User Stories In An Integrated Development
Environment

Final Version

Epic

User
Story
L.H.F. (Laurens) Miiter, L.h.f.muter@students.uu.nl
First Supervisor: S. (Sjaak) Brinkkemper, S.Brinkkemper@uu.nl
Second Supervisor: F. (Fabiano) Dalpiaz, f.dalpiaz@uu.nl

Master of Business Informatics
Utrecht University
17-11-2018

mailto:l.h.f.muter@students.uu.nl
mailto:S.Brinkkemper@uu.nl
mailto:f.dalpiaz@uu.nl

Content

1. Introduction 2
2. User Stories 17
3. Industrial Trends In Agile RE 32
4. Software Development Kits 43
5. Case Study 47
6. Designing requirement functionality 60
7. Implementing Requirement Functionality 75
8. Evaluating Requirement Functionality 89
9. General Conclusions 111
10. References 114
Appendix A: Interview protocol First Interview 121
Appendix B: Interview protocol Second Interview 123
Appendix C: Recycling Systems’ User Stories 124
Appendix D: The Story of ALAS 128

Refinement of User Stories into Backlog Items: Linguistic Structure and Action Verbs 129

1. Introduction

In an ever-emerging field of technology within the age of information, software development is starting to
become one of the most prominent disciplines within modern companies. While software related projects
take a reasonable share of the budget, software management becomes equally important. Hofmann and
Lehner (2001) even stated that the second biggest cause of software project failure is related to
insufficient requirements. Since Charette (2005) is convinced that nearly twenty percent of software
projects with a budget of more than ten million dollars fail, a firm's requirements management strategy
could be essential to stay aligned with the competition. Requirement management in this context stretches
beyond requirements themselves since a project can only succeed if every stakeholder can interpret the
requirement from his field of expertise. For example, it should be possible to derive the architecture,
documentation and test plans from a set of requirements where these artifacts coincide with one another.
In practice, many problems emerge from the misinterpretation of requirement, so projects with an unclear
start are more likely to fail (Hofmann and Lehner 2001).

In more recent work, data gathered from more than 228 companies spread over 10 countries in order to
find problems that practitioners experience when building large-scale software project (Méndez
Fernandez et al., 2016). Requirement engineering problems that often lead to project failure can be
summed in communication flaws between the project team and the customer, incomplete or hidden
requirements, underspecified requirements, communication flaws within the project team, and insufficient
support from the customer.

User Stories have already found their way into practice and are mostly used in Agile Methods to describe
functionalities in terms understood by customers. The format in which a requirement is represented is
fixed to the phase: “As a <role>, I want <goal/desire> so that <benefit>.” (Bourque & Fairley, 2014),
where role, goal, and benefit are related to the end-user of the required functionality. The main goal of
User Stories is to make a smooth transition into the next step in the development process. This could be
achieved by using the domain knowledge of a User Story in other activities along the way in order to
avoid waste in requirements gathering that becomes invalid before the work begins. This central role of
User Stories should also be represented in tools that support them. Thus, tools to support User Stories
must be flexible in making bridges between different steps in the development process. Another aspect of
User Stories is that they should contain just enough information so developers can estimate the effort to
implement a specified requirement. This aspect should be taken into consideration when a User Story is
written since both customers and developers should have a clear understanding of what is to be delivered
since an acceptance procedure is written by the customer to determine when the goals of the User Story
are met.

Although User Stories are already used in practice, there is not much scientific research done about them.
Also, the lack of tooling to support User Stories to their full potential is not widely distributed. To tackle
the problem of implementing functionality to support User Stories for requirement management and
design of software projects, this thesis will describe the implementation of a tool to relate User Stories

with software development environments. When the tool to support User Stories is in place, a study is
conducted to evaluate the usability of User Stories in practice using the implemented tool.

By looking at the process of gathering requirements and management surrounding those requirements,
one can state that the success or failure of a project can be influenced. Moreover, when placing the
requirements at the foundation of the architecture of a project a strong basis can be created for software
projects, reducing the chance of failing and improving the quality of a project. Since this management of
requirements and the architecture of the functionalities of a project need to be structured, the software
development environments should contain a well-structured process of gathering requirements and
implementing them.

In this study, I am going to investigate the features to support the development process and how these
features can help in forming a project within an integrated development environment.

MRQ: How can requirement management and architecture functionality for software product
development be implemented in an integrated development environment?

To narrow down this main research question, the MRQ is divided into five sub-questions:

RQO-1: What are the characteristics of contemporary integrated development environments?

RO-2: Which vision and characteristics would best describe the requirements and architectural demands

within integrated development environment?

RO-3: What design would best suit the requirements and architectural functionality of this vision in a

development environment?

RO-4: How to implement these functionalities for development support systems?

RO-5: How to evaluate these functionalities for development support systems?

To dive into the topic of implementing a tool related to User Stories in large-scale software development
kits, this thesis is divided into four different chapters.

The first section is about User Stories and how they are related to different techniques and methods that
are used in practice.

The second section takes us on a short tour through the industry and describes current trends related to
requirement engineering and software architecture.

The third section is about the characteristics of systems to support the development process. Multiple
tools and software development kits will be compared to map the current situation of requirement
management and to decide in which environment the User Story tools will be implemented.

The three theoretical sections are linked back to practice in the fourth section, where five interviews
describe the perspectives of experts from different software development companies on requirement
engineering.

The fifth section is devoted to which vision would best suit the requirements and architectural needs of
development process supporting systems. Where a vision is created about how software development
should be integrated with the use of User Stories. This section also describes how a design of
requirements functionality for development support systems would look like.

After the requirements are clarified, a set of implementable requirements is derived in the sixth section.
Design decisions related to the User Story supporting tool are also discussed in this section.

Next, the implementation of the clarified features is discussed in the seventh section. The look and feel of
the tool appear in this section as well as the technical design of the tool.

In the eight section, the tool is evaluated by means of experts interviews and architectural comparisments
with finished projects.

1.1. Research Method

The main goal of this study to implement supporting tools in a practical context. Since there is not much
literature available about tooling to support requirement management in practice, companies have to
conduct studies themselves in order to find supporting tools in helping to manage requirements. To
address this problem, the main research question is stated:

MRQ: How can requirement management and architecture functionality for software product development

be implemented in an integrated development environment?

In order to answer this questions, five sub-questions are formulated which are answered using different
methods of research, where the overall design of this study is based on the design cycle of Wieringa.

The design cycle of Wieringa contains four phases, which are related to research question one to four:

Problem investigation (RQ-1 and RQ-2)
Solution design (RQ-3)

Design validation (RQ-3 and RQ-4)
Solution implementation (RQ-4)

il S

After the last step of this cycle, another cycle starts by evaluating the implemented solution, which is
discussed in RC-5:

5. Problem investigation (RQ-5)

While the base of this study is the design cycle of Wieringa, there are also two sub-cycles where
interviews are used to gain more knowledge about the practical aspects of the research context, as seen in
figure 1.1.

Solution implementation Problem investigation
- Localinstall
- Implementation Relate Creatg
- Validation findings to interview
- Push to feature branch literature protocol
Analyse Conduct
finding Interview
Design validation Solution design
- Discussion with experts - Vision
- Select features to - Functional design
implement - Technical design

Figure 1.1: Research methods summary, based on the Regulative cycle of Wieringa (2009).

1.1.1. Research Questions

RQO-1: What are the characteristics of contemporary integrated development environment?

In order to get insights into the characteristics of development environments, multiple tools that are used
in practice are analyzed using product information and reviews. From these sources of information, a
matrix is constructed to describe the key features of each tool and compare those features with each other.
This question is limited to three widely used tools, Jira, Github, and Gitlab.

RO-2: Which vision and characteristics would best describe the requirements and architectural demands

within integrated development environment?

This question is answered by means of conducting interviews with experts and a literature study. The
expert-interviews are conducted at different companies using a semi-structured interview. A protocol is
created where questions regarding requirement management and architecture are stated. The goal of these

5

interviews is to get insights into how requirement management and architecture coincide with User
Stories at different companies.

Interviews will be conducted at five different companies that develop software products. These companies
are selected to be a diverse and representative sample of the development ecosystem. Ranging from large
companies with many products to small companies who depend mainly on a single product. The
semi-structured interviews provide some flexibility in additional questions regarding related subjects. The
main subject of the interviews is what tools, processes and artifacts are in place to support User Stories at
these companies, regarding requirement engineering and software architecture.

The literature study is devoted to the theory behind User Stories and how User Stories are used in
practice. Combinations with different techniques are studied and how the progress and completion of a
project can be measured. A snowballing technique is then used since there are not many papers available
on User Stories in practice. The literature of Gram Lucassen in used as a starting point from where other
papers can be found using the references. These papers are ordered by relevance and quality were the
most relevant papers with the highest quality are then used to find more papers, and so forth.

Finally, the information from the interview is combined with the information gathered from the literature
study to find overlapping features that serve as input for the next research questions.

RO-3: What design would best suit the requirements and_architectural functionality of this vision in a

development environment?

Designing the tool, related to RC-3, is done by using the characteristics from RC-1 and RC-2. The tool
will contain multiple elements to support different phases of a project, with respect to the overall vision of
requirement management, as described in RQ-2. Within the design of the development support system,
there should also be room for the larger picture. User Stories, for example, can be part of an epic with can
be part of a Job. On the architecture side, there are different levels of detailing, from overall product
description to features and class descriptions. Furthermore, every feature should be self-contained or
independent for situational choices defined by the end-user. Also, a metadata model is created to provide
a functional overview of the design decisions.

RO-4: How to implement these functionalities for development support systems?

The implementation of the tools will be done using the open source version of an existing platform, which
makes it more easy to review the tools in RC-5. When the design of the supporting system is done, the
tool will be implemented so it can be tested in a practical setting. Gitlab is the preferred platform for the
implementation, because of its infrastructure, open source character, technical possibilities, and
community support.

RO-5: How to evaluate these functionalities for development support systems?

Evaluating the tools, implemented in RC-4, will be done by asking experts to review the tools and to give
their perspective on the question if these tools can contribute to the workflow in practice. Three finished
projects are also analyzed, where the implemented tool is used to analyze the User Stories related to the
projects, this analysis is then compared with the architecture of these project.

1.1.2. Milestones

1.1.2.1. Milestones per Phase

The milestones for this research project are described per phase of the Wieringa design cycle, by making
use of a process deliverable diagram (PDD) as described by van de Weerd and Brinkkemper (2009). The
activities and deliverables are displayed in figures 1.24 - 1.2E and the activities are described in fables
1.14 - 1.1E.

Phase One (Problem Investigation)

The main objective of this phase is to find gaps in the functionalities supported by the most used SDKs at
this moment. Existing features are displayed and compared with recommendations of SWEBOK
recommendations.

ract SDK Characterist .
sokusT | o1 SDK !
ST
Select SDK's e

| S———

L

CHARACTER LIST|[K>———— CHARACTER

Find Characteristics J====================ceceeod-—--- >
1
\I/ (Select Criteria }-- ----- > 8
CRITERIA LIST
(Merge Characlerisucs> ll TR
o 1.°

(Weight Criteria F------3f 1 1
WEIGHT > CRITERIUM
O 1
?) ... SDK FEATURE
Create feature matrix il

W

Compare criteria and
characteristics

Calculate selection 1
soone
elect SDK with highest
score

Figure 1.2A: PDD of the first phase, where an SDK is selected to implement the new features of this
study. The main deliverable of this phase is the SDK FEATURE MATRIX, which contains the most
important features of the existing SDKs and a comparison between the most used SDKs.

MS1-1-1 Extract SDK Select SDKs Pre-select three SDKs based on their exposure on
characteristics the web and familiarity with practitioners.
Find By using the SWEBOK recommendations and
characteristics online documentation, find the most prominent
features of current SDKs.
Select criteria Make a selection of characteristics and
recommendations to make selection criteria for an
SDK.
Weight criteria ~ Give a weight to all criteria depending on the
importance of the criterium.
MSI1-1-2 Create Create a matrix to describe the key features of
feature matrix development platforms
MSI1-1-3 Select SDK Compare For every preselected SDK, fill-in the feature
criteria and matrix to determine the selection score.
characteristics
Calculate Calculate for every SDK its selection score by

selection scores

multiplying every criterium score with its weight
and then sum these values.

Select SDK Make a selection of an SDK, based on the highest
with the highest criteria score.
score

Table 1.1A: Activity table related to the PDD of this phase, the activities are grouped into milestones with
descriptions. Every milestone has a number corresponding with its phase, related research question and
unique identifier.

Phase Two (Solution Design)

This phase consists of two different parts, a vision (figure 1.2B) is proposed which serves as input to
design features to realize (figure 1.2C) this vision. This ordering has been chosen because of a feedback
loop between phase two and phase three. The PDD shows that the design has to correspond to the existing
style guides and has to be checked by experts. If the design does not fulfill the expectations of the experts,
adjustments can be made which will take the process back to the second phase.

!

Literature study
User stories

Literature study
Industrial trends

Create Interview

protocol

INDUSTRIAL 1.7
___ TREND
"" > SCIENTIFIC 1.7
INTERVIEW RECOMENDATION
QUESTION
h 1.°
INTERVIEW 1
proTOCOL | [<
| S 1
N1 1.
COMENY [ko———=+ company
INTERVIEW ~ 1 1.
RECORDING
INTERVIEW
h ANSWER
TRANSCRIBED ||~ -
INTERVIEW 1
1.7
DEVELOPMENT 1
—— > REQUIREMENT
LIST
—
Q1 1
SDK 1
REQUIREMENT
LIST
1
1
N 1
VISION <>

Figure 1.2B: PDD of the second phase (part one), where case studies are conducted which, together with

a literature review form a vision.

MS2-2-1

MS2-2-2

MS2-2-3

MS2-2-4

Literature study
industrial trends

Literature study
User Stories

Case study

Relate

Create an
interview
protocol

Select
companies

Conduct
Interviews

Transcribe
nterviews

Literature study about trends in the software

industry

Literature study about User Stories

Create an interview protocol

Select five different companies to conduct an

interview

Conduct the interview at each of the five

companies

Transcribe the conducted interviews

Relate the information from the interviews to the

interviews to
literature study

MS2-2-5 Extract SDK
requirements
MS2-2-6 Define a vision

theory

Extract characteristics from theory and interviews

Use the characteristics to define a vision

Table 1.1B: Activity table related to PDD 1.2B, where a case study and two literature reviews are used to

define a vision.

Phase Three (Design Validation)

The PDD in this phase contains the second part of phase 2 (designing the SDK features) because a

feedback loop is created when the design does not meet its standards (phase 3).

esign SDK features

Determine viewpoints

Select architectural
language

Formally define
features

A

[Experts propose changes]

Select features to
implement

Describe features as -_"3 ______)
user stories

Find style guide e)
Find development B N
documentation

LI

USER STORIES

1

USER STORY

STYLE GUIDE I 1

DEVELOPMENT
DOCUMENTATIONE 1

VIEWPOINT
LIST

>
ARCHITECTURAL
LANGUAGE 1

CONCEPTUAL
DESIGN

| S—————————

FINAL DESIGN

|

IMPLEMENTABLE
SDK FEATURES

— VIEWPOINT I

Q1

DESIGNED SDK
FEATURE LIST

L

| e—

1.t

DESIGNED SDK
FEATURE

Figure 1.2C: PDD of the SDK features design from the second phase (part two) and a feedback loop
where changes can be made in the design of the features when they do not correspond to the Gitlab style

guide or the expectations of Gitlab experts.

MS2-3-6 Design SDK

features as

Describe vision

Use the vision of MS2-2-6 to define a set of User
Stories, to concretize the vision.

10

User Stories

Find a style
guide

Find
development
doc.

Determine
viewpoints

Select
architectural
langue

Formally define

features
MS3-3-1 Check features
with style guide
MS3-3-2 Revise design
with experts
MS3-3-3 Select features
to implement

Table 1.1C: Activity table related to the PDD of this phase, the design of SDK features and a selection

Find design documentation and style guides for
Gitlab.

Find development documentation and
recommendations for developing in Gitlab.

Determine which viewpoints would best describe
the technical and functional essence of the
features.

Select an architectural language to describe the
chosen viewpoints.

Describe these features in an architectural
language

Compare the design with the style guide of
Gitlab.

Check if the design fits the expectations of
Gitlab.

Select features to implement

which of these features will be implemented in the next phase.

Phase Four (Solution Implementation)

Implementing the features is done during the first activity, after which a check takes place to test if the

feature implementations meet their expectations.

11

mplement features

Prepare local ..,.3 _________________
environment

(Locally install Gitlab
Install dependancies |}

Find supporting

<

libraries

Write source code

Wirite unit tests

______________________ N CODE
LIBRARIES

PREPARED LOCA:I 1
ENVIRONMENT I
1

GITLAB
INSTALLATION

GITLAB 0..°
DEPANDANCY

0..°

CODE <>1 Dependants on P>

BASE

UNIT 1 Dependants on P>
Ko—————————

TESTS

[Features do not fit design]

[else]

Check if features
fit design

Select features
to evaluate

IMPLEMENTED 1
FEATURES

1.0

FEATURES TO 11
EVALUATE

IMPLEMENTED
FEATURE

Figure 1.2D: PDD of the SDK features implementation. When the features are implemented, a first check
will take place in order to spot bugs or unexpected behavior.

MS4-4-1

MS4-4-2

MS4-4-3

Implement
features

Check if
features fit
design

Select features

Prepare local
environment

Locally install
Gitlab

Install
dependencies

Find supporting
libraries

Write source
code

Write unit tests

Check system requirements and make a virtual
machine for the development process, possibly
with a simple local server to run the local
distribution of Gitlab.

Install the community distribution of Gitlab to
implemented the features.

Install dependencies for running the local
distribution of Gitlab (for example, programming
languages like GO and Ruby on Rail).

Find libraries in Ruby or Go that could be of use
in implementing the features.

Implement the selected features as proofs of
concepts

Write simple unit tests to spot obvious bugs.
Check if the implemented features do what the

User Stories prescribe.

From the implemented features, select the

12

to evaluate

features that are useful for evaluation.

Table 1.1D: Activity table related to the PDD of this phase, the implementation and selection of features

for evaluation.

Phase Five (Solution Evaluation)

The final phase is dedicated to evaluating the implemented features by Gitlab experts. When the
evaluation of this phase is completed, there might be room for improvements which provide a good input

for future research.

(Select expoerts r

valuate features
Select evaluation Y}
criteria
Y

Plan evaluation day |1

.

Discuss features with
experts

Extract future
improvements

EVALUATION
CRITERIA LIST

| S————

DISCUSSION

IMPROVEMENTS
LIST

®

DY

| RESEARCH PLANS

FUTURE

EXPERS

EVALUATE
CRITERIUM

: EXPERT I

I 1
EVALUATION DAY

FUTURE
IMPROVEMENT

Figure 1.2E: PDD of the feature evaluation.
recommendations in future research.

MS5-5-1

Evaluate
features

Select the
evaluation
criteria

Select experts

Plan evaluation
day

Discuss features
with experts

Extract future

The implemented features serve as input for

Select the criteria that will be used to review the

implemented features.

Select experts who use Gitlab and invite them to

the university for a discussion on the

implemented features.

Plan a meeting for the discussion and reserve the
room with the interactive screen.

Discuss the implemented features with the Gitlab
experts, using the prepared criteria.

Extract a list of future improvements and features

13

improvements from the expert-discussion.

MS5-5-2 Plan future Make plans for future adjustments and new
research functionalities. This future research plan holds a
list based on recommendations by the
expert-discussion.

Table 1.1E: Activity table related to the PDD of this phase, where the implemented features are evaluated
in an expert discussion at the University.

1.2.2.2. Gault Chart

A timeline is in form of a Gault Chart displays the milestones and the expected date when they are
archived, the color indicates if there is a concrete deliverable associated with the millstone (blue if the
milestone results in a deliverable and green otherwise).

March April May June July August September October
2018 2018 2018 2018 2018 2018 2018 2018
Phooe 1
Phase 2
Phase 3
Phase 4
Phase 5

Figure 1.3: A Gault chart to describe the timeline of this research project, the milestones are displayed in
two different colors (blue when the milestone results in a concrete deliverable and otherwise green)

1.2. Research Approach

This research contains three perspectives of the User Stories subject, which form the literature review.
The core theory about User Stories and the industrial trends together with the five interviews as
case-studies form the foundation of the vision.

14

From the vision, a number of desired features is extracted as input for the design of tools to fulfill
requirement engineering and architectural needs in practice.

The case studies serve also as input for available features and tools to support the development process,
which forms the basis of the design, together with the desired features.

Some of the features from the design are implemented in the realization phase, which is evaluated in the
next phase. Not all features will be implemented and some features will only be implemented as a proof
of concepts, to give experts an idea of how these features might work in practice, so new research ideas
can be extracted.

User Stories Industrial Case
Theory Trends Study
(MS2-2-2) (MS2-2-1) (MS2-2-3, MS2-2-4, MS2-2-5)
Vision
(MS2-2-6)

; Available
Desired Features
(MS2-3-6) Features
: ! (MS1-1-1, MS1-1-2, MS1-1-3)

Design
(MS2-3-6, MS3-3-1, MS3-3-2, MS3-3-3)

Realisation
(MS4-4-1, MS4-4.2, MS4-4-3)

Evaluation
(MS5-5-1, MS5-5-2)

Figure 1.3: Summary of the research approach, with milestones included.

1.3. Relevance

By getting more insights into the practicality of User Stories in practice, and to provide new relevant
techniques in analyzing requirements, this study can be useful from practice and scientific perspective.

15

1.3.1. Scientific Relevance

Since scientific research depends on the evolution of the industry, the industry will always be one step
ahead in the matter of requirements and architecture. For that reason, it is relevant to study the industry
and build studies uppon problems that are relevant at this time. For example, it is common that research
literature is based on requirement engineering conferences for practitioners. It is, therefore, possible that
problems that are interesting for scientific research could be behind real-life problems, for example, the
industry could have adopted a technique or standards whereas the scientific community is posing new
solutions. In order to adopt new solutions time, effort and money can play a role, since transitions are
costly most of the time, especially in large organizations.

Another point of interest for the scientific relevance of this research is the creation of new methods to
automatically analyze requirements, thus opening new grounds in combining natural language processing
with requirement engineering. One of the research gaps, for example, is a supported template for writing
tasks. There are a lot of template and recommendations related to User Stories in practice, but tasks that
are extracted from these User Stories are often composed by scrum teams and are not used in the rest of
the project. All information contained in tasks is therefore ignored in the requirement engineering process.

Next to templates and recommendations of tasks, there are also new methods described in this research,
since the design of new features is based on and fed back into practice. New workflows to optimize
processes are part of the design.

1.3.2. Practical Relevance

In an ever competing market, it is difficult to stay ahead of the competition. For this reason, it is essential
for companies to move forward in adopting better techniques to reduce project costs and to make more
efficient use of their resources. Requirement management and architecture are starting to play a more
important role since most projects fail by unclear or unrealistic expectations of the project scope.

Another interesting problem is the communication between disciplines in software projects. For example,
the customer can have a very different understanding of what is build than the software architect, who
look at a more technical level to the requirements.

To solve both problems, User Stories in an agile setting are looking promising and are used a lot in

practice, however, since there is a lack of scientific support on the effectiveness on these User Stories in a
larger context in practice, there could improvements waiting to be found.

16

2. User Stories

Requirement management is a well-known topic in development processes. Since most of the delays are
caused by the flaws in requirements analysis or project planning (Wang et al., 2014), it could be useful to
improve processes related to these topics for companies. In practice, most of the attention is given to
project planning, followed by requirements analysis, as observed by experts (Wang et al., 2014). Another
measure indicated that companies with high customer satisfaction give priority to requirement analysis
and testing.

Wang et al. (2014) indicated that User Stories play a prominent role in requirements elicitation, next to
interviews and models (like business process models and goal models). Requirement representation is
also often related to User Stories in practice, but User Stories do not serve many purposes in requirement
analysis in practice.

User Stories are well described by Mike Cohn (2004), who defines User Stories as the description of
functionality from a user or purchaser of a software system.

Although popular tools to support requirement management, such as JIRA (2018), Rally (2018) and
ScrumWorks (2018), have supportive features for User Stories, there are no modules in place for
analyzing User Stories for requirements.

2.1. Background of User Stories

User Stories are most common in agile development processes. Although the method and instrumentation
related to User Stories differ from organization to organization, a common denominator can be identified
within the requirement engineering. Such a common denominator is described by Cohn (2004), where
User Stories belong to the following areas: gathering, modeling, estimation and planning, acceptance
testing and communication.

The role of User Stories in requirements gathering is to provide a way of communication between
different stakeholders (Cohn, 2004). Projects with a lot of requirements are often defined by a set of User
Stories, where a project manager can, for example, play a central role in transforming input from other
stakeholders into User Stories.

Related to requirements gathering is the modeling area, where different roles, related to a feature or
module are modeled. Since User Stories often serve a default format where a role is coupled to a
requirement, they form a good input for modeling an application. The process of modeling can be
automatized by using natural language processing techniques (Robeer, et al., 2016).

In estimating project sizes and making time estimates, User Stories can provide valuable input. Although
most of the estimation and planning work is done by hand, there are some tools available to support this
work which are listed in figure 2.1.

17

=
e ————— Planbo nyP Des gilo fo ersionOne
—

Low-level iteration planning
Decomposition of a user story into tasks + Kl + +

Task r

ibility +

Lg

Estimation of task duration and remaining time

+

Progress tracking
Velocity tracking + + +
Chart of planned and actual velocity - + + +
Release burndown chart - - + - +
Release burndown bar chart = - + - +
Iteration burndown chart + + + + +
Daily burndown chart - + + =~ +
Additional features + - + + o

Figure 2.1: A comparison of five popular tools to support low-level iteration planning (Dimitrijevic et al.,
2015)

When a system is tested for acceptability, the system is evaluated for compliance with the business
requirements and whether the system is acceptable for delivery (Ammann & Offutt, 2016). In an agile
development environment, User Stories are often used to design these tests, since User Stories provide an
easy to read overview of the systems requirements. Moreover, when there is no documentation about
requirements available in existing systems, User Stories are sometimes created to structure the acceptance
testing process (Ammann & Offutt, 2016).

