 10r−k−j+1
( r−1∑
i=r−j+1

pi10i+j−r−1 + θ′
)

= 10−k
( r−1∑
i=r−j+1

pi10i + θ′10r−j+1
)

0 ≤ θ′ ≤ 1.

By summing over all possible j’s and taking into account the number of divided occurrences, we
can extend this to Gn(sr, d). �e number of divided occurrences is O(10r). Hence, as r →∞,
we �nd that

Gn(sr, d) =

r−k+1∑
j=1

Gn,j(sr, d) = 10−k
r−k+1∑
j=1

( r−1∑
i=r−j+1

pi10i
)

+O(10r)

= 10−k
r−1∑
i=k

(i+ 1− k)pi10i +O(10r) = 10−kr
r−1∑
i=0

pi10i +O(10r)
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= 10−kn+ o(|sr|). (3.5)

In order to prove normality of S, we suppose that the n-th digit of S occurs as the m-th digit of
sr . �at is, n = |Sr−1|+m =

∑r−1
i=1 |si|+m. It follows from (3.5) that, as n→∞, the number

of occurrences of d in the �rst n digits of S is given by

Gn(S, d) = G|Sr−1|(Sr−1, d) +Gy(sr, d) +O(1)

=

r−1∑
i=1

G|si|(si, d) +Gm(sr, d) +O(1)

=

r−1∑
i=1

10−k|si|+ 10−km+ o(|sr|)

= 10−k
( r−1∑
i=1

|si|+m
)

+ o(|sr|)

= 10−kn+ o(n).

We conclude that 0.S is normal in base 10.

Champernowne’s original work provides a short proof of the normality of 0.ρS, as it follows
almost directly from �eorem 3.3. In the proof below we follow his work and provide details.

Proof of �eorem 3.4. Recall that ρsr is de�ned as the sequence that is obtained by concatenating
sr ρ times. Now de�ne ρSr as the sequence ρs1ρs2 · · · ρsr and notice that

• |ρsr| = ρ|sr|;

• |ρSr| = ρ|Sr| = ρ
∑r

i=1 |si|.

By di�erentiating between occurrences of d within sr and d occurring divided over two consec-
utive repetitions of sr , we �nd that the number of occurrences of d in ρsr is ρ times the number
of occurrences of d in sr plus some term that disappears in the li�le-o term.

G|ρsr|(ρsr, d) = ρG|sr|(sr, d) + ρ(k − 1) + o(|sr|) = ρ10−k|sr|+ o(|sr|). (3.6)

Similar to the last step of the previous proof, suppose that the n-th digit of ρS is the M -th digit
of ρsr and subsequently suppose that this is the m-th digit of one of the repetitions of sr . �en
for some 0 ≤ α < ρ we have that

n = |ρSr−1|+M = |ρSr−1|+ α|ρsr|+m = ρ
r−1∑
i=1

|si|+ αρ|sr|+m. (3.7)

�en, using (3.5), (3.6) and (3.7) we �nd that, as n→∞, the number of occurrences of d in the
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3.1 . Constructions of numbers normal in a base

�rst n digits of ρS is given by

Gn(ρS, d) = G|ρSr−1|(ρSr−1, d) + αG|ρsr|(ρsr, d) +Gm(sr, d)

=
r−1∑
i=1

G|ρsi|(ρsi, d) + αG|ρsr|(ρsr, d) +Gm(sr, d)

=
r−1∑
i=1

ρ10−k|si|+ αρ10−k|sr|+ 10−km+ o(|sr|)

= 10−k
(
ρ

r−1∑
i=1

|si|+ αρ|sr|+m
)

+ o(|sr|)

= 10−kn+ o(n),

Hence 0.ρS is normal in base 10.

In order to prove normality of what is now known as Champernowne’s constant, Champer-
nowne �rst proves that the decimal 0.9S

′ = ·101112 · · · is normal in base 10, from which it
follows that C10 is normal in base 10 as well.

Proof of �eorem 3.5. �e number 0.9S
′ is obtained by taking the sequence 9S and inserting 1

digit “a�er each comma”. As 0.9S is normal in base 10 by �eorem 3.4 we can prove normality
of 0.9S

′ by showing that the insertion of the extra digits does not in�uence this property.

Let C(n) denote the number of commas in the �rst n digits of 9S and suppose that the n-th
digit of 9S occurs within some sr . �en it follows that C(n) = O(10r) = o(n), as n→∞. By
inserting the extra digits, the n-th digit of 9S becomes the n′-th digit of 9S

′. Hence

n′ = n+ C(n) +O(1) = n+ o(n),

where theO(1) term results from the case that the n′-th digit is one of the insertions. Also note
that inserting a digit a�er the commas can only alter the number of divided occurrences. �us
the number of occurrences within the �rst n digits of 9S is altered by a maximum of kC(n).
�erefore, we �nd that

Gn′(9S
′, d) = Gn(9S, d) +O(C(n)) = 10−kn+ o(n) = 10−kn′ + o(n′).

We conclude that 0.9S
′ is normal in base 10. Hence so is C10.

Without giving a proof, Champernowne states theorems about the normality of various
numbers and conjectures that the number obtained by the sequence of primes is also normal in
base 10. He argues that normality of these numbers can be proved through techniques simi-
lar to those used in his paper, which is based on a combination of combinatorics and asymptotics.

�roughout the years, others have been able to prove theorems that provide us with gener-
alised constructions of normal numbers. �e �rst to do this were Copeland and Erdös [10]. In
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the proof they use a concept that is widely used when proving normality of a number. �erefore,
we go over their work and provide details of the proof.

3.1.2 Copeland, Erdös and Besicovitch’s (ε, k)-normality

Copeland and Erdös [10] provided the �rst generalised construction of a normal number. A
key concept that is used in the proofs is that of (ε, k)-normality. �is concept was introduced
by Besicovitch in 1935 [5], who used it to prove normality of the decimal that is formed by
concatenating the squares of the natural numbers. Since then, the concept has frequently been
used for constructing or proving the existence of normal numbers. It is de�ned as follows.
De�nition 3.6 ((ε, k)-normality). [10, De�nition] Given a base b ≥ 2 and ε > 0, a number
A = a1a2 · · · an is said to be (ε, k)-normal in base b, if for any k ≥ 1 and any block d =
d1d2 · · · dk with di ∈ {0, 1, . . . , b− 1}, the relative frequency of d in A is between b−k − ε and
b−k + ε. �at is,

b−k − ε ≤ 1

n

n∑
i=1

1{aiai+1···ai+k−1=d1d2···dk} ≤ b
−k + ε. (3.8)

In other words, a number is (ε, k)-normal if it is approximately normal. Using this concept,
Copeland and Erdös prove the following theorem.
�eorem 3.7. [10, �eorem] If (ai)i≥1 is an increasing sequence of integers such that for every
θ < 1 and su�ciently large N , we have that

∑
i≥1

1{ai≤N} > N θ , then

0.a1a2a3 · · ·

is normal in the base b in which the integers ai are expressed, i ≥ 1.

�e proof of �eorem 3.7 is given by showing that the number of ai’s in the sequence (ai)i≥1

that are smaller or equal than N and are not (ε, k)-normal, is of order o(1) as N →∞. In other
words, they prove that almost all ai’s are (ε, k)-normal. First, however, they prove that the
number of ai’s that are not (ε, k)-normal is bounded. �is is captured in the lemma below.
Lemma 3.8. [10, Lemma] �e number of integers up to N , for su�ciently large N , which are not
(ε, k)-normal in a given integer base b is less than N δ , where δ = δ(ε, k, b) < 1.

We now give an outline of �eorem 3.7 and Lemma 3.8. Here we follow Copeland and Erdös
[10] and provide details of their proof.

Proof of �eorem 3.7 and Lemma 3.8. �e lemma is �rst proved for (ε, 1)-normality, which is
then extended to (ε, k)-normality. Copeland and Erdös note that the number of ai’s up to N
that do not have the right frequency is at most

b
∑

K<
(1−ε)n

b

(b− 1)n−K
(
n

K

)
+ b

∑
K>

(1+ε)n
b

(b− 1)n−K
(
n

K

)
, (3.9)
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3.1 . Constructions of numbers normal in a base

where n is such that bn−1 ≤ N < bn. In other words, n is such that |N | ≤ n. To see that the
above holds true, we �rst recall that (ε, 1)-normality means that the relative frequency of a
single digit should be between b−1 − ε and b−1 + ε. �is is equivalent to saying that K , the
number of occurrences of a single digit, should be between (1−ε)n

b and (1+ε)n
b . �erefore, when

a number is not (ε, 1)-normal, there are two cases.

• �e number of occurrences is lower than (1−ε)n
b . �is corresponds to the values over

which we sum in the �rst term in (3.9).

• �e number of occurrences is higher than (1+ε)n
b . �is corresponds to values over which

we sum in the second term in (3.9).

Hence K denotes the number of occurrences of a digit α ∈ {0, 1, . . . , b− 1} in a number that
has at most n digits. �erefore, there are at most n−K other digits that have to be di�erent
from α. �ere are b− 1 choices for the la�er, which results in (b− 1)n−K

(
n
K

)
possibilities. As

there are b choices for α, we �nd that (3.9) correctly bounds the total number of ai’s up to N
that do not have the right frequency. Due to the fact that the binomial coe�cient is increasing
and then decreasing in K , it a�ains a maximum. �is maximum is used to bound (3.9), which
then proves the lemma for (ε, 1)-normality. �e argument extending this to (ε, k)-normality
is more or less identical. �e di�erence is that the digits of a number m ≤ N are grouped in
groups of size k, which can be interpreted as a single digit expressed in base bk. With this, we
conclude the outline for the proof of Lemma 3.8. We now describe the last few steps that are
made in order to prove the main theorem.

We know that there are at least N θ numbers in the sequence (ai)i≥1 that are smaller or
equal to N . Of these numbers, there are at most bn(1−ε) ≥ N1−ε numbers that have n(1− ε)
digits. �erefore, at least N θ −N1−ε of the numbers up to N have at least n(1− ε) digits. �is
amounts to a total of n(1− ε)(N θ −N1−ε) digits. Let m = sup{i : ai ≤ N}. �en it follows
from Lemma 3.8 that the number of ai’s up to am that are not (ε, k)-normal is bounded by N δ .
Hence we �nd that

b−k − ε+
(n− k + 1)N δ

n(1− ε)(N θ −N1−ε)
<

1

m

m∑
i=1

1{aiai+1···ai+k−1=d1d2···dk}

<b−k + ε+
(n− k + 1)N δ

n(1− ε)(N θ −N1−ε)
;

b−k − ε+
N δ−θ

(1− ε)(1−N1−ε−θ)
<

1

m

m∑
i=1

1{aiai+1···ai+k−1=d1d2···dk}

<b−k + ε+
N δ−θ

(1− ε)(1−N1−ε−θ)
.

Now, taking θ greater than δ and greater than 1− ε, it follows that

b−k − ε < lim
n→∞

1

n

n∑
i=1

1{aiai+1···ai+k−1=d1d2···dk} < b−k + ε.
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Chapter 3. Normal numbers and related developments

Hence we conclude that 0.a1a2a3 · · · in base b.

