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1 Introduction

One of the most famous zeta functions is the Hasse-Weil zeta function. It played an important
rol in the development of algebraic geometry in the twentieth century ([Musta]). Such a zeta
function is defined for a certain algebraic variety. Algebraic varieties are one of the central
objects of study in algebraic geometry and they are defined as a set of solutions of a system of
polynomial equations. The Hasse-Weil zeta function captures all the information conveyed by
a certain sequence of numbers in a power series. As we will see in Section 3 these numbers
denote the cardinality of a certain algebraic variety. These Hasse-Weil zeta functions appear
to be rational. The proof of the rationality can be found in ([Kob84]). In this thesis we will
compute the Hasse-Weil zeta function of multilinear hypersurfaces, which are algebraic varieties
defined by the zeroes of a multilinear polynomial.

We will start with some field theory including theory about finite fields, since we will work
with polynomials with coefficients in a finite field. After that, we will continue with defin-
ing the hypersurfaces and their Hasse-Weil zeta functions in Section 3. This extensive list
of definitions and theorems makes this thesis almost self-contained. As soon as we have this
knowledge we will start computing zeta functions of multilinear hypersurfaces.
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2 Preliminaries

In this chapter we will provide some theory about fields. We will first start with the basic
definition of a field and some properties. Furthermore we will give the definition of a finite
field.

2.1 Field Theory

The formal definition of a field is given by:

Definition 2.1 (Field). ([How06]) A field is a set F with two operations called addition ‘+’
and multiplication ‘·’, which satisfies the following axioms for a, b, c ∈ F:

A1. Associativity of addition and multiplication: a+(b+c) = (a+b)+c and a·(b·c) = (a·b)·c.

A2. Commutativity of addition and multiplication: a+ b = b+ a and a · b = b · a.

A3. Additive and multiplicative identity: there exist two different elements 0 and 1 in F such
that a+ 0 = a and a · 1 = a.

A4. Additive inverses: for every a 6= 0 in F, there exists an element in F, denoted −a, called
the additive inverse of a, such that a+ (−a) = 0.

A5. Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c).

A6. Multiplicative inverses: for every a 6= 0 in F, there exists an element in F, denoted a−1

or 1
a
, called the multiplicative inverse of a, such that a · a−1 = 1.

Definition 2.2 (Prime field). Let F be a field. The prime field of F is the intersection of all
subfields of F.

Theorem 2.3. Let F be a field. The prime field of F is either isomorphic to Q, or to Z/pZ for
some prime p.

Definition 2.4 (The Characteristic). Let F be a field. Suppose its prime field is Z/pZ. Then
we say that the characteristic of F is p. When the prime field is Q, we say that the characteristic
is 0.

Definition 2.5 (Irreducible Polynomial). ([How06]) Let F be a field. A non-constant poly-
nomial with coefficients in F is irreducible over F if it cannot be written as a product of two
non-constant polynomials with coefficients in F. Otherwise, the polynomial will be called re-
ducible.

2.2 Finite Fields

In this section we shall be looking at finite fields. This will be the type of fields we will work
with in the rest of this paper.

Definition 2.6 (Finite field). ([Beu18]) A field is called a finite field if it contains a finite
number of elements.

Definition 2.7. ([Beu18]) Let F be a finite field and let p be its characteristic. We define
multiplication between an element of Z/pZ by an element of F as follows

Z/pZ× F→ F, (k, x) 7→ k · x,

where we choose an integer representative for k and where we use repeated addition.
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Theorem 2.8 (Existence and Unicity). ([Beu18]) a) Let F be a finite field, then F has pn

elements for some n ∈ N, where p is the characteristic of F. b) For every n ∈ N and prime
p there exists precisely one field (up to isomorphism) with q = pn elements, denoted by Fq.
Furthermore, there are no other finite fields.

Proof. a) Let F be a finite field. Let K be the prime field of F. It follows immediately from
the definition of the prime field that K is also finite. This implies that the characteristic of
F is p for some prime p. Since K is a subfield of F, F is called a finite field extension of K.
Then F can be considered as a finite dimensional K-vectorspace. Suppose that dimK(F) = n
for some n ∈ N, then there exists a basis {x1, ..., xn} of the K-vectorspace F. This means that
the elements of F can be written uniquely as

λ1x1 + λ2x2 + ...+ λnxn for λ1, λ2, ..., λn ∈ K.

Remark that |K| = p, so there are exactly pn distinct elements in F.

b) We first prove existence. Let n ∈ N and q = pn for some prime p. Let F be the split-
ting field of the polynomial Xq −X ∈ Fp[X]. We define

H := {x ∈ F|xq − x = 0},

which is the set of zeroes in F of the polynomial Xq − X. We want to prove that H is a
subfield of F. It is clear that 1 ∈ H. Let α, β ∈ H. Since the characteristic is p, we know
that p · α = 0. Hence the additive inverse of α is given by (−α) = (p − 1) · α. Remark that
(α−1)p = (αp)−1 = α−1. In other words, the multiplicative inverse of α is also contained in H.
So it suffices to show that H is closed under addition and multiplication. By using the Binomial
Theorem we find

(α + β)q =

q∑
k=0

(
q

k

)
αq−kβk = αq + βq = α + β,

since
(
q
k

)
is 0 mod p whenever 0 < k < p. Hence H is indeed closed under addition. Remark

that (αβ)q = αqβq = αβ, so H is also closed under multiplication. We have now shown that
H is a subfield of F. It follows now immediately from the definition of the splitting field that
H = F. The fact that Xq −X has q distinct roots tells us that F is a field with q elements.

To show uniqueness take any prime power q = pn and let F be a field with q elements. Since F
is a field we know that |F∗| = q − 1, where F∗ is the unit group of F. Hence xq−1 = 1 for all
x ∈ F∗. This implies that xq − x = 0 for all x ∈ F. In other words, F is the splitting field of
the polynomial Xq−X. Since the splitting field of a polynomial is uniquely determined (up to
isomorphism) we can conclude that the same holds for F.

Remark 2.9. We have seen in the above that the field Fpn is isomorphic to the splittingfield of
the polynomial Xpn −X ∈ Fp[X] for every n ∈ N and prime p.

Theorem 2.10. ([And17]) For p a prime and n,m ∈ N, we have that Fpm is a subfield of Fpn
if and only if m|n.

