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Abstract

In order to correctly parse a sentence, its underlying structure needs to be
understood. The functional task of every word in a sentence stands in relation
to other words through the notion of dependency, and the task for the person
taking in a sentence is to lay such dependency links between the word they are
currently attending and one of the previously attended words. How exactly the
chosen previously attended word is retrieved from memory is often under spec-
ified. Therefore Nicenboim & Vasishth (2018) compared two models with each
other in terms of their power to describe the speed/accuracy trade-off of this
process. We expand on this work by using these two models with a dataset that
includes individuals with aphasia. The first model is the activation-based race
model. It assumes that resolving syntactic dependencies is related to the activa-
tion of previously retrieved candidate dependants. When confronted with a new
item, these candidates accumulate activation over time. The dependant (and
thus, the interpretation) associated with the accumulator that first surpasses
its threshold is chosen. The second model is the direct access model which as-
sumes instant access to previously retrieved words. The difference in listening
times here is explained by a backtrack-and-repair process that may take place
when the initial parse is deemed incorrect. The activation-based race model is
implicitly assumes that incorrect interpretations are generally associated with
longer listening times, whereas the direct access model is ties incorrect inter-
pretations with shorter listening times. The resulting fits on the empirical data
show that although the data tells us that the mean listening times for all of
its cross sections are shorter for incorrect trials, the direct access model does
not perform better. Instead, the resulting fits indicate that both models have
problems fitting certain different aspects of the data.
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1 Introduction

1.1 A case for cognitive modeling

The term Artificial Intelligence (AI) is arguably the most used buzzword in context
of current technological advancements. The definition posed by Russell and Norvig,
from their standard work Artificial Intelligence: A Modern Approach, catches a great
deal of the current endeavours within the field: "The designing and building of intel-
ligent agents that receive percepts from the environment and take actions that affect
that environment." (Russell & Norvig, 1995). As you may notice though, this is
rather broad. This is no coincidence, as the goals of AI and its branches are not
clear-cut, and the term is often used loosely. There is an important distinction to
be made between the two dominant ways of interpreting the field as a whole: on
the one hand there is the purist way, aiming for a path that will lead to a broad
form of human-level intelligence, and on the other hand there is the more pragmatic
approach, which often seems intelligent, but may often boil down to ’a smart way to
solve a complex problem’. This distinction is often referred to as "weak AI" versus
"Artificial General Intelligence" (AGI), or "strong AI". Weak AI is characterized by
being very domain specific and driven by concrete problems, whereas strong AI, a
more long-term endeavour, focuses on the hard problem of AI: the aim for multipur-
pose agents that adapt on the fly to their dynamic environment without explicitly
instructing every step of the way.

To illustrate, consider Deep Blue (Campbell, Hoane Jr, & Hsu, 2002), a chess
engine developed by IBM that bested chess world champion Kasparov in 1996. Con-
sidering both the complexity of the game, as well as Kasparov’s incredible expertise,
a truly remarkable feat. It is however also truly exemplary for weak AI: Deep Blue
is an agent incredibly good at performing within the boundaries of an incredibly
narrow domain (and agnostic in pretty much all other thinkable domains). Many
of these narrow domains have been investigated to a greater or lesser extent, but
they are far from trivial to integrate into a general framework, or a general line of
thinking.

Although I am positive that a manifestation of intelligence is certainly not only
possible in the way it works in humans, there is a lot that can be learned from taking
a step back and considering the vast body of work contributed by the cognitive
sciences, the neurosciences, (psycho)linguistics and certain branches of philosophy.
Of course many AI branches consider these fields, but mostly as a means to reach
said narrow goals. One of the ways to glue together this body of research on human
cognition with the path to AGI, can be considered to be the branch of cognitive
modeling: a branch on the intersection of the cognitive sciences and AI. The goal
of cognitive modeling is to understand the cognitive processes that go on within
humans and then recreating those processes by a mechanical simulation (a computer,
generally). Whilst the results may not always be as awe-inspiring as other AI feats,
the methodology and careful examination of empirical intelligence, paves a durable
path. Rather than staring towards a single goal application with no guarantee for
generalization, or developing a neural network that struggles for explanatory value
(Özesmi & Özesmi, 1999; Olden & Jackson, 2002, etc.), consequently potentially
leading to a dead end, it is incredibly valuable to consider the workings of human
intelligence on a processing level in the incremental build-what-we-know-and-verify-
it-as-we-gain-more-understanding modus operandi of cognitive processing.

The building of such models not only is an attempt of moving towards the AGI
on the horizon, its feedback loop back towards the understanding of cognition also is
a great strength. Using empirical data, theories about the inner workings of the mind
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can be modeled and then assessed. This two-fold validation is a way of keeping both
the engineering and the reverse engineering side in check. The quality of proposed
models can be assessed in a rich way, and it is possible for multiple theories and
models to be bundled together. Multiple such bundles, or cognitive architectures
have been proposed, most notably ACT-R (Anderson, 1996). Although cognitive
modeling inhibits a sense of an overarching potential for unification, it is necessary
to focus on small subsets of cognition at the time.

1.2 The aim of this thesis

In this thesis we will focus on an aspect of natural language: sentence processing.
Expanding on the work by Nicenboim & Vasishth (2018), we will implement two
Bayesian models to look at the speed/accuracy trade-offs that occur during this
cognitive process and at how aphasia may or may not influence it. We will first
provide the necessary background information on sentence parsing and the relevance
of this research within the context of the current state of the field. After that we will
unroll the incremental steps of creating such models. Then we will end by analyzing
the models and by reflecting on what the results say about the speed/accuracy trade-
offs in sentence processing.

1.3 Sentence processing

Figure 1: An example dependency parse of the sentence "David, who went to Berlin,
made a friend". The main verb "made" is the root here, towards which all other
words directly or indirectly point. Most dependencies are adjacent, but the one
between "David" and "made" is not. The models attempt to explain what happens
in resolving these dependencies. Software: (Explosion.ai dependency parser , n.d.)

In order to understand a sentence, we as humans, need to make connections
between its words and figure out its underlying structure. This process is called
sentence parsing and it gives us an idea about the functional task of each word
and its relation with respect to the other words in the sentence. We humans do
it constantly and mostly rather unconsciously, but it certainly is a non-trivial task,
making it an interesting topic for research. We will reason from the idea that when
syntactically parsing the structure of a sentence, the key is to form a notion of
dependency. A listener (or reader, or ...) is to correctly form these dependencies
among the words in order to correctly parse and understand a sentence. Given
the notion of dependencies, this final parse has a tree-like structure, with directed
dependencies between the nodes (the words), as shown in figure 1. Generally, the
main verb is chosen as the root of the tree, with every other word being dependant on
either this root or on any other node. Such a dependency may arise from the child’s
role as an argument (e.g.: nominal subject, indirect object) or as a modifier (e.g.:
temporal modifier, determiner) (Jurafsky & Martin, 2009) of its dependant. When
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a new word is attended, the agent looks for certain traits that the dependant should
share. For dependencies that are to be laid in a non-adjacent manner, the working
memory serves as a kind of "sketchpad" through which the agent may search, in
order to assess the candidate dependency resolvers (McElree, 2000). This notion
of working memory is supported empirically, in that data shows that the larger the
distance between two co-dependants is, the more difficult it is to process the sentence.
Similarly, due to what is called interference, the more candidate co-dependants of a
certain goal dependant share similar traits, the more difficult it is to lay the correct
link, or to retrieve the correct dependant- that is, to re-access the correct part of
information that has already been processed in the past (Nicenboim & Vasishth, 2018;
Lewis, Vasishth, & Van Dyke, 2006). We assume that previously attended words and
phrases are encoded as feature bundles: syntactic key/value pairs (e.g.: [number:
singular, tense: past, etc.]). When a new word is attended and a dependency needs
to be resolved, it will evoke retrieval cues: expectations of specific values of certain
keys. Nicenboim & Vasishth (2018) noticed that how exactly this retrieval process
works, is often under specified. The problem with this under specification is that
different implementations will say different things about the speed/accuracy trade-off
in empirical data. They developed two possible models coming from slightly different
assumptions. We will also use these models, but fit them on a richer dataset: one
that includes individuals with aphasia (IWA’s, described in section 1.6). This, to
explore how these models behave when such a language deficit comes into play.

1.4 The models

The first model, the activation-based race model, bases the coupling of retrieval cues
and the correct previously retrieved feature bundle, or chunk, on the notion of acti-
vation. Previously attended chunks all have a certain activation level that depends
on three factors: its retrieval history, the measure in which the features match the
retrieval cues and the measure in which competing chunks inhibit similar features
(Lewis & Vasishth, 2005). The speed and accuracy of retrievals in turn depend on
this level of activation. Like Nicenboim & Vasishth (2018), in order to simplify this
theory into a workable Bayesian model, we will use a log-normal race model as pro-
posed by Rouder et al. (2015). In this simplification, items in memory accumulate
activation over time. The item associated with the accumulator that first reaches
a certain threshold is then retrieved. The accumulation times are log-normally dis-
tributed, where the correct interpretation is expected to have a lower µ than the
incorrect one. Incorrect responses may occur when the accumulator of the incor-
rect interpretation is faster due to the random nature of the log-normal function.
This means for the speed/accuracy trade-off that this model assumes that incorrect
answers will generally be associated with longer listening times than correct ones.

The second model is called the direct access model and it is, in contrast to the
activation-based race model, based on to the assumption that retrieval of previously
accessed chunks is instant, regardless of their retrieval history or cue matching. To
account for differences in listening times and comprehension accuracies, the direct
access model assumes relatively fixed times for when the correct item is retrieved,
as well as the possibility for a backtrack and repair process when an incorrect item
is retrieved. If an incorrect item is retrieved and no reanalysis has taken place,
it has occurred in a faster total time (one without extra reanalysis time), but the
comprehension of the sentence will be wrong. If an incorrect item is retrieved and
there has reanalysis taken place, the eventual response will assumed to be correct,
and the total time will be longer. Because our data is based on sentences normalized
to have at most one dependency that is difficult to resolve, we assume that this
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reanalysis time is distinguishable in the data. The result of this model for the
speed/accuracy trade-off thus is that incorrect answers generally have faster response
times than correct ones.

Both of these models (described in more detail in sections 3 and 4) will be fitted
on the empirical dataset that partially consists of individuals with aphasia (IWA’s).
Both the dataset itself and the notion of aphasia are described in the following
sections.

1.5 The dataset

The dataset we will fit our models on comes from an experiment conducted by
David Caplan et al. (2015). The subjects were exposed to three experiments: object
manipulation, picture matching, and self-paced listening with picture matching. In
this thesis, we are interested in the task that combined self-paced listening task with
picture matching. A total of 13 sentence types were tested, but we will only focus
on two of those: subject-subject relative clauses, (SS) and subject-object relative
clauses (SO). In both sentence types a noun is modified by a relative clause. In the
case of an SS-type sentence, the word referring to said noun is the subject, in SS-type
sentences that referral word is an object:

1. SS: David, who missed his band, went to the United States

2. SO: David, who his band missed, went to the United States

In case 1, David is the one who misses his band, whereas in case 2 it is the band
that misses David. Intuitively, one might expect the latter to be more difficult to
read. Unsurprisingly, it is widely established that this is indeed so: in English, the
processing of SO type sentences leads to significantly more problems than SS type
sentences (Traxler, Morris, & Seely, 2002; Wanner & Maratsos, 1978, and many
others). The advantage of such a clear distinction is that we may assume our models
capture this relative clause type effect. For both of these sentence types, 20 trials were
conducted for each of the 56 IWA’s and for the 46 controls. Both the listening times
of every chunk and the correctness of the subsequent comprehension question were
stored. These comprehension questions tested whether the correct interpretation or
its ‘counterpart’ - passive vs. active / etc. - was chosen. The control subjects that
were selected were matched for age and education.