�e proof of Champernowne’s conjecture that the decimal obtained by the sequence of
primes is normal in base 10 follows from the fact that for any c < 1 and su�ciently large N , the
number of primes up to N is bounded by cN

logN . On a more general note, Copeland and Erdös
show that almost all numbers are (ε, k)-normal. Moreover, their result implies that we expect
to get a normal number whenever we take a su�ciently dense subset of the positive integers
and concatenate them in increasing order [34]. Next, we recap the two techniques and discuss
further generalisations for normality in a base.

3.1.3 Further generalisations of normality in a base

Since Borel introduced the notion of normality, many results have been obtained for normality
in a base. Most results have been obtained through a proof that either relies on counting or
on (ε, k)-normality. Counting proofs generally try to give a direct proof that the asymptotic
frequency of occurrences of an arbitrary block is indeed the frequency that is associated with
normality. However, proofs that use (ε, k)-normality generally try to show that the parts of
the sequence of digits that do not have the right frequency are negligible. By looking at parts
the parts that are not (ε, k)-normal, we are looking at some form of discrepancy. Given a base
b ∈ N≥2, the discrepancy in the �rst n digits of x =

∑∞
i=1

ai
bi

is de�ned as

Dn(x) = sup
d1d2···dk∈{0,1,...,b−1}k

{∣∣ 1
n

n∑
i=1

1{aiai+1···ai+k−1=d1d2···dk} −
1

bk
∣∣}.

�us the discrepancy can be interpreted as a number’s (maximum) deviation from normality.
Note that it follows that x is normal if and only if Dn(x)→ 0. �is technique is also frequently
used in literature. However, as it is an analogue to (ε, k)-normality, we do not treat it in further
detail. We next discuss further generalisations, a�er which we introduce the type of normality
that is associated with continued fractions.

Besides proving the �rst generalised construction of a normal number, Copeland and Erdös
conjectured that for any polynomial f(x), the number 0.f(1)f(2)f(3) · · · would be normal in
base 10. �is conjecture was partially proved by Davenport and Erdös.

�eorem 3.9. [12, �eorem 1] Let f(x) be any non-constant polynomial in x that a�ains integer
values for x ∈ N. �en 0.f(1)f(2)f(3) · · · is normal in base 10.

�is theorem is another step in generalising the results mentioned so far. For instance,
normality of Champernowne’s number follows from f(x) = x and the result from Besicovitch
from f(x) = x2. �is result was generalised even further by Nakai and Shiokawa, who used
discrepancy estimates to prove that the above theorem also holds when we allow the polynomial
to a�ain non-integer values. Moreover, they proved the following theorem, which generalises
all construction results mentioned so far.
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3.2 . Constructions of continued fraction normal numbers

�eorem 3.10. [26, Corollary] Let f(x) be any real-valued, non-constant polynomial such that
f(x) > 0 for x > 0. �en

0.bf(1)cbf(2)cbf(3)c · · · ,

with bf(n)c expressed in base b ∈ N for all n, is normal in the base b.

Summarising, there are quite some results on numbers that are normal in a base. �e most
well-known concrete example of a normal number is C10, the base 10 Champernowne number.
Normality of C10 is initially proved by a combination of combinatorics and asymptotics, but
also follows from generalised construction results. Furthermore, we introduced the concept of
(ε, k)-normality, which is used to prove generalised constructions of numbers normal in a base.
�e importance of this concept is also apparent in the next section, where we consider a type of
normality that is associated to continued fraction expansions.

3.2.0 Constructions of continued fraction normal numbers
�us far we have considered b-adic expansions and the distribution of the corresponding
sequence (ai)i≥1 under the Lebesgue measure. Next, we discuss normality results related to
continued fraction expansions. �e digits of this expansion can be studied using the Gauss
map, which is invariant with respect to the Gauss measure. Moreover, let ∆k be an arbitrary
fundamental interval of order k. �en Gauss proved that the Lebesgue measure of the set
T −n∆k converges weakly to the Gauss measure of ∆k, as n→∞. �e type of normality that
is naturally associated to continued fraction expansions is therefore de�ned as follows.

De�nition 3.11 (Continued fraction normality). We say that x ∈ [0, 1) is continued fraction
normal, if for any k ≥ 1 and any block d = d1, d2, · · · , dk, di ∈ N we have that

lim
n→∞

1

n

n∑
i=1

1{ai,ai+1,··· ,ai+k−1=d1,d2,··· ,dk} = γ(∆(d)). (3.10)

Alternatively, we can rewrite (3.10) in terms of the Gauss map and fundamental intervals. �at
is

lim
n→∞

1

n

n−1∑
i=0

1∆(d)(T ix) = γ(∆(d)).

Analogous to the proof that almost all numbers are normal, one can also prove that almost all
numbers are continued fraction normal. As the Lebesgue and Gauss measure are equivalent,
see (2.17), this implies that almost all numbers are continued fraction normal Lebesgue almost
everywhere.

Contrary to the number of results for normality in a base, the number of results for this
type of normality are limited. So far, there are three construction results. �e �rst construction
was due to Postnikov [29], who used Markov chains to construct a continued fraction normal
number. �e construction is such that each element of the Markov chain, is a long �nite block
of digits that has approximately the right frequency [35]. Moreover, every next block of the
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Chapter 3. Normal numbers and related developments

sequence be�er approximates the desired frequency. �ese in�nite number of blocks are then
concatenated to form a number that is continued fraction normal. Another, more explicit,
construction of a continued fraction normal number is due to Adler, Keane and Smorodinsky
[1]. In 1981, Adler, Keane and Smorodinsky constructed a continued fraction normal number
by concatenating continued fraction expansions of rationals in [0, 1) [1]. �ey concatenated
the continued fraction expansions of the following sequence of rationals

1

2
,

1

3
,
2

3
,

1

4
,
2

4
,
3

4
,

1

5
,
2

5
,
3

5
,
4

5
, . . . ,

n− 1

n
,

1

n+ 1
, · · · . (3.11)

In other words, for each n ∈ N, they constructed a sequence of rationals by taking all non-
reduced fractions with denominator n in increasing order and writing these down increasing
in n. Subsequently, they constructed a continued fraction normal number by concatenating
the continued fraction expansions of the resulting sequence of rationals (3.11). �is number is
given by

xaks = [2, 3, 1, 2, 4, 2, 1, 3, 5, 2, 2, 1, 1, 2, 1, 4, · · · ] ≈ 0.44034.

�eorem 3.12. [1, �eorem] �e number xaks is continued fraction normal.

�e proof is similar to that of Copeland and Erdös [10]. �e initial de�nition of (ε, k)-
normality, however, is not suited for continued fractions. One reason for this, is that the
continued fraction expansion is a type of number expansions that is not related to any base.
Furthermore, the type of expansion also determines the type of distribution that is naturally
associated to the expansion. In the case of the continued fraction expansion, this distribution
is the Gauss measure, see section 2.3. As such, Adler, Keane and Smorodinsky introduce a
continued fraction analogue of (ε, k)-normality called m-good. A rational is called m-good if
its partial quotients are approximately distributed according to the Gauss measure. �ey show
that nearly all rationals with denominator at most m are m-good and that they can neglect
those that are not. �us by concatenating the corresponding continued fraction expansions of
all these rationals, they obtain an in�nite continued fraction that has the desired frequency.

For a long time, the papers of Postnikov and Adler, Keane and Smorodinsky have been the
only ones that contain constructions of continued fraction normal numbers. For each work, it
took about 30 years before it was generalised. �e generalisation of Postnikov’s construction is
due to Madritsch and Mance [24], which we discuss in the next section. Both of these works do
not include a concrete constructed number that is continued fraction normal. �is is di�erent
from the work of Adler, Keane and Smorodinsky and the generalisation of their work, which is
due to Joseph Vandehey. Among other things, Vandehey proves that some explicit subsequences
of (3.11) can be used to construct a continued fraction normal number. Moreover, he proves the
following general theorem, which he also uses to give concrete constructions.

�eorem 3.13. [35, �eorem 1.1] Let (ri)i≥1 denote the sequence of reduced fractions in the
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interval (0, 1) ordered in the following way

r1 =
1

2
, r2 =

1

3
, r3 =

1

3
, r4 =

1

4
, r5 =

3

5
, . . . .

Let f : N → N, and de�ne the number xf as the number constructed by concatenating the
continued fraction expansions of the rationals rf(1), rf(2), rf(3), . . .. Let L(r) denote the length of
the continued fraction expansion of r. Suppose that

N = o
( N∑
i=1

L(rf(i))
)

and max
1≤i≤N

L(rf(i)) = O
( 1

N

N∑
i=1

L(rf(i))
)

and that for any S ⊂ N that satis�es |{i ∈ S : i ≤ x}| = O(x/ log x), we have that

lim
N→∞

|{i ≤ N : i ∈ f−1(S)|
N

= 0.

�en xf is continued fraction normal.

For the proof, Vandehey uses metrical results to get asymptotics on how many rationals are
m-good. In turn, these asymptotics imply conditions that determine whether the constructed
number xf is normal. �is is an extension of the results in [1], where they used the Pointwise
Ergodic �eorem when showing that nearly all rationals are m-good. Although this approach is
standard in ergodic theory, it makes it unclear what the rate of convergence is [35]. By determin-
ing the aforementioned asymptotics, Vandehey can prove several new, concrete constructions
of continued fraction normal numbers. One of the constructions for instance, considers the
subsequence of rationals that have integer numerators and prime denominators [35, �eorem
1.4]. As such, the constructions from Vandehey and Adler, Keane and Smorodinsky are the only
known concrete constructions for numbers that are continued fraction normal. In this thesis, we
introduce a new type of normality for continued fractions and provide concrete constructions.
�erefore, we have mostly focussed on - concrete - construction results. However, other type of
results exist as well. We discuss some of these in the next section.

3.3.0 Construction of µ-normal numbers, other results and �nal remarks
Several types of normality results have been obtained since Borel introduced the notion of
normal numbers in 1909. Each of the previous two sections discussed only one speci�c type
of normality and focussed on results related to the construction of normal numbers. Next, we
introduce a construction of a generalised form of normality and mention a few other type of
results. We focus on results that are related to those in the previous sections and shed some
light on others. We do not treat results in detail and do not cover the full variety of results. �e
goal is to provide some further historical background as well as perspective on the normality of
numbers.

In 2016, Madrisch and Mance published a paper in which they provide a construction for a
generalised type of normality [24]. Using symbolic dynamics, they generalise the notions of

37



Chapter 3. Normal numbers and related developments

digits, blocks, number representations, shi�s, concatenation and normality. �is is followed by a
construction of a sequence whose symbols (e.g. digits of the continued fraction) are distributed
according to the invariant probability measure µ that is chosen. However, µ does not have to be
the measure of maximal entropy (e.g. in the case of continued fraction expansions, µ does not
have to be the Gauss measure). Let ω denote the in�nite sequence of symbols that represents a
number and let b denote any �nite concatenation of symbols. Furthermore, de�ne Gn(ω, b) as
the number of occurrences of b in the �rst n symbols of ω. �en ω is µ-normal if

lim
n→∞

Gn(ω, b)

n
= µ(b).