Proof. Suppose that Fpm ⊂ Fpn . We can consider Fpn as a Fpm-vector space. Since we are
working with finite fields the dimension of Fpn as a Fpm-vector space is a number d ∈ N. This
implies that pn =|Fpn| =|Fpm|d = pmd. We conclude that m|n.
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Suppose that m|n, then there exists a d ∈ N such that n = dm. Let x ∈ Fpm , then according
to Remark 2.9 we have xp

m
= x. Since n = dm we find

pn − 1 = pdm − 1 = (pm)d − 1 = (pm − 1)((pm)d−1 + ...+ pm + 1).

This implies that pm− 1 divides pn− 1. In an analogous way we find that xp
m−1− 1

∣∣xpn−1− 1.
It now follows that xp

m − x
∣∣xpn − x, so xp

n
= x and x ∈ Fpn .
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3 Hypersurfaces and their Zeta Functions

3.1 Homogeneous Polynomials

Let F be a field and n ∈ N. Let p(X0, ..., Xn) ∈ F[X0, ..., Xn] be a polynomial of degree d, then
we call p a homogeneous polynomial if it is a linear combination of monomials of the same
total degree d.

Example 3.1. The polynomial p(X0, X1, X2, X3) = X4
0−X2

1X
2
3+2X0X1X2X3 is a homogeneous

polynomial in Z[X0, X1, X2, X3] of degree 4.

It is possible to make a homogeneous polynomial of degree d out of a non-homogeneous poly-
nomial p(X1, ..., Xn) ∈ F[X1, ..., Xn] of degree d. This can be done by adding a new variable
and by defining the homogeneous polynomial in the following way ([Kob84])

p̃(X0, ..., Xn) := Xd
0p(X1/X0, ..., Xn/X0).

This polynomial is called the homogeneous completion of p(X1, ..., Xn).

Lemma 3.2. The homogeneous completion of a non-homogeneous polynomial p(X1, ..., Xn) in
F[X1, ..., Xn] of degree d is indeed a homogeneous polynomial of degree d.

Proof. Remark that p(X1, ..., Xn) is a polynomial, so we can write it as a linear combination
of m monomials for some m ∈ N. In other words,

p(X1, ..., Xn) =
m∑
i=1

ai

n∏
j=1

X
bi,j
j , (1)

for some ai ∈ F and bi,j ∈ N for 1 6 i 6 m and 1 6 j 6 n such that
∑n

j=1 bi,j 6 d. By rewriting
the definition of the homogeneous completion of p(X1, ..., Xn) using (1), we find

Xd
0p(X1/X0, ..., Xn/X0) = (X0)

d
m∑
i=1

ai

n∏
j=1

(
Xj

X0

)bi,j
=

m∑
i=1

aiX
d−

∑n
j=1 bi,j

0

n∏
j=1

X
bi,j
j .

It follows immediately that this is a homogeneous polynomial of degree d, since we have∑n
j=1 bi,j 6 d.

Example 3.3. The polynomial given in Example 3.1 is the homogeneous completion of the
polynomial q(X1, X2, X3) = 1−X2

1X
2
3 + 2X1X2X3.

3.2 Hypersurfaces

Let F be a field and n ∈ N. Let Fn be the set consisting of the ordered n-tuples (x1, ..., xn)
with xi ∈ F for 1 6 i 6 n. Let p(X1, ..., Xn) ∈ F[X1, ..., Xn] be a polynomial.

Definition 3.4. ([Kob84]) The affine hypersurface defined by the polynomial p in Fn is given
by

Hp(Fn) := {(x1, ..., xn) ∈ Fn | p(x1, ..., xn) = 0}.

Definition 3.5. ([Kob84]) We define the n-dimensional projective space over the field F,
Pn(F), as the quotiëntspace of Fn+1\{0} with the equivalence relation given by

(x0, ..., xn) ∼ (x′0, ..., x
′
n)⇔ ∃λ ∈ F∗ such that xi = λx′i for i = 0, ..., n.

In other words, Pn(F) := (Fn+1\{0})/ ∼.
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Definition 3.6. ([Kob84]) Let p̃(X0, ..., Xn) ∈ F[X0, ..., Xn] be a homogeneous polynomial.
The projective hypersurface defined by p̃ in Pn(F) is given by

H̃p̃(Pn(F)) := {[x0 : ... : xn] ∈ Pn(F) | p̃(x0, ..., xn) = 0}.

Remark that it makes sense to talk about the set of equivalence classes of (n+1)-tuples of Pn(F)
at which p̃ vanishes. For λ ∈ F∗ we namely have that p̃(λx0, ..., λxn) = 0 if p̃(x0, ..., xn) = 0,
since p̃ is homogeneous. Let K be a field containing F. Then we can also define the set

Hp(Kn) := {(x1, ..., xn) ∈ Kn | p(x1, ..., xn) = 0},

where p(X1, ..., Xn) is a polynomial with coefficients in F. If p̃(X1, ..., Xn) is a homogeneous
polynomial, we can similarly define the set

H̃p̃(Pn(K)) := {[x0 : ... : xn] ∈ Pn(K) | p̃(x0, ..., x0) = 0}.

3.3 Zeta function

Let F = Fq be a finite field and K = Fqs be a finite field extension for some s ∈ N. Let
p(X1, ..., Xn) ∈ F[X1, ..., Xn] be a polynomial and p̃(X0, ..., Xn) ∈ F[X0, ..., Xn] be a homoge-

neous polynomial. We define the sequences (Ns)s∈N and (Ñs)s∈N, where

Ns :=
∣∣Hp(Fnqs)

∣∣, Ñs :=
∣∣H̃p̃(Pn(Fqs))

∣∣.
Definition 3.7 (Hasse-Weil Zeta function). ([Musta],2.3.2) The Hasse-Weil zeta function
of the affine hypersurface Hp(Fnq ) is defined as

Z(Hp(Fnq );T ) := exp

(
∞∑
s=1

NsT
s

s

)
.

The Hasse-Weil zeta function of the projective hypersurface is defined in a similar way where
Hp(Fnq ) and Ns are respectively replaced by H̃p̃(Pn(Fq)) and Ñs.

3.4 Zeta Function of a Multilinear Hypersurface in P1(Fq)
n

We shall be interested in multilinear hypersurfaces and their zeta functions. We can generalise
the definition of the Hasse-Weil zeta function to hypersurfaces in P1(Fq)n. The multiprojective
space over the field Fq, P1(Fq)n, is defined as the cartesian product of 1-dimensional projective

spaces, i.e. P1(Fq)n := P1(Fq)
n−times
×...× P1(Fq) for n ∈ N. Let p(X1, ..., Xn) ∈ Fq[X1, ..., Xn] be a

multilinear polynomial of degree n, i.e. the polynomial contains a term consisting of a product
of all the different variables. We define the homogeneous completion of p(X1, ..., Xn) as follows

p̃(X1, Y1, ..., Xn, Yn) :=

(
n∏
i=1

Yi

)
p(X1/Y1, ..., Xn/Yn).

