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Abstract

In this paper we will take a look at bounds that are found on the cap set problem. We
will especially discuss results from the article ‘Progression-free sets in Zn

4 are exponentially
small’ by Croot, Lev and Pach and elaborate some of the proofs in this article. Before these
specific results, we will extensively explain the idea of the cap set problem and show that
the biggest cap set in the game Set with two attributes has size four. Besides that, we will
give some background information on arithmetic progressions in different group settings.
Moreover we will discuss entropy functions, the pigeonhole principle and the polynomial
method, which play an important role in the work of Croot, Lev and Pach and the work of
Ellenberg and Gijswijt, where they solve the classical cap set problem. Lastly we will take a
look at the reasoning behind an improved construction of progression-free sets, where Elkin
improves the best lower bound that was found in 1946 by Behrend.
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Figure 1: Possible state of the game Set.

1 The cap set problem

1.1 Explanation of the game Set

Set is a card game with a simple goal: find special triples within a deck of 81 cards (Klarreich,
2016 [15]). These special triples are called ‘sets’ and we will refer to these special triples as Sets.
In this game, each card has a different design, where four attributes are used (as can be seen on
the front page):

1. Color: red (0), purple (1) or green (2);

2. Shape: oval (0), diamond (1) or squiggle (2);

3. Shading: solid (0), striped (1) or outlined (2);

4. Number: one (0), two (1) or three (2).

In this game, we place 12 cards face-up on the table and the players try to find a Set. A Set
consists of three cards, whose designs must be either all the same or all different for each at-
tribute (see example 1.1.1). A possible state of the game can be seen in figure 1. If there is
no Set in these 12 cards, we place three extra cards on the table and we keep on doing this
until there is a Set on the table. An interesting question to ask will then be: What is the size of
the biggest collection of cards that contains no Set? This question leads us to the cap set problem.

Example 1.1.1. If we look at some examples of possible formations of cards (figure 2), we
can easily create a table to find out whether the formation is a Set or not (see table 1). If the
attribute is all the same, we will write down ‘all the same’ in the table, if the attribute is all
different, we will write down ‘all different’ and if the attribute is not all the same nor all different,
we will write down ‘x’. If this last situation occurs, it is not possible to have a Set.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 2: Examples of possible formations.

Example Color Shape Shading Number Conclusion

1 (figure 2a) all the same all the same all the same all different Set
2 (figure 2b) x all different all different all different No Set
3 (figure 2c) all different all different all different all different Set
4 (figure 2d) x all different all different x No Set

Table 1: Example 1.1.1.

We can conclude that examples 1 and 3 are both Sets, since in those cases all attributes are
either all the same or all different. In example 2 we have two cards with the same color, so the
color isn’t all the same nor all different for the three cards, which means this cannot be a Set.
Lastly in example 4 we have two cards in green, therefore the color is again not all the same nor
all different for the three cards, but also we have two cards with number two and the last card
has number one, in consequence also the number isn’t all the same nor all different in these three
cards. Hence this can also not be a Set.

1.2 The problem

In the game Set, an answer to the question of section 1.1 was found by the Italian mathematician
Giuseppe Pellegrino [19]. He proved that the biggest collection of cards without a Set would be 20.
This answer wasn’t sufficient for a lot of mathematicians, since we could also expand this game
to more than four attributes. We could say that for every integer n, we could think of a version of
Set with n attributes and three choices per attribute, this would give a total of 3n different cards.

Definition 1.2.1. If a collection of cards contains no Set, we name that collection a cap set.

For certain amounts of attributes, it is possible to find the exact size of the biggest cap set, but
for an enormous amount of attributes this is not possible yet. However, it is possible to find an
upper bound on how big such a cap set can be. In this case we would look for the number of
cards where it is guaranteed that it holds at least one Set.
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Figure 3: A specific card of the game Set.

1.3 The game Set in geometry

If we want to find an upper bound on the size of cap sets, we have to translate the Set game
into geometry. We begin with a field F3 with three elements. Next we consider the vector space
F4
3. The cards are represented as points of F4

3, therefore these points have four coordinates. Here
each coordinate can take the value 0, 1 or 2. For example if we look at the attribute color (which
is the first coordinate in the point), we will get a ‘0’ if the card is red, a ‘1’ if it is purple and a
‘2’ if it is green (see enumeration on page 3).

Example 1.3.1. The card in figure 3 would correspond to point (1, 2, 1, 1) since the color is
purple, the shape is a squiggle, the shading is striped and the number is two (according to the
instructions in section 1.1).

When we consider the cards as points of F4
3, we can formulate the property of being a Set in

the following way [8]: iff three points of F4
3 are collinear, then they form a Set. Imagine that

we have three elements of F3: α, β and γ. Then we can see that α + β + γ = 0 if and only if
α = β = γ or if {α, β, γ} = {0, 1, 2}. This shows that if we look at vectors a, b and c in F4

3, that
these vectors will be all the same or all different with respect to each coordinate precisely when
a+b+c = 0. This expression means that a−b = b−c, which is an arithmetic progression (section
5). Since this reasoning works for every value of n in Fn3 , we can also define a version of Set
with n attributes instead of four. In this case we would have points with n coordinates instead
of four. To translate the rules of Set into geometry, we will use the resulting n−dimensional
space. In this space, every line contains exactly three points. If three points lie on the same line
(arithmetic progression, section 5), they form a Set. Therefore we can define a cap set as:

Definition 1.3.1. If a collection of points (subset of Fn3 ) contains no complete lines, we name
that collection a cap set.

Proposition 1.3.1. The biggest cap set of F2
3 has size 4 (Davis & Maclagan 2003, [8]).
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(a) Possible cards (b) Lines of Set (c) Representation of F2
3 (d) Four lines containing X5

Figure 4: Set with two attributes.

Proof Proposition 1.3.1
In this case, we take a look at n = 2, which means that we only have two attributes. We could
for example only look at the red ovals. In this way, we only keep the attributes ‘number’ and
‘shading’. Since both attributes have three choices, we get a total of nine cards (figure 4a).

We could display these nine cards in a tic-tac-toe board, which then represents the vector space
F2
3. In this tic-tac-toe board, a Set is represented by a line. These lines can be horizontal, vertical

or diagonal. We see that some of these lines correspond to winning tic-tac-toes, but Set lines
can also meet an edge and loop around to the other side of the board. In figure 4b you can see
two examples of lines that represent a Set.

To prove proposition 1.3.1, we will use a contradiction. We assume that there exists a cap set
of size 5, so we have 5 points: X1, X2, X3, X4 and X5. We can represent the vector space F2

3 as
three horizontal lines as shown in figure 4c. Since we don’t want a Set to exist, each line can
only contain two of the points X1, X2, X3, X4 and X5. We could have a distribution of points
like this. Of course this distribution can also be different, but the bottom line is that we will
always have two horizontal lines with two points and one horizontal line with only one point. In
this case, this point is X5, then without loss of generality we will prove it for this case.

When we look at figure 4c again, we see that there are four possible lines that contain the point
X5. We will denote these lines by H,L1, L2 and L3 (figure 4d).

We see that line H only contains X5 and none of X1, X2, X3 or X4. Since these four points have
to be placed on the other three lines (L1, L2 or L3), we find by the pigeonhole principle (section
6) that on a line Li there must be at least two of these points. This shows that there exists a line
Li with these two points and also the point X5. Subsequently this is a line with three points,
which means that this is a Set. Which shows that this collection of five points is not a cap set.

The biggest cap set size is only known for values of n up to 5, when n = 6 it is known that the
size is bound as follows: 112 ≤ size ≤ 114. For bigger values of n mathematicians haven’t been
able to find such a precise bound. Yet there has been done a lot of research in this field, so we
will look at some observations so far.

1.4 Bounds on the cap set problem so far

The first upper bound was found by Roth [20]. He looked at a collection A ⊆ {1, 2, · · · , N} of
integers and if this set didn’t contain three elements in arithmetic progression, then |A| = o(N).
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He also proved that as N grew, then indeed |A| = O( N
log logN ). Since then, the problem has

stimulated much research in estimating the largest possible size of a cap set. The current record

in sets of integers was found by Bloom [4] as |A| = O(N(log logN)4

logN ).