The final area to which User Stories belong to is the field of communication. While communication is an
abstract term in the process of developing software, it is mostly applied to exchanging requirements
between different stakeholders (Cohn, 2004). A customer, for example, might want to know which
features are going to be implemented in an easy to understand language, while a developer wants to know
can make use of User Stories in the implementation process.

2.2. Core Theory

The academic interest in User Stories has resulted in common activities and components, that can
contribute to the analysis of User Stories for an academic perspective. Common researches methods, like
textual analysis and expert interviews, are used to find common grounds in the practical application of
User Stories.

2.2.1. Common Ground in User Stories

Common grounds in the practical usage of User Stories can be found in activities related to User Stories
and the structural components of which a User Story consists.

18

2.2.1.1. Activities Related to User Stories

Lucassen et al., (2015) extracted three activities related to User Stories; creating, prioritizing and
ensuring quality.

Writing down requirements is in some cases not more than a short description of a required functionality.
However, when a semi-structured template is used to compose a User Story, a door is opened towards a
feature description in natural language which can also be interpreted by a system. Because of this
practical advantage, templates for User Stories are gaining momentum (Lucassen et al., 2016). The
default template for constructing User Stories within this study can be described as:

”

"As a <role>, | want <goal>, so that

In this template, a role can refer to a person interacting with the system, the goal refers to the desired
outcome of this interaction and benefit serves as an optional parameter to include an advantage of the
interaction, (see also User Stories Components).

Next to writing User Stories, project managers or customers can also prioritize them. Since customers
often have the best position to express the desired features of a project, they are commonly involved in
prioritizing User Stories. In most cases, this prioritization is based on the question which requirement
adds the most value to the organization (Cohn, 2004).

Related to both composing and prioritizing User Stories is the quality assurance of a story. Since errors
in requirements contribute significantly to the total software errors (Basili & Perricone, 1984), a quality
framework is a necessity to compose informative User Stories which give a well-formed overview of a
project. Moreover, when high-quality User Stories are constructed, the textual analysis of these stories
becomes more accurate, which can improve requirements analysis (Lucassen et al., 2016).

2.2.1.2. User Stories Components

To ensure high-quality User Stories, there are three characteristics of a User Story:

e A User Story should contain a short description of the story used for planning.
e Conversations about the User Story should be in place to discover the requirement details.
e The story should contain acceptance criteria (Cohn 2004).

These characteristics are translated into four different components that make a quality User Story: a
format, a role, means and an end (Lucassen et al., 2015).

A format can be described as a predefined template or skeleton to depict the conceptual format of a story.

A format serves as the foundation to create a clear relation between role, means, and end (Lucassen et al.,
2015).

19

A role defines a single actor per User Story. A role can be part of a larger hierarchy, for example, an
"editor" is a type of "user" (Lucassen et al., 2015).

Means describe the main goal of the User Story, which is displayed as desire (depicted in a template as "I
want" or "am able"), also the action related to the requested feature can be part of the mean (Lucassen et
al., 2015).

The end of a User Story can serve three different purposes: clarification of the means, form a bridge to
another functionality and the addition of a quality measure to the User Story (Lucassen et al., 2015).

2.2.2. Conceptual Model

Next to extracting characteristics and components related to User Stories, Lucassen et al. (2015) also
found a relationship between those components which form the basis of a conceptual model for User
Stories, see figure 2.2.

L Indirect
Adjective object
Subject Action Verb Direct Clarification Quality Dependency
Object
TEALEETT S 5 e
Means End

| 1

0.*

1 1
Role ﬁo User Story 0—1 Format
1~
has

Epic

Figure 2.2: a conceptual model for User Stories (Lucassen et al., 2015)

The conceptual model shows that every User Story should have one role, one format, and one
means-component. The end-component, however, can occur multiple times in a User Story, for example
when the end describes a quality aspect and a dependency. Since user stories can have a common theme
or the features related to different stories can be part of the same module, the term Epic is also included in
the model. An Epic depicts a large User Story, which can be broken down into smaller implementable
User Stories (Lucassen et al., 2015). In practice it is also common to break down a User Story into smaller
implantable tasks, tasks are not well-known jet in the scientific community, so there no task-element

20

included in the conceptual model. The task-gab is also further investigated during this research and can be
found in section 2.5 Refinement to Backlog Items.

2.2.3. Templates

A well-known format that is used to describe User Stories has been described by Lucassen et al (2015):

“As a <role> [want to <goal> so that

For example:

As a project manager, I want to visualize requirements,

so that 1

There are many other formats used in practice, summarized by Wautelet et al. (2014). In order to find
common ground in multiple formats, Wautelet and colleagues conducted a research where they found 65
different formats to describe User Stories, these formats could then be analyzed were three dimensions
where distinguished; WHO, WHAT and WHY.

The who-dimension can refer to a role, user or actor. According to Wautelet et al. (2014), a role refers to
an abstract characterization of the behavior of a social actor while a user is a person that uses the systems
functionality and an actor is an entity that carries out actions to achieve goals. While the term actor is
used to describe the who-dimension, it has no semantic relevance since it is closely related to role,
therefore Wautelet et al. excluded the term actor. Also, the user is excluded since it is only used as an
instance of a role. Therefor Wautelet et al. concluded that the who-dimension only consists of the
role-term.

Wautelet et al. (2014) extracted four terms related to the what-dimension. The candidates where: Goal,
Feature, Functionality, Capability, Task, and Activity. The goal is subdivided into a hard-goal, which is a
condition or state that the stakeholder would like to achieve, and a soft-goal with is a condition or state
that the actor would like to achieve. Feature and functionality were semantically to closely related so
functionality was merged in the term feature, but for the what-dimension, the feature-term was too
high-level so Wautelet et al. dropped the term anyway. Furthermore, task and activity where overlapping,
so Wautelet et al. excluded the activity-term. So for the what-dimension, Wautelet et al. ended-up with
hard-goals, soft-goals, capabilities, and tasks.

The why-dimension contains the same elements as the what-dimension (hard- and soft-goals and tasks)

and also contains capabilities. Since capabilities, are not necessarily expressed in a direct manner, like in
the what-dimension, Wautelet et al. posed to merge the capabilities-term into tasks.

21

By making use of a template, low-level User Stories can be used to construct a higher level goal net
model (Lin et al., 2014). With a goal net model, it becomes more easy to communicate with stakeholders,
enabling a Goal-Oriented Requirement Engineering also known as GORE (Anwer, & Ikram, 2006), where
User Stories are clustered into high-level goals, see figure 2.3.

™ /"""_\
A Instruct |
to ship ./

—

R .
Y Send 1\ / Check
1shipping lisl/ inventory /
e N

f@ayhem(}
i preducts Ve

TN

Figure 2.3: An example of a Goal-Oriented Requirement Engineering (GORE) diagram (Ntt-review,
2018).

Another application of User Stories which makes use of the proposed template is generating test-script
(LandhauBer & Genaid, 2012), where a test script is contracted by using three elements: preconditions
(Given), actions (When), and expected results (Then). In their paper, LandhduBler & Genaid present a
tool that builds an ontology to link User Stories with code-artifacts, creating reusable test-steps in the
testing phase.

Feature: Sign up
Sign up should be quick and friendly.
Scenario: Successful sign up

New users should get a confirmation email and be greeted
personally by the site once signed 1in.

Given I have chosen to sign up

When I sign up with valid details

Then I should receive a confirmation email

And I should see a personalized greeting message

Figure 2.4: Example of behavior-driven development, using the given-when-then- template (Wynne,
Hellesoy & Tooke, 2017)

22

2.2.4. Quality Framework

Even in the early day of development, scientists started to realize the significance of requirement
management on software projects (Basili & Perricone, 1984). Next to improving techniques and methods
related to requirement management, also quality frameworks for these techniques found their way into the
development process. For methods related to User Stories, this meant that researchers like Boehm (2000)
distinguished four requirement engineering criteria: completeness, consistency, traceability, and
testability.

Although the criteria from Boehm (2000) serve as a good starting point, his criteria are too general to
apply on a specific method like User Stories. A more specific alternative came from Wake (2003), who
used the INVEST (Independent, Negotiable, Valuable, Estimable, Small, Testable) verification framework
for agile requirements and applied it to stories, where tasks from these stories should meet the SMART
(Specific, Measurable, Achievable, Relevant, Time-boxed) criteria, also described by (Kavitha, &
Thomas, 2011).

On the User Story perspective, Heck and Zaidman (2014) proposed a different approach by using a
verification framework for agile requirements containing the criteria completeness, uniformity and
conformance and expand these criteria to ensure the quality of User Stories. According to the expansion,
posed by Heck and Zaidman, a User Story should contain the basic elements (role, activity and business
value). Instead of summary and description, the required elements were acceptance criteria or acceptance
tests to verify the story instead of rationale, optional elements can be included if the team could agree to
more detailed attachments to certain User Stories for higher quality, the stories uniformity is met by
following the standard of user voice form and lastly, the User Stories should follow the INVEST criteria
es described by Wake (2003).

Lucassen et al., (2015) took the quality frame even a step further by looking at quality criteria from

different angles, syntax, semantics, and pragmatism which are described in the Quality User Story
(QUS) frame, see figure 2.5.

23

Atomic

Syntactic / Minimal
_ Well-formed

Conflict-free

Conceptually sound

Semantic
Problem-oriented

Unambiguous

User Story Quality

Complete

Explicit dependencies

Full sentence

Pragmatic Independent

Scalable

Uniform

Figure 2.5: Schematic representation of QUS (Lucassen et al., 2015).

In order meet the QUS syntax criterium, a User Story should be authomic (describes only one feature),
minimal (limited to a role, means and ends) and well-formed (describes at least a role and a means).

The semantic QUS criteria state that a User Story is conflict-free (not inconsistent with any other User
Story), conceptually sound (means only express a feature and ends only express a rationale),
problem-oriented (describe a problem and not a solution to it) and unambiguous (just one interpretation).

Lastly, pragmatism QUS criteria are expressed as complete (set of User Stories should result in a
feature-complete application), explicit dependencies (linkage to unavoidable, non-obvious dependencies),
full sentence (well-formed full sentence), independent (self-contained and is avoiding inherent
dependencies on other User Stories), scalable (coarse-grained requirements that are difficult to plan and
prioritize are avoided), uniform (consistency in the User Stories template) and unique (duplicates are
avoided).

In addition, Lucassen et al., (2015) also provided some guidelines in writing User Stories by providing a
tool for an automated quality check, AQUSA (Automated Quality User Story Artisan).

24

“As a Visitor, | want to supply my personal details
and specify my preferred payment method”

v
AQUSA

[-y
Unique

no duplicates as arole and mea

Minimal }/] [Uni;orm V

no unnecessary tex llows the template

v

A “As a Visitor, | want to supply my personal details §
and specify my preferred payment method”

error

j
Well-formed

Figure 2.6: Impression of the AQUSA tool to check the quality of a User Story (Lucassen et al., 2015)

As shown in figure 2.6, the AQUSA tool displays the User Story and provides feedback if the story does
not meet the QUS criteria.

2.3. Applications For User Stories

The practical applications of User Stories reach beyond the description of requirements. In the world of
natural language processing and automated clustering, there are more applications for User Stories in a
development setting. Applications like time, effort and project size estimation receive an increasing
amount of academic attention.

2.3.1. Time Estimation

Story Points are often used to make time estimates for a project. Story Points were introduced by
Wilensky (1982) to characterize text that describes situations that constitute stories, based on content.
Cohn (2005) adopted Story Points in his methods for time estimates by taking the sum of the Story Points
assigned to each User Story that the team had completed during a sprint. Next to Story Points, velocity is
also often used to estimate the team’s effort based on Story Points and to indicate the team’s rate of
progress (Coelho, & Basu, 2012).

25

User Story Story Point

User story 1
s Pre-Planning
1
User Story Story Point
s
User Story 1 S
L}
1
1 Sprint Planning
Tasks Hours
Tasks
Ul Design 3 A
Development Task1 " 3

Figure 2.7: Example to estimate User Stories with Story Points (Tothenew, 2018).

2.3.2. Project Size Estimation

There are different methods in existence to make a project size estimation, Coelho & Basu (2012)
described four of them:

1. Source Lines Of Code (SLOC) where the number of lines of code serves as the main input for
estimation.

2. Function Points Analytics, which is an estimate based on multiple parameters like external in-
and outputs or inquiries, logical files and interface files which are counted manually.

3. Use Case Points methods are based on object-oriented methods, so there has to be a UML design
in order to make this estimation.

4. Story Points estimates where a development team assigns points to every User Story based on
the complexity and the expected duration of the implementation process. To work with Story
Points, the team should have experience in time estimation and have access to historical data.

A proposed technique to make team estimations is Planning Poker (Mahni¢ & Hovelja, 2012), where
every team member indicates the number of hours a specific task would cost, where only numbers from
the Fibonacci sequence can be used. These estimations are then discussed by the team.

Ali, Shaikh and Ali (2016) looked at Story Points from a wider perspective and compared them with the
Wideband Delphi technique, Component Estimation and Function Point Estimation where they showed
that using Story Points gave the most accurate estimates, since there are certain metrics captured in a story
(like weight, age, and complexity), its size could be estimated reliably.

26

2.3.3. Effort Estimation

Related to time and size estimates, project effort estimations (Ahn et al., 2003) indicates the project size
and time in more general terms. Effort estimation in an agile context is described by Schmietendorf,
Kunz, and Dumke (2008) who also used Story Point as the basic measure, which would lead to a study of
Panda, Satapathy, and Rath (2015) to automate the estimation process by using different types of neural
networks.

2.3.4. Requirement Analysis

During the refinement phase of an agile process, product backlog items are prepared for the next sprint,
also known as backlog grooming (Kniberg, 2011). For this phase, there are multiple techniques used in
practice like a storyboard, focus groups and card sorting (Lopes et al., 2017), which all depends on sorting
a set of User Stories by combining knowledge of different experts.

Finding duplicate User Stories can also be automated by textual analysis, where Barbosa, Silva, and
Moraes (2016) compared different techniques. The study of Barbosa, Silva, and Moraes (2016)
demonstrated that the semantic similarity measures were preferable to measures based on frequency and
on the occurrence of terms. The proposed techniques of analysing User Stories where: semantic similarity
measures using WordNet, WuP similarity measure (also based on wordnet) (Pedersen, 2010), Lin
similarity measure (based on semantic contents of words) (Lin, 1998), Lesk-A relationship measure (by
finding overlap in the definitions of words) (Lesk, 1986).

A lower level of requirement analysis can be realized by looking at tasks, which contain information
about the implementation of a User Story. Together with ontological information and natural language
processing, tasks can form bridges between backlog items, making automated analysis possible, see
section 2.5 Refinement to Backlog Items.

2.4. Industrial Perspective

Since the field of requirement management is evaluated from practical problems, it could also be useful to
view User Stories in a more practical sense.

2.3.1. Practical Challenges

Related to requirement engineering, Wang et al. (2014) summed up challenges which the industry has to
overcome in order to successfully complete large software projects. These challenges are requirements
elicitation, requirements representation and documentation, requirements analysis and requirements
management.

In agile practice, requirements elicitation is often in the form of a discussion between group members
with a customer. Although User Stories are being used often in this context (about 90%), interviews and
models are still very popular (Wang et al., 2014). While User Stories do have the advantage of being

27

small, to the point and easy to understand, they could contain flaws since it is a representation of the
requirements of a customer. By using structured interviews or prototyping, the requirements of the
customer could be discussed in more depth while modeling techniques also present a more structured way
of displaying an application in a more technical manner, which could be an advantage for the
development team.

The representation and documentation of requirements is also a challenge where User Stories could be
of help, but also, in this case, there are alternatives, for example, Use-Cases. Wang et al., (2015) used the
technique of Use-Cases to build an automated way of creating Test-Cases, by using natural language
processing. Although the accomplishment of Wang et al is notable, the techniques of natural language
processing are not often used by the industry, where the more common means of documentation are still
found in manual writing wiki-pages and building models. It is therefore not surprising that most common
tools are still Microsoft Excel, Word and Visio, sometimes extended with ScrumWorks and Testlink
(Wang et al., 2014).

Use Case: Get paid for car accident

Design Scope: The insurance company ("MyInsCo")
Primary Actor: The claimant

Main success scenario

1. Claimant submits claim with substantiating data.

2. Insurance company verifies claimant owns a valid policy
3. Insurance company assigns agent to examine case

4. Agent verifies all details are within policy guidelines

5. Insurance company pays claimant

Extensions:

la. Submitted data is incomplete:
lal. Insurance company requests missing information
la2. Claimant supplies missing information

Figure 2.8: Example of a Use Case (Adolph, Cockburn & Bramble, 2002)

Requirement analysis is an interesting challenge for the industry since there is still a lot of manual work
involved with the analysis of requirements. Two prominent tasks are the comparison of process flows and
discussing existing requirement with the customer (Wang et al., 2014). Process flows of a set of scenarios
have to be checked for inconsistencies and incompleteness between requirements. In practice, there is
often a person or team responsible for comparing process flows and discussing requirements with
customers. However, when the number of requirement increases, it becomes nearly impossible to read
through all requirements.

Lastly, managing requirements is related to documenting changes in requirements. A technique related
to requirement management is a Change Table, which consisted of details and effects of requirement
changes, project risks, solution plans (Wang et al., 2014). There are also tools available to highlight
updates, deletions, and additions in existing requirements (such as JIRA (2018), Rally (2018) and
ScrumWorks (2018)) but these tools do not have a lot of analytical capacity, so a team is still responsible
for doing most of the thinking.

28

2.3.2. Future Expectations

Conducting research on industrial standards are like shooting on a moving target. Since the industry is
continuously updating its existing management strategies, it could be difficult to make predictions about
the future need for requirement management. However, Kassab (2015) studied the industry and
discovered some interesting patterns.

In requirement elicitation, Kassab (2015) discovered that User Stories are gaining popularity while
prototyping is declining but still very popular. Representation of requirements is mostly done by using a
semi-formal (UML) or informal (whiteboard) representation. While requirement inspection is still
conducted, the process of inspection is moved from a formal inspection protocol to an ad-hoc
walkthrough because of the exceeding numbers of requirements and the movement of responsibility to
development teams. Supportive tools are also finding their way to the development process, where Jira
and Microsoft Visual studio take the lead. Lastly, in effort estimation, expert judgment is still a popular
method which is adapted in an agile manner. Group estimations and story points are also popular in agile
environments, where story points in combination with planning poker showed better prospects in
comparing studies (Usman et al., 2014).

2.5. Refinement to Backlog Items

Additional to the main topic of this study, a study is conducted to find structures in tasks defined by user
stories. In practice, a scrum team will define specific tasks from a given User Story to make the
development tasks more specific.

There is not much research dedicated to tasks, because they are not used in the rest of the development
process, and often ignored when a project is reviewed. However, these tasks do contain additional
information about the code, architecture, and documentation of a system.

In this study, a template is proposed to define tasks so future reach could be conducted in analyzing tasks
to make new ontologies based on tasks.

For example, tasks can start with the noun “update”, which indicates that there is some source code in
existence with can be associated to the task (and thus also with the corresponding User Story). A similar
reasoning can be applied when a task starts with “delete” or “remove”, where there must be some code in
existence which is deprecated or non-functional and needs to be removed. Moreover, when a task starts
with “add” or “create”, it could be deduced that new classes or functions have to be written, so in these
cases, it might be helpful to pay extra attention to multiple duplicate implementations between different
teams to prevent redundant development work.

29

2.6. User Story Summary from Literature

In this section, I have tried to sketch an outline regarding the characteristics that would describe the
requirements and architectural demands related to User Stories in an integrated development environment.
The primary challenges of requirement management can be found in incomplete and/or hidden
requirements, communication flaws between development teams customers and moving targets. Practical
solutions can be found in different characteristics of supportive features, these features are summed by
subject as User Stories:

2.5.1. Template

UT-1 As a product leader, I want to apply different User Story templates so that existing
development methods are supported.

Table 2.1A: Requirements related to templates.

2.5.2. Quality Framework

UQ-1 As a product manager, | want to write User Stories according to a quality framework so
that the User Stories fulfill the defined quality criteria.

UuQ-2 As a product manager, | want to select a User Story quality frame so User Stories fulfill
the preset quality frame.

Table 2.1B: Requirements related to a quality framework.

2.5.3. Estimations

UE-1 As a scrum master, I want to automated time estimates so manual work is reduced and
estimates are more precise.

UE-2 As a scrum master, | want to automated project size estimates so manual work is
reduced and estimates are more precise.

UE-3 As a scrum master, I want to automated effort estimates so manual work is reduced and
estimates are more precise.

UE-4 As a scrum master, | want to automated requirement analysis so manual work is
reduced and estimates are more precise.

Table 2.1C: Requirements related to estimations.

30

2.5.4. Practical Challenges

o

UP-1

UP-2

UP-3

UP-4

UP-5

As a product manager, I want support for interview techniques so I can acquire in-depth
information regarding requirements.

As a product manager, | want to import requirements in Excel, Word, Visio,
ScrumWorks, and Testlink so that I can work with familiar tools.

As a product manager, [want to compare of process flows so [can distinguish duplicate
requirements.

As a product manager, I want to discuss existing requirement with customers so I can
fulfill the customers’ expectations.

As a product manager, | want to track changes in requirements so backtracking from
future adjustments is possible.

Table 2.1D: Requirements related to practical challenges.

2.5.5. Future Expectations

UF-1

UF-2

UF-3

UF-+4

UF-5

UF-6

As a product manager, | want an automate UML representation of User Stories so the
representations are more concise with less manual handlings.

As a product manager, | want an automated informal representation of User Stories so
the representations are more concise with less manual handlings.

As a product leader, | want to ad-hoc walkthrough requirements so I can inspect the
requirements.

As a product manager, | want to import User Stories in Jira and Microsoft Visual studio
so I can interact with familiar tools.

As an expert, | want to make a judgment on requirements so that I can make
adjustments.

As a product manager, [want to automate story points assignments so project estimates
are more concise.

Table 2.1E: Requirements related to future expectations.

31

3. Industrial Trends In Agile RE

User Stories have made their way into the development process of companies (Lucassen, 2016) and their
adaptation is evolving (Kassab, 2015). As recommended by Cohen (2004), User Stories are often
integrated into an agile software development setting. However, there are multiple trends in the software
industry that could be taken into consideration when developing tools to support User Stories. This
section is dedicated to trends in the software industry that could influence the position of User Stories
within the requirement and development cycles. For this chapter, three subjects have been selected that
could be of importance in the future of Agile requirements engineering. The first subject is related to
established methods, where the ecosystem of different methods might evolve to a different method within
Agile. The second subject is dedicated to industrial transitions since shifting to different methods could
influence the role of Agile within organizations. The last subject is related to architecture which is also a
critical step finishing a development project.

3.1. Established Methods

Different trends are extracted from multiple studies. In order to give some insights into the diversity of
development approaches, there are ten existing techniques analyzed in this section. After a short
description and their potential trends, the key characteristics are described in the light of User Stories.

3.1.1. Agile Development Methods

Agile methods are very popular in the industry (Hron, & Obwegeser, 2018). Some sources even claim that
95% of software-related organizations have adapted scrum in their development process (SCRUM
ALLIANCE, 2015).

The two most known agile methods are scrum and extreme programming (XP), the central theme in
scrum is successful software development while in XP the focus is more on the project level (Salo &
Abrahamsson, 2008). According to Dingseyr and Lassenius (2016) XP is dropping in popularity while
scrum shows a slide increase.

The focus on agile methods is becoming more value-centered where continuous development is also
gaining popularity (Dingseyr & Lassenius, 2016). The increased interest for continuous development
could be related to an increasing demand of real-time data analysis (Halpern, 2015), with Big Data and
the increasing interest in predictive and prescriptive analysis, Agile practices are also adapted by BI
practitioners (Larson & Chang, 2016).

Shifts in Agile methods also highlight its limitations, like support for distributed development

environments, support for subcontracting, reusable artifacts, development involvement in large teams,
support for safety-critical or large and complex software (Turk et al., 2014).

32

3.1.2. Continuous Software Engineering

Continuous software engineering has gained popularity in multiple fields related to the development
process. According to Fitzgerald and Stol (2014), continuous trends are evolving in Business Strategy and
Planning, Software Development, Operations and Improvement, and Innovation.

Planning involves multiple stakeholders where dynamic open-end-artifacts evolve in a changing business
environment, with a tighter integration between planning and execution (Fitzgerald & Stol, 2014). While
Myers (1999) created a framework to support continuous planning and Knight et al. (2001) described a
system to for continuous scheduling and planning activities (Casper), Lehtola and colleagues (2009)
identified and used these practices to link business decisions and RE in a continuous planning.

Multiple steps in the development process have the possibility of becoming a more continuous process,
verification and testing are already well adapted in most companies so developers can automatically test
their software and deploy it on a pre/release brache. Security, compliance and even delivery are also
candidates for a more continuous process. For critical systems, it could be of great importance to monitor
security and make quick updates when threatening situations emerge. Where for compliance and delivery
release-bottlenecks can slow down the process of selling new functionality to customers (Fitzgerald &
Stol, 2014).

In operations, the demand for run-time monitoring becomes clear in the light of running cloud services,
where service level agreements (SLAs) form a direct incentive to increase the availability of a service
(van Hoorn et al., 2009).

Improvements in a lean perspective, where decision-making is data-driven, could have great advantages
when quality improvements are done incrementally and with continuous innovation, the process of
planning and development can be more adapted to an evolving market (Fitzgerald & Stol, 2014).