Notice that this is indeed a homogeneous polynomial by recalling that p(X1, ..., Xn) is a mul-
tilinear polynomial. We can now take a look at the following hypersurface

H̃p̃(P1(Fq)n) := {([x1 : y1], ..., [xn : yn]) ∈ P1(Fq)n|p̃(x1, y1, ..., xn, yn) = 0}.

We can again conclude from the fact that p̃ is homogeneous that for every λ1, ..., λn ∈ F∗q
we have that p̃(λ1x1, λ1y1, ..., λnxn, λnyn) = 0 if p̃(x1, y1, ..., xn, yn) = 0. So it makes sense to
consider the above hypersurface. Similarly, we can define the set

H̃p̃(P1(Fqs)n) := {([x1 : y1], ..., [xn : yn]) ∈ P1(Fqs)n|p̃(x1, y1, ..., xn, yn) = 0},
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for s ∈ N. We can now define the Hasse-Weil zeta function of the multiprojective hypersurface
H̃p̃(P1(Fq)n) in the following way

Z(H̃p̃(P1(Fq)n);T ) := exp

(
∞∑
s=1

ÑsT
s

s

)
,

where Ñs :=
∣∣H̃p̃(P1(Fqs)n)

∣∣ for s ∈ N.
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4 Zeta Function of the Affine Hypersurface in F2
q

Let p(X1, X2) ∈ Fq[X1, X2] be a multilinear irreducible polynomial of degree 2, i.e.

p(X1, X2) = aX1X2 + bX1 + cX2 + d

for some a, b, c, d ∈ Fq and a 6= 0. In this section we shall determine the zeta function of
the affine hypersurface in F2

q defined by p(X1, X2). The following two lemmas will help us to
determine this zeta function.

Lemma 4.1. If the polynomial p(X1, X2) = aX1X2 + bX1 + cX2 + d is reducible, then there
exist α1, α2, β1, β2 ∈ Fq such that p(X1, X2) = (α1X1 + β1)(α2X2 + β2).

Proof. Suppose that p(X1, X2) is reducible, then there exist polynomials q(X1, X2), r(X1, X2)
in Fq[X1, X2] of degree 1 such that p(X1, X2) = q(X1, X2)r(X1, X2). In other words,

p(X1, X2) = (a1X1 + b1X2 + c1)(a2X1 + b2X2 + c2)

= a1a2X
2
1 + b1b2X

2
2 + (a1b2 + a2b1)X1X2 + (a1c2 + a2c1)X1 + (b1c2 + b2c1)X2 + c1c2.

for some a1, a2, b1, b2, c1, c2 ∈ Fq. It follows from the above equations that a1a2 = 0, b1b2 = 0
and a1b2 + a2b1 6= 0. This implies that a1 = b2 = 0 or a2 = b1 = 0, since a field has no zero
divisors. In both cases we see that we get a factorization of the desired form.

Lemma 4.2. The multilinear polynomial p(X1, X2) = aX1X2 + bX1 + cX2 + d of degree 2 is
reducible if and only if d = ca−1b.

Proof. “=⇒” Suppose that p(X1, X2) is reducible, then by using Lemma 4.1 we find that

p(X1, X2) = (α1X1 + β1)(α2X2 + β2) = (α1α2X1X2 + α1β2X1 + β1α2X2 + β1β2).

This implies that α1α2 = a, α1β2 = b, α2β1 = c and d = β1β2. Since a 6= 0 we know that α1

and α2 have an inverse. Using this we find

d = β1β2 = α−12 cbα−11 = ca−1b.

“⇐=” Assume that d = ca−1b, then it follows from the following calculations that p(X1, X2) is
indeed reducible.

p(X1, X2) = aX1X2 + bX1 + cX2 + ca−1b = (X1 + ca−1)(aX2 + b).

By using the lemmas above we can determine the zeta function of the affine hypersurface
Hp(F2

q) := {(x1, x2) ∈ F2
q| p(x1, x2) = 0}, or equivalently we can prove the following theorem.

Theorem 4.3. The Hasse-Weil zeta function of the affine hypersurface Hp(F2
q) is given by

Z(Hp(F2
q);T ) =

1− T
1− qT

.

Proof. By looking at the definition of the Hasse-Weil zeta function of the affine hypersurface
in Section 3.3 we see that we need to determine the number Ns =

∣∣Hp(F2
qs)
∣∣ for all s ∈ N.

We first determine N1. Remark that we can rewrite the equation p(x1, x2) = 0 in the following
way

p(x1, x2) = 0⇔ x1(ax2 + b) + cx2 + d = 0⇔ x1 = −cx2 + d

ax2 + b
if x2 6= −a−1b.
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In other words, for all x2 ∈ Fq\{−a−1b} we can find x1 such that p(x1, x2) = 0. Hence we can
find q − 1 solutions of p(x1, x2) = 0 in F2

q. Suppose that x2 = −a−1b, then

p(x1,−a−1b) = x1(−aa−1b+ b) + (−ca−1b) + d = 0⇔ d = ca−1b.

By using Lemma 4.2 and the above result we see that there are no solutions with x2 = −a−1b,
since p(X1, X2) is irreducible by assumption. This means that N1 =

∣∣Hp(F2
q)
∣∣ = q − 1. It

follows from an analogous argument that Ns = qs − 1 for s ∈ N. So the zeta function of the
affine hypersurface Hp(F2

q) is given by

Z(Hp(F2
q);T ) = exp

(
∞∑
s=1

(qs − 1)T s

s

)
= exp(− log(1− qT )) exp(log(1− T )) =

1− T
1− qT

.
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5 Zeta Function of the Hypersurface in P1(Fq)2

In this chapter we shall determine the zeta function of a multilinear hypersurface in P1(F2
q),

where we recall the theory discussed in Section 3.4. Let p(X1, X2) ∈ Fq[X1, X2] be the
multilinear polynomial of degree 2, i.e.

p(X1, X2) = aX1X2 + bX1 + cX2 + d

for some a, b, c, d ∈ Fq and a 6= 0. The homogeneous completion of p(X1, X2) is defined as
follows

p̃(X1, Y1, X2, Y2) := Y1Y2p(X1/Y1, X2/Y2) = aX1X2 + bX1Y2 + cX2Y1 + dY1Y2.

We can now determine the zeta function of the following hypersurface

H̃p̃(P1(Fq)2) := {([x1 : y1], [x2 : y2]) ∈ P1(Fq)2|p̃(x1, y1, x2, y2) = 0}. (2)

We will consider the case in which p(X1, X2) is irreducible and the case in which p(X1, X2) is
reducible.