1.6 Aphasia

The richness of the dataset lies in the fact that it includes individuals with aphasia
(IWA’s). Aphasia is not a single isolated condition, but rather a collection of lan-
guage deficits that depend on the location and the severity of the brain damage. As
Damasio (1992) puts it: "Aphasia is a disturbance of the comprehension and for-
mulation of language caused by dysfunction in specific brain regions". IWA’s thus
often experience problems when processing sentences. Many possibilities have been
posed to explain the nature of this inability, such as slowed processing (Burkhardt,
Piñango, & Wong, 2003), intermittent deficiency (Caplan et al., 2015), and resource
reduction (Caplan, 2012), all three of which have been modeled in the Lewis-Vasishth
model by by Mätzig et al. (2018). However, we will not go into the underlying foun-
dations of this deficit. Instead, we will look how the models are able to deal with
the speed/accuracy trade-off in this specific group. Because of the difficulty that
this group experiences, we expect the models to show that the performance of this
group is worse in at least one of the two measures (comprehension accuracy and total
listening times).
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In the sections to come we will elaborate on these models and their respective
power in capturing specific aspects of the dataset. But since the models are imple-
mented in a Bayesian way we will start off by explaining the mechanics of Bayesian
modeling and how this method is implemented in the framework we will be using:
Stan (Carpenter et al., 2017).
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2 Bayesian modeling using Stan

We use the R implementation of the probabilistic modeling framework Stan (Carpenter
et al., 2017). This open source project, named after Stanislaw Ulam, one of the
founders of the Monte Carlo method (Metropolis & Ulam, 1949), is rapidly gaining
ground among Bayesian statisticians and continues to expand its audience. Below is
explained how it works.

2.1 Bayesian inference

In order to fit the models on the data, we first need to create the functional foundation
of the models. After this, we have to fine-tune specific parameters of these models to
allow them to best align with the data. The first step, the creation of these models
is explained extensively in sections 3 and 4. For now, it is enough to know that these
models only describe the functional mechanics of the theories. One difficulty is that
the theories that they are built upon usually don’t specify the expected values for
most of the numerical aspect of the models. These values often depend on the details
of the empirical set-up that collected the data. What Bayesian modeling allows us
to do, is to parameterize these numbers, and to find the values of these parameters
that best match the data. Finding the best parameter values starts with a concept
called Bayesian inference. A typical model thus has a set of parameters, and a set
of proposed parameter values, one for every parameter, is called a hypothesis. The
quality of such a hypothesis depends not only on the difference between the model
given the parameter values of the hypothesis, and the real data, referred to as the
likelihood, it also depends on the data agnostic initial belief on what parameter values
should look like, called the prior probability. The prior probabilities may be based
on empirical data, or on other research. They may also be non-informative, if there
is no reasonable prior knowledge.

More formally, Bayesian inference is a way to compute the posterior probability :
the probability that the hypothesis holds given the likelihood function and the prior
probability. A set of these probabilities consequently is a probability distribution. To
explain how exactly Bayesian inference works, we need to establish Bayes’ theorem
to establish a posterior probability distribution:

P (H|D) =
P (D|H)P (H)

P (D)
(1)

where D stands for the collected data and H for the hypothesis. In this explanation,
we are mostly interested in the terms in the numerator on the right-hand side. First,
P (H) is the prior probability: what is the probability of the hypothesis being true
given our knowledge of the world? This is a delicate part, because it gives one the
chance of adding a very useful complementary element to the data, but if the prior
is not chosen carefully, the convergence of the model may be steered into the wrong
direction. In this thesis, most priors are either based upon previous research, or
rather conservative. The second term is the marginal likelihood P (D|H). This is the
probability of the data given the hypothesis. In other words: what is the difference
between the model under a given hypothesis and the real data? This is computed
by first determining for every data point d the probability that the given hypothesis
would be true and then multiplying these probabilities with each other. In Bayesian
modeling, this is where the structure of the model is defined. The denominator P (D)
is the probability of the data being observed. Because it has the same value for every
hypothesis, this normalizing constant can be ignored. We can therefore also state:

P (H|D) ∝ P (D|H)P (H) (2)
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It is computationally impossible to use Bayesian inference with multiple parame-
ters (or sets of hypotheses) simultaneously for every possible hypothesis: there needs
to be heuristics in place to cleverly pick suitable candidate hypotheses. For this
reason, sampling heuristics are developed to ’walk’ between hypotheses. This is
explained below.

2.1.1 Markov chain Monte Carlo sampling

Recall that that the parameter space to explore consists of all possible parameter
values for all parameters. For every set of specific values we can compute the posterior
probability using formula 2: we know the prior probability and we can compute the
likelihood. Sampling can be regarded as a means to ’walk’ over this parameter space.
There are multiple different sampling algorithms, but most of them, as well as the
ones we will discuss are based on the notion of getting from a sampled hypothesis x
to a new sample hypothesis x′. The formula that does it can then be called Q(x′|x).
Sampling while using the current position on the parameter space to find the next
is called Markov chain Monte Carlo (MCMC) sampling. Stan uses a certain type
of MCMC - so a certain type for formula Q - called a No-U-Turn sampler (NUTS),
which in turn is based on Hamiltonian Monte Carlo (HMC) sampling. However, in
order to develop a sense of feeling for these algorithms, it is best to start off by talking
about the simpler Metropolis-Hastings algorithm. This algorithm is a generalization
by Wilfred K. Hastings (1970) of the landmark paper by Nicholas C. Metropolis
(1953), wherein MCMC is first proposed. The description of this generalization is
described rather technically in the paper, but this is simplified below.

2.1.2 Metropolis-Hastings

To initialize the algorithm we start in a random position x on the parameter space
(that is, for every parameter we randomly select a possible value, ’we construct a
random hypothesis’) and calculate its posterior probability P (x). Then for every
iteration t, a candidate x′ is selected using a random walk function, and its posterior
probability is computed: P (x′). If P (x‘) > P (x) then we accept the sample. If not,
we generate a random number α between 0 and 1, and we only accept it if α > P (x‘)

P (x) .
If the new sample is accepted, we store this new sample, else we store the old sample
again. This way, samples closer to the optimum will always be favoured, but samples
further away can still be selected, depending on the values of α generated. If all went
well, after many iterations, the sampling distribution now has a shape very similar to
the true distribution. A problem however, is that this method is very biased towards
local optima: once the sampler approaches a certain optimum, it is very unlikely for
it to traverse out of it, travel through a valley, and reach the next optimum. This
can be solved by using multiple chains: every chain (or every complete run of the
algorithm) assumes a different initial location in the parameter space. If these chains
all reasonably converge to the same optimum, we may assume that the optimum
we are interested in is found. If not, a so-called multimodal distribution is found:
multiple different sets of parameter values reach similar outcomes. If this happens,
this may mean that we need to resort to stricter priors, for one of the distributions
will most likely align more with the theory than the other(s). Because we started
on a random place on the parameter space, the first part of the samples may all be
quite far from the real distribution, and, depending on the traits of the data and the
random walk formula, take quite some iterations before converging to the interesting
part of the parameter space. This section of the iterations is often referred to as the
’burn-in phase’. Its outcomes are often ignored in the analysis process.
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2.1.3 Hamiltonian Monte Carlo

In 1987, Simon Duane et al. presented a hybrid Monte Carlo system. It was ini-
tially coined as hybrid Monte Carlo (HMC), but it is now better known as Hamilto-
nian Monte Carlo (not coincidentally, also abbreviated to HMC) (Duane, Kennedy,
Pendleton, & Roweth, 1987). This technique has been described more aimed towards
our purposes by Radford M. Neal (2011) and by someone who is one of the driving
forces behind Stan: Michael Betancourt (2017).

The difference between HMC and the Metropolis-Hastings algorithm lies in the
way in which it samples the next sample x′ given a current sample x. In order to gain
an intuitive sense of the algorithm, one has to imagine the parameter space and its
corresponding values as its inverse: the higher the posterior probability a parameter
combination will yield, the lower this is represented in this inverted space, as shown
in figure 2

Figure 2: Flipping of the posterior probabilities of the parameter space for HMC.

Now, from a point x, we will get to point x′ by choosing a velocity v, a direction d
and a time t with which we fire an element from x. Imagine that element physically
being sent off under those conditions. It would behave just like a real element
would in the physical equivalent of the inverted parameter space. When traveling
uphill, it will gradually lose velocity and possibly even stop and turn around. When
traveling downhill, its speed increases. Similarly, bends in the parameter space may
cause the element to take twists and turns. The velocity and direction will change
dynamically according to the shape of the parameter landscape. The location of the
element after time t is then taken as the new sample x′. A graphic illustration of an
element traveling through such an inverted parameter space is shown in figure 3.

How every point in the parameter space affects the particle that travels through
it (or, intuitively, how ’gravity’ works on the parameter space), is laid out in a vector
field: for every point in the parameter space, an adjustment for direction and velocity
is taken into account.

The advantage of this technique is that it still allows for attaining samples dis-
tributed similarly to the true parameters, while at the same time taking larger steps
at the time. This lowers the amount of samples required, which is a great compu-
tational advantage. The chance of it traversing to a second optimum (valley, in this
inverted world) also is slightly higher, but still not something this algorithm excels
at.

2.1.4 No-U-Turn sampling

The smooth path the particle takes is discretized into leapfrog steps. After each such
leapfrog step the gradient in that point is calculated and the momentum from there
onward adjusted accordingly. Because of this discretization, the particle may end up

11



Figure 3: Example of a sampling step in HMC. Note the similarities the path shows
with a physical ’kick’ from point x in the direction upwards of the slope, during
which the gravitational force makes it lose its velocity and causes it to drop down
again. The location after time t is chosen as new sample point x′.

in undesirable places. For this reason, a Metropolis-Hastings-type accept/reject step
is added, based on the negative log probability and the momentum of the particle.
The difficulty is to determine the size and the amount of the leapfrog steps: if the
step size ε is too small, the computation time can turn out overly high, but if ε is too
big, many samples may be rejected. Also, if the amount of steps L is too low, the
algorithm walks seemingly at random and is no better than the Metropolis-Hastings
algorithm, whereas if L is too high, again, the computation time may be impractical.
The sampling algorithm as implemented in Stan is built on top of HMC. Because
it keeps track of where it has already been, and aims to avoid those places, it will
choose ε and L dynamically. Because the element will not double back on itself, this
final algorithm is called the No-U-Turn sampler (NUTS) (Hoffman & Gelman, 2014).

Now Bayesian interference and the sampling algorithm are explained we will look
how this is all captured by our framework of choice: Stan (Carpenter et al., 2017).

2.2 Stan

Stan itself is a C++ framework, but in this thesis we connect to it through Rstan
(Stan Development Team, 2018), the interface compatible with R (version 3.4.4) (R
Core Team, 2013). The interface allows one to feed input data to a compiled Stan
file from R, and receive the output back into R.