�us, a number is µ-normal if the desired frequency of occurrences of any �nite combination
of symbols b, is speci�ed by the measure that µ assigns to b. �e method that is used in the
construction is similar to the that of Copeland and Erdös [10] and also resembles that of Post-
nikov [29]. �e authors construct an in�nite sequence, such that each element of the sequence
is approximately µ-normal. In order to do so, they take a sequence of measures (νi)i≥1 that
converge in distribution to µ. �en, by using an analogue to Besicovitch’s (ε, k)-normality,
called (εi, ki, νi)-normality, they construct an in�nite sequence (ωi)i≥1, where each ωi is a �nite
concatenation of symbols that is (εi, ki, νi)-normal. In other words, they construct an in�nite
sequence where each element is a be�er and be�er approximation of a µ-normal sequence. �e
µ-normal sequence is then obtained by concatenating a number of copies of ω1, followed by
more copies of ω2, followed by even more copies of ω3, and so on1. �e chosen structure is
necessary to guarantee that the construction works for a large class of di�erent numeration
systems. �is is due to the fact that it allows them to control convergence by concatenating
more and more copies of ωn’s, of which the distribution of symbols is closer and closer to µ as n
tends to in�nity. Although the authors apply the construction to di�erent numeration systems
such as b-adic expansions and continued fractions, they do not provide a concrete constructed
number. However, up to our knowledge, the construction of a µ-normal number is the most
generalised construction so far.

�e aforementioned construction results are not the only results on normal numbers. Sev-
eral other types of normality and existence results have been published since Borel introduced
the notion of normality in 1909. Other results include normality for β-expansions, which are
similar to normality for b-adic expansions. �e di�erence is that b is a positive integer and β is
allowed to be any positive real. Another normality result is given by Vandehey [33], who proved
the theoretical existence of numbers that are both continued fraction normal and absolutely
abnormal; not normal to any integer base. �e proof, however, is conditional on the Generalized
Riemann Hypothesis. Furthermore, Becher and Yuhjtman [2] provide an algorithm that proves
the existence of numbers that are both continued fraction normal and absolutely normal; normal
to every integer base. �e key idea in their proof is to construct a sequence of nested intervals
that satisfy certain conditions. Most of these conditions are related to discrepancy in the sense
that they ensure an arbitrary small bound on the discrepancy of the numbers in that interval.
�e algorithm then ensures normality of the number that is obtained by taking the intersection

1See review of Madritsch and Mance [24].
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of all these -sequences of nested- intervals. A similar approach is used by Madritsch, Scheerer
and Tichy [25], who prove the existence of a number that is absolutely Pisot normal. �at is, the
constructed number is normal to each base from a given sequence of Pisot numbers, which are
algebraic numbers with some special property. However, all known examples of (computable)
absolutely normal numbers are given in the form of an algorithm [25].

Summarising, there is a wide variety of results on the normality of numbers. �e results
vary from concrete constructions to existence results based on algorithms. In order to prove the
results, most authors have used techniques and concepts that are similar to those in the proof
of Copeland and Erdös [10], yet other approaches exist as well. Moreover, concrete examples
of normal numbers exist for di�erent types of normality. �e number of concrete examples,
however, is small; especially when looking at the fact that almost all numbers are absolutely
normal. �e reason that it is so hard to exhibit normal numbers comes from the fact that it
is practically impossible to consider an in�nite sequence of digits. Moreover, the only way to
consider the distribution of an in�nite sequence of digits is to �nd a pa�ern in the behaviour of
the sequence. �e behaviour of an irrational numbers’ number expansion however, generally
does not exhibit a pa�ern. �erefore, people have constructed irrational numbers by de�ning
a pa�ern, which is used to construct an irrational number. In turn, this pa�ern allows one to
understand how the sequence behaves as it tends to in�nity and therefore a distribution can
be determined. In most types of normality, the desired distribution is the natural distribution,
which comes from the measure of maximal entropy. As entropy is a measure of randomness, it
follows that the number expansion of this normal number is (completely) random in some sense.
Constructed normal numbers are such that the number expansion satis�es the distribution
property that is associated with the corresponding type of normality. However, in a lot of
cases, the expansion is not random at all. In other words, the behaviour of concrete constructed
numbers is, in most cases, predictable. �is makes sense, because it is this predictability - in
the form of a pa�ern - that allows one to prove normality. To make a distinction between
normal numbers that exhibit such a predictable pa�ern and those who do not, Adrian Belshaw
introduced the concept of strong normality [3]. �e current de�nition is only applicable to
b-adic expansions and is yet to be generalized to other number expansions. In the case of b-adic
expansions, Belshaw and Borwein [4] show that strongly normal numbers are normal and that
the Champernowne number fails to be strongly normal. Furthermore, they prove that almost
all numbers are strongly normal to all integer bases. More results related to strong normality
can be found in [4] and [8]. �is concludes the historical framework on normal numbers. Next,
we introduce a new type of normality: Minkowski normality.
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Chapter 4

A Minkowski normal number
Here, we introduce Minkowski normality and provide a concrete construction. �at is, we intro-
duce a type of normality for the continued fraction expansion that is related to the Minkowski
question mark measure. In particular, we construct a number K, see (4.10), of which the partial
quotients are distributed according to the Minkowski question mark. �is forms our main theo-
rem, which is stated in �eorem 4.13. �e crucial factor in determining the limiting distribution
of this constructed number, is the ordering that is chosen. In the case of Adler, Keane and
Smorodinsky [1], the ordering leads to normality with respect to the Gauss measure. Hence, the
constructed number is continued fraction normal in the sense of De�nition 3.11. In this chapter
we consider the ordering that results from the so-called Kepler tree. We use this ordering to
construct a number whose partial quotients are distributed according to the Minkowski question
mark measure. We de�ne this type of normality as follows.

De�nition 4.1 (Minkowski normal number). We say that x = [a1, a2, a3, · · · ] ∈ [0, 1) is
Minkowski normal, if for any k ≥ 1 and any block d = d1, d2, · · · , dk, with di ∈ N, we have

lim
n→∞

1

n

n−1∑
i=0

1∆(d)(T ix) = 2−(d1+d2+···+dk). (4.1)

�eorem 4.2. µ? almost every number in [0, 1) is Minkowski normal.

Proof. Let x ∈ [0, 1) and consider the ergodic system (X,B, µ?, T ). �en for any k ≥ 1 and
any block d = d1, d2, · · · dk, di ∈ N, it follows from �eorem 2.6 that

lim
n→∞

1

n

n−1∑
i=0

1∆(d)(T ix) = µ?(∆(d)) = 2−(d1+d2+···+dk) a.e.

Constructing a number and proving that it is Minkowski normal is the main objective of
this thesis. �e corresponding theorem and proof are stated in section 4.5. First however, we
discuss results from Kessebömer and Stratmann, which have been the initial motivation for
this research. �en, we discuss the construction and introduce tools that are used in the proof.
A�er proving Minkowski normality of the constructed number, we conclude the chapter with a
numerical experiment and �nal remarks.

4.1.0 Kessebömer, Stratmann and the Stern-Brocot sequence
Kessebömer and Stratmann have published two papers that sparked the idea for this research.
In 2012 they published a paper concerning the distribution of the (weighted) Farey and even
Stern-Brocot sequence [23]. �is paper also refers to a paper of the two authors that was pub-
lished four years earlier, which studies properties of the Minkowski question mark [22]. We
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Chapter 4. A Minkowski normal number

next introduce the two sequences and brie�y discuss results from Kessebömer and Stratmann.
Finally, we conclude this section by relating the two papers and this research.

�e sequences that Kessebömer and Stratmann discuss are sequences of sets containing fractions
between 0 and 1. �e Farey (Fi)i≥1 sequence can be characterised as the sequence of sets such
that the n-th set contains all irreducible fractions that have a denominator lower or equal to n.
�at is,

Fn := {p/q : 0 < p ≤ q ≤ n, gcd(p, q) = 1}, n ≥ 1. (4.2)

�e �rst four sets are

F1 = {0

1
,

1

1
},

F2 = {0

1
,

1

2
,

1

1
},

F3 = {0

1
,

1

3
,

1

2
,

2

3
,

1

1
},

F4 = {0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1
}.

�e de�nition for the even Stern-Brocot sequence (Si)i≥1 is more technical. For this sequence
of sets, the n-th set is given by

Sn := {sn,2k/tn,2k : k = 1, 2, . . . , 2n−1}, n ≥ 1, (4.3)

where s0,1 := 0, s0,2 := t0,1 := t0,2 = 1. Furthermore, for α ∈ {s, t}, we de�ne

αn+1,2k−1 := αn,k, k = 1, 2, . . . , 2n + 1,

αn+1,2k := αn,k + αn,k+1, k = 1, 2, . . . , 2n.

Using the la�er recurrence, we see that the fractions in Sn+1 are obtained by taking mediants

sn+1,2k

tn+1,2k
=
sn,k + sn,k+1

tn,k + tn,k+1
.

Moreover, �xing n, we see that the rationals in Sn+1 are obtained by taking mediants from two
consecutive rationals in the sequence (sn,k/tn,k)

2n+1
k=1 . For reasons of convenience, we de�ne

S0 = {0
1 ,

1
1}. We then �nd that the �rst four sets of the sequence (Si)i≥0 are

S0 ={0

1
,

1

1
},

S1 ={ 1

2
},

S2 ={ 1

3
,

2

3
},

S3 ={ 1

4
,

2

5
,

3

5
,

3

4
}.
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4.1 . Kessebömer, Stratmann and the Stern-Brocot seqence

�is sequence is called the even Stern-Brocot sequence, because it is a subsequence of the
Stern-Brocot sequence. �e la�er sequence, (S̄i)i≥0, is de�ned similar to (Si)i≥1. �ey use the
same recurrence relations and, instead of (4.3), the n-th set of the Stern-Brocot sequence is
given by

S̄n := {sn,k/tn,k : k = 1, 2, . . . , 2n}, n ≥ 0. (4.4)

Moreover, this sequence corresponds to the level sets of the Stern-Brocot tree. �is tree is formed
by starting with 0

1 and 1
0 and inserting the mediant between two adjacent fractions, see Figure

4.1. If we denote the n-th level set of the Stern-Brocot tree by Ln, then we have

Sn = {pq ∈ Ln : p < q} and Fn = {pq ∈ ∪
n
i=1Li : p < q ≤ n} ∪ {0

1 ,
1
1}, n ≥ 1.

Figure 4.1: �e Stern-Brocot tree.

�e relevant fractions correspond to the le� half of the Stern-Brocot tree and are boxed
in the dashed brown boxes in Figure 4.1. In words, the n-th set of the Farey sequence can be
obtained by taking all fractions in the le� half of the Stern-Brocot tree, from the �rst up to the
n-th level, leaving out the fractions with denominator greater than n. Furthermore, the n-th
set of the even Stern-Brocot sequence corresponds to the proper fractions in n-th level set the
Stern-Brocot tree. Moreover, the even Stern-Brocot sequence corresponds to the level sets of the
subtree that has 1/2 as a root. Remarkably, this subtree is also referred to as the Farey tree [7].
We discuss this tree in more detail in chapter 5. For now, we conclude that the Farey sequence
and even Stern-Brocot sequence are closely related.

�e main result of the 2012 paper is a “dichotomy between uniform distributions of the
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Chapter 4. A Minkowski normal number

Stern-Brocot and the Farey sequence”. More speci�cally, they prove the following.