5.1 Zeta Function of the Irreducible Hypersurface in P1(Fq)
2

We will start with proving the following theorem about the zeta function of the irreducible
hypersurface H̃p̃(P1(Fq)2), which means that p(X1, X2) is irreducible.

Theorem 5.1. The Hasse-Weil zeta function of the irreducible hypersurface H̃p̃(P1(Fq)2) is
given by

Z(H̃p̃(P1(Fq)2);T ) =
1

(1− T )(1− qT )
.

Proof. Assume that the polynomial p(X1, X2) is irreducible. If we want to determine the zeta

function of the hypersurface given at (2) we have to find the number Ñs :=
∣∣H̃p̃(P1(Fqs)2)

∣∣ for

s ∈ N. We will take a look at the number Ñs by rewriting the equation p̃(x1, y1, x2, y2) = 0 in
the following way

p̃(x1, y1, x2, y2) = x1(ax2 + by2) + y1(cx2 + dy2) = 0. (3)

We choose [x2 : y2] ∈ P1(Fqs) and by using the above equation we find the following cases.

1. ax2 + by2 and cx2 + dy2 are not both equal to zero.

2. ax2 + by2 = cx2 + dy2 = 0.

We first consider the situation in which ax2 + by2 and cx2 + dy2 are not both equal to zero. We
have to take a look at three different cases.

� If ax2 + by2 = 0 and cx2 + dy2 6= 0, then it follows from (3) that y1 = 0 and x1 = ξ for
some ξ ∈ F∗qs .

� If ax2 + by2 6= 0 and cx2 + dy2 = 0, then (3) implies that x1 = 0 and y1 ∈ F∗qs .

� If ax2 + by2 6= 0 6= cx2 + dy2, then x1 6= 0 6= y1 and x1
y1

= cx2+dy2
ax2+by2

.
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We conclude from the above that for every [x2 : y2] ∈ P1(Fqs) satisfying the first situation there
is exactly one [x1 : y1] ∈ P1(Fqs) such that p̃(x1, y1, x2, y2) = 0.

Remark that we can rewrite the second case, in which ax2 + by2 = cx2 + dy2 = 0, in the
following way (

a b
c d

)(
x2
y2

)
=

(
0
0

)
.

Since we pick [x2 : y2] ∈ P1(Fqs) the above can only happen if

det

(
a b
c d

)
= 0⇔ ad− bc = 0⇔ d = ca−1b.

By using Lemma 4.2 and the fact that p(X1, X2) is irreducible we see that this cannot occur.

It follows from the results found above that there are qs + 1 solutions of p̃(x1, y1, x2, y2) = 0 in
P1(Fqs)2, since [x2 : y2] can be chosen arbitrarily. The zeta function of the hypersurface defined
at (2) is now given by

Z(H̃p̃(P1(Fq)2);T ) = exp

(
∞∑
s=1

(qs + 1)T s

s

)
= exp(− log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )
.

5.2 Zeta Function of the Reducible Hypersurface in P1(Fq)
2

We will now take a look at the zeta function of the reducible hypersurface H̃p̃(P1(Fq)2).

Theorem 5.2. The Hasse-Weil zeta function of the reducible hypersurface H̃p̃(P1(Fq)2) is given
by

Z(H̃p̃(P1(Fq)2);T ) =
1

(1− T )(1− qT )2
.

Proof. Suppose that p(X1, X2) is reducible, then it follows from Lemma 4.2 that d = ca−1b.
This implies that

p̃(X1, Y1, X2, Y2) = aX1X2 + bX1Y2 + cY1X2 + ca−1bY1Y2 = (X1 + ca−1Y1)(aX2 + bY2). (4)

Since we want to find the zeta function of the hypersurface given at (2) we have to determine

the number Ñs :=
∣∣H̃p̃(P1(Fqs)2)

∣∣ for s ∈ N. We define the following polynomials

A(X1, Y1, X2, Y2) := X1 + ca−1Y1

B(X1, Y1, X2, Y2) := aX2 + bY2,

and remark that p̃(X1, Y1, X2, Y2) = A(X1, Y1, X2, Y2)B(X1, Y1, X2, Y2). We define the following
sets for s ∈ N

OA(P1(Fqs)2) := {([x1 : y1], [x2 : y2]) ∈ P1(Fqs)2|A(x1, y1, x2, y2) = 0}
OB(P1(Fqs)2) := {([x1 : y1], [x2 : y2]) ∈ P1(Fqs)2|B(x1, y1, x2, y2) = 0}.
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We can now conclude from the above that

Ñs =
∣∣H̃p̃(P1(Fqs)2)

∣∣ =
∣∣OA(P1(Fqs)2)

∣∣+
∣∣OB(P1(Fqs)2)

∣∣− ∣∣OA(P1(Fqs)2) ∩ OB(P1(Fqs)2)
∣∣. (5)

We will first determine the number
∣∣OA(P1(Fqs)2)

∣∣. Remark that this is equivalent to finding
the number of solutions of A(x1, y1, x2, y2) = 0 in P1(Fqs)2. Rewriting this statement into the
equation x1 = −ca−1y1 implies that [x1 : y1] = [−ca−1 : 1]. So the solutions of the equation
A(x1, y1, x2, y2) = 0 are given by ([−ca−1 : 1], [x2 : y2]) ∈ P1(Fqs)2 for every [x2 : y2] ∈ P1(Fqs).
So there are qs + 1 solutions in P1(Fqs)2 of the equation A(x1, y1, x2, y2) = 0, since [x2 : y2] can
be chosen arbitrarily and

∣∣P1(Fqs)
∣∣ = qs + 1. In other words

∣∣OA(P1(Fqs)2)
∣∣ = qs + 1.

Similarly, we can determine the number
∣∣OB(P1(Fqs)2)

∣∣ by counting the number of solutions
of B(x1, y1, x2, y2) = 0, or equivalently ax2 = −by2, in P1(Fqs)2. This implies that the solu-
tions of B(x1, y1, x2, y2) = 0 in P1(Fqs)2 are given by the elements ([x1 : y1], [−a−1b : 1]) with
[x1 : y1] ∈ P1(Fqs). We can now conclude from the above that

∣∣OB(P1(Fqs)2)
∣∣ = qs + 1. Also,

notice by looking at the explicit solutions found above that∣∣OA(P1(Fqs)2) ∩ OB(P1(Fqs)2)
∣∣ =

∣∣{([−ca−1 : 1], [−a−1b : 1])}
∣∣ = 1.

