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Abstract

Typical computed tomography reconstruction algorithms require the CT scanner to
scan around the full 180◦ of the object, discretizing the image reconstruction problem in
order to make an approximation of the original image. We restrict the problem to the
premise of non-overlapping rectangles forming the image and compute the exact Radon
Transform of the image. Then the inverse problem is: given a certain number of projec-
tions, find the configuration of rectangles (of different sizes and orientations) which best
match with the projection data. Given this assumption, a new algebraic method is devel-
oped. For larger problems (many projections of many rectangles), this method becomes
computationally inefficient and instead a binary linear programming problem is formu-
lated. Both methods require only a few CT scan measurements and produce accurate
approximations of the original image.
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1 Introduction

What do Egyptian animal mummies, sea ice, sixteenth-century mountain crystal and vascular
plants have in common? They were all subjected to X-ray Computed Tomography (CT) scans

to reveal their inner secrets and structures.

CT scans are used in a wide range of applications. To the public, CT scans are usually associated
with the medical world, and indeed this is a field which greatly benefits from developments in
CT scan image reconstruction algorithms. Those advancements, such as a 25 to 80% decrease
in radiation dose due to the development of the Iterative Reconstruction method [17], are most
prominent in the news.

However, CT scans have many more applications. For example, they are used by the
Brooklyn Museum to study Egyptian animal mummies [15], or by the Rijksmuseum to reveal
hidden secrets about historic pieces of art, such as sixteenth-century mountain crystal or Chinese
puzzle balls [24]. Furthermore CT scans are used to observe the structure of complex food
systems on the nanometer scale [14], and detailed plant vascular anatomy [16]. They are also
applied to analyze different crystal structures, such as the internal structure of sea ice [13],
colloidal crystals made of polystyrene plastic [8], or micro-particles in batteries [11].

With some of these applications, such as analyzing crystal or protein structures, an as-
sumption of the rectangular (in 2 dimensions) or cuboidal (in 3 dimensions) nature of the
scanned structure would be quite fitting. This premise is what this paper builds on: using prior
knowledge of non-overlapping rectangular shapes forming the image to explore new methods
for image reconstruction from CT scan data. This CT scan data consists of many projections,
or X-ray scans, along different projection angles. The image reconstruction problem, which is
an inverse problem, is thus: given a certain number of projections along different angles, what
is the configuration of rectangles which best match these projections?

We will first explore how CT scans work (Sect.2), their relation to the Radon Transform, and
the current algorithms to solve the inverse problem by Filtered Back Projection and algebraic
reconstruction techniques. These methods require the CT scanner to go around the full 180◦

and produce approximations based on discretization of the image.
In Sect.3 we first examine the forward problem by developing a method to algebraically

compute the exact Radon Transform (or projection function) of an image consisting of rectan-
gles.

We solve the inverse problem algebraically in Sect.4, in the case of one and then two pro-
jections of a single rectangle. The existence, uniqueness and stability of the solution found by
this algebraic method is explored.

Finally, a method using Binary Linear Programming (abbreviated BLP) is developed in
Sect.5. This method involves back projection to find candidate rectangles, formulating the
optimization problem, and solving it by the simplex method in combination with branch and
bound. A simplified example is given in Sect.5.5 of how the BLP method could be implemented
and used to solve the inverse problem.

We see that adding the premise of the rectangular nature of the image allows for incor-
poration of this knowledge into the image reconstruction problem, resulting in more accurate
approximations of the original image with only a few projection measurements.
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Author contributions

A new method was developed to compute the exact Radon Transform of an image consisting of
rectangles. Thus far only approximations using a discretization of the Radon Transform existed.
Under the assumption of the non-overlapping rectangular nature of the scanned objects, an
algebraic method was developed to solve the image reconstruction problem in the case of one
or two projections of one rectangle. Furthermore, for many projections of many rectangles, a
reconstruction algorithm using binary linear programming was developed.

Notation

We will denote vectors with boldface: x ∈ Rn, and matrices in bold capital letters: A is a
m× n matrix. We parametrize a rectangle R = [xmin, ymin, xmax, ymax, φ] with lower left vertex
[xmin, ymin] and top right vertex [xmax, ymax] in normalized pose and φ the angle to rotate the
normalized rectangle to its original pose. We indicate the image domain in the x, y−coordinate
system and the projection domain in the s, t− coordinate system. A projection of rectangle
R along projection angle α is parametrized by PR(s, α) = [s1, s2, s3, h], where s1, s2, s3 are
breakpoints and h is the maximum height of the projection. Alternatively, we may write a
projection as a set of breakpoints S and corresponding function values F : PR(s, α) = [S;F ],
and the projection function (Radon Transform) which evaluates the height of projection i along
angle αi for any s ∈ R is denoted as f (αi)(s).
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2 CT scans

This section will outline how CT scans work, the relation to the Radon Transform (Sect.2.1),
and the existing reconstruction algorithms which can be subdivided into analytic methods
(Sect.2.2), and algebraic methods (Sect.2.3).

For one full scan of a slice of an object, the X-ray generator of the CT scanner rotates around
the object, and thousands of measurements are gathered by the X-ray detectors which are
positioned on the opposite side of the X-ray source. To mathematically model the behavior of
the X-rays and the results of the scan, some assumptions are made about the ideal behavior
of the X-rays. First, that they are monochromatic, meaning the energy level and frequency
of propagation is constant. Furthermore, we assume the X-ray beams have zero width and are
not diffracted or refracted as they propagate, so they do not bend as they travel through a
substance. As each X-ray beam passes through different substances in the image, a proportion
of the photons are absorbed. This proportion is called the attenuation coefficient µ of
the medium [6, p.3]. Now given these assumptions, we can express the observed X-ray beam
intensity I after it has passed a distance L through a medium as:

I = I0e
−µL (1)

where I0 is the initial beam intensity (in number of photons per second per unit cross-sectional
area) [5, p. 11].

If we characterize object R by a continuous function µ(x, y) on R2, then the X-ray beam
traverses object R from the source to the detector along line L, as shown in Fig.1. The ratio of
the observed intensity versus the input intensity can thus be expressed as the following integral
along the beam path L [5, p. 12]:

I

I0

= e−
∫
L µ(x,y)dl (2)

Denoting the projection angle as α and the distance of the X-ray beam to the origin as s,
line L traversed by the X-ray beam is thus: x cos(α) + y sin(α) = s. By taking the natural
logarithm of Eq.2 we obtain the projection function of object R for s and angle α [5, p.12]:

PR(s, α) =

∫
L

µ(x, y)dl (3)

When all these projections PR(s, α) for all angles α (between 0 and π) are combined, we
obtain the CT scan data for a single slice (of zero width) of the object. This data is usually
visualized with a sinogram, which is a greyscale plot of s versus α [6, p.14].

2.1 The Radon Transform

We will now show that the expression of Eq.3 is in fact the Radon Transform of the attenuation
coefficient function µ.

Let h : R2 → R be a function and line L be defined by x cos(α) + y sin(α) = s as above, then
the Radon Transform R of the function h is defined as the line integral of h along line L [20,
p.12]:

R(h)(s, α) :=

∫
L

h(x, y)dl (4)
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Figure 1: The entire object R is scanned by the X-rays, yielding a projection profile (figure
edited, original: [5, Figure 1.6])

If the function h(x, y) is the attenuation coefficient function µ(x, y), then the projection
function of an object R along angle α is the Radon Transform of the attenuation coefficient
function:

PR(s, α) = R(µ)(s, α)

where

R(µ)(s, α) =

∫
L

µ(x, y)dl

Thus the Radon Transform forms the mathematical basis of the CT scan data.
Furthermore, the Radon Transform is related to the Fourier Transform by the Central Slice

Theorem. First, we define the 1-dimensional Fourier Transform F of a function h on R with∫∞
−∞ |h(x)|dx <∞ for any ξ ∈ R as [4]:

F(h)(ξ) :=

∫ ∞
−∞

h(x)e−2πixξdx

Likewise, the 2-dimensional Fourier Transform F2 of a function h on R2 for any ξ ∈ R2 is
defined as [4]:

F2(h)(ξ) :=

∫ ∞
−∞

h(x)e−2πix·ξdx

Central Slice Theorem: let h be any suitable function defined on R2 and s and α be any
real numbers, then [6, p.71]:

F2(h)(s cos(α), s sin(α)) = F(R(h))(s, α) (5)
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If we once again identify the function h with the attenuation coefficient function µ, this theorem
states that the 1-dimensional Fourier Transform of the Radon Transform of µ in (s, α) is the
2-dimensional Fourier Transform of µ in (s cos(α), s sin(α)).

Mathematically speaking, if µ were a continuous function, inverting the Radon Transform
would yield the unique original image R. However, in practice, the image domain (x, y plane) is
discretized and the scans are performed for a finite set of s and α values. Due to the finiteness of
the data, the original image can only be approximated [9, p.265]. Tomographic reconstruction
techniques are applied to approximate the attenuation coefficient function, which tells us the
shape of the scanned object.

Two main tomographic reconstruction techniques are an analytic method called Filtered
Back Projection (abbreviated FBP), outlined in Sect.2.2, and algebraic reconstruction tech-
niques (Sect.2.3). The FBP algorithm is relatively computationally undemanding, having a
computational complexity of O(K3) for an image of K × K pixels [19]. However the pro-
duced images often contain artifacts [3], high noise and impaired image resolution, due to the
algorithm’s assumption of a perfect scanner and very simplified physical laws of the X-ray in-
teractions. On the other hand, algebraic iterative methods have a much higher computational
complexity, but the images have fewer artifacts, less noise and a better resolution [2].

In Sect.4 we develop a new algebraic method to solve the image reconstruction problem
and in Sect.5 a method using binary linear programming. Both methods incorporate the prior
knowledge of the rectangular nature of the scanned objects. Whereas the existing tomographic
techniques require the scan to be done at small intervals all the way around the full 180◦, these
new methods only need a few projections in order to yield good results, thus saving a lot of
computation and scanning time.

We now first outline the existing tomographic techniques, which approximate the original
image using no prior knowledge of its shape.

2.2 Filtered Back Projection

The Filtered Back Projection method is computationally much more efficient than algebraic
reconstruction techniques. It is currently the most implemented CT scan image reconstruction
method and so a short outline of this method follows.

Let (x0, y0) ∈ R2 be a random point on the Cartesian grid of the image domain. Let f (αl)(s) =
PR(s, αl) be the projection function of imageR along projection angle αl for a random projection
l ∈ 1, ...p.

Let Tcαl
be the clockwise rotation matrix defined as:

Tcθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(6)

Let (sl, tl) be the point (x0, y0), transformed to the projection domain (s, t plane). Then:(
sl

tl

)
=

(
cos(αl) sin(αl)
− sin(αl) cos(αl)

)(
x0

y0

)
=

(
cos(αl)x0 + sin(αl)y0

− sin(αl)x0 + cos(αl)y0

)
So the intensity of projection l evaluated at (x0, y0) is given by:

f (αl)

∣∣∣∣
(x0,y0)

= f (αl)(sl) = f (αl)(cos(αl)x0 + sin(αl)y0)

In other words, for any point (x0, y0) ∈ R2 and projection angle αl, the line L = cos(αl)x0 +
sin(αl)y0 is the unique line (X-ray beam) which passes through point (x0, y0) [6, p.39].
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In practice, as mentioned earlier, the Cartesian grid of the image domain is discretized and
we have a finite number of measurements for finite values of α and s. We sum the intensities
of all the X-rays lines which pass through each point on the grid, for all the points on the
Cartesian grid. This produces the discrete back projection function [9, p.125].

Formally defined, let B : R2 → R be the discrete back projection function, so the total
intensity function due to all projections at each point in the image domain. Then for any point
(x0, y0) on the Cartesian grid, the back projection function is defined as [6, p.113]:

B(f)(x0, y0) :=
n∑
l=1

f (αl)(cos(αl)x0 + sin(αl)y0) (7)

where the angles αl are evenly spaced between 0 and π, so αl = (l−1)π
p

. Thus the discrete back

projection image is obtained by evaluating B(f)(x0, y0) at each point (x0, y0) on the discretized
image grid.

The resulting back projection image can thus be considered as a smoothed out version of
the original image [6, p.72]. Therefore, a convolution filter, which uses the relation between the
Radon and Fourier Transforms in Eq.5, is applied to the projection data prior to computing
the back projection [9, p.140]. This results in the Filtered Back Projection image, as first a
filter is applied to the projection data, and then the back projection function is computed.

2.3 Algebraic reconstruction techniques

There are many different forms of Algebraic reconstruction techniques (ART), but they are all
based on the following concept, derived from [6, p.138].

Let the discretized Cartesian grid size of the image to be constructed be K × K pixels. We
number the pixels 1 to K2 and let xk be the color or value of the kth pixel.

For any (x, y) in the image domain, we define the pixel basis function as:

bk(x, y) =

{
1 if (x, y) lies inside pixel number k

0 if (x, y) does not lie inside pixel number k

Thus the image can be represented by the function:

h(x, y) =
K2∑
k=1

xk · bk(x, y)

A CT scan is the Radon Transform of the image. So for the finite set of J measurements, we
define jth measurement pj taken along the line characterized by (sj, αj) as:

pj = R(h)(sj, αj) =
K2∑
k=1

xk ·R(bk)(sj, αj) for j = 1, ...J (8)

Note that by the definition of the Radon Transform, applied to the pixel basis function,
the term R(bk)(sj, αj) is in fact the length of the intersection of X-ray beam characterized
by (sj, αj) through pixel k. We denote this intersection length by rjk = R(bk)(sj, αj) for
j = 1, ..., J and k = 1, ...K2. We can thus consider rjk as the ”weight” of how much pixel k
contributes to projection measurement j. Substituting this into Eq.8, we get:

pj =
K2∑
k=1

xk · rjk for j = 1, ...J (9)
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Let W be the J ×K2 matrix of elements rjk. Let p ∈ RJ be the projection data vector, and
x ∈ RK2

be the vector containing the color values of all the pixels, thus x is the image we wish
to find. Then the system of Eq.9 can be written as:

p = Wx (10)

Thus the image reconstruction problem is written as a system of J linear equations in K2

unknowns [end of derivation from [6, p.139]]. The formulation of the image reconstruction
problem in this form, is the basis for the algebraic reconstruction techniques.

Each X-ray beam passes in a straight line through the object so only a very small fraction
of the pixels contribute to each measurement pi. Therefore, W is a very sparse matrix. In
practice, it is usually also rank deficient and there not invertible. Thus besides the immense
computational task of inverting W if it were nonsingular (and thus invertible), we cannot
simply compute x by x = W−1p.