2.2.1 Setup

A Stan file is built up out of 7 components, or blocks, that all have a different function.
They need to be defined in a particular order, and each block shares its scope with
the subsequent ones. In order to give an idea about how Stan modeling works in
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practice, we’ll go through them here.
In the functions block, functions may be defined. Its main use is to enhance

readability and maintainability of the code. In the data component the data that
will be fed from R is specified. In case of a model

Y = α+ β ∗X (3)

vectors Y (the dependent variable) and X (an unmodeled effect parameter) are fed
to the model. Note that in order to use such an unmodeled effect parameter, it has
to be translated to numerical values. The cleanest way, and the way we will do it in
this paper, is to translate the unmodeled effect parameters from binomial data into
the values -1 and 1. This way, a modeled effect parameter (such as β in equation 3)
may be attached to (multiplied with) this unmodeled effect parameter and lets one
inspect the effect of this unmodeled parameter independently from the rest of the
model. The transformed data block is used to declare constants. After the data
is read, this block may use its values to compute auxiliary ones. In the parameters
component the modeled parameters are defined. These parameters are eventually
sampled by Stan. In equation 3, the unmodeled parameters are α and β. Similar to
the transformed data block, the transformed parameters may be used to define
auxiliary parameters. In the model part, the priors and the likelihood function are
defined. The priors are defined in statistical notation:

µ ∼ Normal(0, 1) (4)

This is read as µ is distributed as a standard normal distribution with a mean of
0 a standard deviation of 1. The likelihood function may also be written in such a
form, e.g.:

Y ∼ Normal(µ, σ) (5)

Alternatively, the target += ... notation evokes a similar behaviour: the target
keyword represents the total log probability. In other words, equation 5 yields the
same results as target += normal_lpdf(Y | mu, sigma), albeit in the log space
(The suffix _lpdf implies that the log probability density function is evaluated). The
reason it may be convenient to transform to the log space is rooted in a computational
limitations called underflow. Recall that the likelihood, P (D|H) is the product of
all of the probabilities of the data points d to be true, given a hypothesis. Now,
with thousands of data points, all with values v where 0 < v < 1, most of which
values of v are very close to 0, it becomes impossible to plausibly represent those
numbers in a computer system; the eventual numbers are microscopic. A property
of logarithms is that log(x ∗ y) = log(x) + log(y). The target variable is the sum
of all of these logs and it allows the algorithm to skip the impossible multiplication
method and instead opt for the much easier addition. The final Stan component is
the generated quantities block. Here it is possible to generate values as the model
runs. This may be to disentangle mixes of different parameters, or to generate data
to perform posterior predictive checks or leave-one-out-cross-validation with.

2.2.2 Runtime

Once the file is in place, calling the stan function will start the Stan process. First
the data is read and if defined, the transformed data is computed. Then the initial
parameter values are sampled uniformly from the interval (-2,2) and written down.
If multiple chains are selected, the Stan makes sure that the distribution of these
initial values is diffuse across chains. The sampler-element starts at the point in the
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parameter space as defined by its initial values and generates a random initial mo-
mentum for the Hamiltonian dynamics. Here the first iteration starts by calculating
the transformed parameters. Then, using the NUTS algorithm, the particle traverses
the parameter space in leapfrog steps, computing the gradient of the negative log
probability and the particle’s new momentum at every such step. This computation
is what Stan spends most of its time doing. If after some leapfrog steps a sample is
found, the new parameter values are written down. Finally, the generated quantities
are calculated, also written down, and a new iteration is started. After the spec-
ified number of iterations, the first set of warm-up samples is thrown out and the
stan.fit object is returned.

Now the required technical baggage is accounted for, we can take a look at the
actual models themselves, which we will do in the following sections.

14



3 Activation-based race model

Our first model is based on the theory of Lewis & Vasishth (2005). Due to the
promising results that cognitive architectures show, Lewis & Vasishth proposed a
theory of sentence processing on the basis of such an architecture. The advantage is
that this allows the theory to fit in the broader present-day understanding of cognitive
processes and ideas about computational architectures. The main aim of the theory
proposed by Lewis & Vasishth is to offer a procedural insight into the underlying
step-by-step process in processing sentences. It does so computationally: there are
mechanics and components to the define the broader computational architecture,
such as memories, processes and a control structure, and functionally: specifically
for the task of real-time sentence comprehension. The mold that was chosen to
embed the theory in is ACT-R: the leading cognitive architecture that combines the
consensual assumptions of cognitive processing today (Anderson, 1996).

Within ACT-R, the declarative memory consists of chunks: a chunk is a set of
key/value pairs, with things the agent knows. In sentence processing, while under-
standing sentence 1 for instance, a chunk could be [category:NP, case:nominative,
number:singular, head:David ], holding the information about the word David.

1. SS: David, who missed his band, went to the United States

These chunks may held by buffers: cognitive components with certain roles.
Every buffer holds up to one chunk. Every chunk not in a buffer has to be retrieved
in order to access it. The Lewis-Vasishth model works with four such buffers: the
control goal buffer, the problem state buffer, the retrieval buffer and the lexical buffer,
but the main two of interest here are the control goal buffer and the retrieval buffer.
When resolving a dependency, the control goal buffer evokes cues: expectations that
the dependant ought to meet. The probability and latency to retrieve a chunk (to
occupy the retrieval buffer) depends on its activation: a numeric value that depends
on its previous retrievals, as well as on the measure in which the cues match the
chunk’s key/value pairs and on interference. The chunk of which the activation first
exceeds a certain threshold is selected and put in the retrieval buffer, enabling the
resolution. The base activation level B for a chunk i is calculated as follows (Lewis
& Vasishth, 2005):

Bi = ln(

n∑
j=1

t−dj ) (6)

where tj represents the time since its j’th retrieval, d stands for a decay rate (as the
consensus suggests, set to 0.5 (Lewis & Vasishth, 2005; Anderson et al., 2004)), and
n is the number of retrievals. The important trait of this formula is that it decays
over time, with an sudden increase every time the chunk is retrieved again, after
which it decays over time again, albeit slower each time.

The total activation A of chunk i does not only depend on its retrieval history
(expressed as base activation Bi). Once a chunk is in the goal buffer and looks for a
match, the activation of previous chunks is influenced by their features in relation to
the cues that the chunk in the goal buffer evokes. Additionally, the measure in which
cues that match the chunk’s features also match other chunks’ features is taken into
account. This phenomenon, called the fan effect, makes retrieval more difficult and
results in lower activation. This yields the complete activation formula as follows:

Ai = Bi +
∑
j

WjSji (7)
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Here, index j loops over the retrieval cues of the goal buffer that match with
chunk i. The term Wj represents the weight of a particular cue j. In the Lewis-
Vasishth model, this term is a normalization factor: 1

g , where g is the total amount
of cues evoked by the chunk in the goal buffer. The term Sji then represents the
association of retrieval cue j to chunk i. Because index j loops over cues that are
matched in chunk i, association is present. The maximum value this term may
assume is S, and it is reduced only by the number of occurrences of the same cue in
competing chunks. This fan effect is written as fan(j):

Sji = S − ln(fan(j)) (8)

As mentioned before, the latency to retrieve a chunk depends on activation.
Intuitively: the more active a chunk still is, the less effort it takes to retrieve it. The
relation between activation Ai and latency Ti can be expressed as follows:

Ti = Fe−Ai (9)

where F is a scaling constant, estimated to be 0.14 by Lewis & Vasishth (2005).
Recall that the activation of a chunk depends on its correspondence with the chunk
in the goal buffer. Due to noise, it may occur that a wrong chunk is retrieved and
an incorrect interpretation of the sentence is held.

Rouder et al (2015) propose a way of treating response choices and response
times as log-normally distributed accumulators which race with each other. Nicen-
boim & Vasishth (2018) then proposed a way of connecting this mechanism to the
Lewis-Vasishth model. This allows us to conveniently capture the listening times
and comprehension task accuracies from our Caplan et al. dataset (2015), while
maintaining the functional spirit of the Lewis-Vasishth model. The assumption is
that chunks that are candidates for retrieval accumulate their activation over time
until a threshold is hit. The chunk of which the accumulator first hits its thresh-
old, is retrieved. The speed of the accumulation depends on the same processes as
mentioned in equation 7. Because the sentences in our dataset, there are generally
two main possible interpretations of a sentence. We therefore assume that there are
two accumulators that race each other, one for SS-type sentences (such as 1), and
one for SO-type sentences (such as 2). The difference between this activation-based
race model and the Lewis-Vasishth model is that when an interpretation I is chosen
in the activation-based race model, the other interpretation I ′ still accumulated its
own activation, whereas in the Lewis-Vasishth model that would not necessarily be
the case. However, as suggested by Nicenboim (2018), we can theorize about the
retrieval time (equation 9) it would have had, if it were retrieved (7). Assuming the
noise of activation Ac is normally distributed with a mean µc a standard deviation
σc, we can rewrite equation 9 to:

Tc ∼ Fenormal(−µc,σ) ∝ Tc ∼ enormal(−µc,σ) (10)
⇒ log(Tc) ∼ normal(−µc, σ) (11)
⇔ Tc ∼ lognormal(−µc, σ) (12)

As suggested by Nicenboim (2018), the exact values of µ and σ are not of semantic
importance. Instead, it is of more value to rewrite µc as follows: µ = b - αc

Where b is an arbitrary constant set high enough to make sure αc is positive.
This way, a higher αc means a higher accumulation rate.

For both models, we will incrementally build three Stan implementations. The
first one, hereafter referred to as the "simple" implementation, is built to make sure
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the basic premise of the theory works. The second model, the "hierarchical" imple-
mentation takes into account random effects, or by-subject and by-item adjustments.
The final implementation aims to find out what the role of aphasia is in sentence pro-
cessing, given the respective models. It does that by adding a group slope parameter
for the other parameters.

3.1 Simple implementation

The simplest version of the activation-based race model is listed in appendix A.1 In
the data block, the rctypes are the relative clause types, mapped from "SS" and
"SO" to -1 and 1, respectively. The winner vector is a mapping of the interpretations
("SS", "SO") to 1 and 2, respectively. For all trials, the race function is called (note
that the input vectors RT, winner and rctype ought to have the same ordering with
respect to the trials). This function checks which of the two interpretations has been
chosen. To the log_likelihood it then first adds the probability of the winning RT,
given the current parameter values, and then it adds the probability that the losing
accumulator has at least a reaction time of RT, given the current parameter values.
The suffixes _lpdf and _lccdf indicate whether the probability density function
(which calculates the probability of certain value to be x) or the complementary
cumulative distribution function (probability of a certain value to be at least x) are
used.

The effect parameters rctype and beta are inserted to allow us to distinguish
between the four permutations of the answer given in combination with the correct
answer. The beta values can be regarded as sloped on the intercepts alpha:

Tc ∼ lognormal(b− (αc + rctype ∗ βc), σ) (13)

Semantically, this means, that for accumulator αc, there is an effect-adjustment βc,
for whether or not the answer is in fact true. Note that all data is used here, and
the group-effect (IWA vs control) is not taken into consideration on the model level
at this point.

We then let Stan fit the model on the dataset, that is, the sampler samples from
the parameter space to give us a posterior distribution. Once this is done, it is
required to assess the quality of the model: did the model do what we expected it
to do? Does the model fit the data properly? How does the outcome say anything
about our assumptions and research questions? Stan comes out-of-the-box with a
handful of diagnostic tools for these purposes.

The first one we will discuss is called R̂, or Rhat. For every parameter fitted,
the Stan object will return, alongside its posterior values, a measure R̂. This num-
ber gives an indication on whether or not the model has converged to a common
distribution. Mathematically, it comes down to being the ratio of the between- and
within-variance of the chains. This tells us if all chains show similar distributions
and converged to the same maximum. As a rule of thumb, the posterior distribution
of a parameter can be considered ’healthy’ if its R̂ value is <1.1 (Gelman, Rubin,
et al., 1992; Carpenter et al., 2017). As shown in table 1, this is the case for all
parameter values for this model.

Secondly, it is important to look at the trace-plot of the parameters, as shown in
figure 4. Here, the parameter values of the three chains after warm-up are plotted
against the iteration number. If the trace-plots look like straight "fat hairy cater-
pillars" (Lunn, Jackson, Best, Spiegelhalter, & Thomas, 2012), we assume that the
model has converged (Sorensen & Vasishth, 2015). In our case, the trace-plots (in fig-
ure 4) look good, and considering the healthy Rhat values, we may assume that this
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parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha[1] 19.26 0.00020 0.0104 19.24 19.28 2567 1
alpha[2] 19.18 0.00021 0.0112 19.15 19.20 2728 1
beta[1] -0.20 0.00019 0.0102 -0.22 -0.18 3000 1
beta[2] 0.28 0.00022 0.0111 0.26 0.31 2634 1
sigma 0.51 0.00012 0.0059 0.50 0.53 2616 1

Table 1: Posterior distributions of the simple activation-based race model

model has converged. For the coming models the trace plots will not be displayed,
but you may assume that they look good for our purposes.