3.1.3. User-Centered Development

It is also common to involve the user more in the development process. Salah, Paige and Cairns (2014)
review 71 paper related to Agile and User Centred Design Integration (AUCDI). From these papers they
distingue a number of challenges related to involving users in the agile development process.

e Lack of Time for Upfront Activities
o which can result in a Ul that is disjoint, piecemeal and lacking a holistic, coherent, and
overall structure and vision
o Up-front design is a separate pre-development period that is used in Agile projects for
eliciting requirements, understanding users,
o Upfront design can also be used by the development and quality assurance
e The difficulty of Modularization/ Chunking
o difficulty in determining the right chunk size and the right amount of interaction design
work per iteration

33

the difficulty of maintaining the ordering dependency between design chunks
difficulty in differentiating between user experience design activities that contribute to
breadth or depth
o interaction designers adopt a holistic view to interaction design
The difficulty of Prioritizing UCD Activities
Optimizing the Work Dynamics Between Developers and UCD Practitioners
o Sharing an Understanding of Users
o Sharing an Understanding of Design Vision
o Synchronizing Efforts of UCD Practitioners and Developers
e Performing Usability Testing
o Method of Usability Testing
Scheduling Usability Testing

o

o Accessing Users for Usability Testing
o Shorter Time to Iterate Design

UCD Practitioner Workload

Lack of Documentation

With these challenges in mind, the dependence of good tooling could grow, since well structures
workflows and transparent information exchange can lighten the challenges like modularization, testing
and practitioner workload.

3.1.4. Mob Programming

In contrast to decentralized software development, the trend of mob programming is also gaining
popularity. Kattan, Oliveira, Goldman, and Yoder (2017) describe mob programming as comparable with
pair programming, where two persons work on the same computer at the same time in the same place, see
figure 3.1. The main difference between mob programming and pair programming is that with mob
programming, an entire team is working on the same computer in the same place and time. Advantages of
mob programming are easy knowledge sharing, faster learning, and satisfaction of the programmers.

34

Figure 3.1: Practical impression of mob programming (Zuill & Meadows, 2016).

3.1.5. Concept Releases

Concept-release is an incarnation of a product with a time aspect. A release consists of sprints, which on
their turn contain backlog items. The release planning is coupled with multiple releases and sprints to
transfer the content captured in User Stories. A backlog item delivers a feature or part of a feature.
Backlog items can also be traced back to the source code. Test scripts are also related to the backlog items
and source code but are not considered within the scope of this project. Traceability is also related to the
domain concept, which states within which context the application is built, for example, “greenhouse
application” or “hospital application”. Domain concepts are also related to User Stories, backlog items,
and sprints.

3.1.6. Goal-Oriented Requirements Engineering

Goal oriented requirement engineering (GORE) can be a useful conceptualization to elicit, model, and
analyze requirements which capturing alternatives and conflicts (Horkoff et al., 2017). In scientific
literature, there has been an increasing research interest in GORE from 2008 to 2012 (Horkoff et al.,
2017). There is solid evidence that GORE is feasible in general and when applied to inputs from industrial
practice (Mavin et al., 2017). There are even papers where a Goal-Oriented Requirements Ontology
(GORO) is presented (see figure 3.2), which is founded on the Unified Foundational Ontology (UFO) to
represent relations and concepts in the GORE domain (Negri et al., 2017).

35

UFO::Intention (Internal Commitment) | | UFO::Desire I UFO::Proposition

0.* A 0..*

proposkional content of

caused by < propositionslcontent of

1.* A
UFO::Goal | satisifes

<« decomposes

A - subgoal
instance of g
intends to operationalize P> 0..*
0..* 1 0..1 - supergoal
Requirement
L o1
- main goal

0..*

- alternative goal
| Complex Task | I Atomic Task |

alternative
- post situation

|UFO::Action | S IUFO::Situation I
1..*' I

Figure 3.2: GORE fragment where the relations are highlighted (Negri et al., 2017)

1.*

Although GORE looks promising, the number publications have been declining over the last few years
(Horkoff et al., 2017) and there is also a lack of evidence that GORE can function in practice (Mavin et
al., 2017) since practitioners seem to have little incentive to apply GORE. Furthermore, practitioners also
seem to have difficulty with the exact concept of a goal, whereas a requirement is better understood
(Mavin et al., 2017).

3.2. Industrial transitions in Requirement Engineering

3.2.1. Network Organisations

The phenomenon of network organizations is not uncommon, moreover, the number of network
organizations is rising which leads to more scientific interest within the subject of using existing
technologies to address the problem of communication between different stakeholders within a project.
Schon, Thomaschewski, and Escalona (2017) investigated the current methods of requirement
engineering by reviewing 27 studies about agile requirement engineering. In this study, they extracted
some interesting characteristics about the approach of involving stakeholders in an agile development
process. Most of the studies describe a direct involvement (77%), there are also many studies which
describe a process to involve stakeholders (78%) and iterations during the development process is a
common aspect in the majorities of studies (70%). The use of artifacts in requirement management is
described by 93% of the studies and the requirement that documentation is understandable without further
knowledge is described in 63% of the studies. From the artifacts described in the studies, User Stories
(56%) is the most common one, followed by Prototyping (41%) and Use Case (26%). From this study,
Schon, Thomaschewski, and Escalona concluded that building a shared understanding of the user
perspective is not very well established. Furthermore, they identified four methodologies,
Human-Centered Design, Design Thinking, Contextual Inquiry, and Participatory Design and identified

36

User Stories, prototypes, use cases, scenarios and story cards as artifacts for documentation of
requirements in an agile environment.

Methods of Requirement Engineering

Direct involvement

Involve stakeholders

Iterative
development

Artifacts

Clear documentation

Figure 3.3: distribution of commonly used methods in Agile development (Schon, Thomaschewski and
Escalona, 2017).

For network organizations, like Gitlab, the sense of good communication becomes more prominent since
workers have to overcome physical distances. To decentralize software development, new tooling
becomes a necessity because communication between managers and developers could not always be done
face-to-face. Within large-scale software projects the overall view becomes more abstract since it is
impossible for one person to oversee every detail.

3.2.2. Decentralized Software Development

Another phenomenon within a more separated development approach is the usage of decentralized
software development tooling. Layman, Williams, Damian, and Bures (2006) conducted an industrial case
study regarding extreme programming within the context of distributed software development (DSD).
extreme programming is characterized by its short programming horizon and its iterative methods. They
concluded that customers and developers discussed feature details more common. Within these discussion
changes in User Story and specifications were made over the entire project. Furthermore, technical
questions were resolved more quickly and efficiently. They identified three communication practices:

e Email lists
e Project management tools

e Intermediary development manager

The main success factors of distributed development projects where:

37

e Development manager who advocates in two groups and forms a communication bridge between
those groups.

e Short, asynchronous communication loops that can serve as a surrogate for synchronous
meetings.
A customer authority for resolving issues related to requirements.
Visibility of the process to customers in order to guide the project synchronously with the
development process.

For large scale organizations, the demand for decentralized projects rises. De Alwis and Sillito (2009)
studied why software projects move from a centralized to a decentralized version control system (like
Gitlab). They found the following reasons, decentralized development groups provide first-class access to
all developers, they support atomic changes where it is more easy to automatic merge these changes,
support can be improved for experimental changes and support is a disconnected operation.

While development teams are decentralizing and the customers play a more central part in the
development process, the need for a central tool of measurement becomes a more prominent problem.
While User Stories have a lot of promising properties, they are not widely implemented in most of the
development environments, which is likely caused by the lack of scientific evidence of the effectiveness
of User Stories is practice.

3.3. Prospects in Software Architecture

The field of software architecture has also gained popularity since the nineties amongst practitioners since
it forms a effective basis reusability and consistency in the development process (Perry & Wolf, 1992). In
order to visualize the architecture of applications, an architecture description languages (ADL) was used
by Garlan (2000), where an ADL is a formal language to represent a software system. Malavolta and
colleagues (2013) found that ADL’s are mostly used to communicate about and analyze software systems,
where the most popular of these languages is produced by the industry itself.

Malavolta (2013) and Clements (2010) indicate that three of the most used ADL’s are UML, SysML, and
AADL. While UML is the oldest and most popular of these three, it has not been developed to describe
software architecture. SysML is a dialect of UML, so it shows similar diagrams. AADL is an architecture
analysis language for performance-critical systems as found in the aerospace industry (Feiler, Gluch, &
Hudak, 2006).

Since the industrial demands on complex applications are increasing, there is also research conducted to
introduce alternative architecture languages. One of these languages, Utrecht Architecture Description
Language (uADL), has a lot of promising features and could be a good candidate for future requirement
engineering and software architecture. The uADL is designed to be simple but powerful and contains a set
of different techniques to support multiple viewports (Jansen & van Rhijn, 2018). The techniques uADL
supports are comparable with UML, SysML, and AADL but the number of unique elements and
complexity of the notation is significantly lower, which could make uADL particularly useful in practice
(Jansen & van Rhijn, 2018).

38

The different uADL-techniques can be ordered by six viewports, which are context, functional,
information, concurrency, development and deployment.

The context viewport has to provides information about the context of the application, like entities who
use the application or databases that store data from the application. The three techniques that can be used
for this viewport are User Stories, Context Diagrams and Use Case diagrams. A Context Diagram is
focussed on the external roles, related to the system (see figure 3.4) whereas a Use Case Diagram contains
information about the actors.

buy lickets External add end-user

oTs
end-user

database

End-user administration

synchronize synchronize
0 send chips
o RFID termunal FETCH ———
transactions
End-user Post services

|] distribute manage event
validate payment use :
Payment services Event facity Chip suppher Event manager

services

Figure 3.4: Example of a Context Diagram Diagram (Jansen & van Rhijn, 2018).

Functional viewpoint techniques are Functional Architecture Model (FAM), feature diagram,

scenario overlays and formalized FAM. A FAM represents the primary functionality of a

software product, its main functions, and supportive operations see figure 3.5 (Brinkkemper & Pachidi,
2010). A feature diagram presents the different modules of the FAM and the scenario overlays add
scenarios of user behavior. A more formal way to describe the functional architecture of an application
can be achieved by using a formalized FAM. scenarios can also be added to a formalized FAM, making it
useful for constructing open Petri Nets.

39

IWriter | Template Mgmt

R Review
IDraftmg l ‘Handler

[File ex\c/hange]

) -
Convert draft Send draft to

Figure 3.5: An impression of a FAM Diagram (Jansen & van Rhijn, 2018).

The Information viewpoint only contains the Entity-Relation (ER) Diagram technique. An ER diagram
depicts properties and cardinalities between the relationships of the entities that make use of the
application.

Concurrency viewpoint consists of the open Petri net technique, where the features of a formalized FAM
of an application as places and the overlays as a path of the Petri net.

The development viewpoint contains the more technically oriented Component & Connector diagram,
which displays the software components as blocks and their connections as interfaces of an application.

OpenWorld
ERP

Public method
Protected method

Business Object

Figure 3.6: Impression of a Component & Connector diagram (Jansen & van Rhijn, 2018).

Finally, the deployment viewpoint contains the product deployment stack technique where the
dependencies are for an application are displayed, for example, the OS and virtual machine needed to run
the run the application.

40

3.4. User Story Summary from Literature

In order to extract the requirements and architectural characteristics form the industrial trends and
transitions, we have to take a step back and look at the greater picture of the software industry. Agile
methods clearly prevail in the development process, although Agile methods have limitations on
supporting distributed development and subcontracting, we see a trend emerging in the direction of
network organizations and distributed development. Adaptations in Agile methods could be inevitable
when these trends continue to grow. Another challenge can be the emergence of user-centered
development, where upfront time estimations, modularization and prioritizing of tasks and usability
testing are not well supported by Agile methods.

On the other hand, are continues release cycles gaining popularity, which is in line with an Agile pillar of
putting more responsibility at a team. Also, the emergence of mob programming, where diverse teams
cooperate closely to build a software product, takes a vision towards Agile adaptations.

The importance of architectural languages in the development process might also rise, with the emergence
of both self-steering teams as distributed development teams. Since multiple workers with different
backgrounds are involved in projects, which could become too big and versatile to be overseen by a single
person, different viewpoint and ontologies between those viewpoints can be of help.

Certain key terms are reflected in all aspects of the development process (for example source code, test
scripts, backlogs, user manuals, and conceptual models). In order to improve feature tracing and
conceptual models, the reflection of key terms should be used to combine different views of the same
features. A central way of communication should be adapted, analog to the architectural changes of a
building, where technical drawing provide an overview of all technical aspect of the building. Related to
these technical drawings, tooling should visualize conflict and address responsibilities within the
development process.

3.4.1. Communication

UC-1 As a team-member, I want to communicate with other teams so redundant work is
avoided.
UC-2 As a team member, | want to communicate with other team members so we can point

everyone in the same direction.

Table 3.1A: Requirements related to communication.

41

3.4.2. Architecture

I

UA-1 As a company, | want a reliable architecture method so distributed teams can cooperate.

UA-2 As a team member, | want an understandable view of the project so I can make
informed decisions related to the project.

UA-3 As a product manager, | want to determine who can view which requirements so
subcontractors can work on a shielded part of the project.

Table 3.1B: Requirements related to architecture.

3.4.3. Requirements

UR-1 As a developer, I want to couple requirements to source-code so I can find existing code
more easily.

Table 3.1C: Requirements related to requirements.

3.4.4. Version Control

o

UV-1 As a team member, I want to scroll down in history so I can see why certain decisions
are made in relation to updating a system.

Table 3.1D: Requirements related to version control.

42

4. Software Development Kits

4.1. Existing Development Supporting Systems

Three different development supporting systems are selected for further investigation on where to
implement the additional features of this study, based on their popularity of use in the industry. To
measure popularity, the Alexa rank is used which represents the number of users visiting the product
website per month. Applying the Alexa rank for development support systems, resulted in the selection of
Bitbucket, GitHub, GitLab. All three systems use Git as a basis of an online version control system with
additional tooling to support project management.

4.1.1. Bitbucket

Bitbucket is only commercially available and offers software on both client and server side. With a
clientship of five million wusers worldwide, Bitbucket has an Alexa ranks of 937

(https://www.alexa.com/siteinfo/bitbucket.org). Since Bitbucket is a closed source commercial system,
there is are no release binaries or release announcements available. The tooling and flexibility related to
Bitbucket is very advanced, making Bitbucket a system used by large software companies.

4.1.2. GitHub

GitHub is the most familiar development support system and is mainly used by open source communities,
small companies, and hobbyists. GitHub is free to use if the submitted code is deployed under an MIT
license or another open license. In order to build software in a private environment within GitHub, a
subscription fee must be paid. Because of its popularity, GitHub facilitates more than twenty-four million
users and over sixty-nine million projects worldwide. GitHub has an Alexa score of 71
(https://www.alexa.com/siteinfo/github.com) and is by far the most popular development tool of these

three. The popularity of GitHub might decrease in favor of GitLab since at the time of writing, GitHub
has been acquired by Microsoft.

4.1.3. GitLab

GitLab is relatively new but has a lot of potention. It is very popular under small businesses and start-ups
since GitLab provides a lot of free functionality for supporting the software development process. GitLab
is compleatly open source and encourages communities to contribute to the development of their
products. Because of the strong community they build-up with this way of working, the number of
supporting tools grows rapidly as well as the number of users and projects hosted at GitLab. At the time
of writing, the number of users has exceeded hundred thousand and the number of projects is above six
hundred thousand. GitLab ranks at place 2866 at Alexa (https://www.alexa.com/siteinfo/gitlab.com).

43

https://www.alexa.com/siteinfo/bitbucket.org
https://www.alexa.com/siteinfo/github.com
https://www.alexa.com/siteinfo/gitlab.com

4.2. Characteristics of Common Systems

A comparison is made between the three selected systems. This comparison consists of two steps, first,
the basic usage statistics provide an overall picture which system is used most commonly by the industry.
Secondly, a study is conducted to map characteristics of the development support systems, these
characteristics of features are based on the requirements classification from the SWEBOK requirements
classification (Bourque and Fairley, 2014).

4.2.1. Industrial Popularity

To provide an overview of industrial popularity regarding the selected SDK’s, the number of users and
projects from these systems is compared. The Alexa ranking also indicates the popularity of a system, by
providing information about how popular a website is. Finally, the year since the system is operational

can indicate how mature the system is.

Development Number of Users | Number of | Alexa ranking Operational

Environment (in thousands) projects (in since
thousands)

GitHub 24,000 69,000 71 2007

Bitbucket 5,000 Unknown 937 2010

GitLab 100 546 2866 2012

Table 4.1: an overview of industrial popularity regarding the selected SDK's.

4.2.2. Feature Comparison

There are multiple functionalities extracted from the selected systems, these functionalities are compared
using the SWEBOK requirements classification from Bourque and Fairley (2014). The SWEBOK
classification contains the following aspects: Functional versus nonfunctional, high-level requirements
versus emergent property, product versus process, requirement priority, requirement scope and volatility
versus stability. With this comparison, the characteristics of the functionalities from the different systems
can be extracted and classified.

Comprisement BitBucket GitHub GitLab
website bitbucket.org github.com about.gitlab.com
Commercial yes yes yes

Open source

Yes

Main tasks Issue tracking Track and assign tasks | Powerful Issue Tracker:
e Group-level
milestones
e Issue Boards
e Related issues
e [ssue Weights
Third party Jira Software e Time tracking
integrations integration e Confidential
Issues
e Burndown Charts
Main usage Projects Projects
e Move issues
between projects
Delivery Built-in continuous Built-in CI/CD
management delivery
Management Cards: reference every | Deploy Boards
functionality Issue and Pull Request
Development Notes: capture early e Todos
support ideas e Cycle Analytics
Requirements Epics
management
Integration with e Confluence e Slack e Jira
e Jira e Zenhub
e Bamboo e Travis CI
e Appveyor
e Codacy
e Codeship
e Code climate
Custom integration | API API API

Table 4.2: an overview of features of the selected SDK5.

4.3. Conclusion

GitLab is chosen for further analysis and implementation because of the usability, its open character and
its popularity amongst start-ups. The open character of Gitlab is visible in well supported online
communities form Gitlab. It is possible to download most of the source code to build additional
functionalities and to test the existing tooling. These properties make GitLab usable to test a new way of
requirement management using User Stories.

4.3.1. Characteristics for Supporting Tooling

Certain key terms are reflected in all aspects of the development process (for example source code, test
scripts, backlogs, user manuals, and conceptual models). In order to improve feature tracing and
conceptual models, the reflection of key terms should be used to combine different views of the same
features. A central way of communication should be adapted, analog to the architectural changes of a
building, where technical drawing provide an overview of all technical aspect of the building. Related to
these technical drawings, tooling should visualize conflict and address responsibilities within the
development process.

46

5. Case Study

5.1. Interview approach

5.1.1. Goal Definition

Conduct a interviews with experts who are familiar with tooling related to Gitlab and User Stories. The
goal of these interviews is to get insights in which functionalities are desirable in tooling to support User
Stories.

5.1.2. Context Selection

Off-line
Professional
Real problems

General

5.1.3. Hypothesis Formulation

The software industry can provide practical insights to strengthen the literature review of this study.

5.1.4. Variables Selection

Definition

Governance

Roles and Responsibilities
Instruments

Projects

5.1.5. Selection of Subjects

In order to get a diverse view on the industry, there are five companies selected for an interview, these
companies differ on size and field of operation. Interviews are conducted with an employee from each of
these companies, where also the role of each interviewee varies.

5.1.6. Choice of Design Type

For this study, a structured interview is chosen so subjects have the opportunity to explain reasoning and
management choices in more details while the information related to the requirement engineering and
architecture subjects are ensured.

47

In total, there are five interviews conducted to get an idea of the diversity of the software industry related
to requirement engineering.

After the interviews had taken place, the audio files are transcribed and coupled with the literature.

5.1.7. Instrumentation

e Interview protocol
e Audio recording

5.1.8. Validity Evaluation

Internal and external validity are taken into consideration. The interviews are semi-structured, so there
could be some divergence of the subject. Another possible weakness is that the same interviewer
conducted all interviews. The interviews, however, are recorded and transcribed so future analysis can be
conducted on the results. There are also some control questions included to test the knowledge level of the
interviewees with respect to User Stories and requirement management.

External validity threats can be found in the absence replications, this study is explorative. The number of
interviewees is also not suited for hard conclusions. Generalizability across situations, is safeguarded by
selecting a diverse set of companies of different sizes, maturity levels, and different industries.

5.1.9. Experiment Design

5.1.9.1. Research Approach

In order to gain a better understanding of User Stories in practice, a series of interviews are conducted at
various companies where employees with different functions and backgrounds will answer questions
related to User Stories in practice and possible functionalities to support User Stories.

5.1.9.2. Data Gathering

e Five different companies
o The company will be anonymized so instead of using the name of the company, a
company code is used.
o To provide an estimation of the size of the company, the total number of employees is
recorded.
e One employee per company
o The employees will be anonymized but their role within the company is included, to give
an idea of their perspectives.

48

Number of Employees Interviewee Role

Company A Financial 27,000 Project manager
Company B Management 500 UX designer
Company C Administration 1,500 Project manager
Company D Outsourcing 50 COO

Company E Games / Education 20 CEO

Table 5.1: General information about the companies where the interview took place.

The following nodes are used to structure the interview and the questions.
e Definition
o How is a User Story defined within the company?
e (Governance
o Policy & Strategy
m Are User Stories part of a strategic decision?
m Are there policies related to User Stories?
o Task & Responsibilities
m Who is responsible to govern User Stories?
m What task are related to User Stories within the organization?
e Instruments
o Is there some sort of instrumentation or tooling used related to User Stories?
e Projects
o Is there any project where User Stories are used?

5.2. Interviews

The information from the interviews is described per topic; Definition of User Stories, User Story
Governors, Roles and Responsibilities related to User Stories and Projects.

5.2.1. Definition

There are multiple definitions for User Stories and related terms that are used in practice. In this chapter
different terms are described in a practical context derived from the interview at the five companies.

5.2.1.1. Usage of the Term User Stories

The term User Story is used in all interviewed companies, however, there are differences in what the term
represents and how often and in which context the term User Stories is used.

49

At company A the term User Stories is used to communicate between stakeholders of a project, whereas
in company C User Stories are a way to record desirable features. At Company B User Stories mainly
clarify the needs of a specific group of people sharing a role within an organization.

The frequency of use can also differ, for example in company D User Stories are only used in 20 to 10
percent of the projects, since most of the projects consist of combining existing features.

The perspective from which User Stories are being used, differs between organizations as well, Company
A often writes functionalities from a user perspective, whereas company C is more focused on the product
and its feature, where the User Stories are an extraction of "Feature Stories" (see "Related Terms"),
translated into product backlog items.

Changes in the definition of User Stories are common in Company C, where the definition of a User
Stories closely related to its practical use in a project. Also in Company D, there is some change in the
definition of User Stories since the previously used waterfall method has been replaced by a more Agile
approach, recently.

5.2.1.2. Terms related to User Stories

From the interviews, there are some terms closely related to User Stories in the requirement engineering
process, in this section the most frequently used terms are explained from a practical perspective. These
terms are sorted from global to detailed project level: theme, vision, epic story, feature, backlog item (also
known as task).

5.2.1.2.1. Theme

Within the process of defining a project, a theme is often extracted. A theme is considered to be the basis
of a project which can contain customers needs or tasks from the board at Company A. In some cases, a
theme can also provide input for other artifacts, at Company A, the theme of a project goes hand in hand
with a vision, which serves as input for defining Epic stories.

5.2.1.2.2. Vision

In a default Agile process, the definition of a vision can be tricky, the project manager at Company D
even states that the lacking of a process for communicating a clear vision to customers is the main
downside of scrum. Since the development process is continuous, it is not clear where the project will
stop, making it difficult to clarify in advantage what the exact scope of a project will be and how much a
project will cost. At company A, a vision of a project is defined by the stakeholders and PCG. where a
vision contains high-level solutions with business cases, a scope, architecture, and sourcing. When using
this definition a vision could be part of a scrum process, since the exact details are not entitled.

5.2.1.2.3. Epic Story

In most cases, central themes serve as input for epic stories. At Company B, An epic is constructed from a
theme, which is used before a user story is composed. When a project manager at Company B wants to
add value for a specific group of customers, an epic can also be constructed as an overlapping theme. At

50

company A, a theme can also be split into different epics, which contain more specific information about
the business deliverables. The ambition of a project is part of the theme and epics where also the go-live
event is included at Company A. Company B, uses Epics to compose User Stories for a project, it is also
possible that two Epic are merged or spit in the course of the process.

In coupling an Epic Stories to models, is difficult according to the manager of Company B, since the term
models within the context of User Stories is vague. In contrast, at Company D, Epics are mainly used to
represent modules. Although the name Epic is not often used within Company D, there is often a grouping
of User Stories, which is presented to the developers in designing and building modules, where each
module has a central topic.

5.2.1.2.4. Features

Company C uses an alternative term, which is related to User Stories, Feature Story, which is comparable
to a User Story but has no fixed format and is mainly focused on a feature, which can be used as input to
define User Stories so a Feature Story can also be compared with an Epic Story.

Within Company A, there is also a feature-based approach of User Stories but here the features are
derived from a business refinement and IT refinement. Members of different scrum teams will meet to
define the deliverables in form of features. These features contain the results of a more detailed analysis
by the IT teams and consists of customer journeys, visuals and a Probabilistic Safety Assessment (PSA).
The business side is also reviewed, where legal issues, risks, and compliances are included.

The linkage of User Stories and features are clearly noted in the interviews at interviews Company A and
Company C. At Company B, however, a link between User Stories and features is not clear, since features
allow some vagueness in their practical application.