There are many iterative reconstruction methods to solve for x in Eq.10. They all produce
a sequence of solution vectors x(0),x(1), ... which converges to x∗ [9, p.193]. How that sequence
of solution vectors is generated differs per iterative technique, but thus a general outline of how
the solution x is approximated by iterative reconstruction methods is given.
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3 The exact Radon Transform

Before delving into the inverse problem, we first examine the forward problem of computing
the Radon Transform of an image consisting of rectangles. The Radon Transform is an integral
so usually it is computed by discretizing the integral into a sum and thus approximating the
Radon Transform of an image. However, a rectangle is not a nice function to integrate over.
Instead, we developed an algebraic approach, with the advantage of the result being the exact,
not approximated, Radon Transform of that image.

First, the Radon Transform of a single rectangle is computed algebraically, and then that
of several rectangles.

Figure 2: A rectangle is defined by piecewise constant function µ(x, y)

3.1 The Radon Transform of one rectangle

For an image consisting of one rectangle R, we define the attenuation coefficient function
µ : R2 → R as the piecewise constant function:

µ(x, y) =

{
1 if (x, y) ∈ R
0 otherwise

(11)

Fig.2 shows how a rectangle is defined by the piecewise constant function µ(x, y). Therefore,
in the case of a rectangular object, the Radon Transform of µ can be considered as a function
of the length travelled by the X-ray beam through the rectangle.

We parametrize a rectangle R = [xmin, ymin, xmax, ymax, φ], with [xmin, ymin] and [xmax, ymax]
being the lower left and upper right vertices respectively in its normalized pose, and φ is the
angle which rotates the rectangle to its original pose. Let the 2-dimensional transformation
matrix Tφ be the counter-clockwise rotation by φ radians:

Tφ =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
(12)

Then the rectangle in its original pose is obtained by multiplying the rotation matrix Tφ with
the vertices of the rectangle in its normalized pose.

Let the projection angle α be the angle between the normal to the X-rays (so the s-axis in
the projection domain) and the x-axis in the image domain, shown in Fig.3. Equally, α is the
angle between the X-rays and the y-axis.

Algorithm 1 Computing the Radon Transform of rectangle R along angle α (Matlab code in
Appx.A.1)
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I Knowing the rotation angle φ of the rectangle with the x-axis and X-ray projection angle
α, calculate the angle θ′ = φ− α.

II Transform the rectangle to the projection domain (s, t-coordinate system) by multiplying
the θ′ rotation matrix Tθ′ defined as in Eq.12 by the vertices in the normalized pose. Now
the X-rays come in vertical lines from above.

III Renumber the rectangle’s vertices in the projection domain as: (s1, t1), (s2, t2), (s3, t3),
(s4, t4), with the s-coordinates sorted in ascending order (shown in Fig.3).

IV Calculate the angle of rotation between the rectangle and the s-axis in the projection
domain. This could just be equal to θ′, but depending on α and φ it could also be negative
or larger than π/2. To compensate for this, calculate θ = θ′ mod (π

2
).

V Compute the width w of the rectangle, which is the distance between vertices 1 and 2.

VI Now compute the maximum height h of the projection using simple geometry: h = w sec(θ)

VII Parametrize the found projection as PR(s, α) = [s1, s2, s3, h]. Using these parameters
the Radon Transform can now be written as a piecewise linear function using Lagrange
interpolation, explained below.

Figure 3: The projection of a rectangle is a piecewise linear function
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3.1.1 Lagrange interpolation

The projection function is a piecewise linear function so we rewrite PR(s, α) = [s1, s2, s3, h] as
PR(s, α) = [S;F ] where S is the set of all breakpoints of a projection and F is the set of function
values corresponding to those abscissae. So for a projection of one rectangle, S = {sj}4

j=1 =
{s1, s2, s3, s4} where s4 = s3 + (s2− s1)) (due to the symmetry of the projection of a rectangle)
and F = {tj}4

j=1 = {0, h, h, 0}. We use linear piecewise Lagrange interpolation to construct

the Radon Transform, or projection function f (α) : R → R that evaluates the ”height” of the
projection PR(s, α) = f (α)(s) along angle α for any s ∈ R.

The linear form for Lagrange interpolation is as follows [1, p.331-332]:

f (α)(s) =
n∑
j=1

tjLj(s) (13)

where tj = f (α)(sj) are the data ordinates that correspond to abscissae sj and Lj are Lagrange
polynomials (to be defined further on), for which must hold [1, p.302-305]:

Lj(si) =

{
0 i 6= j

1 i = j
(14)

It is clear that for any given breakpoint si, Eq.13 returns the height of the projection at that
breakpoint as desired:

f (α)(si) =
n∑
j=1

tjLj(si)

= t1 · L1(si) + ...+ ti · Li(si) + ...+ tn · Ln(si)

= t1 · 0 + ....+ ti · 1 + ...+ tn · 0
= ti

Due to the linear nature of the projections, hat functions are used to define the Lagrange
polynomials Lj. Given a random sequence of consecutive breakpoints sj−1, sj, sj+1, the hat
function is defined as [1, p.344-347]:

Lj(s) =


s− sj−1
sj − sj−1

sj−1 ≤ s < sj
s− sj+1
sj − sj+1

sj ≤ s < sj+1

0 otherwise

(15)

So the hat function Lj(s) is one at s = sj and decreases linearly towards zero to the left and
to the right of point sj, reaching zero when s = sj−1 or sj+1. The hat function is implemented
in Matlab code in Appx.A.2.

Thus given a random point s between si ≤ s ≤ si+1, evaluating the function f (α)(s) =
n∑
j=1

tjLj(s) comes down to evaluating:

f (α)(s) = ti · Li(s) + ti+1 · Li+1(s)

= f (α)(si) · Li(s) + f (α)(si+1) · Li+1(s)

since Lj(s) = 0 for j < i − 1 and j ≥ i + 1. Now we can evaluate the projection function for
any value s ∈ R as follows:
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Algorithm 2 Evaluating the projection function f (α)(s) for any point s ∈ R given a parametrized
projection PR(s, α) = [S;F ] (Matlab code in Appx.A.3)

I First verify whether s falls within the domain of the projection function (s ≥ S(1) and
s ≤ S(n), where n is the number of breakpoints of the given projection). If so, continue.
Else, return 0.

II Find index i such that s lies between breakpoints si and si+1.

III Calculate the hat function values of Li and Li+1 in s.

IV Multiply these values by the function values f (α)(si) = F (i) and f (α)(si+1) = F (i + 1)
respectively and sum them up. This yields the value of the projection function at point s.

3.2 Radon Transform of several rectangles

The Radon transform is linear [20, p.8.12], so calculating the Radon Transform, or total pro-
jection, of an image consisting of several rectangles along a certain angle α is equal to the sum
of the separate projections for each rectangle.

3.2.1 Combining two projections

We first combine the projections of two rectangles, and repeat the process by iteratively adding
a new projection to our total projection.

Algorithm 3 Computing the sum f (α) of two projections (Matlab code in Appx.A.4)

I Let PR1(s, α) = f (1,α)(s) = [S1;F 1] and PR2(s, α) = f (2,α)(s) = [S2;F 2] be two projections
of different rectangles R1 and R2 along the same angle α.

II The new set of breakpoints S is the union of both sets of breakpoints: S = S1 ∪ S2.

III For each s ∈ S, compute f (α)(s) as the sum of the two projection functions evaluated at s
using Algorithm 2:

f (α)(s) = f (1,α)(s) + f (2,α)(s) ∀s ∈ S

IV All these function values f(s) corresponding to breakpoints s ∈ S form list F . Thus the
combination of the two projections is parametrized by S and F : P(R1,R2)(s, α) = f (α)(s) =
[S;F ].

3.2.2 The total projection

Given an image consisting of n rectangles, the total projection function (Radon Transform of
that image) can now easily be computed iteratively.

Algorithm 4 Computing the Radon Transform of an image consisting of n rectangles (Matlab
code in Appx.A.5)

I Calculate the projection of rectangle i using Algorithm 1.

II If it was the first rectangle (i = 1), save its projection as the total projection PRtotal
(s, α) =

[S;F ].

III Else, combine its projection with total projection thus far using Algorithm 3.
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Figure 4: An image consisting of rectangles (X-rays are in the direction of the dotted blue
line) and the total projection function, the Radon Transform

IV Save the combined projection as the new total PRtotal
(s, α).

V Repeat steps I - IV for i = 1 to n.

Fig.4 shows five random rectangles in their original poses in the top left corner; the X-rays
come parallel to the dotted blue line. The top right corner shows these rectangles transformed
by θ = φ − α to the projection domain. In the bottom left corner the individual projections
along angle α of the rectangles are plotted, and the bottom right corner shows the Radon
Transform of the original image, which is the total projection function computed as described
above.
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4 Algebraic method

We will now develop a new algebraic method to solve the inverse problem of finding the rectangle
from one or two projections.

4.1 Computing a rectangle from one projection

4.1.1 The algorithm

Given one projection, we compute at most four possible rectangles which could have produced
this projection. Knowledge of the distance of a rectangle from the s-axis is lost during pro-
jection, so for simplicity we set all the possible rectangles ”on” the s-axis (so ti = 0 for one
vertex i and tj >= 0 ∀ vertices j 6= i). Each possible rectangle thus represents infinitely many
solutions of that rectangle shifted up and down the t−axis. We outline the algebraic method to
compute these possible rectangles below. The specific equations for the vertices of the possible
rectangles are derived in Sect.4.1.2.

Algorithm 5 Algebraic method for computing a rectangle from one projection (Matlab code in
Appx.A.6)

I Let PR(s, α) be a random projection parametrized by PR(s, α) = [s1, s2, s3, h], with α the
angle of the X-rays.

II Let (s1, t1), (s2, t2), (s3, t3), (s4, t4) be the vertices of the rectangle(s) we wish to find in the
projection domain. The s-coordinates of these vertices match with the breakpoints s1, s2,
and s3 of the projection.

III Due to the symmetry of a projection, we calculate s4 from the other s-coordinates: s4 =
s3 + (s2 − s1).

IV As earlier, let θ be the angle of rotation between the rectangle and the s-axis.

V We differentiate between three different projection shapes, and compute the t−coordinates
of the corresponding possible rectangles.

Shape 1 is when the projection itself is rectangular (shown in Fig.5). This is the most
trivial case as the angle of projection is equal to the angle of rotation of the rectangle,
so the rectangle which produced this projection is the same shape as the projection
and the angle θ = 0.

For the two remaining projection shapes we solve for angle θ using the following equation
(which will be derived below in Sect.4.1.2):

r(θ) = csc(θ) sec(θ) (16)

and setting r = h
s2−s1 . This yields one or usually two solutions for θ.

Shape 2 is when the projection function has a trapezoidal shape (shown in Fig.6). We
first assume that vertex 2 (s2, t2) is the lowest vertex (so has the lowest t−coordinate)
and all other t−coordinates are derived from this; this yields two possible rectangles
(one for each value of θ). Next we assume vertex 3 is the lowest vertex, also yielding
two possible rectangles.

Shape 3 is when the projection is triangular (shown in Fig.7). Then s2 = s3 and only
two different rectangles are possible, one for each angle θ.
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Figure 5: A rectangular projection yields one possible rectangle, representing infinitely many
solutions

VI For each calculated possible rectangle, its vertices in the projection domain are put in the
following matrix:

Rs,t =

[
s1 s2 s3 s4

t1 t2 t3 t4

]
VII Rotate these four vertices clockwise by angle θ, by computing Rnormal = Tcθ ·Rs,t, where

clockwise rotation matrix Tcθ is defined as in Eq.6. This yields the vertices of the possible
rectangle in its normalized pose.

VIII Extract the parameter values xmin, ymin, xmax, ymax for the possible rectangle by minimizing
and maximizing the first (x-coordinates) and second (y-coordinates) rows of the matrix
Rnormal respectively.

IX The angle of rotation between the rectangle in its original pose in the image domain and
the x-axis is then calculated by φ = α + θ.

X Thus all the parameters of each possible rectangle are computed:

Rpossible, normalized = [xmin, ymin, xmax, ymax, φ]

4.1.2 Derivation of the specific equations

Now we will derive the specific equations for step V of Algorithm 5, calculating the t−coordinates
per projection shape.

Shape 1: A rectangular projection, so s1 = s2

As explained above, θ = 0 so φ = α+ θ = α. The vertices of the possible rectangle in the
projection (s, t) domain are:

Rs,t =

[
s1 s2 s3 s4

0 h h 0

]
16
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Figure 6: A trapezoidal projection yields 4 possible rectangles

Thus for a rectangular projection, the corresponding possible rectangle has t−coordinates:

t1 = 0

t2 = h

t3 = h

t4 = 0

Shape 2: A trapezoidal projection, so s1 6= s2 6= s3

A rectangle with the second vertex being positioned ”on” the s-axis and a rectangle with
the third vertex on the s-axis both could have produced this projection, so we derive both
cases 2a and 2b separately.

Case 2a: A trapezoidal projection, setting t2 = 0
We set the second vertex of the possible rectangle ”on” the s−axis, as shown in Fig.8.

Using basic geometry, we know

tan(θ) =
t4 − t2
s4 − s2

=
t4

s4 − s2

since t2 = 0. Thus
t4 = (s4 − s2) tan(θ)

Similarly,

tan
(π

2
− θ
)

= cot(θ) =
t1 − t2
s2 − s1

=
t1

s2 − s1
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Figure 7: A triangular projection yields 2 possible rectangles

Therefore
t1 = (s2 − s1) cot(θ)

Lastly, t3 = t1 + t4. Now we have expressed all the vertices of the possible rectangle in
terms of θ, but what is the value of θ?

Solving for θ

In order to derive Eq.16 which is used to solve for θ, we express t3 in terms of h. Let T
be the t-coordinate of the point (s3, T ) on the edge of the rectangle between vertices 2
and 4 (see Fig.8). In other words, as t2 = 0, T is the height between the lowest edge of
the rectangle and the s-axis at s = s3. Now

tan(θ) =
T

s3 − s2

so
T = (s3 − s2) tan(θ)
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Figure 8: Algebraically computing the rectangle from a trapezoidal projection

Now t3 = h+ T and t3 = t1 + t4 must both hold. So:

t3 = h+ T = t1 + t4

= h+ (s3 − s2) tan(θ) = (s2 − s1) cot(θ) + (s4 − s2) tan(θ)

h = (s2 − s1) cot(θ) + (s4 − s2 − s3 + s2) tan(θ)

= (s2 − s1) cot(θ) + (s4 − s3) tan(θ)

= (s2 − s1)(cot(θ) + tan(θ))

Therefore

cot(θ) + tan(θ) =
h

s2 − s1

But
cot(θ) + tan(θ) = csc(θ) sec(θ)

Thus

csc(θ) sec(θ) =
h

s2 − s1

we define the function r(θ) = csc(θ) sec(θ) as in Eq.16 and solve for θ by computing the
inverse of this function.

The function r(θ) has a minimum at
(
π
4
, 2
)
, as can be seen in Fig.9. For r > 2 this

equation always has two solutions θ1 and θ2 between 0 and π
2
. For r < 2 it has zero

solutions, so if r < 2 we do not have a valid projection and thus cannot compute a
rectangle from this projection.

