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Abstract

The main topics of this thesis are Noether’s problem and the existence of generic polynomials. These
problems are both related to the inverse Galois problem, which asks the question whether every
finite group is isomorphic to the Galois group of a Galois extension over Q. We solved Noether’s
problem and found generic polynomials for the subgroups of Sn for n ≤ 4 and the quaternion group
of order 8. Moreover, we established generic polyomials for the cyclic groups of odd order and
discussed their existence for some other groups such as the dihedral groups of odd order, p-groups
and Frobenius groups. We also worked out a counterexample for Noether’s problem, namely the
cyclic group of order 8.
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1 Introduction

Mathematicians have studied equations and their solutions through the ages. In the 18th century
recipes were known for solving the general quadratic, cubic or quartic equation in radicals. A recipe
to solve the general quintic equation in radicals does not exist and the mathematician Abel was
in 1824 the first to prove this remarkable statement. A deep insight in the solvability of equations
was obtained by the mathematician Evariste Galois in the beginning of the 19th century. He de-
veloped a theory, now known as Galois theory, which looks at the symmetry in the solution set of
an equation by looking at the permutations of the solutions of an equation that do not change the
relations between the solutions. Together, these permutations form a group, the Galois group, for
which the structure determines the solvability of an equation.

An interesting problem in Galois theory is the inverse Galois problem, which is generally unsolved.
It asks the question whether every finite group is isomorphic to the Galois group of a Galois ex-
tension over Q. This problem is the reason for our interest in the two main topics of this thesis:
Noether’s problem and the problem concerning the existence of generic polynomials. This is be-
cause a positive solution for a group G implies for both these problems a positive solution of the
inverse Galois problem for G. The next section will treat the different problems and explain and
prove the implications between them.

In the third section, the so-called generating invariant polynomials will be determined for cyclic,
dihedral and alternating groups. These polynomials are interesting, but also turn out to be a useful
tool in the next section.

In the fourth, fifth and sixth section Noether’s problem and the existence of generic polynomials
will be discussed for several groups. The focus lies in the fourth section on small groups, for which
these problems will be investigated explicitly. We use the generating invariant polynomials of the
third section there. The fifth section will approach the problems more generally and treats the
cyclic groups. Two constructions of a generic polynomial for cyclic groups of odd order will be
discussed, after which we will describe the totally different situation for cyclic groups of even order.
We finish in the sixth section with an overview of important results concerning some other groups.
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2 Preliminaries

This section will describe the main definitions and problems this thesis will deal with. In partic-
ular this section describes the inverse Galois problem, Noether’s problem and generic polynomials
together with the different connections between and implications of these problems. The reader is
expected to have some knowledge about rings, fields and Galois theory.

2.1 The inverse Galois problem and generic polynomials

In Galois theory, the following problem is known as the inverse Galois problem. It was posed first
in the 19th century and it is unsolved in general. We will first pose the the inverse Galois problem
and then describe related problems.

Problem 1 (The Inverse Galois Problem). Let G be a finite group and K a field with characteristic
zero. Does there exist a Galois extension M |K such that Gal(M |K) ∼= G?

For the rest of this section, let K and G be as in the above problem. A Galois extension M |K with
group G is the splitting field of a separable polynomial over K. We will assume from now on that
G acts transitively on the roots of this polynomial, which means we assume that this polynomial is
irreducible over K. It is interesting to search for this polynomial (or a family of polynomials) over
K with Galois group G. The following kind of polynomials are in particular interesting. We write
ΩfK for the splitting field of a polynomial f over K.

Definition 1. Let P (x, X) ∈ K(x)[X] be monic, with x = (x1, ..., xn), where x1, ..., xn are

algebraically independent over K. Let M = Ω
P (x,X)
K(x) . P (x, X) is a parametric polynomial of G over

K if

1. M|K(x) is Galois with group G.

2. for every Galois extension L|K with group G we can pick a ∈ Kn such that L = Ω
P (a,X)
K .

Note that in the definition, n is not the degree of P . One can deduce from condition 1, that if
k > 0 is the smallest integer such that G ⊂ Sk, then a parametric polynomial P of G over K must
be of degree ≥ k. This will become clear when we discuss proposition 4. We followed [JLY02] in
our notation above as we will do for the following definition.

Definition 2. Let P (x, X) be a parametric polynomial of G over K. P (x, X) is generic of G over
K if for every field L′ containing K and every Galois extension L|L′ with group G we can pick

a ∈ L′n such that L = Ω
P (a,X)
L′ .

A stronger version of this definition would be to say that a polynomial is generic of G over K if it is
parametric of any group H ⊆ G over any field N containing K. However, it was proved in [Led00]
that the existence of a generic polynomial in this stronger sense is implied by the existence of a
generic polynomial in the sense of definition 2. All examples known to Ledet seem to suggest that
a polynomial which is generic in the sense of definition 2 is actually generic in the stronger sense.
Nevertheless, this is not proved yet.
One might wonder whether there exist parametric polynomials, which are not generic. We will
show below that these exist if G = C8. It is natural to ask the following question.
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Problem 2. Does there exist a generic polynomial of G over K?

An interesting fact, proven in [JLY02], is that the existence of generic polynomials over K for the
finite groups G and H implies the existence of a generic polynomial for the product G×H over K.
The proof will be skipped, because it is extensive and it relies on the theory of generic extensions
of commutative rings, which will need a lot of introduction.

One could wonder whether a solution for some group G for problem 2 implies a solution for the
inverse Galois problem for G and K = Q. This is indeed the case and we will discuss this below.
For that, we first need to state an important theorem

Theorem 1 (Hilbert’s Irreducibility Theorem). Let K be an algebraic number field and let f(t, X) ∈
K(t)[X] be an irreducible polynomial, with t = (t1, ..., tn) and t1, ..., tn are variables that are al-
gebraically independent over K. Then there exist infinitely many a = (a1, ..., an) ∈ Kn such that
the specialization f(a, X) ∈ K[X] is well-defined and irreducible over K. The specialization can be
chosen to have

Gal(f(t, X)/K(t)) ∼= Gal(f(a, X)/K).

Proof. A proof can be found in [JLY02].

We are now ready to prove that if problem 2 is solved for some G and K = Q, then the inverse
Galois problem can be solved.

Proposition 1. The existence of a generic polynomial of G over Q implies a solution for the Inverse
Galois problem for G and K = Q

Proof. Let g(t1, ..., tn, X) be the generic polynomial of G over Q and let L := Ω
g(t1,...,tn,X)
Q(t1,...,tn)

. Then

by definition, L|Q(t1, ..., tn) is Galois with group G. As we assumed G to act transitively on
the roots of g(t1, ..., tn, X), this means that g(t1, ..., tn, X) is irreducible. For a1, ..., an ∈ Q, let

M := Ω
g(a1,...,an,X)
Q . With the use of Hilbert’s irreducibility theorem, we deduce that there exists

infinitely many a1, ..., an ∈ Q such that the specializations g(a1, ..., an, X) are irreducible and M |Q
is Galois with group G.

2.2 Noether’s problem

In order to go to Noether’s problem, which is one of our main topics, we introduce the following
notion.

Definition 3. An extension L|K is rational if there exists a subset {βi}i∈I of L, which is alge-
braically independent over K and L = K({βi}).

For a rational extension L|K with L = K(β1, ..., βn), for β1, ..., βn being algebraically independent
over K, we say that L|K has transcendence degree n. We will now continue with Noether’s problem.
From now on throughout this whole thesis, on let x1, ..., xn be variables, algebraically independent
over Q and define M := Q(x1, ..., xn).

Problem 3 (Noether’s problem). Consider G to be a subgroup of Sn. Is MG|Q a rational extension
with transcendence degree n?
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In Noether’s problem, we suppose that the elements σ ∈ G act on M by fixing Q and sending xi
to xσ(i). Noether’s problem is trivial for G = Sn as then MG = Q(s1, ..., sn), where s1, ..., sn are
the elementary symmetric polynomials in the variables x1, ..., xn. A connection between Noether’s
problem and the inverse Galois problem is made in the following proposition.

Proposition 2. A solution for a group G ⊆ Sn for Noether’s problem implies a solution of the
Inverse Galois problem for G and K = Q.

Proof. Suppose Noether’s problem is solvable for a group G ⊆ Sn, so MG = Q(f1, ..., fn), where
f1, ..., fn are algebraically independent over Q. Define N := MG. By the primitive element theorem,
∃α ∈M such that M = N(α). Let g ∈ N [y] be the minimal polynomial of α over N , so M = ΩgN .
For some x0 ∈ Qn, let gx0 ∈ Q[y] be constructed by substituting the i-th index of x0 for fi in g. By
the irreducibility theorem of Hilbert, there are infinitely many such x0 such that gx0 is irreducible
over Q and Ω

gx0

Q |Q is Galois with group G.

We can go even further by claiming that a solution to Noether’s problem can be used to find a
generic polynomial. In order to prove the proposition below, which provides such a construction,
we first have to introduce some notation and theory we will use throughout the whole thesis. Let
s1, ..., sn be the elementary symmetric polynomials in x1, ..., xn. Define N := Q(s1, ..., sn). As

Galois theory tells us, we have M = Ω
f(x)
N for

f(x) :=

n∏
i=1

(x− xi) = xn − s1xn−1 + ...+ (−1)nsn.. (?)

By the primitive element theorem, for any group G ⊆ Sn, we have MG = N(h) for some element
h ∈M . This element h can always chosen to be in Q[x1, ..., xn], because of the following argument.
Let l(x) ∈ N [x] be the minimal polynomial of h with degree m and let am be the coefficient of xm in
l(x). Without loss of generality, we can choose the coefficients of l(x) to lie in Q[s1, ..., sn]. Multiply
now l(x) with am−1m and replace amx by y to obtain a monic polynomial l′(y) with coefficients in
Q[s1, ..., sn] and root amh. With the use of the following proposition, which is also explained in
[Roe18], the claim that we can always choose h to lie in Q[x1, ..., xn] is justified, because we can
take R = Q[x1, ..., xn] and β = amh.

Proposition 3. Let g(x) = xm + a1x
m−1 + ... + am ∈ R[x], where R is a unique factorization

domain. If g(β) = 0 for some β ∈ Q(R) (the quotient field of R), then β ∈ R.

Proof. Let β ∈ Q(R) be such that g(β) = 0. We know we can write β = b/c for some b, c ∈ R, such
that gcd(b, c) = 1. As g(b/c) = 0, we have

cmg(b/c) = bm + a1cb
m−1 + ...+ am−1c

m−1b+ amc
m = 0.

This gives bm ≡ 0(modc), which means that c|bm. Because gcd(b, c) = 1, this means c has to be a
unit in R, so β = b/c ∈ R.

We now move towards and prove an important proposition.

Proposition 4. Suppose that Noether’s problem gives a positive answer forG ⊆ Sn. Let φ1, ..., φn ∈
MG be the algebraically independent set of generators for MG over Q. Then f(x) in (?) is of the
form f(x) = g(φ1, ..., φn, x), where g ∈ Q(t1, ..., tn)[x], with t1, ..., tn algebraically independent over
Q, and g is a generic polynomial of G over Q.

7



The easiest non-trivial example of this proposition is when we take G = C3. We refer to section
4.1, where we showed that Noether’s problem is solved for this case and where we constructed the
generic polynomial of C3 over Q.

Proof. To prove that g is generic of G over Q, we will first explain that the Galois group of g over
Q(t1, ..., tn) is equal to G. As Q(t1, ..., tn) is isomorphic to MG = Q(φ1, ..., φn), this means that
the Galois group of g over Q(t1, ..., tn) is equal to the Galois group of f(x) over MG. The Galois

group of f(x) over MG is equal to G, because M = Ω
f(x)

MG . Therefore, the Galois group of g over
Q(t1, ..., tn) is equal to G.

Suppose now that we have a Galois extension L|L′ with group G, where Q ⊆ L′. We will show now

to satisfy also the second condition of definition 1 that we can pick a ∈ L′n such that L = Ω
g(a,x)
L′ .

For that we need the following lemma. For the lemma, note that as G is a subgroup of Sn, so we
can also let it act on Q(x1, ..., xn) in the way we explained above.

Lemma 1. Let r(x1, ..., xn) ∈ Q[x1, ..., xn] be non-trivial. We can construct α1, ..., αn ∈ L such
that

• L′(α1, ..., αn) = L

• G permutes α1, ..., αn in the same way as G permutes x1, ..., xn.

• r(α1, ..., αn) 6= 0.

Proof. Define
H := {g ∈ G|g(x1) = x1} ( G,

which is in the literature called the stabilizer of x1 by G. It is a proper subgroup of G, because G
is assumed to be transitive at the beginning of this section. Also because of transitivity of G, the
orbit of x1 is {x1, ..., xn}. Therefore, by the orbit-stabilizer theorem,

[G : H] = #{x1, ..., xn} = n.

This means we write G = ∪ni=1gi(H) for some gi ∈ G and we can even choose gi such that
gi : x1 7→ xi, because G is transitive. Now, let α1 ∈ L be such that L′(α1) = LH and define
αi := gi(α1) for i = 1, ..., n. Then, by definition, G permutes α1, ..., αn in the same way as x1, ..., xn.
Therefore, combined with the fact that L′(α1)|L′ has degree n, we have L = L′(α1, ..., αn).
To satisfy also the last condition, we need to change α1 a bit. Denote by L′[x]n−1, the ring of
polynomials in L′[x] with degree n − 1. We will replace α1 by P (α1) for P ∈ L′[x]n−1 satisfying
L′(P (α1)) = LH . It should be clear that G permutes P (α1), ..., P (αn) in the same way as α1, ..., αn,
so in the same way as x1, ..., xn. Therefore, combined with the fact that L′(P (α1))|L′ has degree
n, we have L = L′(P (α1), ..., P (αn)). Polynomials P ∈ L′[x]n−1 that satisfy L′(P (α1)) = LH are
dense in L′[x]n−1, because of the following reasoning.
Let Q ∈ L′[x]n−1 be such that L′(Q(α1)) ( LH . Then, because of the fundamental theorem of
Galois theory, there exists a subgroup H ′ such that H ( H ′ ⊆ G, such that L′(Q(α1)) = LH

′
.