5.2.1.2.5. Backlog items (tasks)

In most cases, User Stories are distributed amongst different scrum teams, where backlog items are
written to specify the different tasks related to the User Stories. These tasks help scrum teams in their
planning but can also serve as a way to measure progress and time estimates.

The process of defining tasks and link them to User Stories is often done by hand, at Company A and
Company C the tasks are defined by a product manager. Tasks are visualized on a kanban board, where a
task can move to different stages (for example todo, in process and done). At Company D, the Tasks are
composed by the team itself. There are no templates to describe a task and task are not shared by default
between different projects. To align the development work in Company D, tasks are sometimes discussed
during disciplinary meetings.

Tasks can also be linked to code changes, which is the case at Company D. When developers implement a
feature at Company D, a task is related to the commit of this change. A tester can then check if the created
software meets the requirements, described by the user story. If not, a new user story can be written to
continue the development process.

51

5.2.2. Governance

The governance of User Stories is divided into activities related to User Stories, strategic decisions related
to User Stories and key performance indicators and other measures related to User Stories.

5.2.2.1. Activities related to User Stories

There are different activities related to User Stories in a practical context. The first stage, writing the User
Stories, can be done in different ways, for example at company D there are a lot of complicated projects
where the customer has a dedicated requirements engineering team in place which defines the User
Stories to ensure that the project requirements met the expectations. At the other companies, the product
manager is responsible for writing User Stories. The User Stories are closely related to features at
Company A, in other companies, like Company B and D, these linkages not clearly defined in the process
of composing User Stories. At Company C the number of User Stories for some projects is very large,
making it impossible for one person to oversee, so there is a strong dependence on tooling like Team
Foundation Server (TFS).

After the stories for a project are written, Company E, Company D, and Company C bundle the stories
into Epics, which are discussed with developers to design modules, after which the User Stories are
imported in a supporting system, like Jira. Since the stories from Company C are already written in TFS,
the stories bundled by product managers, which results in Epics Which are also used as input to define
modules.

After the Stories are bundled in Epics from which modules are defined, the stories are distributed amongst
the scrum teams, where tasks are defined and estimates are made.

Estimating User Stories is done by making use of planning poker, at Company A. With planning poker,
tasks are given a value which represents the number of mediate development hours it will take to solve
this task. Every team has also a number of expected development hours available for a sprint, so tasks can
be divided amongst the teams, with respect to the expected workload of a task and available development
hours of a team.

After the tasks are done, the built software is tested and made ready for release. At Company C there is a
continuous development cycle where there is a release every night. Because of the high release frequency
and high standards of delivering software, Company C also has a test automation team with is responsible
for testing. Next to this testing team, there is also a team to ensure the quality of the code and decide if the
code will be released in case of failing tests. At other companies, there is less pressure for a high release
frequency, so a quality assurance team is often not necessary.

5.2.2.2. Strategy for managing User Stories

Most companies differ in managing User Stories, at Company A every scrum team is responsible for their
own stories and the Jira tool keeps track of every story. Although there is not a specific strategy in place
for managing User Stories, Company A tends to distribute the responsibilities over the teams and tools

52

related to User Stories. Other companies, like Company B, ensures that there are more people involved in
the managing process, a product manager governs the product portfolio from multiple teams. There are
others stakeholders than the product manager involved in the process of writing User Stories, for example,
a test team checks for holes or inconsistencies in the stories and tests the described concepts. Company C
also has a strategy team in place to oversee all Epics, User Stories are written by a product manager but
customers can review User Stories and provide feedback.

Some companies also organize meetings to discuss User Stories when a project is being implemented. At
Company D, for example, there is a monthly meeting between product owners and developers to discuss
the work that is still open for a project and how these tasks and stories are scheduled in the sprint
planning, scrum poker is often used during these meetings.

Implemented functionalities are often discussed during demo meetings, at Company D, these meetings
take place every month.

Overall there is not much attention for discussing functionalities across projects, at company D, however,
there are meetings for personnel of the same disciplines where the squad framework is being used. With
the squad framework, specific fields of interests are divided into chapter sessions which can be helpful for
internal knowledge distribution.

At the larger companies, like company A, B, and C, there is documentation available about the strategic
decisions related to User Stories. At smaller companies, like Company E, documentation is not available
since every team member closely works together and is familiar with the process. Company D did take
the effort of writing documentation to ensure the quality of the work.

5.2.2.3. Measurements related to User Stories

There are multiple points of measure in a project, at the start, there is often an estimation of the project
size, time and cost of a project. Since the complexity of User Stories takes a prominent role in estimating
the costs of a project, most of the estimation work is done by developers. Story points are used to make
estimations in a structured manner at company A. In principle, story points are meaningless, but could be
seen as mediate development hours, where experienced developers can realize more than one story point
per hour, whereas inexperienced developers realize less the one point per hour. At company A, story
points do not serve as a KPI but can provide signals when something does not go to plan, within the
Scrum team, for example when a team does not deliver their story points at the end of the sprint.

Company C also does not have specific KPIs in place for User Stories, but features are used to indicate if
the stories are well estimated and implemented. The project's complexity is not extracted from User
Stories at company C, and the estimates are also made in a later stadium of the process when more
information is available. Time estimations are added just before the start of the project, to have an
up-to-date status of related factors like shifts in developers. At a team level, company C also uses story
points to keep track of the scrum planning.

53

Company D takes a more structured approach, where User Stories are measured in development hours. A
senior developer is expected to resolve 125% of the issues of a mediate developer and a junior developer
is expected to resolve at least 80% of a mediate developer. After a project is done, there is a feedback
moment to evaluate how well the project's targets were met. When a project exceeds its budget, the
customer is contacted to find a suitable solution. Often management failures are paid by company D and
additional functionalities (like scope creeps) are mostly paid by the customer.

5.2.3. Roles and Responsibilities

At most of the interviewed companies, the product manager plays a central role when it comes to
responsibility related to requirement management. At some companies, like company D, the User Stories
are already written by the customer, so the role of a product manager shifts from writing the stories into
checking and integrating the stories. At company C, the product owner is responsible for writing the and
managing User Stories.

At other companies, like company B, the distinction of responsibilities is not so clear since it resides at
different people throughout the process. Product managers manage a portfolio of products and are
responsible for a line of products, product managers keep a close look at the industry and receive input
from business analyst for future adjustments. Product owners are responsible for a specific product within
a scrum team and are concerned with a more detailed level of that specific product. An UX-designers
designs the product and then the testers and developers are responsible for the implementation of new
features.

It also possible that the responsibilities are fixed within a project, but can shift between projects. For
example in company D, there is no overall responsibility for user stories, since every project is different.
In principle, every team is responsible for all tasks and User Stories related to their projects, but within a
team, these responsibilities can change for every project.

5.2.4. Instruments

In most cases, the instruments related to the requirement engineering process consist of the standard
toolset of the supporting system that is being used, in most cases Jira, TFS or Gitlab (in case of company
E). Company A and C make use of a kanban board to visualize tasks and to communicate with developers
and scrum masters regarding the print planning. Company D also uses planning poker to estimate User
Stories.

At Company A there is also room for different scenarios, for example, if the story states that a user can
log in, then the different scenarios could be “log in by email and password” or “log in by SMS code” or
“login via another app”.

In addition to Jira, Confluence is also often used to document additional information regarding the story.

Also from Atlassian Software is Hipchat, a tool to support ongoing discussions about a feature, which is
often combined with bitbucket and Jira since cade references can be made.

54

Company B also uses Kibana to automatically create reports in analyzing log files. When software runs, a
lot of signals are automatically logged. These log files contain a lot of useful information to improve
services or to optimize the software in terms of efficiency or usability.

Company B also uses the Agile Inception Deck, were a couple of activities can help teams in visioning
and planning process with predefined templates.

Excel or substitutes like sheets and numbers are also used in a more informal way, company D for
example, used Excel to collect User Stories for a project before themes and Epics are composed.

5.2.5. Projects

Next communication during a project, User Stories can also serve as a way of measurement, or example
when testers want to evaluate the implemented features. Company D also involves User Stories during the
revision of a project. Sometimes, however, User Stories might change during the development phase of a
project, for example when a customer requests a change in a feature. Tracing changes of User Stories
might be very useful for the revision-phase of a project but is not supported by any of the tools used at
company D. Moreover, a project manager has all the know-how about the scope of changes during a
project, but after the project is finished these changes in functionalities and the argumentation regarding
those changes is often not well documented.

At company C a quality engineering team often receives feedback from customers and other users, which
is documented. The main points of improvement consist of gaps between time estimates and output. In
more extreme cases, projects are not deployed despite finishing with the activities as described by User
Story, this could be the case when a story is not validated and the functionality is for example out of date
at the time of release.

In other companies, like company A, reviewing the project is part of the demo- and refinement sessions.
In the specific case of company A, there is no evaluation regarding the User Stories, specifically.
Sometimes the Story Point can be of use if a task takes much longer than expected.

5.3. User Story Summary from the Interviews

5.3.1. Definition

Since the definition of User Stories can differ regarding the context of usage, tooling must be in place to
support the making use of stories from multiple roles and in multiple contexts. For example, there could
be a default screen to compose a User Stories which can be called from different parts of the application
(so people working on documentation can also have a button to create User Stories). Furthermore, the
user interface must be easy to use for people who do not have a lot of experience in writing User Stories
or are not familiar with the concept at all (for example a question mark can be displayed so a user can get
information about how to write User Stories).

55

UD-1

UD-2

UD-3

UD-4

UD-5

UD-6

UD-7

As a product manager, | want to write a project theme so that the direction of a project is
clear from the start.

As a project manager, [want to write a projects vision so that the direction of the project
is clear from the start.

As a product manager, | want to write epic stories so that User Stories can be grouped.

As a product owner, [want to write feature so that a User Stories can be split up into
workable pieces.

As a product owner, [want to write backlog items so that a User Stories can be split up
into workable pieces.

As a team member, I want to add User Stories from different contexts so that I can add
User Stories from different roles.

As a team member, I want to get help in writing User Stories so that I can get familiar
with writing User Stories.

Table 5.2A: Requirements related to User Story definition.

5.3.2. Governance

UG-1

UG-2

UG-3

UG-4

UG-5

UG-6

UG-7

As a product owner, I want to link User Stories to features so that developers can get
specific information.

As a product manager, | want to filter User Stories so that [can group User Stories into
Epics.

As a product manager, [want to automatically cluster User Stories so that I can group
User Stories into Epics.

As a product manager, | want to link Epics to modules so that a project is divided into
specific parts.

As a scrum master, | want to estimate development tasks so that a scrum planning can
be made.

As a product owner, I want to write tasks from user stories so that a User Stories is
divided into specific parts.

As a product manager, | want to link User Stories to test plans so that the testing process
is structured.

56

UG-8

UG-9

UG-10

UG-11

UG-12

As a product manager, | want to transfer managing information related to User Stories
so that I can align with other product managers.

As a project manager, | want to communicate recommendations in writing User Stories
so that product managers can work according to our strategy.

As a product manager, | want to make estimations with story points so that project
estimations can be done in a standardised way.

As a product manager, | want to add time estimates of a project so that other
stakeholders have insights on the costs.

As a product manager, | want to adjust User Stories during the project so that scope
changes can be picked up.

Table 5.2B: Requirements related to User Story governance.

5.3.3. Roles and responsibilities

I

UO-1

Uo0O-2

UO-3

UO-4

UoO-5

U0O-6

UoO-7

UO0O-8

As a product manager, [want to include User Stories written by customers so that a
customer can share their needs.

As a product manager, [want to check a list of User Stories so that I can ensure our
quality standards.

As a product owner, I want to write User Stories so that additional requirements
requisites are included in the project.

As a product manager, | want to manage a portfolio of products so that I can take
responsibility for a line of products.

As a UX designer, [want to designs a product so that value can be created.
As a tester, [want to test a product so that quality can be ensured.
As developer, I want to implement a product so that value can be created.

As a project manager, | want to change responsibilities of team members so that roles
can change between projects.

Table 5.2C: Requirements related to roles and responsibilities.

57

5.3.4. Instruments

I

Ul-1

Ul-2

UI-3

Ul-4

UI-5

Ul-6

As a product manager, | want Excel integrations so that I can add simple features related
to requirement engineering.

As a developer, I want to link user stories to source code so that documentation can be
searched through requirements.

As a product owner, I want to link user stories to documentation so that documentation
can be searched through requirements.

As a product manager, [want to visualize tasks on a Kanban board so that that planning
is clearly communicated to the rest of the team.

As a product manager, [want to write different scenarios related to the product so that
different cases of use can be explored.

As a product manager, [want to make estimations using planning poker so that
estimations can be made in a familiar way.

Table 5.2D: Requirements related to instruments.

5.3.5. Projects

I

US-1

US-2

US-3

As a product manager, | want to keep track of changes in User Stories so that a project
can be reviewed more extensively.

As a product manager, [want to revise User Stories when a project is finished so that
processes can be improved for future projects.

As a product manager, | want to review Story Points so that I can detect problems in an
early stage of the project.

Table 5.2E: Requirements related to projects.

58

6. Designing requirement functionality

This chapter is dedicated to the question of how the design of requirements functionality of development
support systems would look like (RQ-3). The concluding User Stories for the previous chapters have been
used as a starting point to compose a vision for software development after which the desired features are
described as a first step towards realizing this vision.

6.1. Vision for Software Development

A starting point towards the vision of requirement management is the idea described by Jansen and van
Rhijn (2018) where requirement engineering is a separate discipline which can be used as a starting point
towards an architecture. In their paper, Jansen and van Rhijn discuss the related between Jobs and Epic
from a requirement engineering perspective, which is reflected by modules and features from an
architectural point of view. But for this research purpose, the provided uADL model is not enough to
cover the full extent of the processes related to requirement engineering and software architecture.

User Stories and Epic stories are related composed and fine-tuned during the sprint cycles within the
scrum model (Cohen, 2004) so User Stories in combination with a release can serve as input from a
release plan. This release plan is then translated into different sprints where User Stories are divided
amongst development teams. Within these teams, the stories are refined and estimations are provided by
the developers. Tasks are also composed during the refinement sessions, which can be used as input for
test plans and test scripts. In a test-driven development approach, these scripts serve the main input for
writing code.

Another way cycle within the process of designing and building an application is by using Stories and
Epics as the main input for designing an application, where a software architect discusses the design with
developers and the product managers or product owners. During iterative meetings, the design takes
shape, where functional and technical viewpoints of the desired functionalities are created. Both the
technical and functional point of view serves as the main input for the development of the application.

A domain ontology can serve to link all these different artifacts and processes, so a centralized knowledge
base can be created. The vision, as extracted from previous chapters is summarized in figure 6.1, where
the uADL model is used in relation to other artifacts from the process of architecture and requirement
engineering.

59

Domain ontology

> Product

Functional
Viewpoint

Epic Stories > Modules <

Technical

000|000 1%

User Stories > Features

Release Source Code

Y

Release Plan Sprint » Backlog Items > Test Scripts

Figure 6.1: Vision of the role of User Stories within the development process, the uADL vision as
described by Jansen and van Rhijn is displayed in blue.

Visualizing the linguistic structure of User Stories could be of value in the process of extracting input for
designing new features. From the requirement engineering perspective, User Stories can serve a central
communication instrument to discuss new features, if User Stories can be used to visualize concepts and
relations of requirement. By using linguistic analysis on User Stories, patterns can be shown and
requirements become searchable by applying filters and adding color schemes (Slob et al., 2018).

Visualizing the linguistic concepts of User Stories is also relatively new in the industry, the initial
interviews from the previous chapter showed that existing tooling does not have features to support the
visualization of requirements. The concept of automatically linking different artifacts is also relatively
new, some interviewees stated that tool like Jira does support the linkage of source code and User Stories,
but this should be done by hand.

Integrating visualization an automated suggestions towards an architecture of an application might be
useful in practice. The selected Gitlab environment is best suited to implements the features related to this
vision, since additional tooling could be built easier than comparable development environments. Gitlab

60

has a strongly supported community and all code is open source. Because of the widespread use of Gitlab
amongst companies around the world, testing these functionalities could resolve in a diverse and
well-founded basis for future research about this topic.

There are also tools already in existence from previous studies, related to visualizing User Stories and
extracting information from User Stories. Three existing tools are selected to be reused in the context of
creating a new application to serve the features as depicted by the previous chapters:

e AQUSA (Automated Quality User Story Artisan), developed by Lucassen et al., (2015) provides
some guidance in writing User Stories by applying quality checks on User Stories.

e Visual Narrator, designed and developed by Robeer et al. (2016), for an automated extraction of
conceptual models from User Stories via NLP, see also Lucassen et al., (2017) for the underlying
algorithm.

e Interactive Narrator, a tool for effective requirements exploration and discussion through
visualization (Slob et al., 2018).

6.2. Desired Features

The desired features are summed at the end of each chapter as user stories. Most of the stories contain
useful information, but there is some cluttering as expected with a real-life project. Some stories, for
example, are duplicates, other stories contain unrealistic requirements or very specific requirements, and
are therefore not very useful. In order to select themes for Jobs and Epics, the interactive narrator tool is
used to visualize the conceptual model of the stories. The most important concepts are then selected and
placed in a role-concept-matrix where references of the stories serve as values. The role-concept-matrix
also shows some clustering of the User Stories, where the most prominent roles and concepts can be
determined. These clusterings were then used as themes for Jobs and Epics.

6.2.1. Output Interactive Narrator

The output from the interactive narrator is shown in figure 6.2. Since the User Stories presented in this
view also represents aspects closely related to the entire process of requirement engineering, the
visualization can also be seen as a conceptual model for User Stories in general.

61

Yisien

Writes. Racmmendatcn

ade @Tearn member Fart Lum
Get
Proect Project manager
fop Extrrate
op -
Estimana
Proemes - —~
I r\l:hllu't’ l_/.
\ i Davelon
:7“\‘," Comm Oaevelopment
Geot e Stary Point
Foature Task N Code
- Revew Find o=
Virtns Vs ben ‘e
Ows Prachct mplemen e
Product owner @ Come Come .
Minam Developer Schmdde Flan
Gat Product manager 4
P o &
Requiroment andlysds Lesds Select Import & A .Sclum Tinetor Spein

Comm. Dgouss Pod

Quality frame (&) Requiremént
@ e 5

Product leacd!™" - — Planning
))
=\ Mu"_l‘uf’_‘:.h:ur, HisTory

\JJ Futt Jocumnentsticn
sy @

Template

Jarparrmary

Makes

@ Expert

Mivcees
Adpistmam

UX designer

Figure 6.2: Visual narrator output with most prominent with roles (red), themes (green), topics (blue) and
relations (black) added manually.

The most prominent concepts and roles are highlighted, where a red circle denotes a role. A green circle
indicates a concept that depicts a general theme from the literature review, and a blue circle marks central

themes within the network. An additional close-up is made to provide a better view of the largest cluster
(see figure 6.3).

62

®

Project Project manager

Estimate
Estimate O o
n o
Project
estlmatlon @ ©
r&cess Q
We|ght Chlteb .
Estimate & @Paremmm_ ®) « Development
Get Story Point
Feature T)
o- a ask Review Find :OCOde
Writes Visualize ' ®
@ Implemen Write
Product ovx?r\{venrs Product Comm. C
4 Manage G‘. Déeveloper ~°™"- Schedule
Get Product manager @
Requirement analysjs |eads St Import& © Ve crum master SPrint
b- Comm. Discuss Portfolio
@ Quality frame Requirerﬁént ®
Writeﬁ5 o
° Product leadef’*° °

Epic @
S ApPlY jgor Story @ History

Fulfill Documentation
Quality @
Template & o

Figure 6.3: Close-up with product manager centered also with roles (red), themes (green), topics (blue)
and relations (black).

6.2.2. Role-theme matching matrix

All concepts that have been market green are displayed in the Role-theme matching matrix, where all
roles are also included. The story references are presented as values of this matrix and can also serve as
data points to indicate how similar different roles of concepts are. For example when the exact same
stories are associated with two concepts, then these concepts can be joined.

63

Product Product Product Expert Developer Scrum Software

manager leader owner master architect
Quality UQ-1, UT-1 UD-4
uQ-2,
UD-3,
UO-2
History UV-2 UV-1
Development UC-6, UG-1, UA-1, UC-5, UC-10
UP-5 UG-6 UA-2 UG-5
Requirement UP-2, UP-6 UE-5, UF-5 UI-2
UP-3, UI-3,
UP-4, UO-3
Ul-1
Estimate UF-6, UE-1,
UG-10, UE-2,
UG-11 UE-3,
UE-5,
UD-5

Table 6.1: Clustering of User Stories by roles (horizontal) and themes (vertical).

Some manual adjustments are also made to table 6.1 since themes with a lot of resemblance in terms of
User Stories and roles can be easily identified. The choice is made to merge the concept “task” and
“development” into “development” since the roles and related User Stories were almost equal. In the
same way, “User Story” and “Quality” were also merged into “Quality”, which is more expressive the
“User Stories”.

6.2.3. Composing Jobs and Epic stories

Now that the User stories are clustered by the interactive narrator and manually checked to select
returning themes from the literature, Jobs and Epics are extracted. Some additional steps were undertaken
in order to compose Jobs and Epics from the clustered User Stories:

e User stories from the Role-theme matching matrix were manually checked to remove stories with
duplicate meaning.

e Conflicting stories were also manually detected and resolved. When conflicts between the
literature and interviews were detected, the stories from the interviews were overruled.

e The resulting User Stories were also fed back to the concepts and roles of the Role-theme
matching matrix in order to check if the stories actual depicts the proposed concepts and role.

e The resulting themes serve as input for the Jobs.

64

e User Stories related to the resulting themes are sorted by hand, related to the content of the User
Stories and subclusters from the Interactive Narrator, to serve as input for Epic stories.

Although the set of requirements does provide a good impression of the requirements needed for this
project, it is not complete because additional information from the literature or interviews was very
specific, not useful or not feasible (for example during one the interviews, the interviewee stated that it
would be a great addition to build an oculus rift plugin to literally walk through the visualization). The
aim of this study is to provide an overall picture of the subjects related to user stories and requirement
management in a practical context. Future research can focus on User Stories in relation to project
estimation, requirement change management etc.

Another point of interest is that there is already a lot of functionality available, which does not have to be
implemented. However, the linkage between User Stories and these features can still add values to the
Gitlab tooling arsenal. For example, there are possibilities to specify User Stories and tasks but there is no
template to help a user write high-quality User Stories.

Finally, the life-cycle of User Stories within a project can be of great importance in designing tooling to
support User Stories. The different stages, as extracted from the literature review, are displayed in figure
6.4. The first step is to write the User Stories, so a set of stories is eventually composed to serve as input
for a project. During a management phase, the stories can be reviewed where a story can be split into two
or more smaller, more specific stores, updated or merged with another story. After the stories have been
reviewed in the manage phase, the development phase starts where the stories serve as input for a design,
implementation, and validation. After implementation, the stories can be stored for future changes in the
project. During the two main phases of the life cycle, a story can also be signed-off, for example when the
decision is made to exclude a story from the project. It is also possible that a story should be reviewed
once it is in the development stage, for example when an architect or developer encounters a problem
while implementing or discussing the story.

65

Write

Store

Manage Develop
Split Design
—
Update Implement
Merge Validate
— Sign-off |<—

Figure 6.4: the life cycle of User Stories.

The analysis from the previous section resulted in a very good overview of the requirements related to the

vision as described earlier in this chapter, but the implementation of all requirements would be out of

scope, given the limited time for this project. So in order to complete the process of designing, building

and evaluating a tool, a selection is made from the concepts and User Stories.

Since there is already some tooling in existence to analyze User Stories, it is easy to reuse their

functionality to implement a subset of features for the purpose of this study. The tools selected for this

purpose were already discussed in the previous section, AQUSA, Visual Narrator and the Interactive

Narrator. So in order to complete the cycle of this study, the Jobs and Epics themes related to the existing

tool were used to compose the following set of Jobs:

JS-1

JS-2

JS-3

Table 6.2: Jobs stories for implementing the vision of User Stories in practice.

The same selection criteria were used to compose the Epic Stories for this project, as seen in table 6.3.

Help me manage requirements.

Help me manage a project.

Help me support development processes.

66

Job ID Epic ID Epic Story

JS-1 ES-1 When a project is initialized, I want to gather requirements so that projects
expectations can be met.

ES-2 When a User Story is written, I want to check the quality so that software
development and sprint execution go smooth.

ES-3 When a project starts, I want to obtain a global view of all requirements so
that development work can be optimized.

ES-4 When a requirement changes, I want to keep track of the progress so
adjustments can be made.

JS-2 ES-5 When a project is initialized, I want to make estimates so corporate assets can
be allocated.

ES-6 When requirements change during project execution, I want to track
requirement changes so that decisions are clarified.

JS-3 ES-7 When user stories are distributed amongst development teams, I want to
retrieve information from tasks so project estimates can improve.

ES-8 When tasks are written, I want to govern the development process so that
high-quality code is guaranteed.

Table 6.2: Epic stories for implementing the vision of User Stories in practice.

The templates used to compose the Job and Epic Stories is extracted from the conceptual model as
described by Lucassen et al., (2016). The related User Stories are included in table 6.3, where the Job en
Epic Story ID’s are linked to the finalized User Stories. The User Stories that have been updated in this
final step have been given a different id, starting with UU (User Story Updated), the original ID is used
when the User Story is not updated.

Job ID | EpicID | Story ID | User Story Story

ES-1 As a product manager, | want to import requirements in Excel,
Word, Visio, ScrumWorks, and Testlink so that I can work with
familiar tools.

UP-4 As a product manager, I want to discuss existing requirement with
customers so [can fulfill the customers’ expectations.

ES-2 UU-1 As a product leader, I want to apply different User-Story quality
templates so that existing development methods are supported.

Uu-2 As a product manager, I want to select a User-Story quality frame
so User-Stories fulfill the preset quality templates.