Figure 4: Trace-plot for the all three chains of the MCMC when fitting the simple
version of the activation-based race model on the real data. The fact that the chains
mostly overlap is an indicator of convergence.

The next step in determining the quality of the model is to generate simulated
data using the same model principles and the means of the posteriors as parameters.
We generate 6000 data points, equally divided among group type and relative clause
type. For every data point, a listening time and accuracy is generated using the
posterior means. Once this is done, we fit the model on this newly simulated dataset
so that we can compare the originally retrieved posteriors Q against the posteriors
from the simulated data Q′. The results are shown in figure 5. The fact that the
discrepancies between the posteriors Q and Q′ cross zero and are quite small indicates
that Stan successfully recovers the true parameters (Furr, 2017).

3.2 Hierarchical implementation

The simple model does not really capture the richness of the data yet. It is likely
that certain subjects are generally somewhat faster than others. There might also
be a difference in the relative clause type effect (the difference between the correct
answers, given the chosen answers) across subjects. Similarly, some items may have
generally been interpreted faster than others. This iteration of the model is to take
this into account: the random effects for subjects and items. We generate by-subject
adjustments u and by-item adjustments w. The by-subject adjustments u are added
to α and the relative clause type effect β, whereas the by-item adjustments are only
added to α. This, because the relative clause type effect already is a between-items
effect, removing the need for by-item adjustments here. The general effect of the
relative clause type, β, would be redundant if by-item adjustments were to be added

18



Figure 5: The scaled discrepancies between the posterior means found when fitting
the simple activation-based race model on the real data and the posteriors found when
fitting the same model on the simulated data. The points represent the simulated
posterior means, the lines represent the middle 95% of the posteriors.

here. Given these adjustments, the accumulators look like this:

Tc ∼ lognormal(b− (αc + uαi + wαj + rctype ∗ (βc + uβi)), σ) (14)

where i is the index of the subject, and j the index of the item. Note that because
the two accumulators have different α’s and β’s, we assume that the adjustments
may also differ. This leads to a total of 4 by-subject adjustments, and 2 by-item
adjustments.

We assume that the u and w parameters have means of 0 and variances σ2u and
σ2w. The reason the means should be 0 is that it makes sure that u and w really are
just adjustments, correcting for by-subject and by-item effects, and they keep the
general model and its general parameter values in tact. To attain the correct values
for u and w, we adopt a method as explained by Sorensen & Vasishth (2015). The
process described below explains how to build the variance-covariance matrices Σu

and Σw, used to generate the by-subject and by-item adjustment matrices u and w.
These final matrices u and w have dimensions Nitems×4 and Nsubjects×2, one entry
for every adjusted parameter for every subject/item, and are generated as follows:

u ∼ N
(
~0,Σu)

)
w ∼ N

(
~0,Σw)

)
(15)

The first step to find Σu, is to take the Cholesky decomposition Lu of the correla-
tion matrix Cu. The Cholesky decomposition is an algorithm to decompose a matrix
M into a lower triangular matrix L and its transpose Lt. This decomposition has
can be considered to be the square root: the main take away here is that M = LLt.

Cu =


1 ρ01 ρ02 ρ03
ρ10 1 ρ12 ρ13
ρ20 ρ21 1 ρ23
ρ30 ρ31 ρ32 1

 = LuL
t
u (16)

where the values ρij are the correlations between variables i and j (note that ρij =
ρji). The prior most often used for this Cholesky factor correlation matrix is the LKJ
prior: a prior for the entire matrix with parameter η. The value of η determines the
values of the correlations ρ: because we have no real reason to assume any correlation
between the different by-subject and by-item adjustments, we set it to 2.0, setting
the prior values of ρ near zero.
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The next step is to create the diagonal matrix τ of (sampled) standard deviations
is created:

τu =


σu,0 0 0 0

0 σu,2 0 0
0 0 σu,3 0
0 0 0 σu,4

 (17)

Finally, the Nitems × 4 matrix zu is sampled from independent distributions
N(0, 1):

zu =


z00 z01 . . . z0n
z10 z11 . . . z1n
z20 z21 . . . z2n
z30 z31 . . . z3n

 (18)

To obtain the final matrix with the actual by-subject adjustments u, we multiply
the matrices in the following order:

u = (Lu × τu)× zu w = (Lw × τw)× zw (19)

This gives us the by-items and by-subjects matrices, of which every i, j’th element
is assigned to item (or subject) i, and parameter j (so either α1, α2, β1 or β2).

The hierarchical model from formula 14 is now built up and we fit it on the
empirical data. The posteriors that Stan returns are presented in table 2. Most
parameter values are very close to their counter parts in the simple model, except
for sigma_e (which is simply called sigma in the simple model). This is a sign
that the random noise from earlier can now be attributed to by-subject and by-item
adjustments, and that the hierarchical model is an improvement over the simple
model.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha[1] 19.236 1.1e-03 0.0279 19.1802 19.289 697 1
alpha[2] 19.140 1.0e-03 0.0304 19.0786 19.197 855 1
beta[1] -0.239 7.5e-04 0.0227 -0.2848 -0.197 925 1
beta[2] 0.336 8.3e-04 0.0272 0.2840 0.390 1070 1
tau_u[1] 0.261 7.5e-04 0.0208 0.2242 0.304 768 1
tau_u[2] 0.250 7.0e-04 0.0217 0.2095 0.294 961 1
tau_u[3] 0.204 5.4e-04 0.0180 0.1703 0.242 1121 1
tau_u[4] 0.235 6.8e-04 0.0211 0.1966 0.279 973 1
tau_w[1] 0.023 4.4e-04 0.0135 0.0013 0.052 963 1
tau_w[2] 0.049 4.0e-04 0.0151 0.0227 0.083 1418 1
sigma_e 0.435 9.6e-05 0.0053 0.4250 0.446 3000 1

Table 2: Posterior distributions of the hierarchical activation-based race model

3.3 Final implementation

For the final implementation, in order to distinguish between the groups, an extra
slope parameter for group type is added to every existing parameter. Furthermore,
we parameterize the interaction between the group type and the relative clause type.
The final accumulators have the following shape:

Tc ∼ lognormal(b− (αc + uαi + wαj + group ∗ βc1 + rctype ∗ (βc2 + uβi)

+ group ∗ rctype ∗ βc3), σ + group ∗ βc4) (20)
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The posteriors are shown in table 3. The beta values are all fairly small, except
for beta[3] and beta[4]. These correspond with the rctype however (the model
uses a slightly different ’paired’ numbering than equation 20). This could indicate
that in this model there is no apparent single identifiable effect of aphasia.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha[1] 19.2278 0.00096 0.0253 19.1779 19.278 696 1
alpha[2] 19.1319 0.00107 0.0296 19.0727 19.188 761 1
beta[1] 0.1129 0.00102 0.0250 0.0643 0.158 599 1
beta[2] 0.0873 0.00097 0.0261 0.0348 0.140 730 1
beta[3] -0.2455 0.00054 0.0186 -0.2817 -0.209 1182 1
beta[4] 0.3434 0.00073 0.0251 0.2958 0.393 1169 1
beta[5] 0.1266 0.00050 0.0187 0.0903 0.164 1382 1
beta[6] -0.1149 0.00065 0.0241 -0.1634 -0.067 1356 1
beta[7] 0.0229 0.00014 0.0078 0.0073 0.038 3000 1
beta[8] 0.0093 0.00013 0.0070 -0.0048 0.023 3000 1
tau_u[1] 0.2319 0.00065 0.0193 0.1976 0.274 870 1
tau_u[2] 0.2340 0.00068 0.0209 0.1948 0.277 950 1
tau_u[3] 0.1531 0.00044 0.0159 0.1247 0.186 1289 1
tau_u[4] 0.2064 0.00072 0.0210 0.1676 0.251 850 1
tau_w[1] 0.0204 0.00039 0.0131 0.0009 0.049 1126 1
tau_w[2] 0.0496 0.00044 0.0158 0.0209 0.085 1320 1
sigma_e 0.4336 0.00010 0.0053 0.4235 0.444 2718 1

Table 3: Posterior distributions of the final activation-based race model

What is interesting now is to visualize the estimated activation values. As men-
tioned in the beginning of this chapter, the model assumes that there is activation
accumulating even for the not chosen interpretations. Using the tie from activation
to resolution times (and consequently, listening times), we can then state that this
not chosen accumulation gives us a not used resolution time. Because we fitted both
accumulators, (the not chosen one with the log complementary cumulative distribu-
tion function), and because in the generated quantities field we randomly generated a
listening time given the parameter estimations, we are able to plot the set of listening
times over the not used listening times. This is done in figure 6.

The shorter the listening times, the faster the accumulator has gotten its activity.
The way to look at the figures is by assuming that when parsing a sentence, a listening
time from both of the interpretations, so from both ’blobs’, is chosen, and the smallest
one wins the race. The lack of overlap for example in figure 6a makes for a low chance
of the OR accumulator to draw a faster listening time than the SS accumulator. The
consequence is that the accuracy will most likely be high. What becomes clear is
that the IWA’s show a lot more overlap between the accumulators. This indicates
that for this group it is much harder to differentiate between the interpretations than
for the controls. Note that in any of the cases the eventual resolution time would
not be much higher than in any of the others: the problem for the IWA group seems
to be that the wrong interpretation accumulates just as quick as the correct one.
Additionally, both groups struggle more with SO-type sentences than with SS-type
sentences, confirming our initial expectations.
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(a) Group - controls, Rctype - SS

(b) Group - IWA’s, Rctype - SS

(c) Group - controls, Rctype - SO

(d) Group - IWA, Rctype - SO

Figure 6: Density plots of the derived activation races, split out per cross section of
the relative clause type (that is, the correct interpretation) and group type. We used
the model to generate listening times given the µ and σ values that were sampled in
that iteration. This allows us to see the potential listening times on the x-axes for
each case, even if they weren’t selected at that time.
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4 Direct Access model

The second model we will discuss will be referred to as the direct access model.
The roots of this model can be traced back to McElree (1993). In order to assign
a grammatical role to a word, syntactic information is necessary. Because of the
ambivalence of the English language however, this syntactic information is not al-
ways clear, and often ambiguous. Connine et al. (1984) showed that through this
ambiguity, for most cases, a certain structural relation is often preferred over others,
often related to its relative occurrence in natural language. An example given is the
verb "watch" - its preferred form is transitive (e.g.: "Alice watched the cat") rather
than intransitive ("Alice watched with the cat"). McElree proceeds by showing that
one of the empirical signals of this idea is that experimental reading times are faster
when the preferred form is used over the non-preferred form. Additionally, locally,
the reading times increase at the critical point that resolves the preceding ambiguous
part, if that critical point resolves to the non-preferred option. This indicates that
a certain preferred way of interpreting a sentence is expected, until there is more in-
formation to come to resolution. When such a situation occurs, it leads to a moment
of reanalysis, which will be the basis of the direct access model.

This model, like the activation-based race model, also uses the notion of cue
based feature bundles that may or may not match with some goal bundle. However,
instead of activation determining retrieval time, the assumption is that retrieval is
instant: there is direct access to the representations (Nicenboim & Vasishth, 2018).
Consequently, in contrast to the activation-based race model, the direct access model
doesn’t draw a dependency between the retrieval times and the probability of the
items being retrieved. Instead, in cases where a misretrieval happens (or, in the spirit
of the paragraph above, where the correct interpretation is not the initially preferred
one), the agent may backtrack and reanalyze the representation to get to the correct
interpretation. This backtracking takes extra time. The total processing time then
is a mixture of two cases: one with a ’base’ processing time wherein no reanalysis is
done (where the interpretation may or may not be correct), and one with said ’base’
processing time as well as some reanalysis time wherein the reanalysis is done (and
we assume the interpretation then is correct) (Nicenboim & Vasishth, 2018).

