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Abstract

This research is a comparative study of feature selection methods for biomarker
discovery. 10 different machine learning techniques were considered for feature se-
lection. The main assumption behind the research was that certain biomarkers can
reflect the perceived strenuousness of the different exercise levels. For measuring the
perceived exercise intensity, the Borg scale was used.

Using the top 10 most expressive biomarkers selected by each model, 39 different
biomarkers were selected out of the total 64. The most frequently occurred one was
”factord” selected by 7 models. Biomarkers ”trp” and ”CORT” were both selected
by 6 of the models. ”ifabp”, ”LEUCO” and ”BICARB” were selected by 5 of the
models.

In general, the predictive power of the applied machine learning techniques do
not vary much. The highest accuracy, 78% was achieved by Logistic Regression.
Regarding the area under the ROC curve, the best result was achieved using the
full logistic regression model with an AUC = 0.72.

Applying feature selection however, a better performance can be achieved com-
pared to the models with all the predictors. Recursive feature elimination on the
random forest model yielded an 81% accuracy and the Lasso on logistic regression
yielded an even higher 84% accuracy.

All in all, considering the criteria for selecting candidate models, Logistic regres-
sion represents a balanced mix of model performance and interpretability.
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Chapter 1

Introduction

According to Hevner et. al [11], the practical relevance of the research should be
equally valued with the rigor of the research performed. In this master thesis I
propose an applied data science solution for a fundamental research problem in the
life sciences domain.

During previous studies of the Innovative Testing Research Group [15], about
100 different biological parameters (biomarkers) were measured in 15 healthy trained
volunteers, who have been exposed to different exercise protocols on cycle ergome-
ters. The goal of this research is to understand why some exercise protocols are
perceived strenuous and which biomarkers reflect it. In order to label the measured
biomarkers about their expressiveness of perceived exertion, the Borg scale is used
[3].

In this supervised setting, the response variable is ”protocol” and the predictors
are the 64 valid biomarkers with measurement values for all combinations of the
variables ”subject”, ”protocol” and ”time”.

For resolving this classification problem, different machine learning techniques
are proposed. As a first step, features are first ranked based on their relative impor-
tance in the outcome of the different models. Then different wrapper and embedded
methods are applied for feature selection.

In order to reach the goal of my research, not only the model performance mea-
sures are of interest, but also the physiological meaningfulness of the different re-
sulting subsets of predictors. In this thesis, the ten most important features selected
by each technique are presented.

1.1 Problem statement

In general, healthy humans are well adapted to physical exercise and exertion.
Homeostatic balance is ill-maintained if the balance is already disturbed due to
a pre-existing health problem. Hormonal responses, liver metabolism and intestinal
reactions, as well as immunological responses keep the homeostatic balance during
and after exercise. These physiological responses can be determined by measur-
ing a number of relevant biological parameters (biomarkers), reflecting homeostatic
balance and/or disturbances.

Measuring these biomarkers is one problem, but the real challenge lies in re-
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CHAPTER 1. INTRODUCTION 1.2. MOTIVATION

vealing the underlying knowledge from the measurements. The main assumption
behind my research is that certain measured biomarkers can reflect the perceived
strenuousness of the different exercise levels.

While familiarizing with the data set, different aspects emerged that resulted in
the following problem statements. There are too many measured biomarkers, which
reduces the interpretability of the results. Even after domain experts tried to reduce
the number of parameters based on preliminary knowledge, the resulting data set
remained so vast, that analyzing it with classical statistical methods proved to be
too time-consuming. Furthermore, to our best knowledge, it is unknown, which
biomarkers can reflect the perceived strenuousness of different exercise levels. [15]

To account for the above points, different machine learning techniques were ap-
plied on the data in order to come up with a minimum subset of predictors reflecting
the perceived strenuousness of the different exercise levels.

1.2 Motivation

The importance of solving this problem is multifaceted. Based on literature review
and consultation with domain experts, no such extensive research has been con-
ducted that relates objective measurements of physiological changes in the human
body to the subjective indicators of perceived strenuousness of an exercise. [15]
From a biological point of view, it will deepen our understanding of the above phe-
nomena. The goal of my research is to understand why some exercise protocols are
perceived strenuous and what are the biomarkers that reflect it. From an applied
machine learning point of view, it will serve as a use-case that machine learning
techniques can be used for resolving such a problem. The motive to use machine
learning is the excessive amount of data gained from the preliminary experiments
and the availability of techniques to conduct feature selection.

The findings of my research will contribute to the available collective knowledge
in the interdisciplinary research field of bioinformatics.

1.3 Research questions

To formulate research questions, I followed the template for design problems by
Wieringa [33]. Substituting the specifics of my experiment, the following statement
emerges:

• Improve the comprehensibility of the measured biomarkers

• using machine learning techniques

• that satisfy this setting

• in order to come up with a minimum subset, that relate levels of exercise to
self-perceived intensity of training.

Based on this statement the main research question and three related sub-
questions were stated.

9



1.4. OUTLINE CHAPTER 1. INTRODUCTION

Main RQ: “Can we devise a method applying machine learning techniques that
relate levels of exercise to self-perceived intensity of training?”

SQ1: “Which machine learning techniques can be used to find a minimal set of
biomarkers that relate levels of exercise to self-perceived intensity of training?”

SQ2: ”Which machine learning techniques provide the best results in the scope
of accuracy, sensitivity and specificity?”

SQ3: “Does applying feature selection improve the performance measures?”

1.4 Outline

In this thesis I investigate the application of different feature selection techniques
for finding the most expressive biomarkers of self-perceived intensity of training.
The proposed techniques are applied on a classification-type problem to predict the
probability of a biomarker level being perceived as ”heavy” or ”intermediate” based
on the Borg scale. [3] The rest of the paper is organized as follows. In Chapter
2 the related theoretical concepts are discussed. Then in Chapter 3 the applied
research method is detailed. Chapter 4 elaborates on the the results and Chapter 5
includes the evaluation and limitation of the results. Finally conclusions are drawn
in Chapter 6 and the future works are outlined.

10



Chapter 2

Background and related work

This chapter briefly introduces the background theories behind both the domain
specific and the machine learning related concepts of my research.

2.1 Background of the research

Homeostasis is maintained within the physiological boundaries by adaptive responses
within organisms. In general, healthy humans are well adapted to physical exercise
and exertion. Homeostatic balance is ill-maintained if the balance is already dis-
turbed due to a pre-existing health problem or if the body is exposed to severe
physical exercise. Hormonal responses, liver metabolism and intestinal reactions, as
well as immunological responses keep the homeostatic balance during and after ex-
ercise. These physiological responses can be determined by measuring a number of
relevant biological parameters (biomarkers), reflecting homeostatic balance and/or
disturbances.

During previous studies, the Innovative Testing Research Group [15] measured
about 100 different biological parameters in 15 healthy trained volunteers, who have
been exposed to different levels of exercise on cycle ergometers. The measured
parameters are derived from serum, urine and saliva samples, collected in the begin-
ning, during and after the exercise. Sample analysis was conducted in six different
laboratories. The goal of the experiment was to determine the extent of exercise
and select relevant biomarkers of intestinal function and immune responsiveness in
healthy young men.

Some measurements served only as meta-categories to facilitate the laboratory
analysis. These were later removed from the data set. After getting rid of these
meaningless biomarkers, there remained still 88 different candidates to consider.
This number was further decreased to 64, due to repetition in the data set or the
lack of their value added. This decision was made together with the domain experts
involved in the experiment. Using the 64 valid biomarkers in every combination of
subjects, protocols and time points, the resulting data set is still so overwhelming
that it was very time-consuming to give meaning to it.