67

ES-3 UU-3

UP-3

ES-4 Uu-4

UF-5

UP-5

JS-2 ES-5 UU-5

UU-6

UuU-7

UU-8

ES-6 UuU-9

UU-10

JS-3 ES-7 UU-11

UU-12

ES-8 UU-13

UU-14

UU-15

As a product owner, | want to get requirement analysis so estimates
are more precise.

As a product manager, I want to compare of process flows so I can
distinguish duplicate requirements.

As a product leader, I want to ad-hoc walkthrough requirements so
I can inspect the requirements.

As an expert, | want to make a judgment on requirements so that I
can make adjustments.

As a product manager, | want to track changes in requirements so
backtracking from future adjustments is possible.

As a product owner, I want to get time estimates so estimates are
more precise.

As a product owner, I want to get project size estimates so
estimates are more precise.

As a product owner, I want to get effort estimates so manual
estimates are more precise.

As a product manager, I want to assign story points so project
estimates are concise.

As a product manager, [want to view requirements history so I can
see why certain decisions are made in relation to system updates.

As a developer, I want to view requirements history so I can
understand the the reasons about previous implementations.

As a scrum master, I want to schedule sprints so the development
tasks are implemented according to the project estimates.

As a product manager, I want to communicate with the scrum
master so development tasks can be prioritized.

As a developer, I want to implement a development task so that a
project can be finished.

As a developer, I want to write code so that development tasks can
be implemented.

As an architect, I want to communicate with developers so I can
check if the development tasks meet the technical design.

Table 6.3: User Stories related to the Job and Epic Stories from table 6.1 and 6.2.

68

6.3. Design Decisions

The first step of starting a project is by devising a name for the tool, this way it becomes more easy to
refer to the tool and it also makes the project come more to life. Since the key concept of this project is
scrutinizing the lexical structure and architectural relations of User Stories, the tool is called the
Architectural Lexical Arrangement Scrutinizer (ALAS), which is also a reference to a story written by
Grimm brothers (see also Appendix D).

6.3.1. Stories to Features

The stories composed in the previous section are used to define the different windows and features of
ALAS. Every Job Story, with underlying Epics, is discussed in a separated subsection.

6.3.1.1. Manage Requirements

For epics story ES-1 and ES-2, on gathering requirements and quality checks, an editor has to be build so
User Stories can be composed and the quality of these stories can be ensured for further analysis. This
story editor should contain a way of importing user stories, where different tools like Excel, Word, Visio,
ScrumWorks, and Testlink should be supported as input stream (UP-2). Since all of these tools have an
export function where User Stories can be saved as a raw text file, the editor can comply with this
requirement by including text import, for example by dragging and dropping. The editor should also
contain an overview of all stories, for example with colored templates to make the stories more readable
in order to discuss the content with other stakeholders (UP-4).

To ensure the quality of the User Stories, the Story Editor should also include feedback as provided by
AQUSA (UU-1), since this feedback should only be visible when the user wants to correct a story the
feedback messages itself should be hidden but every story containing an error or warning should be
highlighted. So the decision is made to use the enumeration of the Story Editor to indicate if a story
contains warnings or errors. Where a warning is displayed as yellow and an error as red. The user should
also be able to change the templates of the story editor (UU-2), which is supported by AQUSA.

For Epic Story ES-3, on estimation, an overview of the project structure with some additional information
regarding the size of the project should be included. This overview then serves a starting point to guide
the discussion on estimating the size of a project (UU-3). For example, an architect can give a time
estimate for every feature in every module. Included information in this hierarchical view should be the
main structure of the project, for example by displaying suggestions for modules and products of the
project and include User Stories and roles that are related to the features, modules, products. Als the
process flows should be visible, where duplicates can also be detected (UP-3).

Epic ES-4, to keep tract of the process, can be achieved by visualizing the User Stories in a graph, just
like the Interactive Narrator. This way a product leader can do an ad hoc walkthrough to inspect the
requirements (UU-4), experts then also have a central view to making judgments about the requirement
clusterings (UF-5). The experts should also be able to make changes in the requirements in the story

69

visualizer and change the level of abstraction in order to give more input for a discussion. When
discussing the features of a clustering of stories, it could also be valuable to mark certain concepts to
serve as input for Epic or Job Stories. This overview should also be updated when the stories change, so
the product manager can see if the requirements have been updated (UP-5).

Epic ID Story ID Feature descriptions

ES-1 Story Drag and drop text files.

Editor
UP-4 e Overview of all stories.

e Template highlighting.

ES-2 Story UU-1 e Warning and error indication.
Editor e Feedback by AQUSA.
Uu-2 e Change the story template.
ES-3 Story UU-3 e Display the structure of the project.
Hierarchy e Display the related User Stories and

roles for every element.

UP-3 e Display process flows.
ES-4 Story Uuu-4 e Visualization of the User Stories to
Visualizer expose the linguistic structure of the

sentences, like Interactive Narrator.

UF-5 e Update the requirements when changes
are made.
e Include markings for selecting themes
for Epic and Job Stories.
e Change the level of abstraction.

UP-5 e (Connect the visualization to the User
Stories, so the visualization is updated
when the stories change.

Table 6.4: summary of features per User Story for Job Story JS-1.

6.3.1.2. Manage Project

Another story of epic on estimation is ES-5, where the estimation serves as input to allocate assets on a
corporate level. In order to get a good insight into project size estimates, the story hierarchy should
support interactive shifts in project structure and scope. For example when the development team is
discussing a certain module and comes to the conclusion that it is better to shift one feature to another
module or even change a feature to a module (UU-5). Next, to the project size estimates, the development
team should also be able to estimate the time needed for a project. In order to achieve a well-structured
effort estimate, the team needs insights into the User Stories related to a feature or module (UU-7). Next,

70

to the effort estimates, the team should also be able to make time estimates. Every product and module
should be discussed in terms of related features, so when a user selects a module or product, the related
features and User Stories should appear (UU-6). In some teams, assigning story points helps to estimate
the project, so for this purpose some additional notes related to a product, module or feature should be
included (UU-8).

Epic ES-6 focuses on tracking changes of a project, the version control of Gitlab is well suited for this
purpose. For a product manager, this means that the requirements history can be visualized out-of-the-box
when the stories are saved on Gitlab as text-files. When someone makes changes in the User Stories, these
stories should be automatically synchronized with Gitlab so historical data can be reconstructed by Gitlab
(UU-9). Developers can also use the version control from Gitlab so they can view historical data from
finished projects that need to be updated (UU-10).

Epic ID Story ID Feature descriptions

ES-5 Story UuU-5 Allow changes in the project structure.
Hierarchy
UuU-6 e Only display modules and features

related to a selected product.

e Display all products, modules and
features when nothing is selected

e Only display the related features when a
module is selected.

Uu-7 e Display the related User Stories when a
product or module is selected.

UU-8 e Include an additional text field to include
story points estimations.

ES-6 Gitlab UuU-9 e Automatically synchronize changes in
User Stories with Gitlab.
UU-10 e Save User Stories and other data as text
files in order to use the version control
of Gitlab.

Table 6.5: summary of features per User Story for Job Story JS-2.

6.3.1.3. Support Development Process

The path from designing requirements to implementing them is the theme from Epic ES-7. After the
design decisions have been made and the project estimates are in place, the features of the project need to
be included to Gitlab (UU-11). Since the requirements and other project information is already
synchronized with Gitlab, the tasks can be easily included in the scheduler of Gitlab. Saving the stories in
Gitlab also permits using the stories in the rest of the project, for example when a project manager wants
to discuss the stories with a scrum master (UU-12).

71

The final Epics of this project (ES-8) is focused on the development process, where features from Gitlab
are used to support the implementation of User Stories. When developers implement tasks, related to a
User Story, these tasks can be labeled Done. this labeling should be synchronized with ALAS in order to
trace the development process (UU-13). In order to write code with respect to the project, the developer
can use the out-of-the-box features from Gitlab to deploy and review the source code. When this code is
displayed on Gitlab, ALAS should also include a feature of viewing the projects structure and source code
so developers can check the code on a project level (UU-14) and architects can review if the source code
meets the technical design requirements (UU-15).

Epic ID Story ID Feature descriptions

ES-7 Gitlab UU-11 Save stories and descriptions in Gitlab.

UU-12 e Interactively exchange information
between Gitlab and ALAS.

ES-8 Gitlab UU-13 e Trac the statuses of tasks.

UU-14 e Include a code editor to review source
code on a project level.

UU-15 e Visualize the project structure as saved
on Gitlab.

Table 6.6: summary of features per User Story for Job Story JS-3.

6.3.2. Moving Concepts in Hierarchy View

This section is an addition to Epic ES-4 and ES-5, on labeling concepts extracted from User Stories and
interacting with the products, modules, and features of a project. The features described the previous
section about upgrading or downgrading products and modules, are more elaborated in this extra section.

There are multiple movements possible, for example, a user can move an Epic to the Jobs column, which
means the moved Epic Story will become in a Job Story. A user can also select a concept while making
the move, which results in a change of relationships between the selected and moved concept.

It is possible to select multiple concepts of different types, for example, both a Job and an Epic can be
selected at the same time, but not multiple Epics. A selection has also another purpose since the lists of
child concepts are filtered to only show the concepts related to the selected concept. When both a Job and
an Epic are selected, all concepts in the Epics-list are related to the selected Job, the list of User Stories
contain all Stories related to the selected Epic.

With respect to all possible changes, the relation-shifts between concepts are explained in table 6.4.

72

Becomes the child of the selected concept ~Create relation with the selected concept (only

C . e .
there is no existing relation)

G Becomes grandchild of the selected Make relation with the selected concept (only

concept there is no existing relation)

S Becomes sibling of the selected concept Remove relation with the selected concept
(when present)

P Pibling, becomes a parents sibling Remove relation with the selected concept
(when present)

D Downgrade None

U Upgrade None

Table 6.4: possible concept movement actions

Note that a moved concept cannot become a parent of a selected concept since the moved concepts cannot
be selected.

Since there are three types of concepts (Jobs, Epics and User Stories), three dimensions of every relation
shift event (from concept to concept, selected concept) containing respectively three, three and six
possible states, there are 54 possible changes in total, which are displayed in table 6.5.

Selected To

73

X C, C; G,
S, X C: G,
S, Sg C; X
X D D
U X D
U U X

Table 6.5: changes in concept states as a result of user action.

As you can see from table 6.5, the state changes are the same in the situation where there is no selection
or only User Story or when a Job, Epic and User Story are selected.

The table also contains an x-symbol, which denotes that a given action does not imply a change of states,
for example, the user can’t move a Job to the Job-column.

Finally, when both a Job and an Epic concept are selected, a movement can result in two state changes,
for example when the user moves a User Story to the Epics column. In this case, the User Story will
change from child to sibling in relations to the Epic and becomes a child of the selected Job. The concept
type in relation to a state-change is denoted in subscript when multiple states change in one action.

74

7. Implementing Requirement Functionality

The central question of this section (RQ-4) is how to implement the functionalities described by the user
stories in the previous sections. These functionalities are strongly interconnected with the Gitlab API. To
understand how the tools for managing user stories coincide with Gitlab, I will first discuss the
architecture of Gitlab and then how ALAS is integrated in Gitlab.

7.1. Look and feel of ALAS

The ALAS-tool contains four static elements that remain constant throughout the navigation of the tool:

e Header: contains the name of the tool with a link so u user can navigate back to the home screen
at any moment.

e Breadcrumbs: At the top of the screen is a breadcrumb path included, just like Gitlab, so a user
knows at any moment where he has navigated to and can go back some steps.

e Left sidebar: Navigation bar which also depicts the process of requirement management (from
data as User Stories to a information with a story visualizer to a project outline in the hierarchy
window).

e Footer: Displays the general information about the tool and its purpose. There are also links
included in the footer to navigate to additional information pages about the tool, it origin and how
to use it.

Header

Bread crumbs

Left
Sideba

Footer

Figure 7.1: Static layout of ALAS.

75

7.1.1. Story Editor

The first view the user will see when opening a project is the story editor. User Stories can be edited in the

story editor view, which embodies an editor especially configured for supporting user stories.

Project

Story Editor

Story Visualizer

Story Hierarchy

Architecture

Repository

Issues

appy .
¢ passengers are happy.

¢ passengers are happy.
at I reach my destination.
o be on time so that do not mis my appointment.

6 As a bus dr to deliver passenger:
deliver passen:

to stay on sch

The Story of Alas References Publications About Documentation L.H.F. Miter
This tool is part of my graduation thesis at Utrecht University.

Figure 7.2: impression of the story editor.

Some of the features included in the story editor:

Template highlighting: when a story is pasted or written in the editor, some chunks of texts are
highlighted to indicate the story template. For example when a user types “As a” or “As a” the
text automatically gets a blue font-style.

Jump-feature: when the TAB-key is pressed, the cursor will jump to the next section of the story
template. So if a user has edited the role of a story and wants to make some changes in the
benefits part of the story, he only has to press the tab key twice to jump to the benefit part
(indicated by “so that”).

Template write: The default user story template is created when a user presses the enter key on a
new line, which can save a lot of time in combination with the jump-feature.

Copy-paste: With copy paste shortcuts (by default ctrl-x, ctrl+c, and ctrl+v), text can be cut,
copied and pasted to the clipboard of a user. This features can also be used via a menu which is
activated by a right-click in the editor.

AQUSA: The integration of AQUSA provides a real-time feedback to the user when a story does
not follow the quality requirements as set by AQUSA. So when a user has written a User Story,
AQUSA will automatically check this story and will give a warning or error indication in the left
line-bar of the editor, red for an error and yellow for a warning. The user can click on this
indication to see the error(s) or warning(s).

76

editor hierarchy report

1 As a cars driver I want to drive so that I reach my destination.

2 As a pedestrian I want to walk so that I can go shopping.

3 As a cyclist I want to cycle so that I can continue my journey.

4 As a traffic controller I want to control traffic so that everyone can safely cross.
5 As a truck driver I want to deliver goods so that customers are happy.

6 As a bus driver I want to deliver passengers so that passengers are happy.

7 As a bus passenger I want to stay on schedule so that I reach my destination.
8 I want to be on time so that do not mis my appointment.

This story contains 3 defects:

No role: Add for who this story is.

Template mismatch: Non-matching template.

Use the default template of your organisation: As a <ROLE>, | want to
<PURPOSE> so that <OPTIONAL BENEFITS>

Uniform: Story templates are not uniform.

Make sure every story uses the same template, for example: As a <ROLE>, | want
to <PURPOSE> so that <OPTIONAL BENEFITS>

Figure 7.3: Story Editor feedback on a User Story.

7.1.2. Story visualizer

In order to display the content of the User Stories, the visual narrator is used. User Stories are analyzed so
concepts relations are extracted and displayed in a network graph. The ALAStool also indicates if a
concept can serve as a theme for a Job or an Epic, by highlighting concepts in orange or green,
respectively. The user can also remove this marker by selecting the concept and press the
remove-marker-button. Themes markers can also be set by selecting a concept and pressing the
mark-as-Job or mark-as-Epic button.

The user can also navigate by dragging the concept graph or by using the arrow buttons on the left side of
the window.

Zooming-features are also included, so the user can zoom in or out with the plus and minus buttons right
side of the window, or by using the scroll wheel of a mouse.

Finally, a user can also change the level of the graph, by shifting the change-level-slider. This feature is
can be of use when the number of User Stories is very large. Only prominent concepts are displayed when
the slide-bar-indicator is shifted to the right, which makes the resulting image less sensitive but more
specific. On the other hand, when the slide-bar-indicator is shifted to the left, all concepts will be
displayed, so the representation is more sensitive but less specific.

77

visualisation hierarchy report

B assenger
Passenger
isa\

‘assenger

Driver

Deliver
Bus/Driver

a/ O/——Gycle

7 Cyclist System

o
SIOIS) e

o _ S B

Figure 7.4: Impression of the Story Visualizer.

7.1.3. Story hierarchy

Project outline where products, modules, and features extracted from the user stories come together in the
Story Hierarchy view. The information about the concepts and related from the story visualizer is used as
input, and additional information about the Jobs and Epic themes is added.

visualisation hierarchy report

Products Modules Features
’ Driver “ Bus J drive

| Traffic | walk

‘ Passenger ‘ cycle

controlTraffic
deliverGoods
deliverPassengers
staySchedule

time

Figure 7.5: Impression of the Story Hierarchy.

78

Details about related roles and User Stories are also shown when a user selects an item. The information
related to a selected item is displayed in a pop-up window where the theme and description can also be
edited, these changes are automatically synchronized with text-files hosted on Gitlab.

Since Jobs, Epics and User Story clusters can form an interconnected hierarchy, related Job, Epic themes
or User Story clusters are shown when an item is selected. This matrix view also contains features to
move Job themes to Epic themes or feature themes to Epic themes, this information is automatically
updated in the story viewer window.

visualisation hierarchy report

Driver drive

deliverGoods

deliverPassengers

time
Driver
Additional information and descriptions.
Z
Stories Roles
As a cars driver | want to drive so that | reach my destination. cars driver
As a truck driver | want to deliver goods so that customers are happy. truck driver

Ac = hiie Arivar Lwant tn dalivar naceannare en that naccannare ara hanny hiie Arivar

Figure 7.6: Filtering and details show when a hierarchy item is clicked.

The features of moving Job themes (indicated by the “product” column) to Epic themes (indicted by
“modules”) or User Story clusters (indicated by “features’) contain more functionality then changing the
markings as Job or Epic theme. For example, when the product “Driver” is selected, then only the related
features and modules are displayed. When a user wants to upgrade the feature “time” to a product of its
own, he can drag the time- feature to the product column. When the time-feature becomes a product, then
the relationship with the driver-product is no longer needed, since dependencies between products are not
desirable. So if a user upgrades the time-feature to a product, then the relation between the driver-product
is removed. Similarly, when the time would be a product, it can be downgraded to a module or feature
related to another product or module.

7.2. Architecture

Since the features provided by ALAS are stored on Gitlab as text files, the interaction between the end
user, ALAS and Gitlab can be visualized as in figure 7.6. The reason for this design decision is to easily

79

integrate the version control features of Gitlab and to more flexibility to ALAS. For example, an existing
project could be added by simply pasting text files into a special folder (.project) in the project root.
ALAS will automatically read the contents of this folder and will display its contents as described in the
previous section.

End User

!

ALAS

T

Rest API

'

Gitlab

Figure 7.7: Interaction between the end user, ALAS and Gitlab.

7.2.1. Architecture of GitLab

Gitlab is built in Ruby-on-rail, an easy to learn programminglanguage that is widely spread amongst web
applications. The open character of Gitlab is also presented in the well-documented architecture which
will be discussed next. Gitlab is also supported by a large community since most of the source code is
freely available.

Gitlab contains multiple modules, each with a specific task and a set of features, see figure 7.7. For this
project, the following modules are of interest:

e NGNIX (front end) is responsible for communicating with the end users, all connections are
handled in this mode. The new supporting features will give the end user additional fields, so
information has to be transferred through the NGNIX-module.

e Unicorn (security manager) handles security and permissions, so information from the database
has to go through Unicorn in order to reach the customer.

e Redis (load balancer) can be compared with a communication board, to executes tasks in other
parts of the application. The new requirement features will make use of some of the existing
functionality of Gitlab, so information has to pass through Redis.

e Gitlab pages (documentation), provides information regarding the use of the Gitlab environment.
Since the requirement features have to show information regarding the use of the new
functionality (which also has to be editable for organizations) there must be a coupling to
information from the Gitlab pages.

80

Gitlab Shell

. . Gitlab
Postgre SQL }—i Sidekiq NGNIX

Gitlab pages

The functionality of every module can be reached by a REST-API, which makes it possible to write
additional functionalities that can interact with Gitlab.

Figure 7.8: Gitlab Architecture.

7.1.2. Architecture of ALAS

The global design of ALAS fits the architecture of Gitlab as shown in figure 7.7. The functionalities of
ALAS itself can be subdivided into the following modules:

- Story Quality contains features to check if a User Story is written according to a preset template,
a template can be added or selected by the project manager.

- Story Input is dedicated to creating new user stories, which can be done in two different ways
(writing a single User Story via Gitlab graphical user interface and by bulk by uploading an
Excel- or CSV file). This module communicates with the User Story Quality module to provide
feedback on the written User Stories.

- Story Viewer is dedicated to viewing User Stories, comparable with the visualization of the
Interactive Narrator. In this module, a user can add an overlay to this visualization to get
estimates and process flows. This additional information is extracted from different modules.

- Story Hierarchy is a module to display an change in the structure of the Epics and Jobs related to
the User Stories.

81

Gitlab Shell

. . Gitlab
Postgre SQL }—‘ Sidekiq ~| NGNIX

ALAS

Story Quality Story Input

Story

Story Viewer Hierarchy
Gitlab pages

Figure 7.9: the architecture of Gitlab with ALAS.

The different interactions between ALAS and Gitlab are displayed in figure 7.8. Unicorn makes sure the
central entry point is kept secure, so in order to use the REST-API of Gitlab, a special id has to be
requested from the graphical user interface. Redis is the central load balancer that has to decide how many
call and data is send to ALAS, in case of large chunks of data, the Redis service can decide to close the
connection. NGNIK is the front end where most of the user interaction takes place, at this moment ALAS
has its own user interface but still has to interact via the NGNIX, for example when a user wants to make
changes in the raw data files of ALAS. the Gitlab pages are mostly used for documentation, ALAS can
also interact with this service, for example, to display information is the repository view.

7.3. ALAS modules

ALAS is built upon different modules that interact independently on each other. Because a lot of different
tools and projects are integrated to obtain the functionality required for the complex story analysis. A
flexible design is chosen to change or even replace functional units in the long run.

82

7.3.1. Story Quality

All functional units of the Story Quality module are displayed in figure 7.10. The central component in
story quality is AQUSA. The data from the story editor is sent to AQUSA via an API-call, this way
changes of AQUSA will not affect the rest of the application and thus provides additional flexibility.

Stanford Post Tagger

Gitlab Gitlab AQUSA Story
Manager Editor
Tagger
raw tagged
stories stories
Q

stories

with 1
feedback

story St;irtl:s Project Manager
feedback
raw stories

API entry point)

stories with
feedback

Figure 7.10: Story quality with AQUSA.

Within the AQUSA-module, the story updater sends the raw story set to the story miner and receives
analyzed stories with feedback. The stories are then saved on Gitlab via the Gitlab manager. The story
miner contains the core functionality, the stories are tagged after which rules are applied to check if the
stories meet all requirements. The miner on its turn interacts with the Stanford POST tagger via a tagger
class to extract the sentence structure. This information is sent back to the story miner. There is also
additional functionality in place to interact with the Stanford POST tagger, but this is included in the
tagger class. The Stanford POST tagger itself is hosted as a different service so other modules or services
can make use of this tool in the future.

7.3.2. Story Input

The main component of the story input module is a text editor (codeMirror) which is set-up to display
user stories with a code highlighter.

The story editor contains three sub-modules which all communicate with codeMirror:

83

Event manager: for capturing specific events from the editor, for example when a line number is
clicked, or when the <tab> or <enter> key is pressed within the editor. When an event is fired, the
event manager will call the corresponding functions, in the javascript classes where a different
rest-call is made to the backend via the jQuery-library.

Story feedback manager: for communicating with AQUSA. The raw stories from the text editor
are sent to AQUAS and feedback is received, when an error or warning emerges the feedback
manager creates writes the message into a hidden HTML-field, the line of the story where the
error occurred is highlighted, and a link is activated so when a user clicks on an error-indicating
line number, the hidden HTML-field will appear.

Story template manager: where templates are stored in order to generate an empty template
when the user presses <enter> on an empty line. When a user presses <tab> on a non-empty line,
the template manager tries to discover a matching template and finds the next part of this
template. A cursor position is returned corresponding with the next part of the template. The
editor then moves the cursor into given position.

Stanford Post Tagger

Gitlab

Gitlab AQUSA User Story Editor
Manager

Event manager Story Template Manager

trigger

Line Number Tab-key]mgger (SetnewCursor
Clicked Pressed J L Position

Content Enter-key] trigger [Add Story
Change Trigger Pressed J L Template

cursor
template so

position @
>

story feedback

event

Editor Text
trigger | Field
raw stories

Story Feeddack Managler story

(
Story Feedback Story Feedback feedbac Story Feedback
Updater Container Shower

raw stories

stories with |_ 5 Stntzjrr):1 ngf
feedback story feedback-

Project manager

Figure 7.11: Story input with Codemirror text editor.

7.3.3. Story Viewer

The story viewer module uses the visual narrator to extract the information from the stories. The visual
narrator is contained in a different functional unit, to ensure flexibility. The visual narrator in its turn uses
the spacy tagger as part of a python library so it does not need to be hosted differently, like the Stanford
POST tagger in AQUAS.

The three main sub-modules of the story viewer are:

Visual narrator: which is an existing tool for generating a report with sentence structure and
statistics and for generating an ontology based on user stories. The Visual narrator interacts with
the Gitlab manager to automatically synchronize the analysis with Gitlab.

84

Gitlab manager: the main features of the Gitlab manager are creating new files if a requested file
is not found, updating existing files when changes are detected or delete files. The Gitlab manager
also parses the API-calls from ALAS into API-calls fit for Gitlab, and also holds some flexibility
in form of parameters for example when a frontend developer wants to compare the content of a
file without updating the existing file on Gitlab. Since the Gitlab manager is also a self-serving
functional unit, it can be changed or even replaced in the future when Gitlab updates its API.
User Story Visualizer: interaction between Visual narrator and visualizer is done by an
API-calls. The visualizer contains four different modules, the event manager for handling user
events when interacting with the visualizer, the concept graph manager for drawing the draws the
concept graph (the actual visualization of User Stories), the data manager to interact with Visual
Narrator via API-calls, and the Onfology visualizer to receive analyzed information from the
Interactive Narrator and translate this information into Nodes and relation so the information can
be interpreted and visualized by the concept graph.