Hence, because G = ∪ni=1gi(H), for some i 6= 1: gi(Q(α1)) = Q(αi) = Q(α1). Take now ε ∈ L′,
such that ε > 0 and define P = Q+ ε

2x ∈ L
′[x]n−1. Then

gi(P (α1)) = Q(α1) +
ε

2
αi 6= Q(α1) +

ε

2
α1 = P (α1)
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as αi 6= α1, since i 6= 1. If for some j, suddenly

gj(P (α1)) = Q(αj) +
ε

2
· αj = Q(α1) +

ε

2
α1 = P (α1),

then replace P by P = Q+ ε
2k

for k = 2, 3, ... till for all l 6= 1: gl(P (α1)) 6= P (α1). This means that

L′(P (α1)) = LH . Consider |.| to be the l2-norm on L′[x]n−1. As |P −Q| = ε/2k < ε, we conclude
that polynomials P ∈ L′[x]n−1 such that L′(P (α1)) = LH are dense in L′[x]n−1.
Because L′[x]n−1 has dimension n and the zero space of r has dimension n − 1, L′[x]n−1 can not
be contained in the zero set of r. Choose now some P ′ ∈ L′[x]n−1 such that

r(P ′(α1), ..., P ′(αn)) 6= 0.

By a density argument, with respect to the l2-norm, we can take P ∈ L′[x]n−1, arbitrarily close to
P ′, such that L′(P (α1)) = LH and

r(P (α1), ..., P (αn)) 6= 0.

Let p(x1, ..., xn) be the product of the denominators of φ1, ..., φn ∈ M . The denominators of the
coefficients (in Q(φ1, ..., φn)) of g(φ1, ..., φn, x) are polynomials in Q[φ1, ..., φn]. Because φ1, ..., φm ∈
M , we can express them in Q[x1, ..., xn]. Denote the product of these denominators by q(x1, ..., xn).
Note that the coefficients of g(φ1, ..., φn, x) can, by definition of f(x), also be found when expressing
s1, ..., sn ∈ Q[x1, ..., xn], in terms of φ1, ..., φn. Now, let

r(x1, ..., xn) = p(x1, ..., xn) · q(x1, ..., xn).

and pick, according to the lemma above, α1, ..., αn ∈ L with the properties as explained in the
lemma. Let

a = (φ1(α1, ..., αn), ..., φn(α1, ..., αn)).

The third condition of the lemma makes a well-defined, because p(α1, ..., αn) 6= 0 and g(a, x) well-
defined as q(α1, ..., αn) 6= 0. Because φ1, ..., φn ∈ M are G-invariant and G permutes α1, ..., αn in
the same way as x1, ..., xn, the coefficients of a are G-invariant, so a ∈ L′n. Furthermore, from
the definitions, we see that g(a, x) is the polynomial we obtain when we substitute α1, ..., αn for
x1, ..., xn in f(x). So α1, ..., αn are the zeros of g(a, x). Because of the first condition of the lemma,

we conclude L = Ω
g(a,x)
L′ .

The proposition provides a method we will use to find a generic polynomial in the following section.
One could wonder whether there exist groups for which Noether’s problem has a negative answer.
We will prove later on that there does not exist a generic polynomial for C8 over Q, which implies
that Noether’s problem has a negative answer for C8. There are also groups for which a generic
polynomial over Q exists, but for which Noether’s problem has a negative answer. Examples are
given in [Swa69] and are C47, C113 and C233. A proof why there does exist a generic polynomial for
these groups is also given later on.

The following will not come back in the rest of this thesis, but is noted for the interested reader.
When we consider K to be equal to Q, there is a special version of the inverse Galois problem,
which concerns regular extensions. In the following definition, we let t = (t1, ..., tn), where t1, ..., tn
are variables that are algebraically independent over Q. First we will write out what it means for
an extension to be regular.
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Definition 4. A finite Galois extension M|Q(t) is regular if every element in M\Q is transcendental
over Q.

The special version is the following.

Problem 4 (The Regular Inverse Galois Problem). Does there exist a regular Galois extension
M |Q(t) such that Gal(M |Q(t)) = G?

As one can show, a solution for problem 2 immediately implies a solution for this problem without
the use of Hilbert’s irreducibility theorem. Often, a solution for the Inverse Galois problem is found
by solving the Regular Inverse Galois problem first.
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3 Generating invariant polynomials

In the previous section, we proved that for every finite group G ⊆ Sn, there is a polynomial
hG ∈ Q[x1, ..., xn] such that MG = N(hG). From now on, we will call this hG a generating
invariant polynomial of G. In this section we will find generating invariant polynomials for several
groups. These generating invariant polynomials will be used later on, when we want to find out
whether Noether’s problem is solvable and a generic polynomial exists for these specific groups.

3.1 Cyclic groups

Consider the cyclic groups Cn, which we will define as a subgroup of Sn by Cn := 〈(12...n)〉. Define

gn := x1x
2
2 + ...+ xn−1x

2
n + xnx

2
1 ∈ Q[x1, ..., xn].

As one can see immediately, gn is invariant under Cn. Furthermore, the following proposition holds.

Proposition 5. For all σ ∈ Sn: σ(gn) = gn if and only if σ ∈ Cn.

Proof. We already noticed that gn is mapped to itself by all σ ∈ Cn.
Take now any σ ∈ Sn and suppose σ(gn) = gn. We will show in order to complete the proof that
σ ∈ Cn. Denote for any a ∈ Z, by a ∈ {1, ..., n}, the element such that a ≡ a(mod n). For any
i ∈ {1, ..., n}:

σ : xi · x2i+1
7→ xσ(i) · x2σ(i+1)

.

Pick now an arbitrary i ∈ {1, ..., n}. We see, from the definition of gn, that the only term in gn with
xi and not x2i is the term xix

2
i+1

. Therefore, combining this with the way σ acts, we deduce that

the only term in σ(gn) with xσ(i) and not x2σ(i) is the term xσ(i)x
2
σ(i+1)

. Also, from the definition

of gn, the only term in gn with xσ(i) and not x2σ(i) is the term xσ(i)x
2
σ(i)+1

. Since we supposed that

σ(gn) = gn, we must have
σ(i+ 1) = σ(i) + 1.

Because we looked at an arbitrary i ∈ {1, ..., n}, this statement holds for all i ∈ {1, ..., n}, hence by
induction, for all i ∈ {1, ..., n}:

σ(i) = σ(1) + i− 1.

This means that σ = (12...n)σ(1)−1 ∈ Cn.

We conclude that hCn = gn, i.e. gn is a generating invariant polynomial of Cn.

3.2 Dihedral groups

The dihedral groups will now be discussed. The dihedral groups are often defined as the group
presentation

〈ρ, τ |ord(ρ) = n, ord(τ) = 2, τρτ = ρ−1〉.

We will work with 〈ρ, τ〉 as a subgroup of Sn with ρ = (12...n) and

τ =

{
(2 n)(3 n− 1)...(n+1

2
n+1
2 + 1) if n is odd

(2 n)(3 n− 1)...(n2
n
2 + 2) if n is even.
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Indeed 〈ρ, τ〉 = Dn as the orders of respectively ρ and τ are n and 2 and one can compute that when
n is odd and when n is even, τρτ = ρ−1. Examples of this presentation are D4 = 〈(1234), (24)〉 and
D5 = 〈(12345), (25)(34)〉.
Define

ln := x1x2 + ...+ xn−1xn + xnx1 ∈ Q[x1, ..., xn].

As one can easily check, ln is invariant under Dn. Furthermore, the following proposition holds.

Proposition 6. For all σ ∈ Sn: σ(ln) = ln if and only if σ ∈ Dn.

Proof. We already noticed that ln is mapped to itself by all σ ∈ Dn.
Take now any σ ∈ Sn and suppose σ(ln) = ln. We will show in order to complete the proof that
σ ∈ Dn. Denote again for any a ∈ Z, by a ∈ {1, ..., n}, the element such that a ≡ a(mod n). For
any i ∈ {1, ..., n}:

σ : xi · xi+1 7→ xσ(i) · xσ(i+1).

Pick now an arbitrary i ∈ {1, ..., n}. We see, from the definition of ln, that the only terms in ln
with xi are the terms xixi+1 and xi−1xi. Therefore, combining this with the way σ acts, we deduce
that the only terms in σ(ln) with xσ(i) are the terms xσ(i)xσ(i+1) and xσ(i−1)xσ(i). Also, from the
definition of ln, the only terms in ln with xσ(i) are the terms xσ(i)xσ(i)+1

and x
σ(i)−1xσ(i). Since

we supposed that σ(ln) = ln, we must have

σ(i+ 1) = σ(i) + 1 or σ(i+ 1) = σ(i)− 1.

Assume first that σ(i+ 1) = σ(i) + 1. Then, because we looked at an arbitrary i ∈ {1, ..., n}, this
statement holds for all i ∈ {1, ..., n}, hence by induction, for all i ∈ {1, ..., n}:

σ(i) = σ(1) + i− 1.

This means that σ = (12...n)σ(1)−1 = ρσ(1)−1 ∈ Dn.
Assume now that σ(i+ 1) = σ(i)− 1. Then, because we looked at an arbitrary i ∈ {1, ..., n}, this
statement holds for all i ∈ {1, ..., n}, hence by induction, for all i ∈ {1, ..., n}:

σ(i) = σ(1)− i+ 1.

One can check, for all i ∈ {1, ..., n}, from the definition of ρ that:

ρσ(1)−1τ : i 7→ σ(1) + τ(i)− 1

and from the definition of τ :
τ : i 7→ 2− i.

Combining this gives that for all i ∈ {1, ..., n}:

ρσ(1)−1τ : i 7→ σ(1)− i+ 1,

hence σ = ρσ(1)−1τ ∈ Dn.

We conclude that hDn = ln, i.e. ln is a generating invariant polynomial of Dn.
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3.3 Alternating groups

In this section we discuss a generating invariant polynomial of An, which is by definition the
subgroup of Sn consisting of all even permutations in Sn. We choose a different approach than the
previous subsections, because this allows us to use the results later on.
Let p(x) be a monic separable polynomial of degree n in N [x] with roots a1, ..., an and let the G be
its Galois group over N . By definition, elements of G are permutations of a1, ..., an. Let A be the
subgroup of G consisting of all even permutations in G.

Definition 5. The discriminant of p(x), denoted by disc(p) is defined by

disc(p) :=
∏

1≤i<j≤n

(ai − aj)2.

Define also
δn :=

∏
1≤i<j≤n

(ai − aj),

the square root of disc(p).

One can see immediately that disc(p) is an element of N , because it is invariant under G. For δn,
this is not the case, as we will see in the following proposition.

Proposition 7. For all σ ∈ G: σ(δn) = δn if and only if σ ∈ A.

Proof. Consider a permutation σ ∈ G. If we look at the action of σ on δn, we see that σ(δ) =sgn(σ)δn,
as σ permutes a1, ...., an. Therefore, δn is invariant under σ if and only if sgn(σ) = 1, i.e. σ ∈ A.

If we take p(x) = f(x), then G = Sn, A = An and ai = xi for i = 1, ..., n. Hence, by the proposition

δn =
∏

1≤i<j≤n

(xi − xj),

is a generating invariant polynomial of An.
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4 Noether’s problem and generic polynomials for small groups

In this section we will give a positive answer to Noether’s problem and describe a generic polynomial
for all subgroups of Sn for n ≤ 4 and Q8 over Q. At the end, we will also have a try at Q16, which
is the smallest group for which it is unknown whether Noether’s problem is solved, [JLY02]. This
section therefore has the purpose of giving examples of the theory above. First we look at the
subgroups of Sn for n ≤ 4. As earlier mentioned Noether’s problem is trivial for Sn, so we will look
at the subgroups of S3 and S4. As explained above, we only have to look at transitive subgroups.
So we will cover A3 ⊆ S3 and D4, C4, V4, A4 ⊆ S4.

4.1 Alternating group of order 3

We will show that Q(x1, x2, x3)A3 = Q(s1, t1, t2) for algebraically independent t1, t2 over Q(s1), i.e.
Noether’s problem is solved for A3. In order to do that, we will use the results from the previous
section.
First note that we can transform f(x) = x3 − s1x2 + s2x− s3 with x 7→ x+ s1/3 to

g(x) = x3 + (s2 −
s21
3

)x+ (
s1s2

3
− s3 − 2

s31
27

) = x3 + ax+ b,

with a = s2 − s21
3 and b = s1s2

3 − s3 − 2
s31
27 . This transformation does not change the splitting field

of the polynomial, so the Galois group of g(x) over N is equal to the Galois group of f(x) over
N , which is Sn. From the previous section, we now have Q(x1, x2, x3)A3 = N(δ3), where δ3 is the
square root of disc(g). The question is now whether s1, ..., s3, δ3 can all be expressed as rational
functions in 3 algebraic independent variables over Q.
One can now compute that δ23 = −4a3− 27b2. Write δ3 = t1a and b = t2a and see that this implies

that t21a
2 = −4a3 − 27t22a

2, which solves to a =
−t21−27t

2
2

4 (as a 6= 0), hence δ = t1
−t21−27t

2
2

4 and

b = t2
−t21−27t

2
2

4 . This gives with the definition of a and b that

s2 =
−t21 − 27t22

4
+
s21
3

and s3 =
s1(−t21 − 27t22)

12
+
s31
9
− t2
−t21 − 27t22

4
− 2s31

27
.

So, N(δ3) = Q(s1, t2, t3). In particular this implies that that a polynomial over Q(s1, t1, t2) with
group A3 can be given by

x3 − s1x2 +
(−t21 − 27t22

4
+
s21
3

)
x− s1(−t21 − 27t22)

12
− s31

9
+ t2
−t21 − 27t22

4
+

2s31
27

.

By proposition 4 above, this polynomial is generic for A3 over Q.

4.2 Dihedral group of order 8

We will now go towards the subgroups of S4 and start with D4. Choose without loss of generality for
D4 the presentationD4 = 〈(24), (1234)〉. As proved above, l4 = x1x2+x2x3+x3x4+x4x1 is invariant
under D4. One can check that a permutation of S4 sends l4 to itself, l′4 := x1x2+x1x3+x3x4+x4x2
or l′′4 := x2x4 + x2x3 + x3x1 + x4x1. Therefore F (x) = (x − l4)(x − l′4)(x − l′′4 ) is in N [x] and the
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minimal polynomial of l4 over N . In order to have a useful relation in N(l4), we use the symmetric
reduction function of Mathematica (see appendix) to write F (x) in the following way:

F (x) = x3 − 2s22x
2 + (s22 + s1s3 − 4s4)x− (s1s2s3 − s23 − s21s4),

from which we deduce the relation

l34 − 2s22l
2
4 + (s22 + s1s3 − 4s4)l4 − (s1s2s3 − s23 − s21s4) = 0 (1)

in N(l4). We see that in this relation, for example, s4 occurs as a linear term. Therefore, we can
compute

s4 =
l34 − 2s22l

2
4 + (s1s3 + s22)l4 − s1s2s3 + s23

4l4 − s21
.