11



2.2. MACHINE LEARNING CHAPTER 2. BACKGROUND

2.1.1 Borg scale

In order to label the measured biomarkers about their expressiveness of perceived
exertion, the Borg scale was used. [3] It is a subjective quantitative measure of
perceived exertion during physical activity. It was originally introduced by Gunnar
Borg, who proposed a scale of 6-20 to measure the perceived exertion of individuals
exposed to physical activity. Table 2.1 shows the Borg scale with the adherent verbal
descriptions for each level.

Rating of Perceived Exertion Description
6 No exertion
7 Extremely light
8 Very light
9 Very light
10 Very light
11 Light
12 Light
13 Somewhat hard
14 Somewhat hard
15 Hard
16 Hard
17 Very hard
18 Very hard
19 Extremely hard
20 Maximum exertion

Table 2.1: Rating of Perceived Exertion on the Borg scale

2.2 Machine Learning

There is not one generally accepted definition of Machine Learning in the literature.
It serves more as an umbrella term with the aim to get computers to learn like
humans do. A common definition of it is as follows. ”Machine learning is the study
of algorithms and mathematical models that computer systems use to progressively
improve their performance on a specific task.” [34] The term Machine Learning
is attributed to no other than Alan Turing. In his 1950 paper, he proposed a
’learning machine’ that could learn and become artificially intelligent. [21] Since
then, both the field and its heuristics evolved tremendously. New techniques are
being introduced every couple of years and experts are in high demand on the job
market recently. [7]

Machine Learning is basically statistical learning, which refers to a vast set of
tools for understanding data. Zhou interprets learning as the process of generating
models from data. This is accomplished by a learning algorithm. [35]

12



CHAPTER 2. BACKGROUND 2.2. MACHINE LEARNING

2.2.1 Unsupervised learning

Learning tasks can be classified as supervised or unsupervised. James et al. defines
supervised learning as ”building a statistical model for predicting, or estimating, an
output based on one or more inputs.” In comparison to that, unsupervised learning
focuses on learning relationships and structure from data without explicit labels
being present. Unsupervised learning is the situation in which for every observation
there is a vector of measurements, but there is no associated response [12] Chapter
2.

Principal Component Analysis

“The central idea of principal component analysis (PCA) is to reduce the dimen-
sionality of a data set consisting of a large number of interrelated variables, while
retaining as much as possible of the variability present in the data set.” [14] The
cutoff for a data set to be considered high-dimensional is subject to opinion.

PCA does not consider the response variable when summarizing variability. With
other words, it is blind to the response, which is why it is considered as an unsuper-
vised technique. [19]

When applying PCA, the underlying assumption is that a linear combination
of the predictors with high variability is probably going to be associated with the
response [12] Chapter 6. This linear transformation fits a data set to a new coor-
dinate system in such a way that the most significant variability is found on the
first coordinate, and each subsequent coordinate is orthogonal to the last and has a
lesser variability. In other words, PCA finds a linear projection of high-dimensional
data in such a way that the variability of the projected data is maximized. This
projection can be visualized in two dimensions, the first two principal components
being the axes.

The first principal component is a linear combination of the original predictor
variables and captures the maximum variability in the data. The second principal
component is the linear combination that has the largest variability out of all linear
combinations that are totally unrelated to the first principal component. It explains
the second most variability in the data.

Since principal components are linear combination of the original predictor vari-
ables, capturing variability in the data, they cannot be related directly to the original
predictors. Due to this fact, PCA is considered as a black-box method. [24]

The application of PCA is further discussed in Chapter 3.2.6 with graphs derived
from the data set to help understand the implications.

2.2.2 Supervised learning

According to James et. al, supervised learning refers to the situation in which for
every observation of the predictor measurements there is an associated response
measurement [12] Chapter 2.

Within supervised learning, the current research is aimed to resolve a classification-
type problem.

13



2.3. CANDIDATE MODELS CHAPTER 2. BACKGROUND

2.3 Candidate Machine Learning techniques

In the following section, the theoretical concepts of the applied machine learning
techniques are introduced briefly. First, logistic regression, then different tree-based
methods. Tree-based methods stand out from Machine Learning techniques be-
cause of their ease of use, interpretability and relatively good predicting accuracy.
They can handle both categorical and continuous input variables without much data
preparation. They are robust to outliers and can handle missing values antively.

When speaking of tree-based methods, the main task is splitting the predictor
space into a number of simple regions. These splitting rules can be summarized in
a tree [12] Chapter 8.

Although tree-based methods are widely used, they also have some disadvan-
tages. Trees in general have high variance, which causes poor model performance.
They also overfit the data easily. Trees can grow very large by which they lose their
good interpretability. For this reason however, pruning can be used.

2.3.1 Logistic regression

Logistic regression is a well-known classification technique that models the log odds
of an event as a linear function. [19]

It is the extension of linear regression to classification problems. The outcome
variable of logistic regression is a categorical variable, while the predictors can be
both categorical and continuous. In this case, the - linear relationship between
variables - assumption of linear regression is violated. One way to resolve this
problem is to transform the data using logarithmic transformation.

When the goal is to predict membership of only two categorical outcomes, it is
called a binary logistic regression. [9]

2.3.2 Decision trees

Decision trees are hierarchical structures with nodes and directed edges. The node
at the top is the root node, the nodes at the bottom are called leaf nodes and in
between lie the internal nodes.

Classification trees consist of nested if-then statements. [19] The tree-building
process is described as a top-down greedy approach. A split condition is used to
predict class labels based on one or more input variables. The classification process
starts from the root node of the tree and at each node the process will check whether
the input value should recursively continue to the right or to the left sub-branch
according to the split condition. The process stops when it meets any leaf nodes.
This is called recursive binary splitting [12] Chapter 8.

The goal is to split the data into sub-sets where each sub-set is as pure as possible.

Mathematically it is more feasible to measure impurity than purity. Different
approaches were proposed for this purpose. Two of the most popular impurity
measures are the Gini-index and Entropy/Information gain. The lower the index,
the higher the purity of the split. The decision tree selects the split that minimizes
the applied impurity measure. [20]

14



CHAPTER 2. BACKGROUND 2.4. FEATURE SELECTION

2.3.3 Random Forest

Random Forest is an ensemble of trees trained on bootstrapped samples of the train-
ing data and then combined to yield an improved prediction accuracy. Although,
there is no free lunch, the improved prediction accuracy implies decreased inter-
pretability of the model [12] Chapter 8.

For each tree, variable importance is calculated based on the prediction accuracy
on the out-of-bag portion of the data. This process is done iterating through each
randomly selected predictor variable. This extra randomness leads to a collection of
trees that are decorrelated from each other. Random forest is an improvement com-
pared to bagging in a sense that correlation between the sampled trees is reduced.
This results in a reduced variance when averaging the trees.

2.3.4 Boosting

Boosting is another tree-based ensemble method. Similarly to the random forest,
the process starts out with training on bootstrap samples from the data. However,in
boosting trees are grown sequentially, using information from previously grown trees.
This results in an improvement in prediction power.

Even though boosting offers a lot of flexibility in hyperparameter tuning, it is
reluctant to overfitting [12] Chapter 8. However, this high flexibility makes it com-
putationally expensive as it requires a large grid search during tuning. Nevertheless,
boosting is considered as one of the most accurate machine learning technique.