Roth’s problem is equivalent to finding the largest possible size of a subset of the cyclic group ZN
with no three-term arithmetic progression. Because of this equivalence, several mathematicians
have investigated other finite abelian groups (definition 2.1.1).

Definition 1.4.1. Let G be an abelian group and A a subset of G. We call A progression-
free if there are no pairwise distinct a, b, c ∈ A, with a + b = 2c. The largest size of such a
progression-free subset A ⊆ G will be denoted by r3(G).

For abelian groups G of odd order, the same was proven by Brown and Buhler [5], but also
independently by Frankl, Graham and Rödl [12]: r3(G) = o(|G|) as |G| grows. Meshulam used

the general lines of Roth’s argument and discovered that r3(G) ≤ 2|G|
rk(G) if G is an abelian group

of odd order [17]. Here rk(G) stands for the rank of G. This discovery lead to the generalization:
r3(Znm) ≤ 2mn

n .

It wasn’t until many years later that Bateman and Katz proved that r3(Zn3 ) = O( 3n

n1+ε ) with an
absolute constant ε > 0 [2].

Lev was the fist mathematician to consider abelian groups of even order. He continued on the

Roth-Meshulam proof and showed that r3(G) < 2|G|
rk(2G) for any finite abelian group G [16]. Here it

is used that 2G = {2g : g ∈ G}. Sanders improved this result for homocyclic groups of exponent
four: r3(Zn4 ) = O( 4n

n(log n)ε ) where ε > 0 is again an absolute constant [23].

Croot, Lev and Pach used the polynomial method (section 7.1) to solve a closely related problem
to the classical Set problem. Instead of three different options per attribute, they solved the
problem for four different options. This problem is more tractable in the calculations than the
original Set problem.

1.5 Guidance through the paragraphs

We will start with some prerequisites which are needed in later paragraphs. After that there will
follow some paragraphs with some more elucidations on certain topics which are used in articles
on the cap set problem (finite fields, progressions and the entropy function). Next there is a
paragraph on the polynomial method since this plays an important role in the solution to the
complicated cap set problem. Finally we will take a look at the work of some mathematicians
who have tried to find lower and upper bounds for the progression free sets.
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2 Prerequisites

In this section we will repeat some definitions to ensure that we are on the same page in terms
of notation. For these definitions and examples, we will use the work of Paar & Pelzl [18],
Chartrand, Polimeni & Zhang [6], Armstrong [1] and Igodt & Veys [14].

2.1 Algebraic structures

Definition 2.1.1. A(n) (abelian) group.

A set of elements G can be made into a group by adding an operation ◦ which combines two
elements of G. A group has four important properties and a group can be abelian (property 5):

1. The group operation is closed:
∀ a, b ∈ G: a ◦ b = c ∈ G.

2. The group operation is associative:
∀ a, b, c ∈ G: a ◦ (b ◦ c) = (a ◦ b) ◦ c.

3. There is a neutral element:
∃ 1 ∈ G, (the neutral element/identity element), such that ∀ a ∈ G : a ◦ 1 = 1 ◦ a = a.

4. There is an inverse element:
∃ a−1 ∈ G, (the inverse of a), such that ∀ a ∈ G : a ◦ a−1 = 1.

5. A group G is abelian (or commutative) if, furthermore, ∀ a, b ∈ G : a ◦ b = b ◦ a.

Example 2.1.1. Group.

An example of a group with neutral element 0, would be the set of integers Zm = {0, 1, · · · ,m−1}
with the operation addition modulo m. Since a + (−a) = 0 mod m, we see that every element
a has inverse −a. We can also see that this set is a group with the operation multiplication if
m is prime, because all elements a (except for a = 0) have an inverse such that a·a−1 = 1 mod m.

Definition 2.1.2. Cardinality.

The cardinality of a group G (denoted by |G|), is also referred to as the order of a group. This
represents the number of elements in that group. G is called a finite group if it’s order is finite.
If G has an infinite number of elements, then G is an infinite group.

Definition 2.1.3. Cyclic group.

G is called a cyclic group, if there exists an element x in G which generates all of G. We often
write this as 〈x〉 = G.

Example 2.1.2. Cyclic group.

Let n be a positive integer. The set 0, 1, 2, · · · , n − 1 can be made into a group using addition
modolu n. If x and y are members of this set, we can define the following:

x+n y =

{
x+ y if 0 ≤ x+ y < n

x+ y − n if x+ y ≥ n
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In Z6 we would have:
〈0〉 = {0}
〈1〉 = 〈5〉 = Z6

〈2〉 = 〈4〉 = {0, 2, 4}
〈3〉 = {0, 3}

For example we see that the elements of 〈5〉 are:
5
5 +6 5 = 4
5 +6 5 +6 5 = 3
5 +6 5 +6 5 +6 5 = 2
5 +6 5 +6 5 +6 5 +6 5 = 1
5 +6 5 +6 5 +6 5 +6 5 +6 5 = 0

This means that 〈5〉 = Z6, so we can conclude that there is an element in Z6 which generates
all of Z6, thus Z6 is a cyclic group.

Definition 2.1.4. Vectorspace (linear space).

A real vectorspace (linear space) is written as (R, V,+) and consists of a cummutative (abelian)
group (V,+) together with an external operation; the scalar multiplication:
R× V → V : (λ, v) 7→ λv. Furthermore, the following properties hold:

1. Distributivity-1:
∀ λ ∈ R,∀ v, w ∈ V : λ(v + w) = λv + λw.

2. Distributivity-2:
∀ λ1, λ2 ∈ R,∀ v ∈ V : (λ1 + λ2)v = λ1v + λ2v.

3. Mixed associativity:
∀ λ1, λ2 ∈ R,∀ v ∈ V : λ1(λ2v) = (λ1λ2)v.

4. Coefficient 1:
∀ v ∈ V : 1v = v.

The numbers λ ∈ R are called the coefficients or scalars, the elements v ∈ V are called the
vectors and the neutral element 0 is called the zero vector.

2.2 Properties

Definition 2.2.1. Injective.

A function f : A → B is injective if for all x, y ∈ A with x 6= y: f(x) 6= f(y). This means
that every two distinct elements of A, will also have distinct images in B. This shows that if a
function f : A → B is not injective, then there must exist distinct elements w and z with the
property that f(w) = f(z). We can also formulate the contrapositive: A function f : A → B is
injective, if it holds that if f(x) = f(y), with x, y ∈ A, then x = y.

If A and B are finite sets, a function f : A → B can only be injective if every two elements in
A have distinct images in B, which shows that we need at least as many elements in B as in A:
|A| ≤ |B|.
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Definition 2.2.2. Surjective.

If every element of the codomain B is the image of some element of A (f(A) = B), then the
function f : A→ B is called surjective.

If A and B are finite sets, a function f : A → B can only be surjective if there are at least as
many elements in A as in B. This shows that we need |B| ≤ |A|.

Definition 2.2.3. Bijective.

A function f : A → B is called bijective or a one-to-one correspondence if it is both injective
and surjective.
Hence if A and B are finite sets and there is a function f : A→ B that is bijective, then |A| = |B|.

Definition 2.2.4. Isomorphic.

Two groups (G, ?) and (H, ◦) are called isomorphic if there exists a function φ : G→ H that is
bijective and that satisfies the property:
∀ a, b ∈ G : φ(a ? b) = φ(a) ◦ φ(b).
A function φ that meets these requirements is an isomorphism and is operation-preserving.

If φ : G → H is an isomorphism, then φ is also a bijective function. This shows that φ has an
inverse function φ−1 : H → G, which is again an isomorphism.
If φ : G→ H is also a linear map, then we can say that φ is a linear isomorphism.

Example 2.2.1. Isomorphic.