Proof of minimum:

r(θ) = csc(θ) sec(θ) = tan(θ) + cot(θ)
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Figure 9: The function r(θ) from Eq.16

Thus
d

dθ
r(θ) = sec2(θ)− csc2(θ) = 0

Thus

θ1 = π

(
k − 7

4

)
θ2 = π

(
k − 1

4

)
for k ∈ Z

So for 0 ≤ θ < π
2

we have k = 2 giving us one extremum at θ = π
4
.

r
(π

4

)
= tan

(π
4

)
+ cot

(π
4

)
= 1 + 1 = 2

d2

dθ2
r(θ) = 2 sec(θ)(sec(θ) tan(θ)− 2 csc(θ)(− csc(θ) cot(θ))

= 2

(
sin(θ)

cos3(θ)
+

cos(θ)

sin3(θ)

)
cos
(π

4

)
=

1√
2

and sin
(π

4

)
=

1√
2

Thus
d2

dθ2
r
(π

4

)
> 0

Thus the extremum
(
π
4
, 2
)

is a minimum �

So for case 2a we now calculate the angle(s) θ1 and θ2 from Eq.16 and setting r = h
s2−s1 ,

where s1, s2, and h are the given parameter values. Given these one or two values of θ, we
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calculate the t-coordinates of the two possible rectangles with vertex 2 being the lowest
from the equations derived above:

t2 = 0

t4 = (s4 − s2) tan(θ)

t1 = (s2 − s1) cot(θ)

t3 = t1 + t4

Case 2b: A trapezoidal projection, setting t3 = 0
In this case vertex 3 of the possible rectangle is the lowest vertex, since we set t3 = 0.
The equations for the other 3 t-coordinates are derived in a similar manner as in case 2a.

We now have

tan(θ) =
t4 − t3
s4 − s3

=
t4

s4 − s3

so t4 = (s4 − s3) tan(θ).
Likewise

tan(
π

2
− θ) = cot(θ) =

t1 − t3
s3 − s1

=
t1

s3 − s1

thus t1 = (s3 − s2) cot(θ) and t2 = t1 + t4.

So the t−coordinates of the possible rectangle with its lowest vertex being vertex 3 are:

t3 = 0

t4 = (s4 − s3) tan(θ)

t1 = (s3 − s2) cot(θ)

t2 = t1 + t4

But is this angle θ the same as derived for case 2a?

Solving for θ

In order to solve for θ, we now let (s2, T ) be the point on the edge of the rectangle between
vertex 1 and 3 at s = s2. Then both t2 = h+ T and t2 = t1 + t4 must hold. We have

cot(θ) =
T − t3
s3 − s2

=
T

s3 − s2

so T = (s3 − s2) cot(θ). Thus

t3 = h+ T = t1 + t4

= h+ (s3 − s2) cot(θ) = (s3 − s2) cot(θ) + (s4 − s3) tan(θ)

So
h = (s2 − s1) cot(θ) + (s4 − s3) tan(θ)

= (s2 − s1)(cot(θ) + tan(θ)) due to the symmetry of projections

= (s2 − s1)(csc(θ) sec(θ))

Thus we once again have

csc(θ) sec(θ) =
h

s2 − s1

We see that Eq.16 does in fact yield the two different possible angles θ, which in combina-
tion with positioning the lowest vertex either at (s2, 0) or at (s3, 0) gives us four different
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possible rectangles from a trapezoidal projection shape. Unless, as mentioned above, we
have r = 2 exactly, in which case we have only two possible rectangles (calculated from
one angle θ).

Note the symmetry of the possible rectangles, shown in Fig.6: for both angles θ, the
rectangle with t3 = 0 (from case 2b) is equal to the one with t2 = 0 (case 2a) reflected in
the vertical line s = s2+s3

2
, just as the projection is also symmetrical in this vertical line.

Furthermore, θ1 + θ2 = π
2

holds.

Shape 3: A triangular projection, so s2 = s3

This is in fact a special version of case 2a because vertex 2 is the one situated on the
s-axis and vertex 3 is situated vertically above it. Thus t2 = 0 and t3 = h and t1 and t4
are as in case 2a:

t2 = 0

t4 = (s4 − s2) tan(θ)

t1 = (s2 − s1) cot(θ)

t3 = h

Once again we have the symmetry between the possible rectangles: they are reflected in
the vertical line s = s2 as shown in Fig.7.

4.1.3 Existence of the solution

Given a random projection PR(s, α) = [s1, s2, s3, h], we have seen above that Eq.16 is crucial
in the existence of a solution when computing the possible rectangle(s) from a projection. By
constructive proof we have shown that if ratio

r =
h

s2 − s1

≥ 2

then there exists one or two angles θ which satisfy Eq.16:

r = csc(θ) sec(θ)

and possible rectangles (solutions) can be computed from this projection.

4.1.4 Uniqueness of the solution

We have also shown by a constructive proof that when this ratio r is greater or equal to two
we can compute one to four possible rectangles, depending on the shape of the projection.

Recall however, that when projecting a rectangle along a certain angle α, knowledge of
the distance between the rectangle and the s−axis in the projection domain is lost. In our
calculations we therefore set the possible rectangle ”on” the s− axis and each possible rectangle
that is derived thus in fact represents an infinite number of rectangles shifted vertically parallel
to the t−axis. Therefore, even for projection shape 1 where we have a rectangular projection
and compute only one possible rectangle, we still have infinitely many solutions as that rectangle
can be shifted up and down the t-axis by any arbitrary amount.

Therefore, when solving the inverse problem of calculating which rectangle produced a
certain projection, we always find infinitely many solutions.
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4.2 Computing a rectangle from two projections

4.2.1 The algorithm

There are many methods that could be used to find which rectangle produced two projections.
After some trials, the following algorithm was developed to compute the original rectangle
R = [xmin, ymin, xmax, ymax, φ], from two different projections PR(s, α1) and PR(s, α2). The
specific equations to implement the algorithm will be derived below in Sect.4.2.2.

Algorithm 6 Algebraic method for computing a rectangle from two projections (Matlab code
in Appx.A.9)

I From the first projection PR(s, α1), compute the at most four different possible rectangles
which could have created this projection using Algorithm 5.

II For each possible rectangle, calculate its projection along angle α2 using Algorithm 1.

III For each of these possible projections from the possible rectangles, compare them to the
second projection PR(s, α2) and find the possible projection that matches best with pro-
jection 2 (using Algorithm 7 below).

IV Thus we know which possible rectangle created projection 1 and 2, let this be

Rfound = [xmin, ymin, xmax, ymax, φ]

V Find the exact position of the rectangle from the s1 values of both projections (using
Algorithm 8 below).

Figure 10: Algebraic method for computing one solution R from two projections
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Fig.10 shows projection 1 in the top left corner, and the four possible rectangles which
could have produced this projection (in their original poses) in the top right corner. The
bottom left corner shows projection 2 in orange, and the projections along angle α2 of the four
possible rectangles in the same colors as their corresponding rectangles. Indeed one of these
four projections is identical to the projection 2: this projection is shifted to the left such that
the s1 values are equal and indeed it overlaps perfectly with projection 2 (the shifted projection
from one of the possible rectangles is the blue dotted line). Lastly, the bottom right corner
shows the shifted found rectangle (in red), overlaid by the original rectangle we wish to find
in dotted blue: indeed these rectangles are identical and we have thus by this algorithm found
exactly which rectangle R produced the two given projections.

4.2.2 Derivation of the specific equations

The implementation of step III of Algorithm 6 to find which of the at most four possible
projections best match the second projection is outlined below.

Algorithm 7 Matching possible projections to a given projection (Matlab code in Appx.A.7)

I For each possible projection Pposs.proj = [s1,poss.proj, s2,poss.proj, s3,poss.proj, hposs.proj] do the
following:

i Calculate the difference in height ∆h between the possible projection and projection 2:
∆h = hproj.2 − hposs.proj

ii Calculate the shift ∆s between the projections, which is the difference between the s1

parameter of the possible projection and that of projection 2. So ∆s = s1,proj.2 − s1,poss.proj

iii Increase the other parameter values s2, and s3 by that shift ∆s: s2,shifted = s2,poss.proj + ∆s

and s3,shifted = s3,poss.proj + ∆s.

iv Calculate the difference between the shifted s2 and s3 parameter values of the possible
projection and projection 2: ∆s2 = s2,proj.2 − s2,shifted and ∆s3 = s3,proj.2 − s3,shifted.

v Compute the match value m of that possible projection with projection 2, which is
defined as the sum of the square of the height difference, the s2 difference and the s3

difference: m = ∆2
h + ∆2

s2
+ ∆2

s3

II The possible projection with the lowest match value m best matches projection 2.

Now the implementation of step V of Algorithm 6 to find the exact position of Rfound using
the s1 values of projections 1 and 2 follows.

Algorithm 8 Computing the exact position of a found rectangle (Matlab code in Appx.A.8)

I Denote ∆x and ∆y as the shift in the x and y direction in the image domain respectively
such that when the found rectangle is shifted thus and projected along angles α1 and α2,
the projection parameter s1 is equal to that of projection 1 and 2 respectively. The aim is
thus to find ∆x and ∆y.

II Let
Rfound, shifted = [xmin −∆x, ymin −∆y, xmax −∆x, ymax −∆y, φ]
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III Now examine the projection of this rectangle along angle α1 and α2. However, only the
s-coordinates are needed from this calculation; let those be vectors scoordinats,proj.1 and
scoordinates,proj.2 respectively. These vectors are of the form

scoordinates,proj.i =


a+ b ·∆x + c ·∆y

d+ b ·∆x + c ·∆y

e+ b ·∆x + c ·∆y

f + b ·∆x + c ·∆y


for certain constants a, b, c, d, e, f ∈ R and i = 1 and 2.

IV Due to the form of these vectors scoordinates,proj.i, in order to find the minimum value of this
vector, find the minimum value of the constants of this vector, defined as:

sconstants,proj.i = [a, d, e, f ]

V The minimum of these constants yields the index or position of the minimum of the vector
scoordinates,proj.i.

VI This minimum should be equal to the first parameter (s1) of projection i:

min[scoordinates,proj.i] = s1,proj.i

for i = 1 and 2.

VII This yields two equations from which the values for the shifts ∆x and ∆y are then found.

VIII Substitute these values for ∆x and ∆y into Rfound, shifted to find the exact position of the
rectangle.

4.2.3 Existence and uniqueness of the solution

By constructive proof we have demonstrated above that given two projections of the same
rectangle from two non equal angles α1 and α2, the exact rectangle which produced these
projections can be calculated.

Thus the existence and uniqueness of the solution depends on the precision of numerical
computations of Matlab. Let αdiff = α2 − α2, then the more precise the computations, the
smaller the value of αdiff can be and still yield the correct solution. When using Matlab’s
default precision of 16 digits, it was found that the smallest difference αdiff from which the
unique original rectangle can still be found is αdiff = 1× 10−14.

4.2.4 Stability of the solution

In reality, the CT scan data of course does not yield perfect piecewise linear projection functions,
as the data will contain noise. Given this noisy CT scan data, one would first interpolate it to
produce the piecewise linear functions we have worked with so far.

We simulate this noise in the data by adding some random noise −εnoise ≤ noise ≤ +εnoise to
each parameter s1, s2, s3 and h of both projections PR(s, α1) and PR(s, α2), as shown in Fig.11.
We define the difference between the projection angles as αdiff = α2 − α1. Now we analyze
the stability of the solution found using the Algebraic method of Algorithm 6 as follows, for
different values of εnoise and αdiff.
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Figure 11: Add εnoise to the projection function to simulate noise in the data

Algorithm 9 Stability analysis of the Algebraic method of Algorithm 6 (Matlab code in Appx.A.10)

For each value of εnoise and αdiff :

I Generate a random rectangle Roriginal

II Generate a random projection angle α1 and compute PR(s, α1) using Algorithm 1.

III For α2 = α1 + αdiff, compute PR(s, α2) using Algorithm 1.

IV For each parameter s1, s2, s3 and h of both projections, generate a random noise value
−εnoise ≤ noise ≤ +εnoise and add it to the parameter.

V Compute the rectangle Rfound from the two distorted projections using Algorithm 6.

VI Compute the error between Rfound and Roriginal. The error is defined as the Euclidean
distance between the four vertices of both rectangles (see Appx.A.11).

VII Repeat steps I - VI 20 times for each εnoise and αdiff value and calculate the mean error
and standard deviation.

Fig.12 shows an example of the stability analysis. The top right corner shows the same
projection of Fig.10 in dotted blue, and this projection distorted by noise in blue. The bottom
left corner also shows the original second projection in dotted orange, and the noisy projection
in orange. We see that due to the noise in both projections, there is no projection from one of
the possible rectangles from projection 1 (top right corner) which is identical to projection 2
(in orange). Instead, the possible projection which best matches projection 2 (shown in dotted
blue line) is selected, yielding a found rectangle (shown in red in the bottom right corner) which
is similar, but not identical, to the original rectangle we wish to find (shown with the dotted
red line). The error between the original and found rectangle is shown in yellow.

Fig.13 shows the mean error values for different values of εnoise, plotted for different values
of αdiff. Fig.14 shows the same data, but with the εnoise values plotted on a logarithmic scale
to better see the data for the smaller εnoise values. One can see that the increase in mean error
is pretty linear for most values of αdiff, as would be expected.

For αdiff close to π
2
, the mean error is greater and the solution more unstable. This is

corroborated further when looking at Fig.15, which shows the standard deviation bars for the
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Figure 12: Algebraic method for data with εnoise = 0.5, for αdiff = π
5

mean values for each value of αdiff. The standard deviation for the αdiff values close to π
2

is
large for all values of εnoise, not just for the larger εnoise values as with the other plots.

The instability of the solution for (almost) orthogonal projections, so αdiff values close to π
2
,

was to be expected as the algorithm which finds the rectangle first computes the four (or less)
possible rectangles from projection 1, then projects those possible rectangles along angle α2.
However, the possible rectangles come in symmetric pairs: they are reflected in the line s = s0

for a certain value s0. So projecting the possible rectangle along angle α2 = α1 + π
2
, almost

perpendicular to the original projection angle, would yield identical projections for each pair
of symmetrical possible rectangles. The algorithm then compares which of the four projections
from the possible rectangles best match projection 2. However, since αdiff is close to π

2
, the

projections of the four possible rectangles have merged into two possible projections, and thus
the algorithm cannot successfully distinguish which of the two rectangles from a symmetric
pair is the best match. This accounts for the large error (almost) orthogonal projections.