By using (5) and the above results we find that Ñs = 2qs + 1. The zeta function of the
hypersurface given at (2) will now be given by

Z(H̃p̃(P1(Fq)2);T ) = exp

(
∞∑
s=1

(2qs + 1)T s

s

)
= exp(−2 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )2
.
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6 Zeta Function of the Hypersurface in P1(Fq)3

In this chapter we shall determine the zeta function of a hypersurface in P1(Fq)3 defined by a
multilinear polynomial of degree 3.
Let p(X1, X2, X3) ∈ Fq[X1, X2, X3] be a multilinear polynomial of degree 3, i.e.

p(X1, X2, X3) = aX1X2X3 + bX1X2 + cX2X3 + dX1X3 + eX1 + fX2 + gX3 + h.

for some a, b, c, d, e, f, g, h ∈ Fq and a 6= 0. We define the polynomials

A(X2, Y2, X3, Y3) := aX2X3 + bX2Y3 + dY2X3 + eY2Y3

B(X2, Y2, X3, Y3) := cX2X3 + fX2Y3 + gY2X3 + hY2Y3

and remark that the homogeneous completion of p(X1, X2, X3) is given by

p̃(X1, Y1, X2, Y2, X3, Y3) := Y1Y2Y3p(X1/Y1, X2/Y2, X3/Y3)

= X1A(X2, Y2, X3, Y3) + Y1B(X2, Y2, X3, Y3).

We will now determine the zeta function of the hypersurface given by

H̃p̃(P1(Fq)3) := {([x1 : y1], [x2 : y2], [x3 : y3]) ∈ P1(Fq)3|p̃(x1, y1, x2, y2, x3, y3) = 0}. (6)

We will distinguish between the case that p(X1, X2, X3) is irreducible and the case that it is
reducible.

6.1 Zeta Function of the Irreducible Hypersurface in P1(Fq)
3

We will first determine the zeta function of the irreducible hypersurface in P1(Fq)3. We start
by defining the number D := (ah+ bg− ce−df)2− 4(ag− cd)(bh− ef). This number will show
up in a natural way during the proof of Theorem 6.2. The following lemma will be useful by
determining this zeta function.

Lemma 6.1. If ag − cd = bh− ef = ah+ bg − ce− df = 0, then p(X1, X2, X3) is reducible.

Proof. Suppose that ag − cd = bh− ef = ah+ bg − ce− df = 0, then

det

(
a c
d g

)
= 0 = det

(
b e
f h

)
.

This implies that there exist α, β, γ, δ ∈ Fq such that

(a, c) = λ(α, β),

(d, g) = µ(α, β),

(b, e) = ρ(γ, δ),

(f, h) = σ(γ, δ) (7)

for some λ, µ, ρ, σ ∈ Fq. Substituting these results in the equation ah+ bg− ce− df = 0 hands
us the following

0 = ah+ bg − ce− df = λασδ + ργµβ − λβρδ − µασγ = (λσ − µρ)(αδ − βγ).

This implies that λσ − µρ = 0 or αδ − βγ = 0. If λσ − µρ = 0, then there exists ξ ∈ Fq such
that (λ, µ) = ξ(ρ, σ). Using this and the results at (7) we find that

(a, b, c, d, e, f, g, h) = (αξρ, ργ, βξρ, αξσ, ρδ, σγ, βξσ, σδ).
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Now notice the following to conclude that p(X1, X2, X3) is reducible

(ρX1 + σ)(αξX2X3 + γX2 + βξX3 + δ) = p(X1, X2, X3).

If αδ − βγ = 0, then there exists ω ∈ Fq such that (α, β) = ω(γ, δ). Combining this with the
results found in (7) hands us the following

(a, b, c, d, e, f, g, h) = (λωγ, ργ, λωδ, µωγ, ρδ, σγ, µωδ, σδ).

This implies that p(X1, X2, X3) is reducible, since

(γX2 + δ)(λωX1X3 + ρX1 + µωX3 + σ) = p(X1, X2, X3).

Theorem 6.2. The Hasse-Weil zeta function of the irreducible hypersurface H̃p̃(P1(Fq)3) is
given in the following five cases:

1. If ag − cd 6= 0 and D = 0,

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )3(1− q2T )
.

2. If ag − cd 6= 0, D 6= 0 and D a square in Fq,

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )4(1− q2T )
.

3. If ag − cd 6= 0, D 6= 0 and D not a square in Fq,

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1 + qT )(1− qT )3(1− q2T )
.

4. If ag − cd = 0 and D = 0,

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )3(1− q2T )
.

5. If ag − cd = 0 and D 6= 0,

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )4(1− q2T )
.

Proof. Assume that p(X1, X2, X3) is irreducible. According to the definition of the zeta function

we need to find the number Ñs :=
∣∣H̃p̃(P1(Fqs)3)

∣∣ for s ∈ N. This means that we have to
determine how many solutions the equation

p̃(x1, y1, x2, y2, x3, y3) = x1A(x2, y2, x3, y3) + y1B(x2, y2, x3, y3) = 0 (8)

has in P1(Fqs)3. We choose ([x2 : y2], [x3 : y3]) ∈ P1(Fqs)2 and by using (8) we find the following
cases:

1. A(x2, y2, x3, y3) and B(x2, y2, x3, y3) are not both equal to zero.
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2. A(x2, y2, x3, y3) = B(x2, y2, x3, y3) = 0, or equivalently(
A(x2, y2, x3, y3)
B(x2, y2, x3, y3)

)
=

(
ax3 + by3 dx3 + ey3
cx3 + fy3 gx3 + hy3

)(
x2
y2

)
=

(
0
0

)
.

Notice that in the first case we get a unique [x1 : y1] ∈ P1(Fqs) from the equation given at (8).
Also, remark that the second case can only happen in P1(Fqs)2 if

det

(
ax3 + by3 dx3 + ey3
cx3 + fy3 gx3 + hy3

)
= (ag − cd)x23 + (ah+ bg − ce− df)x3y3 + (bh− ef)y23 = 0 (9)

We define the following set consisting of the elements ([x2 : y2], [x3 : y3]) ∈ P1(Fqs)2 belonging
to the second case

O(P1(Fqs)2) := {([x2 : y2], [x3 : y3]) ∈ P1(Fqs)2|A(x2, y2, x3, y3) = B(x2, y2, x3, y3) = 0}.