Define φ : R→ Rpos by φ(x) = ex. Then φ is a bijection and it satisfies the following property:
∀ x, y ∈ R : φ(x + y) = ex+y = ex · ey = φ(x) · φ(y). This shows (by definition 2.2.4) that R
and Rpos are isomorphic groups. In this example, the group operation in R is addition, and the
group operation in Rpos is multiplication.
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3 Finite fields

Definition 3.0.1. (Finite) Field (Paar & Pelzl, 2010, p. 92) [18]

A field F is a set of elements with the following properties:

1. All elements of F form an additive group with the group operation “+” and the neutral
element 0.

2. All elements of F except 0 form a multiplicative group with the group operation “×” and
the neutral element 1.

3. When the two group operations are mixed, the distributivity law holds, i.e., ∀ a, b, c ∈ F :
a(b+ c) = (ab) + (ac).

Fields with a finite number of elements are called finite fields or Galois fields.

Example 3.0.1. Field (Paar & Pelzl, 2010, p. 92) [18].

An example of a field is the set R. In this set, the additive group has neutral element 0 and the
multiplicative group has neutral element 1. Every real number a has −a as an additive inverse
and every non-zero element a has 1

a as a multiplicative inverse. This shows that R is a field, but
since the number of elements isn’t finite, this is not a finite field.

In cryptography we are mostly interested in Galois fields (Paar and Pelzl, 2010), ergo fields with
a finite number of elements. If the number of elements is finite, we call this number the order or
cardinality of the field (definition 2.1.2). An interesting theorem about the order of a finite field
is the following:

Theorem 3.0.1. A field with order m only exists if m is a prime power, in other words if m = pn

for some positive integer n and prime integer p. In this case, p is called the characteristic of the
finite field.

Example 3.0.2. We can have finite fields with 11 elements, since 11 is prime. We can also have
finite fields with 81 elements, since 81 = 34 and 3 is prime, or finite fields with 256 elements,
since 256 = 28 and 2 is prime. On the other hand, there is no finite field with 12 elements, since
we can write 12 as 22 · 3, which shows that 12 is not a prime power.

The most simple examples of finite fields are the ones with prime order, therefore the fields
where n = 1. Elements of these fields (GF (p)) can be represented by the integers 0, 1, · · · , p− 1.
The operations that are operated on this field are integer multiplication modulo p and modular
integer addition.

Theorem 3.0.2. Let p be a prime. The integer ring Zp is denoted as GF (p) and is referred
to as a prime field (or Galois field) with a prime order. All nonzero elements of GF (p) have an
inverse. Arithmetic in GF (p) is done modulo p.

Example 3.0.3. Let’s take a look at the finite field GF (5) = {0, 1, 2, 3, 4}. We can add and
multiply (mod 5) as follows and we can also find the additive and multiplicative inverse of the
elements:
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+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Addition mod 5

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Multiplication mod 5

0 −0 = 0
1 −1 = 4
2 −2 = 3
3 −3 = 2
4 −4 = 1

Additive inverse

0 0−1 does not exist
1 1−1 = 1
2 2−1 = 3
3 3−1 = 2
4 4−1 = 4

Multiplicative inverse

In cryptography the finite field GF (256) = GF (28) is used in AES encryption. They use this
field since each element of the field can be represented by a byte. For this encryption, every byte
of the data is treated as an element of GF (28) and they perform arithmetic in the finite field to
execute the operations.
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4 Progressions

An arithmetic progression can be defined as a sequence of n numbers
a0 + [0, n) ·α := {a0, a0 +α, · · · , a0 + (n− 1)α} where the difference between successive terms is
a constant α. Here a0, α ∈ Z and n ∈ Z+ (Tao & Vu, 2006 [25]).

(a, b, c) ∈ Z3 is a three-term progression if and only if a+ c = 2b.
For a four-term progression, we find the following:

Lemma 4.0.1. (a, b, c, d) ∈ Z4 is a four-term progression if and only if a+c = 2b and b+d = 2c.

Proof Lemma 4.0.1
⇒ If (a, b, c, d) ∈ Z4 is a four-term progression, we have the following equations (since the
difference between successive terms is α):

b− a = α (1)

c− b = α (2)

d− c = α (3)

By combining (1) and (2), we get the equation a+ c = 2b. By combining (2) and (3), we get the
equation b+ d = 2c.

⇐ If the equations a+ c = 2b and b+ d = 2c hold, we can rewrite these as:

a+ c = b+ b (4)

b+ d = c+ c (5)

Where we can write (4) as
b− a = c− b,

and (5) as
c− b = d− c.

Since c−b is similar, it follows that b−a = c−b = d−c, which shows that the difference between
the successive terms is a constant. Subsequently (a, b, c, d) ∈ Z4 is a four-term progression.

For an n-term progression (x1, x2, · · · , xn) ∈ Zn we get the following equations:

2x2 = x1 + x3

2x3 = x2 + x4

...

2xn−1 = xn−2 + xn

This shows that for 2 ≤ i ≤ n− 1 we get:

2xi = xi−1 + xi+1

13



(a) Progression 1 (b) Progression 2 (c) Progression 3

Figure 5: Progressions

Example 4.0.1. Progressions

In this example we look at rows of M&Ms. We define an arithmetic progression in terms of color
and we are looking for the longest n-term progression.

In figure 5 we see some M&Ms placed in a row. When we look at 5a, we see that there is an
arithmetic progression in the color blue only when we ‘ignore’ one blue M&M. The distance
between the first and second blue M&M is 7, while the distance between the second and third
blue M&M is 5. This means that there exists just an arithmetic progression in blue of length
2 where α = 7 (ignore the third blue M&M), α = 5 (ignore the first blue M&M) or where
α = 12 (ignore the second blue M&M). In red we have two 3-term progressions, with α = 2 (the
first three red M&Ms and the last three red M&Ms), we also have a 4-term progression, with
α = 4 (we ignore the second, fourth and the sixth red M&M) and finally we also have a 3-term
progression, with α = 5 (if we ignore the second, third, fifth and last red M&M). In green we
have two 2-term progressions with α = 2. Hence in this row, the longest progression is has length
4 (in red).

If we switch the seventh and eighth M&Ms and change the third M&M from green to blue in the
row that we had, we get figure 5b. Now we see that the distance between two red M&Ms is the
constant number two. This means that we have an arithmetic progression. To determine n, we
just count how many red M&Ms satisfy the requirement that the distance between the previous
successive M&M and the current M&M is 2. In consequence here we have a 7-term progression
in red, where α = 2. This is the longest progression of this row. In blue and green we can also
find progressions, but those have a maximum length of 3.

If we change the third M&M from blue to green again, we see in figure 5c that we still have the
7-term arithmetic progression with distance 2 (the red M&Ms), but now we also have another
arithmetic progression where α is big: the blue M&Ms. The distance between two blue M&Ms is
the constant number 6. Consequently now we also have a 3-term arithmetic progression. In green
we have again two 2-term progressions with α = 2. Hence here again the longest progression has
length 7.
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Figure 6: Binary entropy

5 Entropy function

The entropy of a random variable X, with probability mass function p(x), is defined as

H(X) = −
∑
x

p(x)log(p(x))

If X is a binary random variable, the following can be said about the probabilities:

X =

{
1 with probability x

0 with probability 1− x

According to Roth (2016) [21], we can define the binary entropy function H : [0, 1]→ [0, 1] by

H(x) = −x log2(x)− (1− x) log2(1− x).

The binary entropy function has some interesting characteristics (see figure 6). First of all
limx→0H(x) = limx→1H(x) = 0, H(x) > 0 for 0 < x < 1 and H(x) is symmetric with respect
to x = 0.5, hence it takes its maximum at that point: H(0.5) = 1. Moreover, H(x) is ∩−concave
since for every two points x1 and x2 ∈ [0, 1] the line segment that connects the points (x1, H(x1))
and (x2, H(x2)) lies entirely on or below the function curve in the real plane.

We are especially interested in H(0.5 − ε) and H(2ε) over the interval 0 < ε < 0.25 since we
want to find the maximum of the average of these two functions. We need this in section 8. We
plot both functions and their average (figure 7). We calculate the maximum of the average and
we find 0.926, which we will define as γ:

γ := max{1

2
(H(0.5− ε) +H(2ε)) : 0 < ε < 0.25} ≈ 0.926. (6)
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Figure 7: Entropy function: calculation of gamma

6 Pigeonhole principle

We start by considering a group of pigeons that are nestled in a set of n pigeonholes. It is easy
to see that if there are n pigeons, then it it possible that each pigeon has his own pigeonhole
where he can rest happily. This situation changes however if another pigeon arrives, making a
total of more than n pigeons.