This means that N(l4) = Q(s1, s2, s3, l4) and Noether’s problem is solved. In particular, a generic
polynomial, by proposition 4, with group D4 over Q is given by

x4 − s1x3 + s2x
2 − s3x+

l34 − 2s22l
2
4 + (s1s3 + s22)l4 − s1s2s3 + s23

4l4 − s21
∈ Q(s1, s2, s3, l4)[x].

4.3 Klein four group

In the previous subsection, we discussed the subgroup D4 of S4. We continue with discussing
the Klein four group V4 = {id, (12)(34), (13)(24), (14)(23)}, being a subgroup of D4. This means
that Q(x1, x2, x3, x4)D4 ⊆ Q(x1, x2, x3, x4)V4 , so (1) still holds in Q(x1, x2, x3, x4)V4 . Moreover,
l′4− l′′4 = (x1−x3)(x2−x4) is invariant under V4, but not under C4 or D4, i.e. Q(x1, x2, x3, x4)V4 =
N(l4, l

′
4−l′′4 ). As we have that (l′4−l′′4 )2 is invariant under D4, we must be able to express (l′′4−l′′4 )2 in

terms of s1, s2, s3, s4 and l4. With the use of Mathematica (see appendix) we derived the expression

(l′4 − l′′4 )2 = s22 − 4s1s3 + 16s4 + 2s2l4 − 3l24. (2)

Because (1) holds, we can substitute the expression derived from (1) for s4 to obtain

(4l4 + s21)(l′4 − l′′4 )2 = 16(l34 − s2l24 + s1s3l4 − (s23 − 4s1s2)) + (2s2l4 − 3l24 + s22 − 4s1s3)(4l4 + s21).

Without loss of generality we can assume s1 = 0, because, as we did in the case of A3 above, we
can perform a transformation x 7→ x− c for some c ∈ N . Therefore, we are left with the relation

4l4(l′4 − l′′4 )2 = 16(l34 − s2l24 − s23) + 4l4(2s2l4 − 3l24 + s22).

Introduce now the parameterization l4 = a1s2, l′4 − l′′4 = a2s2 and s3 = a3s2. This gives

4a1a
2
2s

3
2 = (4a1 − 8a21 + 4a31)s32 − 16a23s

2
2,

which solves to s2 =
−16a23

4a1a22−4a1+20a21−16a31
, meaning that s2, l4, l′4 − l′′4 and s3 can be expressed in

terms of a1, a2 and a3. Combining with the result above for D4, we have now that

Q(x1, ..., x4)V4 = N(l4, l
′
4 − l′′4 ) = Q(s1, a1, a2, a3),

i.e. Q(x1, ..., x4)V4 |K is rational, so Noether’s problem is solved. To be able to come up with
a generic polynomial for V4 over Q, we have to determine how s1, ..., s4 can be expressed in
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Q(s1, a1, a2, a3). For s1 this is trivial and the expressions for s2 is notated already above. As

s3 = a3s2, we can also deduce that s3 =
−16a33

4a1a22−4a1+20a21−16a31
. With the relation of the previous

subsection and the fact that l4 = a1s2, we get furthermore

s4 =
l34 − s2l24 + s1s3l4 − s23

4l4 + s21 − 4s2

=
(a1s2)3 − s2(a1s2)2 + s1a3a1s

2
2 − a23s22

(4a1 − 4)s2 + s21

=
(a31 − a21)s32 + (s1a3a1 − a23)s22

(4a1 − 4)s2 + s21

=
(a31 − a21)

( −16a23
4a1a22−4a1+20a21−16a31

)3
+ (s1a3a1 − a23)

( −16a23
4a1a22−4a1+20a21−16a31

)2
(4a1 − 4)

−16a23
4a1a22−4a1+20a21−16a31

+ s21

=
16a63(−1 + a1 + a22) + a1s1(−1 + 5a1 − 4a21 + a22)

a1(−1 + 5a1 − 4a21 + a22)2(16a23(−1 + a1) + a1s21(1− 5a1 + 4a21 − a22))

This gives the following generic polynomial in Q(s1, a1, a2, a3)[x] of V4 over Q:

x4 − s1x3 −
16a23

4a1a22 − 4a1 + 20a21 − 16a31
· x2 +

16a33
4a1a22 − 4a1 + 20a21 − 16a31

· x

+
16a63(−1 + a1 + a22) + a1s1(−1 + 5a1 − 4a21 + a22)

a1(−1 + 5a1 − 4a21 + a22)2(16a23(−1 + a1) + a1s21(1− 5a1 + 4a21 − a22))
.

4.4 Cyclic group of order 4

We follow the same strategy as above for V4, but now we use the polynomial g := (l′4 − l′′4 )(x1 −
x2 + x3 − x4), which is invariant under C4 and not under D4 or V4 (which can be checked easily).
We do not use the generating invariant polynomial, g4, of the previous section, because its minimal
polynomial turns out not to have a term si occurring linearly, even after assuming s1 = 0.
Again Mathematica gives the relation

g2 = (s22 − 4s1s3 + 16s4 + 2s2l4 − 3l24)(s21 − 4s2 + 4l4)

We assume without loss of generality that s1 = 0 and use (1) to obtain

−4l4g
2 = 16(l34 − s2l24 − s23)(4s2 − 4l4) + 4l4(2s2l4 − 3l24 + s22)(4s2 − 4l4).

Introduce now the parametrization l4 = a1s2, g = a2s2 and s3 = a3s2. Then we obtain the relation

−4a1a
2
2s

3
2 = (64(a31 − a21)(1− a1) + 16a1(2a1 − 3a21 + 1)(1− a1))s42 − 64a23(1− a1)s32,

which solves to s2 =
−4a1a22+64a23(1−a1)

64(a31−a21)(1−a1)+16a1(2a1−3a21+1)(1−a1) . We conclude

Q(x1, ..., x4)C4 = N(l4, g) = Q(s1, a1, a2, a3),
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i.e. Q(x1, ..., x4)C4 |K is rational. Again, we can obtain a generic polynomial by expressing also
s3, s4 as an element in Q(s1, a1, a2, a3). One can check that we get in this case

s3 = a3 ·
−4a1a

2
2 + 64a23(1− a1)

64(a31 − a21)(1− a1) + 16a1(2a1 − 3a21 + 1)(1− a1)
,

s4 =
(a31 − a21)

( −4a1a22+64a23(1−a1)
64(a31−a21)(1−a1)+16a1(2a1−3a21+1)(1−a1)

)3
(4a1 − 4)

−4a1a22+64a23(1−a1)
64(a31−a21)(1−a1)+16a1(2a1−3a21+1)(1−a1) + s21

+
(s1a3a1 − a23)

( −4a1a22+64a23(1−a1)
64(a31−a21)(1−a1)+16a1(2a1−3a21+1)(1−a1)

)2
(4a1 − 4)

−4a1a22+64a23(1−a1)
64(a31−a21)(1−a1)+16a1(2a1−3a21+1)(1−a1) + s21

=
16(−16a23 + a1(a22 + 16a23))2(16a23 + a1a3(95a3 − 16s1) + 47a31a3s1 − a21(4a32 + a3(111a3 + 31s1)))

(−1 + a1)4a1(16 + 47a1)2(256a23 − 31a21s
2
1 + 47a31s

2
1 − 16a1(a22 + 16a23 + s21))

.

If we now replace s2, s3 and s4 in the polynomial x4 − s1x
3 + s2x

2 − s3x + s4 by the compli-
cated expressions above, we get, similar to what we did in previous subsections, a polynomial in
Q(s1, a1, a2, a3) which is a generic polynomial of C4 over Q. Because the polynomial gets really
large, we will not write it out in full detail.

4.5 Alternating group of order 12

We will use the results above to show now that Noether’s problem is also solvable for A4. We
could work with δ4 as a generating invariant polynomial, but instead we can also work one degree
lower, because of the following results. Because V4 is a normal subgroup of S4, Q(x1, ..., x4)V4 |N
is a Galois extension, with Galois group S4/V4 = S3. As one can show that s2 = l4 + l′4 + l′′4 ,
we deduce that Q(x1, ..., x4)V4 = N(l4, l

′
4, l
′′
4 ), so the Galois group S3 of Q(x1, ..., x4)V4 |N is the

full permutation group of the polynomials l4, l
′
4 and l′′4 . As V4 is a subgroup of A4, we must

have that Q(x1, ..., x4)A4 = (Q(x1, ..., x4)V4)G for some subgroup G of S3. Because A3 is the only
subgroup of S3 of order 3, we have G = A3. This means that Q(x1, ..., x4)A4 = N(δ3), with
δ23 = (l4 − l′4)(l4 − l′′4 )(l′4 − l′′4 ). An expression in N for δ23 is now given by the discriminant of the
minimal polynomial of l4, l

′
4 and l′′4 , which we recall to be

F (x) = x3 − s2x2 + (s1s3 − 4s4)x− (s23 − 4s2s4 + s21s4).

As we can, without loss of generality, perform a transformation to change F to a polynomial
without quadratic term, we have the expression δ23 = −4a3 − 27b2 with a = s1s3 − 4s4 and b =
s23 − 4s2s4 + s21s4. Introduce now δ3 = a1a and b = a2a to obtain, similar to the calculation above,

that a =
−a21−27a

2
2

4 and therefore δ3 = a1
−a21−27a

2
2

4 and b = a2
−a21−27a

2
2

4 . With the definition of a

and b, we deduce s4 =
a21+27a22

16 + s1s3
4 and

s2 =
a2(a21 + 27a22)

16s4
+
s23 + s21s4

4s4
=
a2(a21 + 27a22)

16s4
+
s21
4

+
16s23

a21 + 27a22 + 4s1s3
.
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Therefore we conclude Q(x1, ..., x4)A4 = N(δ3) = Q(s1, s3, a1, a2) and Q(x1, ..., x4)A4 |Q is rational.
We can also derive the following generic polynomial for A4 over Q:

x4 − s1x3+

(
a2(a21 + 27a22)

16s4
+
s21
4

+
16s23

a21 + 27a22 + 4s1s3

)
x2 − s3x+

a21 + 27a22
16

+
s1s3

4
.

4.6 Quaternion group of order 8

This section will answer the question whether Noether’s problem is solvable for Q8, the quaternion
group of order 8, over Q. It was first proved in [Grö34] and this section will describe this method
and give a much needed explanation of the several steps. It is interesting to analyze Noether’s
problem for Q8, since Noether’s problem (even stronger, the question whether there exists a generic
polynomial) is unsolved for Q16. The group Q16 is in particular one of the smallest groups for which
an answer for Noether’s problem is not known, as mentioned also in [JLY02].
We begin by describing the group Q8. First of all, it is a non-abelian group of order eight. It has
the following group presentation

Q8 = 〈i, j, k|i2 = j2 = k2 = ijk = e, e2 = 1〉.

In this section, we take the group presentation

Q8 = 〈σ1, σ2, σ3〉 ⊂ S8,

where

σ1 = (1458)(2763)

σ2 = (1357)(2468)

σ3 = (1256)(3874).

For this group presentation, we have e = (15)(26)(37)(48). One can check that indeed σ2
i =

σ1σ2σ3 = e for i = 1, 2, 3. Note that σ1 = σ2σ3, hence Q8 = 〈σ2, σ3〉.
In order to conclude that Noether’s problem is solved for Q8, a priori we have to find elements
t1, ..., t8 ∈ M , algebraically independent over Q, such that MQ8 = Q(t1, ..., t8). To make this
problem manageable, we will use some intermediate steps.
First introduce the following variables

y1 =
1

2
(x1 − x5) y5 =

1

2
(x1 + x5)

y2 =
1

2
(x2 − x6) y6 =

1

2
(x2 + x6)

y3 =
1

2
(x3 − x7) y7 =

1

2
(x3 + x7)

y4 =
1

2
(x4 − x8) y8 =

1

2
(x4 + x8).

As
yi + yi+4 = xi for i = 1, 2, 3, 4 and yi − yi−4 = xi for i = 5, 6, 7, 8,
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we have M = Q(y1, ..., y8). Instead of letting Q8 act on x1, ..., x8, we could therefore also let Q8

act on y1, ...., y8. This gives

σ2 :



y1 7→ y3

y2 7→ y4

y3 7→ −y1
y4 7→ −y2
y5 7→ y7

y6 7→ y8

y7 7→ y5

y8 7→ y6

σ3 :



y1 7→ y2

y2 7→ −y1
y3 7→ −y4
y4 7→ y3

y5 7→ y6

y6 7→ y5

y7 7→ y8

y8 7→ y7

Note that y5, ..., y8 are permuted in the same way as y1, ..., y4 by σ2 and σ3, but without the minus
signs. Therefore, something interesting is occurring, which is stated and proved in the following
lemma.

Lemma 2. There exists elements a0, ..., a3 ∈MQ8 such that Q(y1, ..., y8) = Q(a0, ..., a3, y1, ..., y4).

Proof. Start by writing 
1 y21 y41 y61
1 y22 y42 y62
1 y23 y43 y63
1 y24 y44 y64



a0
a1
a2
a3

 =


y5
y6
y7
y8


This is a system of 4 equations in 4 unknowns and the determinant of the matrix at the left hand side
is nonzero, since the columns are linearly independent. Hence, this system is solvable for a0, ..., a3 ∈
Q(y1, ..., y8). Note that as y5, ..., y8 ∈ Q(y1, ..., y4, a0, ..., a3), we have M = Q(a0, ..., a3, y1, ..., y4).
What is left to prove is that a0, ..., a3 ∈MQ8 . Using Cramer’s rule, we obtain

a0 =

∣∣∣∣∣∣∣∣
y5 y21 y41 y61
y6 y22 y42 y62
y7 y23 y43 y63
y8 y24 y44 y64

∣∣∣∣∣∣∣∣ :

∣∣∣∣∣∣∣∣
1 y21 y41 y61
1 y22 y42 y62
1 y23 y43 y63
1 y24 y44 y64

∣∣∣∣∣∣∣∣ a1 =

∣∣∣∣∣∣∣∣
1 y5 y41 y61
1 y6 y42 y62
1 y7 y43 y63
1 y8 y44 y64

∣∣∣∣∣∣∣∣ :

∣∣∣∣∣∣∣∣
1 y21 y41 y61
1 y22 y42 y62
1 y23 y43 y63
1 y24 y44 y64

∣∣∣∣∣∣∣∣
a2 =

∣∣∣∣∣∣∣∣
1 y21 y5 y61
1 y22 y6 y62
1 y23 y7 y63
1 y24 y8 y64

∣∣∣∣∣∣∣∣ :

∣∣∣∣∣∣∣∣
1 y21 y41 y61
1 y22 y42 y62
1 y23 y43 y63
1 y24 y44 y64

∣∣∣∣∣∣∣∣ a3 =

∣∣∣∣∣∣∣∣
1 y21 y41 y5
1 y22 y42 y6
1 y23 y43 y7
1 y24 y44 y8

∣∣∣∣∣∣∣∣ :

∣∣∣∣∣∣∣∣
1 y21 y41 y61
1 y22 y42 y62
1 y23 y43 y63
1 y24 y44 y64

∣∣∣∣∣∣∣∣ .
If we let σ2 or σ3 act on these expressions, then the rows of the matrices will interchange. As for
both matrices two rows will interchange with two other rows, the sign of the determinants do not
change, so the expressions do not change. Therefore, a0, ..., a3 lie in MQ8 .