So computationally, the direct access model explains retrieval time (consequently
in our case, listening times) as a mixture of two possible events: one wherein the
target is retrieved incorrectly, and one wherein the target is retrieved correctly, and a
reanalysis may or may not occur. It is assumed that the probability of correct initial
retrieval θ differs per sentence type, and the probability of performing a reanalysis
once an incorrect initial retrieval has been made, Pb, is similar within subjects across
sentence types. With our data in mind, we draw a distinction between three cases:
a correct answer given by the participant may either be due to a correct initial re-
trieval (1) or by a reanalysis (2). An incorrect answer is coupled to an incorrect
initial retrieval and no reanalysis (3). Given a sentence type x, we can then see that
the probability of reanalysis is (1− θx) ∗ Pb):

Answer is correct:

1. Initial retrieval correct: lognormal(µ, σ) with probability θs (21)
2. Reanalysis done: lognormal(µ+ δ, σ) with probability (1− θs) ∗ Pb

(22)
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Answer is incorrect:

1. No reanalysis done: lognormal(µ, σ) with probability (1− θs) ∗ (1− Pb)
(23)

where µ is the log mean of the listening times without reanalysis, and σ is the
log standard deviation. Note that for the strength of the model it doesn’t matter
whether wrong answers arise from gambling or from a wrong conviction. If there
would be a portion of correctly gambled answers that would skew the interpretation
of θ, but not its mechanics. For the sake of this thesis, however, we assume that
wrong answers are truly believed to be correct by the participants.

4.1 Simple implementation

First we establish a simple, non-hierarchical model, as listed in B.1. We add the
relative clause type effect only to the θ parameter. This, because the model assumes
that both (controlled for length) sentence types can be read just as quickly if no
reanalysis is required. The difference in listening times is explained by the fraction
of initially incorrect retrievals, which depend on the nature of the sentence types
(subscript s in equations 21, 22 and 23). From an implementation standpoint, when
adding this relative clause type effect to θ a problem arises: we want Stan to freely
discover the parameter space without constraints and we want to avoid taking the
log of numbers θ + rctype ∗ β ≤ 0. Therefore, we convert this parameter with the
sigmoid function:

sigmoid(x) =
ex

ex − 1
(24)

This function has a domain from −∞ to ∞ on the x-axis, and squeezes all
corresponding y-values in the [−1, 1] range. This makes sure that no problems occur
if θ + rctype ∗ β ≤ 0, while shifts in values make for shifts in the same direction for
the eventual probabilities.

In order to capture in the likelihood function the three described probabilities
from equations 21, 22 and 23, these probabilities themselves are taken as an increment
on the log likelihood alongside the log-normal evaluations. The first step is to convert
the probabilities into the log space like this:

P (acc = 1) = θ + (1− θ) ∗ Pb ⇒ LSE(θ, log(Pb) + log(1− θ)) (25)

P (init = 1) =
θ

θ + (1− θ) ∗ Pb
=

θ

P (acc = 1)
⇒ log(θ)− log(P (acc = 1)) (26)

P (reanalysis) =
(1− θ) ∗ Pb

θ + (1− θ) ∗ Pb
=

(1− θ) ∗ Pb
P (acc = 1)

⇒ log(1− θ) + log(Pb)− log(P (acc = 1))

(27)

P (acc = 0) = (1− θ)(1− Pb)⇒ log(1− θ) + log(1− Pb) (28)

Note that LSE stands for the log_sum_exp function which adds up the exponents
in the log space, which is analogous to normal addition in the linear space.

The second step is to add these probabilities to the likelihoods evoked by the
log-normal distributions of the listening times. If the accuracy is equal to 1, the
total likelihood function then looks as follows:

P (acc = 1) + LSE(P (init = 1) + lognormal(LT |µ, σe)
P (reanalysis) + lognormal(LT |µ+ δ, σe)) (29)

24



For an accuruacy of 0 the total likelihood function is:

P (acc = 0) + lognormal(LT |µ, σe) (30)

Running the complete model on the dataset, the posterior distributions as shown
in table 4 are found. Note that parameter alpha stands for the θ before its transpo-
sition to the sigmoid function.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
mu 10.38 0.00056 0.0179 10.342 10.41 1017 1
alpha -0.13 0.01210 0.3653 -0.806 0.65 912 1
beta -0.38 0.00229 0.0850 -0.566 -0.23 1373 1
sigma 0.44 0.00013 0.0053 0.434 0.45 1822 1
delta 0.15 0.00087 0.0337 0.081 0.21 1507 1
P_b 0.61 0.00291 0.0775 0.421 0.70 707 1

Table 4: Posterior distributions of the simple direct access model

It becomes noticeable that the beta is negative, which indicates that θSS >
θSO. This is in line with the consensus that SS-type sentences are generally easier
to process than SO-type sentences. Furthermore, the values for delta seem very
low. However, if we convert the values back to linear space, we can calculate the
actual effect of δ as follows: eµ+δ − eµ. This gives us a reanalysis time of over 2
seconds. Another point of attention is that the values for alpha seem on the low end:
plugging in the mean value in the inversion of the sigmoid function yields an average
θ of around 53%. On the other hand, P_b seems to be on the high end with a mean
of 0.61. We expect the P_b to be more around 0.3, bumping up the values of θ in
the process (Nicenboim & Vasishth, 2018). It is possible for the probability-related
parameters to be ’flipped’, and still get relatively good predictions for accuracy.

When generating the simulated data, we assume σ = 0.3, to somewhat reduce
the noise (the posterior mean is 0.44). Apart from this σ value, the discrepancies
between the retrieved posteriors from the simulated data and the retrieved posteriors
from the real data are close or through zero (figure 7. This again indicates that the
model retrieves the true parameters.

Figure 7: The scaled discrepancies between the posterior means found when fitting
the simple direct access model on the real data and the posteriors found when fitting
the same model on the simulated data. The points represent the simulated posterior
means, the lines represent the middle 95% of the posteriors
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4.2 Hierarchical implementation

For the hierarchical implementation the same technique is used as in the activation-
based race model (section 3.2). By-subject and by-item adjustments are attached to
µ and θ:

µ′ = µ+ uµ + wµ θ = sigmoid(α+ rctype ∗ β + uθ + wθ) (31)

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
mu 10.422 1.0e-03 0.0217 10.37990 10.465 466 1
alpha 1.278 7.5e-03 0.2593 0.75305 1.775 1185 1
beta -0.471 1.4e-03 0.0749 -0.62221 -0.325 3000 1
tau_u[1] 0.204 5.6e-04 0.0159 0.17527 0.239 822 1
tau_u[2] 2.014 7.3e-03 0.2480 1.55116 2.537 1148 1
tau_w[1] 0.025 3.7e-04 0.0112 0.00323 0.047 904 1
tau_w[2] 0.670 4.0e-03 0.1523 0.42456 1.018 1440 1
sigma_e 0.402 8.5e-05 0.0047 0.39337 0.412 3000 1
delta 0.028 4.7e-04 0.0255 0.00065 0.094 3000 1
P_b 0.343 1.6e-03 0.0558 0.21544 0.432 1243 1

Table 5: Posterior distributions of the hierarchical direct access model

The results of this model are presented in table 5. The sigma_[e] here is slightly
lower than the sigma in the simple model, like in the activation-based race model
indicating that the adjustments were able to localize and explain some of the noise.
In addition, the values for P_b (0.34) and alpha (1.28, corresponding to a mean θ of
0.78) now seem to be aligned in the expected configuration, in line with previous work
(Nicenboim & Vasishth, 2018). The value of δ has dropped significantly however,
to around 600ms in the linear scale. The model could be having problems with the
difference in initial retrieval correctness between groups, leaving little room for the
reanalysis time to do its work. We will explore this in the next section.

4.3 Final implementation

The final implementation (appendix B.3) takes the hierarchical model and adds fixed
effects for group types (IWA’s vs controls) to parameters µ, δ, Pb, σe and θ, and adds
the interaction between the relative clause type and the group type to parameter θ.

The results in table 6 show that this approach indeed allows for larger reanalysis
times delta (around 1.5 second on average). As shown in section B.3, the associated
group effect parameter for δ is β5. Recall that controls are represented as -1 whereas
IWA’s are represented as 1. The values of beta[5] then indicate that the reanalysis
time for IWA’s is shorter than that for controls.

When recomputing the θ values from alpha and its respective beta’s, we see
in figure 8a that controls have a much easier time initially retrieving the correct
parameter values, whereas IWA’s struggle with this. The effect of relative clause
type is also very noticeable and as expected: SS sentence types are gotten right on
first analysis more often than SO sentence types. Interestingly, the posteriors of the
Pb parameters are somewhat closer between groups, as shown in figure 8b, but the
controls still seem to perform reanalysis more often. This is under the assumption
that the fat tail on the lower end of the probability scale is due to the difficulty to
estimate something sensible for subjects with close to perfect accuracies.
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(a) Values for θ

(b) Values for Pb

Figure 8: Density plots of the posterior distributions of θ and Pb per cross section.
Note that the θ values are quite pronounced, which indicate that the initial retrieval
is where IWA’s experience the most problems. The lower ’bump’ at the controls may
be explained by the difficulty to properly estimate it for participants with (close to)
100% accuracy.
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parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
mu_0 10.42270 1.1e-03 0.0229 10.3788 10.4673 418 1
alpha 1.27376 8.1e-03 0.2684 0.7366 1.7830 1105 1
beta[1] -0.44035 1.6e-03 0.0860 -0.6170 -0.2824 3000 1
beta[2] -1.10275 1.0e-02 0.2840 -1.6745 -0.5513 778 1
beta[3] -0.17485 1.5e-03 0.0796 -0.3259 -0.0165 3000 1
beta[4] -0.03979 1.2e-03 0.0206 -0.0813 0.0013 280 1
beta[5] -0.04307 6.8e-04 0.0371 -0.1247 0.0132 3000 1
beta[6] -0.01284 3.6e-02 0.7549 -0.7757 2.1736 435 1
beta[7] 0.00066 8.3e-05 0.0046 -0.0084 0.0095 3000 1
tau_u[1] 0.20039 6.0e-04 0.0156 0.1721 0.2328 686 1
tau_u[2] 1.61792 6.0e-03 0.2143 1.2384 2.0695 1261 1
tau_w[1] 0.02493 3.7e-04 0.0110 0.0039 0.0474 870 1
tau_w[2] 0.68257 4.4e-03 0.1591 0.4323 1.0637 1297 1
sigma_e_0 0.40220 8.5e-05 0.0046 0.3932 0.4116 3000 1
delta_0 0.06415 6.7e-04 0.0366 0.0100 0.1481 3000 1
gamma -0.67351 3.7e-02 0.7673 -2.9405 0.0877 438 1

Table 6: Posterior distributions of the final direct access model

5 Model comparison

In order to see if the models make sense, we run posterior predictive checks: we
simulate data from the posteriors and compare that to the real data. In the world
of Stan, this means that for every iteration, in the generated quantities field, we use
random number generators wherein we plug the parameters of the current iteration
to generate for every permutation of fixed effects we find in the real dataset, an
accuracy and a listening time. We thus have #iterations ∗#real_datapoints = 11859000
generated data points in total. If the simulated data is very similar to the real data,
it does not necessarily imply that the model is adequate, but when the simulated
data is very different from the real data it means something is going wrong. For this
reason, these posterior predictive checks can be considered sanity checks (Shiffrin,
Lee, Kim, & Wagenmakers, 2008; Nicenboim & Vasishth, 2018). The accuracies are
plotted in figure 9, and figure 10 shows the listening times. The violins represent the
densities of the generated data, and the crosses represent the means of the real data.
The violin plots in figure 9 show the average accuracies for the 3000 samples for
every subject/item(/accuracy) combination. If the data could have been generated
by the model, we expect the crosses to be inside the violins.