The arrival of this last pigeon causes that at least one of the pigeonholes will be filled with more
than one pigeon.

This phenomenon is known as the pigeonhole principle:

Theorem 6.0.1. Pigeonhole principle (naive form):
If we place more than n objects into n boxes, then we know that at least one box will contain
more than one object.

To illustrate how the pigeonhole principle can be used, we take a look at two small examples.

Example 6.0.1. We have a box which contains three pairs of socks. They are coloured red, blue
and white. Suppose we take out the socks without looking at them. How many socks should we
take out of the box to be sure that we have a matching pair?

If we start by taking two or three socks, it might happen that they are all different. We could
for example have taken out one red sock, one blue sock and one white sock. Of course if we take
out another sock, we must have a matching pair of socks, since we all ready have every possible
color of socks.

In this example, the four chosen socks can be seen as the ‘objects’ and the three colors are the
‘boxes’. We find that the minimum number of socks that we have to take out, to be sure of a
matching pair, is four.

Example 6.0.2. Given the following set {a1, a2, · · · , an}, we want to proof that there exists a
non-empty subset S whose sum is divisible by n.

We start by writing down the following n sums:
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S1 = a1

S2 = a1 + a2

...

Sn = a1 + · · ·+ an.

We are immediately done if one of these sums is divisible by n. So we assume that this is not
the case. Since these sums are not divisible by n, we know that they all have a remainder when
divided by n. Only n − 1 distinct remainders are possible, in consequence by the pigeonhole
principle we find that at least two of the sums must have the same remainder (since there were
n sums).

To conclude this proof, we take two such sums Si and Sj (with j > i) and subtract them:

Sj − Si = ai+1 + · · ·+ aj .

which gives us the non-empty subset {ai+1, · · · , aj} whose sum is divisible by n.
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7 Polynomial method

7.1 The method explained

In this section we follow the work of Tao [24] and Guth [13].

For a long time mathematicians have tried to use Fourier methods to solve the cap set problem.
Eventually Croot, Lev and Pach made a major breakthrough in a problem quite similar to
the cap set problem (where they used four choices per attribute), but they used a completely
different method: the polynomial method. Later Jordan Ellenberg and Dion Gijswijt used the
same polynomial method in their proof to solve the classic cap set problem.

Partly the idea of the polynomial method is borrowed from the philosophy of algebraic geometry.
The interest of algebraic geometry often lies in special geometrical objects. If we look at a
collection of one or more polynomials, these geometrical objects form the vanishing sets and
they are often referred to as algebraic varieties. To understand more about the geometry of
these objects, we look at the polynomials. The polynomial method is often used in combinatorical
problems, where we often start with a certain field F (which is usually R or finite Fq). In this
field we often want to find a finite subset S ⊂ FN that has an interesting property. To gain
information about S, we can use multivariate polynomials over F with the property that they
vanish on all points of S.

First we will take a look at the one-dimensional case, so we look at subsets of F. We define S to
be a finite subset of F. There exists a polynomial of degree |S| in F[X] \ {0}, that vanishes on
all points of S, namely:

∏
s∈S

(X − s).

This observation leads us to the well-known converse theorem:

Theorem 7.1.1. Factor theorem.
Let F be a field. Any polynomial in F[X] \ {0} that has degree d, will have at most d roots in F.

This shows that if S is a finite subset of F, the smallest possible degree of a polynomial that will
vanish on all of S in F[X] \ {0}, will be |S|.

Now we can expand this theorem to higher-dimensions. Again we start with a field F, but now
we have a multivariate polynomial P ∈ F[X1, · · ·XN ] over F. The highest power of Xi (which
can occur in any monomial of P ) will be the Xi−degree of P . This will be noted as degXi(P ).
The degree in X of the polynomial P (X1, X2, · · · , XN ), is referred to as the total degree of P .
Now we can formulate the higher-dimensional analogue of the factor theorem:

Lemma 7.1.1. Let F be a field and we have a non-trivial polynomial P ∈ F[X1, · · · , XN ] \ {0}.
We assume that S1, · · · , SN ⊂ F, where |Si| > degXi(P ). Then it is not possible that P vanishes
on all of S1 × S2 × · · · × SN .

Proof Lemma 7.1.1.
We will prove this lemma by using induction on N . We know that for N = 1, the statement
holds since that is exactly the Factor theorem (theorem 7.1.1). Now we will assume that it holds
for N − 1 and prove that it also holds for N . To show that it holds for N , we need to show
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that P will be the zero polynomial if we assume that P = P (X1, · · · , XN ) ∈ F[X1, · · · , XN ]
vanishes on all points of S1 × S2 × · · · × SN , with the property that for each i ∈ {1, · · · , N},
|Si| > di := degXi(P ).

We start by writing P as a polynomial in X1:

P = P (X1, · · · , XN ) =

d1∑
j=0

Xj
1Pj(X2, · · · , XN ).

Next we take a look at the polynomial

P (X1, s2, · · · , sN ) =

d1∑
j=1

Xj
1Pj(s2, · · · , sN ) ∈ F[X1].

We see that this polynomial vanishes on all of S1 for any (s2, · · · , sN ) ∈ S2 × · · · × SN . Fur-
thermore, this polynomial has degree d1 < |S1| (assumption), hence by the Factor theorem we
can conclude that this must be the zero polynomial. This shows that for all (s2, · · · , sN ) ∈
S2×· · ·×SN , we get Pj(s2, · · · , sN ) = 0. Next we can use the induction hypothesis to show that
each Pj will be the zero polynomial, which gives us the desired result: P is the zero polynomial.

7.2 Why polynomials?

There are certain properties of polynomials that are used in mathematical proofs. First we will
discuss some notations. Let F be a field. The space of polynomials over F with degree at most
d and n variables is denoted by Polyd(Fn). This is then a vector space over F. Later on we will
need the dimension of the vector space Polyd(Fn), therefore we will discuss that first.

Proposition 7.2.1. The dimension of the vector space Polyd(Fn) is
(
d+n
n

)
≥ dn

n! .

Proof of proposition 7.2.1.
A basis of this vector space is given by the monomials xd11 , · · · , xdnn where d1 + d2 + · · ·+ dn ≤ d.
In n+ 1 variables, the number of monomials of degree d is

(
d+n−1
n−1

)
=
(
d+n−1
n

)
. Since there is a

one-to-one correspondence between these monomials and the monomials in n variables of degree
at most d, we can substitute the extra variable by 1, which gives us

(
d+n
n

)
monomials. This

shows that Polyd(Fn) has dimemsion
(
d+n
n

)
. Next we want to show that

(
d+n
n

)
≥ dn

n! . First we
will rewrite this as follows:

(
d+ n

n

)
=

(d+ n)!

n!(d+ n− n)!
=

(d+ n)!

n! d!
. (7)

Then we can divide the numerator and denominator both by d! since

(d+ n)! = (d+ n) · (d+ n− 1) · · · (d+ 1) · d · (d− 1) · · · 2 · 1 = (d+ n) · (d+ n− 1) · · · (d+ 1) · d!.

When we do this, we can rewrite (7) as
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(d+ n) · (d+ n− 1) · · · (d+ 1)

n!
≥ dn

n!
.

We find that indeed
(
d+n
n

)
≥ dn

n! .

In the article of Croot, Lev and Pach (section 8), the polynomial method is used. In their proof,
they use two important properties of polynomials, which we will discuss next.

Corollary 7.2.1. Parameter counting.
Let S ⊂ Fn be a finite set. Then there exists a non-zero polynomial P with degree at most
n|S|1/n that vanishes on S.

Proof of corollary 7.2.1.
We will denote the vector space of functions S → F as Fcn(S,F). Since we are looking at
polynomials in S, we get the linear map Polyd(Fn)→ Fcn(S,F). If and only if this (linear) map
has a non-trivial kernel, there will be a non-zero polynomial vanishing on S of degree at most d.
This map will not have a non-trivial kernel as long as the dimension of the range is smaller than
the dimension of the domain. The dimension of the range is |S| and we calculated the dimension
of the domain in proposition 7.2.1:

(
d+n
n

)
. By using the bound of property 7.2.1, we can find

that for d ≤ n|S|1/n, we will always get
(
d+n
n

)
> |S|, which is what we wanted to proof.