This result reduces our problem a lot. It means that MQ8 = Q(y1, ..., y4)Q8(a0, ..., a3), so we are
left with the task of finding t1, ..., t4 ∈MQ8 such that Q(y1, ..., y4)Q8 = Q(t1, ..., t4).

To establish such t1, ..., t4, we will need a few steps. The first step is to look at the invariant field
Q(y1, ..., y4)〈σ3〉 and determine generators for it. After this, we will determine generators t1, ..., t4
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for the invariant field
(
Q(y1, ..., y4)〈σ3〉

)〈σ2〉
, which is equal to Q(y1, ..., y4)Q8 as 〈σ3〉 is a normal

subgroup of Q8, since it is of index 2.
To prove that some z1, ..., z4 ∈ Q(y1, ..., y4) have the property Q(z1, ..., z4) = Q(y1, ..., y4)〈σ3〉, we
need to check that z1, ..., z4 are σ3-invariant and furthermore that Q(y1, ..., y4)|Q(z1, ..., z4) is of
degree 4. Choose now

z1 =
y1y2
y21 − y22

z2 = y1y4 + y2y3

z3 = y1y3 − y2y4
z4 = y21 + y22 .

One can check from the action of σ3 on y1, ..., y4 that z1, ..., z4 are invariant under σ3. We will show

now that the extension Q(y1, ..., y4)|Q(z1, ..., z4) is of degree 4. One can compute that y21y
2
2 =

z21z
2
4

1+4z21
,

so the minimal polynomial of y1 over Q(y1, ..., y4)〈σ3〉 is

(x− y1)(x+ y1)(x+ y2)(x− y2) = x4 − (y21 + y22)x2 + y21y
2
2

= x4 − z4x2 +
z21z

2
4

1 + 4z21
∈ Q(z1, ..., z4)[x].

As

y2 =
z1(2y21 − z4)

y1

y3 = (y1z3 + y2z2)z−14

y4 = (y1z2 − y2z3)z−14 ,

we have Q(y1, ..., y4) = Q(z1, ..., z4)(y1), hence Q(y1, ..., y4)|Q(z1, ..., z4) is at most of degree 4. As
Q(z1, ..., z4) ⊆ Q(y1, ..., y4)〈σ3〉, we conclude Q(y1, ..., y4)|Q(z1, ..., z4) is of degree 4 and Q(z1, ..., z4)
equals Q(y1, ..., y4)〈σ3〉. We will now determine t1, ..., t4 such that Q(t1, ..., t4) = Q(z1, ..., z4)〈σ2〉.
Once again, we need to check for some t1, ..., t4 ∈ Q(z1, ..., z4) to have the property Q(t1, ..., t4) =
Q(z1, ..., z4)〈σ2〉, that t1, ..., t4 are σ2-invariant and furthermore that Q(z1, ..., z4)|Q(t1, ..., t4) is of
degree 2. Let

t1 =
z4 − σ2(z4)

z3
=
y21 + y22 − y23 − y24
y1y3 − y2y4

t2 = z4 + σ2(z4) = y21 + y22 + y23 + y24

t3 =
z2
z3

=
y1y4 + y2y3
y1y3 − y2y4

t4 =
z3(2z3z1 − z2)

2z1z2 + z3
=

(y1y3 − y2y4)(y1y4 − y2y3)

y1y3 + y2y4
.

One can check (using software such as Mathematica) that the second column of equalities is cor-
rect and from the expressions in Q(y1, ..., y4) that the ti’s are invariant under σ2. We are left
with the task to show that Q(z1, ..., z4)|Q(t1, ..., t4) is of degree 2. It is enough to show that
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Q(t1, ..., t4)(z3)|Q(z1, ..., z4) is of degree 2, because from the definitions, we can see

z2 = t3z3

z4 =
t1z3 + t2

2

z1 =
z3(z2 + t4)

2(z23 − z2t4)
,

As σ2(z3) = −z3, the minimal polynomial of z3 over Q(y1, ..., y4)Q8 is

(x− z3)(x+ z3) = x2 − z23 .

Once we have shown that z23 ∈ Q(t1, ..., t4), then we are done. Since,

σ2(z4) = σ2(y21 + y22) = y23 + y24 =
z22 + z23
z4

,

We know that z4σ2(z4) = z22 + z23 . Therefore,

(z4 + σ2(z4))2 = (z4 − σ2(z4))2 + 4z4σ2(z4) = (z4 − σ2(z4))2 + 4z22 + z23 ,

hence

z23 = z23 ·
(z4 + σ2(z4))2

(z4 − σ2(z4))2 + 4z22 + z23
=

(z4 + σ2(z4))2( z4−σ2(z4)
z3

)2
+ 4
(
z2
z3

)2
+ 4

=
t22

t21 + 4(t23 + 1)
.

We conclude that Q(t1, ..., t4)(z3)|Q(z1, ..., z4) is of degree 2, so Q(t1, ..., t4) = Q(y1, ..., y4)Q8 .
Combining this with the results above gives

MQ8 = Q(t1, ..., t4, a0, ..., a3),

i.e. Noether’s problem is solved for Q8 over Q.

Furthermore, this solution provides us with tools to build a generic polynomial for Q8 over Q.
Define

g(y) =

4∏
i=1

(y − yi)(y + yi).

The action of σ2 and σ3 on y1, ..., y4 is described above. One can see that g(y) is invariant under
σ2 and σ3, so g(y) is an element of

MQ8 [y] = Q(a0, ..., a3, t1, ..., t4)[y].

We will now explicitly compute the coefficients of g(y) and we will see that the coefficients lie in
Q(t1, ..., t4). Expanding g(y) gives

g(y) = y8 − p1y6 + p2y
4 − p3y2 + p4,
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where

p1 = y21 + y22 + y23 + y24

p2 = y21y
2
2 + y21y

2
3 + y21y

2
4 + y22y

2
3 + y22y

2
4 + y23y

2
4

p3 = y21y
2
2y

2
3 + y21y

2
2y

2
4 + y21y

2
3y

2
4 + y22y

2
3y

2
4

p4 = y21y
2
2y

2
3y

2
4 .

These coefficients can be expressed in terms of t1, ..., t4 in the following way.

p1 =
1

2
t4

p2 =
t24

64t5

(
8t1t2t3t4t5 − (1− t23)(t24 − t21t5)(t22 + t5)

(1 + t23)(t24 + t21t5)
+ 2t22 + 20(t23 + 1)

)
p3 =

t34
64t5

(
4t1t2t3t4 − (1− t23)(t24 − t21t5)

t24 + t21t5
+ 1 + t23

)
p4 =

(
t24(t23t

2
4 − t21t5)

16t5(t24 + t21t5)

)2

,

where

t5 = t22 + 4t23 + 4 =

(
y21 + y22 + y23 + y24
y1y3 − y2y4

)2

.

One can check from the definitions of t1, ..., t4 that these expressions are correct. Now, transform
g(y) = 0 with

x = a0 + y + a1y
2 + a2y

4 + a3y
6

to the polynomial equation

h(x) = x8 + b1x
7 + ...+ b7x+ b8 = 0.

These kind of transformations are called Tschirnhaus transformations. Note that the coefficients of
h(x) lie in Q(a0, ..., a3, t1, ..., t4) = MQ8 . Because

xi = yi + yi+4 = a0 + yi + a1y
2
i + a2y

4
i + a3y

6
i

for i = 1, ..., 4, the variables x1, ..., x4 are roots of h(x). Because h(x) ∈MQ8 [x], we must have that
the other 4 roots of h(x) are x5, ..., x8. This means that h(x) = f(x), where f(x) was defined in
(?). By proposition 4, we conclude that h(x) is generic for Q8 over Q. It will be a mess to express
h(x) in Q(a0, ..., a3, t1, ..., t4)[x], so instead we will give an example. One can consider

t1 = −12 a0 = 15

t2 = 8 a0 = −175

4

t3 = 1 a0 =
80

3

t4 = 144 a0 = −3

8
.
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Then, one can compute with the defining definitions that

p1 = 72, p2 = 180, p3 = 144, p4 = 36,

so
g(y) = y8 − 72y6 + 180y4 − 144y2 + 36.

We use the Tschirnhaus transformation

x = 15 + y − 175

4
y2 +

80

3
y4 − 3

8
y6

to obtain the polynomial

h(x) = x8 − 92x6 − 432x5 − 366x4 + 864x3 + 1180x2 + 48x− 239.

This polynomial has Galois group Q8 over Q, as obtained by Mertens, in [Mer02] and [Mer16]. He
did this when the existence of a generic polynomial for Q8 over Q was not proved yet.

4.7 Quaternion group of order 16

One might wonder whether the approach of the previous subsection to solve Noether’s problem for
Q8 also works for Q16. We will give it a try and reduce Noether’s problem to a smaller problem,
concerning less variables.
As above, for Q8, we start by defining the group Q16. It is an example of a dicyclic group and has
the presentation

Q16 = 〈a, b|a8 = 1, b2 = a4, b−1ab = a−1〉.

As a subgroup of S16, we could take the group presentation

Q16 = 〈σ1, σ2〉,

where

σ1 = (1 2 ... 8)(9 10 ... 16)

σ2 = (1 10 5 14)(11 4 15 8)(2 9 6 13)(3 16 7 12).

We leave it to the reader to check that indeed σ2
2 = σ4

1 and σ−12 σ1σ2 = σ−11 . We let Q16 act on
M = Q(x1, ..., x16), so Noether’s problem wonders whether MQ16 |M is a rational extension.
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Similar as before, we introduce the expressions y1, ..., y16, which are defined to be

y1 =
1

2
(x1 − x5) y9 =

1

2
(x1 + x5)

y2 =
1

2
(x2 − x6) y10 =

1

2
(x2 + x6)

y3 =
1

2
(x3 − x7) y11 =

1

2
(x3 + x7)

y4 =
1

2
(x4 − x8) y12 =

1

2
(x4 + x8).

y5 =
1

2
(x9 − x13) y13 =

1

2
(x9 + x13)

y6 =
1

2
(x10 − x14) y14 =

1

2
(x10 + x14)

y7 =
1

2
(x11 − x15) y15 =

1

2
(x11 + x15)

y8 =
1

2
(x12 − x16) y16 =

1

2
(x12 + x16).

As yi+yi+8 = xi for i = 1, ..., 8 and yi−yi−8 = xi for i = 9, ..., 16, we have that M = Q(y1, ..., y16).
Instead of letting Q16 act on x1, ..., x16, we could also let it act on y1, ..., y16. This gives

σ1 :



y1 7→ y2 y9 7→ y10

y2 7→ y3 y10 7→ y11

y3 7→ y4 y11 7→ y12

y4 7→ −y1 y12 7→ y9

y5 7→ y6 y13 7→ y14

y6 7→ y7 y14 7→ y15

y7 7→ y8 y15 7→ y16

y8 7→ −y1 y16 7→ y13

σ2 :



y1 7→ y6 y9 7→ y14

y2 7→ y5 y10 7→ y13

y3 7→ −y8 y11 7→ y16

y4 7→ −y7 y12 7→ y15

y5 7→ −y2 y13 7→ y10

y6 7→ −y1 y14 7→ y9

y7 7→ y4 y15 7→ y12

y8 7→ y3 y11 7→ y15

Note that y9, ..., y16 are permuted in the same way as y1, ..., y8 by σ1 and σ2, but without the minus
signs. As in the previous section, in which we proved lemma 2, we know now that there exists
elements a0, ..., a7 ∈MQ16 such that M = Q(a0, ..., a7)(y1, ..., y8). We could reproduce the proof of
lemma 2 for 16 variables instead of 8, but because it is highly similar, we will skip it.
Noether’s problem is now reduced to finding t1, ..., t8 such that Q(y1, ..., y8)〈σ1,σ2〉 = Q(t1, ..., t8). Be-
cause σ1 has order 8, we know that 〈σ1〉 is a normal subgroup ofQ16. Therefore, Q(y1, ..., y8)〈σ1,σ2〉 =
(Q(y1, ..., y8)〈σ1〉)〈σ2〉, so we will first try to come up with z1, ..., z8 such that Q(y1, ..., y8)〈σ1〉 =
Q(z1, ..., z8). One could define

z5 = y1y5 + y2y6 + y3y7 + y4y8

z6 = y1y6 + y2y7 + y3y8 − y4y5
z7 = y1y7 + y2y8 − y3y5 − y4y6
z8 = y1y8 − y2y5 − y3y6 − y4y7.
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It is easy with the action of σ1, as described above, to check that these z5, ..., z8 are invariant
under σ1. Furthermore, these z5, ..., z8 are chosen in a way that makes sure that y5, ..., y8 lie in
Q(z5, ..., z8)(y1, ..., y4), because

y1 y2 y3 y4
−y4 y1 y2 y3
−y3 −y4 y1 y2
−y2 −y3 −y4 y1



y5
y6
y7
y8

 =


z5
z6
z7
z8


and the matrix at the left hand side is clearly invertible. This reduces our problem to finding
z1, ..., z4, which must be invariant under the action of σ1 and make sure that
Q(z1, ..., z8)(y1, ..., y4)|Q(z1, ..., z8) is of degree 8. This last property could be analyzed ever further.