�eorem 4.3. [23, �eorem 1.1] For the even Stern-Brocot sequence we have

log(n2)
∑

p/q∈Sn

1

q2
δp/q

d−→ λ, (4.5)

and for the Farey sequence
ζ(2)

log(n)

∑
p/q∈Fn

1

q2
δp/q

d−→ λ. (4.6)

�e theorem thus states that the weighted sum of Dirac measures on the sequence converges
weakly to the Lebesgue measure. �at is, with the appropriate canonical weights, the sequences
eventually distribute rationals uniformly. �is convergence is complimentary to earlier results,
which proved weak convergence of the uniformly weighted sequence. �ese results show that

1

#Fn

∑
p/q∈Fn

δp/q
d−→ λ (4.7)

and
1

#Sn

∑
p/q∈Sn

δp/q
d−→ µ?, (4.8)

where #A denotes the cardinality of the set A. �e la�er convergence result is an immediate
consequence of [22, Proposition 3.1]. �e convergence in (4.8) tells us that the even Stern-Brocot
sequence approximately distributes the rationals according to the Minkowski question mark
measure. It is this convergence, that sparked the idea for this research. Moreover, in our
construction we consider a similar, but not equivalent, ordering of the rationals. One of the
di�erences is that, contrary to the construction, the convergence in (4.8) does not use an explicit
ordering of the rationals in the set. Furthermore, weak convergence of the Stern-Brocot sequence
implicitly uses a rationals full continued fraction expansion, whereas the normality condition
as stated in De�nition 4.1 requires blocks of arbitrary length to be distributed according to the
Minkowski question mark measure. �ese arbitrary blocks can also be a part of a rationals
continued fraction expansion. We further elaborate on the di�erences and similarities in chapter
5, where we re�ect on the construction and extend our results. Among others, we show that the
number that is obtained by concatenating the continued fraction expansions of the rationals
in the even Stern-Brocot sequence is Minkowski normal as well. First, we elaborate on the
construction and prove that resulting number, see (4.10), is Minkowski normal.

4.2.0 Kepler and the construction
�e construction of a Minkowski normal number is based on the Kepler tree. As such, we
introduce the tree and some of its relevant properties. We explicitly construct an irrational
number by de�ning an in�nite sequence of rationals of which we concatenate the continued
fraction expansions. We then construct a binary analogue, which plays a key role in proving
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4.2 . Kepler and the construction

normality of the constructed number.

�e �rst part of the Kepler tree is found in Johannes Kepler’s magnum opus, a book con-
taining his most important work. In this work he discusses harmonic divisions of strings and
displays the �rst few levels of the tree, starting from 1/1. See [21, p. 163] for an English
translation. �ough Johannes Kepler starts from 1/1, the tree starts from 1/2 and then uses the
rule

p/q

p/(p+ q) q/(p+ q) .

Also, as rationals can be represented by �nite continued fractions and vice versa [27], we
introduce the following lemma. Note that we assume continued fractions to be wri�en in their
reduced form. �at is, the last digit of the expansion is greater or equal than 2.

Lemma 4.4. Let p/q be an arbitrary rational and let [a1, a2, · · · , an] denote the corresponding
continued fraction expansion. �en the Kepler rule can be represented as

[a1, a2, · · · , an]

[(a1 + 1), a2, · · · , an] [1, a1, a2, · · · , an] .

Proof. �e equivalence can be seen from

p

p+ q
=

1

1 + q
p

=
1

1 +
1
p
q

=
1

1 + 1
[a1,a2,··· ,an]

= [a1 + 1, a2, · · · , an]

and

q

p+ q
=

1
p
q + 1

=
1

1 + [a1, a2, · · · , an]

= [1, a1, a2, · · · , an].

Note that a le� move increases the �rst digit in the continued fraction by one and does not
alter the total number of digits in the continued fraction. A right move however, inserts a 1 as a
�rst digit and thus increases the length of the continued fraction by one. �is also means that a
le� move does not preserve the block of digits that form the continued fraction of the mother
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Chapter 4. A Minkowski normal number

node, whereas a right move does preserve the block. Lastly, note that both moves increase the
sum of the digits of the continued fraction expansion by one.

�e tree thus starts with 1/2 at the root. We refer to the root as level 0 and generate the
subsequent levels using the Kepler rule. �e �rst four levels of the tree are displayed in Figure
4.2.

1/2

1/3

1/4

1/5 4/5

3/4

3/7 4/7

2/3

2/5

2/7 5/7

3/5

3/8 5/8

(a) Ordinary Kepler tree.
.

[2]

[3]

[4]

[5] [1,4]

[1,3]

[2,3] [1,1,3]

[1,2]

[2,2]

[3,2] [1,2,2]

[1,1,2]

[2,1,2] [1,1,1,2]

(b) Continued fraction Kepler tree.
.

Figure 4.2: �e �rst 4 levels of the Kepler tree, expressed in (a) rationals and (b) the corresponding
continued fraction expansions.
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4.3 . Retracing paths and constructing a binary analogue

Subsequently, we concatenate the continued fractions of the rationals in the tree going top-down,
le�-right. �e ordering of the rationals that result from this procedure is

1

2
,

1

3
,
2

3
,

1

4
,
3

4
,
2

5
,
3

5
,

1

5
, · · · (4.9)

and we denote the corresponding sequence of blocks by (ki)i≥1. �at is, ki denotes the block
of digits that form the continued fraction expansion of the i-th rational in (4.9). �e above
sequence can then be given by

[k1], [k2], [k3], [k4], [k5], [k6], [k7], [k8], · · · .

By concatenating the blocks (ki)i≥1, we construct an in�nite continued fraction, which is a
unique irrational number by Proposition 2.14. �e resulting number is given by:

K := [2, 3, 1, 2, 4, 1, 3, 2, 2, 1, 1, 2, 5, · · · ] ≈ 0.44031. (4.10)

�e key idea in proving normality of K is that we can use binary codes to identify arbitrary
blocks in the Kepler tree. In order to do this, we �rst construct a binary analogue for the
(continued fraction) Kepler tree.

4.3.0 Retracing paths and constructing a binary analogue

Before we prove that K is Minkowski normal, we construct an analogue to the previous section.
�e underlying idea is that, given an arbitrary rational number, we can retrace its position in
the Kepler tree. Moreover, we can retrace the path between the root and the rational. Using
these paths, we associate a binary code to each rational in the Kepler tree. Consequently, we
replace the rationals in the Kepler tree by their corresponding binary code and hence construct
another tree. �en, similar to the construction of K, we construct another number, which turns
out to be a well-known example of a number that is normal in base 2.

Retracing paths is possible due to the result in Lemma 4.4. More speci�cally, it is due to the
fact that a le� move in the Kepler tree increases the �rst digit of the continued fraction by 1
and a right move inserts the digit 1 as the �rst digit of the continued fraction. We retrace the
path of a rational as follows. Let [a1, a2, · · · , an] denote the continued fraction of an arbitrary
rational p/q in the Kepler tree. �en by going (a1 − 1) steps from the le� up, we end up at
the rational [1, a2, · · · , an]. Subsequently, going from the right up we end at [a2, a3, · · · , an].
By repeating this proces for a2, a3, . . . , an−1 and an we �nd the path to the root. �is is
summarised schematically in Figure 4.3. Note that it takes (an − 2) steps from the le� up to
get to the root from [an]. �is is due to the fact that we end up at the digit 2 instead of 1. If we
summarise the upward path symbolically by writing L for a le� move and R for a right move,
we �nd that the upward path is given by La1−1RLa2−1R · · ·Lan−2. By reversing this path
we obtain the downward path; the path from the root to the rational. Hence, the downward
path that corresponds to the rational with continued fraction expansion [a1, a2, · · · , an] is
given by Lan−2 · · ·RLa2−1RLa1−1. Furthermore, the total number of steps in this path is
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Chapter 4. A Minkowski normal number

a1 +a2 + · · ·+an−2, which also corresponds to level in which the block a1, a2, · · · , an occurs
for the �rst time.

Example 4.5. Consider the rational 4/7, which is represented by the continued fraction [1, 1, 3],
see Figure 4.2(b). In order to �nd the upward path, we �rst make a right step upward, ending
up at [1, 3]. Another right step upwards takes us to [3], a�er which a le� step upward takes us
to the root. �e upward path then becomes R2L. Hence the downward path is given by LR2.
�us starting from the root, [2], a le� move �rst increases the �rst digit of the continued fraction.
�is results in the continued fraction [3]. �e two subsequent right moves, consecutively insert
a 1 at the start of the continued fraction. �is results in the continued fraction [1, 1, 3] = 4/7.
Also, note that the rational occurs in level 3 = 1 + 1 + 3− 2.

[a1,a2,…,an]

[(a1+1),a2 ,…,an] [1,a1,a2,…,an]

[(a1-1),a2,…,an]

L

L R

[(a1-2),a2,…,an]

L

…

L

1a2…an

L

a2…an

R

[1,a2,…,an]

[a2,a3,…,an]

R

[an]

…

L

1a2…an

L

[2] 

L(a_1-1)

Repeat * for a2,a3,…,an-1

L(a_n - 2)

R

Figure 4.3: Retracing the upward path in the Kepler tree for an arbitrary rational.

Next, we associate each rational in the Kepler tree with a binary code by retracing its
downward path and then applying the substitution {L 7→ 0, R 7→ 1}. �e root is associated to
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4.3 . Retracing paths and constructing a binary analogue

the empty word. Furthermore, let [a1, a2, · · · , an] denote the continued fraction expansion of
an arbitrary rational p/q. �en we associate a binary code to p/q as follows

p/q
cfe←→ [a1, a2, · · · , an]

upward path←→ La1−1RLa2−1R · · ·Lan−2

downward path←→ Lan−2 · · ·RLa2−1RLa1−1

binary code←→ 0an−2 · · · 10a2−110a1−1.

Subsequently, we construct another binary tree by replacing the rationals in the Kepler tree by
their corresponding binary code, see Figure 4.4. We refer to this tree as the binary Kepler tree.

∅

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 4.4: �e �rst 4 levels of the binary Kepler tree.

Let b = b1b2 · · · bn be an arbitrary binary code, bi ∈ {0, 1}, 1 ≤ i ≤ n. �en the rule in the
binary Kepler tree is given by

b1b2 · · · bn

b1b2 · · · bn0 b1b2 · · · bn1 .

Note that a le� move in the binary Kepler tree appends the digit 0 at the end of the binary
code and a right move appends a 1. �us once a block occurs within the binary Kepler tree,
it is preserved forever. �is is di�erent from the Kepler tree, which only preserves blocks by
making a right move. Furthermore, note that moves in the Kepler tree correspond to changes at
the start of a continued fraction expansion, whereas moves in the binary tree correspond to
changes at the end of a binary code.
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Lastly, analogous to the construction of K, we construct an in�nite binary code by con-
catenating the binary codes going top-down, le�-right. �e ordering of binary codes that is
obtained through this is

∅, 0, 1, 00, 01, 10, 11, 000, · · · . (4.11)

and we denote the corresponding sequence of binary codes by (ci)i≥1. �at is, ci denotes the
i-th binary code in (4.11). By concatenating the blocks (ci)i≥1, we construct an in�nite sequence
c1c2c3 · · · and de�ne the dyadic Champernowne number

C2 := 0.c1c2c3 · · · = 0. 0 1 00 01 10 11 000 · · · , (4.12)

which is known to be normal in base 2. �is and other properties of C2 can for instance be
found in [14] or [31].