The second property of polynomials used is that a non-zero polynomial in one variable can never
vanish on more points than its degree. We have already mentioned this in lemma 7.1.1, but we
can rewrite this as the following more general lemma:

Lemma 7.2.1. Vanishing lemma.
Let L be a line in a vector space and let P be a polynomial of degree at most d. If P vanishes
at d+ 1 points of L, then P will vanish on L.

Both corollary 7.2.1 and lemma 7.2.1 are used in section 8 to complete the proof of the theorem
mentioned at the beginning of the article of Croot, Lev and Pach.
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8 Progression-free sets in Zn4 are exponentially small

Definition 8.0.1. Let m ∈ N. We call two integers a and b congruent modulo m if m|a − b.
Therefore we often use the following notation: a ≡ b mod m. The set {b ∈ Z|b ≡ a mod m} is
also known as the residue class (a mod m) and we denote the set of residue classes modulo m
by Z/mZ = Zm. A group G is named cyclic if G = Z/mZ. Lastly, a direct product of one or
several pairwise isomorphic cyclic groups is referred to as a homocyclic group.

We denote by H the binary entropy function (section 5).

Theorem 8.0.1. (Croot, Lev & Pach, 2016) [7]
Let n ≥ 1 and take A ⊆ Zn4 progression-free (section 4), if we define:

γ := max{ 12 (H(0.5− ε) +H(2ε)) : 0 < ε < 0.25} ≈ 0.926,

then |A| ≤ 4γn.

If we take a look at G ∼= Zm1 ⊕ · · · ⊕Zmk (a finite abelian group), where m1| · · · |mk are positive
integers, we have some indices i ∈ [1, k] with the property that 4|mi. We will denote the number
of these indices by rk4(G). Now certain cosets of a supgroup isomorphic to Zn4 will form G. We
need precisely a union of 4−n|G| of these cosets to form G, where we define n as n := rk4(G).
Using Theorem 8.0.1, we can directly phrase the next corollary.

Corollary 8.0.1. (Croot, Lev & Pach, 2016) [7]
We define G to be a finite abelian group, and we define n as before. Then we find the following
bound: r3(G) ≤ 4−(1−γ)n|G|, with γ ≈ 0.926 the constant of Theorem 8.0.1.

Proof of Corollary 8.0.1.
We take a look at the finite abelian group G which is a union of 4−n|G| cosets: H + g1, H +
g2, · · · , H+g4−n|G|. We take a look at B which is the largest progression free subset of G. Assume

|B| = r3(G) > 4−(1−γ)n|G|. Since 4−n|G| is the number of cosets of G, we find (by the pigeonhole
principle (section 6) that there exists a coset H + gj where the number of elements of B in this
coset is at least 4γn. We find this bound by dividing the number of elements of B by the number

of cosets: |B|
4−n|G| >

4−(1−γ)n|G|
4−n|G| = 4γn. We name this coset HB where (H + gj) ∩ B = HB + gj .

According to Theorem 8.0.1, this coset has a progression (since |HB | > 4γn). If we take elements
h1, h2, h3 ∈ HB , we can say that h1 +h2 = 2h3. If we add 2gj on both sides, we get the following
equation: (h1 + gj) + (h2 + gj) = 2(h3 + gj) where h1 + gj , h2 + gj , h3 + gj ∈ B. This shows that
there exists a progression in B. But this is in contrast with the definition of B, since that was
the largest progression-free subset of G. Subsequently we find that |B| = r3(G) ≤ 4−(1−γ)n|G|.

To proof theorem 8.0.1, Croot, Lev and Pach use the following lemma:

Lemma 8.0.1. (Croot, Lev & Pach, 2016) [7])
We start with two integers n ≥ 1 and d ≥ 0 and we define P to be a multilinear polynomial in n
variables with total degree at most d. Furthermore this polynomial is over a field F and we have
a subset A ⊆ Fn where |A| > 2

∑
0≤i≤d/2

(
n
i

)
. If for every distinct a, b ∈ A (a 6= b) P (a− b) = 0

holds, then also P (0) = 0.
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To prove this lemma, we will take a look at a specific example and generalize this idea. For
this lemma, we need to define the following parameters: Ki ⊆ [n] = {∅, 1, 2, · · · , n}, |Ki| ≤ d

2 ,
κ = {K1,K2, · · ·Kn+1} and

m :=
∑

0≤i≤d/2

(
n

i

)
.

Example 8.0.1. Suppose n = 3 and P (x1, x2, x3) = x1 + x2x3. Then we see that d = 2 since
the total degree is at most 2. Now we find that

m :=
∑

0≤i≤1

(
3

i

)
= 4.

In order to apply lemma 8.0.1, we will assume that |A| > 2m = 8. Furthermore Ki ⊆ [3] =
{1, 2, 3, ∅} and |Ki| ≤ d

2 = 2
2 = 1, so κ = {K1, · · · ,K4} = {{1}, {2}, {3}, ∅}.

Now we have

P (x− y) = (x1 − y1) + (x2 − y2)(x3 − y3)

= x1 − y1 + x2x3 − x2y3 − x3y2 + y2y3

Since xI :=
∏
i∈I xi, we can rewrite this as:

P (x− y) = x{1} − y{1} + x{2,3} − x{2}y{3} − x{3}y{2} + y{2,3} (8)

Furthermore we will use that:

ui(x) = xKi , um+i(x) =
∑

I⊆[3]\Ki
1<|I|≤2−|Ki|

CI,Kix
I (9)

and

vi(y) =
∑

J⊆[3]\Ki
|J|≤2−|Ki|

CKi,Jy
J , vm+i(y) = yKi (10)

Now we can write the elements of (8) as follows:

x{1} = xK1

∑
J⊆{2,3,∅}
|J|≤2−|K1|

CK1,Jy
J = u1(x)v1(y), where C{1},∅ = 1

−y{1} + y{2,3} = xK4

∑
J⊆{1,2,3}
|J|≤2−|K4|

CK4,Jy
J = u4(x)v4(y), where C∅,{1} = −1 and C∅,{2,3} = 1

x{2,3} =
∑

I⊆{1,2,3}
1<|I|≤2−|K4|

CI,K4x
IyK4 = u8(x)v8(y), where C{2,3},∅ = 1

22



−x{2}y{3} = xK2

∑
J⊆{1,3,∅}
|J|≤2−|K2|

CK2,Jy
J = u2(x)v2(y), where C{2},{3} = −1

−x{3}y{2} = xK3

∑
J⊆{1,2,∅}
|J|≤2−|K3|

CK3,Jy
J = u3(x)v3(y), where C{3},{2} = −1

Now we can conclude that we can write (8) as:

P (x− y) =
∑
I∈κ

xI
∑

J⊆[3]\I
|J|≤2−|I|

CI,Jy
J +

∑
J∈κ

 ∑
I⊆[3]\J

1<|I|≤2−|J|

CI,Jx
I

 yJ

= u1(x)v1(y) + u2(x)v2(y) + · · ·+ u8(x)v8(y)

= 〈u(x), v(x)〉

This shows that we can interpret (8) as the scalar product of the vectors u(x), v(y) ∈ F8 defined
by (9) and (10).

To prove lemma 8.0.1, we will assume the contrary and work towards a contradiction: we assume
that P (a− b) = 0, for all a, b ∈ A with a 6= b, while P (0) 6= 0. This would imply the following:

Claim 8.0.1. The vectors u(a) and v(b) are orthogonal if and only if a 6= b.
Proof Claim 8.0.1:
⇒ If the vectors u(a) and v(b) are orthogonal, we know that 〈u(a), v(b)〉 = 0, which implies that
P (a− b) = 0. We assumed that P (a− b) = 0, for all a, b ∈ A with a 6= b, while P (0) 6= 0, hence
we see that this shows that a 6= b.
⇐ If a 6= b, we find that P (a − b) = 0 (assumption). Which implies that 〈u(a), v(b)〉 = 0,
subsequently we can conclude that u(a) and v(b) are orthogonal.