Spacy

Gitlab

1
I
; N /

Gitlab Visual Narrator [User Story Visualizer weight parameter
Manager ’

\ e
Langue Event manager
Processor -

x

Concept Graph Manager

Weight l ‘

Epics B
Calculator

| [weignt siider |)
Selector

Mark as Epic } move

epic parameters. concept sizes|

—— ; . concept id — y
Pattern | Story Miner Remove | concent id Jobs , Graph
Analyser Y Marker Pt Selector Drawer

graph N
parameters. ()
Ty T /

Select Node

Mark as Job (concept visualisation
event Concept >
Graph

‘ event

oncept id
concept id concept id graph
3 parameters

3

Matrix Statistics
Generator Calculator

Data Manager Ontology Visualizer

) Graph

Jobs updater | Drawer
J node - ‘

parameters relation parameters

ontology

ontolog story
matrix - a9y

matrix statistics Node Selector

Project manager

-
| Ontology Report Ontology Evi undater Node Relation
Generator Generator Updater pic up Visualizer Visualizer

y J J
concept wdj :)

ontology
|

l

Figure 7.12: Story viewer and story analysis with the Visual Narrator.

7.3.4. Story Hierarchy

The story hierarchy uses the information stored by the story visualizer, via the Gitlab manager, described
in the previous section. When the output files from the story viewer do not exist, the story hierarchy can
also make a call to the visual narrator to generate an ontology as described in the previous section. The

story hierarchy on itself contains three sub-modules:

Hierarchy Visualizer: responsible for showing the ontology derived from the ontology data,
there is also a feature to show and hide the details window.

Event manager: to receive events from the hierarchy visualizer and handle action accordingly.
Data manager: contains features for handling the data, data is directly updated to Gitlab via the
Gitlab manager. Textual analysis is not done by default since the underlying concepts and
relations from the story viewer and the story hierarchy are equal.

85

Gitlab

Gitlab User Story Hierarchy \

Manager
Event manager «—
Click Hierarchy
Element |
element id

event
|| Update Story Move Hierarchy Update [
Description Element Story

1
description story data Hierarchy Visualizer
data . et
K) hierarchy visualisation
Hierarchy

Data Mahager Viewer ‘

levent

[Epic to Job] {Jobsto Epic] [Epic to Job] hierarchy

parameters

Y
T—slory id story id ston?y id
Data Converter hierarch Hierarchy Project manager
Y Visualizer
parameters
rslory id

story id
A 4

Story . .
L1» Description Story Updater story data H'ergfé‘vyve[:e‘a”
Updater

Figure 7.13: Story hierarchy view.

7.4. Tooling and Dependencies

The following dependencies are used to implement the features in the Django application.

7.4.1. Langues

There are different programming languages used for building the ALAS tool, the different languages are

selected for specific purposes or general purposes. The general purpose language serves throughout the

tool and is used in a diverse manner:

Python: is the main programming language, for the backend of ALAS. Python is mainly used in
the back because the integrated tools (AQUSA and Visual Narrator) are also written in python.
Python serves a lot of purposes but the main advantage of this language is it's easy to learn
syntaxes and the variety of scientific libraries that are build in or supported by python.
Javascript: a lot of front-end features from ALAS are build with javascript and related libraries.
Closely related to are also typescript, which is a more powerful langue that can be converted into
javascript. The main purpose of using javascript is reducing the numbers of calls to the servers
and to do some easy calculation and data manipulation on the client side, thus saving more server
power.

CSS/HTML: used for interaction with the browser, HTML (hypertext markup language) is used
to carry the content of the ALAS tool and CSS (cascading style sheets) are used to display this
content.

XML/json: are both used to exchange data with the server directly, both are formatted text files,
json is more easy to use and XML provides a more structured approach for handling the data.
Data transfer between the frontend and backend is done by REST-API interfaces, which is the
most standard approach of transferring data through the web.

86

Languages used for a specific purpose are not so commonly used in the tool and often serve one specific
purpose:

Scala: is used by Gitlab, it is a powerful langue and especially suited for functional programming.
Scala can be used by a Java Virtual Machine (JVM) but also as javascript (via Scala.js). Although
the syntax differs a lot from both java and javascript, the language is very useful for doing
complicated calculations with little lines of code.

Ruby on Rail: is the main language of Gitlab, it is also used a lot on the internet. By it
object-oriented design, it is easy to learn and stable langue.

7.4.1.1. Libraries

jQuery/jQuery-UI: through jQuery and jQuery-UI are two different javascript libraries, they are
closely related and use the same engines. jQuery is a library for interacting with the Document
Object Model (DOM) with is a structured representation of an HTML-page as generated by the
browser. jQuery-UI contains flexible Ul-elements and is particularly useful for creating visual
elements for user interaction. Advantages, among others, jQuery and jQuery-UI are very well
maintained, easy to use, well documented, widely used and flexible.

CodeMirror: is an extensive text editor, the main purpose of CodeMirror is to deliver the basics
of the Story Editor text field, with build in feature to support custom text highlighting and flexible
event handlers to implement features of specific user events, this library is very well suited for
this purpose. Other advantages, CodeMirror is free to use without any copyright restrictions, it is
well maintained and used by large corporations like Google.

mxClient: forms the basis of an editor to draw application architecture. The main purpose with
ALAS is to visualize the generated architectural template for the Story Hierarchy and to let users
interact with this template.

VisJs: is a library for displaying network graphs and also includes a lot of features for data
manipulation of a functional level. Because of these two features, VisJs is used throughout ALAS,
and also form the basis of the frontend data handlers. Strong aspects about this library are its
callback principles and efficient algorithms to sort and filter data.

Require: for loading javascript on the fly. Since there are many libraries and a lot of different
scripts used by ALAS, loading times can become a problem. Downloading everything at once
would take a lot of time, Require helps to reduce the loading time by only downloading the
scripts that are necessary of a specific action.

Font Awesome: is used for cosmetic purposes, it contains a collection of icons and fonts. The
advantage of loading default symbols makes the interaction with the user more intuitive.
Showdown: is used to display markup language. When clicking on the repository view, the
README-file is automatically loaded, which is easy to get insights into the project. Since most
projects have a readme-file in markup, the showdown parser can be of use to visualize the
README-content.

87

7.4.2.

7.4.3.

7.4.4.

Frameworks

Django: is an easy to use server framework for python. Since it is used a lot by the industry it is
well maintained a secure. It also provides a lot of flexibility and out-of-the-box functionality for
fulfilling many purposes of a server.

Tools

AQUSA: an application created by Gram Lucassen to check the quality of user stories.
Stanford NLP lib: used by AQUSA to tag sentences for natural language processing.
Visual Narrator: is an application to extract an ontology from a set of user stories.

Environment

Apache: serves the different tools and servers on the backend, it is an open-source HTTP server
that operates on UNIX and windows. Because of its stability, it is commonly used by the industry.
AWS: is the web frame from Amazon which is used to host ALAS’s servers. The infrastructure of
AWS is very reliable and is the preferred choice in a lot of companies.

88

8. Evaluating Requirement Functionality

After implementing the functionalities described in the previous sections, multiple evaluations are to
measure how well the ALAS tool reaches the requirements. So the central research question in this
chapter is how to evaluate the functionalities for development support systems (RQ-5). Four
expert-interviews are conducted to test how useful ALAS would be in practice. The main subjects of these
interviews where ease of use, usefulness, correctness, and completeness. Another test is conducted to
check the output of ALAS by comparing the source code structure of finished software projects with the
linguistic structure of the User Stories, generated by ALAS.

8.1. Testing the Proof of Concept

8.1.1. Goal Definition

The goal of testing conceptual tooling to support User Stories in practice is to evaluate the role of User
Stories in practice, using ALAS. A subject like communication and estimation can often play an
important part in the successes of software projects. Also, the role of User Stories within a project can be
evaluated, for example by estimating if the stories are used to their full potential. Finally, the goal of this
evaluation is to check how well ALAS can contribute to getting the required information out of a User
Story set.

8.1.2. Context Selection

Because of the practical context of this evaluation and to get an idea about the industrial needs in project
management, the interview are conducted face-to-face at the companies location. All interviewees are
professional and have years of experience in project management with User Stories. Real life problems of
existing projects are discussed to get a general insight into how projects are managed and how User
Stories are used within this context.

8.1.3. Hypothesis Formulation

The software industry can provide practical insights to strengthen the evaluation of the ALAS-tool and to
review this study.

8.1.4. Variables Selection

With respect to the evaluation the role that ALAS can play within software projects, four variables are
defined:
e Ease of use: where the tool is tested how intuitive the user interface is, for example, a tool that
has a steep learning curve might be more efficient to use in the long run but will not be picked up
easily by the industry.

89

e Usefulness: to check how well the information extracted from the User Stories would fit the
industrial needs. This variable also includes the intuitivity of the representation of this
information.

e Correctness: in order to check if the information represented by ALAS would fit the information
extracted from the User Stories by the expert. Since analyzing a set of stories is usually done by
hand, the extracted concepts and relations should reach human quality in order to be useful.

e Completeness: in line with the correctness variable, the completeness variable measures what
content or visualization is still missing.

8.1.5. Selection of Subjects

The same professionals have been interviewed as in chapter five, the variety of professionals and
company sizes provides more insights into how ALAS would perform in different environments.
Amongst the interviewees are software developers, product owners, scrum masters and project managers,
were some professionals can play different roles.

8.1.6. Choice of Design Type

Since the tools will be tested in a real working condition, a test design is not possible. Instead of setting
up a controlled experiment, the tool is tested with an evaluation form to check how the tool performed.
An unstructured interview is also conducted in order to get additional feedback on assumptions made in
the design and the workflow of the tool.

8.1.7. Instrumentation

The list of instruments during the interviews:

Questionnaire / interview protocol

ALAS tool

An example project to showcase the features of ALAS
Presentation of the example project

Audio recording

8.1.8. Validity Evaluation

Internal and external validity are taken into consideration when designing this test. Since the interviews
are semi-structured, there is room for divergence of the required nodes. Another possible weakness is that
the same interviewer conducted all interviews, thus experimenter bias could be threatening the results. To
address these problems, all interviews are recorded and transcribed so future analysis can be conducted on
the results to check the strength of the founded results. There are also some control questions included to
test the knowledge level of the interviewees with respect to User Stories and requirement management.
The situation between both interviews has also remained constant in every company.

There are also threats within the external validity of the conducted interviews, for example, there are no
replications since the study is more explorative. The number of interviewees is also not suited for hard

90

conclusions. The generalizability across situations, however, is safeguarded by selecting a diverse set of
companies of different sizes, maturity levels, and different industries.

8.1.9. Experiment Design

8.1.9.1. Research Approach

In order to check if the ALAS tool can add value in the process of requirement management or
architecture, four interviews are conducted with the same companies and interviewees as section five. The
main goal of these interviews is to get an idea of how useful ALAS is the setting where the selected
professionals operate. Next, to the usefulness of ALAS, the interview is also focused on the correctness
and completeness of the tool, for example, which features are still missing and do the existing features
produce the expected results, given a case.

8.1.9.2. Data Gathering

Four different companies are selected to obtain the data from the unstructured interviews. The company
will be anonymized so instead of using the name of the company, a company code is used, this company
code corresponds to the company codes used in section five. The total number of employees is also
recorded to provide an estimation of each company size. One employee is interviewed per company, thus
four interviews were conducted in total. The employees will be anonymized but their role within the
company is included, to give an idea of their perspectives.

Number of Employees Interviewee Role

Company A Financial 27,000 Project manager
Company B Management 500 UX designer
Company C Administration 1,500 Project manager
Company D Outsourcing 50 COO

Table 8.1: General information about the companies where the interview took place.

The following nodes are used to structure the interview and the questions (these nodes correspond with
the variables described in section 8.1.4.):

Ease of use
Usefulness
Correctness

completeness

91

8.2. Interviews

During the interviews, all different screen of the tool was being discussed, to get an overall picture of how
the tool will perform in practice we looked at four variables, ease of use, usefulness, correctness, and
completeness. These variables are applied to every view of the tool e.g. the story editor, the story
visualizer, and the story hierarchy. The most distinguishable citations from the transcribed interviews are
included, after which a Likert scale overview follows to sum the impressions from the interviewees.

8.2.1. Ease of use

8.2.1.1. Story editor

Overall the interviewees were positive about the ease of use from the tool, there was some additional
feedback presented for an additional feature to make the purpose of ALAS more clear and more intuitive.

Company A e “<enter> is a very handy feature which could save a lot of time”
e “most of the stories we encounter are already written so those need to be
imported”
Company B e “The story editor is valuable”
Company C e “Looks good, at this moment you are imposing a default template, which

is good. I think companies can work with a fixed template.”

Company D e “[...] role synonym, for example during typing, on the basis this is what
you want.”
e “Add it to the Jira management tool, this would be a good addition, when
you create backlog item you have to pass through here.”
e “spelling errors could also be included”

Table 8.2: citations per interviewee related to ease of use of the Story Editor.

Lessons learned

Integrate to Jira, for example, the title field.

The TAB function is nice.

The ENTER feature is also good, but users should be able to change the template.

Add a spelling check.

Include additional import features, for example, file upload.

Add role synonym detection, so roles super “superuser” and “administrator” can be mapped.

Add suggestions for a role when the user is typing.

92

8.2.1.2. Story Visualizer

Experts from different fields and perspectives diverged in their opinion about the ease of use from the
story visualizer, on the one hand, experts were very enthusiastic about the visualization and could see
easily see the added value. Other expert expressed their concerns related to this screen, stating that the
story graph will be difficult to read when the number of stories rises.

Company A

Company B

Company C

Company D

“This is a very good screen, it looks like am seeing a part of my own
brain”

“really handy to communicate on a different level regarding these stories”
“Even though I do not understand the content of the stories, | immediately
start to see connections and some hierarchy from these different colors and
dot sizes”

“You can see what belongs together”
“It is hard to understand what you can do with this information”

“With hundreds of user stories this view would be very complicated,
formulating hierarchy and structure would be easier in a matrix. ”

“The concepts of stories are visualized, which could be handy for when
there are a lot of stories, this view provides a different dimension on the
stories”

“Real project visualization, becomes too much and then everything
becomes important you want to know the most important parts. If you
would split the stories into concepts you can mark concepts, for example
as epics”

Table 8.3: citations per interviewee related to ease of use of the Story Visualizer.

Lessons learned

e The opinions regarding this tool diverge.

e On the positive side:

o

o

o

o

o

ALAS can function as a mind map.

You can see different dimensions.

This view could be useful to discuss ‘hidden’ structures in the stories.

Relations between stories are getting clear.

Markers can be useful to order different concepts or mark them as a theme.

e Some companies where positive:

o

O
@)
O

This view becomes complicated when more stories are being displayed.

It is not clear what you can do with the information from this view.

Viewing this information with a matrix would be better.
Everything can become important when the number of stories increases.

93

e Feedback:
o Add an additional layer to define the selection criteria, now only Job and Epic exists, but
this does not fit a lot of companies.

8.2.1.3. Story Hierarchy

The story hierarchy was overall well received, although some experts express their concerns about the
flexibility of this columns by stating that companies should be able to change the columns and meaning
behind these columns in order to be useful in practice.

Company A e “The step of getting from the view towards your hierarchy view is a bit
more tricky since I think you should do an additional step where more
technical information is added. So I see this as two different steps (1)
visualizing the stories and supporting the process of writing user stories or
(2) generating code or tasks given a set of stories. I think you should be
focussing on the first one.”

Company B e “A features are not tree structures, some features come together in
different modules”

Company C e “This is very handy, you can already see the features and modules, the
project structure.”

e “I would suggest to remove the story visualizer and focus more on this
window, after all, why would you try to enrich people with this diagram
while most people will shift to the hierarchy view to see the same
information.”

e “Not everyone works with features and modules, this example is a bit
confusing for me. You should define an action which is represented by a
feature, a product is also clear but a module is a bit vague, perhaps you
should split this concept, perhaps schedule.”

Company D e “this view is clearer because I am used to thinking in of epics with a
feature”

Table 8.4: citations per interviewee related to ease of use of the Story Hierarchy.

Lessons learned

Resembles the project structure.

Add a layer of technical information.

Make this view more flexible, by letting the user define custom headers.
Features are not tree structures, that way things can get easily messy.

Focus more on the is view and less on the visualizer.

94

8.2.2. Usefulness

8.2.2.1. Story Editor

The experts were overall satisfied with the usefulness of the story editor. Some expert shared that the
story editor would be better suited as part of an input screen in Gitlab or Jira. Another returning theme
was the inclusion of Dutch language processing and spell checks.

Company A e “It looks like a good way to edit user stories”
Company B e “Valuable”
Company C e “Looks good, at this moment you are imposing a default template,m

which is good. I think companies can work with a fixed template. ”

Company D e “Dutch language processing would also be interesting”
e “detecting double stories would very handy also with small changes in
stories”

e “spelling errors could also be included”

e “backlog item when creating a title it should be fired”

e “Jira management tool, this would be a good addition, when you create
backlog item you have to pass through here.”

Table 8.5: citations per interviewee related to the usefulness of the Story Editor.

Lessons learned

Looks good

As a Jira plugin, it would work better, for example, AQUSA should be fired when the header of a
backlog item is stored

Include spell checker

Train the language process models on Dutch user stories.

Detecting double stories is very useful.

8.2.2.2. Story Visualizer

The practical use of the story visualizer should be more elaborated according to some of the experts, the
practicality of analyzing sentence structures could be useful, but this representation was debatable by
some of the experts. Although most of the experts agreed that the representation of this information is on
its way unique.

95

Company A

Company B

Company C

Company D

“It starts to get meaning, and you already are coupling action on this
view.”

“A lot of tools are supporting data but I don’t know any tools which create
images from user stories”

“data is not useful, data with context is information, and information with
goals are actions”

“The practicality of this application is not clear”

“I don't want to see this in a graph”
“The elements are not much but this schema becomes very busy, so |
would make the visualization more schematic. ”

“It did not add value, remove this view to make a clear line in the process
of creating an architecture form user stories.”

Table 8.6: citations per interviewee related to the usefulness of the Story Visualizer.

Lessons learned

distraction.

8.2.2.3. Story Hierarchy

The purpose of this view and how to use it should be better represented in the view.
Extracting information from data is a useful aspect of this tool.

Creating images from stories is unique.

People want to couple actions to the concepts, additional input fields should support this.
This view should be optional, some companies like to work with it and others see it as a

The information presented in the hierarchy window can be very useful, but the column names and its

meaning can differ between companies and even projects. The experts, therefore, stated that including a

different layer of complexity would make this view even more useful.

Company A

Company B

Company C

Company D

“This feature already exists, it can be useful but is not very special”

“ 1t is not very clear what “modules” means, make the column names more
flexible”

“Also very useful but the column names indicate more about architecture,
change the names to requirement management associated, like Epics, Jobs
and story clustering.”

“Very useful, a good way to structure the user stories.”
“Since this feature already exists in other tools, make the view more

96

concise with existing features or include unique elements.”

Table 8.7: citations per interviewee related to the usefulness of the Story Hierarchy.

Lessons learned:

e The column names should be changeable by adding a new layer of abstraction where the user can
define the column names and configure to the tool in how to detect suitable themes.

e The column names suggest a more architectural impression of the structure while the information
presented is still in the requirements gathering phase, so the column names should be something
like “Job”, “Epic” and “Story clusters”.

e The clustering information can be transformed in the architecture window.

8.2.3. Correctness

8.2.3.1. Story Editor

Company A e “most of the stories we encounter are already written

e ‘“since your tool also includes drag and drop and copy-paste features,
guess your editor can be useful in practice”

Company B e “Usually, 20 User Stories make it to the start of a project, normally 5 of
these stories express the themes of the project and serve as Epics”

Company C e “The most difficult aspect of this approach would be our existing
architecture, it would be a good addition to be able to add the existing
legacy architecture, but it is very complicated since the architecture of
every application can differ. ”

e “The feature of changing the levels and filtering could be useful, this
would help to get more structure if you have a diagram you want more
structure so a search field could also be useful to find concepts.”

Company D e “This example is too simple.”

Table 8.8: citations per interviewee related to the correctness of the Story Editor.

Lessons learned

e The project structure might be composed earlier in the process.
e The number of User Stories should be limited at the initialization phase of a project.
e Code or features might be in existence, the requirements should be merged with existing features.

97

8.2.3.1. Story Visualizer

Company A e ‘“you visualize unsorted data so it gets meaning and people start to think
about it. ”
Company B e “Difference between an epic and user story depends on the team”

e “Within the product, it does not matter who is working on the user story,
story points should compensate for differences in work speed”

e “Comparable workload can differ between teams”

e “There are a lot of risk factors related to the workload”

Company C e “Overall the visualizer does not add much value, the hierarchy is very
powerful. Secondly, you should add more flexibility, especially in the
hierarchy view, the entities should be definable by the user. ”

Company D e “we do this in Jira if you could tag it would be useful but you need a step
in between”
e “If I see a word different times, if I see payment this can mean different
things”
e “The linguistic structure of user stories and relation between stories are
different things”

e “The most important reason to couple a concept marker to an Epics is
when you are four sprint's future, your stories in the first sprint, other
programmers do not know what is defined in the first sprint.”

Table 8.9: citations per interviewee related to the correctness of the Story Visualizer.

Lessons learned

e Stories are not always displayed correctly.
e Linguistic processing could improve when for example taggers are trained on stories datasets with
more data.

8.2.3.1. Story Hierarchy

Company A e “The step of getting from the view towards your hierarchy view is a bit
more tricky since I think you should do an additional step where more
technical information is added”

Company B e “For one feature, there could be ten user stories, so it is not a hierarchy”

Company C e “The cohesion with modules and Epics is more statistically which should
be translated to a more practical context.”

98

Company D e “In practice, you would first define the epics or jobs”

Table 8.10: citations per interviewee related to the correctness of the Story Hierarchy.

Lessons learned

e This view is too limited, architecture should be added from an existing project to get a
better-suited architecture.

8.2.4. Completeness

8.2.4.1. Story Editor

Overall, the experts were satisfied with the features presented in the story editor. However, some
suggestion where made to make the story editor more flexible and more useful in practice.

Company A e “Stories we encounter are already written so those need to be imported.”
Company B e “Valuable”
Company C e “You write the user stories in a very simple way, I know for practice that

the stories are more complicated. For example, an “and” is not permitted,
but in practice, you see this a lot. If you take more difficult concepts, with
more actions like click and drag, my advice would be to find related
terms, it is not possible to use the same terms.”

e “Overall you can also add some settings, for example, to specify the user
story templates, and which product you want to use (features, business
components etc.) so if you can create a template with components where
the user will couple different names to this entities.

Company D e “detecting double stories would very handy also with small changes in
stories”
e ‘“spelling errors could also be included”
e “backlog item when creating a title it should be fired”

Table 8.11: citations per interviewee related to completeness of the Story Editor.

Lessons learned

Spell checking can be included.

Dutch sentence analysis can be added.

More flexibility in selecting templates can be added.

Detecting double stories can improve by integrating synonyms.

The story editor could be more interactive, for example by presenting suggestions while typing.

99

8.2.4.2. Story Visualizer

The suggestions of including features of the story visualizer diverged between experts. Some experts
suggested to remove this window from the left sidebar and present it more like an additional option.
Another expert would suggest to focus fully on this window and include a lot of additional features to
present more dimensions to the information, for example by generating a 3-dimensional representation of
the data.

Company A e “Everything starts functional, and the owner of this problem should tell
this story (storytelling) which already possible with this tool. So the two
steps should be (1) this is the problem (2) these stories are added or
updated, the best thing would be to add stories, for example, an architect
should be able to add technical criteria. The stories I have to send you all
used the correct template but additional constraints and decision soon
become prosa.”

Company B e “You don’t want to document to mutch”
e “Everyone in the team should have a clear meaning of the whats and
whys”

e “Flexible planning is like shooting on a moving target, you never know
what to expect”

Company C e ‘“searching and filtering are very important aspects in this view, in which
cases will I reach my goal.”

Company D e “If you would split the stories into concepts you can mark concepts, for
example as epics. Epics and modules are marked automatically”
e “mark as a Job, we use Magento it is a platform, if you would provide all
user stories you would have many jobs in practice you will have one Job if
you can tag it would be very valuable.”

Table 8.12: citations per interviewee related to completeness of the Story Visualizer.

Lessons learned

e Add more flexibility, for example, ways to detect nodes or let the user define rules to auto select
nodes. Also, add filtering and search options

8.2.4.3. Story Hierarchy

The completeness of the story hierarchy was difficult to gauge because of the diverse views of the experts
regarding this view. Overall, the expert agreed that the basis of this contained a lot of useful features, but
there are many different features that should be included to increase the usefulness in practice.

100

Company A

Company B

Company C

Company D

“In advance, you can, for example, think of some restrictions for this view,
so the descriptions can be functional but you can also think about the
psychology of humans regarding information processing.”

“At the start of a project, epics and goals are being conceived, the backlog
starts to get a shape. The problem is not where to start but understanding
what the purpose of the project is, and checking if you are on the right
track with your team. Also, customers and other stakeholders should be
involved with the project. The best way is to start very small and build the
project step by step.”

“The tool can make proposals, but as a user, you should be able to change
this, then the tool could recompute the visualization. This recomputation
could be better suited for the architect. ”

“This view is very valuable, I have to admit, but in this form, there are still
things missing in terms of flexibility.”

“It would be useful to click on an epic and see which stories are related to
this cluster. In tools like Jira epics are linked to stories and eventually to
the code, then you have the complete story, I would make a Jira plugin
from this. ”’

Table 8.13: citations per interviewee related to completeness of the Story Hierarchy.

Lessons learned

Make column names more flexible.

Shift stories into job and vice-versa.

Include more features to shift between architecture and story clustering.