2.4 Feature selection

This section introduces the feature selection concepts used in this paper.
Due to the high-dimensionality of the data set, feature selection is suggested to

avoid the curse of dimensionality. [8]
Feature selection is the process of finding a subset of the original feature-set,

such that an induction algorithm that is run on data - containing only the subsetted
features - generates a learner with the highest possible accuracy. [17]

One way to categorize feature selection methods is as follows:

• Filters,

• Wrappers,

• Embedded methods.

In the following sections, these categories of feature selection methods are de-
tailed.

2.4.1 Filters

According to Kohavi and John [17], filtering is considered as a pre-processing step
in feature selection. It is also called feature ranking, as features are ranked based

15



2.4. FEATURE SELECTION CHAPTER 2. BACKGROUND

on their relevance for predicting the desired outcome. Then only those features will
be included in the outcome that pass some criterion. [19]

As stated by Guyon and Elisseeff [10], filters are sometimes preferred to other
variable subset selection methods because of their computational and statistical
scalability. Computationally, they only require computing and sorting n scores.
Statistically, they are robust against overfitting, as they increase bias, but decrease
variance in the model.

2.4.2 Wrappers

Kuhn defines wrappers as search algorithms that treat the predictors as the inputs
and utilize model performance as the output to be optimized. [19]

Wrappers evaluate multiple models by adding or removing predictors to find the
optimal combination that maximizes model performance.

Guyon et al. [10] defines the application of wrappers as a 3-step process. First
a method for searching the feature space has to be selected. Then the model per-
formance measure needs to be defined that will halt the search. Finally, based on
these, the predictors will be selected as the outcome.

Kohavi and John [17] consider wrappers a simple and powerful way to address
the problem of feature selection, regardless of the chosen machine learning technique.

One group of examples of wrappers are stepwise methods.

Stepwise methods

According to Guyon et. al [10], stepwise methods are two types of greedy search
strategies: forward selection and backward elimination.

They are computationally advantageous and robust against overfitting.

The evaluation of the information derived from removing predictors is based on
different relative quality criterion.

In the case of forward selection, initially only the constant is included in the
model. Then predictors are added one-by-one, iteratively. At each iteration one
predictor is added that has the highest simple correlation with the outcome. If it
makes a contribution to the predictive power of the model, it is retained and another
predictor is considered. This process continues until a cut-off value for the relative
quality criterion has reached [9] Chapter 7.

In the case of backward elimination, initially all the predictors are present in
the model. Then they are removed one-by-one, iteratively. At each iteration one
predictor is removed that has the smallest effect on the relative quality criterion.
This process continues until removing one more predictor would cause the relative
quality criterion to change direction [9] Chapter 7.

According to Field et. al [9] Chapter 7, backward elimination is preferred to
the forward stepwise method, because of suppressor effects. These occur when a
predictor has an effect but only when another predictor is held constant. In other
words, forward selection is more inclined to make a Type II error.
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2.4.3 Embedded methods

Guyon et. al defines embedded methods as algorithms that perform feature selection
in the process of model training. [10]

The idea is to combine the advantages of both filter and wrapper methods. To
proceed more efficiently, embedded methods directly optimize a two-part objective
function with a goodness-of-fit term and a penalty for a large number of variables.
[10] This results in a learning algorithm that performs feature selection and classi-
fication simultaneously.

One advantage of embedded methods is that they do not split the training data
into a training and validation set, hence they use the available data better. Besides,
they do not need to search the whole feature space at every iteration, so they reach
a solution faster. [10]

Embedded methods are usually specific to given learning algorithms. The most
important example is the Lasso, which will be described in the following section.

Lasso and Ridge Regression

Least Absolute Shrinkage and Selection Operator (Lasso) is a powerful regularization-
type feature selection method. It estimates the outcome while automatically select-
ing significant features by shrinking the coefficients of unimportant predictors to
zero. [27]

Ridge regression and Lasso do not use least squares to fit, but a different criterion
that has a penalty that will shrink the coefficients toward 0, or exactly 0 in the case
of the Lasso.

The tuning parameter lambda controls the overall strength of the penalty. The
best value of lambda can be found using cross-validation.

When alpha=1, the Lasso will be used, while setting alpha to 0 will result in
using Ridge Regression. The main difference between the two models is that Ridge
Regression minimizes the residual sum of squares of the coefficients, while Lasso
minimize their absolute value.

2.5 Validation

When the modeling is done, the next and final step is to test the predictability of
the algorithms on a new unseen data set [12] Chapter 6.

A common and acclaimed way of evaluating any machine learning technique is
to split up the initial data set into a training and a test set. The common approach
is to train the models on the - usually larger chunk - training set and test them on
an unseen test set. This way the performance of the selected method can be tested
immediately [12] Chapter 2.

The goal of the validation is to gain performance measures of models based on
which conclusions can be drawn regarding their relative performance. The most
important evaluation metric for binary classification problems is the confusion ma-
trix. It is a convenient way to display Type I. and Type II. errors [12] Chapter 4.
Elements on the diagonal of the matrix represent correctly classified cases, while
off-diagonal elements represent misclassified ones.
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Based on the confusion matrix, different performance measures can be calculated.
Presenting them all is out of the scope of this thesis.

2.5.1 Cross-Validation

Cross-validation is a technique for assessing the accuracy of a model across different
samples [9] Chapter 7. It is one way to reduce the variance of an estimate by
averaging multiple estimates together. Cross-validation can help determining the
optimum number of features in a model.

In K-fold cross-validation, the data is partitioned into K subsets of equal sizes.
In each iteration, one of the subsets is held out as a test set and the rest is used for
training.

18



Chapter 3

Methods

3.1 Design Science Methodology

The logical structure of my research is based on the design science methodology,
proposed by Hevner et. al. [11]. This methodology carefully balances between the
theoretical and practical soundness of research projects. This approach is particu-
larly important for my graduation project, being a fundamental research with an
applied data science solution.

According to Wieringa [33], Design science is the design and investigation of
artifacts in context. Hevner [11] splitted up the required factors for a design science
research project to theoretical knowledge (Knowledge Base), application domain
(Environment) and the proposed artifacts (Design Science). Furthermore, he intro-
duced three cycles to iterate through and connect the three factors. The relevance
cycle aims to find input and requirements from the application context to the de-
signed artifact. The rigor cycle on the other hand aims to establish solid theoretical
foundations for the research to help evaluate that later. The internal design cycle
iterates through the activities of building, evaluating and refining the designed ar-
tifacts. The three cycles together create a solid methodology, widely used in the
engineering and computer science fields.

Figure 3.1: Design Science Research Methodology by Hevner 2007 [11]
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3.1.1 Environment

The application domain of my research is physiology and human biology. The ini-
tial experiment was carried out on healthy young men. For the set-up, execution
and evaluation of the experiment, experts from various fields contributed with their
domain specific knowledge. These are biologists, immunologists, toxicologists, phys-
iologists and statisticians [15, 13].

3.1.2 Design Science

Within the Design Science phase, the design cycle iterates through the activities of
building, evaluating and refining the designed artifacts.

The artifacts in this research are the applied machine learning techniques for
feature selection.

For evaluating the artifacts, the evaluation metrics were used as outlined in 2.5.1.

3.1.3 Knowledge Base

The reason I use both the Design Science Methodology and the CRISP-DM process
model is that they can be nicely aligned with each other. Both methodologies
follow cyclic iterations of activities. I consider the CRISP-DM model as part of the
Knowledge Base [11] of my research.