Claim 8.0.2. The vectors u(a) ({u(a) : a ∈ A} ⊆ F8) are linearly independent.
Proof Claim 8.0.2:
Say

∑
a∈A λau(a) = 0, where λa ∈ F. After a scalar multiplication by v(b) we have the following:

0 = 〈
∑
a∈A

λau(a), v(b)〉

=
∑
a∈A

λa〈u(a), v(b)〉

= λb〈u(b), v(b)〉
= λbP (b− b)
= λbP (0),

where we used that 〈u(a), v(b)〉 = 0 when a 6= b (Claim (8.0.1)) in line three. Which shows that
λb = 0 for any b ∈ A since P (0) 6= 0 (assumption). Therefore the vectors u(a),
({u(a) : a ∈ A} ⊆ F8) are linearly independent.
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As a result from claim (8.0.2) we find that |A| ≤ 8 = 2m which is in contrast with the assumptions
that we took at the beginning of this lemma. Hence we can conclude that if P (a− b) = 0 for all
a, b ∈ A with a 6= b, then also P (0) = 0, which is lemma 8.0.1. We can do the same for bigger
values of n. Where we defined

ui(x) = xKi , um+i(x) =
∑

I⊆[n]\Ki
d/2<|I|≤d−|Ki|

CI,Kix
I

and

vi(y) =
∑

J⊆[n]\Ki
|J|≤d−|Ki|

CKi,Jy
J , vm+i(y) = yKi .

Next, Croot, Lev and Pach proof that the following estimate can be used for all integers n ≥ 1
and real 0 < z ≤ n/2:

∑
0≤i≤z

(
n

i

)
< 2nH(z/n) (11)

In the proposition below, we will use that for n ≥ d ≥ 0, the dimension of the space of all multi-
linear polynomials in n variables of total degree of maximum d over the field F2 can be written
as
∑d
i=0

(
n
i

)
. We can also say that any non-zero multilinear polynomial actually represents a

non-zero function.

The subgroup of Zn4 generated by its involutions, will be denoted by Fn. Involutions are functions
that are their own inverse. In other words, we can say Fn ∼= Zn2 , since Fn is the kernal and the
image of the doubling endomorphism of Zn4 . Where we can define the doubling endomorphism
of Zn4 as g → 2g (g ∈ Zn4 ). This leads us to the following proposition.

Proposition 8.0.1. (Croot, Lev & Pach, 2016) [7])
Consider n ≥ 1 and A ⊆ Zn4 a progression-free subset. The number of Fn− cosets with at least
2nH(0.5−ε)+1 elements of A (where 0 < ε < 0.25), will be less than 2nH(2ε).

In the proof of this proposition, they used the polynomial method (section 7.1), where they define
a non-zero multilinear polynomial P ∈ F2[x1, · · ·xn] of total dedree P ≤ d, such that P vanishes
on a certain set. Next they use lemma 8.0.1 to show that P vanishes on all of Fn2 , so it turns
out that P is the zero polynomial. This is contrary to the assumption that P was a non-zero
polynomial. This shows that the number of Fn−cosets containing at least 2nH(0.5−ε)+1 elements
of A is less than 2nH(2ε).

Now we can use proposition 8.0.1 to prove theorem 8.0.1.

Proof Theorem 8.0.1.
For x ≥ 0, the number of Fn− cosets with at least x elements of A, will be denoted by N(x);
this shows that N(x) = 0 for x > 2n, hence we can say

|A| =
∫ 2n+1

0

N(x) dx =

∫ 2nH( 1
4
)+1

0

N(x) dx+

∫ 2n+1

2nH( 1
4
)+1

N(x) dx. (12)
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For all x ≥ 0, we can immediately say that N(x) ≤ 2n, then we can write the first integral as

∫ 2nH( 1
4
)+1

0

N(x) dx ≤
∫ 2nH( 1

4
)+1

0

2n dx = [2nx]2
nH( 1

4
)+1

0 = 2n · 2nH( 1
4 )+1 = 2 · 2n(H( 1

4 )+1) (13)

We can find the next upper bound:

H(
1

4
) + 1 = −1

4
· log2(2−2)− 3

4
· log2(

3

4
) + 1 = −1

4
· −2− 3

4
· (log2(3)− log2(4)) + 1

= 1
1

2
− 3

4
log2(3) +

3

4
log2(22) = 1

1

2
− 3

4
log2(3) +

3

4
· 2 = 3− 3

4
log2(3)

≈ 1.811 < 1.852 = 2γ.

Which shows that we can rewrite (13) as

2 · 2n(H( 1
4 )+1) < 2 · 22γn = 2 · 4γn. (14)

For the second integral, we substitute x = 2nH(0.5−ε)+1 which gives us

∫ 2n+1

2nH( 1
4
)+1

N(x) dx =

∫ u

b

N(2nH(0.5−ε)+1) d2nH(0.5−ε)+1 (15)

To determine the boundaries of this integral, we equate the boundaries that we had to x. Thus
for b we get

2nH( 1
4 )+1 = x = 2nH(0.5−ε)+1,

which implies that ε = 0.25. For u we get

2n+1 = x = 2nH(0.5−ε)+1,

which implies that ε = 0.

Now we see that we can write (15) as

∫ 0

0.25

N(2nH(0.5−ε)+1) d2nH(0.5−ε)+1 = −
∫ 0.25

0

N(2nH(0.5−ε)+1) d2nH(0.5−ε)+1 (16)

To find the value of this integral, we need to determine d(2nH(0.5−ε)+1)
dε and therefore we need to

know d(H(0.5−ε))
dε .

d(H(0.5− ε))
dε

= −1 ·H ′(0.5− ε) = −1 · d(H(x))

dx
|x=0.5−ε = −log2

(
1− x
x

)
|x=0.5−ε

= −log2

(
0.5 + ε

0.5− ε

)
= −log

(
0.5 + ε

0.5− ε

)
/log(2)
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Now we can use this to find the following

d(2nH(0.5−ε)+1)

dε
= log(2) · 2nH(0.5−ε)+1 · n · d(H(0.5− ε))

dε

= log(2) · 2nH(0.5−ε)+1 · n · −log

(
0.5 + ε

0.5− ε

)
/log(2)

In consequence we find that

d(2nH(0.5−ε)+1) = −n · 2nH(0.5−ε)+1 · log

(
0.5 + ε

0.5− ε

)
dε

We can use this to rewrite (16) as

n

∫ 0.25

0

2nH(0.5−ε)+1N(2nH(0.5−ε)+1) log

(
0.5 + ε

0.5− ε

)
dε

< n

∫ 0.25

0

2 · 2nH(0.5−ε) · 2nH(2ε) log

(
0.5 + ε

0.5− ε

)
dε (17)

since N(2nH(0.5−ε)+1) < 2nH(2ε) (Proposition 1).

Moreover we can rewrite (17) as

2n

∫ 0.25

0

2n(H(0.5−ε)+H(2ε)) log

(
0.5 + ε

0.5− ε

)
dε

< 2n · 1.5
∫ 0.25

0

2n(H(0.5−ε)+H(2ε)) dε, (18)

where we used that log
(

0.5+0.25
0.5−0.25

)
= log(3) < 1.5.

Furthermore since 2γ = max{H(0.5− ε) +H(2ε) : 0 < ε < 0.25}, we can bound (18) as

< 3n

∫ 0.25

0

2n2γ dε = 3n · [2n2γε]0.250 =
3

4
n · 22nγ < n · 22nγ = n · 4γn (19)

Finally we can use (14) and (19) to bound (12) as

|A| < 2 · 4γn + n · 4γn = (n+ 2) · 4γn. (20)

Now we use the tensor power trick to complete the proof. Since the subset A ⊆ Zn4 is progression-
free, we can also say that the set A × A × · · · × A ⊆ Zkn4 is progression free. By using (20) we
see that

|A|k < (kn+ 2) · 4γkn,

26



which we can rewrite as

|A| < k

√
(kn+ 2) · 4γkn =

k
√
kn+ 2 · k

√
4γkn = (kn+ 2)

1
k · 4γn

This expression holds for every integer k ≥ 1, therfore we can find the limit from k to ∞:

|A| ≤ lim
k→∞

(kn+ 2)
1
k · 4γn = 1 · 4γn = 4γn.