Link the presented information more to existing artifacts in Jira or Gitlab.

Further integrate this window in a Gitlab project where changes are pick-up more easily.

8.2.5. Interview summary

The sentiment of the interviewees can be summed by a Likert scale, see fable 8.14. Overall the

interviewee’s were most existed about either the story visualizer or the story hierarchy, which indicates

that the information presented by both of these views is value for the process of acquiring requirements.
The story editor has overall received the highest appreciation, but this can be influenced by the fact that

every expert is already familiar with writing user stories, so a set of tools to support writing these stories

is well suited with their daily practice.

101

Story Editor Story Visualizer Story Hierarchy
3 A 0

Company A

Company B ++ 0 0
Company C 4 - +
Company D 0 0 4

Table 8.14: Likert-scales per screen for every company, extracted from the interviews.

8.3. Code Analysis

Next to the interviews, ALAS is also evaluated by comparing the structure of existing projects with the
output from the ALAS-tool. After a short of every tool, the source code is reversed engineered to get
insights into the structure of the project. This representation of the project structure is then compared with
the out of ALAS.

8.3.1. Existing projects

For this analysis, three finished projects are selected with respect to the presence of source code and User
Stories. The projects, Camper+, Frictionlessdata, and Recycling System were built by students at Utrecht
University for a course in software architecture and are publically available. One selection criteria was
that the source code and User Stories where presented, that the projects have a working website and that
the projects are completed, that is there is a minimal viable product in place that includes all features
described by the user stories.

8.3.1.1. Data Description

The data is provided by a professor at Utrecht University, who made a selection of finished projects for a
students assignment. For these projects, a selection was made to make sure all information was present for
making a useful analysis. The selected projects are all built by students and are publically available.

8.3.2. Camper+

8.3.2.1. Project Description

Camper+ provides tools for camp management, the tool can be used and is available online (see
https://camperapp.herokuapp.com/). The source-files are accessible via GitHub, where the corresponding
user stories can also be found. There are forty stories associated with Camper+ and the code can be
roughly divided into three themes (child, parent, and administrator), see figure 8.1.

102

front end

admin
manage

admin
schedule

campers

parent
schedule

Views

parent admin parent register
schedule manager complete
parent
faq base enroliments
. . new parent
signupAdmin base base
signupmanager footer home
parent login
register 9

Back end
forms
LoginForm CreateChildForm
ChildEnrolimentForm SignupFormAdmin
CreateParentForm
routes - login
stbmit
submit camp
handler group load requires
user roles
submit submit
camper parent
management it
models
campers parent
register User CampGroup
parent parent
enroliments schedule -
Role lampE
faq schedule
Camper CampEvent
create
default login
group LowerCaseString CamperSchema|
update before
forms request Parent
get
logout camp
events

Figure 8.1: project structure of Camper+, extracted from the source code.

8.3.2.2. Structure generated by ALAS

When analyzing the User Stories related to this project, ALAS found the following themes for products:

e Administrator
e Camp

In total, the following modules were generated by ALAS:

Kid

Consent

Form
Camper
Parent

Counselor

Information
Track
Child

103

e Features

On a high level, ALAS constructed the following linguistic structure:

2

!.!gssdéé

Counselor

Consent

Figure 8.2: High-level overview of the concepts and relations, extracted by ALAS from the user stories
from the Camper+ project.

While you can already the most prominent structures of the stories, a detailed view from ALAS is also
generated to provide more insights into the clusters of features related to the Camper+ project.

104

Q, «8 '
Prod 7
" Payment
/ ////
_Se& -

Peace ——Conneet-With-In - >(_)

Staff
/]

n:

“‘ \ \
'}’ ___\-isa —
sa _ " T~
; () Form—— \ \SS
se}Fonn \ m AWL\”*‘

Consent widie.

Figure 8.3: Detailed view of the concepts and relations of the Camper+ project, extracted by ALAS from
the user stories from the Camper+ project.

8.3.2.3. Evaluation

There are two main groups of users interacting with Camper+, guest, and organizers. Since the application
is build to support camp management, scheduling activities (especially for children), request information
and handling reservations are central themes in the Camper+ project. These themes are reflected in the
source code, for example in modules like camper event and camper schema. Most of these themes are also
presented in the structures of ALAS, for example, Information, Child, and parent can be distinguished.
Also, the two main user groups are represented by ALAS, admin can be interpreted as the organizers of
camp-events and camp is a close representation of the guest attending these events. Although the structure
of the project is represented, there are also modules in the source code that have not been licked-up by
ALAS, for example, modules related to login and register. There are also different concepts that might be
merged, for example, kid and child.

105

8.3.3. Frictionlessdata

8.3.3.1. Project Description

Frictionlessdata provides lightweight containerization formats for data with a minimal yet powerful
foundation for data publication, transport, and consumption. This tool is also available online,
https://frictionlessdata.io/. The number of related User Stories is 73, which are subdivided in themes.
These themes are also presented in the architecture of the tool (see figure 8.4).

datapackage tableschema
cli helpers profile cli config exceptions
config infer pushpull storage schema field
exceptions package registry validate table helpers
resource validate .)
infer profile
goodtables specs
cells spec inspector csv-dialect data-package data-resource
cli error regist dictiona ool regist
gistry ry package gistry
confi validate exceptions table-schema il il
9 P package resource

Figure 8.4: project structure of Frictionlessdata, extracted from the source code.

8.3.3.2. Structure generated by ALAS

For the User stories, ALAS has extracted one theme for a product:

e Data

The themes that might serve as input for the modules, as generated by ALAS:

e Researcher

https://frictionlessdata.io/

Package
Features
Analysis
Dataset
Publisher

A subcluster of the concepts is also included:

O
O
Ancyais
O
Infcemation
‘Al
W/
Putligher
wide
y
p
O
nd
Vausizaton
le
Dutla
. QO
Reoearcher
Data Package &,’“,
</
Oftwr

O

Package

Figure 8.5: a global view of the concepts and relations from the Frictionlessdata project, extracted by
ALAS from the related user stories.

8.3.3.3. Evaluation

ALAS has made a fitting suggestion of a theme on a product level, equal to the Camper+ project. The
distinction of modules is also presented by ALAS, for example, package is presented as a module theme
by ALAS and is also closely related to a module in the source code (datapackage). Other modules, like

107

specs, goodtables and table schema are not represented by ALAS as module themes. However, the
suggested modules do make a logical

Grouping for architecture for this application. Now, the modules are divided into types of analysis, which
is more like a tech-driven design. However, if we look at the features where users will be interacting with,
the provided themes by ALAS can make more sense. Researcher and publisher can play an important role
from a user perspective, thus if the application was build from a more user-centered point of view, then
the modules themes of ALAS can be used as input for structuring the architecture.

8.3.4. Recycling System

8.3.4.1. Project Description

Recycling system is a tool to find recycling option in the postal code area, features like saving locations
and getting information about safe disposal events are also included. The tool is available via
https://warm-beach-37724.herokuapp.com/. In total there are 53 User Stories related to the functionalities
of this tool, where the architecture is also represented by prominent themes from these stories (see figure

8.6).

guestbook users
feedback create save signin get Facilities signout
BoaKTark index signu
Handler € gnup
recycle101
index searchHowTo getltemTypes get Bookmarks edit Profile profile
mainRecycleApp
search return .
index with lat-long get spec_ual contact about
: waste site
Query from Zip
parse fu?t?lter recomgn?tended get public filter da faqgs
time-table . . recycle bins y q
details list
. check get safe .
donation . : . . get borough combine
Site-Details Dlstar)ce disposal filter time from zip ide
Of Zips events

Figure 8.6: project structure of Recycling System, extracted from the source code.

8.3.4.2. Structure generated by ALAS
The only product-theme presented by ALAS regarding the Recycling System is:

108

https://warm-beach-37724.herokuapp.com/

e User

The generated module themes are:
e Hour
e Information
e Admin

A high-level representation of the sentence structure from the Recycling System’s User Stories is also
generated by ALAS:

Email FIO g
our
Display\
AN
AN Give cd is2
isa
) View Arrange »
/Map Display Drop Off O
Y User oft Waste
/ Drop
[?]sp\ay
O‘ - —isg—" o*
/.»' Select View Drop Waste Drop
Map
y 4

Type Information

Figure 8.7: linguistic structure of Recycling System's User Stories, generated by ALAS.

&.3.4.3. Evaluation

Although the user does play a central role in this application, the theme suggestion “user” is very suited
for this product. As the name suggests, the central theme of the application is more related to recycling.
Some sub-clusters do contain concepts and related that suit the architecture fine, but the central themes of
modules are also not very useful. A closer at the raw User Stories, reveals that more of the stories start
with “As a user [want to...”, which might explain the generated theme to picked the recycling system
tool. Moreover, the AQUSA analysis of these stories also reveals a very poor quality, since more than
fifty percent of the stories contain an error or warning (see appendix c). Although the stories of this
project might be not very well suited for textual analysis, it should be taken into consideration that the
quality of User Stories in practice might also contain errors.

8.4. Conclusion

Overall, ALAS performs well in practice, the evaluation interviews reveal many interesting insights into
how the tool might be improved or how to increase its usability. All experts agreed that ALAS contains a
good basis of structuring a set of well-formed User Stories. The different views on the User Story data
(story visualizer and story hierarchy) both provide a lot of additional insights, were different backgrounds
of companies and users can play a role in how useful a specific representation of the User Stories is.

109

There are also improvements possible in terms of suggesting project structures from User Stories, where
additional challenges in extracting contextual information from User Stories have to be overcome.

110

9. General Conclusions

The question of how requirement management and architecture functionality for software product
development be implemented in an integrated development environment can be answered is related to the
milestones as discussed in this chapter 1.2.2. I will walk shortly through every step of the project and
describe the main conclusions.

9.1. Phase One (Problem Investigation)

In chapter 4 SWEBOK is used to extract the characteristics of an SDK (MS1-1-1), these characteristics
have been selected and weighed to create a feature matrix (MS1-1-2). This feature matrix is used to make
a comparison between three different SDK (Gitlab, GitHub and Bitbucket), where Gitlab has been
selected for implementing features related to User Stories. The decisive factors were the usability of
Gitlab, its open character and its popularity amongst start-ups.

9.2. Phase Two (Solution Design)

In order to get a clear overview of the desired features regarding the support for User Stories in a practical
context, a literature study is conducted on User Stories (MS2-2-2) and emerging industrial trends
(MS2-2-1). The literature on User Stories points to quality control, template usages, project estimates, and
history tracking. From the industrial trends are pointing User Stories in the direction of supporting
communication, software architecture, requirements, and version control. Next to the literature studies,
there are also five interviews conducted to gain more knowledge of how User Stories are used in a
practical setting and how well the literature is reflected on different businesses (MS2-2-3). The hypothesis
for these interviews, that the software industry can provide practical insights to strengthen the literature
review of this study, is considered to be confirmed since the requirements gathered by these case studies
exceeds the number of requirements by both literature studies. The interviews are then related to the
literature in section 5.2, where different insights of companies are compared and placed within the
literature studies (MS2-2-4). From the literature and interviews data, are requirements extracted in the
form of User Stories (MS2-2-5). These requirements have been used to compose a vision is where the role
of User Stories within the process of development becomes more prominent and is more integrated with
other processes (MS2-2-6). Because of this centralized role of User Stories, an ontology can also be
created from User Stories which can then be used to automatically link other artifacts of a project.

9.3. Phase Three (Design Validation)

Now the requirements take shape in a vision, it is time design features are going to get implemented in
Gitlab (MS2-3-6). Designing new features from a set of User Stories formed a practical challenge, equal
to the problems arising in real-life software development, for example, which stories to select and how to
structure the project to get a minimal viable product. To tackle these problems, the visualizations of the
Interactive Narrator have been used, as explained in chapter 6. With the visualizations of this tool, the

111

clusters of story-concepts became clear and served as the main input for composing Job and Epic Stories.
When designing the tool to support User Stories, the Gitlab style guides and an expert from Gitlab were
consulted, to provide feedback on the design and meaningful information about Gitlab and its developing
community (MS3-3-1 and MS3-3-2).

9.4. Phase Four (Solution Implementation)

The architectural views and the took and feel of ALAS are described in chapter 7. The implementation
itself consisted of preparing a local environment to get the development started (MS4-4-1), for example
installing supporting tools, setting up a local Gitlab environment, writing code, and testing the
implemented features (MS4-4-2). This phase also contains a step to look for ways in evaluating the
implemented features (MS4-4-3), were eventually two measures are decided, by analyzing existing
projects and by conducting evaluation interviews.

9.5. Phase Four (Solution Evaluation)

The interviews again resulted in a lot of valuable information regarding the performance of the tool
(MS5-5-1). The Story Editor screen proved to be very useful since it includes checks for duplicated
stories, which turned out to be a very common practical problem and forced the user to correctly apply
User Story templates, which is also a very common problem when working with User Stories. The Story
Visualizer and Story Hierarchy view both received mixed comments, some companies where very
enthusiastic about one of these screens, while other companies preferred the other screen. Interviewees
did agree that the information extracted from the stories could be very useful in practice. The ease of use
from the tool was also well rated by the experts because of its intuitive design. The analysis of the
finished projects also showed some interesting results on the performance of the tool. By extracting the
structure of User Stories, the tool was able to predict the global architectural structure of a project. An
important condition, however, is that the User Stories of such a project should be composed according to
the quality standards of AQUSA.

9.6. Future research

This study has brought a lot of different perspectives on User Stories together, which resulted in many
new insights but also in new ideas to explore in future research. Four of those ideas are shortly discussed:

e The backlog of companies is often unstructured, contains a lot of requirement but not in the form
of stories. There are interesting themes hidden in these data-sets for example when a problem
keeps occurring but is incidental enough to stay under the radar. A linguistic approach to extract
information from these large chunks of data would be very useful for companies.

e Now that there is a tool in existence to check the quality of user stories, there are also opening
possibilities to explore existing projects and even more questions like what are the most common
flows in writing user stories? And are there returning themes in different projects?

e Now the basis of user stories is explored and some insights about tasks are being explored, we
can also focus on the larger picture to find relations between user stories and tasks.

112

e The idea of applying themes on user story clusters was considered to be very useful, as discussed
during the interviews, however, the idea of predefined labels to label the cluster (in ALAS
Job-theme and Epic-themes) was too frigid. Some companies proposed a different layer of
complexity between defining themes and applying these themes to the story clusters, which could
be further investigated.

113

10. References

Adolph, S., Cockburn, A., & Bramble, P. (2002). Patterns for effective use cases. Addison-Wesley
Longman Publishing Co., Inc..

Ahn, Y., Suh, J., Kim, S., & Kim, H. (2003). The software maintenance project effort estimation model
based on function points. Journal of Software: Evolution and Process, 15(2), 71-85.

Ali, M., Shaikh, Z., & Ali, E. (2015). Estimation of Project Size Using User Stories. In The International
Conference on Recent Advances in Computer Systems.

De Alwis, B., & Sillito, J. (2009). Why are software projects moving from centralized to decentralized
version control systems?. In Proceedings of the 2009 ICSE Workshop on cooperative and human aspects
on software engineering(pp. 36-39). IEEE Computer Society.

Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge University Press.

Anwer, S., & Ikram, N. (2006, December). Goal oriented requirement engineering: A critical study of
techniques. In Software Engineering Conference, 2006. APSEC 2006. 13th Asia Pacific (pp. 121-130).
IEEE.

Anwer, F., Aftab, S., Shah, S. S. M., & Waheed, U. (2017). Comparative Analysis of Two Popular Agile
Process Models: Extreme Programming and Scrum. International Journal of Computer Science and
Telecommunications, 8(2), 1-7.

Barbosa, R., Silva, A. E. A., & Moraes, R. (2016, June). Use of Similarity Measure to Suggest the
Existence of Duplicate User Stories in the Scrum Process. In Dependable Systems and Networks
Workshop, 2016 46th Annual IEEE/IFIP International Conference on (pp. 2-5). IEEE.

Basili, V. R., & Perricone, B. T. (1984). Software errors and complexity: an empirical investigation.
Communications of the ACM, 27(1), 42-52.

Boehm, B. (2000). Requirements that handle IKIWISI, COTS, and rapid change. Computer, 33(7),
99-102.

Bourque, P., & Fairley, R. E. (2014). Guide to the software engineering body of knowledge (SWEBOK
(R)): Version 3.0. IEEE Computer Society Press.

Brinkkemper S., Pachidi S. (2010) Functional Architecture Modeling for the Software Product Industry.

In Babar M.A., Gorton 1. (eds) Software Architecture. ECSA 2010. Lecture Notes in Computer Science,
vol 6285. Springer, Berlin, Heidelberg

114

Charette, R. N. (2005). Why software fails [software failure]. leee Spectrum, 42(9), 42-49.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., Stafford, J.
(2010) Documenting Software Architectures: Views and Beyond, Second Edition. Boston, Massachusetts:
Addison-Wesley Professional.

Coelho, E., & Basu, A. (2012). Effort estimation in agile software development using story points.
International Journal of Applied Information Systems (IJAIS), 3(7).

Cohn, M. (2004). User stories applied: For agile software development. Addison-Wesley Professional.
Cohn, M. (2005). Agile estimating and planning. Pearson Education.

Dimitrijevi¢, S., Jovanovié, J., & Devedzi¢, V. (2015). A comparative study of software tools for user
story management. Information and Software Technology, 57, 352-368.

Dingseyr, T., & Lassenius, C. (2016). Emerging themes in agile software development: Introduction to the
special section on continuous value delivery. Information and Software Technology, 77, 56-60.

Feiler, P. H., Gluch, D. P., & Hudak, J. J. (2006). The architecture analysis & design language (AADL):
An introduction (No. CMU/SEI-2006-TN-011). Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

Fitzgerald, B., & Stol, K. J. (2014). Continuous software engineering and beyond: trends and challenges.
In Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering (pp. 1-9).
ACM.

Garlan, D. (2000, May). Software architecture: a roadmap. In Proceedings of the Conference on the
Future of Software Engineering (pp. 91-101). ACM.

Github vs Bitbucket. (2018). Retrieved March 28, 2018, from
https://www.upguard.com/articles/github-vs-bitbucket

Halpern, F. (2015). Next-generation analytics and platforms for business success: tDWI research report.
Available on: www.tdwi.org

Heck, P., & Zaidman, A. (2014). A quality framework for agile requirements: a practitioner's perspective.
arXiv preprint arXiv:1406.4692.

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in software projects.
IEEE software, 18(4), 58.

115

https://www.upguard.com/articles/github-vs-bitbucket

Hoorn, van, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., & Kieselhorst, D. (2009).
Continuous monitoring of software services: Design and application of the Kieker framework.

Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja, E., ... & Giorgini, P. (2017). Goal-oriented
requirements engineering: an extended systematic mapping study. Requirements Engineering, 1-28.

Jansen, N., & van Rhijn, J. (2018). utrecht Architecture Description Language. Unpublished manuscript,
Utrecht University, The Netherlands.

Kassab, M. (2015). The changing landscape of requirements engineering practices over the past decade.
In Empirical Requirements Engineering (EmpiRE), 2015 IEEFE Fifth International Workshop on (pp. 1-8).
IEEE.

Kattan, H. M., Oliveira, F., Goldman, A., & Yoder, J. W. (2017). Mob Programming: The State of the Art
and Three Case Studies of Open Source Software. In Brazilian Workshop on Agile Methods (pp.
146-160). Springer, Cham.

Kavitha, C. R., & Thomas, S. M. (2011). Requirement gathering for small projects using agile methods.
1JCA Special Issue on Computational Science-New Dimensions & Perspectives, NCCSE.

Kniberg, H. (2011). Lean from the trenches: Managing large-scale projects with Kanban. Pragmatic
Bookshelf.

Knight, S., Rabideau, G., Chien, S., Engelhardt, B., & Sherwood, R. (2001). Casper: Space exploration
through continuous planning. /[EEE Intelligent Systems, 16(5), 70-75.

LandhéuBer, M., & Genaid, A. (2012). Connecting user stories and code for test development. In
Proceedings of the Third International Workshop on Recommendation Systems for Software Engineering
(pp- 33-37). IEEE Press.

Layman, L., Williams, L., Damian, D., & Bures, H. (2006). Essential communication practices for
Extreme Programming in a global software development team. Information and software technology,
48(9), 781-794.

Larson, D., & Chang, V. (2016). A review and future direction of agile, business intelligence, analytics
and data science. International Journal of Information Management, 36(5), 700-710.

Lehtola, L., Kauppinen, M., Vihaniitty, J., & Komssi, M. (2009). Linking business and requirements
engineering: is solution planning a missing activity in software product companies?. Requirements
engineering, 14(2), 113-128.

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proceedings of the 5th annual international conference on Systems

116

documentation (pp. 24-26). ACM.

Lin, D. (1998). An information-theoretic definition of similarity. /n /ICML (Vol. 98, No. 1998, pp.
296-304).

Lin, J., Yu, H., Shen, Z., & Miao, C. (2014). Using goal net to model user stories in agile software
development. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2014 15th IEEE/ACIS International Conference on (pp. 1-6). IEEE.

Lopes, L. A., Pinheiro, E. G., Silva da Silva, T., & Zaina, L. A. M. (2017, September). Adding human
interaction aspects in the writing of User Stories: a perspective of software developers. In Proceedings of
the 31st Brazilian Symposium on Software Engineering (pp. 194-203). ACM.

Lucassen, G. (2015). Introduction to AQUSA. Retrieved May 19, 2018, from
https://www.slideshare.net/GarmlLucassen/introduction-to-aqusa

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., Brinkkemper, S., & Zowghi, D. (2017, September).
Behavior-Driven Requirements Traceability via Automated Acceptance Tests. In 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW) (pp. 431-434). IEEE.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2016). Visualizing user story
requirements at multiple granularity levels via semantic relatedness. In Conceptual Modeling: 35th
International Conference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings 35(pp. 463-478).
Springer International Publishing.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2016). Improving agile
requirements: the quality user story framework and tool. Requirements Engineering, 21(3), 383-403.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2016). The use and effectiveness of
user stories in practice. In International Working Conference on Requirements Engineering: Foundation
for Software Quality (pp. 205-222). Springer, Cham.

Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. Extracting conceptual
models from user stories with Visual Narrator. Requirements Engineering, 1-20.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2015). Forging high-quality user
stories: towards a discipline for agile requirements. In Requirements Engineering Conference (RE), 2015

IEEE 23rd International (pp. 126-135). IEEE.

Mahnic, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Systems
and Software, 85(9), 2086-2095.

117

https://www.slideshare.net/GarmLucassen/introduction-to-aqusa

Malavolta, 1., Lago, P., Muccini, H., Pelliccione, P., & Tang, A. (2013). What industry needs from
architectural languages: A survey. IEEE Transactions on Software Engineering, 39(6), 869-891.

Mavin, A., Wilkinson, P., Teufl, S., Femmer, H., Eckhardt, J., & Mund, J. (2017, September). Does
Goal-Oriented Requirements Engineering Achieve Its Goal?. In Requirements Engineering Conference
(RE), 2017 IEEE 25th International (pp. 174-183). IEEE.

Méndez Fernandez, D., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetro, A., ... & Ménnisto, T.

(2016). Naming the pain in requirements engineering: contemporary problems, causes, and effects in
practice.

Myers, K. L. (1999). CPEF: A continuous planning and execution framework. 4] Magazine, 20(4), 63.

Negri, P. P, Souza, V. E. S., de Castro Leal, A. L., de Almeida Falbo, R., & Guizzardi, G. (2017).
Towards an ontology of goal-oriented requirements. In Proc. of the 20th Workshop on Requirements
Engineering (WER) at the 20th Ibero-American Conference on Software Engineering (CIbSE).

Ntt-review (2018) Retrieved May 19, 2018, from
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200807s{3.html

Panda, A., Satapathy, S. M., & Rath, S. K. (2015). Neural Network Models for Agile Software Effort
Estimation based on Story Points. In Proceedings of the International Conference on Advances in
Computing, Control and Networking (pp. 26-30).

Pedersen, T. (2010). Information content measures of semantic similarity perform better without
sense-tagged text. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (pp. 329-332). Association for
Computational Linguistics.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM SIGSOFT
Software engineering notes, 17(4), 40-52.

Robeer, M., Lucassen, G., van der Werf, J. M. E., Dalpiaz, F., & Brinkkemper, S. (2016, September).
Automated extraction of conceptual models from user stories via NLP. In Requirements engineering
conference (RE), 2016 IEEE 24th international (pp. 196-205). IEEE.

Salah, D., Paige, R. F., & Cairns, P. (2014). A systematic literature review for agile development
processes and user centred design integration. In Proceedings of the 18th international conference on
evaluation and assessment in software engineering (p. 5). ACM.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software development
organisations: a survey on the actual use and usefulness of Extreme Programming and Scrum. /ET
software, 2(1), 58-64.

118

Schmietendorf, A., Kunz, M., & Dumke, R. (2008, May). Effort estimation for agile software
development projects. In 5th Software Measurement European Forum (pp. 113-123).

Schon, E. M., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements Engineering: A
systematic literature review. Computer Standards & Interfaces, 49, 79-91.

SCRUM ALLIANCE (2015). THE 2015 STATE OF SCRUM REPORT. Retrieved May 23, 2018, from
https://cdn.ymaws.com/scrum.site-ym.com/resource/collection/AE0D3360-3FF1-4769-AD24-C020E7B4
2AD4/state-of-scrum-2015.pdf

ScrumWorks Pro Download. (2018). Retrieved May 18, 2018, from
http://www.collab.net/downloads/scrumworks

Survive Disruption with Rally and CA Technologies. (2018). Retrieved May 18, 2018, from
http://www.rallydev.com/

Slob, G. J., Dalpiaz, F., Brinkkemper, S., & Lucassen, G. (2018). The Interactive Narrator Tool: Effective
Requirements Exploration and Discussion through Visualization.