With similar reasoning, one would also expect that αdiff values close to π
4

would also yield
higher errors. This is because if a possible rectangle is close to square in shape, there is even
more symmetry as the projections of a symmetric pair of possible rectangles along α2 = α1 + π

4

would also yield identical projections. Although one can see a slight increase in mean error for
αdiff = π

4
and slightly higher standard deviation values, the effect is by far not as dramatic as for

αdiff values close to π
2

because this effect is only when dealing with (almost) square rectangles.
Lastly, one can also see in Fig.15 that for all the non-orthogonal αdiff values the standard

deviation increases dramatically for εnoise ≥ 0.5. So for εnoise < 0.5 the solution is reasonably
stable for non-orthogonal projections, and for εnoise ≥ 0.5 the solution is definitely unstable and
thus unreliable, regardless of αdiff value.
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Figure 13: Mean error from 20 trials of the Algebraic method, for different values of αdiff

Figure 14: Mean error from 20 trials of the Algebraic method, for different values of αdiff, on
a logarithmic scale
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Figure 15: Mean from 20 trials of the Algebraic method with standard deviation bars, for
different values of αdiff
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5 BLP method

When expanding the image reconstruction problem from two projections of one rectangle to
several projections of several rectangles, the computational complexity of solving this problem
algebraically increases dramatically and therefore an alternative, more efficient method is nec-
essary. In this section, we transform the problem into a binary linear programming problem:
given the projection data PR(s, αl) for l = 1, ...p and s = 1, ...q, find the optimal configuration
of rectangles which best fit this projection data. The method for the formulation of this prob-
lem is inspired by Jiang and Xiao who fit cuboids to a RGBD image in [12] and is outlined
below.

Algorithm 10 BLP method for computing an image consisting of rectangles from several pro-
jections

I Construct a set of candidate rectangles R = {Ri}ni=1 from the back projection image using
Alg.11 described below. Candidate rectangle i is denoted as
Ri = [xmin, ymin, xmax, ymax, φ].

II Let binary variable xi be defined as follows:

xi =

{
1 if candidate rectangle i is selected

0 otherwise

III The binary linear programming problem is:

min
x
{C(x)− νA(x) + µN(x) + λP(x)− γB(x)}

s.t. rectangle configuration x satisfies given constraints
(17)

The C(x) term quantifies the matching costs of the candidate rectangles to all the measured
projections, A(x) reflects the area covered by the selected rectangles, N(x) is the number
of selected candidates rectangles, P(x) is the pairwise term quantifying the intersection
between pairs of candidate rectangles, and B(x) quantifies the matching of the rectangles
to the back projection image. The parameter values ν, µ, λ, γ ∈ R>0 adjust the weight of
each term in the optimization problem.

IV Minimize the BLP in Eq.17 using the simplex method in combination with branch and
bound (outlined in Sect.5.4). Thus we find a solution to the image reconstruction problem
by using linear programming to select an optimal subset of the set of candidate rectangles
R.

In Sect.5.1 we elaborate on the back projection image, and in Sect.5.2 we describe the
algorithm used to construct candidate rectangles. In Sect.5.3 we derive the separate terms of
the Binary Linear Programming problem of Eq.17. Lastly, in Sect.5.5 we simulate the BLP
method by implementing a simplified example, finding an approximation of an image consisting
of three rectangles from five projections.

5.1 The back projection image

As in [12], first candidate rectangles are needed. These candidate rectangles are constructed
from the back projection image.
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As mentioned in Sect.2.2, a back projection image is essentially all the projections ”smeared”
back over the image domain. Given p projections, the angles of projection α are evenly spaced
between 0 and π radians. We discretize the image domain into a grid, and for each point (x0, y0)
on the grid, we calculate the sum of the intensity or height of each projection from that point
as in Eq.7. See Appx.A.12 for this function.

Figure 16: Back projection image from 5 projections of 2 rectangles, with grid size 0.01

Fig.16 shows an example of an image consisting of random rectangles in the top left corner,
the Radon Transform of that image along five different angles α in the bottom left corner,
and the back projection image on the right. For this figure, the image domain was discretized
into a grid with interval width 0.01. Decreasing the interval width to 0.001 produces an even
more detailed back projection image, shown in Fig.17: one can see more clearly the rectangular
nature of the original image, but at the cost of 100 times more computation time. Likewise, as
would be expected, doubling the number of projections from 5 to 10 also improves the quality
of the back projection image, shown in Fig.18.

5.2 Constructing candidate rectangles

The candidate rectangles can now be constructed from the back projection image as follows.

Algorithm 11 Constructing candidate rectangles from the back projection image

I Find superpixels. These are groups of connected pixels with a similar intensity, so
B(f)(x, y) value. Image segmentation tools can be used for this, such as the graph method
in [7], but this is beyond the scope of this paper.
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Figure 17: Back projection image from 5 projections of 2 rectangles, with grid size 0.001

II For decreasing threshold values ξ, find planar patches. A planar patch is defined as all
connected superpixels with an intensity B(f)(x, y) > ξ. So starting with a high threshold
value ξ and decreasing this value at regular intervals (down to a certain minimum intensity
ξ0), planar patches of increasing size are formed, each enveloping the previous patch. The
resulting effect resembles contour lines on a hill, as in Fig.19

III For each planar patch, construct a candidate rectangle around it: the candidate rectangle
is the smallest rectangle that fully encloses that planar patch

5.2.1 Hard constraints

Given this set {Ri}ni=1 of candidate rectangles, those that do not comply with the hard con-
straints are eliminated. Namely:

a Only construct planar patches with an intensity greater than a certain threshold value:
B(f)(x, y) > ξ0, thus ensuring that the candidate rectangles only enclose planar patches
with intensities above that threshold.

b Let the bounding box be the polygon bounded by the outer edges of the projections. All
candidate rectangles must lie for at least 80% of their area within this bounding box.

c For each candidate rectangle, their projection along the different projection angles is calcu-
lated. At least 80% of this projection must fall within each measured projection.

These hard constraints ensure that we have a viable set of candidate rectangles {Ri}ni=1.
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Figure 18: Back projection image from 10 projections of 2 rectangles, with grid size 0.01

Figure 19: Planar patches on the back projection image resemble contour lines on a hill [25]

5.3 Formulating the BLP

Given this set of candidate rectangles {Ri}ni=1, selection criteria are now formulated which must
either be minimized or maximized in order to find the candidate rectangles which best fit the
given projection data. The separate terms which form the BLP in Eq.17 are explained.

5.3.1 Minimize the local matching cost

For each candidate rectangle i ∈ {1, ...n} and for each projection l ∈ {1, ...p}, we calculate the
local matching cost. We define the local matching cost ci,l as the area of candidate rectangle
i’s projection along angle αl which does not overlap with projection f (αl).

The local matching cost was already subject to hard constraint [c] in the previous section
so at least 80% of the rectangle’s projection will fall within the projection f (αl). However, the
more a candidate rectangle’s projection ”sticks out” above the projection data, the worse the fit
of this candidate to the data. Fig.20 shows some of the fit of a candidate rectangle’s projection
with a certain projection l. The total of these matching costs C(x) is thus the soft constraint
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term in the objective function and needs to be minimized.
The total matching cost term is thus:

Minimize C(x) =
n∑
i=1

p∑
l=1

ci,lxi (18)

Simply minimizing the term C(x) would yield the trivial all zero solution, so we need more
terms in the objective function.

Figure 20: A candidate rectangle’s projection (in red), original projection l (in blue), and the
projection difference (in green). The local matching cost is the area of the green curve above
the s-axis.

5.3.2 Maximize the area of the rectangles

When minimizing the local matching cost, selecting a small rectangle which lies within the orig-
inal rectangle (for example which only encloses the brightest yellow patch in the previous back
projection figures) would be preferred to selecting a larger (but actually better fitting) rectangle.
Thus we add a soft constraint term which prefers larger rectangles to smaller rectangles.

We define ai as the area of candidate rectangle i. Then the total area term in the objective
function is:

Maximize A(x) =
n∑
i=1

aixi (19)
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5.3.3 Minimize the number of rectangles

To avoid getting unnecessarily large, complicated solutions with many small rectangles covering
a large area, we also have a soft constraint term which minimizes the number of rectangles. This
in combination with maximizing the area of the rectangles ensures that finding a small number
of large rectangles which fit the projection data is favoured to finding many small rectangles.

However, given a projection f (αl) = [Sl;F l] we can deduce the minimum number of rectan-
gles which produced this projection by looking at the number of breakpoints of the projection,
which is the cardinality of set Sl: |Sl|. To wit, one rectangle produces at most four breakpoints
since its breakpoints could overlap with that of another rectangle. Therefore we define nl as
the minimum number of rectangles which formed projection l:

nl =

⌈
|Sl|
4

⌉
Now we define the minimum number of rectangles needed to form all projections as:

nmin = max
l=1,...p

nl (20)

Thus we add the soft constraint number term to the objective function:

Minimize N(x) =
n∑
i=1

xi

subject to
n∑
i=1

xi ≥ nmin

(21)

This constraint ensures that a non-trivial solution to the BLP is always found.

5.3.4 Minimize the intersection between pairs of rectangles

As we have assumed that the rectangles in the original image do not overlap, we wish to
minimize the overlap between the selected candidate rectangles. Let ei,j be the intersection
ratio between candidate rectangles i and j defined as:

ei,j =
intersection area

area of smallest rectangle
∀i, j ∈ {1, ..., n} with i 6= j

We compute this intersection ratio for all pairs of candidate rectangles i 6= j. The soft
constraint in the objective function is thus the intersection ratio term:

Minimize P(x) =
∑

{{i,j}:0<ei,j<t}

ei,j xi xj

We also want the hard constraint that the intersection ratio never exceeds a certain threshold
value t. This is ensured by adding the constraint xi + xj ≤ 1 ∀ pairs with ei,j ≥ t. The term
ei,jxixj then becomes zero for those sets of candidate rectangles.

However, P in the current form is quadratic, so in order to linearize it we introduce the
auxiliary variable wi,j and let wi,j ≤ xi, wi,j ≤ xj, wi,j ≥ 0 and wi,j ≥ xi + xj − 1. By thus
defining wi,j, wi,j = xi · xj holds. The proof is left up to the reader as one simply has to verify
that for all cases ((xi = 0 ∧ xj = 0), (xi = 1 ∧ xj = 0), (xi = 1 ∧ xj = 1)) we get wi,j = xi · xj.
(The case (xi = 0 ∧ xj = 1) is excluded due to the symmetry of the problem.)
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Thus the complete intersection term containing the soft and hard constraints is as follows:

Minimize P(x) =
∑
{i,j}

ei,j wi,j

subject to xi + xj ≤ 1 ∀{i, j} : ei,j ≥ t

wi,j ≤ xi, wi,j ≤ xj, wi,j ≥ xi + xj − 1 ∀{i, j} : 0 < ei,j < t

(22)

5.3.5 Maximize matching to the back projection image

We have constructed the candidate rectangles around areas or planar patches of higher intensity
pixels. However, the higher the intensity B(f)(x0, y0) at point (x0, y0) in the back projection
image, the bigger the probability that there is a rectangle which covers that point. Recall that
a superpixel was a group of connected pixels with almost the same intensity. Let gk be the
average intensity of superpixel k and let sk be the area on the back projection image covered
by superpixel k. We define auxiliary variable vk as:

vk =

{
1 if superpixel k is covered by at least one selected rectangle

0 otherwise

Thus the total match to the back projection image is defined as:

B(x) =
∑

superpixel k

sk gk vk

We implement the definition of vk by adding the constraints vk ≤
∑
{cand.rect. i covers superpixel k} xi

and vk ≤ 1 ∀ superpixels k. This constraint forces vk = 0 if no selected candidate rectangle
covers superpixel k, but if superpixel k is covered by one (or more) selected candidate rectangle,
vk = 1 as desired, so B is maximized.

We maximize the matching to the back projection image by the soft constraint term in the
objective function:

Maximize B(x) =
∑
k

sk gk vk

subject to vk ≤
∑

rect. i covers superpixel k

xi, vk ≤ 1, ∀ superpixel k
(23)

Maximizing B thus defined favors selection of candidate rectangles which cover large super-
pixels with high intensities over small superpixels with low intensities.

5.3.6 The entire BLP

Now that we have derived all the soft and hard constraints, we combine all the terms in Eq.18,
Eq.19, Eq.21, Eq.22 and Eq.23. These form the objective function and their corresponding
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constraints for the BLP in Eq.17. The overal problem thus becomes:

min
x


n∑
i=1

p∑
l=1

ci,l xi − ν
n∑
i=1

ai xi + µ

n∑
i=1

xi + λ
∑
{i,j}

ei,j wi,j − γ
∑
k

sk gk vk


s.t.

n∑
i=1

xi ≥ nmin

wi,j ≤ xi, wi,j ≤ xj, wi,j ≥ xi + xj − 1 ∀{i, j} : 0 < ei,j < t

xi + xj ≤ 1 ∀{i, j} : ei,j ≥ t

vk ≤
∑

rect. i covers superpixel k

xi, vk ≤ 1, ∀ superpixel k

xi = 0 or 1. All variables are non-negative.

(24)

We see that it is indeed a Binary Linear programming problem because the objective function
and constraints are a linear function of the binary decision variables x.

5.4 Solving the BLP

Given this BLP, one method to solve it is using the Implicit Enumeration Method. As
all decision variables can either be 0 or 1, the implicit enumeration method systematically
eliminates obviously infeasible solutions, and then evaluates all the remaining solutions to find
the optimum [23, p.C-11]. This is a useful method for small BLP problems. However, in
practice the number of binary variables n (so number of candidate rectangles) is usually quite
large, and then the exhaustive approach of evaluating all 2n combinations quickly becomes very
inefficient.

A better way to solve the formulated BLP is using the Branch and Bound Method in
conjunction with the Simplex Method. First, some definitions are reviewed. Then we outline
the basic concept of the algorithm (in Sect.5.4.2), and finally look at its complexity (Sect.5.4.3).

5.4.1 Some definitions

The BLP can be written into the following canonical form [21, p.304]:

Minimize cx

subject to Ax ≤ b

0 ≤ x ≤ 1

x integer

(25)

Where cx is the linear objective function, with c being the n× 1 cost coefficient vector and x
the n binary decision variables denoting the rectangle configuration. The linear constraints are
expressed in Ax ≤ b, with A a m× n matrix and b a m× 1 vector. Note that any inequality
constraint i ∈ {1, ...,m} can simply be converted to an equation by adding the slack variable
xn+i [21, p.4]:

n∑
j=1

ai,jxj ≤ bi is equivalent to
n∑
j=1

ai,jxj + xn+i = bi, xn+i ≥ 0

37



Also note that any maximization problem can be transformed into a minimization problem [21,
p.5] as:

max
x

n∑
i=1

cixi = −min
x

n∑
i=1

−cixi

This is how for example the rectangle area term in Eq.19 which needed to be maximized was
added to the objective function which is minimized.

We define a feasible solution as a set of values x1, x2, ...xn which satisfy all given con-
straints. We define the feasible region X as the set of all feasible points:

X = {x ∈ Rn|Ax ≤ b,x ∈ {0, 1}

Thus defined, X is a convex region, meaning that for all points y1,y2 ∈ X,
y = ζy1 + (1− ζ)y2 ∈ X also holds, for all ζ ∈ R with 0 ≤ ζ ≤ 1 [10].