For the accuracies (figure 9), both models do a good job. The activation-based
race model estimates the controls slightly on the lower side, and the direct access
model is on point. This can be explained by the fact that the direct access model
explicitly models the probabilities that determine the accuracy. The activation-
based race model does this implicitly, by comparing two randomly generated numbers
representing the listening times associated with the accumulators with each other,
yielding a more noisier trade-off between fitting on the listening times and accuracy.

The listening times are plotted in figure 10. This part clearly shows that neither
model performs very well. Recall that the differences of the two models in part
lied in their ways of handling the speed/accuracy trade-off. The activation-based
race model assumes that incorrect responses are slower than correct ones, while the
direct access model allows the correct answers to take on longer listening times. The
means of the real data (the crosses) indicate that the direct access model should
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have an edge here, because the incorrect responses correspond with faster listening
times across the board. The activation-based race model fits pretty well on the
correct listening times, but then fails at properly accounting for the incorrect listening
times. Interestingly, in the IWA/SO cross section of the simulated data, the incorrect
responses are about as fast as the correct ones. This could be explained by the noise
that comes with sampling and the low accuracy of this cross section that enforces
a lot of overlap between the accumulators (and consequently, listening times). The
direct access model performs reasonably well for the IWA/SS cross section of the
data, but overestimates the listening times in the other cross sections. Furthermore,
all cases show a very long tail that the activation-based race model does not have.

In order to compare the models with each other in a more quantitative manner,
we will perform leave-one-out-cross-validation on the log likelihoods of the samples
(Vehtari, Gelman, & Gabry, 2016). The values for the pointwise out-of-sample pre-
diction accuracies ˆelpd are -44848.3 (SE=66.5) for the activation-based race model,
and -44835.8 (SE=69.4) of the direct access model. This yields a difference ˆelpd of
12.5 (SE=22.2). We can therefore state that no model is clearly better than the
other.

We can look further into the ˆelpd values to see how the different models compare
in capturing certain cross sections of the data. This is visualized in figure 11. For
every data point from the empirical data both models have a ˆelpd value that explains
the capacity of the model to capture the observation. The difference between these

ˆelpd values is plotted on the y-axis for every listening time in the real data on the
x-axis. Values close to zero indicate no or a very small difference between the two
models. Points greater than zero indicate that the direct access model performed
better for this observation, and points smaller than zero indicate that the activation-
based race model did a better job.

For all the incorrect answers (except for maybe the less outspoken IWA/SO
cross section) the direct access model performs better than the activation-based race
model the shorter the listening times are. When the listening times are longer, the
activation-based race model starts to show its strength. This is in line with the
conclusions drawn earlier from figure 10, as well as with the findings of Nicenboim
& Vasishth (2018). Regarding the correct answers, there is less discrepancy between
the models in SS-type sentences. The models both generally perform quite similarly.
For the SO-type sentences however, the models clearly show different performances.
The activation-based race model scores much better on the shorter listening times.
For the extremely long sentences, the direct access seems to do slightly better, which
could indicate that this is where the long tail is used.
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Accuracies
(a) Activation-based race model

(b) Direct access model

Figure 9: Violin plots of the accuracies as predicted from the posteriors, split by
group and sentence type. The width of the plots stand for the density of the predicted
accuracies and listening times, the crosses for the respective means of the real data.
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Listening times
(a) Activation-based race model

(b) Direct access model

Figure 10: Violin plots of the listening times gained from the posteriors, split by
group and sentence type. The width of the plots stand for the density of the predicted
listening times, the crosses for the respective means of the real data.
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Model comparison
(a) Relative clause type: SS

(b) Relative clause type: SO

Figure 11: The comparison of the ˆelpd values of the two models for each observation.
The y-axis shows the difference in the expected log pointwise predictive density for
that particular observation. Positive values indicate better performance by the direct
access model, and negative values better performance by the activation-based race
model. When multiple data points are close together in both dimensions, this is
indicated by a darker color.
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6 Discussion

The goal of this thesis was to see how the models as proposed by Nicenboim &
Vasishth (2018) handle the speed/accuracy trade-off in a dataset that is enriched
with data from IWA’s. Additionally, the incremental way of implementing these
models is unrolled and supported mathematically.

The results of the accumulators of the activation-based model make sense: when
presented with SO-type sentences, the accumulators show more overlap than when
the subjects were presented SS-type sentences. This is in line with the general consen-
sus that SO-type sentences pose more processing difficulty. Also, the accumulators
for IWA’s showed more overlap in both relative clause types. This also makes sense
given the difficulties these individuals have shown to have regarding sentence process-
ing. Furthermore, because on average, listening times are faster when an incorrect
answer is given, this model has a difficult time handling the associated listening times
of these inaccurate trials. It is only at the higher end of the listening times of the
incorrect responses that the model does better than the direct access model.

The direct access model has shown the ability to make sensible predictions about
the parameters for the correctness of initial retrieval θ and about its closely associated
parameter P_b that stands for the probability of reanalysis given an initial incorrect
retrieval. If we assume the model to be correct, we can state that the big problem
for IWA’s is that the initial retrieval is more difficult for them. Once a mistake has
been made, they will try and repair it only slightly less often than controls do. The
final accuracies that arise from these parameters also match the observations very
closely. Like the activation-based race model, the direct access model generally also
has a difficult time fitting the listening times. It works well for the listening times
associated with incorrect responses that lie on the shorter end of the scale. For longer
listening times, the activation-based race model performs better.

The different levels of performance of the respective models in the different seg-
ments and listening times could indicate that even though the models are simplifi-
cations of the full theories, the speed/accuracy trade-off is more delicate than either
of these two proposals. The findings of Nicenboim & Vasishth (2018) are similar
in how the different models handled the listening times for the respective accura-
cies. Because the data shows that incorrect answers are on average associated with
faster listening times, a case could be made choose to elaborate on the direct ac-
cess model rather than on the activation-based race model. The bulk of the direct
access model consists of a simple log normal distribution function, so there is still
a lot to be added in terms of complexity. However, the fact that the direct access
model still does not show a clear advantage in the leave-one-out-cross-validation also
indicates the strength of the activation-based race model. A possible enhancement
to the activation-based race model would be to allow two kinds of parses: a more
superficial parse, having less accurate (noisier) but faster accumulators to race each
other, and a more elaborate one, with longer listening times but also with a higher
accuracy. This would likely allow the model to show the speed/accuracy trade-off
as found in the real data. This effect can also be attained by dynamically changing
the thresholds of the accumulators. When the threshold of an accumulator is lower
(and the listening time shorter), the relatively higher amount of noise will cause the
model to more often opt for a wrong answer.

This exploratory thesis, as well as the work by Nicenboim & Vasishth (2018),
show that both of the functional retrieval theories have their shortcomings, and that
it is not a trivial aspect of sentence processing. It is an aspect that should not be
under specified, but instead be researched and explicitly elaborated on. Within the
broader scope of AI, we indulged ourselves in a functional aspect of the cognitive
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process of sentence parsing. We examined it and conclude that there is more to it
than first meets the eye. This encourages us to look more closely at this facet and to
come up with a better theory. The goal is to develop the theory that could account
for the fine-grained delicacies that we find in our observations. In the meanwhile, all
steps in the direction of this theory are also tiny steps towards AGI, and we hope to
have taken such an ever so small step by means of this thesis.
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A Activation based model Stan files

A.1 Simple model

1 functions {
2 real race(int winner, real RT, real[] alpha, int rctype, real[] beta, real b, real sigma){
3
4 real log_lik;
5 log_lik = 0;
6
7 if(winner==1){
8 log_lik += lognormal_lpdf(RT|b − (alpha[1] + rctype∗beta[1]), sigma);
9 log_lik += lognormal_lccdf(RT|b −(alpha[2] + rctype∗beta[2]), sigma);
10 }
11 else {
12 log_lik += lognormal_lpdf(RT|b − (alpha[2] + rctype∗beta[2]), sigma);
13 log_lik += lognormal_lccdf(RT|b −(alpha[1] + rctype∗beta[1]), sigma);
14 }
15 return(log_lik);
16 }
17 }
18 data {
19 int<lower = 0> N_obs;
20 int<lower = 1> N_choices;
21 int<lower =−1, upper = 1> rctype[N_obs];
22 int<lower = 1, upper = N_choices> winner[N_obs];
23 vector<lower = 0>[N_obs] RT;
24 }
25 transformed data {
26 real b; //arbitrary threshold
27 b = 30;
28 }
29 parameters{
30 real beta[N_choices];
31 real alpha[N_choices];
32 real<lower=0> sigma;
33 }
34 model {
35 alpha ~ normal(20,2);
36 sigma ~ normal(0,2);
37 for (n in 1:N_obs) {
38 target += race(winner[n], RT[n], alpha, rctype[n], beta, b, sigma);
39 }
40 }
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A.2 Hierarchical model

1 functions {
2 real race(int winner, real RT, real[] alpha, int rctype, real[] beta, real b, int N_choices, vector u,

vector w, real sigma_e){
3
4 real log_lik;
5 log_lik = 0;
6
7 if(winner==1){
8 log_lik += lognormal_lpdf(RT|b − (alpha[1]+u[1]+w[1] + rctype∗(beta[1]+u[3])), sigma_e);
9 log_lik += lognormal_lccdf(RT|b −(alpha[2]+u[2]+w[2] + rctype∗(beta[2]+u[4])), sigma_e);
10 }
11 else {
12 log_lik += lognormal_lpdf(RT|b − (alpha[2]+u[2]+w[2] + rctype∗(beta[2]+u[4])), sigma_e);
13 log_lik += lognormal_lccdf(RT|b −(alpha[1]+u[1]+w[1] + rctype∗(beta[1]+u[3])), sigma_e);
14 }
15 return(log_lik);
16 }
17 }
18 data {
19 int<lower = 0> N_obs;
20 int<lower = 1> N_choices;
21 int<lower = 1> n_u;
22 int<lower = 1> n_w;
23 int<lower =−1, upper = 1> rctype[N_obs];
24 int<lower = 1, upper = N_choices> winner[N_obs];
25 vector<lower = 0>[N_obs] RT;
26
27 int<lower = 1> N_subj;
28 int<lower = 1> N_item;
29 int<lower=1> subj[N_obs];
30 int<lower=1> item[N_obs];
31 }
32 transformed data {
33 real b; //arbitrary threshold
34 real min_RT;
35 b = 30;
36 min_RT = min(RT);
37 }
38 parameters{
39 real beta[N_choices];
40 real alpha[N_choices];
41 real<lower=0> sigma_e;
42
43 cholesky_factor_corr[n_u] L_u; // equation (16)
44 cholesky_factor_corr[n_w] L_w; // equation (16)
45 vector<lower=0>[n_u] tau_u; // equation (17)
46 vector<lower=0>[n_w] tau_u; // equation (17)
47 vector[n_u] z_u[N_subj]; // equation (18)
48 vector[n_w] z_w[N_item]; // equation (18)
49 }
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50 transformed parameters {
51 // construction of (19)
52 vector[n_u] u[N_subj];
53 vector[n_w] w[N_item];
54 {
55 matrix[n_u,n_u] Sigma_u;
56 matrix[n_w,n_w] Sigma_w;
57 Sigma_u = diag_pre_multiply(tau_u,L_u);
58 Sigma_w = diag_pre_multiply(tau_u,L_w);
59 for(j in 1:N_subj)
60 u[j] = Sigma_u ∗ z_u[j];
61 for(k in 1:N_item)
62 w[k] = Sigma_w ∗ z_w[k];
63 }
64 }
65 model {
66 //priors
67 alpha ~ normal(0,10);
68 beta ~ normal(0,1);
69 sigma_e ~ normal(0,2);
70 tau_u ~ normal(0,1);
71 tau_u ~ normal(0,1);
72
73 L_u ~ lkj_corr_cholesky(2.0);
74 L_w ~ lkj_corr_cholesky(2.0);
75 for (s in 1:N_subj)
76 z_u[s] ~ normal(0,1);
77 for (i in 1:N_item)
78 z_w[i] ~ normal(0,1);
79
80 for (n in 1:N_obs) {
81 target += race(winner[n], RT[n], alpha, rctype[n], beta, b, N_choices, u[subj[n]], w[item[n]], sigma_e)