3.2 CRISP-DM

In order to increase the reproducibility of my research, I follow the Cross-Industry
Standard Process for Data Mining (CRISP-DM) [5]. It is an open standard process
model, developed by a consortium of over 200 interested organizations, funded by
the European Union. According to Meta S. Brown, it is by far the most widely used
analytics process model [4]. It has six major phases as depicted in Figure 3.2.

It provides a framework for the timely logical structure of the applied data science
workflow. In the following paragraphs all six phases are detailed tailored to the
application in this thesis.

3.2.1 Business Understanding

As the first step of any data science project, business understanding is the process of
familiarizing with the application domain and outlining data science solutions that
adhere to the desired goals.

During the business understanding phase, I started out with a systematic litera-
ture review. The aim of it was to become familiar with the state-of-the-art machine
learning techniques and their application in the life sciences domain. The most
frequently used keywords for search were the following: Feature selection, Classifi-
cation, Dimension reduction, Lasso, Bioinformatics, Exercise Physiology, Biomarker
discovery.
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Figure 3.2: The CRISP-DM Process Model

My first encounter with the project was at the Avicenna hackathon [1] in Febru-
ary 2018. That was the first time I learnt about the preliminary experiments and
the resulted data set that also became the initial data set I used for this research.

Next to the systematic literature review, I have also regularly consulted with
domain experts of the Innovative Testing Research Group. Since my knowledge of
the application domain (life sciences) is limited, I strongly rely on their input when
discussing the physiological relevance of the biomarkers in question.

3.2.2 Data Understanding

Data understanding is about collecting data and developing a clear understanding
of it. Different statistical methods are broadly used for this purpose, [9] from which
I will propose the ones used in this research.

Data was collected during previous studies of the Innovative Testing Research
Group [15] from serum, urine and saliva samples, in the beginning, during and
after the exercise. These biological measurements comprise the major part of the
data set. I received the data as an RData extension. R [23] is a language and
environment for statistical computing. It has been widely used by scientists for
data analysis and visualization in recent years. [16] The R environment was used
for the entire workflow, from data acquisition through analysis and visualization
to reporting. For reproducibility purposes, Appendix A includes the complete list
of necessary information about the different versions and packages used during this
research poject. Measurements for the Borg scale were received as an xlsx extension.
After some initial data preparation in Microsoft Excel, this data was also loaded into
R for further analysis.

The received data was in a so-called tidy format. This heuristic was introduced
by Hadley Wickham [29] and follows the following principles:

• Each variable forms a column.
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• Each observation forms a row.

• Each type of observational unit forms a table.

Presenting the data this way highly enhances its comprehensibility and manageabil-
ity. In the words of Hadley ”Tidy data is a standard way of mapping the meaning
of a data set to its structure.” [29]

Although the data was in a tidy format, it was a combination of two data sets.
This results from two different studies carried out at two different locations with
the same aim. The reason for the second study was to increase the validity and
reproducibility of the experiments. The related paper about the experiments is still
being written, which explains the lack of a citation here. The originally received
data set contained almost 60000 observations and 13 variables in a stacked (long)
format. Regarding the relative size of the data sets, the first one accounts for 76%,
while the second accounts for 24%.

3.2.3 Data Preparation

Data preparation includes different methods for transforming data in order to pre-
pare it for the machine learning techniques in question.

Exploratory Data Analysis

After checking the dimensions of the data sets and the classes of the variables, some
questions occurred. To answer them, data manipulation and visualization techniques
were used. This process is also called Exploratory Data Analysis (EDA), which is
an iterative process to explore data in a systematic way. [31]

The first step was to split up the data by study and explore the resulting data
sets separately.

Data cleaning

As an initial step of data preparation, the features present in the model were ex-
amined. This was carried out in consultation with the researchers involved in the
preliminary experiments. [15] Some of the measured parameters were grouping fea-
tures with no directly meaningful effect. After getting rid of these meaningless
parameters, there remained still 88 different candidates to consider. This number
was further decreased to 64, due to repetition in the database or the lack of their
value added. The set of 64 valid parameters formed the basis of the further analysis.

Missing values

The next step in the data preparation phase was to deal with possible missing values.
Hadley differentiates explicitly and implicitly missing values. [31] Explicitly miss-

ing values are denoted by ”NA”, while implicitly missing values are simply not
present in the data. ”One way to think about the difference is with this Zen-like
koan: An explicit missing value is the presence of an absence; an implicit missing
value is the absence of a presence.” [31] To investigate the missing values, differ-
ent data manipulation and visualization techniques were applied. For visualization
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purposes, the R package ”ggplot2” was used. [28] This package is a collection of
tools for visualization. To manipulate the data, the R package ”dplyr” was used.
[32] Both packages are part of the so-called ”tidyverse” [30], which is a collection of
R packages for data exploration, manipulation and visualization. They all share a
common design philosophy with interoperability and reproducibility in mind.

Initially, there were no explicitly missing values in either of the data sets due to
preliminary cleaning carried out by the participating researchers. However, there
were 1201 and 1354 implicitly missing values in each of the data sets. Proportionally
these represent 3% and 11% of the data respectively, so it is justifiable to further
explore them. After some data manipulation and visualization, the following findings
were revealed:

• The separate data sets contained different protocol levels.

• Most of the missing values are derived from the aggregated factor levels of the
variables ”protocol”, ”subject” and ”time” in the combined data set.

• There is systematic missingness in the case of subject 8, so his results are
excluded from further analysis.

Based on these findings I wrote a function for each data set that cleans up the
irrelevant factor levels and filters out the values for subject 8. The cleaned data
sets now contained only 10 and 30 actual missing cases respectively. These result
from measurement errors during the experiment. Their relative proportion in the
data sets are so tiny (0,03% and 0,26% respectively) that they were excluded from
further analysis.

Since the second study contained different ”protocol” levels than the first one,
I excluded the values of the second study from further analysis. This way, the
robustness and reliability of the research highly increases.

Intra- and inter-subject variability

One of the questions stated during exploratory data analysis was ”How do the con-
centrations of the different biomarkers change in each subject by time and protocol?”
To answer this question, data was transformed and visualized. Figure 3.3 gives an
indication to answer this question based on the example of one of the measured
biomarkers.
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Figure 3.3: Change of ”ifabp” concentration in each subject by time and protocol

As it can be seen from Figure 3.3 both intra- and inter-subject variability is
present in the data. To account for intra-subject variability, the preliminary exper-
iment was set up with strict rules in place regarding the diet and exercise habits of
the participating subjects. [15]

To account for inter-subject variability, concentration levels of the measured
biomarkers were normalized to the baseline (P1 - rest) protocol.

Normalization

Even though the preliminary experiments were set up in such a way, to minimize
the effect of uncontrolled variables as much as possible, the data set still contains
some noise.

Considering the goal of this research, some noise can be disregarded, but some
need to be accounted for. That is why the measured concentration levels of the
biomarkers were normalized to a baseline level, the P1/rest protocol.

Normalized concentration is calculated by dividing the concentration of the exer-
cise protocols (P2, P3, P4, P5) by the corresponding baseline (P1) concentration for
every combination of subject and time points. This way the measurements become
more meaningful, expressing their relative value compared to the rest condition.

Transformation to wide format

Originally, the received data was in a long (stacked) format. This is advantageous
for storing and presenting high-dimensional data, but not appropriate for many
machine learning techniques. That is why as a next step of data preparation, the
data set was transformed to a so-called wide format.