We define y ∈ X as an extreme point of X if ”it cannot be represented as a strict
convex combination of two distinct points in X” [21, p.65]. So y = ζy1 + (1 − ζ)y2 with
ζ ∈ R, 0 ≤ ζ ≤ 1, implies y = y1 = y2.

A basic solution x has at most m non-zero values and can be rearranged such that x =[
xB
xN

]
with xB the part of the solution corresponding with the basic variables, and xN = 0 [21,

p.95]. Finally, we can now define a basic feasible solution (BFS) as a basic solution with
xB ≥ 0; this is an extreme point of the convex feasible region X [21, p.99].

5.4.2 Simplex Method with Branch and Bound

A general outline for the method to solve the BLP now follows. First, an optimal solution of
the Linear Programming-Relaxation is found using the Simplex Method:

Algorithm 12 Outline of the Simplex Method

I Remove the integrality constraints on all the decision variables

II Find an initial Basic Feasible Solution with the Two-Phase Method:

i Choose basic variables xB

ii Set all the other nonbasic variables xN on either their lower or upper bound

iii Determine the value of the basic variables based on those set non-basic variables

iv Where necessary, add artificial variables

v Solve Phase 1: minimize the sum of the artificial variables

vi When a BFS is found without artificial variables in the solution, go to phase 2. Oth-
erwise, no feasible solution exists.

III Solve Phase 2: minimize the objective function z = cx:

i Determine whether the found BFS is optimal. If so, stop. Otherwise, continue to the
next step

ii Move to a BFS at an adjacent vertex with a value z less than or equal to that of the
previous BFS, by walking around the edge of the feasible region X. This is done by
removing one basic variable from the basis and replacing it by a nonbasic variable by
pivoting in the tableau. Go back to the previous step.
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The found relaxed solution of the problem (meaning with no integer restrictions) will be the
lower bound (abbreviated LB) of the first node in the Branch and Bound Method. Next, all
non-integer decision variables xi of this solution are rounded up. In other words, all decision
variables which are not exactly zero are set to one, and this forms the upper bound (abbreviated
UB) of the first node. We know that the optimal binary solution will always be greater than
or equal to the found relaxed optimal solution (the LB), and less than or equal to the rounded
up binary solution (the UB) [23, p.C-3].

The general concept of the Branch and Bound method is now to partition the feasible region
into smaller, more manageable subregions, and if necessary, partition those subregions again.
A tree diagram with nodes and branches is used to organize this partitioning.

Algorithm 13 Outline of the Branch and Bound Method [23]

I As mentioned, the LB of the first node is the found relaxed solution, and the UB is the
rounded up binary solution

II We branch from the decision variable xi with the lowest fractional part, meaning the index
i with lowest value xi > 0. Naturally, the two branches are xi = 0 and xi = 1; these
constraints thus partition the feasible region in two.

III We re-calculate the upper and lower bounds by once again solving the linear programming
relaxation with the Simplex Method, with added constraints xi = 0 or 1 for each branch.
These form the lower bounds of the new nodes, and their rounded up binary solutions once
again form the upper bounds. We keep track of the best binary solution z found so far at
any node, which is the minimum UB of all nodes.

IV We stop branching from a node if either:

• The found relaxed solution is binary, so UB = LB

• Or we have an infeasible solution, so this node does not have a basic feasible solution

• Or the LB ≥ z, so we cannot find a better solution in that branch than we have
already found

V The optimal binary solution is the UB solution of the node with the smallest LB value of
any ending node.

VI Repeat steps II - V, continuing to branch from the node with the minimum lower bound,
until the optimal binary solution is found

With this method an optimal solution to the BLP is found. A finite set of candidate rectangles
is always constructed and due to the constraint

∑n
i=1 xi ≥ nmin a solution to the BLP is always

found.

5.4.3 Complexity of the algorithm

When looking at the worst-case computational performance, the simplex algorithm in com-
bination with branch and bound is exponential in problem size (so the number of candidate
rectangles n). However, in practice it is actually an extremely efficient way to solve linear
problems [21, p.393]. Empirically, the simplex algorithm takes on average about m to at most
3m iterations [21, p.206], where m is the total number of constraints, so rows of matrix A.

There do exist some algorithms which are theoretically more efficient as they are polynomial-
time (in terms of problem size n) [21, p.393]. For example Khachian’s Ellipsoid Algorithm has
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a computational complexity of O[(m+n)6L], where L is the number of binary bits necessary for
all the data of the problem, which does indeed make it a polynomial-time algorithm, though of
a higher order. Furthermore, in practice, its performance is very close to the worst-case bound,
whereas in the simplex method this is not the case [21, p.402].

A more feasible alternative is Karmarkar’s Projective Algorithm, which has a polynomial
lower bound for the worst-case computation time of O(n3.5L) [21, p.422]. Where the Simplex
algorithm walks along the edges of the polytopal feasible region X, going from BFS to BFS [21,
p.397], Karmarkar’s algorithm traverses a trajectory through the interior of the feasible region,
seeking a pathway toward optimality [21, p.428]. This method is still a long way from being
fully developed, but the underlying concept is very promising [21, p.393], especially for large
sparse systems [22].

5.5 Simplified implementation of the BLP

We will now demonstrate a simplified example of how the BLP method in Algorithm 10 can be
implemented to numerically solve the inverse problem. Implementing the entire problem into
Matlab is beyond the scope of this paper. This is because first of all, the image segmentation
tools to construct the superpixels and planar patches are quite complex in implementation. And
second, deriving algorithms to compute all the terms of the BLP is also very time-consuming.
Therefore it was decided to drop the last two terms of the objective function in the following
example.

Say we have three random rectangles we wish to find, and five projections of these rectangles
forming the projection data. See Fig.21 for the rectangles and projections in this example.

Figure 21: Three random rectangles measured from five projection angles

The back projection image is computed as in Sect.5.1. Normally image segmentation tools
would now be used to make the superpixels, then the planar patches and the candidate rectan-
gles would be constructed around these planar patches. However, for this simplified example,
the candidate rectangles are drawn on the back projection image by sight (see Appx.A.13).
Fig.22 shows the back projection image overlaid by a set of 12 candidate rectangles.

Given this set of candidate rectangles R, we now compute the local matching cost ci,l for each
candidate rectangle i ∈ {1, ...n} with each projection l ∈ {1, ...p}. This is done by calculating
the projection PRi

(s, αl) of candidate rectangle i along angle αl, and computing the projection
difference function between PRi

(s, αl) and projection l, which is also a piecewise linear function.
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Figure 22: The back projection image of the five projections, overlaid by the set of candidate
rectangles R

The local matching cost is the sum of the areas of this function above the s−axis. Appx.A.14
contains the function which calculates the local matching cost for a given candidate rectangle
and projection, some examples of which were shown in Fig.20.

Given this n×p matrix of matching costs, the total matching cost of each candidate rectangle
is calculated by summing up all the matching costs of rectangle i for each projection, so summing
over each row of the matching cost matrix. This produces a n × 1 vector ctotal. Multiplying
the transposed of this vector with our rectangle configuration vector x yields the matching cost
term: C(x) = cTtotalx.

The area of each candidate rectangle i is simply calculated by multiplying the base by the
height: ai = (xmax − xmin)(ymax − ymin). Then the area term of the objective function is:
A(x) = aTx.

Finally, the number of rectangles is calculated by multiplying a 1×n vector of ones denoted
n by x: N(x) = nTx. The minimum number of rectangles nmin needed to produce these
projections defined as in Eq.20 is clearly 3 based on the projection functions in Fig.21.

Combining these three terms yields the simplified optimization problem:

min
x

(ctotal − νc + µn)Tx

s.t. nTx ≥ nmin

xi = 0 or 1

(26)

These equations are then implemented into Matlab’s linear programming solver intlinprog,
see Appx.A.15.

When implementing and testing the entire BLP model, finding the best suitable parameter
values for ν, µ, λ and γ could be approached as a machine learning problem. However, in this
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simplified example, setting µ = 5 and ν = 0.5 yielded the desired result: x2 = 1, x7 = 1, x9 = 1
and xi = 0 for all other indexes of the candidate rectangles. Comparing the candidate rectangles
2, 7 and 9 with the original rectangles in Fig.23, one sees that indeed the candidates which closest
resemble the original rectangles were selected. Of course, this was a very biased simulation of
the process as the original rectangles were known when drawing the candidates. But this
example simply illustrates the process of how the BLP method can be used to approximate the
original rectangle composition.

Figure 23: The original rectangles on the back projection image

Matlab actually has built-in radon and iradon functions which compute the Radon Trans-
form and Inverse Radon Transform respectively, thus which should obtain similar results as
our numerical approach. However, the radon and iradon computations are black boxes which
determines the back projection by approximation, as shown in Fig.24. Comparing the projec-
tion functions in the bottom left corner to the exact projections shown in Fig.21, one sees a
great differences in accuracy of the Radon Transform (projection functions). This difference
is further illustrated when comparing the back projection image in Fig.23 computed from the
exact Radon Transform functions with the approximation in Fig.24.

Though they are black boxes, the complexity of the radon and iradon computations proba-
bly depend on the number of pixels which in the given example might be small, but in practice,
real CT scans are usually about 512 by 512 pixels in size [18], so this method quickly becomes
very inefficient. As explained above, the computational complexity of the method described
here depends on the number of rectangle candidates and constraints, which is always much less
than the number of pixels. Thus in practice this algorithm would be much more efficient.
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Figure 24: The Radon Transform (projection functions) of the rectangles and the Inverse
Radon Transform
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6 Conclusion

The concepts and mathematics of the existing algorithms used to reconstruct an image from
CT scan data were examined, including the Radon Transform, which is critical to understand
the process of computed tomography. When restricting the image reconstruction problem with
the assumption of the rectangular nature of the image, a new method to algebraically compute
the exact Radon Transform of an image was developed.

Furthermore, an algebraic method to compute the original rectangle (the image), from one
or two projections was developed. For one projection of the rectangle, it was found that as
long as the ratio r = h

s2−s1 is greater or equal to two, a solution to this inverse problem exists.
However, for just one projection, it will never be unique. In fact, we will always have infinitely
many solutions.

The algebraic method which computes a rectangle from two projections, does yield a unique
solution, as long the two projections are not orthogonal or almost equal. When adding noise to
the projection data, the solutions were reasonably stable, regardless of the angle of difference
αdiff between the two projection angles. The error in the solution increases linearly with the
level of noise added to the projection data, as would be expected. Only when αdiff is close to 0
or π

2
, so when the projections are either almost parallel or almost orthogonal, then the solution

from the algebraic method is very unstable.
When expanding the inverse problem by increasing the number of rectangles in the image

and increasing the number of projections, the algebraic method becomes computationally in-
efficient. Instead, the BLP method was developed, where the image reconstruction problem
was formulated as a Binary Linear Programming problem (BLP). A method for constructing
a set of candidate rectangles from the back projection image was described. Next, the BLP
was constructed from different terms for the matching cost of the rectangles to the projections,
the areas of the rectangles, the number of selected rectangles, the intersection between pairs of
rectangles and the matching of the rectangles to the back projection image. We outlined how
the BLP could be solved using Branch and Bound in conjunction with the Simplex Method
and explored the algorithm’s complexity.

A simplified version of the BLP was implemented to demonstrate how it could be used to
approximate the original image. Implementing the entire BLP would require further research,
such as the image segmentation tools needed to construct the candidate rectangles from the
back projection image. The model would need to be tested on a very large data set, and finding
the best suited parameter values in the objective function could be approached as a machine
learning problem. Further research could also be done to expand both the algebraic and BLP
methods to the 3-dimensional case, working with rectangular cuboids instead of rectangles.

In conclusion, the premise of the image consisting of rectangular shapes enables one to
develop new alternative algorithms to the existing methods (such as Filtered Back Projection
and algebraic reconstruction techniques) to solve the image reconstruction problem of CT scans.
These existing methods require the scan to be performed around the full 180◦, and approximate
the solution using no prior knowledge of the shape of the image. They are thus less accurate
than the new algebraic method which yields a specific rectangle or the BLP method which
yields a set of selected rectangles from only a few projections. Furthermore, the complexity of
the usual methods depends on the pixel grid size, whereas the complexity of the two methods
developed in this paper depend on the number of projections and rectangles. Therefore, these
methods are a promising start to approaching the image reconstruction problem from a slightly
different angle when performing CT scans of rectangular or cuboidal shapes and future research
could further develop these algorithms.
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A Appendix: Matlab code

A.1 Computing the Radon Transform of a rectangle

1 function projection = calculate projection(xmin, ymin, xmax, ymax, theta)
2

3 % projection = calculate projection(xmin, ymin, xmax, ymax, theta):
4 %takes rectangle = [xmin, ymin, xmax, ymax] and rotation angle theta = ...

phi-alpha,
5 %and returns parametrized projection = [s1 s2 s3 h]
6

7 %Define counter-clockwise rotation matrix T theta:
8 T theta = [
9 cos(theta) -sin(theta);

10 sin(theta) cos(theta)];
11

12 % 4 vertices of the original rectangle in normalized pose in the image ...
domain:

13 rect normal = [
14 xmin xmin xmax xmax;
15 ymin ymax ymax ymin];
16

17 % calculate the 4 vertices, transformed to the projection domain:
18 rectangle st = T theta * rect normal;
19

20 % convert matrix elements to double type to sort them
21 for i = 1 : 4
22 rectangle st(1,i) = double(rectangle st(1,i));
23 rectangle st(2,i) = double(rectangle st(2,i));
24 end
25

26 % sort the columns of rectangle st according to increasing s-coordinate ...
values (1st row),

27 %so transpose matrix to use the sortrows command, then transpose back:
28 sorted rect st = transpose(sortrows(transpose(rectangle st)));
29

30 % now extract parameters:
31 s1 = sorted rect st(1,1);
32 t1 = sorted rect st(2,1);
33 s2 = sorted rect st(1,2);
34 t2 = sorted rect st(2,2);
35 s3 = sorted rect st(1,3);
36

37 %we want the angle theta to be 0 ≤ theta < pi/2:
38 theta new = mod(theta, pi/2);
39 % w = rectangle width (between corners 1 and 2):
40 w = sqrt( (s2-s1)ˆ2 + (t2-t1)ˆ2);
41

42 %now calculate the height h of the projection:
43 %check whether corner1 is "lower" or "higher" than corner2 (relative to ...

t-axis):
44 if t1 > t2
45 h = w*sec(theta new);
46 %else t1 < t2
47 elseif s1 == s2 %so we have a rectangular projection
48 h = w;
49 else
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50 h = w*csc(theta new);
51 end
52

53 projection = [s1 s2 s3 h];

A.2 Computing the Lagrange polynomial hat function

1 function L = hat function(s,s1,s2,s3)
2

3 % L = hat function(s,s1,s2): given breakpoints s1,s2,s3,
4 % returns the value of the Lagrange polyniam L(s) at point s,
5 % a hat function defined on these breakpoints
6