;
82 }
83 }
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A.3 Final model

1 functions {
2 real race(int winner, real RT, real accum_1_mu, real accum_1_sig, real accum_2_mu, real

accum_2_sig){
3
4 real log_lik;
5 log_lik = 0;
6
7 if(winner==1){
8 log_lik += lognormal_lpdf(RT| accum_1_mu, accum_1_sig);
9 log_lik += lognormal_lccdf(RT|accum_2_mu, accum_2_sig);
10 }
11 else {
12 log_lik += lognormal_lpdf(RT| accum_2_mu, accum_2_sig);
13 log_lik += lognormal_lccdf(RT|accum_1_mu, accum_1_sig);
14 }
15 return(log_lik);
16 }
17
18 // RTs for ppc
19 vector race_rng(real mu_1, real sig_1, real mu_2, real sig_2, int rctype){
20 vector[2] gen;
21 real accum_1_RT = lognormal_rng(mu_1, sig_1);
22 real accum_2_RT = lognormal_rng(mu_2, sig_2);
23
24 if(accum_1_RT < accum_2_RT){
25 gen[1] = accum_1_RT;
26 if(rctype == −1){
27 gen[2] = 1;
28 }
29 else {
30 gen[2] = 0;
31 }
32 }
33 else {
34 gen[1] = accum_2_RT;
35 if(rctype == 1){
36 gen[2] = 1;
37 }
38 else {
39 gen[2] = 0;
40 }
41 }
42 return(gen);
43 }
44 }
45 data {
46 int<lower = 0> N_obs;
47 int<lower = 1> N_choices;
48 int<lower = 1> n_u;
49 int<lower = 1> n_w;
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50 int<lower =−1, upper = 1> rctype[N_obs];
51 int<lower =−1, upper = 1> group[N_obs];
52 int<lower = 1, upper = N_choices> winner[N_obs];
53 vector<lower = 0>[N_obs] RT;
54
55 int<lower = 1> N_subj;
56 int<lower = 1> N_item;
57 int<lower=1> subj[N_obs];
58 int<lower=1> item[N_obs];
59 }
60 transformed data {
61 real b; //arbitrary threshold
62 real min_RT;
63 b = 30;
64 min_RT = min(RT);
65 }
66 parameters{
67 vector[8] beta;
68 real alpha[N_choices];
69
70 real<lower=fmax(fabs(beta[7]),fabs(beta[8]))> sigma_e;
71
72 cholesky_factor_corr[n_u] L_u;
73 cholesky_factor_corr[n_w] L_w;
74 vector<lower=0>[n_u] tau_u;
75 vector<lower=0>[n_w] tau_w;
76 vector[n_u] z_u[N_subj];
77 vector[n_w] z_w[N_item];
78 }
79 transformed parameters {
80 vector[n_u] u[N_subj];
81 vector[n_w] w[N_item];
82 {
83 matrix[n_u,n_u] Sigma_u;
84 matrix[n_w,n_w] Sigma_w;
85 Sigma_u = diag_pre_multiply(tau_u,L_u);
86 Sigma_w = diag_pre_multiply(tau_w,L_w);
87 for(j in 1:N_subj)
88 u[j] = Sigma_u ∗ z_u[j];
89 for(k in 1:N_item)
90 w[k] = Sigma_w ∗ z_w[k];
91 }
92 }
93 model {
94 alpha ~ normal(0,10);
95 beta ~ normal(0,1);
96 sigma_e ~ normal(0,2);
97 tau_u ~ normal(0,1);
98 tau_w ~ normal(0,1);
99
100 //priors
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101 L_u ~ lkj_corr_cholesky(2.0);
102 L_w ~ lkj_corr_cholesky(2.0);
103 for (s in 1:N_subj)
104 z_u[s] ~ normal(0,1);
105 for (i in 1:N_item)
106 z_w[i] ~ normal(0,1);
107
108
109
110
111 for (n in 1:N_obs) {
112 real accum_1_mu = b − (alpha[1] + u[subj[n],1] + w[item[n],1] + beta[1]∗group[n] + rctype[n]∗(beta

[3]+u[subj[n],3]) + group[n]∗rctype[n]∗beta[5]);
113 real accum_2_mu = b − (alpha[2] + u[subj[n],2] + w[item[n],2] + beta[2]∗group[n] + rctype[n]∗(beta

[4]+u[subj[n],4]) + group[n]∗rctype[n]∗beta[6]);
114
115 real accum_1_sig = sigma_e + group[n]∗beta[7];
116 real accum_2_sig = sigma_e + group[n]∗beta[8];
117
118 target += race(winner[n], RT[n], accum_1_mu, accum_1_sig, accum_2_mu, accum_2_sig);
119 }
120 }
121
122
123
124 generated quantities {
125 vector[N_obs] rt_1;
126 vector[N_obs] rt_2;
127 vector[N_obs] gen_acc;
128 vector[N_obs] gen_rctype;
129 vector[N_obs] gen_RT;
130 vector[N_obs] gen_group;
131
132 vector[N_obs] log_lik;
133
134 for (n in 1:N_obs){
135 vector[2] gen;
136 real mu_1;
137 real mu_2;
138 real sig_1;
139 real sig_2;
140
141 mu_1 = b − (alpha[1] + u[subj[n],1] + w[item[n],1] + beta[1]∗group[n] + rctype[n]∗(beta[3]+u[subj[n

],3]) + group[n]∗rctype[n]∗beta[5]);
142 mu_2 = b − (alpha[2] + u[subj[n],2] + w[item[n],2] + beta[2]∗group[n] + rctype[n]∗(beta[4]+u[subj[n

],4]) + group[n]∗rctype[n]∗beta[6]);
143
144 sig_1 = sigma_e + group[n]∗beta[7];
145 sig_2 = sigma_e + group[n]∗beta[8];
146
147 gen = race_rng(mu_1, sig_1, mu_2, sig_2, rctype[n]);
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148 gen_RT[n] = gen[1];
149 gen_acc[n] = gen[2];
150 gen_rctype[n] = rctype[n];
151 gen_group[n] = group[n];
152
153 rt_1[n] = lognormal_rng(mu_1, sig_1)/1000;
154 rt_2[n] = lognormal_rng(mu_2, sig_2)/1000;
155
156 log_lik[n] = race(winner[n], RT[n], mu_1, sig_1, mu_2, sig_2);
157 }
158 }
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B Direct Access model Stan files

B.1 Simple model

1 functions {
2 real direct_access(int accuracy, real RT, real theta, real P_b, real mu, real delta, real sigma){
3
4 real p_answer_correct;
5 real p_answer_correct_direct_access;
6 real p_answer_correct_reanalysis;
7 real p_answer_incorrect;
8
9 // theta ∗ (P_b ∗ 1−theta)
10 // − Combination of equation (20) and (21) in log
11 p_answer_correct = log_sum_exp(log(theta), log(P_b) + log1m(theta));
12 // theta / p_answer_correct
13 // − Proportion initial correct, equation (20) in log
14 p_answer_correct_direct_access = log(theta) − p_answer_correct;
15 // (P_b ∗ 1−theta) / p_answer_correct
16 // − Proportion reanalysis, equation (21) in log
17 p_answer_correct_reanalysis = log(P_b) + log1m(theta) − p_answer_correct;
18
19 // (1−theta) ∗ (1−P_b)
20 // − Equation (22) in log
21 p_answer_incorrect = log1m(P_b) + log1m(theta);
22
23 if(accuracy==1) {
24 //
25 return (p_answer_correct +
26 // Increment on likelihood due to RT:
27 log_sum_exp(
28 p_answer_correct_direct_access + lognormal_lpdf(RT| mu, sigma),
29 p_answer_correct_reanalysis + lognormal_lpdf(RT| mu + delta, sigma) ));
30 } else {
31 return (p_answer_incorrect +
32 lognormal_lpdf(RT| mu, sigma));
33 }
34 }
35 }
36 data {
37 int<lower=1> N_obs;
38 real RT[N_obs];
39 int<lower=0,upper=1> accuracy[N_obs];
40 int<lower=−1,upper=1> rctype[N_obs];
41 }
42
43 parameters {
44 real mu; // meanlog
45 real beta; // effect sentence type
46 real<lower=0> sigma; // sdlog
47 real alpha; // probability of reanalysis
48 real<lower=0> delta; // effect of reanalysis
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49 real<lower=0,upper=1> P_b; // probability of backtracking
50 }
51
52 model {
53 //priors
54 alpha ~ normal(1,.5);
55 beta ~ normal(0,2);
56 delta ~ normal(0,2);
57 mu ~ normal(10,2);
58 sigma ~ normal(0,1);
59 P_b ~ normal(0,1);
60
61 // log likelihood
62 for (i in 1:N_obs){
63 // compute theta here
64 real theta = inv_logit(alpha + rctype[i]∗beta);
65 target += direct_access(accuracy[i], RT[i], theta, P_b, mu, delta, sigma);
66 }
67 }
68
69 generated quantities {
70 real prob_sr;
71 real prob_or;
72 prob_or = inv_logit(alpha + beta);
73 prob_sr = inv_logit(alpha − beta);
74 }
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B.2 Hierarchical model

1 functions {
2 real direct_access(int accuracy, real RT, real theta, real P_b, real mu,
3 real delta, real sigma_e){
4
5 real p_answer_correct;
6 real p_answer_correct_direct_access;
7 real p_answer_correct_reanalysis;
8 real p_answer_incorrect;
9
10 // theta ∗ (P_b ∗ 1−theta)
11 // −− Combination of equation (20) and (21) in log
12 p_answer_correct = log_sum_exp(log(theta), log(P_b) + log1m(theta));
13 // theta / p_answer_correct
14 // −− Proportion initial correct, equation (20) in log
15 p_answer_correct_direct_access = log(theta) − p_answer_correct;
16 // (P_b ∗ 1−theta) / p_answer_correct
17 // −− Proportion reanalysis, equation (21) in log
18 p_answer_correct_reanalysis = log(P_b) + log1m(theta) − p_answer_correct;
19
20 // (1−theta) ∗ (1−P_b)
21 // −− Equation (22) in log
22 p_answer_incorrect = log1m(P_b) + log1m(theta);
23
24 if(accuracy==1) {
25 // Increment on likelihood if accuracy=1
26 return (p_answer_correct +
27 // Increment on likelihood due to RT:
28 log_sum_exp(
29 p_answer_correct_direct_access + lognormal_lpdf(RT| mu, sigma_e),
30 p_answer_correct_reanalysis + lognormal_lpdf(RT| mu + delta, sigma_e) ));
31 } else {
32 return (p_answer_incorrect +
33 lognormal_lpdf(RT| mu, sigma_e));
34 }
35 }
36
37 vector direct_access_rng(real theta, real P_b, real mu, real delta, real sigma_e){
38 int init_acc;
39 int backtrack;
40 vector[2] gen;
41
42 init_acc = bernoulli_rng(theta);
43 backtrack = 0;
44 if (init_acc!=1){
45 backtrack = bernoulli_rng(P_b);
46 }
47 // Change the answer to 1 if there was backtracking:
48 if(backtrack){
49 gen[1] = lognormal_rng(mu, sigma_e);
50 gen[2] = 1;
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51 }
52 else {
53 gen[1] = lognormal_rng(mu + delta, sigma_e);
54 gen[2] = init_acc;
55 }
56 return(gen);
57 }
58 }
59 data {
60 int<lower=1> N_obs;
61 real RT[N_obs];
62 int<lower=0,upper=1> accuracy[N_obs];
63 int<lower=−1,upper=1> rctype[N_obs];
64
65 int<lower=1> N_subj;
66 int<lower=1> N_item;
67 int<lower=1> subj[N_obs];
68 int<lower=1> item[N_obs];
69 }
70
71 parameters {
72 real mu; //logmean
73 real beta; //effect per sentence type
74 real<lower=0> sigma_e; //logsd
75 real alpha; //probability of reanalysis
76 real<lower=0> delta; //effect of reanalysis
77 real<lower=0,upper=1> P_b; //probability of backtracking (if a mistake has been made, similar across