The first step to achieve this was to generate unique identifiers for row names. For
this purpose, values of the columns ”subject”, ”protocol” and ”time” were extracted
and combined to one string per row.
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Then the stacked data set was spread according to the measured biomarkers.
This way, the new transformed data set contained a column for each measured
biomarker and for every one of them the measurement values were included in rows
for every combination of ”subject”, ”protocol” and ”time”.

As a last step, the dependent variable, ”protocol” was added to the transformed
data set as a separate column.

Correlation Analysis

To get a picture of the underlying structure in the data, correlation analysis was
performed. According to Field et. al [9], bivariate correlation is a measure of the
strength of relationship between two variables. It can also be a measure of the
strength of an experimental effect (effect size). To express correlation, different
techniques can be used. In this research, Pearson’s correlation coefficient r was
used. It is the standardized covariance between variables on a scale between -1 and
+1. A coefficient of +1 indicates a perfect positive relationship, while a coefficient
of -1 indicates a perfect negative relationship. A coefficient of 0 indicates no linear
relationship.

Cohen [6] proposed the following effect sizes based on Pearson’s r:

• r = .10 (small effect): The effect accounts for 1% of the total variance.

• r = .30 (medium effect): The effect accounts for 9% of the total variance.

• r = .50 (large effect): The effect accounts for 25% of the total variance.

This provides a useful benchmark for assessing effect sizes, however interpreting
effect sizes is highly domain dependent. [2]
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Figure 3.4: Correlations between the 64 valid biomarkers

Figure 3.4 shows the underlying correlations in the data. As it can be seen,
based on Cohen’s proposed effect sizes, certain biomarkers highly correlate with
each other.

Principal Component Analysis

Initially the data set in this research did not include true, meaningful labels for the
measured parameters, so I approached it in an unsupervised way.

To explore the data set in an unsupervised way and try to reduce the dimensions,
Principal Component Analysis (PCA) was performed.
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Figure 3.5: 2D visualization of the data points along the 1st and 2nd principal
component

Figure 3.5 is a projection of the linear combinations of the data points along
the first two principal components that explain the most variance in the data. This
is a proven way of visualizing high-dimensional data sets in two dimensions. As it
can be seen from Figure 3.5 data points are segregated into three bigger clusters.
However, these clusters do not align with neither the protocol levels, nor the time
points. It only shows the structure of the data after a linear transformation. That
is why further techniques are needed to give meaning to the underlying knowledge
in the data.

Introduction of new labels for the dependent variable ”Protocol”

The main assumption behind my research was that the measured biomarkers can
reflect the perceived strenuousness of the exercise. During the preliminary experi-
ments, the self-perceived intensity of each exercise protocol was measured with the
so-called Borg scale. [3]

Values extracted from the Borg scale were used in order to label the measured
biomarkers about their expressiveness of perceived exertion. Labelling the measured
biomarkers allows to differentiate clear categories and to apply supervised machine
learning algorithms for selecting the most expressive predictors. Figure 3.6 shows
the original protocol levels applied during the preliminary experiment.
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Figure 3.6: Average Perceived Exertion levels by the original protocol levels

As it can be seen from Figure 3.6, protocols P2, P3 and P5 converge and show
similar values. That is why all three are coded as ”heavy” in Figure 3.7. Further-
more protocol P4 deviates from the rest. In accordance with the Borg scale, it is
coded as ”intermediate”. The ”baseline” category is P1, the rest protocol, for which
there were no meaningful measurement values understandably. In the experimental
setting, the perceived exertion during P1 (the rest protocol) was considered 6 (the
minimum value on the Borg scale) for all subjects. This served as a baseline, relative
to which other protocol levels could be considered. Figure 3.7 shows the relabelled
protocol levels.

Figure 3.7: The original and the new protocol levels based on the Borg scale

3.2.4 Modeling

Modeling is about applying the previously selected models on the prepared data set.
It can be decomposed to training the models, tuning their parameters and testing
their performance.

As a first step of the modeling phase, the data set was split into a training and
a test set. Choosing a cut-off value regarding the fraction of training and test set
is an open problem. [10] In this research I used 80% of the data for training the
models and the remaining 20% for testing them.

Different machine learning techniques were used as candidate models for feature
selection. Table 6.1 shows them in order of appearance in this thesis.
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Logistic regression
Random forest
Boosting
Decision tree with the Gini-index
Decision tree with Entropy
Recursive feature elimination on RF
Lasso using minimum lambda
Lasso using 1 standard error lambda
Ridge regression using minimum lambda
Ridge regression using 1 standard error
lambda

Table 3.1: Candidate Machine Learning techniques for feature selection

The rationale behind the chosen techniques is explained in section 5.2.5.
As a first approach, a so-called forced entry method was used. This means intro-

ducing all the predictors at once. Since some of the candidate techniques do not do
automatic feature selection, features were first ranked based on their relative impor-
tance in the outcome of the model. Then, the top 10 most important features were
selected, that reflect the perceived intensity of different exercise levels. The number
10 as a ”minimum” number was chosen based on results of the PCA, considering
the comprehensibility of the underlying biomarkers and the formal requirements of
this thesis. A detailed discussion about it can be found in section ??

After that, different wrapper and embedded methods were used for feature se-
lection.

As a last step, candidate models were tested on the unseen part of the data set.
For modeling purposes the R package Caret [18] was used.

3.2.5 Evaluation

After the modeling phase, the next step is to test the predictability of the candidate
models on a new unseen data set. [12]

The goal of the evaluation is to gain performance measures of models, based on
which conclusions can be drawn with certain confidence about the performance of
the used algorithms.

As evaluation criteria, the following approaches were taken into consideration:

• Model performance

• Model interpretability

• Meaningfulness of the resulted subset

Regarding model performance, different measures were calculated based on the
confusion matrices of the candidate techniques. These were then compared and
conclusions were drawn. In my thesis I present the following performance measures
for the applied models.

• Accuracy
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• Sensitivity

• Specificity

• Positive Predicted Value

• Negative Predicted Value

• Prevalence

• Arean Under the ROC Curve

Next to the objective measures of performance, the interpretability of the differ-
ent techniques were evaluated. For this purpose, the principle of Occam’s razor was
used, i.e. the simpler the model the better.

Being an interdisciplinary study, aspects from other domains need to be taken
into consideration for evaluating the results. To evaluate the biological meaningful-
ness of the resulted subsets, I regularly consulted with a domain expert from the
field.

3.2.6 Deployment

The deployment of a data science project depends on the goals stated previously
and the degree to which the project fulfills them.

The main deliverable of this research project is the code I wrote in R. Functions
will be extracted from it and included in the R package ’gramlyr’. [26] This package
is being built with the aim to demonstrate reproducible data analysis in the life
sciences through different real-life examples.
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Chapter 4

Results

This chapter presents the results of my research. The sections describe the top
10 most important Biomarkers selected by the different Machine Learning tech-
niques. Furthermore confusion matrices and the resulting performance measures
are included, where it is relevant.

4.1 Logistic Regression

Actual
Positive Negative True/Total

Predicted Positive 66 16 0.80
Negative 4 7 0.36
True/Total 0.94 0.70 0.78

Table 4.1: Confusion Matrix of the Logistic Regression model

4.2 Decision Trees

Actual
Positive Negative True/Total

Predicted Positive 58 15 0.79
Negative 12 8 0.60
True/Total 0.83 0.65 0.71

Table 4.2: Confusion Matrix of the Decision Tree with the Gini-index

Actual
Positive Negative True/Total

Predicted Positive 60 16 0.79
Negative 10 7 0.59
True/Total 0.86 0.70 0.72

Table 4.3: Confusion Matrix of the Decision Tree with Information gain
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The plots of the created decision trees can be found in Appendix B and Appendix
C.