We can now conclude from the above that

Ñs = (qs + 1)2 −
∣∣O(P1(Fqs)2)

∣∣+
∣∣O(P1(Fqs)2)

∣∣(qs + 1) = (qs + 1)2 + qs
∣∣O(P1(Fqs)2)

∣∣, (10)

since for every ([x2 : y2], [x3 : y3]) ∈ P1(Fqs)2 with A(x2, y2, x3, y3) = B(x2, y2, x3, y3) = 0 we see
that p̃(x1, y1, x2, y2, x3, y3) = 0 for every [x1 : y1] ∈ P1(Fqs). Consequently, we need to determine∣∣O(P1(Fqs)2)

∣∣ if we want to find the zeta function of (6). We will use the following lemma to
determine this number.

Lemma 6.3. Since p(X1, X2, X3) is an irreducible polynomial we have(
ax3 + by3 dx3 + ey3
cx3 + fy3 gx3 + hy3

)
6=
(

0 0
0 0

)
for every [x3 : y3] ∈ P1(Fqs).

Proof. Suppose that there exists [x3 : y3] ∈ P1(Fqs) such that(
ax3 + by3 dx3 + ey3
cx3 + fy3 gx3 + hy3

)
=

(
0 0
0 0

)
,

then we see that ax3 + by3 = dx3 + ey3 = 0, or equivalently(
a b
d e

)(
x3
y3

)
=

(
0
0

)
.

Since [x3 : y3] 6= [0 : 0] it follows from the above that

det

(
a b
d e

)
= 0.

This implies that there exist α, β ∈ Fq such that λ(α, β) = (a, b) and µ(α, β) = (d, e) for some
λ, µ ∈ Fq. We can find in an analogical way that there exist α, β ∈ Fq such that

γ(α, β) = (a, b) for some γ ∈ Fq,
δ(α, β) = (d, e) for some δ ∈ Fq,
ε(α, β) = (c, f) for some ε ∈ Fq,
ζ(α, β) = (g, h) for some ζ ∈ Fq.

Now notice that the following is true to conclude that p(X1, X2, X3) is reducible

(αX3 + β)(γX1X2 + δX1 + εX2 + ζ) = p(X1, X2, X3).
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The above lemma tells us that for every [x3 : y3] ∈ P1(Fqs) satisfying (9) there is exactly one
[x2 : y2] ∈ P1(Fqs) such that ([x2 : y2], [x3 : y3]) ∈ O(P1(Fqs)2). So the number

∣∣O(P1(Fqs)2)
∣∣

is equal to the number of solutions of (9) in P1(Fqs). Computing these solutions will cause the
following possible cases:

1. ag − cd 6= 0.

2. ag − cd = 0.

We will first take a look at the case in which ag − cd 6= 0. Notice that it follows from (9)
that there are no solutions in P1(Fqs) with y3 = 0, since ag − cd 6= 0 by assumption. So we
may assume that y3 6= 0. Recall that D := (ah + bg − ce − df)2 − 4(ag − cd)(bh − ef). We
will consider the case that D = 0 and D 6= 0 in Fq. When D 6= 0 we will need to distinguish
between the case that D is a square in Fq and the case that D is not a square in Fq.

1. D = 0.
Remark that D = 0 if and only if (ah+ bg− ce−df)2 = 4(ag− cd)(bh− ef), since y3 6= 0.
It follows from (9) that

x3
y3

=
−(ah+ bg − ce− df)

2(ag − cd)
.

So there is exactly one solution of (9) in P1(Fqs). Now recall that the number
∣∣O(P1(Fqs)2)

∣∣
is equal to the number of solutions of (9) in P1(Fqs). By using this and (10) we find that

Ñs = (qs + 1)2 + qs = q2s + 3qs + 1. The zeta function of (6) will now be given by

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
s=1

(q2s + 3qs + 1)T s

s

)
= exp(− log(1− q2T )) exp(−3 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )3(1− q2T )
.

2. D 6= 0

� D is a square in Fq. In this case it follows from (9) that

x3 =
−(ah+ bg − ce− df)± y3

√
D

2(ag − cd)
∈ Fqs .

So there are exactly two solutions of (9) in P1(Fqs). This implies that
∣∣O(P1(Fqs)2)

∣∣ = 2

and thus it follows from (5) that Ñs = (qs+1)2 +2qs = q2s+4qs+1. So the zeta function
of the hypersurface given at (6) is given by

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
s=1

(q2s + 4qs + 1)T s

s

)
= exp(− log(1− q2T )) exp(−4 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )4(1− q2T )
.

� D is not a square in Fq. Consider the field Fq(
√
D) := {α + β

√
D|α, β ∈ Fq}. Notice

that this field has exactly q2 elements. It follows from Theorem 2.8 that this field has
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to be isomorphic to Fq2 , so D is a square in Fq2 . We can also conclude that D is not a
square in Fq2m+1 for m ∈ N and that D is a square in Fq2n for n ∈ N by using Theorem
2.10. This implies that there are no solutions of (9) in P1(Fq2m+1) for m ∈ N. As we have
seen in the previous case there will be two solutions of (9) in P1(Fq2n) for n ∈ N. It now
follows from (5) that

Ñs =

{
(qs + 1)2 = q2s + 2qs + 1 if s is odd.

(qs + 1)2 + 2qs = q2s + 4qs + 1 if s is even.

= q2s + 3qs + 1 + (−q)s

The zeta function of (6) is now given by

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
n=1

(q2s + 3qs + 1 + (−q)s)T s

s

)
=

1

(1− q2T )(1− qT )3(1 + qT )(1− T )
.

We will now compute the zeta function of (6) in the case that ag− cd = 0. We can now rewrite
(9) in the following way

(ah+ bg − ce− df)x3y3 + (bh− ef)y23 = 0. (11)

Also, notice that D = (ah+ bg−ce−df)2 since ag−cd = 0. We will now consider the following
possibilities:

� D = 0.
This implies that ah + bg − ce − df = 0. By using Lemma 6.1 we can conclude that
bh− ef 6= 0, since p(X1, X2, X3) is irreducible by assumption. This means that the only

solution of (11) in P1(Fqs) is [1 : 0]. Consequently, Ñs = (qs + 1)2 + qs = q2s + 3qs + 1 and
the zeta function will thus be given by

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
s=1

(q2s + 3qs + 1)T s

s

)
= exp(− log(1− q2T )) exp(−3 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )3(1− q2T )
.