�eorem 4.6. �e number C2 is normal in base 2.

Suppose that b = b1b2 · · · bl is an arbitrary binary code of length l. �e base 2 normality of
C2 then implies that the asymptotic frequency of b in C2 equals 2−l, see De�nition 3.1. �us if
we can identify binary blocks that correspond to occurrences of arbitrary blocks in the Kepler
tree, we can use the normality of C2 to prove normality ofK. �is is the topic of the next section.

4.4.0 Relating the constructions
In this section we relate the Kepler tree and the binary analogue. Moreover, we discuss how
blocks are formed and preserved in the Kepler tree and how we can use binary codes to identify
them. �e results in this section are the basis for the proof that K is Minkowski normal.

Lemma 4.7. �ere exists a one-to-one correspondence between the Kepler tree and the binary
Kepler tree.

Proof. Let p/q be an arbitrary rational in the Kepler tree and suppose that [a1, a2, · · · , an] is
the continued fraction expansion that corresponds to p/q. �en the correspondence between
the trees is given by p/q ←→ 0an−2 · · · 10a2−110a1−1. In other words, there exists a one-to-one
correspondence between (ki)i≥1 and (ci)i≥1, which is given by

ki 7→ ci

for all i ≥ 1.

i : 1 2 3 4 5 6 7 8 · · ·
ki : 2 3 1, 2 4 1, 3 2, 2 1, 1, 2 5 · · ·

l l l l l l l l · · ·
ci : ∅ 0 1 00 01 10 11 000 · · · .

�e correspondence being one-to-one follows from uniqueness of the paths from which the
binary code results.
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4.4 . Relating the constructions

�e correspondence between the trees provides a lot of information. More speci�cally, the
binary code that is associated to a rational contains a lot of information. It gives the continued
fraction expansion of the rational that it represents and its exact location within the tree. Namely,
it gives the level in which the rational occurs and the position within that level. �e level is
given by the total number of 0’s and 1’s in its binary code and its position within the level can
be read from the ordering of the 0’s and 1’s. �e following lemma is an immediate consequence
of the binary analogue and the concept of retracing paths in the tree.

Lemma 4.8. �ere exists a unique path between the root of the Kepler tree that starts at 1/2 and
any arbitrary rational p/q. If we denote p/q by its continued fraction expansion [a1, a2, · · · , an],
then the corresponding path is

Lan−2 · · ·RLa2−1RLa1−1, (4.13)

which corresponds to the binary code

0an−2 · · · 10a2−110a1−1. (4.14)

�is path consists of a1 + a2 + · · ·+ an − 2 moves, which also corresponds to the level in which
the rational occurs for the �rst and only time.

Apart from providing information about the occurrence of rationals, the concept of retracing
paths also tells us how blocks of the form d = d1, d2, · · · , dk are formed by the Kepler tree,
how these blocks are preserved and how we can identify them using binary codes. �is is the
key takeaway of the next lemma.

Lemma 4.9. Let [a1, a2, · · · , an] denote the continued fraction expansion of an arbitrary rational
p/q in the Kepler tree and let d = d1, d2, · · · , dk be an arbitrary block of length k. �en there
exists a unique subpath from p/q to the rational r/s that corresponds to the continued fraction
[d1, d2, · · · , dk, a1, a2, · · · , an]. �is subpath consists of d1 + d2 + · · ·+ dk moves and is given
by

RLdk−1 · · ·RLd2−1RLd1−1, (4.15)

which corresponds to the binary code

10dk−1 · · · 10d2−110d1−1. (4.16)

Proof. By Lemma 4.8, there exists a unique path to p/q that is given by

Lan−2 · · ·RLa2−1RLa1−1.

Similarly, there exists a unique path to the rational [d1, d2, · · · , dk, a1, a2, · · · , an]. By (4.13),
this path is given by

Lan−2· · ·RLa2−1RLa1−1RLdk−1 · · ·RLd2−1RLd1−1.
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Considering the la�er path, we see that it passes through the rational p/q, of which the path is
marked in bold. As this path and that to p/q are unique, we conclude that there exists a unique
subpath from p/q to [d1, d2, · · · , dk, a1, a2, · · · , an] that is given by

RLdk−1 · · ·RLd2−1RLd1−1,

In order to see that this path consists of d1 +d2 + · · ·+dk steps, we can do two things. One is to
count the number of L’s and R’s in the subpath. �e other way to see this, is from the fact that
p/q uniquely occurs in level a1 + a2 + · · · + an − 2 and that [d1, d2, · · · , dk, a1, a2, · · · , an]
occurs uniquely in level d1 + d2 + · · ·+ dk + a1 + a2 + · · ·+ an − 2. Hence the number of
steps is given by the di�erence between these levels

(d1 + d2 + · · ·+ dk + a1 + a2 + · · ·+ an − 2)− (a1 + a2 + · · ·+ an − 2) = d1 + · · ·+ dk.

In other words, Lemma 4.9 provides information about blocks occurring at the start of a con-
tinued fraction expansion and how we can identify such occurrences using binary codes. More-
over, the lemma implicitly describes how blocks occur in the middle of a continued fraction. To
see this, consider an arbitrary block c = c1, c2 · · · , cm and apply Lemma 4.9 to the concatenation
of c and d: c1, c2, · · · , cm, d1, d2 · · · , dk. �en d occurs in the middle of the continued fraction
expansion of the rational that corresponds to [c1, c2, · · · , cm, d1, d2, · · · , dk, a1, a2, · · · , an].
�e path that is associated to this rational is

Lan−2 · · ·RLa2−1RLa1−1RLdk−1· · ·RLd2−1RLd1−1RLcm−1 · · ·RLc2−1RLc1−1,

with in bold the part of the path that corresponds to forming d in the middle. Note that this is
di�erent from the subpath in (4.15). Namely, there is an extra R at the end of the bold part. �is
right move is necessary to preserve the block and causes it to occur in the middle. Hence we
conclude that the binary code that is associated to this type of occurrence is given by

10dk−1 · · · 10d2−110d1−11. (4.17)

�e lemmas that are presented in this section provide information about the way that blocks
are formed and occur in the Kepler tree and how we can use binary codes to identify them.
�ese lemmas and the correspondence between the Kepler tree and the binary Kepler tree are
essential for proving that K is Minkowski normal. �e la�er is essential because of the fact
that C2 is normal in base 2. Furthermore, it is important to note that the correspondence in
Lemma 4.7 is a correspondence between rationals and binary codes. In other words, it tells us
that each binary code corresponds to a rational and vice versa. In order to prove normality of K,
we have to consider occurrences of arbitrary blocks, which can be part of a rationals continued
fraction expansion. Hence, when we use C2 to prove normality of K, we need to identify binary
codes that correctly correspond to occurrences of the (corresponding) arbitrary blocks in K.
Equations (4.14), (4.16) and (4.17) partially provide the answer. We complete the argument in
the next section, where we prove that K is Minkowski normal.
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4.5.0 Proof of normality
�e lemmas that are presented in the previous section provide information on how to use
binary codes to identify occurrences of arbitrary blocks in K. In order to prove that K is
Minkowski normal, we identify explicit binary codes that correspond to di�erent types of
occurrences of blocks in K. Consequently, we use the base 2 normality of C2 to determine
the frequency that corresponds to these type of occurrences. �is approach, however, does
not work for one type of occurrence. In order to deal with this exception, we show that the
frequency of this type of occurrence tends to zero. We then state the main theorem of the
thesis and prove that the frequency of the remaining type of occurrences is the desired frequency.

Apart from the exception, the di�erent types of occurrences relate to the results in Lemma
4.8 and 4.9. We distinguish the following types of occurrences.

• �e block occurs at the start of a continued fraction expansion of a rational;

• �e block occurs in the middle of the continued fraction expansion of a rational;

• �e block occurs at the end of the continued fraction expansion of a rational;

• �e block occurs as a result of concatenating the continued fraction expansions of di�erent
rationals. We refer to this type of occurrences as divided occurrences.

�e �rst three types are related to the lemmas and the la�er type is the exception. To see
why the la�er is an exception, let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N.
For d to occur divided, the elements of d should be split over two or more continued fraction
expansions. For simplicity, suppose that the occurrence of d results from a concatenation of two
rationals r1 and r2, where r1 is the le� neighbour of r2. Let [a1, a2, · · · , an] and [b1, b2, · · · , bm]
denote the continued fraction expansions that correspond to r1 and r2, respectively. If d results
from concatenation, then for some j < k, the block d1, d2, · · · , dj occurs at the end of the
continued fraction expansion of r1 and dj+1, dj+2, · · · dk occurs at the start of the continued
fraction expansion of r2. Moreover, we have the following identities

an−j+i1 = di1 ,

bi2 = dj+i2 ,

for 1 ≤ i1 ≤ j and 1 ≤ i2 ≤ k − j. Using these identities, we rewrite the binary codes that
correspond to r1 and r2 as

r1 ←→0an−2 · · · 10an−j+2−110an−j+1−110an−j−1 · · · 10a2−110a1−1

=0dj−2· · ·10d2−110d1−110an−j−1 · · · 10a2−110a1−1

and

r2 ←→0bm−2 · · · 10bk−j+1−110bk−j−1 · · · 10b2−110b1−1

=0bm−2 · · · 10bk−j+1−110dk−1· · ·10dj+2−110dj+1−1,
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Chapter 4. A Minkowski normal number

where the bold parts correspond to forming the digits that, together, compose d. When con-
catenating elements in the binary Kepler tree we concatenate the binary codes of r1 and r2 as
follows

0dj−2· · ·10d2−110d1−110an−j−1 · · · 10a2−110a1−10bm−2 · · ·
10bk−j+1−110dk−1· · ·10dj+2−110dj+1−1.

Note that the parts of the binary code that correspond to digits of d will be separated and that
the intermediate part may vary per divided occurrence. �is makes it impossible to identify
an explicit binary code that corresponds to divided occurrences. In order to circumvent this
problem, we introduce two lemmas. �e �rst lemma relates to the total number of possible
occurrences of an arbitrary block in the Kepler tree and the second lemma states that the
frequency of divided occurrences tends to zero.

Lemma 4.10. �e total number of digits in the l-th level of the Kepler tree is (l + 2)2−1, l ≥ 0.

Proof. For this proof we use the binomial identity, which states that

(x+ y)l =

l∑
i=0

(
l

i

)
xiyl−i.

�e l-th row of the Kepler tree consists of 2l rationals. Each of these are formed by i le� moves
and l− i right moves, where i varies between 0 and l. Each right move increases the number of
digits by 1 and we start o� with one digit at level 0. �erefore, the total number of digits in
level l is given by

l∑
i=0

(i+ 1)

(
l

i

)
=

l∑
i=0

(
l

i

)
+

l∑
i=0

i

(
l

i

)
= 2l + l2l−1

= (l + 2)2l−1

More speci�cally we use the binomial identity as follows. For the �rst sum we take x and y to
be 1. �is gives

l∑
i=0

(
l

i

)
=

l∑
i=0

(
l

i

)
1i1l−i = (1 + 1)l = 2l.