4.3 Random Forest

Actual
Positive Negative True/Total

Predicted Positive 68 19 0.78
Negative 2 4 0.33
True/Total 0.97 0.83 0.77

Table 4.4: Confusion Matrix of the Random Forest model

4.4 Boosting

Actual
Positive Negative True/Total

Predicted Positive 65 17 0.79
Negative 5 6 0.45
True/Total 0.93 0.74 0.76

Table 4.5: Confusion Matrix of the XGBoost model

4.5 Random Forest with Recursive feature elimi-

nation

From stepwise methods, recursive feature elimination was used. The underlying
algorithm in the model was a Random Forest, used with 5-fold cross-validation.
The best subset size was estimated to be 5 predictors. To stay consequent, the top
10 selected biomarkers are presented in this thesis in table 4.11.

Actual
Positive Negative True/Total

Predicted Positive 70 18 0.80
Negative 0 5 0.00
True/Total 1.00 0.78 0.81

Table 4.6: Confusion Matrix of the Random Forest model applying Recursive Fea-
ture Elimination

4.6 Lasso

In the case of the Lasso model, 5-fold cross-validation was used to select the optimal
value of lambda. Both the the models with the minimum value of lambda and
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the value 1 standard error from the minimum were used and their performance is
presented here.

Actual
Positive Negative True/Total

Predicted Positive 69 14 0.83
Negative 1 9 0.10
True/Total 0.99 0.61 0.84

Table 4.7: Confusion Matrix of the Lasso model using the minimum value of lambda

Actual
Positive Negative True/Total

Predicted Positive 69 20 0.78
Negative 1 3 0.25
True/Total 0.99 0.87 0.77

Table 4.8: Confusion Matrix of the Lasso model using the lambda 1 standard error
away from the minimum

4.7 Ridge Regression

The same way as with the Lasso, in the case of the Ridge Regression model, 5-
fold cross-validation was used to select the optimal value of lambda. Both the the
models with the minimum value of lambda and the value 1 standard error from the
minimum were used and their performance is presented here.

Actual
Positive Negative True/Total

Predicted Positive 68 19 0.78
Negative 2 4 0.33
True/Total 0.97 0.83 0.77

Table 4.9: Confusion Matrix of the Ridge Regression model using the minimum
value of lambda

Actual
Positive Negative True/Total

Predicted Positive 69 20 0.78
Negative 1 3 0.25
True/Total 0.99 0.87 0.77

Table 4.10: Confusion Matrix of the Ridge Regression model using the lambda 1
standard error away from the minimum
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4.8 All models

Table 4.11 shows the 10 most expressive biomarkers, that reflect the intensity of
exercise protocols, selected by each candidate model.

Rank GLM RF XGB DT gini DT info RFE Lasso min Lasso 1se Ridge min Ridge 1se
1 mif LEUCO LEUCO tau LEUCO LEUCO HT trp pheala citrul
2 ip10 CORT factord glu CORT CORT ERY citrul citrul pheala
3 GLU NS ip10 CORT CORT trp EGFR RDW pheala trp BICARB
4 meth ifabp LYMFO LEUCO NEUTRO ifabp MCV ala gln trp
5 ala mcp1 ifabp ifabp ifabp KREAT leu BICARB ser gln
6 GGT LYMFO il8 NEUTRO tyr NEUTRO HB ile BICARB ser
7 trp il8 ile asp TROMBO BICARB val factord factord factord
8 factord factord glu leu mcp1 LYMFO trp ser leu ile
9 ifapb KREAT BICARB ALAT GLU NS ip10 meth CORT ala ala
10 tau NEUTRO UREUM ile LYMFO factord POTAS KREAT GGT KREAT

Table 4.11: Top 10 most important Biomarkers selected by the different applied
machine learning techniques

Table 4.8 shows the different performance measures provided by the different
applied machine learning techniques.

GLM RF XGB DT gini DT info RFE Lasso min Lasso 1se Ridge min Ridge 1se
Accur. 0.78 0.77 0.76 0.71 0.72 0.81 0.84 0.77 0.77 0.77
Sensit. 0.94 0.97 0.93 0.83 0.86 1.00 0.98 0.99 0.97 0.99
Specif. 0.30 0.17 0.26 0.35 0.30 0.22 0.39 0.13 0.17 0.13
PPV 0.80 0.78 0.79 0.79 0.79 0.80 0.83 0.78 0.78 0.78
NPV 0.64 0.67 0.55 0.40 0.41 1.00 0.90 0.75 0.67 0.75
Prev. 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
AUC 0.72 0.63 0.69 0.59 0.58 0.61 0.69 0.56 0.57 0.56

Table 4.12: Performance measures of the different applied machine learning tech-
niques
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Evaluation

5.1 Discussion

In this section, different discussion points are detailed about the included machine
learning techniques in the experiment. The order of presenting them simply reflects
the logical order in which they occurred during the workflow process.

5.1.1 High-dimensional data

The cut-off for a data set to be considered high-dimensional is subject to opinion.
Initially, the data set contained 13 variables and almost 60000 observations in a
stacked (long) format. After cleaning and transforming it to a (wide) format, the
resulting data set contained 64 parameters and 590 observations. Based on these
dimensions, the transformed data set is considered to be a high-dimensional one.

5.1.2 Correlations

When evaluating the subsets chosen by the candidate machine learning techniques,
correlations between the biomarkers were not taken into consideration. This cer-
tainly limits the validity of the results as certain biomarkers highly correlate with
each other. If multiple of those biomarkers are selected by a model, the effect of
individual biomarkers are biased. To assess the found correlations, I consulted with
a domain expert in the research field of microbiology. Based on his opinion, the
found correlations align with our existing physiological knowledge. To increase the
validity of the research, it is advised to carefully consider correlations present in
the data. According to De Silva et. al [8], if highly correlated features are present,
individual features may exhibit similar performance to the collective feature subset.
If there are perfectly correlated features in the data, they can be considered redun-
dant. Including them in the model results in no additional information. Therefore,
using only the non-redundant features will improve performance. [10]

5.1.3 Binomial classification

Normalizing the concentration values to the baseline level allowed to handle the
problem as a binomial classification, instead of a multinomial one. In addition,
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normalization also increased the meaningfulness of the results, as absolute values of
the rest protocol by themselves do not have much value added within the current
experimental setting.

5.1.4 Feature selection

De Silva et. al [8] propose some valid arguments about the relevance of features in
a data set. ”An irrelevant feature carries no useful information in describing the
relationships of the underlying data. However, a feature that is irrelevant by itself
may become useful when considered in combination with some other features.” This
is why features were not introduced and analyzed individually, but as subsets with
different feature selection methods, considering their combined effect.

Field et. al [9] warn about the bias-variance trade-off. ”There is also the danger
of over-fitting (having too many variables in the model that essentially make little
contribution to predicting the outcome) and underfitting (leaving out important
predictors) the model.”

From the presented machine learning techniques, the Lasso provides a good
example for this. Figure 5.1 shows the change of model performance, measured
with the Area Under the Curve (AUC), as a function of change in the number of
predictors included in the model.
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Figure 5.1: Change of model performance (AUC) by change in the number of pre-
dictors included in the model

As it can be seen from the graph, by decreasing the number of predictors in the
model, the predictive power of the model is decreasing. This could be due to the
fact, that there are only few important features in the data set and we can benefit
from greedily select from all the features. The two dashed lines represent the ”best”
model, using the minimum value of the lambda parameter, and the model 1 standard
deviation away from that. In Chapter 4.8 the top 10 selected predictors by both
cut-off values are presented.