7 if s < s1
8 % so s is outside the domain of the hat function
9 L = 0;

10 elseif s ≥ s1 && s < s2
11 L = (s-s1)/(s2-s1);
12 elseif s ≥ s2 && s < s3
13 L = (s-s3)/(s2-s3);
14 else % s ≥ s3 so s is outside the domain of the hat function
15 L = 0;
16 end

A.3 Evaluating the projection function

1 function f = evaluate projection function(s,P)
2

3 % f = evaluate projection function (s,P): given projection P =[S;F] with S
4 % = set of breakpoints, F = set of corresponding function values, this
5 % function returns the value of the projection function at point s.
6

7 S = P(1,:); % set of breakpoints
8 F = P(2,:); % set of function values
9 n = size(S,2); % number of breakpoints

10

11 %first check whether point s even falls within the projection region:
12 if s ≤ S(1) | | s ≥ S(n)
13 f = 0;
14 else %s does fall within S(1) < s < S(n)
15

16 % find the index ind of the breakpoint in list S which has closest
17 % value to s (and their difference d):
18 [d, ind] = min(abs(S-s));
19

20 if d == 0
21 %then s is a breakpoint of set S, therefore f = value at that
22 %breakpoint:
23 f = F(ind);
24 else % s is not a breakpoint:
25

26 % find between which breakpoints (and their indexes) point s is
27 % exactly located:
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28 if S(ind) < s
29 left = ind;
30 right = ind + 1;
31 else % s < S(ind)
32 left = ind - 1;
33 right = ind;
34 end
35

36 % now f = linear Lagrange interpolation of projection function:
37 % f = f left * L left(s) + f right * L right(s)
38

39 %check for extremities in L functions:
40 if left == 1
41 % breakpoint to the left of s is the first breakpoint, so the
42 % hat function is 0:
43 L left = 0;
44 else
45 L left = hat function(s,S(left-1),S(left),S(left+1));
46 end
47 if right == n
48 % breakpoint to the right of s is the last breakpoint, so again
49 % the hat function is 0:
50 L right = 0;
51 else
52 L right = hat function(s, S(right-1),S(right),S(right+1));
53 end
54

55 f = F(left) * L left + F(right) * L right;
56

57 end
58 end

A.4 Combining two projections

1 function P = combine projections(P1,P2, operator)
2

3 % P = combine projections(P1,P2, operator): given projection1 in the form
4 % P1 = [S1; F1] with breakpoints S1 = [s1, s2, s3, s4,...], and
5 % corresponding function values F1 = [f1, f2, f3, f4,...] and projection2 =
6 % [S2; F2], function combines both projections according to operator ('add'
7 % or 'sub') into one total projection P = [S,F].
8

9 S1 = P1(1,:); %breakpoints of projection1
10 S2 = P2(1,:); %breakpoints of projection2
11

12 % new set of breakpoints = union of both sets of breakpoints (sorted in
13 % ascending order, double values removed):
14 S = union(S1, S2);
15 % total number of breakpoints of combined projection:
16 n = size(S,2);
17

18 % F will contain the new projection function values:
19 F = zeros(1,n);
20

21 % calculate new function values f for each breakpoint:
22 % (skip function values of first and last points because they are always 0)
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23 for i = 2 : n-1
24 s = S(i); %value of breakpoint i
25 % f1 = function value of projection1 at point s
26 f1 = evaluate projection function(s, P1);
27 % f2 = function value of projection2 at point s
28 f2 = evaluate projection function(s, P2);
29 % function value of total projection at point s
30 % = sum of projection1 and 2 at point s:
31 if operator == 'add'
32 F(i) = f1 + f2;
33 elseif operator == 'sub' %subtract
34 F(i) = f1 - f2;
35 end
36 end
37

38 P = [S; F];

A.5 Calculating the total projection

1 function total projection = calculate total projection(rectangles, alpha)
2

3 % total projection = calculate total projection(rectangles, alpha): given a
4 % certain number of parametrized rectangles in the list 'rectangles', this
5 % function calculates their total projection = [S; F] where S =
6 % s-coordinates of breakpoints and F = their corresponding heights or
7 % function values
8

9 n = size(rectangles , 1); %number of rectangles
10

11 for i = 1 : n
12 xmin = rectangles(i,1);
13 ymin = rectangles(i,2);
14 xmax = rectangles(i,3);
15 ymax = rectangles(i,4);
16 phi = rectangles(i,5);
17 theta = phi - alpha;
18

19 %calculate the projection of rectangle i along angle alpha:
20 proj = calculate projection(xmin, ymin, xmax, ymax, theta);
21

22 s1 = proj(1);
23 s2 = proj(2);
24 s3 = proj(3);
25 h = proj(4);
26 projection = [
27 s1 s2 s3 (s3+(s2-s1));
28 0 h h 0];
29

30 %total projection = sum of the total proj thus far and new projection:
31 if i == 1
32 total projection = projection;
33 else
34 P = combine projections(projection, total projection, 'add');
35 total projection = P;
36 end
37 end
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A.6 Calculating the possible rectangles from one projection

1 function poss rect = calculate rects from proj(s1,s2,s3,h,alpha)
2

3 % poss rect = function proj to rect(s1,s2,s3,h,alpha): given projection
4 % parametrization (s1,s2,s3,h) and X-ray angle alpha, function returns the
5 % max 4 possible parametrized rectangles in the x,y-domain that could have
6 % generated this projection
7

8 s4 = s3 + (s2-s1);
9

10 %Case rectangular projection:
11 if s1 == s2
12 %then rectangle is exactly perpendicular/parallel to X-ray direction:
13 theta = 0;
14

15 %rectangle is identical to the projection:
16 rectangle st = [
17 s1 s2 s3 s4;
18 0 h h 0];
19 %since theta = 0, the rectangle in the normal position = rectangle in
20 %s,t-domain:
21 rectangle normal = rectangle st;
22

23 % xmin = minimum of the first row = x-coordinates:
24 xmin = min(rectangle normal(1,:));
25 % ymin = minimum of the second row = y-coordinates:
26 ymin = min(rectangle normal(2,:));
27 xmax = max(rectangle normal(1,:));
28 ymax = max(rectangle normal(2,:));
29 phi = alpha + theta;
30 poss rect = [xmin ymin xmax ymax phi];
31

32 % Case triangular projection so vertices 2 and 3 align perfectly in the
33 % X-ray direction
34 elseif s2 == s3
35 % s1 6= s2 so r = h / (s2-s1) 6= infinity
36 %so calculate rotation angle theta:
37 theta = solve for theta (h/(s2-s1));
38

39 %verify whether we found 1 or 2 different angles theta:
40 if theta(1) 6= theta(2)
41 % two different angles theta give two different poss rects:
42 n = 2;
43 else
44 n = 1;
45 end
46

47 for i = 1 : n
48 %Tc = clockwise rotation matrix:
49 Tc theta = [
50 cos(theta(i)) sin(theta(i));
51 -sin(theta(i)) cos(theta(i))];
52

53 %vertices of the possible rectangle in the projection domain:
54 t2 = 0;
55 t1 = (s2-s1)*cot(theta(i));
56 t4 = (s4-s2)*tan(theta(i));
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57 t3 = h;
58 rectangle1 st = [
59 s2 s1 s3 s4 s2;
60 t2 t1 t3 t4 t2];
61 % rotate poss rect theta radians clockwise to its normalized pose:
62 rectangle1 normal = Tc theta * rectangle1 st;
63 % extra parameters:
64 xmin = min(rectangle1 normal(1,:));
65 ymin = min(rectangle1 normal(2,:));
66 xmax = max(rectangle1 normal(1,:));
67 ymax = max(rectangle1 normal(2,:));
68 phi = alpha + theta(i);
69 poss rect(i,:) = [xmin ymin xmax ymax phi];
70 end
71

72 % Case trapezoidal or triangular projection
73 else
74 % s1 6= s2 so r = h / (s2-s1) 6= infinity
75 %so calculate rotation angle theta:
76 theta = solve for theta (h/(s2-s1));
77

78 %verify whether we found 1 or 2 angles theta:
79 if theta(1) 6= theta(2)
80 % then we will have 4 different possible rectangles
81 n = 2;
82 else
83 %then we we have 2 different possible rectangles
84 n = 1;
85 end
86

87 for i = 1 : n
88 Tc theta = [
89 cos(theta(i)) sin(theta(i));
90 -sin(theta(i)) cos(theta(i))];
91

92 % either t2 = 0 or t3 = 0, yielding 2 different possible rectangles
93 % for each angle theta:
94

95 %Case t2 = 0: rectangle with lowest vertex = (s2,t2), so for each
96 %theta:
97 t2 = 0;
98 t1 = (s2-s1)*cot(theta(i));
99 t4 = (s4-s2)*tan(theta(i));

100 t3 = t1 + t4;
101 rectangle1 st = [
102 s2 s1 s3 s4 s2;
103 t2 t1 t3 t4 t2];
104 rectangle1 normal = Tc theta * rectangle1 st;
105 xmin = min(rectangle1 normal(1,:)); %minimum of the first row = ...

x-coordinates
106 ymin = min(rectangle1 normal(2,:)); %minimum of the second row = ...

y-coordinates
107 xmax = max(rectangle1 normal(1,:));
108 ymax = max(rectangle1 normal(2,:));
109 phi = alpha + theta(i);
110 poss rect1(i,:) = [xmin ymin xmax ymax phi];
111

112 %Case t3 = 0: rectangles with lowest vertex = (s3, t3):
113 t3 = 0;
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114 t1 = (s3 - s1)*cot(theta(i));
115 t4 = (s4 - s3)*tan(theta(i));
116 t2 = t1 + t4;
117 rectangle2 st = [
118 s3 s1 s2 s4 s3;
119 t3 t1 t2 t4 t3];
120 rectangle2 normal = Tc theta * rectangle2 st;
121 xmin = min(rectangle2 normal(1,:)); %minimum of the first row = ...

x-coordinates
122 ymin = min(rectangle2 normal(2,:)); %minimum of the second row = ...

y-coordinates
123 xmax = max(rectangle2 normal(1,:));
124 ymax = max(rectangle2 normal(2,:));
125 poss rect2(i,:) = [xmin ymin xmax ymax phi];
126 end
127 poss rect = [poss rect1; poss rect2];
128 end

1 function theta = solve for theta(r)
2

3 % theta = solve for theta(r): given a random projection with ratio r = h /
4 % (s2-s1) = csc(theta)sec(theta), function returns max 2 values for theta
5 % between 0 and pi/2
6

7 if r ≤ 2
8 theta(1) = pi/4;
9 theta(2) = pi/4;

10 else
11 syms x; % declare x as the variable you want to solve for
12

13 eqn = csc(x)*sec(x) == r; %equation we want to solve
14

15 % solve above equation for x, keeping track of parameters and
16 % conditions of solution:
17 [solx, param, cond] = solve(eqn,x,'ReturnConditions', true);
18

19 assume(cond); % assume condition cond holds ("param k is an int")
20 interval = [solx ≥ 0, solx ≤ pi/2];
21 %find parameter value k s.t. solx lies in the interval:
22 solk = solve(interval, param);
23

24 %in solution solx: substitute parameter param for found parameter value
25 %solk:
26 valx = subs(solx,param,solk);
27 theta = valx;
28 end
29

30 %disp(['r = ', num2str(double(r))]);
31 %disp('theta values are:');
32 %fprintf('%0.5e \n', theta);

A.7 Matching a possible projection to a given projection

1 function m = match projections(poss projection, projection2)
2
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3 % m = [index, shift] = match projections(poss projection, projection2):
4 % finds which projection in the poss projections list is closest in shape
5 % to projection 2 and returns its index number (and the shift such that
6 % both s1 values of the projections overlap)
7

8 n = size(poss projection, 1); %number of possible projections
9

10 % extract parameters of projection 2:
11 s1 proj2 = projection2(1);
12 s2 proj2 = projection2(2);
13 s3 proj2 = projection2(3);
14 h proj2 = projection2(4);
15

16 match = zeros(1,n); %preallocate this vector
17 shift = zeros(1,n);
18

19 % for each possible projection:
20 for i = 1 : n
21 % extract its parameters:
22 s1 poss proj = poss projection(i,1);
23 s2 poss proj = poss projection(i,2);
24 s3 poss proj = poss projection(i,3);
25 h poss proj = poss projection(i,4);
26

27 %calculate the difference in heights of proj2 and possible projection:
28 height diff = h proj2 - h poss proj;
29

30 %calculate shift s.t. s1 of poss proj + shift = s1 of proj 2
31 shift(i) = s1 proj2 - s1 poss proj;
32

33 % now calc new parameter values of the shifted possible projection:
34 s2 shifted = s2 poss proj + shift(i);
35 s3 shifted = s3 poss proj + shift(i);
36

37 %calc difference in s2 and s3 values between shifted poss proj and proj2:
38 s2 diff = s2 proj2 - s2 shifted;
39 s3 diff = s3 proj2 - s3 shifted;
40

41 %calc the match value between the poss proj and proj2:
42 match(i) = height diffˆ2 + s2 diffˆ2 + s3 diffˆ2;
43 end
44

45 %find index of poss projection with minimum matchings cost:
46 [val,index] = min(match);
47

48 m = [index, shift(index)];

A.8 Finding the position of a rectangle from two projections

1 function shifted found rect = find rect position (found rect, ...
projection1, alpha1, projection2, alpha2)

2

3 % shifted found rect = find rect position(found rect, projection1, alpha1,
4 % projection2, alpha2): given found rect = [xmin, ymin, xmax, ymax, phi] in
5 % its normalized pose, this function finds the shift dx and dy necessary
6 % s.t. s1 of the projection of shifted found rect along alpha1 and 2 =
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7 % s1 of projection 1 and 2
8

9 % extract parameters of the (unshifted) found rectangle:
10 xmin = found rect(1);
11 ymin = found rect(2);
12 xmax = found rect(3);
13 ymax = found rect(4);
14 phi = found rect(5);
15

16 s1 proj1 = projection1(1); % s1 of projection1
17 theta1 = phi - alpha1;
18

19 s1 proj2 = projection2(1); % s1 of projection2
20 theta2 = phi - alpha2;
21

22 %two shift values we wish to find:
23 syms dx;
24 syms dy;
25 % s.t. shifted found rect = [xmin-dx, ymin-dy, xmax-dx, ymax-dy, phi] = ...

original
26 % rectangle we wish to find, based on projection1 and projection2
27

28 %vector s coord 1 = s-coordinates of shifted found rect projected along
29 %angle alpha1:
30 s coord 1 = [ cos(theta1)*xmin - sin(theta1)*ymin - cos(theta1)*dx + ...

sin(theta1)*dy,
31 cos(theta1)*xmin - sin(theta1)*ymax - cos(theta1)*dx + ...