To that end, we indeed find the result of Theorem 8.0.1.
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9 On large subsets of Fnq with no three-term arithmetic
progression

Jordan S. Ellenberg and Dion Gijswijt have shown that the ideas of Croot, Lev and Pach can
be extended to vector spaces over a general finite field [10]. They worked on this problem
independently and they developed the same idea simultaneously and decided to present them in
a joint work.

In their paper, they start by generalizing lemma 8.0.1 of Croot, Lev and Pach. In their proposition
they use some notations that we will discuss first. We define Fq to be a finite field and n a positive
integer. We denote by Mn the set of monomials in x1, · · ·xn with the requirement that their
degree in each variable is at most q − 1. The Fq−vector space spanned by these monomials is
called Sn.

We define Md
n as the set of monomials in Mn of degree at most d, where d is any real number in

[0, 2n]. Furthermore Sdn is the subspace of Sn spanned by these monomials. For the dimension
of Sdn we will write md. Lastly we will speak of a “polynomial of degree at most d”, when we
speak of an element of Sdn.

Proposition 9.0.1. We start with a finite field Fq and a subset A ⊆ Fnq . Next we need three
elements of Fq that will sum to zero: α, β, γ. Assume that for every pair a, b ∈ A, with a 6= b,
P ∈ Sdn satisfies the property that P (αa + βb) = 0. Then the number of a ∈ A which measure
up to P (−γa) 6= 0, will be at most 2md/2.

The proof of this proposition is essentially the same as the proof of lemma 8.0.1 of Croot, Lev
and Pach. The only essential addition is that P has to take vanish at a larger set of places.
Again this is done by using the polynomial method (section 7.1).

Theorem 9.0.1. Again let α, β, γ be elements of Fq, which sum up to zero. Take A ⊆ Fnq a
subset where apart from a1 = a2 = a3, there are no solutions (a1, a2, a3) ∈ A3 for the equation

αa1 + βa2 + γa3 = 0.

Then we find that |A| ≤ 3m(q−1)n/3.

In the proof of this theorem, we use proposition 9.0.1 to show that

md − qn + |A| ≤ 2md/2

Subsequently we get

|A| ≤ 2md/2 + (qn −md),

where qn −md can be seen as the number of q−power-free monomials with degree greater than
d. These monomials are in bijection with the monomials with degree less than (q−1)n−d. Since
there are at most m(q−1)n−d of those monomials, we get qn − md ≤ m(q−1)n−d = m(q−1)n/3),
where d = 2(q − 1)n/3. Now we can find the desired upper bound

|A| ≤ 2m(q−1)n/3 + (qn −m2(q−1)n/3) ≤ 3m(q−1)n/3. (21)
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Next we define X to be a variable which takes values 0, 1, · · · , q−1. Each value has a probability
of 1

q to be taken. From this it follows that we can consider
m(q−1)n/3

qn to be the probability that n

independent copies of X have a maximum mean of q−1
3 . Since this is a large deviation problem,

we can use Cramér’s theorem to find that

lim
n→∞

1

n
log

(
m(q−1)n/3

qn

)
= −I

(
q − 1

3

)
, (22)

where I(x) is the supremum of

θx− log

(
1 + eθ + · · ·+ e(q−1)θ

q

)
, (23)

over all θ in R.

Lastly we can find a new upper bound as follows:

Corollary 9.0.1. If A is a subset of (Z/3Z)3 with no three-term arithmetic progression, we can
say the following about the number of elements of A:
|A| = o(2.756n).

We can take q = 3 and thus x = 2/3 to find that the supremum of (23) is attained when
eθ = (

√
33− 1)/8. By using (21) and (22), we can now find the bound 3e−I(2/3) < 2.756. Lastly

we can apply theorem 9.0.1 with α = β = γ = 1, which directly gives us the desired result.
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(a) Big−Θ (b) Big−O (c) Big−Ω

Figure 8: Asymptotic notations.

10 An improved construction of progression-free sets

In this paragraph we follow the work of Elkin [9] and we will use some asymptotic notations
which we will explain first (these are also used in further paragraphs). The first asymptotic
notation is Θ(f(n)). This is referred to as the big−Theta notation and it asymptotically bounds
the growth of a running time from above and from below (in our case, the running-time is the
absolute value of f(n)). For n big enough, this notation tells us that for some constants k1 and
k2, the running time will be at least k1 · f(n) and at most k2 · f(n) (figure 8a).
If we want to bound the running time just from above, we can use the big−O notation (O(f(n))).
Here for n big enough and for k a constant, we can say that the running time will be at most
k · f(n) (figure 8b).
Lastly if we want to bound the running time just from below, hence if we want to say that a
running time is at least a certain amount of time, we can use the big−Omega notation (Ω(f(n))).
Here for n big enough and a constant k, the running time is at least k · f(n) (figure 8c).

The first mathematicians to look at the problem of finding subsets S of {1, 2, · · · , n} with no
arithmetic three-term were Erdös and Turán in 1936. In their research they found a construction
which consisted of |S| = Ω(nlog3(2)) elements (Erdös & Túran, 1936 [11]). Later Salem and
Spencer improved this result [22] and eventually Behrend was able to find a new lower bound in

1946: |S| = Ω

(
n

2
2
√

2
√

log2(n)·log1/4(n)

)
(Behrend, 1946 [3]). Since then there was no improvement

in the result of Behrend until 2008: Michael Elkin discovered that Behrends construction wasn’t

optimal and he found the new lower bound: |S| = Ω

(
n

2
2
√

2
√

log2(n)
· log1/4(n)

)
.

Definition 10.0.1. A subset S ⊆ {1, 2, · · · , n} is called progression-free if it contains no three
distinct elements i, j, l ∈ S such that i is the arithmetic average of j and l: i = j+l

2 . For a
positive integer n, the largest size of a progression-free subset S (of {1, 2, · · · , n}) will be denoted
by ν(n). From now on, we will use [{n}] when we mean [{1, 2, · · · , n}].

In 1946 Behrend used the pigeonhole principle (section 6) to show that ν(n) =

Ω

(
n

2
2
√

2
√
log(n)·log1/4(n)

)
. For over sixty years, nobody was able to improve this upper bound. In a

seminal paper, Roth found the first non-trivial upper bound ν(n) = O( n
loglog(n) ). Later Bourgain

was able to improve this upperbound to the current best upper bound: ν(n) = O(n · (loglog(n))
2

log2/3n
).

The past sixty years a lot of intensive research has been done in this area to improve Behrends
lower bound. Though the recent found improvement by Elkin is not that large, it is interesting
to show that Behrends construction isn’t optimal.
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10.1 Behrend construction

Behrend based his proof on the observation that a sphere cannot contain an arithmetic progres-
sion since a sphere is convex in any dimension (Behrend, 1946 [3]).

In Behrends proof we start with a sufficiently large positive integer n. After that, we set y = n1/k

2 ,
where we first assume that y is again an integer. Furthermore we will need a positive integer
parameter k which we will determine later.

Now we consider random variables Y1, Y2, · · · , Yk which are independent identically distributed,
where for all i ∈ [{k}], each Yi is distributed uniformly over the set [{0, y − 1}]. Next for all

i ∈ [{k}] we set Zi = Y 2
i and Z =

∑k
i=1 Zi.

We can now use the expectation of Zi to find the expectation of the random variable Z. We find
that

µZ = E(Z) =
k

3
y2 + Θ(k · y). (24)

Then we can easily find the variance of Zi as follows: Var(Zi) = E(Z2
i ) − E(Zi)

2. We find that
Var(Z) = k · y4 · 4

45 · (1 + O( 1
y )). Subsequently we see that the standard deviation of Z is the

following

σZ =
√
k · y2 · 2

3 ·
√

5
· (1 +O(

1

y
)). (25)

We can now combine all these results together with the Chebyshev inequality to show that for
any a > 0,

P(|Z − µZ | > a · σZ) ≤ 1

a2
.