Another example is provided by the Random Forest model with Recursive Fea-
ture Elimination applied on it. As it can be seen from Figure 5.2, the highest
accuracy was reached with the model with 40 variables. However, using only 3
variables, a 75% accuracy can be achieved.
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Figure 5.2: Change of Accuracy by the number of predictors in a Random Forest
model, using Recursive Feature Elimination

Filters and Wrappers

As a first approach, all the predictors were presented at once for the model. Accord-
ing to Field et. al [9] forced entry is a common approach to present predictors for
a model. Unlike stepwise methods, it is not influenced by random variation in the
data, which means it has an increased repeatability compared to stepwise methods.

Then different filter and wrapper methods were applied for variable selection.
Kuhn [19] argues about the advantages and disadvantages of both methods as fol-
lows. ”Filter methods are usually more computationally efficient than wrapper
methods, but the selection criterion is not directly related to the effectiveness of the
model.” Furthermore, most filter methods evaluate each predictor separately which
results in a higher chance of selecting redundant (i.e. highly-correlated) predic-
tors. Wrapper methods are more computationally intensive as they evaluate many
different subsets. As a result, they also tend to overfit more easily.

Lasso and Ridge Regression

As stated by Melkumova et. al, [22], too small lambda values can lead to overfitting,
while too large lambda values can lead to underfitting. To find the optimal value of
lambda, cross-validation can be used.

The purpose of regularization is to balance between accuracy and simplicity.
Using the lambda value 1 standard error away from the minimum results in a simpler
model compared to using the minimum lambda value, in the sense that it has less
predictors in the model. However this also means, that this simpler model is also
less accurate than the one obtained with using the minimum value of lambda.

In theory, the Lasso is capable of performing effective variable selection. How-
ever, in practice, it creates excessive biases when selecting significant variables. Fur-
thermore, it is not consistent in terms of variable selection. [25] This was observed
in this study as well. Using different lambda values resulted in entirely different
coefficient estimates and hence variables to be selected as best predictors. See Table
?? and Table ??.
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5.1.5 Variance explained by principal components

Within Principal Component Analysis, a so-called Scree plot was created. A Scree
plot shows the distribution of total variance in the data explained by each principal
component. The principal components are presented by decreasing order of con-
tribution to total variance. Figure 5.3 is the resulting Scree plot of the underlying
principal component analysis performed on the data.

Figure 5.3: Proportion of explained variance by principal components

The Scree-plot shows a steep decreasing trend in the data. As it can be seen,
the first principal component explains significantly higher variance in the data than
the rest of the principal components. Furthermore, the marginal contribution of
every further principal component in the model to explain variance in the data is
steadily decreasing. The first 10 principal components explain around 75% of the
total variance in the data. The remaining 54 principal components account for 1%
or less of the explained variance.

5.1.6 Evaluation of the results

According to Feelders et. al, model interpretation is an important aspect of evaluat-
ing models. Often there is a trade-off between model performance and ease of model
interpretation. The goal of the modeling task determines which quality measure is
considered more important. In the case of this research, the goal of modeling was
to find a balance between the two measures. When selecting the candidate machine
learning techniques, this perspective was kept in sight.
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Guyon et al. [10] have a valid discussion point regarding the evaluation of model
performances. When comparing several models, robustness and simplicity should be
the guiding principles. The authors suggest that simple, but accurate models should
provide stability and good generalization. Even though, more complex models tend
to have a better performance, it is often worth resigning from high performance in
the favor of less accurate but more stable or simpler models.

5.2 Limitations

5.2.1 Biased population

A remarkable limitation of this research derives from the experimental design of the
preliminary experiment. When selecting participating subjects for the study, strict
requirements were applied. Among these were the health and general fitness condi-
tion of the subjects. For this study, only healthy, trained men were selected from
the age group 21-35. Although this was a conscious decision from the researchers,
it highly biases the results. When drawing conclusions from this research, one has
to interpret them within the scope of the mentioned population. [15]

5.2.2 Noise in the data

Based on initial analysis, it is known that there is both systematic and random noise
in the data, which decreases the comprehensibility and interpretability of the results.
Therefore, when generalizing based on conclusions drawn from the experiment one
has to be careful.

5.2.3 The Borg scale

For measuring the perceived strenuousness of the training, the Borg scale was used.
However, it is a widely applied measure for such physiological purposes, the validity
of it is argued, since it tries to interpret subjective measurements in an objective
way.

In this study I attempt to find further possible connections between objective
measurements and the perceived subjective effect of them. Using the Borg scale as
class label implies a threat to the validity of the results.

5.2.4 Correlations

As previously discussed, correlations between biomarkers are present in the data.
They were investigated from a data-driven perspective, however, their physiological
meaningfulness would require further consultation with domain experts. Since the
effect of the found correlations were not taken into consideration for selecting and
presenting the top 10 biomarkers selected by each model, it is a limitation of my
research and the results.
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5.2.5 Candidate Machine Learning techniques

One of the limitations of this research is the choice of the applied machine learning
techniques. The entire field of machine learning is relatively young, newer and newer
techniques still emerge every day. For resolving the problem of this research, many
different machine learning techniques could have been used with countless tuning
possibilities. Presenting them all is infeasible and not very meaningful. Therefore,
I had to make a selection from the available techniques. The criteria for model
selection was a balance between performance and interpretability. To establish the
balance, both more flexible and more complex models were selected.
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Chapter 6

Conclusion

6.1 Conclusions

This chapter presents the conclusions drawn based on the evaluated results. First,
some general conclusions are drawn, then the Main Research Question and the
related sub-questions are answered.

6.1.1 General conclusions

As a general conclusion, it can be said that different machine learning techniques
ranked the importance of biomarkers -reflecting the perceived strenuousness of dif-
ferent exercise levels- differently.

Using the top 10 most expressive biomarkers selected by each model, 39 different
biomarkers were selected out of the total 64. The most frequently occurred one was
”factord” selected by 7 models. Biomarkers ”trp” and ”CORT” were both selected
by 6 of the models. ”ifabp”, ”LEUCO” and ”BICARB” were selected by 5 of the
models.

Tree-based models showed some similarity in both the selected biomarkers and
their relative importance. The most frequently occurring biomarkers were: ”CORT”,
”ifabp” and ”LEUCO” selected by all tree-based models. ”LYMFO” and ”NEU-
TRO” were selected by 4 of them and ”factord” was selected by 3 of the models.

Logistic regression selected slightly different biomarkers, than the rest of the
models, however it provided the best accuracy.

Lasso selected entirely different subsets of biomarkers using two different values of
the lambda parameter. The subsets selected by ridge resgression, using two different
values of the lambda parameter, show more similarities with 7 out of 10 biomarkers
selected by both versions.

In general, the predictive power of the applied machine learning techniques do
not vary much. Table 4.8 shows the different performance measures of the applied
machine learning techniques.

As it can be seen, Accuracy values vary within the range 71% - 84%. Sensitivity
measures show higher variance including values between 83% and 100%. The speci-
ficity measures of the models are significantly lower with values between 13% and
39%. This can be caused by the class imbalance, as roughly 3/4 of the cases be-
longed to the majority class, that was considered ”positive”. This is also expressed
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by the ”Prevalence” measure.

6.1.2 Answers to the Research Questions

The Main Research Question of this research was:

Main RQ: “Can we devise a method applying machine learning techniques that
relate levels of exercise to self-perceived intensity of training?”