Since the minimal polynomial of y1 over Q(y1, ..., y4)〈σ1〉 is
∏4
i=1(x+ yi)(x− yi), which is of degree

8, Q(y1, ..., y4)〈σ1〉(y1)|Q(y1, ..., y4)〈σ1〉 is of degree 8.
Therefore, we conclude that we reduced the problem to finding z1, ..., z4 ∈ Q(y1, ..., y4)〈σ1〉 such

that Q(z1, ..., z4)(y1) = Q(y1, ..., y4) and
∏4
i=1(x + yi)(x − yi) ∈ Q(z1, ..., z4)[x]. Unfortunately,

despite several attempts, we did not manage to solve this problem yet. A second step would be to
find t1, ..., t8 such that Q(z1, ..., z8)〈σ2〉 = Q(t1, ..., t8). Since 〈σ2〉 is cyclic of order 4, this would be
similar to the problem above for Q8. This together would solve Noether’s problem for Q16.
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5 Generic polynomials for cyclic groups

In this section we will discuss the existence of generic polynomials for the cyclic groups. It will
turn out that for the majority of these groups, a generic polynomial exists. There are, however
exceptions, such as the cyclic group of order 8. Two explicit constructions are described for generic
polynomials for small cyclic groups, which we will use to give examples.

5.1 Cyclic groups of odd order

As mentioned above in the introduction of this thesis, the existence of generic polynomials for a
product of groups G×H is guaranteed if there exists generic polynomials for G and H. Therefore,
we only have to look at cyclic groups Cq of order q = pn, where p is a prime and n ≥ 1. As the title
of this section suggests, we assume that p is odd. This section will explain and prove the existence
of generic polynomials for Cq over Q. This means that for every cyclic group of odd order, a generic
polynomial over Q exists. We will discuss two constructions of a generic polynomial and describe
the similarity between them.

5.1.1 Elementary construction

We now recall the construction of generic polynomials for Cq as briefly described in [Smi91] added
with some necessary details and explanations.
Denote by ζ a primitive q-th root of unity in Q. Then, Q(ζ)|Q is the cyclotomic cyclic extension
of degree ϕ(q), where ϕ is Euler’s phi function. Denote for any m ∈ Z by m ∈ {0, ..., q − 1} the
integer such that m ≡ m(mod q). Define {ci|gcd(i, q) = 1 and 0 < i < q}, where the ci’s are ϕ(q)
algebraically independent indeterminates over Q. For ci ∈ {ci|gcd(i, q) = 1 and 0 < i < q}, let
bi = cqi . Define for 0 ≤ i ≤ q:

ei =
∏

j∈(Z/qZ)×
c
i/j
j

if i is relatively prime to q and ei = 0 otherwise. Let ri =
∑q−1
j=0 ejζ

ij for i = 1, ..., q−1 and consider

P (z) =

q−1∏
i=0

(z − ri).

Proposition 8. The polynomial P (z) has coefficients in Z[b1, ..., bq−1].

Proof. By construction, we see that P (z) ∈ Z[c1, ..., cq−1, ζ][z]. Let k be any element in {1, ..., q−1}
such that gcd(k, q) = 1. We will show that P (z) is invariant under the action ζ 7→ ζk, to conclude
that P (z) ∈ Z[c1, ..., cq−1][z]. Furthermore, we will show that P (z) is invariant under ck 7→ ζck.
This implies that all coefficients of P (z), which are polynomials in Z[c1, ..., cq−1], are invariant
under ck 7→ ζck, hence contain only q-th powers of ck. As ck is any element of {c1, ..., cq−1}, we can
conclude that P (z) ∈ Z[b1, ..., bq−1][z].
The action ρ : ζ 7→ ζk gives

ρ : ri =

q−1∑
j=0

ejζ
ij 7→

q−1∑
j=0

ejζ
ijk = rik
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for i = 1, ..., q − 1. As 1 ≤ k ≤ q − 1 and gcd(q, k) = 1, this means that ρ permutes r1, ..., rq−1.
Therefore, ρ leaves P (z) invariant.
The action λ : ck 7→ ζck gives

λ : ei =
∏

j∈(Z/qZ)×
c
i/j
j 7→ ζi/k ·

∏
j∈(Z/qZ)×

c
i/j
j = ζi/kei,

for all i = 1, ..., q − 1 relatively prime to q. Hence,

λ : ri =

q−1∑
j=0

ejζ
ij 7→

q−1∑
j=0

ejζ
(i+k−1)j = ri+k−1

for i = 1, ..., q − 1. This means that λ permutes r1, ..., rq−1, so λ leaves P (z) invariant.

Let µ0, ..., µϕ(q)−1 be a basis for Q(ζ)/Q and let t0, ..., tϕ(q)−1 be algebraically independent (over
Q) indeterminates. Set

b̃1 = t0µ0 + ...+ tϕ(q)−1µϕ(q)−1

and b̃i = γi(b̃1), where γi ∈Gal(Q(ζ)|Q) is defined by γi : ζ 7→ ζi. Replace now the bi’s in P (z) by

b̃i’s and denote the resulting polynomial by P̃ (z).

Proposition 9. The polynomial P̃ (z) has coefficients in Z[t0, ..., tϕ(q)−1].

Proof. From the construction, we see that P̃ (z) has coefficients in Z[t0, ..., tϕ(q)−1, ζ]. So it is enough

to prove that P̃ (z) is invariant under the action of γk, where k is any integer in {1, ..., q − 1} such

that gcd(k, q) = 1. The action of γk on the b̃i’s is the following:

γk : b̃i = γi(b̃1) 7→ γk(γi(b̃1)) = γki(b̃1) = b̃ki.

for i = 1, ..., q−1 such that gcd(i, q) = 1. Therefore, the polynomial γk(P̃ (z)) is also obtained when

letting η : ci 7→ cki act on P (z) and after that replacing ci by b̃i
1/q

for i = 1, ..., q − 1. This means
it is sufficient, in order to prove the proposition, to show that η leaves P (z) invariant. The action
η gives

η : ei =
∏

j∈(Z/qZ)×
c
i/j
j 7→

∏
j∈(Z/qZ)×

c
i/j

jk
=

∏
j∈(Z/qZ)×

c
ik/(kj)

jk
= eki

for all i = 1, ..., q − 1 relatively prime to q. Hence,

η : ri =

q−1∑
j=0

ejζ
ij 7→

q−1∑
j=0

ekjζ
ij =

q−1∑
j=0

ekjζ
ik
−1·kj = r

i·k−1

for i = 1, ..., q − 1. This means that η permutes r1, ..., rq−1, so η leaves P (z) invariant.

Furthermore, we are able to prove the following proposition.

Proposition 10. The polynomial P̃ (z) is irreducible over the field Q(t0, ..., tϕ(q)−1).
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Proof. Consider the specialization of P̃ (z) with t0 = t, t1 = −1 and ti = 0 for i > 1 and denote it

by P̃ (z)0. Also, let µi = ζi for i ≥ 0. Then, in P̃ (z)0: b̃i = t − ζi, so P̃ (z)0 ∈ Z[t][z]. In order to

prove the proposition, it is enough to prove that P̃ (z)0 is irreducible over Q. In order to prove this,

we will check that P̃ (z)0 is an Eisenstein polynomial with respect to the polynomial

ψ :=
∏

i∈(Z/qZ)×
b̃i =

∏
i∈(Z/qZ)×

(t− ζi).

This polynomial ψ is called the q-th cyclotomic polynomial and it is the minimal polynomial of ζ

over Q, hence irreducible over Q. Hence, we will check, as P̃ (z)0 is monic, that ψ is a divisor of

all (except the highest) coefficients of P̃ (z)0 and that it divides the constant term of P̃ (z)0 only once.

For the first claim, look at P (z). It is enough to show that
∏
i∈(Z/qZ)× bi is a divisor of all (except

the highest) coefficients of P (z). By definition, we see that
∏
i∈(Z/qZ)× ci is a divisor of ei for

i = 1, ..., q − 1. Therefore,
∏
i∈(Z/qZ)× ci is a divisor of ri for i = 1, ..., q − 1, hence a divisor of all

coefficients of P (z), which are symmetric polynomials in the ri’s. As P (z) ∈ Z[b1, ..., bq−1][z], all
(except the highest) coefficients of P (z) are divisible by

∏
i∈(Z/qZ)× bi.

For the second claim, note that P̃ (z)0 can also be obtained when performing the following operation
to P (z) (considered to be in Z[c1, ..., cq−1][z]):

ci 7→ (t− ζi)1/q

for i = 1, ..., q − 1 relatively prime to q. Then, the ei’s become a

1

q
·

∑
i∈(Z/qZ)×

i =
1

q
· q

2
· ϕ(q) =

1

2
ϕ(q)

degree polynomial in t, which means the ri’s are also of degree 1
2ϕ(q) in t. The constant term of

P̃ (z)0 is equal to
∏q−1
i=0 ri, hence a q

2ϕ(q) degree polynomial in t. The degree of ψ2 clearly is ϕ(q)2.
Because q is a power of a prime, q/2 < ϕ(q), hence

deg

( q−1∏
i=0

ri

)
=
q

2
ϕ(q) < ϕ(q)2 = deg(ψ2).

Therefore,
∏q−1
i=0 ri can not be divisible by ψ2. We conclude that P̃ (z)0 is Eisenstein, hence irre-

ducible over Q.

As P̃ (z) is irreducible over a field of characteristic zero, it is separable. Hence, it generates a Galois
extension. The following proposition shows that is has the desired Galois group. The proof of the
proposition is also described in a short way in [Den95].

Proposition 11. The polynomial P̃ (z) has Galois group Cq over the field Q(t0, ..., tϕ(q)−1).

Proof. Let K = Q(t0, ..., tϕ(q)−1). We will first show that the Galois group of P̃ (z) over K(ζ)

is equal to Cq. As ζ ∈ Q(ζ), the matrix (γi(µj))i,j∈(Z/qZ)× , occurring in the formulas for b̃i, is
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invertible over Q(ζ), so

K(ζ) = Q(t0, ..., tϕ(q)−1, ζ) = Q(b̃1, ..., b̃q−1, ζ).

Hence, b̃1, ..., b̃q−1 are algebraically independent over Q(ζ), and so are {ei|1 ≤ i ≤ q − 1,gcd(i, q) =

1}. Hence, the splitting field of P̃ (z) over K(ζ) is equal to

K(ζ)(r0, ..., rq−1) = K(ζ)(e1, ..., eq−1).

Denote this splitting field by N . Let σ ∈GalK(ζ)(P̃ (z)) be a permutation of r0, ..., rq−1, which sends
r0 to rl. For any i ∈ {1, ..., q − 1} relatively prime to q, we have eqi ∈ Q(b1, ..., bq−1, ζ) = K(ζ).
Hence, σ(ei)

q = eqi and there exists a ki ∈ Z such that σ(ei) = ζkiei. Then,

rl =

q−1∑
j=0

ejζ
lj = σ(r0) =

q−1∑
j=0

σ(ej) =

q−1∑
j=0

ejζ
kj .

Therefore, for j = 1, ..., q − 1 relatively prime to q, kj = lj. Therefore, σ(rj) = rj+l and the Galois

group of P̃ (z) over K(ζ) is equal to Cq.
Denote the Galois group of N |K by G. Let H be the Galois group of K(ζ)|K and let σ : ζ 7→ ζk

be an element of H. As P̃ (z) is fixed by σ, we can extend σ to N by setting σ(r1) = r1. Then,

σ : eqi 7→
∏

j∈(Z/qZ)×
b
i/j

jk
=

∏
j∈(Z/qZ)×

b
ik/j
j = eq

ik

for i = 1, ..., q − 1 relatively prime to q. Hence, there exists li ∈ Z such that σ(ei) = ζlieik. We
compute

σ : r1 =

q−1∑
j=0

ejζ
j 7→

q−1∑
j=0

ejkζ
ljζjk =

q−1∑
i=0

eiζ
iζli/k .

As σ(r1) = r1, we deduce ζli/k = 1, hence σ(ei) = eik for i = 1, ..., q−1 relatively prime to q. Thus,

σ : ri =

q−1∑
j=0

ejζ
ij 7→

q−1∑
j=0

ekjζ
ijk =

q−1∑
j=0

ejζ
ij = ri.

for i = 0, ..., q − 1.

Let L := K(r0, ..., rq−1), which is the splitting field of P̃ (z) over K. The following figure may clarify
the different connections between the fields.

N

K(ζ) L

K

G

Cq

H

29



Let H ′ be the set of all extensions of elements of H to N as constructed above. Every element of
H ′ leaves L invariant, by definition, so L ⊆ NH′ . Hence,

[N : L] ≥ [N : NH′ ] = |H ′| = |H|.

Clearly
[L : K] ≥ [N : K(ζ)] = |Cq| = q.

We deduce with the tower rule that NH′ = L and [L : K] = q. As L|K is Galois, H ′ is a normal
subgroup of G and hence a direct complement of Cq in G. Therefore, the Galois group of L|K,

which is the Galois group of P̃ (z) over K, is equal to Cq.

From this proposition, it also follows that P̃ (z)0 has Galois group Cq over Q(t), as it is an irreducible

specialization of P̃ (z).

Smith proved in [Smi91] the strong statement that P̃ (z) is generic for Cq over Q. This means that
apart from the proposition above, he proved that for all Galois extensions L|L′ with Galois group

Cq and Q ⊆ L′, there exists a specialization of P̃ (z) with splitting field L over L′. His proof is
very extensive, so we will not give it here. We refer to [Smi91]. For the interested reader, the proof
combines theory about Stickelberger elements, Lagrange resolvents and convolution algebras.
Let us consider an example of this construction. In [Smi91] the example for q = 3 is written out.
We will show the method for q = 5. Then e0 = 0 and

e1 = c1c
3
2c

2
3c

4
4

e2 = c21c2c
4
3c

3
4

e3 = c31c
4
2c3c

2
4

e4 = c41c
2
2c

3
3c4,

hence we can compute

r0 = c1c
3
2c

2
3c

4
4 + c21c2c

4
3c

3
4 + c31c

4
2c3c

2
4 + c41c

2
2c

3
3c4

r1 = c1c
3
2c

2
3c

4
4ζ + c21c2c

4
3c

3
4ζ

2 + c31c
4
2c3c

2
4ζ

3 + c41c
2
2c

3
3c4ζ

4

r2 = c1c
3
2c

2
3c

4
4ζ

2 + c21c2c
4
3c

3
4ζ

4 + c31c
4
2c3c

2
4ζ + c41c

2
2c

3
3c4ζ

3

r3 = c1c
3
2c

2
3c

4
4ζ

3 + c21c2c
4
3c

3
4ζ + c31c

4
2c3c

2
4ζ

4 + c41c
2
2c

3
3c4ζ

2

r4 = c1c
3
2c

2
3c

4
4ζ

4 + c21c2c
4
3c

3
4ζ

3 + c31c
4
2c3c

2
4ζ

2 + c41c
2
2c

3
3c4ζ.