For the second sum, we �rst set y = 1,

(x+ 1)l =

l∑
i=0

(
l

i

)
xi,
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and then di�erentiate both sides with respect to x. �is gives

l(x+ 1)l−1 =
l∑

i=0

i

(
l

i

)
xi−1.

�e desired result is then obtained by taking x = 1.

Corollary 4.11. Let d = d1, d2, · · · , dk be an arbitrary block of length k. �e number of
possible occurrences of d in the l-th level of the Kepler tree is given by

(l + 2)2l−1 − k + 1. (4.18)

Using this corollary, we prove that the frequency of divided occurrences tends to zero.

Lemma 4.12. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. �e asymptotic
frequency of divided occurrences of d in K is equal to 0.

We give a proof using techniques similar to that in Champernowne [9].

Proof. Each level l in the Kepler tree consists of 2l rationals, which results in a total of
2l − 1 concatenations. Furthermore, d consists of k digits, which results in a maximum of k − 1
positions where d can be divided. �erefore, the number of divided occurrences can be bounded
from above by k2l. We know from Corollary 4.11 that the total number of possible occurrences
of d in the l-th level is given by (l + 2)2l−1 − k + 1.

Next, suppose that the n-th digit of K occurs within the L-th level of the Kepler tree. �e
number of divided occurrences in the �rst n digits of K is then bounded from above by

L−1∑
l=0

k2l +O(2L) = k(2L − 1) +O(2L).

Furthermore, we �nd that the total number of possible occurrences of d in the �rst n digits of
K is

L−1∑
l=0

(l + 2)2l−1 − k + 1 +O(2L) = L2L−1 − k + 1 +O(2L).

When we consider the asymptotic frequency of occurrences, we note that n→∞ implies that
L→∞. �erefore the asymptotic frequency of this type of occurrences is

lim
L→∞

k(2L − 1) +O(2L)

L2L−1 − k + 1 +O(2L)
= 0.

We conclude that the frequency of divided occurrences tends to zero.

�eorem 4.13. �e number K, de�ned in (4.10), is Minkowski normal.
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Proof of �eorem 4.13. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. In order
to determine the frequency of d in K it is su�cient to count the following binary blocks in C2.

• �e frequency of
10dk−1 · · · 10d2−110d1−11, (4.19)

• and the frequency of
10dk−1 · · · 10d2−110d1−10. (4.20)

We argue this by considering the four di�erent types of occurrences.

Firstly, it follows from Lemma 4.12 that the frequency of divided occurrences of d tends to 0.
Furthermore, from Lemma 4.9, we �nd that the subpath that is associated to forming the block
d is associated to the binary code

10dk−1 · · · 10d2−110d1−1. (A)

�is corresponds to d occurring at the start of a continued fraction expansion.

�e binary code associated to occurrences of d in the middle of a continued fraction expan-
sion also results from Lemma 4.9, see equation (4.17). �e di�erence with (A) is that another
right move is needed in the Kepler tree, which preserves the block forever and causes it to occur
in the middle. �erefore, the binary code associated to this type of occurrence is the same as
that in (A) with a 1 appended. Hence

10dk−1 · · · 10d2−110d1−11. (B)

Furthermore, d can also occur at the end of a continued fraction. Due to the fact that the Kepler
rule alters the start of continued fraction expansions, these type of occurrences are descendants
from the rational [d1, d2, · · · , dk]. In order to preserve the block d forever, another right move
is needed. Using this and Lemma 4.8 we �nd that the corresponding binary code is

0dk−2 · · · 10d2−110d1−11, (C)

where the last 1 results from the extra right move. However, occurrences of this binary code
in C2 do not always correspond to an occurrence of d in K. �is is due to the fact that the
digit 2 is used to form dk. �at is, dk is formed from the digit 2, whereas in the other type of
occurrences, the block d is formed from scratch. Hence for the binary code in (C) to correspond
to an occurrence of d in K, this occurrence of d should originate from a rational of the form
[2, b2, · · · , bj−1, bj ]. By Lemma 4.8, this corresponds to rationals that have a binary code given
by

0bj−2 · · · 10b2−110.

In other words, for (C) to correspond to an occurrence of d inK, we need to consider occurrences
of d that originate from rationals whose corresponding binary code ends in 10. If d is formed
through a subpath that starts from such a rational, the binary code that is associated to this
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subpath is appended to that of the rational it originates from. From this and Lemma 4.9, we
conclude that we can count these occurrences by looking at the frequency of the block

100dk−2 · · · 10d2−110d1−11 = 10dk−1 · · · 10d2−110d1−11. (C*)

�is is similar to (B). Moreover by counting the blocks in (A), we count (B) and (C*) as well. In
order to prevent double counts, we append a 0 to the code in (A). In conclusion, in order to �nd
the frequency of d in K, it is su�cient to consider the asymptotic frequencies in C2 of (4.19)
and (4.20). Both blocks occur with relative frequency

2−(d1+···+dk+1).

�is results from the fact that the binary codes are of length d1 + d2 + · · ·+ dk + 1 and that C2

is normal in base 2. Adding these frequencies gives the desired result

1

2d1+···+dk+1
+

1

2d1+···+dk+1
= 2−(d1+···+dk).

We conclude that K is Minkowski normal.

�e key idea in the proof is the unique correspondence between binary codes and continued
fractions. Although the arguments in the proof refer to the Kepler tree, it is the coding that
allows us to obtain frequencies. Moreover, the frequencies in (4.19) and (4.20) can be used to
obtain frequencies in more general cases. �is is due to the underlying structure that causes
the normality. We elaborate on this generalisation a�er we have discussed the numerical
experiment.

4.6.0 Numerical veri�cation and �nal remarks
In addition to proving Minkowski normality of the number K, we provide a numerical experi-
ment that supports the proof from an empirical perspective. We brie�y explain the setup of the
experiment, argue its validity and show the result. �e code that is used for this experiment
can be found in the Appendix A.

In order to support the proof from an empirical perspective, we have plo�ed the distribution
of the orbit of K. First, we generate the Kepler tree up to the 12th level, see Listing A.1. In order
to plot the distribution of the orbit (T iK)i≥0, we approximate T nK by its 20-th convergent.
�at is, if K = [a1, a2, a3, · · · ], we approximate T nK = [an+1, an+2, an+3, · · · ] by

ω20(T nK) = [an+1, an+2, · · · , an+21]

and use a 25 digit precision when doing so, see Listing A.2. Consequently, we approximate the
distribution of the orbit through a histogram plot that uses bins of length 0.005. �is resulting
plot is featured in Figure 4.5. Comparing this to Figure 2.2, we see that they clearly resemble
each other.
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Chapter 4. A Minkowski normal number

We argue the validity of this numerical experiment using ergodic theory. �e main argu-
ment for this is based on the fact that the Gauss map is measure preserving with respect to the
Minkowski question mark measure. More speci�cally, we use the fact that ([0, 1),B, ?, T ) is a
measure preserving system. It then follows that, for any measurable function f : [0, 1)→ R and
any x ∈ [0, 1), the sequence (f(T ix))i≥0 is stationary. Le�ing f(x) = x and choosing x = K,
we �nd that the distribution of the constructed number K is stationary under iterations of T .
�erefore, plo�ing the �rst N iterations of the orbit can be interpreted as plo�ing N random
variables that have the same distribution as the partial quotients of K. Hence, by making a
distribution plot of these N random variables, we implicitly plot the distribution of K.

� �� ��� ��� ���
�

�� ���

�� ���

�� ���

�� ���

�� ���

�� ���

Figure 4.5: Plo�ing the orbit of K under T .
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Chapter 5

Other results and further research
In this chapter, we re�ect on the construction and extend our results. We discuss the underlying
structure of the Kepler tree to show that we can extend normality of the constructed number K
to more general cases. One of the extensions shows that we can make local permutations in K
to obtain a class of Minkowski normal numbers. Locality will be de�ned on the structure that
underlies the construction that is done in the previous section. Furthermore, we show that the
number that is obtained by concatenating the continued fraction expansions of the rationals in
the Farey tree top-down, le�-right, is such a permutation of K. �erefore, we conclude that we
can construct another concrete Minkowski normal number using the Farey tree. We close the
chapter by suggesting topics for further research.

5.1.0 Extending Minkowski normality of K

When constructing a normal number, it is the ordering that is chosen that determines the distri-
bution. Apparently, ordering the rationals based on their denominator leads to the distribution
given by the Gauss measure, e.g. see Vandehey [35]. Although the sequence of rationals in (3.11)
is distributed according to the Lebesgue measure and not the Gauss, it is not that surprising that
the number constructed by Adler, Keane and Smorodinsky is continued fraction normal. When
we consider the frequency of occurrences of an arbitrary block d = d1, d2, · · · , dk starting at
the n-th position of a continued fraction expansion of a number in a uniformly distributed
sequence, this frequency is given by the Lebesgue measure of the set T −n∆(d) [1]. Gauss
showed that the Perron-Frobenius operator of the T under λ is given by 1

log 2 ·
1

1+x . In other
words, Gauss showed that, as n→∞, λ(T −n∆(d)) converges weakly to γ(∆(d)). Similarly,
when we consider the sequence of rationals that is used in the construction, it should not be
surprising that the number K is Minkowski normal. Namely, the sequence of rationals that is
obtained by ordering the rationals in the Kepler tree top-down le�-right, see (4.9), is distributed
according to the Minkowski question mark. �en it follows that the frequency of occurrences
of d, starting at the n-th position of a continued fraction expansion of a number in a Minkowski
question mark distributed sequence, is given by the Minkowski measure of T −n∆(d). As µ? is
T -invariant, this measure is simply µ?(∆(d)). �e fact that the sequence in (4.9) is distributed
according to µ? has implicitly been proved by Viader, Paradı́s and Bibiloni [37]. In the article,
they �rst de�ne a one-to-one correspondence q : N→ (0, 1). �e �rst few terms of q are

q(1) = [2] = 1/2 q(5) = [1, 3] = 3/4

q(2) = [3] = 1/3 q(6) = [2, 2] = 2/5

q(3) = [1, 2] = 2/3 q(7) = [1, 1, 2] = 3/5

q(4) = [4] = 1/4 q(8) = [5] = 1/5,
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Chapter 5. Other results and further research

which result from the following de�nition. If n = 2a1 + 2a2 + · · · + 2ak with
0 ≤ a1 < a2 < · · · < ak, then:

q(n) :=

{
[k + 2] if n = 2k,

[a1 + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1] otherwise.
(5.1)

Among other things, Viader, Paradı́s and Bibiloni prove that the sequence (q(i))i]≥1 is distributed
according to the Minkowski question mark measure.

�eorem 5.1. [37, �eorem 2.7] For any x ∈ [0, 1], we have that

lim
n→∞

#{q(i) ≤ x : 1 ≤ i ≤ n}
n

=?(x),

where #A denotes the cardinality of the set A.

We next show that the sequence of rationals in (4.9) is distributed according to the Minkowski
question mark. More speci�cally, we prove that this sequence coincides with the sequence
(q(i))i≥1. Recall that the sequence in (4.9) is also represented by ([ki])i≥1, where ki denotes the
block of digits that form the continued fraction expansion of the i-th rational in (4.9).