� D 6= 0.
This means that ah+ bg − ce− df 6= 0. We will need to take a look at the case in which
bh− ef = 0 and the case in which bh− ef 6= 0. If bh− ef = 0, the only solutions of (11)
in P1(Fqs) are [1 : 0] and [0 : 1]. If bh− ef 6= 0, there will also be two solutions of (11) in

P1(Fqs), since y3
x3

= −(ah+bg−ce−df)±(ah+bg−ce−df)
2(bh−ef) . So we conclude in the same way as before

that Ñs = (qs + 1)2 + 2qs = q2s + 4qs + 1. The corresponding zeta function will now be
given by

Z(H̃p̃(P1(Fq)3);T )) = exp

(
∞∑
s=1

(q2s + 4qs + 1)T s

s

)
= exp(− log(1− q2T )) exp(−4 log(1− qT )) exp(− log(1− T ))

=
1

(1− q2T )(1− qT )4(1− T )
.
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6.2 Zeta Function of the Reducible Hypersurface in P1(Fq)
3

Suppose that p(X1, X2, X3) is reducible, then there exist r(X1, X2, X3), s(X1, X2, X3) ∈ Fq[X]
such that p(X1, X2, X3) = r(X1, X2, X3)s(X1, X2, X3). Remark that p(X1, X2, X3) is multilin-
ear, so the two factors can not depend on the same variable. This means that we have the
following three possibilities:

p(X1, X2, X3) = (αX1 + β)(γX2X3 + δX2 + εX3 + ζ),

p(X1, X2, X3) = (αX2 + β)(γX1X3 + δX1 + εX3 + ζ),

p(X1, X2, X3) = (αX3 + β)(γX1X2 + δX1 + εX2 + ζ) (12)

for some α, β, γ, δ, ε, ζ ∈ Fq. Remark that αγ = a 6= 0, so α 6= 0 6= γ. Assume that r(X1, X2, X3)
is the factor of degree 1 and s(X1, X2, X3) is the factor of degree 2.

Theorem 6.4. The Hasse-Weil zeta function of the reducible hypersurface H̃p̃(P1(Fq)3) is given
in the following two cases:

1. If s(X1, X2, X3) is irreducible, then

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )3(1− q2T )2
.

2. If s(X1, X2, X3) is reducible, then

Z(H̃p̃(P1(Fq)3);T ) =
1

(1− T )(1− qT )3(1− q2T )3
.

Proof. Since we want to find the zeta function of (6), we need to determine Ñs :=
∣∣H̃p̃(P1(Fqs)3)

∣∣
for s ∈ N. Since the above situations (12) are quite similar, we will only compute the zeta
function in the case that p(X1, X2, X3) is reducible in X3. We define the following polynomials

g(X1, Y1, X2, Y2, X3, Y3) := (αX3 + βY3)

h(X1, Y1, X2, Y2, X3, Y3) := (γX1X2 + δX1Y2 + εY1X2 + ζY1Y2),

and notice that the homogeneous completion of p(X1, X2, X3) is as follows

p̃(X1, Y1, X2, Y2, X3, Y3) := Y1Y2Y3p(X1/Y1, X2/Y2, X3/Y3)

= (αX3 + βY3)(γX1X2 + δX1Y2 + εY1X2 + ζY1Y2)

= g(X1, Y1, X2, Y2, X3, Y3)h(X1, Y1, X2, Y2, X3, Y3).

We define the following sets of zeroes for s ∈ N

Og(P1(Fqs)3) := {([x1 : y1], [x2 : y2], [x3 : y3]) ∈ P1(Fqs)3|g(x1, y1, x2, y2, x3, y3) = 0}
Oh(P1(Fqs)3) := {([x1 : y1], [x2 : y2], [x3 : y3]) ∈ P1(Fqs)3|h(x1, y1, x2, y2, x3, y3) = 0}.

We now remark from the above that

Ñs =
∣∣H̃p̃(P1(Fqs)3)

∣∣ =
∣∣Og(P1(Fqs)3)

∣∣+
∣∣Oh(P1(Fqs)3)

∣∣− ∣∣Og(P1(Fqs)3) ∩ Oh(P1(Fqs)3)
∣∣. (13)

We will first determine the number of solutions of g(x1, y1, x2, y2, x3, y3) = 0 in P1(Fqs)3. We
can rewrite this statement as x3 = −α−1βy3. Consequently, we find that [x3 : y3] = [−α−1β : 1].
So the solutions will be given by ([x1 : y1], [x2 : y2], [−α−1β : 1]) ∈ P1(Fqs)3 for every element
[x1 : y1], [x2 : y2] ∈ P1(Fqs). It follows that

∣∣Og(P1(Fqs)3)
∣∣ = (qs + 1)2.

Notice that we have to distinguish between the case in which s(X1, X2, X3) is irreducible
and the case in which it is reducible if we want to determine the number of solutions of
h(X1, Y1, X2, Y2, X3, Y3) in P1(Fqs)3, as we have seen in Section 5.
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1. Suppose that s(X1, X2, X3) is irreducible. We will now determine the number of solutions
of h(x1, y1, x2, y2, x3, y3) = 0 in P1(Fqs)3. Since γ 6= 0 we can use Theorem 5.1 and the
results found in the proof of this theorem. Since [x3 : y3] can be chosen arbitrarily in
P1(Fqs)3 we can directly conclude that

∣∣Oh(P1(Fqs)3)
∣∣ = (qs + 1)2. By looking at the so-

lutions of the equation g(x1, y1, x2, y2, x3, y3) = 0 = h(x1, y1, x2, y2, x3, y3) we immediately
notice that the number

∣∣Og(P1(Fqs)3) ∩ Oh(P1(Fqs)3)
∣∣ is given by∣∣{([x1 : y1], [x2 : y2]) ∈ P1(Fqs)2|h(x1, y1, x2, y2,−α−1β, 1) = 0}

∣∣ = qs + 1.

We can now conclude that Ñs = (qs + 1)2 + (qs + 1)2− (qs + 1) = 2q2s + 3qs + 1 by using
(13) and the results found above. The zeta function of the hypersurface given at (6) will
thus be given by

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
s=1

(2q2s + 3qs + 1)T s

s

)
= exp(−2 log(1− q2T )) exp(−3 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )3(1− q2T )2
.

2. Assume that s(X1, X2, X3) is reducible. Since γ 6= 0 we can use the results in Theorem
5.2 to find the number of solutions of h(x1, y1, x2, y2, x3, y3) = 0 in P1(Fqs)3. It immedi-
ately follows that

∣∣Oh(P1(Fqs)3)
∣∣ = (qs + 1)(2qs + 1). We notice in a similar way as in

the previous case that
∣∣Og(P1(Fqs)3) ∩ Oh(P1(Fqs)3)

∣∣ = 2qs + 1. We have now found the
requirements to conclude from (13) that

Ñs = (qs + 1)2 + (qs + 1)(2qs + 1)− (2qs + 1) = 3q2s + 3qs + 1.