Next we can conclude that for a fixed value of a > 0, of all vectors v from the set [{0, y − 1}]
we will have at least a (1− 1

a2 )-fraction that have squared norm. Where squared norm satisfies
µZ − a · σZ ≤ ||v||2 ≤ µZ + a · σZ .

Thereafter we can use the Pigeonhole Principle to show that there is a value T that satisfies that
at least (1− 1

a2 ) · 1
2a·σZ · y

k vectors in the set [{0, y − 1}] have squared norm T , if
µZ − a · σZ ≤ T ≤ µZ + a · σZ . We will denote the set of these vectors by S.

Next we can use (25) to bound the cardinality of S:

|S| ≥ (1− 1

a2
) · 1

2a ·
√
k · y2

· 3
√

5

2
· (1−O(

1

y
)) · yk =

yk−2√
k
· c,

where c = c(a) is a fixed positive constant.

If we set a = 2, we have the universal constant c = c(2) and it follows that |S| = Ω
(
nk−2

2k
√
k

)
.

Now we can maximize the right-hand-side by setting k =
⌈√

2 · log2(n)
⌉
.

Subsequently we find that

|S| = Ω

(
n

2
2
√

2
√
log2(n) · log1/4(n)

)
.
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For every three vectors v, u, w ∈ S, we see that v 6= u+w
2 since all vectors in S have the same

norm
√
T .

The coordinates of vectors from S that we will consider, need to be digits of a 2y−ary represen-
tation. This means that we get v̂ =

∑k−1
i=0 vi+1 · (2y)i for every vector v = (v1, v2, · · · , vk) ∈ S.

Using this representation, we can describe the set S as follows: S = {v̂ | v ∈ S}. We will denote
this mapping by f(·) : S → S.

We see that for every v ∈ S,
0 < v̂ ≤ (2y)k − 1 = n− 1

The mapping f is injective (definition 2.2.1) since S ⊆ [{0, y− 1}]k. Hence for u, v ∈ S, if u 6= v,
then also û 6= v̂. Subsequently we find that

|S| = |S| = Ω

(
n

2
2
√

2
√
log2(n) · log1/4(n)

)

Lastly we have to show that S is progression-free. We start by assuming the contradiction
that for distinct numbers û, v̂, ŵ ∈ S we have v̂ = û+ŵ

2 . The corresponding vectors in S are
u = (u1, u2, · · · , uk), v = (v1, v2, · · · , vk) and w = (w1, w2, · · · , wk), which shows that

v̂ =

k−1∑
i=0

ui+1 + wi+1

2
· (2y)i =

k−1∑
i=0

vi+1 · (2y)i.

This shows that for every index i ∈ [{k}] we have vi = ui+wi
2 since all coordinates

u1, u2, · · · , uk, v1, v2, · · · , vk, w1, w2, · · · , wk ∈ [{0, y − 1}]. Since the equality holds for every
index i, we can conclude that v = u+w

2 , which contradicts the fact that ||u|| = ||v|| = ||w||. In

the end we find that S is progression-free and that S has size Ω

(
n

2
2
√

2
√
log2(n)·log1/4(n)

)
.

We still have to take a look at the case when y = n1/k

2 is not an integer. The construction is
exactly the same except that we work with byc instead of y. In this case we have n′ = (2byc)k.
We can use the exact same arguments as in the integer case, to find that

|S| = |S| = Ω

(
n′

2
2
√

2
√
log2(n′) · log1/4(n′)

)
= Ω

(
n′

2
2
√

2
√
log2(n) · log1/4(n)

)

Lastly we can replace n′ by n in this last expression since

n

n′
≤ (

y

y − 1
)k = 1 + Θ(

k

y
) = 1 + Θ

( √
log(n)

2(1/
√
2) ·
√

log(n)

)
.

This shows that the resulting lower bound is at most a constant factor smaller than when y is
an integer.

Therefore also when y is not an integer number, we find that |S| = Ω

(
n

2
2
√

2
√
log2(n)·log1/4(n)

)
.
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10.2 The improved construction by Michael Elkin

Theorem 10.2.1. There exist progression-free sets S ⊆ [{n}] of at least Ω

(
n

2
2
√

2
√
log2(n)

· log1/4(n)

)
elements.

Proof idea:
In this proof, we will demonstrate that we can use a thin annulus, since such a thin annulus will
contain a large convexly independent subset U that consists of integer points. We will show that
between the width of the annulus and the size of U there exists an inherent trade off. We want
to show that for certain widths of the annulus, U will contain at least a constant fraction of the
integer points of the concerned annulus. We will use the largest width of the annulus for which
we can proof this.

Again we set k =
⌈√

2 · log2(n)
⌉

and y = n1/k

2 .

First of all we bound y in the following way

2k/2

2
√

2
=

1

2
√

2
· 2
√

log(n)
√

2 ≤ y ≤ 1

2
· 2
√

log(n)
√

2 =
2k/2

2
. (26)

Again we start by assuming that y is an integer.

We begin by considering the k−dimensional ball which is centered at the origin and which has
radius R′

R′2 = µZ =
k

3
y2 + Θ(ky). (27)

We denote by C the discrete cube [{0, y − 1}]k and we denote by Ŝ the annulus of all vectors
that have squared norm in [R′2−2 ·σZ , R′2 +2 ·σZ ]. Now we can again use Chebyshev inequality
to show that Ŝ contains at least 3

4 · y
k integer points of C.

Next we define g = ε · k, with ε > 0 a universal constant to determine. We use g to partition

the annulus Ŝ into l =
⌈
4σZ
g

⌉
annuli: Ŝ1, Ŝ2, · · · , Ŝl. Here Ŝi contains all vectors with squared

norms in the range

{
[R′2 − 2σZ + (i− 1) · g,R′2 − 2σZ + i · g] for i ∈ [{l − 1}]

[R′2 − 2σZ + (l − 1) · σZ , R′2 + 2σZ ] for i = l

The sets of integer points in Ŝi and Ŝj are disjoint for distinct indices i, j ∈ [{l}]. Therefore we

find that there exists an index i ∈ [{l}] (pigeonhole principle) for which the annulus Ŝi contains

at least 3
4l · y

k = Ω(g · y
k−2

√
k

= Ω(ε
√
k · yk−2) integer points of C ∩ Ŝ.

This means that for the annulus S, with all vectors that have squared norm in [R2 − g,R2], we
can find a radius R where R2 ∈ [R′2−2σZ , R

′2 +2σZ ], such that S contains at least Ω(
√
k ·yk−2)

integer points of C ∩ Ŝ.

We can now use (24), (25) and (27) to show that

R2 ≤ R′2 + 2σZ ≤
k

3
· y2 +O(k · y) +O(

√
k · y2) ≤ k

3
· y2

(
1 +O

(
1√
k

))
.
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We denote by S̃ the set of all integer points of C ∩ S. Now S̃ contains a subset Š with at least

|Š| ≥ |S̃|2 integer points, which is convexly independent. Therefore and by using (26), we find

|Š| ≥ |S̃|
2

= Ω(
√
k · yk−2) = Ω

(
log1/4(n) · n

2
2
√

2
√

log2(n)

)
.

We can again use the mapping of section 10.1 to define the set Š = f(Š). We find that |Š| = |Š|
since we took S as a convexly independent set. Furthermore, Š is progression-free, hence we can

conclude that |Š| = Ω

(
log1/4(n) · n

2
2
√

2
√

log2(n)

)
.

11 Conclusion

We have seen that the cap set problem is a very interesting field for research, since there is always
room for improvement in the bounds of biggest cap sets. Only precise sizes of cap sets are known
for small values of n (not too many attributes). For bigger values of n there are only estimates of
what the size of the biggest cap set will be. A lot of mathematicians have tried to find upper- and
lower bounds for different types of the cap set problem. An important recent breakthrough was
the one of Ellenberg and Gijswijt, who found a new upper bound on cap sets of Fnq by using the
polynomial method. Before them, Croot, Lev and Pach did important research in subsets of Fn4 ,
but they only found an upper bound for the version with four choices per attribute. Furthermore
we have seen that sometimes bounds can be improved after many years, like the lower bound
that Behrend found in 1946, which was improved by Elkin in 2011. This shows that this problem
is still very current and that bounds can always be improved.
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