Corollary 5.2. �e sequence ([ki])i≥1 is distributed according to the Minkowski question mark
measure. �at is, for any x ∈ [0, 1], we have that

lim
n→∞

#{[ki] ≤ x : 1 ≤ i ≤ n}
n

=?(x),

where #A denotes the cardinality of the set A.

Proof. We prove that q(n) = [kn] for all n ∈ N . It is clear that q(1) = [k1] = 1/2. We next
show that the Kepler rule coincides with:

q(n)

q(2n) q(2n+ 1) ,

which concludes the proof. Let n = 2a1 + 2a2 + · · · + 2ak with 0 ≤ a1 < a2 < · · · < ak.
Suppose that n = 2l for some l. �en 2n = 2l+1 and 2n+ 1 = 20+l+1. Using (5.1), we �nd

q(n) = [l + 2]

q(2n) = [(l + 1) + 2] = [(l + 2) + 1] q(2n+ 1) = [0 + 1, (l + 1)− 0 + 1] = [1, l + 2] .
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Next, assume that n = 2a1 + 2a2 + · · · + 2ak 6= 2l. �en q(n) = [a1 + 1, a2 − a1, a3 −
a2, · · · , ak − ak−1 + 1], and

2n = 2a1+1 + 2a2+1 + · · ·+ 2ak+1;

2n+ 1 = 20 + 2a1+1 + 2a2+1 + · · ·+ 2ak+1.

Applying (5.1) to the above, we get

q(2n) = [(a1 + 1) + 1, (a2 + 1)− (a1 + 1), (a3 + 1)− (a2 + 1), · · · , (ak + 1)

− (ak−1 + 1) + 1]

= [(a1 + 1) + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1];

q(2n+ 1) = [0 + 1, (a1 + 1)− 0, (a2 + 1)− (a1 + 1), (a3 + 1)

− (a2 + 1), · · · , (ak + 1)− (ak−1 + 1) + 1]

= [1, (a1 + 1), a2 − a1, a3 − a2, · · · , ak − ak−1 + 1].

Hence our claim is true. �erefore (q(i))i≥1 coincides with the sequence of rationals in (4.9)
and �eorem 5.1 and Corollary 5.2 are equivalent.

From this perspective, it is not that surprising that the constructed number K is Minkowski
normal. Similarly, as the rationals in the even Stern-Brocot sequence are distributed according
to the Minkowski question mark, see (4.4) and (4.8), it should not be surprising that we can
construct a Minkowski normal number using this sequence. First, we discuss the structure that
underlies the ordering of rationals and causes the normality. �en, we show that this structure
can be used to construct a class of Minkowski normal numbers and provide an example using
the Farey tree.

�e continued fraction normality of xaks results from the ordering of rationals based on
their denominator. �is ordering causes the sequence of rationals in (3.11) to be distributed
uniformly and hence xaks to be continued fraction normal. Minkowski normality ofK, however,
results from a completely di�erent underlying structure. �e underlying structure in this case
comes from fact that the rationals are ordered increasingly, based on the sum of the digits of
their continued fraction expansion. �at is, the l-th level of the Kepler tree contains all possible
rationals that have a continued fraction expansion whose sum of digits is equal to l + 2. By
ordering these top-down, le�-right, the ordering is done as claimed. To see that the Kepler tree
has this structure, we start by considering the root. �e root of the tree, which corresponds to
level 0, is given by 1/2 = [2]. �en, every next level, the sum of digits of the continued fraction
expansion is increased by 1 through the Kepler rule, see Lemma 4.4. Furthermore, the l-th level
of the Kepler tree contains 2l rationals, which is exactly the number of distinct1 rationals that
have a continued fraction expansion whose digits sum up to l + 2.

1We say that two rationals p/q and r/s are distinct if and only if ps 6= qr.
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Proposition 5.3. �ere exist exactly 2l distinct rationals that have a continued fraction expan-
sion of which the sum of the digits equals l + 2, l ≥ 0. �at is,

#
{p
q
∈ [0, 1) :

p

q
= [a1, a2, · · · , an],

n∑
i=1

ai = l + 2
}

= 2l,

where #A denotes the cardinality of the set A.

Proof. �is follows from [28, Problem 21]. Here, they state the following.

“It is possible to write the positive integer n in 2n−1 − 1 ways as a sum of
smaller positive integers. Two sums that di�er in the order of terms only are now
regarded as di�erent. E.g. only the seven following sums add up to 4:

1 + 1 + 1 + 1, 1 + 1 + 2, 2 + 2, 1 + 3,

1 + 2 + 1, 3 + 1,

2 + 1 + 1.”

For continued fractions, we have to correct for the case where the last digit of the continued
fraction expansion is equal to 1. �erefore, the number of allowed partitions of l + 2, l ≥ 0, is
given by:

(2(l+2)−1 − 1)− (2(l+1)−1 − 1) = 2l+1 − 2l = 2l.

Hence we conclude that there exist exactly 2l distinct rationals that have a continued fraction
expansion whose digits sum up to l + 2.

Due to this proposition, we conclude that K is a concrete example of a number that is
obtained by concatenating all possible continued fraction expansions in increasing order, based
on the sum of their digits. Next, we show that all such constructions are Minkowski normal.
In order to prove this, we �rst introduce a result from Shiokawa and Uchiyama that proves
normality of the locally permuted dyadic Champernowne number.

Lemma 5.4. [31, Lemma 4] For any l ≥ 1 let cl,j , 1 ≤ j ≤ 2l, denote the possible binary blocks of
length l. Arbitrarily subdivide each block cl,j into at most h(l) parts, 1 ≤ h(l) ≤ l, subject to the
condition that every part should consist of only one or more consecutive digits in the original block.
Let c′l denote the sequence of length l2

l obtained by concatenating the (at most) h(l)2l resulting
subblocks in arbitrary order. If

h(l) = o(l) as l→∞.

�en the number C ′ = 0.c′1c
′
2c
′
3 · · · is normal in base 2.

Intuitively, we can interpret the lemma as follows. If we take the dyadic Champernowne
number C2 and make local permutations, then the permuted number is also normal in base
2. Here, local means that the permutations takes place within the parts of the sequence that
concatenates blocks of the same length. Furthermore, the condition related to the asymptotics
of h(l) implicitly states that the length of the resulting subblocks should be small relative to the
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length of the original block. It should be clear that if h(l) = 1 for all l, the conditions of the
lemma are satis�ed. �is was also proved by Denker and Krämer [14], who implicitly stated the
following.
Corollary 5.5. Let C2 be denoted by

C2 = 0. c1
1 c

1
2 c

2
1 c

2
2 c

2
3 c

2
4 c

3
1 c

3
2 c

3
3 c

3
4 · · · ,

where cl1cl2 · · · cl2l denotes the concatenation of all binary codes in the l-th level of the binary
Kepler tree, ordered from le� to right. For all l ∈ N, let πl be a permutation of {1, 2, . . . , 2l}.
�en

Cπ2 := 0. c1
π1(1) c

1
π1(2) c

2
π2(1) c

2
π2(2) c

2
π2(3) c

2
π2(4) c

3
π3(1) c

3
π3(2) c

3
π3(3) c

3
π3(4) · · ·

is normal in base 2.
Due to the structure that underlies our construction, we can use this corollary to extend

our results. Again, the key idea is the unique correspondence between binary codes of length
l and continued fractions whose digits sum up to l + 2. Let [a1, a2, · · · , an] be such that∑n

i=1 ai = l + 2, then recall that this correspondence is given by

[a1, a2, · · · , an]
binary code←→ 0an−2 · · · 10a2−110a1−1︸ ︷︷ ︸

binary code of length l

. (5.2)

As Example 4.5 focusses on obtaining a binary code from a given continued fraction expansion,
we provide the following example to show the correspondence from the opposite direction.
Example 5.6. Consider the binary code 1001010111 of length l = 10. If we rewrite this in the
form that is given on the right-hand side (5.2), we �nd

02−2103−1102−1102−1101−1101−1101−1.

We conclude that the binary code 1001010111 corresponds (uniquely) to the continued fraction
[1, 1, 1, 2, 2, 3, 2]. Note that the digits sum up to l + 2 = 12.

�e proof of �eorem 4.13 shows that we can count arbitrary blocks in K through binary
codes and explains why and how by referring to the structure of the Kepler tree. However, it is
the coding that is important. Moreover, it is the explicit one-to-one correspondence between
continued fraction expansions and binary codes that allows us to obtain frequencies and extend
our results. �is is due to the fact that divided occurrences are negligible and that the binary
codes in (4.19) and (4.20) result from the coding that is used. �at is, if we convert a continued
fraction expansion [a1, a2, · · · , an] to its binary code 0an−2 · · · 10a2−110a1−1, we can use the
binary codes in (4.19) and (4.20) to obtain the frequency of d = d1, d2, · · · , dk in [a1, a2, · · · , an].
As such, we can extend the normality of K to more general cases.
�eorem 5.7. Let the constructed number K be denoted by

K = [κ1
1, κ

1
2, κ

2
1, κ

2
2, κ

2
3, κ

2
4, κ

3
1, κ

3
2, κ

3
3, κ

3
4, · · · ],
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where κl1, κ
l
2, · · · , κl2l is the concatenation of the continued fraction expansions of the rationals in

the l-th level of the Kepler tree, ordered from le� to right. Furthermore, for all l ∈ N, let πl be a
permutation of {1, 2, . . . , 2l}. �en

Kπ := [κ1
π1(1), κ

1
π1(2), κ

2
π2(1), κ

2
π2(2), κ

2
π2(3), κ

2
π2(4), κ

3
π3(1), κ

3
π3(2), κ

3
π3(3), κ

3
π3(4), · · · ]

is Minkowski normal.

Proof. �e proof follows almost directly from Corollary 5.5. Let d = d1, d2, · · · , dk be an
arbitrary block of length k. Analogous to Lemma 4.12, we conclude that the asymptotic
frequency of divided occurrences of d in Kπ tends to zero. Subsequently, we note that Cπ2
corresponds to the concatenation of the binary codes of the continued fraction expansions that
are concatenated in Kπ . As these binary codes and continued fraction expansions are uniquely
related by the correspondence in (5.2), we can count the number of occurrences of d in Kπ
by considering the frequency of (4.19) and (4.20) in Cπ2 . �e rest of the proof then becomes
analogous to the last part of the proof of �eorem 4.13. We conclude that Kπ is Minkowski
normal.

In particular, �eorem 5.7 proves Minkowski normality of the number that is obtained
by concatenating the continued fraction expansions of the rationals in the even Stern-Brocot
sequence, see (4.4). �is sequence corresponds to the level sets of the Farey tree, see the le�
subtree of Figure 4.1. �erefore, concatenating the continued fraction expansions of the rationals
in the even Stern-Brocot sequence is equivalent with concatenating the continued fraction
expansions of the rationals in the Farey tree top-down, le�-right. �e tree starts with 1/2 = [2]
at the root and forms new rationals according to the tree rule displayed in Figure 5.1, see [7].
�e ordering of the rationals that is obtained by this, is

1

2
,

1

3
,
2

3
,

1

4
,
2

5
,
3

5
,
3

4
,

1

5
, · · · .