Expanding the polynomial P (z) gives the following expression

P (z) = z5 − 10c51c
5
2c

5
3c

5
4z

3 − 5c51c
5
2c

5
3c

5
4(c51c

5
2 + c53c

5
4 + c51c

5
3 + c52c

5
4)z2

+ (5(c51c
5
2c

5
3c

5
4)2 − 5c51c

5
2c

5
3c

5
4(c101 c

5
2c

5
3 + c51c

10
2 c

5
4 + c51c

10
3 c

5
4 + c52c

5
3c

10
4 ))z

− c51c52c53c54(c151 c
5
2c

10
3 + c101 c

15
2 c

5
4 + c51c

15
3 c

10
4 + c102 c

5
3c

15
4 ).

The expression was obtained using Mathematica, see the appendix for details. Expressed in bi’s,
this is equal to

P (z) = z5 − 10b1b2b3b4z
3 − 5b1b2b3b4(b1b2 + b3b4 + b1b3 + b2b4)z2

+ (5(b1b2b3b4)2 − 5b1b2b3b4(b21b2b3 + b1b
2
2b4 + b1b

2
3b4 + b2b3b

2
4))z

− b1b2b3b4(b31b2b
2
3 + b21b

3
2b4 + b1b

3
3b

2
4 + b22b3b

3
4).
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Now, let µi = ζi+1 for µ0, ..., µ3 be our choice of a basis for Q(ζ)/Q which means that

b̃1 = t0ζ + t1ζ
2 + t2ζ

3 + t3ζ
4

b̃2 = t0ζ
2 + t1ζ

4 + t2ζ + t3ζ
3

b̃3 = t0ζ
3 + t1ζ + t2ζ

4 + t3ζ
2

b̃4 = t0ζ
4 + t1ζ

3 + t2ζ
2 + t3ζ.

We obtain P̃ (z) by replacing bi by b̃i in P (z) for i = 1, ..., q − 1. With the use of Mathematica, we

can compute P̃ (z), but it gets very large, so we will not display it here.
As one can verify,

γ2 : b̃1 7→ b̃2 7→ b̃4 7→ b̃3 7→ b̃1.

So, if we take a look at the coefficients of P (z), we can verify that P̃ (z) is invariant under γ2. As

γ2 is the generator of the Galois group of Q(ζ)|Q, we deduce that P̃ (z) must lie in Z[t0, t1, t2, t3][z],
which is what we claimed.
One might wonder whether Noether’s problem is solvable for C5. In fact it is, according to the
results in [JLY02] (with references to [Fur25]). This however does not follow straightforward from
the construction above, since the elements r0, ..., r4 become very complicated once the ci’s are

replaced by
5

√
b̃i’s and the b̃i’s are replaced by the expressions above in Z[t0, ..., t3, ζ].

5.1.2 Construction using the field trace

In this section we give a detailed and extended version of what is written in [Nak00] and refer to
[Coh12] in some parts. We will claim and prove the existence of a generic polynomial for a cyclic
group of odd prime order over the rational numbers.
Let l be an odd prime and Cl be the cyclic group of order l. As said, in this section we will work
towards a generic polynomial for Cl over Q. By Kummer Theory, in particular implied by corollary
10.2.7 of [Coh12], we have that X l − T is generic for Cl over k if k contains an l-th root of unity.
As Q does not contain a primitive l-th root of unity, it will not be that easy. Furthermore, let ζ
be a primitive l-th root of unity and F := Q(ζ). Now let V := F×/(F×)l be regarded as vector
space over Fl. Explicitly, this means that V has multiplication as operation and that it consists of
all elements α, with α ∈ F×, where α = β ∈ V if and only if α = β · λl for some λ ∈ F×. Fl acts
on V explicitly by

Fl × V → V : (a, α) 7→ αa

which can easily be checked to be well-defined. From basic Galois theory we know that the Galois
group G of F |Q is isomorphic to F×l as we have an injective groupisomorphism

χ : G→ F×l : (σ : ζ 7→ ζm) 7→ m.

Also note that the size of G is l − 1. G acts on V in the following canonical way

G× V → V : (σ, α) 7→ σ(α)

for which it is again not hard to see that it is well-defined. Combining these actions of Fl and G
on V gives V a Fl[G]-module structure. Let now

ε = l − 1
−1 ∑

σ∈G
χ(σ−1)σ ∈ Fl[G].
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The following computation shows that ε is idempotent.

ε2 = l − 1
−2 ∑

σ,τ∈G
χ((στ)−1)στ , by definition

= l − 1
−2 ∑

σ,τ∈G
χ(σ−1)σ, if we transform σ 7→ στ−1

= ε, as the summation over τ gives a factor l − 1.

As ε is an element of Fl[G], it acts on V . Denote the image of ε by V ε. For elements of V ε the
following interesting property holds.

Proposition 12. Let α ∈ V . Then, α ∈ V ε if and only if σ(α) = αχ(σ) for all σ ∈ G.

Proof. If we assume that α ∈ V ε, then this means that

α = ε(β) =

( ∏
τ∈G

τ(β)χ(τ−1)

)l−1−1

for some β ∈ V . Then, for any σ ∈ G:

σ(α) =

( ∏
τ∈G

στ(β)χ(τ−1)

)l−1−1

=

( ∏
στ∈G

στ(β)χ(σ(στ)−1)

)l−1−1

=

( ∏
τ∈G

τ(β)χ(στ−1)

)l−1−1

= αχ(σ).

Conversely, if σ(α) = αχ(σ) for all σ ∈ G, then α = σ(α)
χ(σ−1)

for all σ ∈ G. As #G = l − 1, we
now have that

α =

( ∏
σ∈G

σ(α)χ(σ−1)

)d−1

= ε(α),

i.e. α ∈ V ε.

Now that we know these things it is time to explore an arbitrary cyclic extension, so let K|Q be a
Galois extension with group Cl = 〈τ〉. Let σ be the generator of G. This means that we have the
following diagram of extensions.

K K(ζ)

Q F = Q(ζ)

〈τ〉

〈σ〉

Note that as l is an odd prime, K can not contain a proper subextension of F |Q, i.e. F ∩K = Q.
Therefore, with elementary Galois theory, for example proposition 5.54 of [Keu15], we can deduce
that K(ζ)|Q is a Galois extension with group isomorphic to

Gal(F |Q)×Gal(K|Q) = 〈(1, τ), (σ, 1)〉 ∼= 〈τ, σ〉,
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where we extended on the right hand side τ to Q(ζ) by saying that τ leaves F invariant and σ to
K by saying that σ leaves K invariant. Note that we immediately see that σ and τ commute from
these observations.
Furthermore, we have that K(ζ)|K and K(ζ)|F are Galois with group isomorphic to respectively
〈σ〉 and 〈τ〉. By Kummer theory, again corollary 10.2.7 of [Coh12], we have that K(ζ) = F ( l

√
α)

for some α in F×.
For such an α: as (σ( l

√
α))l = σ(α), we have σ( l

√
α) = ζn l

√
σ(α) for some integer n between 0 and

l − 1. If n 6= 0, then if we assume that σ : ζ 7→ ζm, as σl( l
√
α) = l

√
α: nlml−1 ≡ 0(mod l). This

however, as l is a prime number, can not be the case, since we assumed that m and n are not
multiples of l. Thus, n = 0 and σ : l

√
α 7→ l

√
σ(α).

The following proposition describes more properties of this α we work with. This proposition
actually implies that there is a bijection between cyclic extensions over Q of degree l and one-
dimensional subspaces of V ε.

Proposition 13. If K is a Galois extension with group Cl and α ∈ F× is an element such that
K(ζ) = F ( l

√
α), then α ∈ V ε. Conversely, if α ∈ F× such that α ∈ V ε\{1}, then F ( l

√
α)|Q is an

abelian extension of degree l(l − 1) containing a unique cyclic extension K|Q of degree l.

Proof. For the first part of this proposition, we will first prove that σ(α) = λlαe for some e ∈ Z
and λ ∈ F , where l - e if all assumptions of the proposition are satisfied. We already know that

F ( l
√
α) = F ( l

√
σ(α)), so l

√
σ(α) =

∑l−1
i=0 λi

l
√
α
i

for some λi ∈ F . Assume now that τ( l
√
α) = ζa l

√
α

and τ( l
√
σ(α)) = ζb l

√
σ(α). Then ζb l

√
σ(α) can be expressed as

∑l−1
i=0 λiζ

ai l
√
α
i

and
∑l−1
i=0 λiζ

b l
√
α
i

using the above expressions. If we subtract these expressions from each other then we end up with

the expression
∑l−1
i=0 λi(ζ

ai − ζb) l
√
α
i

= 0, which implies that λi(ζ
ai − ζb) = 0 for i = 0, ..., l − 1.

Choose now i such that ζai − ζb = 0. Then for all j 6= i, we have that λj = 0, so σ(α) = λlαe.
Now assume that σ : ζ 7→ ζm, i.e. χ(σ) = m. Then we compute that

σ ◦ τ : l
√
α 7→ λ l

√
αe 7→ λζae l

√
αe

τ ◦ σ : l
√
α 7→ ζa l

√
α 7→ λζam l

√
αe

and because σ and τ commute, we have now that e = m. We can now conclude that

σ(α) = λlαm = αm = αχ(σ),

so α ∈ V ε.
For the second part of the proposition, note that again directly from corollary 10.2.7 of [Coh12], we
have that F ( l

√
α)|F is cyclic of degree l (because α 6= 1 and l is prime). As earlier said, F ( l

√
α)|Q

has Galois group isomorphic to 〈σ, τ〉, which is abelian and of degree l(l − 1). By the fundamental
theorem of Galois theory, there is a unique subextension K|Q of F ( l

√
α)|Q of degree l which is

cyclic, namely the subextension corresponding to the subgroup 〈σ〉 of 〈σ, τ〉.

In the following proposition the arbitrary cyclic extension K|Q will be investigated even more.

Proposition 14. If K|Q is a Galois extension with group Cl and α ∈ F× is such that K(ζ) =
F ( l
√
α), then K = Q(TrL/K(A)) for L = K(ζ) and A = l

√
α. The conjugates of TrL/K(A) are

precisely TrL/K(ζiA) for i = 0, ..., l − 1.
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Proof. As noted above, we have

Gal(L|K) = Gal(K(ζ)|K) ∼= 〈σ〉 = G.

Now identify an integer xσ ∈ {1, ..., l−1} with χ(σ) = xσ(mod l) for each σ ∈ G, i.e. σ : ζ 7→ ζxσ . As
α ∈ V ε by the previous proposition, we have that (Aσ−xσ )l = ασ−xσ ∈ (F×)l for any σ ∈ G. Thus
there exists a γσ ∈ F× such that σ(A) = γσA

xσ for σ ∈ G. Therefore, TrL|K(A) =
∑
σ∈G γσA

xσ /∈
Q, because {xσ}i=0,...,l−1 ⊆ {1, ..., l − 1} and 1, A,A2, ..., Al−1 are linearly independent over F .
Because K|Q is of prime degree l, we must have now that K = Q(TrL|K(A)). The conjugates of
TrL|K(A) are clearly TrL|K(ζiA) for i = 0, ..., l − 1, as these are the images of TrL|K(A) under τ ,
which is also described above. As #〈τ〉 = l, those TrL|K(ζiA) are distinct for i = 0, ..., l − 1 and
are precisely the conjugates of TrL|K(A).

This means that our arbitrary Galois extension K|Q with group Cl is the splitting field of the
polynomial

f(X;α) =

l−1∏
i=0

(X − TrL|K(Aζi)).

To come up with a generic polynomial for Cl over Q, we need to do a few steps. First we transform
f(X;α) to a more general form using a substitution for α. Let

E = {e ∈ Z[G]|sε = e mod l for some s ∈ F×l }.

Then for any e ∈ E and any β ∈ F×, we can define f(X;βe). As βe = ε(βs) ∈ V ε, we know from
proposition 14 that F ( l

√
βe)|Q is cyclic of degree l(l−1) if βe /∈ (F×)l, containing a unique subfield

K of F ( l
√
βe) which is cyclic over Q of degree l, which is the splitting field of f(X;βe). Note that

the cyclic extension generated by f(X,βe) is independent of the choice of e ∈ E , as shown by the
following reasoning. If e′, e ∈ E and e′ ≡ e(mod l), then e′ = e+ kl for some k ∈ Z. Then,

F ( l
√
βe′) = F ( l

√
βeβk) = F ( l

√
βe).

If e′, e ∈ E and e′ 6≡ e(mod l), then e′(mod l) = s′ε and e(mod l) = sε for distinct s, s′ ∈ F×l . So
s−1s′e(mod l) = e′(mod l). We conclude

F ( l
√
βe′) = F ( l

√
βe
s−1s′

) = F ( l
√
βe),

since l is prime and s−1s′ ∈ F×l .
Now is the time to actually describe the polynomial g(X; T) for which we will later prove that it is
generic for Cl over Q. From now on, let e ∈ E be fixed and define (wσ)σ∈G to be the basis of F/Q
and let T = (Tσ)σ∈G be algebraically independent transcendental variables over Q indexed by G.
The Galois group F (T)|Q(T) is canonically isomorphic to G. So apply the previous explanation to
define

g(X; T) = f(X;β′(T)e),

where β′(T) =
∑
σ∈G wσTσ ∈ F (T).

Because (wσ)σ∈G is a basis for F/Q, we can pick t ∈ Ql−1 for any β ∈ F× such that β = β′(t).
Then we get again f(X;βe) = g(X; t) ∈ Q[X]. This gives the following important property of
g(X; T).
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Proposition 15. Any Galois extension K|Q with group Cl can be obtained as the splitting field
of g(X; t) over Q for some t ∈ Ql−1.

Before proving that g(X; T) is generic for Cl over Q, we will analyze the roots of g(X; T). We
will use a similar method as in proposition 3 and derive similar results. Let A′ = l

√
β′(T)e and

let L′ = F (T)(A′). Let K ′ be the subfield of L′|Q(T) such that [L′ : K ′] = l − 1. Then the
Galois group of L′|K ′ can be identified with G. Again there exists rational functions γ′σ(T) ∈ F (T)
determined by A′σ = γ′σ(T)A′xσ for σ ∈ G. So the roots of g(X; T) are of the form

TrL′|K′(A
′ζj) =

∑
σ∈G

γ′σ(T)A′xσζjxσ

for j = 0, ..., l − 1. For simplicity denote

Bσ(T) = β′(T)σ =
∑
τ∈G

wστ Tτ ,

which gives if we write e =
∑
σ∈G eσσ (with eσ ∈ Z):

A′l = β′(T)e =
∏
σ∈G

Bσ(T)eσ .