The #1 software development tool used by agile teams. (2018). Retrieved May 18, 2018, from
https://www.atlassian.com/zh/software/jira

Tothenew (2018) How to Estimate Story Points in Agile? Retrieved May 18, 2018, from
http://www.tothenew.com/blog/how-to-estimate-story-points-in-agile/

Turk, D., France, R., & Rumpe, B. (2014). Limitations of agile software processes. arXiv preprint
arXiv:1409.6600.

Usman, M., Mendes, E., Weidt, F., & Britto, R. (2014). Effort estimation in agile software development: a
systematic literature review. In Proceedings of the 10th International Conference on Predictive Models in
Software Engineering (pp. 82-91). ACM.

Wake, B. (2003). INVEST in Good Stories, and SMART Tasks. Retrieved May 19, 2018, from
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Wang, C., Pastore, F., Goknil, A., Briand, L., & Igbal, Z. (2015). Automatic generation of system test
cases from use case specifications. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (pp. 385-396). ACM.

Wang, X., Zhao, L., Wang, Y., & Sun, J. (2014). The role of requirements engineering practices in agile

development: an empirical study. In Requirements Engineering (pp. 195-209). Springer, Berlin,
Heidelberg.

119

Wautelet, Y., Heng, S., Kolp, M., & Mirbel, I. (2014). Unifying and extending user story models. In
International Conference on Advanced Information Systems Engineering (pp. 211-225). Springer, Cham.

van de Weerd, 1., & Brinkkemper, S. (2009). Meta-modeling for situational analysis and design methods.
In Handbook of research on modern systems analysis and design technologies and applications (pp.

35-54). IGI Global.

Wilensky, R. (1982). Points: A theory of the structure of stories in memory. Strategies for natural
language processing, 345, 374.

Wynne, M., Hellesoy, A., & Tooke, S. (2017). The cucumber book: behaviour-driven development for
testers and developers. Pragmatic Bookshelyf.

Zuill, W., & Meadows, K. (2016). Mob Programming: A whole Team Approach. In Agile 2014
Conference, Orlando, Florida.

120

Appendix A: Interview protocol First Interview
1. Interviewees’ background
2. Organizations’ background

3. Defining User Stories

3.1. Is the term User Stories being used within your organization?
Ifyes:

3.2.a. What is meant by User Stories within your organization? And can you provide examples to illustrate how the

term is being used?
Of no:

3.2.b. Is there a specific reason why the term User Stories is not used within your organization? And if so, can you

please elaborate on this?

3.3. Has the meaning of User Stories changed over time within your organization? And if so, how has it changed?

3.4. What are activities are performed within your organization related to User Stories?

4. Instruments

4.1. Are there any instruments, tools or app related to User Stories used in your organization?

Ifyes:

4.2.a. How did these instruments get introduced into the organization?

4.3.a. Has there been a shift in which instruments are being used?

4.4.a. Could you elaborate on how these instruments contribute to the success/failure of your organization’s
goals/processes?

If no:

4.2.b. Why not?

4.5. What type of functionality would be desirable in an instrument to support User Stories?

5. Governing User Stories

5.1. Is there a strategy for managing User Stories in your organization?

Ifyes:

5.2.a. What is your organization’s strategy related to User Stories, and how is it documented?

If no:

5.2.b. What do you think is hindering your organization in developing a strategy related to User Stories?
5.3. Where does the overall responsibility for User Stories reside within your organization?

5.4. Is there a specific department that is responsible for User Stories in your organization?

5.5. Which roles, if any, are related to User Stories (e.g. Chief Knowledge Officer, Thought Leader, or
Community-of-Practice leader)?

121

5.6. Is there some kind of measurement used related to User Stories, and if so, by which KPIs?

6. Projects

6.1. Is there any project where User Stories are used?

6.1.a. If so, how where User Stories used?

6.1.b. Did User Stories add value to the governance of the project?

6.2. How did these projects finish?

6.3. Is some evaluation done on these projects, is the role of User Stories also evaluated? If so what was the
outcome?

7. Completion

7.1. Is there anything you would like to add regarding this interview?
7.2. Do you have any questions?

122

Appendix B: Interview protocol Second Interview

What is your first impression on the tool as a whole?

We are now going to discuss every screen, can you tell something about the editor?
Can you tell something about the story visualizer?

Can you tell something about the story hierarchy view?

Can you tell something about the architecture editor?

Does the workflow of the tool (from top to bottom) fit your organizations workflow?

What do you think about the vision of producing source code from the architecture view, which in turn is

generated by the hierarchy and the story visualizer?

123

Appendix C: Recycling Systems’ User Stories

User Stories with AQUSA analysis

As a user, I want to be able to click on the address and it should
take me to a new tab with google maps

As a user, | want to anonymously view the public information on
the website so that I can know about the recycling centers around
my location before creating an account.

As a user, [want to be able to enter my zip code and get a list of
nearby recycling facilities so that I can determine which ones
should I consider.

As a user, | want to be able to get the hours of each recycling
facilities so that I can arrange drop-offs on my off days or
after-work hours.

As a user, | want the flexible pick up time so that I can be more
convenient to use this website.

As a user, [want to be able to select different types of recyclable
waste that I have and get a list of facilities that accept each type
that also their hours, so I can find optimal route and schedule.

As a user, | want to add the donation centers as a favorite to my
profile and view them later.

As a user, [want to be able to give my email id to get notifications
for the newer events as they are posted.

As a user, [want to be able to view the maps display of the public
recycle bins around my area.

As a user, [want to be able to view the maps display of the special
waste drop off sites around my area.

As auser, [want to be able to view the safe disposal events currently
being organized around my area.

As a user, I want the flexible pick up time so that I can be more
convenient to use this website.

As a user, I want to view the user documentation about the website so
that I can know how to use the web app.

As a user, [want to be able to create an account so that I can create my
own profile.

No
ends

Conju
nctions

Conju
nctions
Templ
ate
misma

tch

Conju
nctions

No
ends

Conju
nctions

No
ends

No
ends

No
ends

No
ends

Templ

ate
As an admin, I want to be able to add/remove recycling facilities misma Conju
information so that users get the most recent information. tch nctions
Templ

As an admin, I want to be able to read users' feedback/complaints so that ate
we can add more features and keep improving the service we provide to misma

them. tch
As an user I want to be able to check transaction history and keep a Conju
record of them so that I can go back when I needed. nctions

As an user [want great Ul and UX from the sites so that I can have
pleasurable experience when navigating through the websites.

Templ
ate
As an user [want to be able to access the site and do all the stuffs on all misma No Conju
my electronic devices like iPad, iPhones, Mac, Apple Watch, etc. tch ends | netions
As an admin [want to be able to block specific users based on IP address
so that I can prevent spamming on the websites.
As an admin [want a dashboard that monitors all status related to the
sites so that I can have a sense of what people do on our sites and know
the service status.
Templ
ate

As an admin I want all data to be encrypted so that important information misma
won't be stolen during a server breach or an attack. tch

Templ
ate
As an executive I want full access to data related to my company so that I misma
can have a sense of the company's performance. tch

As an employee I want to access to route planning system during my
work so that I can be guided through the neighborhood.

As an employee from HR department I want to have full information of No
every employees working for this business. ends

As a developer I want API from the websites so that I can integrate and
implement certain features in my own iOS application.

As an user I want the tempting rewards back so that I have a reason to
use this website.

As an user [want the personal information is security keep in the
database of this website so that I will not suffer by identity theft or
telephone harassment.

As an admin [want to handle all users' activities so that I can be manage Templ
more efficiently. ate

125

misma

tch
As an company | want this website is a easy to use so that I can upload or
delete stuff step by step.
As an employee I want to get the quick notification so that I can process
case in first time.
As an accountant of a company I want all activity fees are available
online so that I can easily to bill statement.
As a developer I want to use bootstrap in the process of developing so
that I can easy to design my website.
Templa

te
As a developer I want to learn some UI/UX lessons so that I can develop mismat
a awesome and beautiful features website. ch

As auser [want to view all the locations of the recycling centers on a
map so that I can check which routes to take to drop off the waste.

Templ
ate
As a user [want to upload my week's schedule so that I can get misma
recommendations about recycling centers that best fit my availability. tch
As auser [want to link my email account to my profile so that I can get a
temporary password in case I forget it.
As a user I want to contact the administrators so that I can give feedback
or ask for any help.
As an admin I want to add recycling center information so that I can keep
the database up to date over time.
Templ
ate

As an admin [want to view user error logs so that I can fix/review any ~ misma
issues that are being faced by the users of the system. tch

As an admin [want to onboard recycling centers to the platform so that I
can increase information accuracy.

As a superuser I want to update the recycling center information so that I
can provide the latest information about the recycling center.

Templ
As a superuser I want to view users stats so that I can view on real-time ate
how many users have visited my recycling center information and their misma
recyclable waste. tch

As a superuser I want to reply to user questions so that I can answer any
questions about my recycling center.

126

As an admin, I wan to be able to have a dashboard that shows usage
stats/locations so that I can identify the neighborhoods with largest
number of drop-offs and try to add get more facilities involved.

As an admin, I want to be able to communicate directly with facilities to
keep them updated on features that we have in our website.

As a user, [want to be able to browse through the list of facilities and see
which ones are environment-friendly so I can know for sure that my
waste isn't going to leave negative ecological footprint.

As arecycling facility (representative), I want to be able to update my
information and the type of material I accepted to avoid any
miscommunication with users.

As a recycling facility (rep.), I want to have access to user stats/schedules
so that I can adjust my hours and/or upgrade equipment/capacity in order
to be able to accommodate larger amounts of recyclable materials.

As a recycling facility, [want to be able to communicate directly with
site admin in order to convey any issues/concerns and have them fix it.

Legend

Uniform

Template
mismatch

No ends

Conjunctions

warning

warning
warning

crror

Templ
ate
misma

tch

No
ends

Templ
ate
misma

tch

Templ
ate
misma

tch

Templ
ate
misma

tch

Templ
ate
misma

tch

Unifor
m

Conju
nctions

No Conju Bracke
ends |nctions ts

Indicat
or

Conju Bracke repetiti Unifor

nctions ts on m

Unifor
m

127

Appendix D: The Story of ALAS

Once upon a time, there was a boy called Alas who ran away from home. After many years he
saw his father again and told him he became a thief. His Father looked at an old crooked knotted
tree in his garden and asked his son why he had chosen this path. The thief replayed "if you had
trained me while he was still young, I would not have run away, I have grown hard and
misshapen like that knotted tree, who should have been straightened tied while it was still young.

This story incorporates an important lesson, early decisions will have a huge impact later-on,
likewise in software projects, where the most costly flaws are often made in the first phases of
the process. So can we reduce or even prevent costly flaws at an early stage?

Three steps: first you start with your hart (wishes, needs, desires, requirement) then you use your
head (analyze, cluster, design) and finally, you use your hands (build, implement, test).

With these steps in mind, I've studied the field of requirement engineering with, especially User
Stories and interviewed project managers from multiple companies (varying from size, market
and maturity).

In practice, we see a lot of variations on how these projects are executed, but in most cases
shaping a project is done by hand by one or just a few people, which makes it very difficult to
see patterns in thousands of user stories related to a project.

I have dedicated my time for the last six months to find solutions for tools to support the process
of getting from a set of user stories to a full-featured design, ready to implement. For this work I
have looked at existing literature and tools (for example AQUSA, Garm Lucassen and the
Interactive Narrator Gover-Jan) but also came up with research of my own (task analysis) and
eventually build the ALAS tool (Architectural Lexical Arrangement Scrutinizer) to combine all
this knowledge to support and guide project managers and developers in the initial phases of a
project, so a strong root will emerge in supporting a straight project.

All and well, but how did the real Alas came about? He proved himself as master-thief, took
leave of his parents and went forth into the wide world, never to be heard from again.

The story of Alas is based on a tail "The Master-Thief", found in Household Tales, by the
Brothers Grimm (published in 1812 and 1815), see

https://ebooks.adelaide.edu.au/g/grimm/g86h/chapter193.html

128

https://ebooks.adelaide.edu.au/g/grimm/g86h/chapter193.html

Refinement of User Stories into Backlog Items:
Linguistic Structure and Action Verbs

Laurens Miiter!, Tejaswini Deoskar?, Max Mathijssen®, Sjaak Brinkkemper!,
and Fabiano Dalpiaz!

'RE-Lab, Dept. of Information and Computing Sciences, Utrecht University
{L.H.F.Muter, M.Mathijssen, S.Brinkkemper, F.Dalpiaz}@uu.nl
2Utrecht Institute of Linguistics, Department of Languages, Literature, and
Communication, Utrecht University
T.Deoskar@uu.nl

Abstract. [Context and motivation] In agile system development
methods, product backlog items (or tasks) play an prominent role in
the refinement process of software requirements. Tasks are typically de-
fined manually to operationalize how to implement a user story; tasks’
formulation often exhibits low quality, perhaps due to the tedious na-
ture of decomposing user stories into tasks. [Question/Problem] We
investigate the process through which user stories are refined into tasks.
[Principal ideas/results] We study a large collection of backlog items
(N=1,593), expressed as user stories and sprint tasks, looking for lin-
guistic patterns that characterize the required feature of the user story
requirement. Through a linguistic analysis of sentence structures and ac-
tion verbs (the main verb in the sentence that indicates the task), we
discover patterns of labeling refinements and explore new ways for re-
finement process improvement. [Contribution] By identifying a set of
7 elementary action verbs and a template for task labels, we make firsts
steps into comprehending the refinement of user stories to backlog items.

Keywords: Requirements engineering, user stories, backlog items, nat-
ural language processing, sprint tasks.

1 Introduction

User stories (USs) have made their way into the development process of compa-
nies [1] and their adoption is evolving to higher levels [2I1]. USs are the starting
point for specifying software that is developed, according to the agile devel-
opment paradigm, through a series of sprints. The USs are distributed to the
development teams that refine the USs into a number of (usually 3 to 6) so-called
backlog items (but also called tasks) to break down a US into specific executable
tasks for developers to carry out during the sprints.

Software specifications have been thoroughly studied from the viewpoint of
their linguistic structure. Researchers have proposed approaches for finding am-
biguity [3l4] and other types of defects [5] in natural language requirements, for
generating conceptual models [6/7], and much more [g].

2 L. Miiter et al.

Previous work has conducted linguistic analyses of USs and defined guidelines
for writing a good specification in agile development [1J9]. The template structure
of a US “As a [Role] I want to [Action], so that [Benefit]” is often misused
and many real-world USs are poorly written requirements [10]. However, there
is no study on the requirements-related artifacts that stem from USs in agile
development and Scrum, i.e., backlog items or tasks.

Table 1: Example US that has been refined into 3 tasks

US: As a webshop visitor I want to add shipping addresses
so that I can send presents to my friends

Task-1|Create ShippingAddresses records for visitors

Task-2|Update validity check for Addresses

Task-3|Add data-item for LastShippingAddress to visitor

Table |1| shows the refinement of a US into three tasks. By reading the table,
one can see that tasks are the bridge between user-centered requirements (USs)
and development artifacts like code and test cases. It is not surprising that
the tasks are the basic constituents of sprint backlogs, i.e., they define what
functionality will be included in the next release of the product.

The contribution of this paper is a linguistic analysis of a large industrial
product backlog that includes 195 USs and 1,593 tasks. We study the linguistic
structure of the task labels as well as the main verb that indicates what ac-
tions the developers are expected to carry out. Based on the analysis, we distill
guidelines for writing tasks in a clear and consistent way.

After describing our research approach in Sec. |2, we present our linguistic
analysis of the sentence structure (Sec.[3]) and of the main verb in a task (Sec. [4)).
Finally, we present conclusions and outline future directions.

2 Research Approach

We considered a large product backlog provided to us by a multinational soft-
ware development company, located in the Netherlands, and having circa fifty
employees. The company’s main product is a web-based platform to manage
contract and tender processes of companies in the procurement industry.

The initial data consisted of 2,702 entries (backlog items), each of which
being labeled as Epic, Feature, Task, or Bug. In this paper, we focus on the tasks
(1,593, 59.04%). Each backlog item has an attribute that defines the development
status in the product development history of several releases: New (6.49%), To
Do (3.74%), Approved (1.41%), Committed (1.33%), In Progress (1.26%), Done
(85.29%), Removed (0.48%).

Our linguistic analysis started with running the Stanford Part-of-Speech
(POS) tagger to determine the structure of the task labels; for example, “De-
fine (VB) box (NN) type (NN) actions (NNS) and (CC) implement (VB) them
(PRP). (.)” indicates that “define” is a verb, “box” is a singular noun, “actions”
is a plural noun, “and” is a conjunction, and so on.

! The individual tags refer to the Penn Treebank tagset [I1].

Refinement of User Stories into Backlog Items 3

We experienced that the POS tagger accuracy was not perfect, presumably
because task labels are hardly written as grammatically correct sentences. T'wo
major problems we encountered were words that can be tagged as either verbs or
nouns (e.g., “update”) and spelling mistakes (e.g., “crate” instead of “create”).

We then looked at the first-occurring verb in each task label, trying to iden-
tify recurring patterns. After tagging the unique verbs, we employed classes of
VerbNet to cluster the identified verbs in families of related verbs.

Finally, we extracted a linguistic template that fits most of the tasks and
that can be used as a recommended template for task label writers.

3 Linguistic structure of task labels

The goal of this analysis is to identify the most common linguistic structures in
the sentences that represent tasks labels. Because of the vast number of existing
POS tags, we grouped the tags as shown in Table [2| For example, verbs tagged
with different tenses (present/past) are grouped into the verb category.

Table 2: Grouping of POS tags employed in analysis

Group Tag|POS Tags Occurrence %|Unique first Words
verb |VB, VBD, VBG, VBP, VBZ 1,173|73.63 70
noun NN, NNS, NNP, NNPS 322(20.21 65

adjective |JJ, JIR, JJS 27| 1.69 13
adverb |RB, RBR, RBS 27 1.69 4
pronoun |PRP, PRP$ 71 0.44 2
other 37| 2.32 11
total 1,593| 100 165

Despite the grouping, the Stanford POS tagger identified 968 different lin-
guistic structures that represent the 1,593 tasks, thereby showing the various
ways task labels are formulated by developers.

Table 3: The ten most frequent structures of task labels

Structure Freq.| %|Example

VB, NN, NN 130(8.17|Create tender-settings component

VB, NN, NN, NN 67(4.18|Create Messages DB tables

NN, NN, NN 25(1.57|Admin licenses breadcrumbs

VB, NN, IN, NN 21(1.32|Add filters for KO

VB, NN, NN, NN, NN 20(1.26|Implement TenderPlan actions business logic
VB, JJ, NN, NN 18|1.13|Create disqualified offers card

VB, NN 27|1.67|Create TenderProcessDefinitionLevelRule
VB, NN, IN, NN, NN 15|0.94|Bind rules per section item

VB, NN, NN, IN, NN, NN| 13]0.82|Create SQL Script for AcceptedByld items
NN, NN 10|0.62|Update actions

POS taggers are trained with long newswire text and not with short, sketched
sentences like task labels, so to further improve the accuracy we performed a
manual amendment of some tags (especially verb instead of noun). The ten

4 L. Miiter et al.

most frequent structures are shown in Table |3 In the table, we use the following
abbreviations: NN = noun, VB = verb, IN = conjunction, and JJ = adjective.
The most frequent pattern is a verb followed by two nouns, for example: “Create
tender-settings component“ (VB, NN, NN). Several variations exist that add an
adjective or a conjunction to the sequence of nouns. In the top-10 list, only two
structures start with a noun, which usually indicates the architectural location
of the task. Task labels starting with a noun will be analyzed in future work.
Given the variations in sentence structures as presented in Table [3] we distill
a template that we propose as a guideline for writing task labels. The extended
Baccus-Naur form (EBNF) grammar for the template (shown below) states that
a task is expressed by a verb, followed by one or more follow elements, each
being either a noun, a conjunction, an adjective, a “to”, or a cardinal number.

task = verb, follow, {follow};
follow = noun | conjunction | adjective | "to" | cardinal number;

The pattern matches 42.4% of the tasks in the dataset (676 out of 1,593).
Further research will reveal more detailed patterns in the label set in order to
develop guidelines for task refinement.

4 On the choice of an action verb

Task labels describe an action for the developer to carry out in order to im-
plement part of a software function, or to improve existing code. We have first
analyzed the first action verb that occurs in a task label. To do so, we em-
ployed the Stanford POS tagger and extracted the action verbs from our 1,593
task labels. This resulted in 56 different verbs, which became 81 after some
manual pre-processing of spelling errors and noun-verb conversion. The 20 most
frequently occurring action verbs are shown in Table

Table 4: Most frequent action verbs that occur in a task label

Rank|Action verb|Frequency Rank|Action verb|Frequency
1|Create 578 11|Bind 11
2|Modify 125 12| Update 11
3|Add 85 13|Move 10
4|Implement 79 14|Show 10
5|Change 27 15|Delete 9
6|Extend 19 16|Get 9
7|Set 18 17|Redesign 9
8|Check 16 18|Setup 8
9|Load 14 19|Fix 8

10|Remove 13 20|Review 8

The most frequent action verb is create, which amounts to about one third
of the entire task set. This figure is a strong indicator of the feature creep phe-
nomenon [12]. On the other hand, a very related verb such as delete occurs only

Refinement of User Stories into Backlog Items 5

in 1.5%. However, while analyzing the results, we observed that quasi-synonyms
exist; for instance, the remove verb is a synonym of delete.

The observed relatedness of some verbs and the quasi-synonyms motivate to
obtain a smaller set of action verbs for use in task descriptions. We resorted
to VerbNet [13], a taxonomy of verbs that groups similar verbs in so-called
verb classes. For example, the class create (CREATE-26.4) includes, besides the
namesake verb, the similar verbs coin, fabricate, construct, etc. We identified verb
classes in VerbNet that could act as containers for multiple verbs; moreover, we
performed some adjustments to cope with the domain-specific jargon of software
development. This resulted in the 7 families of action verbs listed in Table

Table 5: Families of action verbs in task labels
Family Members of the verb-family

Create add, code, create, define, design, implement, insert, make
Update add, adjust, change, edit, extend, fix, improve, insert
Merge bind, export, insert, integrate, invite, link, list, offer
Delete delete, redesign, refactor, remove, renew, replace

Validate |check, evaluate, research, test, verify
Control accept, allow, apply, bind, cancel, check, configure, control, determine
Investigate|inquire, investigate, research, search

Our analysis of the data set leads us to distill the following recommendations
regarding the use of elementary action verbs in task labels:

— Each task should start with an action verb.

The family-verb defines the nature of the development action to be performed
with the code.

The starting action verb should be in the imperative mood.
When a suitable member-verb exists in Table [5| that verb should be used.

Table 6: Elementary action verbs for task labeling

Verb Explanation Example
Create add new features Create new tender property.
Update change existing functionality = |Update all permissions screens.
Merge merge existing functionalities |Integrate localization in datetime picker.
Delete remove existing functionalities |Delete offer stored procedure.
Validate |test existing functionalities Evaluate inserted event.
Control manage existing functionality |Control of access to box content.

. investigate potential functional-|Research angular 2.0 validation and refac-
Investigate|. .

ity toring components.

When re-analyzing our data set using our guidelines, we found many well
formed task labels but also several poorly defined tables. A poorly defined task
would be “Box breadcrumb component”, which could be rewritten as “Create
box breadcrumb component”. On the other hand,*“ Update validity check for
Addresses” from Table[l]is a well defined task, for “update” is a verb in Table

6 L. Miiter et al.

5 Conclusions and directions

Our linguistic analysis of a large industrial product backlog resulted in prelimi-
nary guidelines for writing backlog items / tasks in a consistent manner.

Tasks play a key role in agile development, for they bridge the problem space
(the requirements) and the solution space (the architecture and the code). The
tasks refine the product requirements expressed as USs. A poorly formulated
task is likely to lead to issues in the developed code and sprint velocity.

This research-in-progress paper simply paves the way for future work in the
field. First and foremost, we have used a single dataset in our analysis. The
guidelines are likely to need some amplification, and their impact on software
development needs to be evaluated in vivo. In the long run, we hope this research
will bring insights and theories to the “wild” world of agile development.

References

1. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: The Use and
Effectiveness of User Stories in Practice. In: Proc. of REFSQ. (2016) 205222
2. Kassab, M.: The Changing Landscape of Requirements Engineering Practices over
the Past Decade. In: Proc. of EmpiRE. (2015) 1-8
3. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software
specification: Linguistic sources of ambiguity. Technical report, School of Computer
Science, University of Waterloo, Canada (2001)
4. Bano, M.: Addressing the challenges of requirements ambiguity: A review of em-
pirical literature. In: Proc. of EmpiRE. (2015) 21-24
5. Rosadini, B., Ferrari, A., Gori, G., Fantechi, A., Gnesi, S., Trotta, 1., Bacherini, S.:
Using NLP to detect requirements defects: An industrial experience in the railway
domain. In: Proc. of REFSQ. (2017) 344-360
6. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requirements
Engineering 22(3) (2017) 339-358
7. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation ap-
proaches between user requirements and analysis models. Requirements Engineer-
ing 16(2) (Jun 2011) 75-99
8. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural
language requirements for reuse in software product lines: A systematic literature
review. Journal of Systems and Software 106 (2015) 132-149
9. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and Extending User Story
Models. In: Proc. of CAiSE. Volume 8484 of LNCS. (2014) 211-225
10. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving
agile requirements: The Quality User Story framework and tool. Requirements
Engineering 21(3) (2016) 383-403
11. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics 19(2) (1993)
313-330
12. Jones, C.: Strategies for managing requirements creep. Computer 29(6) (1996)
92-94
13. Schuler, K.K.: Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. PhD
thesis, Philadelphia, PA, USA (2005) AAI3179808.