sin(theta1)*dy,
32 cos(theta1)*xmax - sin(theta1)*ymax - cos(theta1)*dx + ...

sin(theta1)*dy,
33 cos(theta1)*xmax - sin(theta1)*ymin - cos(theta1)*dx + ...

sin(theta1)*dy ];
34 %same for vector s coord 2 for angle alpha2:
35 s coord 2 = [ cos(theta2)*xmin - sin(theta2)*ymin - cos(theta2)*dx + ...

sin(theta2)*dy,
36 cos(theta2)*xmin - sin(theta2)*ymax - cos(theta2)*dx + ...

sin(theta2)*dy,
37 cos(theta2)*xmax - sin(theta2)*ymax - cos(theta2)*dx + ...

sin(theta2)*dy,
38 cos(theta2)*xmax - sin(theta2)*ymin - cos(theta2)*dx + ...

sin(theta2)*dy ];
39

40 %GOAL: solve s1 proj1 = min(s coord 1), s1 proj2 = min(s coord 2)
41

42 % make vectors containing only the constants of s coord 1 and s coord 2 to
43 % find their minimum elements:
44 s const 1 = [ cos(theta1)*xmin - sin(theta1)*ymin,
45 cos(theta1)*xmin - sin(theta1)*ymax,
46 cos(theta1)*xmax - sin(theta1)*ymax,
47 cos(theta1)*xmax - sin(theta1)*ymin];
48 s const 2 = [ cos(theta2)*xmin - sin(theta2)*ymin,
49 cos(theta2)*xmin - sin(theta2)*ymax,
50 cos(theta2)*xmax - sin(theta2)*ymax,
51 cos(theta2)*xmax - sin(theta2)*ymin];
52

53 %find the index of the minimum value in vector s const 1 = index of minimum
54 %value in vector s coord 1
55 [val,ind proj1] = min(s const 1);
56 %and do the same for vector s const 2:
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57 [val,ind proj2] = min(s const 2);
58

59 % Now solve equations: min(s coord 1) == s1 proj1, min(s coord 2) ==
60 % s1 proj2:
61 eqns = [ s coord 1(ind proj1) == s1 proj1, s coord 2(ind proj2) == ...

s1 proj2 ];
62 vars = [dx dy];
63 [soldx, soldy] = solve(eqns, vars);
64

65 shifted found rect = [(xmin - soldx), (ymin - soldy), (xmax - soldx), ...
(ymax - soldy), phi];

A.9 Finding a rectangle from two projections

1 function R = find rect from projs(projection1, alpha1, projection2, ...
alpha2, plot on, rectangle original)

2

3 % R = find rect from projs(projection1, alpha1, projection2, alpha2,
4 % plot on, rectangle original): returns rectangle R = [xmin, ymin, xmax,
5 % ymax, phi] which best matches to projection 1 and 2. If plot on == True
6 % => plots projections, and original and found rectangles, else not
7

8 % extract parameters:
9 s1 1 = projection1(1);

10 s2 1 = projection1(2);
11 s3 1 = projection1(3);
12 h 1 = projection1(4);
13

14 s1 2 = projection2(1);
15 s2 2 = projection2(2);
16 s3 2 = projection2(3);
17 h 2 = projection2(4);
18

19 if plot on
20 %% Make plots
21

22 figure;
23

24 %plot projection1
25 subplot(2,2,1);
26 proj1 = [
27 s1 1 s2 1 s3 1 (s3 1+(s2 1-s1 1));
28 0 h 1 h 1 0];
29 plot(proj1(1,:), proj1(2,:), 'b-', 'linewidth', 2);
30 xlabel('s-axis', 'fontsize', 20);
31 ylabel('t-axis', 'fontsize', 20);
32 heading = ['Projection 1 with \alpha 1 = ', angl2str(alpha1,'pm', ...

'radians',-5)];
33 %heading = ['Projection 1'];
34 title(heading, 'fontsize', 20);
35

36 %plot projection2
37 subplot(2,2,3);
38 proj2 = [
39 s1 2 s2 2 s3 2 (s3 2+(s2 2-s1 2));
40 0 h 2 h 2 0];
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41 plot(proj2(1,:), proj2(2,:), 'g-', 'linewidth', 5);
42 hold on;
43 xlabel('s-axis', 'fontsize', 20);
44 ylabel('t-axis', 'fontsize', 20);
45 heading = ['Proj.2 (green) with \alpha 2 = ', angl2str(alpha2,'pm', ...

'radians',-5), ' and those from Proj.1'];
46 %heading = ['Proj.2 (green) with \alpha 2 = \alpha 1 + \pi/2 and ...

those from Proj.1'];
47 %heading = ['Proj.2 (green) and projections from poss. rects from ...

Proj.1'];
48 title(heading, 'fontsize', 20);
49

50 %plot original rectangle we wish to find
51 subplot(2,2,4);
52 plot(rectangle original(1,:), rectangle original(2,:), ...

'r-','linewidth', 4);
53 hold on;
54 %title('The original rectangle, overlaid by the found rectangle ...

(striped lines)', 'fontsize', 20);
55 xlabel('x-axis', 'fontsize', 20);
56 ylabel('y-axis', 'fontsize', 20);
57 axis equal;
58 end
59

60 %% Calculate the possible rectangles from projection 1
61

62 %given projection1 (and angle alpha1), calculate the possible rectangles:
63 poss rect = calculate rects from proj(s1 1, s2 1, s3 1, h 1, alpha1);
64 nr rects = size(poss rect,1);
65

66 %for each possible rectangle calculated from projection1,
67 % plot it (if plot on == true) and
68 % calculate its projection at angle alpha2:
69 poss projection = zeros(nr rects, 4); %to initiate the lists
70 poss original rect = zeros(nr rects, 2, 5); %to inititate the lists
71 for j = 1 : nr rects
72 %for poss rect(j):
73 xmin = poss rect(j,1);
74 ymin = poss rect(j,2);
75 xmax = poss rect(j,3);
76 ymax = poss rect(j,4);
77 phi = poss rect(j,5);
78 %calc angle theta betw projection2-domain and possible rectangle j:
79 theta = phi - alpha2;
80

81 %calc projection of poss rect j along angle alpha2:
82 poss projection(j,:) = calculate projection(xmin, ymin, xmax, ymax, ...

theta);
83

84 rect normal = [
85 xmin xmin xmax xmax xmin;
86 ymin ymax ymax ymin ymin];
87 T phi = [
88 cos(phi) -sin(phi);
89 sin(phi) cos(phi)];
90 rect original = T phi * rect normal;
91 %save this "possible original rectangle" to the list
92 poss original rect(j,:,:) = rect original;
93
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94 if plot on
95 %plot poss rect(j)
96 subplot(2,2,2);
97 plot(rect original(1,:),rect original(2,:), 'r-', 'linewidth', 2);
98 %plot(poss original rects(j,1,:),poss original rects(j,2,:), ...

'r-', 'linewidth', 2);
99 axis equal;

100 hold on;
101

102 %plot poss proj(j) besides projection2:
103 subplot(2,2,3);
104 s1 = poss projection(j,1);
105 s2 = poss projection(j,2);
106 s3 = poss projection(j,3);
107 h = poss projection(j,4);
108 proj = [
109 s1 s2 s3 (s3+(s2-s1));
110 0 h h 0];
111 plot(proj(1,:), proj(2,:), 'b-', 'linewidth', 2);
112 hold on;
113 end
114 end
115

116

117 %% Find the rectangle and its position using projection 1 and 2
118

119 %given 4 (or less) possible projections (calculated from proj1), find the ...
one that is

120 %closest in shape and height to projection2:
121 m = match projections(poss projection, projection2);
122 index = m(1);
123 proj shift = m(2);
124 %so the rectangle corresponding to this projection is located at the found
125 %index:
126 found rect = poss rect(index,:);
127 %given found rect, find its position:
128 shifted found rect = find rect position(poss rect(index,:), projection1, ...

alpha1, projection2, alpha2);
129 R = shifted found rect;
130

131 if plot on
132 %% Make plots
133

134 %add title and labels to subplot 2:
135 subplot(2,2,2);
136 xlabel('x-axis', 'fontsize', 20);
137 ylabel('y-axis', 'fontsize', 20);
138 title('Possible rectangles calculated from Proj.1', 'fontsize', 20);
139

140 %plot found shifted proj "onto" projection2 (to see how much they ...
differ):

141 subplot(2,2,3);
142 s1 = poss projection(index,1) + proj shift;
143 s2 = poss projection(index,2) + proj shift;
144 s3 = poss projection(index,3) + proj shift;
145 h = poss projection(index,4);
146 identical proj = [
147 s1 s2 s3 (s3+(s2-s1));
148 0 h h 0];
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149 plot(identical proj(1,:), identical proj(2,:), 'b--', 'linewidth', 2);
150

151 %plot shifted found rect:
152 xmin = shifted found rect(1);
153 ymin = shifted found rect(2);
154 xmax = shifted found rect(3);
155 ymax = shifted found rect(4);
156 phi = shifted found rect(5);
157 T phi = [
158 cos(phi) -sin(phi);
159 sin(phi) cos(phi)];
160 rect normal = [
161 xmin xmin xmax xmax xmin;
162 ymin ymax ymax ymin ymin];
163 subplot(2,2,4);
164 found rect original = T phi*rect normal;
165 plot(found rect original(1,:),found rect original(2,:), 'b--', ...

'linewidth', 2);
166 title('The original rect (red), overlaid by the found rect', ...

'fontsize', 20);
167 xlabel('x-axis', 'fontsize', 20);
168 ylabel('y-axis', 'fontsize', 20);
169 axis equal;
170 end

A.10 Analyzing the stability of the solution found with Appx.A.9

1 function E = analyze stability(n, alpha diff, eps noise)
2

3 % function E = analyze stability(n, alpha1, alpha2, noise eps): repeats n
4 % trials of: generating a random rectangle, calculating the projection
5 % along random alpha1 and alpha2 = alpha1 + alpha diff, adding random
6 % epsilon noise to them, and computing the rectangle from those projections
7 % using the find rect from projs function. Returns vector E containing the
8 % error between the actual and found rectangle for each trial
9

10 close all;
11

12 epsilon = eps noise;
13

14 E = zeros(n,1);
15 for i = 1 : n
16 %% Generate a rectangle and two projections
17

18 % generate a random rectangle rect
19 rect = generate rectangle();
20 xmin = rect(1);
21 ymin = rect(2);
22 xmax = rect(3);
23 ymax = rect(4);
24 phi = rect(5);
25 %define the transformation matrix
26 T phi = [
27 cos(phi) -sin(phi);
28 sin(phi) cos(phi)];
29 rect normal = [

59



30 xmin xmin xmax xmax xmin;
31 ymin ymax ymax ymin ymin];
32 rectangle original = T phi*rect normal;
33

34 % calculate projections 1 and 2:
35 alpha1 = 2*pi*rand();
36 theta1 = phi - alpha1;
37 projection1 = calculate projection(xmin, ymin, xmax, ymax, theta1);
38

39 alpha2 = alpha1 + alpha diff;
40 theta2 = phi - alpha2;
41 projection2 = calculate projection(xmin, ymin, xmax, ymax, theta2);
42

43 %% Add noise to the projections
44

45 %add epsilon noise to all parameter values of proj1 and 2:
46 for j = 1 : 4
47 %generate random noise value between -epsilon ≤ noise ≤ + epsilon:
48 noise = epsilon * ( -1 + 2*rand());
49 projection1(j) = projection1(j) + noise;
50

51 noise = epsilon * ( -1 + 2*rand());
52 projection2(j) = projection2(j) + noise;
53 end
54 %adjust to still have a valid projections (s1 ≤ s2 ≤ s3):
55 if projection1(1) > projection1(2)
56 projection1(1) = projection1(2);
57 elseif projection1(2) > projection1(3)
58 projection1(2) = projection1(3); %make it into a ...

triangular projection
59 end
60 if projection2(1) > projection2(2)
61 projection2(1) = projection2(2);
62 elseif projection2(2) > projection2(3)
63 projection2(2) = projection2(3);
64 end
65

66 %% Find the rectangle from those projections and compute the error E:
67

68 %choose whether you wish to make plots:
69 plot on = true;
70 %plot on = false;
71 R = find rect from projs(projection1, alpha1, projection2, alpha2, ...

plot on, rectangle original);
72

73 xmin = R(1);
74 ymin = R(2);
75 xmax = R(3);
76 ymax = R(4);
77 phi = R(5);
78 T phi = [
79 cos(phi) -sin(phi);
80 sin(phi) cos(phi)];
81 rect normal = [
82 xmin xmin xmax xmax xmin;
83 ymin ymax ymax ymin ymin];
84 found rect original = T phi*rect normal;
85

86 %calculate error E = difference between original and found rectangle as
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87 %computed in calculate rect error function
88 E(i) = calculate rect error(rectangle original, found rect original);
89

90 end

A.11 Calculating the error between the found and original rectangle

1 function error = calculate rect error(rectangle1, rectangle2)
2

3 % function error = calculate rect error(rectangle1, rectangle2): calculates
4 % difference or "error" between rectangle1 = [vertex1, v2, v3, v4, v1] and
5 % rectangle2, which is the euclidean distance between the four vertices of
6 % both rectangles
7

8 %r1 vertices = 4 x 2 matrix containing the vertices of rectangle1:
9 for i = 1 : 4

10 r1 vertices(i,:) = rectangle1(:,i);
11 r2 vertices(i,:) = rectangle2(:,i);
12 end
13

14 %find index of vertex of r2 which is closest to 1st vertex of r1:
15 for i = 1 : 4
16 d(i) = sqrt( (r1 vertices(1,1) - r2 vertices(i,1))ˆ2 + ...