The above hands us the following zeta function corresponding to the hypersurface given
at (6)

Z(H̃p̃(P1(Fq)3);T ) = exp

(
∞∑
s=1

(3q2s + 3qs + 1)T s

s

)
= exp(−3 log(1− q2T )) exp(−3 log(1− qT )) exp(− log(1− T ))

=
1

(1− T )(1− qT )3(1− q2T )3
.
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7 Zeta Function of the Hypersurface in P1(Fq)4

In this chapter we will take a look at the zeta function of a hypersurface in P1(Fq)4 defined by
a multilinear polynomial of degree 4.
Let p(X1, X2, X3, X4) ∈ Fq[X1, X2, X3, X4] be a multilinear polynomial of degree 4. This means
that there exist multilinear polynomials A(X2, X3, X4), B(X2, X3, X4) ∈ Fq[X2, X3, X4] such
that

p(X1, X2, X3, X4) = X1A(X2, X3, X4) +B(X2, X3, X4).

We define the homogeneous completions of A(X2, X3, X4) and B(X2, X3, X4) as follow

Ã(X2, Y2, X3, Y3, X4, Y4) := Y2Y3Y4A(X2/Y2, X3/Y3, X4/Y4)

B̃(X2, Y2, X3, Y3, X4, Y4) := Y2Y3Y4B(X2/Y2, X3/Y3, X4/Y4),

and remark that these are again multilinear polynomials. Consequently, the homogeneous
completion of p(X1, X2, X3, X4) is defined as follows

p̃(X1, Y1, ..., X4, Y4) := Y1Y2Y3Y4p(X1/Y1, ..., X4/Y4)

= X1Ã(X2, Y2, X3, Y3, X4, Y4) + Y1B̃(X2, Y2, X3, Y3, X4, Y4). (14)

We will now determine the zeta function of the hypersurface given by

H̃p̃(P1(Fq)4) := {([x1 : y1], ..., [x4 : y4]) ∈ P1(Fq)4|p̃(x1, y1, ..., x4, y4) = 0}. (15)

This means that we have to determine the number Ñs :=
∣∣H̃p̃(P1(Fq)4)

∣∣ for s ∈ N. We choose
([x2 : y2], [x3 : y3], [x4 : y4]) ∈ P1(Fq)3 and by rewriting the equation p̃(x1, y1, ..., x4, y4) = 0 as
follows

x1Ã(x2, y2, x3, y3, x4, y4) + y1B̃(x2, y2, x3, y3, x4, y4) = 0, (16)

we find the following possibilities:

1. Ã(x2, y2, x3, y3, x4, y4) and B̃(x2, y2, x3, y3, x4, y4) are not both equal to zero. In this situ-
ation there follows a unique [x1 : y1] ∈ P1(Fqs) from (16).

2. Ã(x2, y2, x3, y3, x4, y4) = 0 = B̃(x2, y2, x3, y3, x4, y4). Remark that

Ã(X2, Y2, X3, Y3, X4, Y4) = X2α(X3, Y3, X4, Y4) + Y2β(X3, Y3, X4, Y4)

B̃(X2, Y2, X3, Y3, X4, Y4) = X2γ(X3, Y3, X4, Y4) + Y2δ(X3, Y3, X4, Y4),

for some polynomials α(X3, Y3, X4, Y4), β(X3, Y3, X4, Y4), γ(X3, Y3, X4, Y4), δ(X3, Y3, X4, Y4)
in Fq[X3, Y3, X4, Y4]. This means that we can rewrite this situation in the following way(

α(x3, y3, x4, y4) β(x3, y3, x4, y4)
γ(x3, y3, x4, y4) δ(x3, y3, x4, y4)

)(
x2
y2

)
=

(
0
0

)
. (17)

Notice that this can only happen in P1(Fqs)3 if

det

(
α(x3, y3, x4, y4) β(x3, y3, x4, y4)
γ(x3, y3, x4, y4) δ(x3, y3, x4, y4)

)
= 0⇔ (αδ − βγ)(x3, y3, x4, y4) = 0. (18)
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We define the following set of zeroes

Oαδ−βγ(P1(Fqs)2) := {[x3 : y3], [x4 : y4] ∈ P1(Fqs)2|(αδ − βγ)(x3, y3, x4, y4) = 0}.

From now on we will assume that the 2×2-matrix given at (17) is not equal to the zero matrix for
every ([x3 : y3], [x4 : y4]) ∈ P1(Fqs)2. This implies that for every ([x3 : y3], [x4 : y4]) ∈ P1(Fqs)2
that satisfies (18) there exists exactly one [x2 : y2] ∈ P1(Fqs) such that (17) holds. We define
ξs :=

∣∣Oαδ−βγ(P1(Fqs)2)
∣∣ for s ∈ N, and conclude from the above that

Ñs =
∣∣H̃p̃(P1(Fq)4)

∣∣ = (qs + 1)3 + (qs + 1)ξs − ξs = (qs + 1)3 + qsξs = q3s + 3q2s + 3qs + 1 + qsξs

The zeta function of the hypersurface definded at (15) is given by

Z(H̃p̃(P1(Fq)4);T ) = exp

(
∞∑
s=1

(q3s + 3q2s + 3qs + 1 + qsξs)T
s

s

)
=

1

(1− q3T )(1− q2T )3(1− qT )3(1− T )
Z(Oαδ−βγ(P1(Fqs)2); qT ),

where Z(Oαδ−βγ(P1(Fqs)2);T ) denotes the zeta function of Oαδ−βγ(P1(Fqs)2).
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8 Conclusion

In this thesis we computed the Hasse-Weil zeta functions of certain multilinear hypersurfaces.
We started with hypersurfaces in P1(Fq)2 defined by multilinear polynomials of degree 2 in
Fq[X1, X2]. We have found two different zeta functions, one belonging to the irreducible hy-
persurfaces, and one belonging to the reducible hypersurfaces. We continued computing the
zeta functions of hypersurfaces in P1(Fq)3 defined by multilinear polynomials of degree 3 in
Fq[X1, X2, X3]. As we have seen in Section 6 the zeta functions of these hypersurfaces depend
on the coefficients of the polynomials defining the hypersurfaces.

After all, we computed the zeta functions for some hypersurfaces in P1(Fq)4 defined by multi-
linear polynomials of degree 4 in Fq[X1, X2, X3, X4]. During computing this zeta function we
made an assumption and we eventually found a zeta function depending of another zeta func-
tion. Further investigation is needed to find out what the zeta function is if the hypersurface
is defined by a polynomial that does not satisfy the assumption.
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