In [Coh12] a proof of the following statement can be found. Because the proof is very extensive
and technical, we will skip it.

Proposition 16. Any coefficient of g(X; T) is given in the form of a finite sum
∑
qiβ
′(T)ui , where

qi are elements of Q and ui ∈ Z[G].

In order to prove that g(X; T) is generic for Cl over Q, we have to prove two things. First that
the Galois group of g(X; T) over Q(T) is Cl and that for any field k1 containing Q as a subfield:
any Galois extension K1|k1 with group Cl is the splitting field of g(X; t) for some t ∈ kl−11 . So
consider such a k1 and K1. We first note that the coefficients of g(X; T) can be defined at t ∈ kl−11 .
This follows from the above proposition, because the prime field of k1 is the same as that of Q.
Also the function γ′σ(T) (for each σ ∈ G) can be defined at t ∈ kl−11 . This is because of the
following. Since e(σ − xσ)(α) = (αε)s(σ−xσ) ≡ 1 ∈ V , we have that e(σ − xσ) = 0(mod l).
Therefore, because γ′σ(T)l = A′l(σ−xσ) = β′(T)e(σ−xσ), there exists jσ ∈ F×l and vσ ∈ Z[G] such

that γ′σ(T) = ζjσβ′(T)vσ . So it is clear that we can define this function if t ∈ kl−11 . Also note that
γ′σ(T) 6= 0. The last thing we want to mention is that it follows directly from the description above
that if A1 is an element in the algebraic closure of k1 such that Al1 =

∏
σ∈GBσ(t)eσ , then the roots

of g(X; T) are given by ∑
σ∈G

γ′σ(T)A′xσζjxσ , 0 ≤ j ≤ l − 1.

Theorem 2. g(X; T) is generic for Cl over Q.

Proof. Let W be the matrix (wστ )σ,τ∈G, where the rows are indexed by σ and the columns by τ .
As F |Q is separable , W is invertible. Thus, the l− 1 linear forms Bσ(T) (σ ∈ G) are distinct from
each other. This means that β′(T)e =

∏
Bσ(T) /∈ F×(T)l as e(mod l) 6= 0(mod l). This implies,

by a generalization of proposition 14 and the description of the roots of g(X; T) above that the
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Galois group of g(X; T) over Q(T) is isomorphic to Cl.
For the second property of a generic polynomial we have to find some t ∈ kl−11 such that K1 is the
splitting field of g(X; t) over Q(t). Let F1 = k1(ζ) and L1 = K1(ζ). Now, the Galois group H of
F1|k1 can be regarded as a subgroup of G. Define e(H) =

∑
σ∈H eσσ. Since L1 is abelian over k1,

there is an β1 ∈ F×1 such that L1 = F1(
l

√
β
e(H)
1 ), by proposition 14. For σ ∈ G, set bσ = βσ1 if

σ ∈ H and bσ = 1 if σ /∈ H. Let b = (bσ)σ∈G and let t = W−1b. We will show in what follows that
t ∈ kl−11 . To see this, first write t = (WTW )−1(WTb). One can check easily that the entries of
WTW are invariant under G, so belong to Q. Moreover, the entries of WTb belong to k1, because∑

τ∈G
wτσbτ =

∑
τ∈H

wτσβ
τ
1 +

∑
τ /∈H

wτσ

=
∑
τ∈H

wτσ(βτ1 − 1) +
∑
τ∈G

wτσ

= TrF1/k1(wσ(β1 − 1)) + TrF/Q(wσ).

The relation W t=b shows directly that Bσ(t) = bσ for σ ∈ G. Moreover,

β
e(H)
1 =

∏
σ∈G

beσσ =
∏
σ∈G

Bσ(t)eσ .

Therefore, by our discussion above the theorem, γ′σ(t) 6= 0 and all the roots of g(X; t) are given by

θj =
∑
σ∈G

γ′σ(t)Axσ1 ζjxσ , 0 ≤ j ≤ l − 1.

where A1 =
l

√
β
e(H)
1 . Since γ′σ(t) 6= 0 and 1, A1, A

2
1, ..., A

l−1
1 are linearly independent over F1, we

obtain L1 = F1(θj), which yields

l = [L1 : F1] = [F1(θj) : F1] ≤ [k1(θj) : k1] ≤ deg(g(X; t)) = l.

We conclude that [k1(θj) : k1] = l, hence K1 = k1(θj) for any j and the proof is complete.

Now that we proved the above statement, it is interesting to see what such a g(X; T) looks like, so
we will consider a few examples.

Example 1. Let l = 3. A basis for Q(ζ)/Q is given by {ζ, ζ2}, so let w1 = ζ and w2 = ζ2. Then
β′(T) = ζT1 + ζ2T2. Now, G =Gal(Q(ζ)|Q) = {id, σ}, where id is the identity map and σ : ζ 7→ ζ2,
so

ε = 2
−1

(1 · id+ 2 · σ) = 2 · id+ 1 · σ.
Therefore

E = {e ∈ Z[G]|e(mod 3) ∈ {2 · id+ 1 · σ, 1 · id+ 2 · σ}}
Pick now e = id+ 2 · σ ∈ E . Then

A′ = 3
√
β(T)e = 3

√
(ζT1 + ζ2T2)(ζ2T1 + ζT2)2,

which means that the roots of g(X; T) are of the form

ζjA′ + ζ2jσ(A′) for j = 0, 1, 2.
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With the use of Mathematica, see the Appendix below, we could obtain the following expression
for g(X,T):

g(X; T) = X3 −A′σ(A′)X −A′3 − σ(A′)3.

With the definition of A′, we can determine

A′σ(A′) = 3
√

(ζT1 + ζ2T2)(ζ2T1 + ζT2)2 · 3
√

(ζ2T1 + ζT2)(ζT1 + ζ2T2)2

= (ζT1 + ζ2T2)(ζ2T1 + ζT2)

= T 2
1 − T1T2 + T 2

2 .

Furthermore, an easy computation shows that

−A′3 − σ(A′)3 = −(ζT1 + ζ2T2)(ζ2T1 + ζT2)2 − (ζ2T1 + ζT2)(ζT1 + ζ2T2)2

= T 3
1 + T 3

2 .

Hence, we see that g(X; T) ∈ Q(T)[X]. So a generic polynomial for C3 over Q is given by

g(X; T) = X3 − (T 2
1 − T1T2 + T 2

2 )X + T 3
1 + T 3

2 .

This is the same polynomial as the resulting polynomial of the procedure of section 5.1.1. (for
q = 3). We will see in the following section that this is not a coincidence.

5.1.3 Connection between the two constructions

In the above sections we described two constructions of a generic polynomial of a cyclic group. Both
constructions have different assumptions, but we will show in this section that the two produce the
same polynomial in the part where the assumptions overlap. This means that we will look at the
situation where q is an odd prime and we will show that the polynomial P (z) (as constructed
in 5.1.1.) equals g(X; T) (with l = q), as constructed in 5.1.2. For that, we will rewrite the
construction of P (z) in the terminology of section 5.1.2.

We see in the last step of the construction in 5.1.1. that we replace bi by b̃i. We see directly
that b̃i = β′(T)σi , where σi : ζ 7→ ζi. This also means that b1 is replaced by β′(T) and bi by

σi(b̃1). Furthermore, this is the same as replacing c1 by l
√
β′(T) and ci by σi(

l
√
β′(T)). Using the

terminology of 5.1.2., this gives that e1 turns into

e′1 =
∏
σ∈G

σ( l
√
β′(T))χ(σ)

−1

= l
√
β′(T)

e
,

where we choose e ∈ E to be such that e =
∑
σ∈G eσσ, with eσ ∈ Z such that eσ ∈ [1, l − 1] and

χ(σ−1) = eσ(mod l). This means that ei turns into ( l
√
β′(T)

e
)χ(σ

−1
i ), which equals ( l

√
β′(T)

e
)σ
−1
i ,

by proposition 2. Therefore, r0 turns into TrL/K( l
√
β′(T)

e
) and ri into TrL/K( l

√
β′(T)

e
ζ−i).

Therefore, P (z) equals the polynomial f(X;α), when Al is replaced by β′(T)e, which is exactly the
polynomial g(X; T).

Example 2. To see an example of this procedure, consider q = 5. Then, similar to example 1, a
basis for Q(ζ)/Q is given by {ζ, ..., ζ4}, so let wi = ζi for i = 1, ..., 4. Then β′(T) = ζT1 + ...+ ζ4T4,
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which is equal to b̃1 as computed in section 5.1.1. Now, G =Gal(Q(ζ)|Q) = {σi|i = 1, ..., 4}, where
σi : ζ 7→ ζi, so

ε = 4
−1

(1 · σ1 + 3 · σ2 + 2 · σ3 + 4 · σ4) = 4σ1 + 2 · σ2 + 3 · σ3 + 1 · σ4.

Pick now e = σ1 + 3σ2 + 2σ3 + 4σ4 ∈ E . Then,

A′ = 5
√
β(T)e =

5

√
b̃1b̃2

3
b̃3

2
b̃4

4
,

which we see now is equal to e1 (of section 5.1.1.) after replacing ci by
5

√
b̃i. This means that

TrQ(ζ)/Q( 5
√
β′(T)

e
) = σ1(A′) + ...+ σ4(A′)

=
5

√
b̃1b̃2

3
b̃3

2
b̃4

4
+

5

√
b̃2b̃4

3
b̃1

2
b̃3

4
+

5

√
b̃3b̃1

3
b̃4

2
b̃2

4
+

5

√
b̃4b̃3

3
b̃2

2
b̃1

4
,

which is equal to the computed r0 (in 5.1.1.) after replacing ci by
5

√
b̃i. This means that the

polynomial P̃ (z), for which the zeros are the expressions obtained after replacing ci by 5
√
bi in ri

for i = 0, ..., 4, is the same as the polynomial g(X; T) with roots TrQ(ζ)/Q( 5
√
β′(T)

e
ζi) as claimed.

5.2 Cyclic groups of even order

In this section we will write about the existence of generic polynomials for C2n with n ≥ 1. Above
we described a generic polynomial for C2 = S2 and C4, so we will now look at the situation where
n = 3. In the end we will prove the non-existence of a generic polynomial over Q for the group C8,
which is the one of the few groups for which this fact is known and proven. Actually, because our
proof can be used for C2n if n ≥ 3, we can claim the non-existence of a generic polynomial over Q
for the cyclic groups of order 2n for n ≥ 3. This means moreover that there does not exist a generic
polynomial over Q for the cyclic groups with order divisible by 8.
Before we arrive at this point, we need to introduce a few concepts and denote some important
propositions. We begin by introducing the p-adic numbers. We follow the notation as in [Kob77].

Definition 6. Let p be a prime number. For any nonzero a ∈ Z, let the p-adic ordinal, denoted by
ordp(a), be the highest power of p which divides a, i.e. the greatest m such that a ≡ 0(mod pm).
For x = a/b ∈ Q with a, b ∈ Z, define ordp(x) = ordp(a) − ordp(b). Define the map |.|p on Q as
follows

|x|p =

{
p−ordp(x) , if x 6= 0

0 , if x = 0.

It can be proven from the definition that |.|p is a norm on Q. Define now Qp, the p-adic numbers,
as the completion of Q with respect to |.|p.

We expect the reader to be familiar with algebraic number theoretical concepts such as ramification.
For a detailed description of this concept in the case of p-adic numbers, we refer to [Kob77]. A more
algebraic way of defining this can be found in [Ste17]. The following propositions can be found in
[Kob77] and are denoted here, because they will be used later on.
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Proposition 17. There is exactly one unramified extension Lunram
f of some degree f of Qp. It can

be obtained by adjoining a primitive (pf -1)th root of 1.

Proposition 18 (Krasner’s lemma). Let a, b ∈ Qp, and assume that b is chosen closer to a than
all conjugates ai of a (ai 6= a), i.e.

|b− a|p < |ai − a|p,
then Qp(a) ⊆ Qp(b).

The following corollary of Krasner’s lemma can be found in some more generality in [Sut17] and
will turn out to be useful in the upcoming proof.

Corollary 1. Let f ∈ Qp[x] be a monic irreducible separable polynomial. There exists δ ∈ R>0,
depending on f , such that for every monic polynomial g ∈ Qp[x] with |f − g|p < δ the following
holds: For every root β of g there exists a root α of f such that K(β) = K(α).
In particular, every such g is separable, irreducible and has the same splitting field as f .

In order to prove the proposition that there does not exist a generic polynomial for C8 over Q,
we will need the following proposition. The statement and a sketch of the proof can be found in
[Wan48], [JLY02](p.56) and [Bor+12]. We will give a more explained proof, sometimes referring to
basic algebraic number theoretical facts or other steps in the references.

Proposition 19. Let L|Q be a Galois extension with group C8 and define L2 := L ·Q2. If L2|Q2

is an unramified extension, then Gal(L2|Q2) 6= C8.

Proof. We assume that L2|Q2 is unramified and Gal(L2|Q2) = C8 and we will look for a contra-
diction. Let Q(

√
D)|Q be a quadratic subextension of L|Q, with D being a square-free integer.

Because L2 is an unramified extension of Q2, we know that the prime ideal 2OL2
is unramified, so

2OL is unramified. Hence 2OL = P1 · · · Pn for n ≤ 8. We will show now that 2OL is inert.
From algebraic number theory, for example proposition 2.7.16 of [Hus], we know that, for i = 1, ..., n:
[LPi : Q2] = ePifPi , where LPi is the completion of L with respect to the norm |.|Pi , defined simi-
larly to the p-adic norm. Because L = Q(α) for some α ∈ L, we have for i = 1, ..., n: LPi = (Q(α))2,
which is equal to Q2(α), as can be verified from the definition. So we have LPi = Q2(α) = L2 and
we end up with 8 = [L2 : Q2] = fPi for i = 1, ..., n. Therefore, as

∑n
i=1 ePifPi = 8, we deduce that

n = 1, i.e. 2OL is inert. We will now prove that this implies that D 6≡ 1(mod 8).

Note that the ring of integers of Q(
√
D) is Z[d+

√
d

2 ], where d is the discriminant of Q(
√
D). The

minimal polynomial of d+
√
d

2 is

(
x− d+

√
d

2

)(
x− d−

√
d

2

)
= x2 − dx+

d2 − d
4

.