The answer to the main research question is yes, we can devise a method applying
machine learning techniques to resolve this problem.

As described in this thesis, measures of the Borg scale were used as labels to
express the self-perceived intensity of different exercise levels. Using a label enabled
to approach the problem in a supervised way. This resulted in applying different
machine learning techniques for selecting subsets of the biomarkers.

SQ1: “Which machine learning techniques can be used to find a minimal set of
biomarkers that relate levels of exercise to self-perceived intensity of training?”

To give an exhaustive answer to this question is difficult. The available spectrum
of machine learning techniques for such classification problems is vast.

The criteria for choosing the techniques outlined in this thesis was a balanced
mix of model performance and model interpretability. To establish the balance,
both more flexible, and more complex models were selected.

Furthermore I paid attention to apply different approaches for feature selection,
i.e. filters, wrappers and embedded methods. Table 6.1 shows the applied machine
learning techniques in this research.

Logistic regression
Random forest
Boosting
Decision tree with the Gini-index
Decision tree with Entropy
Recursive feature elimination on RF
Lasso using minimum lambda
Lasso using 1 standard error lambda
Ridge regression using minimum lambda
Ridge regression using 1 standard error
lambda

Table 6.1: Candidate Machine Learning techniques for feature selection

SQ2: ”Which machine learning techniques provide the best results in the scope
of accuracy, sensitivity and specificity?”

From the applied machine learning techniques, different ones provided the best
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results regarding the different performance measures. In the scope of accuracy, the
logistic regression model performed best with 78% of the cases predicted correctly.
The highest sensitivity, 97% was provided by the Random Forest model. The highest
specificity, 35% was achieved by the Decision Tree using the Gini-index.

SQ3: “Does applying feature selection improve the performance measures?”

The answer to this question is yes, applying feature selection improves the perfor-
mance measures. Recursive feature elimination on the random forest model yielded
a 81% accuracy. It was even outperformed by the Lasso on logistic regression with
its 84% accuracy. The sensitivity of the Random Forest model was outperformed
by the same model when Recursive Feature Elimination was applied on it. It gives
a 100% sensitivity, which is certainly overfitting (the model still uses 40 predictors,
see Figure 5.2). Regarding specificity, the Lasso with the minimum value of lambda
achieves 39%.

Regarding the area under the ROC curve, the best result was achieved using the
full logistic regression model with an AUC=0.72. This value is higher, than any of
the AUC measures provided by the applied feature selection techniques.

6.2 Future work

6.2.1 Domain specific problem

A logical follow-up step would be to independently evaluate the results with different
domain experts. The main aspects of this evaluation would be existing domain-
specific knowledge and the presented correlations between the measured biomarkers.

If different domain experts would interpret the results based on previously agreed
confidence intervals and significance levels, then their conclusions could be com-
pared. This way, selection bias of the machine learning techniques could be ac-
counted for. Final conclusions could be drawn with a higher confidence based on
these compared individual conclusions, which would increase the overall validity of
the experiment.

The aim of of this research was to understand why some exercise protocols are
perceived strenuous and what are the biomarkers that reflect it.

The subjects of the preliminary experiments were restricted to healthy young
men. This means, the capability to make generalized conclusions is limited. A
counter-pole is recommended to establish more solid benchmark levels of biomarkers,
based on which, further conclusions can be drown.

To this end, in follow-up experiment, individuals with a known disease problem
would go through the same protocols, and the same biomarkers would be measured.
This way, both the reproducibility and the validity of the research could be improved.

6.2.2 Data Science related problem

The available spectrum of machine learning techniques for resolving such classifi-
cation problems is vast. Depending on different goals in mind, different techniques
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can be proposed for the same problem.
The criteria for choosing the techniques outlined in this thesis was a balanced

mix of model performance and model interpretability.
A follow-up study is recommended, putting more weight to either model perfor-

mance or model interpretability. This way, the odds of finding the most expressive
biomarkers that relate self-perceived intensity of different exercise levels can be in-
creased.

To try to further improve the results, K-fold cross-validation could be performed
with different folds.
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Session Info

• R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu

• Running under: Ubuntu 16.04.3 LTS

• Matrix products: default

• BLAS: /usr/lib/libblas/libblas.so.3.6.0

• LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: caret 6.0-78, clusterCrit 1.2.8, corrr 0.3.0, DMwR 0.4.1,
dplyr 0.7.99.9000, factoextra 1.0.5, forcats 0.3.0, foreach 1.4.4, Formula 1.2-3,
gdtools 0.1.7, ggplot2 3.1.0, ggthemes 3.4.0, glmnet 2.0-16, Hmisc 4.1-1,
lattice 0.20-38, Matrix 1.2-15, pROC 1.13.0, purrr 0.2.5, readr 1.1.1,
reshape2 1.4.3, rpart 4.1-13, rpart.plot 3.0.4, stringr 1.3.1, survival 2.43-1,
svglite 1.2.1, tibble 1.4.2, tidyr 0.8.2, tidyverse 1.2.1, xgboost 0.71.2

• Loaded via a namespace (and not attached): abind 1.4-5, acepack 1.4.1,
assertthat 0.2.0, backports 1.1.2, base64enc 0.1-3, bitops 1.0-6, broom 0.5.0,
caTools 1.17.1.1, cellranger 1.1.0, checkmate 1.8.5, class 7.3-14, cli 1.0.1,
cluster 2.0.7-1, codetools 0.2-15, colorspace 1.3-2, compiler 3.4.2,
crayon 1.3.4, curl 3.2, CVST 0.2-1, data.table 1.11.8, ddalpha 1.3.1.1,
DEoptimR 1.0-8, digest 0.6.18, dimRed 0.1.0, DRR 0.0.3, foreign 0.8-71,
gbm 2.1.4, gdata 2.18.0, ggrepel 0.8.0, glue 1.3.0, gower 0.1.2, gplots 3.0.1,
gridExtra 2.3, gtable 0.2.0, gtools 3.8.1, haven 1.1.2, hms 0.4.2,
htmlTable 1.12, htmltools 0.3.6, htmlwidgets 1.3, httr 1.3.1, ipred 0.9-6,
iterators 1.0.10, jsonlite 1.5, kernlab 0.9-27, KernSmooth 2.23-15, knitr 1.20,
latticeExtra 0.6-28, lava 1.6, lazyeval 0.2.1, lubridate 1.7.4, magrittr 1.5,
MASS 7.3-51.1, ModelMetrics 1.1.0, modelr 0.1.2, munsell 0.5.0,
nlme 3.1-137, nnet 7.3-12, pillar 1.3.0, pkgconfig 2.0.2, plyr 1.8.4,
prodlim 1.6.1, quantmod 0.4-13, R6 2.3.0, RColorBrewer 1.1-2, Rcpp 0.12.18,
RcppRoll 0.2.2, readxl 1.1.0, recipes 0.1.2, rlang 0.2.2.9001,
robustbase 0.93-2, ROCR 1.0-7, rstudioapi 0.8, rvest 0.3.2, scales 1.0.0,
sfsmisc 1.1-1, splines 3.4.2, stats4 3.4.2, stringi 1.2.4, tidyselect 0.2.5,
timeDate 3042.101, tools 3.4.2, TTR 0.23-4, withr 2.1.2, xml2 1.2.0,
xts 0.11-2, yaml 2.2.0, zoo 1.8-4
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Appendix B

Decision Tree based on the
Gini-index

Figure B.1: Decision Tree based on the Gini-index
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Decision Tree based on
Information gain

Figure C.1: Decision Tree based on Information gain
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