(r1 vertices(1,2) - r2 vertices(i,2))ˆ2 );
17 end
18 [val, index] = min(d);
19

20 %shift naming of index numbers of rectangle2 s.t. r2 vertex1 = the vertex
21 %closest to vertex1 of rectangle1, etc. going clockwise:
22 if index == 1
23 vertex(1,:) = r2 vertices(1,:);
24 vertex(2,:) = r2 vertices(2,:);
25 vertex(3,:) = r2 vertices(3,:);
26 vertex(4,:) = r2 vertices(4,:);
27 elseif index == 2
28 %new vertex1 = original vertex2
29 vertex(1,:) = r2 vertices(2,:);
30 %new vertex2 = original vertex3:
31 vertex(2,:) = r2 vertices(3,:);
32 %new vertex3 = original vertex4:
33 vertex(3,:) = r2 vertices(4,:);
34 %new vertex 4 = original vertex1:
35 vertex(4,:) = r2 vertices(1,:);
36 elseif index == 3
37 %new vertex1 = original vertex3:
38 vertex(1,:) = r2 vertices(3,:);
39 %new vertex2 = original vertex4:
40 vertex(2,:) = r2 vertices(4,:);
41 %new vertex3 = original vertex1:
42 vertex(3,:) = r2 vertices(1,:);
43 %new vertex4 = original vertex2:
44 vertex(4,:) = r2 vertices(2,:);
45 else % index = 4
46 vertex(1,:) = r2 vertices(4,:);
47 vertex(2,:) = r2 vertices(1,:);
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48 vertex(3,:) = r2 vertices(2,:);
49 vertex(4,:) = r2 vertices(3,:);
50 end
51

52 %error = euclidean distance between all 4 matched vertices
53 error = 0;
54 for i = 1 :4
55 d = sqrt( (r1 vertices(i,1) - vertex(i,1))ˆ2 + (r1 vertices(i,2) - ...

vertex(i,2))ˆ2 );
56 error = error + d;
57 end
58 error = double(error); %cast from sym to double type

A.12 Computing the back projection image

1 % The back projection image
2

3 % Generates r random rectangles, calculates p projections along different
4 % angles alpha and plots the back projection image B(f)(x,y)
5

6 clear all;
7

8 % generate r random rectangles
9 r = randi([2,5],1);

10

11 % generate p random projections:
12 p = 5;
13

14 figure;
15 %% generate and plot the r random rectangles
16 x smallest = 20;
17 x largest = -10;
18 y smallest = 20;
19 y largest = -10;
20

21 for i = 1 : r
22 rectangle = generate rectangle();
23 all rectangles(i,:) = rectangle;
24

25 xmin = rectangle(1);
26 ymin = rectangle(2);
27 xmax = rectangle(3);
28 ymax = rectangle(4);
29 phi = rectangle(5); % angle of rotation of rectangle
30

31 %draw the rectangle in the x,y-domain (in original pose):
32 subplot(2,3,1);
33 T phi =[
34 cos(phi) -sin(phi);
35 sin(phi) cos(phi)];
36 rectangle normal = [
37 xmin xmin xmax xmax xmin;
38 ymin ymax ymax ymin ymin];
39 %rotate all the vertices from the normal to the original position:
40 rectangle original = T phi*rectangle normal;
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41 plot(rectangle original(1,:), rectangle original(2, :), 'r-', ...
'linewidth', 2);

42 hold on;
43 axis equal;
44

45 %add z-value = rectangle "height" to plot the original rectangles on
46 %the back projection:
47 rectangle original = [rectangle original(1,:); ...

rectangle original(2,:); 100 100 100 100 100];
48 subplot(2,3,[2 3 5 6]);
49 plot3(rectangle original(1,:), rectangle original(2,:), ...

rectangle original(3,:), 'r-', 'linewidth', 2);
50 axis equal;
51 hold on;
52

53 %keep track of smallest and largest x and y values encountered so far:
54 if x smallest > min(rectangle original(1,:))
55 x smallest = min(rectangle original(1,:));
56 end
57 if x largest < max(rectangle original(1,:))
58 x largest = max(rectangle original(1,:));
59 end
60 if y smallest > min(rectangle original(2,:))
61 y smallest = min(rectangle original(2,:));
62 end
63 if y largest < max(rectangle original(2,:))
64 y largest = max(rectangle original(2,:));
65 end
66

67 end
68 subplot(2,3,1);
69 title('The rectangles in the image domain', 'fontsize', 20);
70 xlabel('x-axis', 'fontsize', 16);
71 ylabel('y-axis', 'fontsize', 16);
72

73

74 %% calculate and plot the projections for different angles alpha
75

76 alpha = zeros(1,p); % alpha vector will contain the different angles
77 %calculate and plot the p different projections:
78 for k = 1 : p
79 % evenly space alpha angles between 0 and pi:
80 alpha(k) = (k-1)*pi/p; %want to start at alpha(1)=0
81 projection = calculate total projection(all rectangles, alpha(k));
82 projections{k} = projection;
83

84 subplot(2,3,4);
85 plot(projection(1,:), projection(2,:), 'linewidth', 2);
86 hold on;
87 labels{k} = ['Proj.', num2str(k), ' , \alpha = ', ...

angl2str(alpha(k),'pm', 'radians',-2)];
88 end
89 subplot(2,3,4);
90 heading = ['Projections along different angles \alpha'];
91 title(heading, 'fontsize', 20);
92 xlabel('s-axis', 'fontsize', 16);
93 ylabel('t-axis', 'fontsize', 16);
94 legend(labels, 'fontsize', 12);
95
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96 %% Plot the backprojection Z = B(f)(x,y) = f1 + f2 + f3 +...
97

98 %define on what grid we will plot function B(f):
99 x = x smallest : 0.01 : x largest;

100 m = size(x,2); % = # x-values evaluated
101

102 y = y smallest : 0.01 : y largest;
103 n = size(y,2); % = # y-values
104

105 Z = zeros(n,m); % preallocate matrix Z(j,i) = B(f)(x(i),y(j))
106 for i = 1 : m %iterate over index of all x values
107

108 for j = 1 : n %iterate over index of all y values
109

110 % at point (x,y)=(x(i),y(i)),
111 %calculate B(f)(x,y) = Z(j,i) = fˆ(1) (x,y) + fˆ(2)(x,y) + ... for
112 %all projections
113 for k = 1 : p %iterate over all projections
114

115 %function value of projection k at point (x,y) transformed to
116 %projection k domain so at point s = cos(alpha)x + sin(alpha)y
117 %fˆ(k) (x,y) = fˆ(k) (x(i),y(j)) = fˆ(k)(s)
118 s = cos(alpha(k))*x(i) + sin(alpha(k))*y(j);
119 f = evaluate projection function(s, projections{k});
120

121 %cumulatively add all those calculated intensities from the
122 %projections:
123 Z(j,i) = Z(j,i) + f;
124 end
125 end
126 end
127

128 % X = n x m matrix with each row = x; Y = n x m matrix with each column = y
129 [X,Y] = meshgrid(x,y);
130

131 subplot(2,3,[2 3 5 6]);
132 mesh(X, Y, Z);
133 view(2);
134 title('Back projection image', 'fontsize', 20);
135 xlabel('x-axis', 'fontsize', 16);
136 ylabel('y-axis', 'fontsize', 16);

A.13 Finding candidate rectangles

Instead of using image segmentation tools to find candidate rectangles using superpixels and
planar patches, a set of candidate rectangles constructed by ”drawing” rectangles around high
intensity regions. First, the coordinates of three of the four vertices of a candidate rectangle
were read from the plot. Next, it was verified that those three vertices did indeed form a
rectangle (so they were at right angles to each other): if not, the y-coordinate of the last vertex
was adjusted. These three vertices were then entered into the function below to obtain the
parameters of the candidate rectangle in the format used in this paper.

1 function R = parametrize rectangle(v1, v2, v3)
2

3 % R = parametrize rectangle(v1, v2, v3): given 3 vertices of a rectangle in
4 % its original pose, function returns parametrized rectangle R = [xmin,
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5 % ymin, xmax, ymax, phi]
6

7 x1 = v1(1);
8 y1 = v1(2);
9 x2 = v2(1);

10 y2 = v2(2);
11 x3 = v3(1);
12 y3 = v3(2);
13

14 phi = atan((y2-y1)/(x2-x1));
15

16 % 3 of the 4 vertices of the rectangle in its original pose:
17 R original = [
18 x1 x2 x3;
19 y1 y2 y3];
20

21 %clockwise transformation matix
22 Tc phi = [
23 cos(phi) sin(phi);
24 -sin(phi) cos(phi)];
25

26 R normalized = Tc phi * R original;
27 %extract rectangle parameters:
28 xmin = min(R normalized(1,:)); %minimum of the first row = x-coordinates
29 ymin = min(R normalized(2,:)); %minimum of the second row = y-coordinates
30 xmax = max(R normalized(1,:));
31 ymax = max(R normalized(2,:));
32

33 R = [xmin ymin xmax ymax phi];

A.14 Calculating the local matching cost

1 function c = local matching cost(R, P, alpha)
2

3 % c = local matching cost(R, P, alpha): given parametrized rectangle R and
4 % total projection P =[S;F] along angle alpha, computes local matching cost
5 % c = area of R's projection along alpha that does not fall within P
6

7 % proj rect = projection of R along alpha:
8 xmin = R(1);
9 ymin = R(2);

10 xmax = R(3);
11 ymax = R(4);
12 phi = R(5);
13 theta = phi - alpha;
14 proj rect = calculate projection(xmin, ymin, xmax, ymax, theta);
15 %change proj rect from parametrized vector [s1 s2 s3 h] to matrix form
16 %proj rect = [S;F]:
17 s1 = proj rect(1);
18 s2 = proj rect(2);
19 s3 = proj rect(3);
20 h = proj rect(4);
21 s4 = s3 + (s2-s1);
22 proj rect = [
23 s1 s2 s3 s4;
24 0 h h 0];
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25

26 %proj diff = difference between proj rect - P:
27 proj diff = combine projections(proj rect, P, 'sub');
28 n = size(proj diff, 2); % number of breakpoints
29 S = proj diff(1,:); %set of breakpoints of proj diff
30 F = proj diff(2,:); %set of function values of proj diff
31

32 % A = area of function proj diff which is above the s-axis:
33 A = 0; %to initialize
34 a = 0;
35 %for each breakpoint look at the area a under proj diff between S(i-1) and
36 %S(i): if it is above the s-axis, calculate that area a and add to A:
37 for i = 2 : n
38 a = 0; % reset a to 0
39 if F(i) == 0 % if function value at that breakpoint = 0
40 % check whether projection between S(i-1) and S(i) is positive
41 % (above s-axis):
42 if F(i-1) > 0
43 base = S(i) - S(i-1);
44 height = F(i-1);
45 a = (base * height)/2;
46 end
47

48 elseif F(i) > 0 % so we know there is an area a to calculate
49 if F(i-1) == 0 %we have a triangle again
50 base = S(i) - S(i-1);
51 height = F(i);
52 a = (base * height)/2;
53 elseif F(i-1) > 0
54 base = S(i)-S(i-1);
55 % check which function value is higher:
56 if F(i) < F(i-1)
57 height1 = F(i);
58 height2 = F(i-1) - F(i);
59 elseif F(i) == F(i-1)
60 height1 = F(i);
61 height2 = 0;
62 else % F(i) > F(i-1)
63 height1 = F(i-1);
64 height2 = F(i) - F(i-1);
65 end
66 a = (base * height1) + ((base * height2)/2);
67 else % F(i-1) < 0
68 % find area of function above s-axis between S(i-1) and S(i):
69 height1 = F(i) + abs(F(i-1));
70 base1 = S(i) - S(i-1);
71 theta = atan(height1/base1);
72 height2 = F(i);
73 % we know tan(theta) = height2/base2 so
74 base2 = height2/tan(theta);
75 a = (height2*base2)/2;
76 end
77

78 else % F(i) < 0
79 % again find area before function crosses s-axis:
80 if F(i-1) > 0
81 height1 = F(i-1) + abs(F(i));
82 base1 = S(i) - S(i-1);
83 theta = atan(height1/base1);
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84 height2 = F(i-1);
85 % tan(theta) = height2/base2 so
86 base2 = height2/tan(theta);
87 a = (height2*base2)/2;
88 end
89 end
90

91 % add a(area above s-axis between S(i-1) and S(i)) to total area A:
92 A = A + a;
93 end
94

95 c = A;
96

97 %{
98 figure;
99 plot(P(1,:), P(2,:), 'b--', 'linewidth', 2);

100 hold on;
101 plot(proj diff(1,:), proj diff(2,:), 'g-', 'linewidth', 2);
102 plot(proj rect(1,:), proj rect(2,:), 'r--', 'linewidth', 2);
103

104 %heading = ['Projection data (blue), proj {rect}(red), and proj {diff} ...
(green), with cost = ', num2str(c)];

105 heading = ['Projection difference (green), with cost = ', num2str(c)];
106 title(heading, 'fontsize', 20);
107 %add axis
108 xL = xlim;
109 yL = ylim;
110 %line([0 0], yL, 'color', 'k', 'linewidth', 1); % y-axis line in black (k)
111 line(xL, [0 0], 'color', 'k', 'linewidth', 1); % x-axis line
112 xlabel('s-axis', 'fontsize', 20);
113 ylabel('t-axis', 'fontsize', 20);
114 %}

A.15 Simplified implementation of the BLP

1 % BLP example
2

3 close all;
4

5 %% The original rectangles and projection data
6

7 % r = 3 rectangles to be found:
8 original rectangle(1,:) = [1,10,4,20,3.81769675990223];
9 original rectangle(2,:) = [6,-9,12,0,3.20309243373196];

10 original rectangle(3,:) = [1,6,8,11,3.50172628564382];
11

12 p = 5; % number of projections taken at regular intervals
13 for l = 1 : p
14 alpha(l) = (l-1)*pi/p;
15 projection{l} = calculate total projection(original rectangle, alpha(l));
16 end
17

18 %% The rectangle candidates
19

20 % create the set of parametrized candidate rectangles R:
21 R = calc rect candidates();
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22 n = size(R,1); %number of candidate rectangles
23

24 %% Local matching cost
25

26 %C(i,l) = local matching cost of candidate rectangle i along alpha l = area
27 %of rect i's projection along alpha l which does not fall within proj l
28

29 C = zeros(n,p);
30 % C total(i) = total matching cost of rect i (for all projections)
31 C total = zeros(n,1);
32 for i = 1 : n % for each rect. candidate
33

34 for l = 1 : p %for each projection
35

36 C(i,l) = local matching cost(R(i,:), projection{l}, alpha(l));
37 C total(i) = C total(i) + C(i,l);
38

39 end
40 end
41

42 %% Area of the rectangles
43

44 Area = zeros(n,1);
45 % calculate area of each candidate rectangle:
46 for i = 1 : n
47 xmin = R(i,1);
48 ymin = R(i,2);
49 xmax = R(i,3);
50 ymax = R(i,4);
51 base = xmax - xmin;
52 height = ymax - ymin;
53 Area(i) = base * height;
54 end
55

56 %% Minimum number of rectangles to be selected
57

58 n min = 3; %usually computed algorithmically, now by sight
59

60 %% Solving the simplified BLP
61

62 Ones = ones(n,1);
63 nu = 0.5; % adjustable parameter
64 mu = 5; % adjustable parameter
65 f = C total - nu*Area + mu*Ones; % objective function to be minimized
66 intcon = 1 : n; % set of x variables that are ints, so all
67 lb = zeros(n,1); % lb ≤ x i ≤ ub for all i = 1 : n
68 ub = ones(n,1);
69 A = -Ones';
70 b = -n min; % constraints: A*x ≤ b
71 % solve: min fˆT*X, s.t. X(intcon) are integers, A*x ≤ b, lb ≤ X ≤ ub
72 X = intlinprog(f, intcon, A, b, [], [], lb, ub);
73 for i = 1 : n
74 txt = ['X(', num2str(i), ') = ', num2str(X(i))];
75 disp(txt);
76 end
77 nr rects chosen = sum(X);
78 disp(['Number of rectangles chosen = ', num2str(nr rects chosen)]);

68