It was shown by Kessebömer and Stratmann that this sequence is distributed according to µ?,
see (4.8). �erefore it should not be surprising that the following holds.

Corollary 5.8. �e number that is obtained by concatenating the continued fraction expansions
of the rationals in the Farey tree top-down le�-right is Minkowski normal.

Proof. It can be seen from the tree rules that, regardless of whether n is even or odd, the Farey
tree rule increases the sum of the digits of the continued fraction expansion by 1 each next level.
�erefore, the underlying structure of the tree is similar to that of the Kepler tree. Namely, the
rationals are ordered increasingly, based on the sum of the digits of their continued fraction
expansion. �at is, the l-th level of the Farey tree contains all possible rationals that have a
continued fraction expansion whose sum of digits is equal to l+ 2. Hence by concatenating the
continued fraction expansions of the rationals in the Farey tree top-down, le�-right, we obtain
a permutation of K that satis�es the conditions in �eorem 5.7. Hence we conclude that the
number that is obtained by concatenating the continued fraction expansions of the rationals in
the Farey tree top-down le�-right is Minkowski normal.
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5.2 . Further research

[a1, a2, · · · , an]

[a1, a2, · · · , (an + 1)] [a1, a2, · · · , (an − 1), 2]

(a)

[a1, a2, · · · , an]

[a1, a2, · · · , (an − 1), 2] [a1, a2, · · · , (an + 1)]

(b)

Figure 5.1: �e rule of the Farey tree for (a) n is odd and (b) n is even.

�e structure that is apparent in both the Kepler and Farey tree thus allows us to construct
Minkowski normal numbers from these trees. In order to prove Minkowski normality in the
case of the Farey tree, we exploit this underlying structure and extend the Minkowski normality
of K to the number obtained from the Farey tree. �is extension uses results of Shiokawa and
Uchiyama, who extended normality of the dyadic Champernowne number. �e extension in
�eorem 5.7 however is based on a speci�c case of the extension of Shiokawa and Uchiyama.
�at is, we use h(l) = 1 for all l ∈ N, see Lemma 5.4. By doing so, we preserve the underlying
structure and hence - in some way - preserve normality. We have not been able to prove a full
analogue of Shiokawa and Uchiyama’s result, which is therefore a topic of further research.
�is and other topics of further research are brie�y discusses in the next section.

5.2.0 Further research
One of the possible topics of further research is to develop an analogue of Shiokawa and
Uchiyama’s work. �e full analogue of their work, would approximately be as follows.

Minkowski normality analogue of Lemma 5.4 For any l ≥ 1 let κl,j , 1 ≤ j ≤ 2l, denote
the possible continued fraction expansions whose digits sum up to l+ 2. Arbitrarily subdivide each
continued fraction expansion κl,j into at most h(l) parts, 1 ≤ h(l) ≤ l+ 1, subject to the condition
that every part should consist of only one or more consecutive digits in the original continued
fraction expansion. Let κ′l denote the sequence of length (l + 2)2l−1 obtained from concatenating
the (at most) h(l)2l resulting subblocks in arbitrary order. If

h(l) = o(l) as l→∞.

�en the number K′ = [κ′1, κ
′
2, κ
′
3, · · · ] is Minkowski normal.
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Chapter 5. Other results and further research

One of the reasons that we cannot extend normality to this general case, is that the we can
no longer use the normality of Cπ2 to count frequencies. �at is, when we break up continued
fraction expansions into smaller parts, one creates subblocks of which the sum of its digits will
vary and the composition of binary codes will change. Consider for instance the continued
fraction [2, 1, 1, 3], which corresponds to the binary code 01110. Suppose we break this up into
[2] and [1, 1, 3]. �en these correspond to the binary codes ∅ and 011 respectively. Conversely,
break up 01110 into the blocks 011 and 10. �ese binary codes correspond, respectively, to the
continued fraction expansions [1, 1, 3] and [1, 3]. �is shows that the underlying structure is
not preserved for h(l) 6= 1 and we cannot extend normality along similar lines. Hence further
research could be aimed at �nding a Minkowski analogue of Lemma 5.4. In particular, it is yet
unknown if there exists an asymptotic condition that guarantees Minkowski normality of the
permuted number and what this condition should look like.

Also, as observed by Belshaw, one problem with constructed numbers is that the expansion
of a constructed number is prone to be deterministic instead of random. As such, Belshaw
introduced the notion of strong normality. �is concept has been introduced for normality
in a base, but not for other types of normality [3]. �erefore, one could try to generalise this
notion for other types of normality. Furthermore, one could consider �nding an analogue of
(ε, k)-normality for Minkowski normality. �is would be somewhat similar to the work of Adler,
Keane and Smorodinsky or that of Vandehey, who extended their work. �at is, Adler, Keane
and Smorodinsky introduced m-goodness to show that almost all rationals with denominator
at most m have a continued fraction expansion whose digits have good small-scale normality
properties and Vandehey was able to obtain asymptotics for this. In a similar way, one could
consider the rationals that have a continued fraction expansion whose sum is at most N and try
to obtain asymptotics on the number of rationals that have good small-scale normality proper-
ties. As we have seen, there is a strong relation between Minkowski normality and the ordering
of rationals based on the sum of the digits of their continued fraction expansion. Looking at
the number of rationals that have good small-scale properties, can therefore be approached by
considering speci�c integer partitions. Regardless of the approach, it is expected that such ex-
tensions will make it possible to further generalise constructions of Minkowski normal numbers.

�e previously described topics are related to extending our results. Other topics could also
be related to developing similar results for di�erent types of continued fractions or measures. A
speci�c example is to consider the work of Boca and Linden [6], who have studied analogues
of the Minkowski question mark measure that are related to continued fractions with even
and odd partial quotients. Last but not least, up to this date, there is no known application for
normal numbers. Due to the random nature, they are linked to random number generators.
However, a true application remains to be discovered. �erefore, further research could also be
aimed at �nding applications for normal numbers.
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Chapter 6

Conclusion
Di�erent number representations correspond to di�erent notions of normality. �e decimal
expansion, for instance, corresponds to normality in a base and is related to the Lebesgue
measure. Similarly, the continued fraction expansion corresponds to a type of normality that
comes from the Gauss measure, which is also related to the Lebesgue measure. From both
the perspective of Gauss as well as that of Lebesgue, it follows that almost all numbers are
normal and almost all numbers are continued fraction normal. In this thesis, however, we
considered the continued fraction expansion and the Minkowski question mark measure. �is
measure is singular with respect to the Gauss and the Lebesgue measure. �erefore, we took
a completely di�erent view on numbers. We used this measure to introduce the notion of
Minkowski normality, see De�nition 4.1, which is another type of normality for the continued
fraction expansion. It turns out that also from this perspective, almost all numbers are normal.
�at is, it turns out that µ?-almost all numbers are Minkowski normal, see �eorem 4.2.

More importantly, we have constructed a concrete Minkowski normal number K, see (4.10),
and used this to construct a class of Minkowski normal numbers. �e initial construction
considers the ordering of the rationals that is obtained from the Kepler tree. �e key idea that
we have used to prove normality, is that we can create a binary analogue by associating a binary
code to each rational in the Kepler tree. �is binary analogue resulted in the construction of the
dyadic Champernowne number C2, which is known to be normal in base 2. Subsequently, we
showed that we can identify binary codes that correspond to occurrences of arbitrary blocks in
K. �erefore, we were able to extend the base 2 normality of C2 to Minkowski normality of K.
�is forms the main result of the thesis, which is stated in �eorem 4.13. Furthermore, we have
identi�ed the underlying structure of the Kepler tree that causes Minkowski normality of the
constructed number. �at is, Minkowski normality results from the fact that the rationals are
ordered increasingly, based on the sum of the digits of their continued fraction expansion. Based
on this underlying structure, we have provided a generalised construction of a Minkowski nor-
mal number. �is generalisation proves the existence of a class of Minkowski normal numbers,
see �eorem 5.7. �e theorem states that any construction that concatenates the continued
fraction expansions of all rationals, ordered increasingly, based on the sum of the digits of their
continued fraction expansion, results in a number that is Minkowski normal. Again, it was the
explicit one-to-one correspondence between continued fraction expansions and binary codes
that allowed us to prove normality.

�e importance of the results in this thesis come from considering the Minkowski measure.
Besides the fact that only three constructions have been developed for normality related to the
continued fraction expansion, the corresponding type of normality has always been related to
the Lebesgue measure. Minkowski normality, however, relies on a measure that is singular with
respect to the Lebesgue measure. �erefore, it takes a completely di�erent view on numbers.
As almost all numbers are normal from both points of view, we conclude that normality is just
a ma�er of perspective.
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Appendix A

Mathematica code
Listing A.1: Generating the Kepler tree

l e f t [ l i s t ] : = Prepend [Drop [ l i s t , 1 ] , l i s t [ [ 1 ] ] + 1 ]
r i g h t [ l i s t ] : = Prepend [ l i s t , 1 ]
brancha [ l i s t ] : = { l e f t [ l i s t ] , r i g h t [ l i s t ]}
b r a n c h l [ l e v e l ] : = Fla t ten [Map[ brancha , l e v e l ] , 1 ]
t r e e = NestLis t [ b ranch l , {{1 , 1}} , 1 2 ]
f t r e e = Fla t ten [ t r e e ]

Listing A.2: Determining successive convergents
FCF [ l i s t ] : = FromContinuedFraction [Prepend [ l i s t , 0 ] ]
s f t r e e = Table [Take [ f t r e e , {k , k + 2 0} ] , {k , 1 , Length [ f t r e e ]

− 2 1 } ] ;
r a t s = Map[ FCF , s f t r e e ]
n r a t s = N[ r a t s , 2 5 ]

Listing A.3: Plo�ing the convergents
L i s tP lo t [ Accumulate [ BinCounts [ n r a t s , {0 , 1 , . 0 0 5 } ] ] ]

Listing A.4: Constructing the Minkowski ?(·)
n = 1 ;
For [ i = 1 , i < n + 1 , i ++ , p r i n t [ ” i = ” , i , ” l i s t = ” , l i s t ] ;
For [ t e m p l i s t = l i s t ; j = 2 , j < Length [ l i s t ] + 1 , j ++ ,

Append [ t e m p l i s t , ( Numerator [ Part [ l i s t , j − 1 ] ] +
Numerator [ Part [ l i s t , j ] ] ) / ( Denominator [ Part [ l i s t ,

j − 1 ] ] +
Denominator [ Part [ l i s t , j ] ] ) ] ;

] ;
l i s t = Sort [ t e m p l i s t ] ;
]

myD[ n ] : = Table [ k 2ˆ(−n ) , {k , 0 , 2 ˆ n} ]

L i s t L i n e P l o t [ Transpose [{ l i s t , myD[ n ] } ] ,
AxesLabel −> {x , Quest ionmark [ x ]} ,
AxesStyle −> D i r e c t i v e [Black , 1 4 ] ,
P l o t M a r k e r s −> [Automatic , 1 0 ] ,
Plo tS ty le −> {Orange } , Ticks −>{ l i s t , myD[ n ]} ]
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Appendix B

Approximations of the Minkowski question mark
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(b) Approximation of order n = 2
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(c) Approximation of order n = 3
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(d) Approximation of order n = 4
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