We know that d = D if D ≡ 1(mod 4) and d = 4D if D ≡ 2, 3(mod 4). This means that if we
suppose D ≡ 1(mod 8), then d = D ≡ 1(mod 8). Then, we also see that d2 − d ≡ 1 − 1(mod

8) = 0(mod8), so d2−d
4 ≡ 0(mod 2). Hence,

x2 − dx+
d2 − d

4
≡ x2 + x(mod 2) = x(x+ 1)(mod 2),

so 2OQ(
√
D) = (2, d+

√
d

2 )(2, d+
√
d

2 +1) is a totally split, which is a contradiction to the earlier derived

result that 2OL is inert. We conclude that D 6≡ 1(mod 8).
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If the prime factorization of D would contain only primes that are equivalent to 1 modulo 8, then D
would be equivalent to 1 modulo 8, which is not the case. So there exists a prime number p which
divides D and p 6≡ 1(mod 8). Pick now such a prime p. We will now show that we can also deduce
that p ≡ 1(mod 8) from our assumptions, which means that we have our desired contradiction. For
that we will first show that p is totally ramified in L.
Let r be a prime ideal in L above p and I(r/p) the group of inertia, i.e.

I(r/p) = {σ ∈ Gal(L|Q)|σ(x) = x( mod r) for all x ∈ OL}.

We have eL|Q(p) = |I(r/p)|. Let s be the prime ideal r ∩ OQ(
√
D) in Q(

√
D). Then it follows

from the definition that I(r/s) = H ∩ I(r/p), where H =Gal(L|Q(
√
D)) = C4. If I(r/p) would

be contained in H, then |I(r/p)| = |I(r/s)|, so eL|Q(p) = eL|Q(
√
D)(p) and p would not be ramified

in Q(
√
D). However, p is ramified in Q(

√
D) as p|D. So I(r/p) can not be contained in H.

Because Gal(L|Q) = C8, the only subgroup of Gal(L|Q) not contained in H is Gal(L|Q) itself,
hence eL|Q(p) = |I(r/p)| = 8, i.e. p is totally ramified in L.

Since I(r/p) = C8 is a subgroup of O×L/r = F×p , which follows from well-known algebraic number

theory, it follows that 8|p− 1, hence p ≡ 1(mod 8).

It is now time to go to our main claim.

Proposition 20. There does not exist a generic polynomial for C8 over Q.

Proof. We will prove this proposition with contradiction, so assume that there does exist a generic
polynomial f(X,T) ∈ Q(T)[X] for C8 over Q with T being a tuple consisting of algebraically
independent transcendental indeterminates. Let L2 be the unique unramified C8-extension of Q2,
which exists because of proposition 18. Then L2 is the splitting field of some specialization f(X,a)
of f(X,T) over Q2. We may assume here without loss of generality that f(X,a) and f(X,T)
are irreducible. The corollary of Krasner’s lemma, as described above, gives us the possibility to
slightly change the coefficients of f(X,a) without changing its splitting field. If we consider the
definition of the norm |.|2 on Q2, then we deduce that we can even assume in this case a to be a

tuple of rational numbers. Because Ω
f(X,T)
Q(T) |Q(T) has Galois group C8, we know that Ω

f(X,a)
Q |Q

has Galois group at most C8. Therefore, because Q2Ω
f(X,a)
Q = L2, we know Ω

f(X,a)
Q |Q has Galois

group equal to C8. We conclude that L2 is the composition of a C8 extension of Q and Q2, which
is a contradiction with the proposition above.

Note that the proof above works for C2n extensions when n ≥ 3.
In general, one could wonder why the construction of 5.1.1. doesn’t work for an even prime number.
That is because for n ≥ 3, Q(ζ)|Q is not cyclic in general anymore. Therefore, the proof in 5.1.1.
does not hold and as we saw above, counterexamples can be found.

In [Sch92], an explicit construction is given of a parametric polynomial of C8 over a field K, when-
ever K satisfies certain conditions. For the reader that has some knowledge about Brauer groups,
it might be interesting to know that the condition is that for all d ∈ K such that (−1, d) = 0 in
Br2(K) and (2, d) = 0 in Br2(K(i)), we have (2, d) = 0 in Br2(K). In this condition, Br2(K)
denotes the kernel of multiplication by 2 in the Brauer group of K (written additively) and (a, b) is
the class of the quaternion algebra (a, b) for a, b ∈ K. Examples of fields that satisfy this condition
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are Q and fields containing
√

2, i or i
√

2. See [Sch92] for more examples. Over Q an example of a
parametric polynomial of C8, which is not generic, is

X8 − 8(1 + t2)(1 + t4)X6 + 8t2(4 + t2)(1 + t4)2X4 − 32t4(1 + t4)3X2 + 16t8(1 + t4)3.
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6 Noether’s problem and generic polynomials for several
groups

In the previous sections we discussed Noether’s problem and the existence of generic polynomials
for small groups and the cyclic groups of odd order. In this section, we will give an overview of
some results concerning other groups. We start with a table, which denotes the groups for which a
generic polynomial exists over the field corresponding to these groups in the table. Afterwards, we
will give examples of generic polynomials for groups noted in this table. We end this section with
some results concerning Noether’s problem. Let p be a prime number, q an odd prime power and l
a positive integer such that l|p− 1.

Group Field Reference
Dihedral groups Dq Q [Sal82]
p-groups Infinite fields of characteristic p [Gas59]
Frobenius groups Fpl = Cp o Cl, where 8 - l Q [Sal82]

As noted in the previous section, the above result concerning dihedral groups is enough to claim
that for every dihedral group of odd order, a generic polynomial over Q exists.
As an example, we consider q = 3. Then the construction from the proof of Saltman gives the
generic polynomial:

f(s1, s2, t1, t2, u, x) = x3 − 9x2 +
324(s1t2 − s2t1)2u

S2 − T 2u
∈ Q(s1, s2, t1, t2, u)[x]

for D3 over Q. Here,

S = s21 + s1s2 + s22 + u(t1 + t1t2 + t22)

T = 2s1t1 + s1t2 + s2t1 + 2s2t2.

One can deduce from this that also x3 + x2 + t ∈ Q(t)[x] is generic for D3 over Q.

The following example is that of a generic polynomial for a p-group over Fp. As described in
[JLY02], the polynomial

d∑
i=0

(
d

i

)
(−1)d−ixi(p−1)/d+1 − s ∈ Fp(s)[x]

is generic for the group Cp o Cd over Fp, where d|p− 1. In particular,

xp − 2x(p+1)/2 + x− s ∈ Fp(s)[x]

is generic for D4 over Fp.
Over fields with characteristic 6= p, it is not known yet whether there exists a generic polynomial
for all p-groups. However, for some specific p-groups, these generic polynomials are already found,
namely for the following ([JLY02]): over a field with characteristic 6= 2, there exists a generic
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polynomial for the groups

QC8 = 〈i, j, ρ|i2 = j2 = ρ2 = −1, ji = −ij, ρi = iρ, ρj = jρ〉.
QD8 = 〈u, v|u8 = 1, v2 = u4, vu = u3v〉.

and over a field with characteristic 6= p, there exists a generic polynomial for the group

Hp3 = 〈u, v, w|up = vp = wp = 1, vu = uvw,wu = uw,wv = vw〉.

A construction of a generic polynomial for Fpl over Q should be possible to build, as a contruction
is mentioned in the proof. It however turns out to be hopelessly involved. An explicit construction
of polynomials with group Fp(p−1)/2 is given in [JLY02], but these polynomials are unfortunately
neither parametric nor generic.

We conclude this section with some remaining results concerning Noether’s problem for some groups
which are not named yet.

Proposition 21. Noether’s problem is solvable for the following groups:

• solvable transitive subgroups of Sp for p = 3, 5, 7, 11.

• transitive subgroups of S5

• transitive subgroups of S7 which are not equal to PSL2(F7) or A7

• the groups QD8, D8 and M16, which is the smallest group containing C8.

• transitive subgroups of S6 containing C3 × C3, without being equal to A6.

• the alternating group A5.

A reference for the first three claims is [JLY02]. For the fourth, fifth and sixth claim, we refer to
respectively [HHR08], [Zho15], [Mae89].
For the alternating groups An with n ≥ 6, it is not known yet whether Noether’s problem is solvable.
Moreover, the existence of a generic polynomial for An with n ≥ 6 is not guaranteed. To make
clear how hard to handle this group appears to be, it is also not possible to build a parametric
polynomial for An, with n unknown.
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7 Conclusion

We started this thesis with the explanation of the inverse Galois problem, which was the reason
to study Noether’s problem and the existence of generic polynomials. We proved the following
implications

Noether’s Problem =⇒ Generic Polynomial =⇒ Galois Extension

for solutions of the different problems. The proof of the first implication, proposition 4, also con-
tained a construction for a generic polynomial.

In the third section generating invariant polynomials were found for the cyclic, dihedral and alter-
nating groups. They were used in the next section, were we solved Noether’s problem for several
small groups. In the following sections, we looked at the existence of generic polynomials in detail
for cyclic groups and in a short way for dihedral groups, p-groups and Frobenius groups. The results
of these sections are as follows.

In section 4 we showed that Noether’s problem is solvable for all subgroups of Sn n ≤ 4 and also for
Q8. In section 4.7, we reduced Noether’s problem for Q16 to a smaller problem, but unfortunately
without solving it. A generic polynomial exists over Q for Cn and Dn if n is odd and does not exists
over Q if 8|n, as proved in section 5. A generic polynomial over a field with characteristic p exists for
all p-groups and over Q for QC8, QD8, D8 and Hp3 . It also exists over Q for the Frobenius groups
Fpl if 8 - l. Furthermore, some other groups are noted for which Noether’s problem is solvable, with
one of them being A5.

Even though we managed to obtain several results, Noether’s problem remains unsolved for the
majority of the groups, which means there is still a lot to discover in this branch of mathematics.
We hope the reader is wondered by the beauty of these simple-looking problems and enriched with
the results of this thesis.
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8 Appendix

The following codes were used throughout this thesis. The code that gave the minimal polynomial
of l4 in section 4.2 is the following.

In[2]:= SymmetricReduction[(a - (x z + y t)) (a - (x y + z t)) (a - (x t + y z)),
{x, y, z, t}, {s1, s2, s3, s4}]
Out[2]={a3 − a2s2 + as1s3− s32 − 4as4− s12s4 + 4s2s4, 0}

In section 4.3 the following code was used in order to determine (l′4 − l′′4 )2 in terms of s1, s2, s3, s4
and l4. First observe that we must end with the expression

(l′4 − l′′4 )2 = A0 +A1l4 +A2l
2
4,

with Ai ∈M , as the left hand side is of degree 2. Letting S4 act on this equation gives

(l′′4 − l4)2 = A0 +A1l
′
4 +A2l

′2
4 and ((l4 − l′4))2 = A0 +A1l

′′
4 +A2l

′′2
4 .

Hence, A0

A1

A2

 =

1 l4 l24
1 l′4 l′24
1 l′′4 l′′24

−1(l′4 − l′′4 )2

(l′′4 − l4)2

(l4 − l′4)2

 .

The following Mathematica code gives an expression for Ai:

In[3]:=m = {{1,xz + yt, (xz + yt)2}, {1,xy + zt, (xy + zt)2}, {1,xt + yz, (xt + yz)2}}
Out[3]= {{1, ty + xz, (ty + xz)2}, {1, xy + tz, (xy + tz)2}, {1, tx+ yz, (tx+ yz)2}}

In[5]:=n = {{(xy + zt− xt− zy)2}, {(xt + zy − xz− yt)2}, {(xz + yt− xy − zt)2}}
Out[5]= {{(−tx+ xy + tz − yz)2}, {(tx− ty − xz + yz)2}, {(ty − xy − tz + xz)2}}

In[14]:= Simplify[Inverse[m].n]
Out[14]= {{x2(y− z)2 + y2z2 − 2xyz(y+ z) + t2(x2 + (y− z)2 − 2x(y+ z))− 2t(x2(y+ z) + yz(y+
z) + x(y2 − 3yz + z2))}, {2(yz + x(y + z) + t(x+ y + z))}, {−3}}

We see A2 = −3. The following code reduces the expressions of A0 and A1 in terms of s1, s2, s3, s4:

In[12]:= SymmetricReduction[x2(y − z)2 + y2z2 − 2xyz(y + z) + t2(x2 + (y − z)2 − 2x(y + z)
−2t(x2(y + z) + yz(y + z) + x(y2 − 3yz + z2)), {x,y, z, t}, {s1, s2, s3, s4}]
Out[12]= {s22 − 4s1s3 + 16s4, 0}

In[13]:= SymmetricReduction[2(yz + x(y + z) + t(x + y + z)), {x,y, z, t}, {s1, s2, s3, s4}]
Out[13]= {2s2, 0}

The following code gives the relation in section 4.4:

In[15]:= SymmetricReduction[(x− y + z− t)2, {x,y, z, t}, {s1, s2, s3, s4}]
Out[15]= {s12 − 4s2, 4ty + 4xz}
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The code for the polynomial P (z) in section 5.1.1. is the following:

In[4]:=ExpToTrig[Simplify[Expand[(z− (c1c23c32c44 + c12c2c34c43 + c13c24c3c42

+c14c22c33c4))(z− (c1c23c32c44Exp[2IPi/5] + c12c2c34c43Exp[2IPi/5]2+
c13c24c3c42Exp[2IPi/5]3 + c14c22c33c4Exp[2IPi/5]4))(z− (c1c23c32c44Exp[2IPi/5]2+
c12c2c34c43Exp[2IPi/5]4 + c13c24c3c42Exp[2IPi/5] + c14c22c33c4Exp[2IPi/5]3))(z−
(c1c23c32c44Exp[2IPi/5]3 + c12c2c34c43Exp[2IPi/5] + c13c24c3c42Exp[2IPi/5]4+
c14c22c33c4Exp[2IPi/5]2))(z− (c1c23c32c44Exp[2IPi/5]4 + c12c2c34c43Exp[2IPi/5]3+
c13c24c3c42Exp[2IPi/5]2 + c14c22c33c4Exp[2IPi/5]))]]]

Out[4]= −c120c210c315c45−c115c220c35c410−c110c25c320c415−c15c215c310c420−5c115c210c310c45z
−5c110c215c35c410z+5c110c210c310c410z−5c110c25c315c410z−5c15c210c310c415z−5c110c210c35c45z2

−5c110c25c310c45z2 − 5c15c210c35c410z2 − 5c15c25c310c410z2 − 10c15c25c35c45z3 + z5

The code for the polynomial g(X; T) in example 1 is as follows:

In[66]:= w = Exp[2PiI/3]

Out[66]= e
2πi
3

In[68]:= Simplify[Product[(x−wjA−w2jB), {j,0,2}]]
Out[68]= −A3 −B3 − 3ABx+ x3
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