sentence types)
78
79 cholesky_factor_corr[2] L_u;
80 cholesky_factor_corr[2] L_w;
81 vector<lower=0>[2] tau_u;
82 vector<lower=0>[2] tau_w;
83 vector[2] z_u[N_subj];
84 vector[2] z_w[N_item];
85 }
86
87 transformed parameters {
88 vector[2] u[N_subj];
89 vector[2] w[N_item];
90 {
91 matrix[2,2] Sigma_u;
92 matrix[2,2] Sigma_w;
93 Sigma_u = diag_pre_multiply(tau_u,L_u);
94 Sigma_w = diag_pre_multiply(tau_w,L_w);
95 for(j in 1:N_subj)
96 u[j] = Sigma_u ∗ z_u[j];
97 for(k in 1:N_item)
98 w[k] = Sigma_w ∗ z_w[k];
99 }
100 }
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101
102 model {
103 //priors
104 alpha ~ normal(1,.5);
105 beta ~ normal(0,2);
106 delta ~ normal(0,2);
107 mu ~ normal(20,2);
108 sigma_e ~ normal(0,1);
109 tau_u ~ normal(0,1);
110 tau_w ~ normal(0,1);
111 P_b ~ normal(0,1);
112
113 L_u ~ lkj_corr_cholesky(2.0);
114 L_w ~ lkj_corr_cholesky(2.0);
115 for (j in 1:N_subj)
116 z_u[j] ~ normal(0,1);
117 for (k in 1:N_item)
118 z_w[k] ~ normal(0,1);
119
120 // log likelihood
121 for (i in 1:N_obs){
122 real mu_adj = mu+ u[subj[i],1] + w[item[i],1];
123 real theta = inv_logit(alpha + rctype[i]∗beta + u[subj[i],2] + w[item[i],2]);
124 target += direct_access(accuracy[i], RT[i], theta, P_b, mu_adj, delta, sigma_e);
125 }
126 }
127
128 generated quantities {
129 real prob_sr;
130 real prob_or;
131
132 vector[2] gen;
133 vector[N_obs] gen_acc;
134 vector[N_obs] gen_rctype;
135 vector[N_obs] gen_RT;
136
137 prob_or = inv_logit(alpha + beta);
138 prob_sr = inv_logit(alpha − beta);
139
140 for (i in 1:N_obs){
141 real mu_adj = mu+ u[subj[i],1] + w[item[i],1];
142 real theta = inv_logit(alpha + rctype[i]∗beta + u[subj[i],2] + w[item[i],2]);
143 // Generate data from the sampled parameters
144 gen = direct_access_rng(theta, P_b, mu_adj, delta, sigma_e);
145 gen_RT[i] = gen[1];
146 gen_acc[i] = gen[2];
147 gen_rctype[i] = rctype[i];
148 }
149 }
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B.3 Final model

1 functions {
2 real direct_access(int accuracy, real RT, real theta, real P_b, real mu, real delta, real sigma_e){
3
4 real p_answer_correct;
5 real p_answer_correct_direct_access;
6 real p_answer_correct_reanalysis;
7 real p_answer_incorrect;
8
9 // theta ∗ (P_b ∗ 1−theta)
10 // −− Combination of equation (20) and (21) in log
11 p_answer_correct = log_sum_exp(log(theta), log(P_b) + log1m(theta));
12 // theta / p_answer_correct
13 // −− Proportion initial correct, equation (20) in log
14 p_answer_correct_direct_access = log(theta) − p_answer_correct;
15 // (P_b ∗ 1−theta) / p_answer_correct
16 // −− Proportion reanalysis, equation (21) in log
17 p_answer_correct_reanalysis = log(P_b) + log1m(theta) − p_answer_correct;
18
19 // (1−theta) ∗ (1−P_b)
20 // −− Equation (22) in log
21 p_answer_incorrect = log1m(P_b) + log1m(theta);
22
23 if(accuracy==1) {
24 // Increment on likelihood if accuracy=1
25 return (p_answer_correct +
26 // Increment on likelihood due to RT:
27 log_sum_exp(
28 p_answer_correct_direct_access + lognormal_lpdf(RT| mu, sigma_e),
29 p_answer_correct_reanalysis + lognormal_lpdf(RT| mu + delta, sigma_e) ));
30 } else {
31 return (p_answer_incorrect +
32 lognormal_lpdf(RT| mu, sigma_e));
33 }
34 }
35
36 vector direct_access_rng(real theta, real P_b, real mu, real delta, real sigma_e){
37 int init_acc;
38 int backtrack;
39 vector[2] gen;
40
41 init_acc = bernoulli_rng(theta);
42 backtrack = 0;
43 if (init_acc!=1){
44 backtrack = bernoulli_rng(P_b);
45 }
46 // Change the answer to 1 if there was backtracking:
47 if(backtrack){
48 gen[1] = lognormal_rng(mu, sigma_e);
49 gen[2] = 1;
50 }
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51 else {
52 gen[1] = lognormal_rng(mu + delta, sigma_e);
53 gen[2] = init_acc;
54 }
55 return(gen);
56 }
57
58 }
59 data {
60 int<lower=1> N_obs;
61 real RT[N_obs];
62 int<lower=0,upper=1> accuracy[N_obs];
63 int<lower=−1,upper=1> rctype[N_obs];
64 int<lower=−1,upper=1> group[N_obs];
65
66 int<lower=1> N_subj;
67 int<lower=1> N_item;
68 int<lower=1> subj[N_obs];
69 int<lower=1> item[N_obs];
70 }
71
72 parameters {
73 vector[7] beta; //slopes per main effect
74 real mu_0; //logmean
75 real<lower=fabs(beta[5])> delta_0; //effect of reanalysis
76 real gamma; //probability of backtracking (if a mistake has been made, similar across sentence types) in

logit space
77 real alpha; //probability of reanalysis in logit space
78 real<lower=fabs(beta[7])> sigma_e_0; //logsd
79
80 cholesky_factor_corr[2] L_u;
81 cholesky_factor_corr[2] L_w;
82 vector<lower=0>[2] tau_u;
83 vector<lower=0>[2] tau_w;
84 vector[2] z_u[N_subj];
85 vector[2] z_w[N_item];
86 }
87
88 transformed parameters {
89 vector[2] u[N_subj];
90 vector[2] w[N_item];
91 {
92 matrix[2,2] Sigma_u;
93 matrix[2,2] Sigma_w;
94 Sigma_u = diag_pre_multiply(tau_u,L_u);
95 Sigma_w = diag_pre_multiply(tau_w,L_w);
96 for(j in 1:N_subj)
97 u[j] = Sigma_u ∗ z_u[j];
98 for(k in 1:N_item)
99 w[k] = Sigma_w ∗ z_w[k];
100 }
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101 }
102
103 model {
104 //priors
105 alpha ~ normal(1,.4);
106 beta ~ normal(0,2);
107 delta_0 ~ normal(0,0.1);
108 mu_0 ~ normal(20,4);
109 sigma_e_0 ~ normal(0,1);
110 tau_u ~ normal(0,1);
111 tau_w ~ normal(0,1);
112 gamma ~ normal(−2,1.5);
113
114 L_u ~ lkj_corr_cholesky(2.0);
115 L_w ~ lkj_corr_cholesky(2.0);
116 for (j in 1:N_subj)
117 z_u[j] ~ normal(0,1);
118 for (k in 1:N_item)
119 z_w[k] ~ normal(0,1);
120
121 // log likelihood
122 for (i in 1:N_obs){
123 // Adjust parameters with random and fixed effects,
124 real theta = inv_logit(alpha + rctype[i]∗beta[1] + group[i]∗beta[2] + rctype[i]∗group[i]∗beta[3] + u[

subj[i],2] + w[item[i],2]);
125 real mu = mu_0 + group[i]∗beta[4] + u[subj[i],1] + w[item[i],1];
126 real delta = delta_0 + group[i]∗beta[5];
127 real P_b = inv_logit(gamma + group[i]∗beta[6]);
128 real sigma_e = sigma_e_0 + group[i]∗beta[7];
129
130 target += direct_access(accuracy[i], RT[i], theta, P_b, mu, delta, sigma_e);
131 }
132 }
133
134 generated quantities {
135 real prob_or_i;
136 real prob_or_c;
137 real prob_sr_i;
138 real prob_sr_c;
139
140 real mu_i;
141 real mu_c;
142
143 real delta_i;
144 real delta_c;
145
146 real P_b_i;
147 real P_b_c;
148
149 real sigma_e_i;
150 real sigma_e_c;
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151
152
153 vector[N_obs] log_lik;
154
155 vector[2] gen;
156 vector[N_obs] gen_acc;
157 vector[N_obs] gen_rctype;
158 vector[N_obs] gen_RT;
159 vector[N_obs] gen_group;
160
161 prob_or_i = inv_logit(alpha + beta[1] + beta[2] + beta[3]);
162 prob_or_c = inv_logit(alpha + beta[1] − beta[2] − beta[3]);
163 prob_sr_i = inv_logit(alpha − beta[1] + beta[2] − beta[3]);
164 prob_sr_c = inv_logit(alpha − beta[1] − beta[2] + beta[3]);
165
166 mu_i = mu_0 + beta[4];
167 mu_c = mu_0 − beta[4];
168
169 delta_i = delta_0 + beta[5];
170 delta_c = delta_0 − beta[5];
171
172 P_b_i = inv_logit(gamma + beta[6]);
173 P_b_c = inv_logit(gamma − beta[6]);
174
175 sigma_e_i = sigma_e_0 + beta[7];
176 sigma_e_c = sigma_e_0 − beta[7];
177
178
179 for (i in 1:N_obs){
180 // Adjust parameters with random and fixed effects,
181 real theta = inv_logit(alpha + rctype[i]∗beta[1] + group[i]∗beta[2] + rctype[i]∗group[i]∗beta[3] + u[

subj[i],2] + w[item[i],2]);
182 real mu = mu_0 + group[i]∗beta[4] + u[subj[i],1] + w[item[i],1];
183 real delta = delta_0 + group[i]∗beta[5];
184 real P_b = inv_logit(gamma + group[i]∗beta[6]);
185 real sigma_e = sigma_e_0 + group[i]∗beta[7];
186 // Add this for loo comparison later
187 log_lik[i] = direct_access(accuracy[i], RT[i], theta, P_b, mu, delta, sigma_e);
188 // Generate data from the sampled parameters
189 gen = direct_access_rng(theta, P_b, mu, delta, sigma_e);
190 gen_RT[i] = gen[1];
191 gen_acc[i] = gen[2];
192 gen_rctype[i] = rctype[i];
193 gen_group[i] = group[i];
194 }
195 }
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