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Chapter 1

Introduction

Profinite homotopy theory originated from the desire to apply methods of algebraic topol-
ogy to algebraic geometry, in particular to assign invariants from algebraic topology to
schemes. It was believed that by using such invariants, in particular a good cohomol-
ogy theory for schemes, the Weil conjectures could be proved. In SGA1 ([Gro+71]),
Grothendieck defined the étale fundamental group of a connected and locally Noetherian
scheme using finite étale coverings. Étale cohomology was developed by Grothendieck
and M. Artin, and was published in [Art62] and SGA4 ([GAV72]).

Michael Artin and Barry Mazur refined the theory of étale cohomology by associating
a “pro-homotopy type” to a connected and locally Noetherian scheme in their book Etale
homotopy [AM69], called the étale homotopy type of the scheme. A pro-homotopy type is
a pro-object in the homotopy category of simplicial sets Ho(S). A pro-object in a category
is defined as a functor from a cofiltered category to this category. There exists a good
notion of morphism between pro-objects, and they in particular form a category.

For these pro-homotopy types, there exists a good notion of the fundamental group
and of cohomology, and these turn out to be equal to the étale fundamental group (after
applying a certain profinite completion) and étale cohomology of the scheme, respectively.
Pro-homotopy types share many properties with the usual homotopy types of spaces, and
allow for the application of methods from algebraic topology to algebraic geometry.

The study of the étale fundamental group, étale cohomology and these étale homotopy
types has found many applications. An important application of étale cohomology is the
proof of the last Weil conjecture by Deligne [Del74]. Remarkable applications of étale
homotopy theory can be found in the proofs of the Adams conjecture by Friedlander
[Fri73] and Sullivan [Sul74].

The motivation for this thesis came from a recent application of ètale homotopy the-
ory, namely the proof by Geoffroy Horel that the group of homotopy automorphisms
of the profinite completion of the little 2-discs operad is isomorphic to the profinite
Grothendieck-Teichmüller group [Hor17]. The goal of this thesis is to gain a better un-
derstanding of certain parts of this proof. We will provide a brief sketch of Horel’s proof,
to give some context and motivation for the work done in this thesis. Those readers
who are not familiar with operads or the Grothendieck-Teichmüller group should not
worry. Although Horel’s article [Hor17] is about profinite completion of operads and the
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2 CHAPTER 1. INTRODUCTION

Grothendieck-Teichmüller group, both operads and the Grothendieck-Teichmüller group
do not appear anywhere in this thesis, except in the following sketch of Horel’s proof.

In [Hor17], Horel first defines the profinite completion of an operad over simplicial
sets, and of an operad over groupoids. These profinite completions land in the category of
so-called “weak operads” over “profinite spaces” and “profinite groupoids”, respectively.
For both of these categories of “weak operads”, there exists a model structure in a natural
way. In particular, it is possible to talk about the group of homotopy automorphisms of
these (weak) operads. The profinite completion functor for groupoids over simplicial sets
is applied to the little 2-discs operad. The little 2-discs operad is weakly equivalent to
the operad B(PaB), where PaB is the operad of “parenthesized braids”, an operad over
groupoids. Here B is the functor which associates to a groupoid A its nerve BA ∈ S,
applied levelwise to the operad PaB. There is a profinite completion functor both for
operads over simplicial sets and for operads over groupoids. It is shown that for the

operad PaB, the objects B(P̂aB) and B̂(PaB) are weakly equivalent, where (̂·) denotes
the profinite completion functor. In particular, to study the homotopy automorphisms
of the profinite completion of B(PaB), one can also first apply the profinite completion
functor (for operads over groupoids) to PaB, and then apply the nerve functor B. The

homotopy automorphism group of B(P̂aB) is equal to that of P̂aB. The homotopy
automorphism group of the latter operad can be computed, and turns out to be isomorphic
to the profinite Grothendieck-Teichmüller group.

In [AM69], Artin and Mazur construct a profinite completion functor, which associates
a pro-object in Ho(S)fin to a pro-object in Ho(S). Here Ho(S)fin denotes the full sub-
category of Ho(S) of simplicial sets whose homotopy groups are finite. Such a profinite
completion functor is often used in applications of étale homotopy theory. However, it is
usually desirable to work in a model category when doing homotopy theory, instead of
the homotopy category itself, as homotopy categories often behave badly. Working in the
pro-category of a homotopy category is therefore undesirable. In Geoffroy Horel’s proof,
to define the profinite completion of an operad, it is necessary to have a profinite comple-
tion functor on the level of simplicial sets. More precisely, a model category is needed in
which one can study “profinite spaces”, meaning that its homotopy category should, in
a certain sense, be the category of profinite homotopy types. Furthermore, there should
be a profinite completion functor, which should be a functor from simplicial sets to this
model category. Such a model category, together with a profinite completion functor, is
constructed in [Qui08]. To define the profinite completion of an operad over groupoids,
a good profinite completion functor for groupoids is needed, which maps to a model cat-
egory whose objects are “profinite groupoids”. Such a model category is constructed by
Horel himself in [Hor17, §4].

The aim of this thesis is to understand these “profinite spaces” and “profinite groupoids”
and the model categories in which they live, as defined by Quick in [Qui08] and by Horel
in [Hor17, §4]. We show that the fibrantly generated model structures, defined by Quick
and Horel, indeed exist, filling in some gaps in their proofs and correcting a few minor
mistakes.
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1.1 Overview

This thesis consists of three chapters, aside from this introduction, and an appendix.
Chapter 2 covers the category Pro(C) of pro-objects in C. We start by defining pro-

objects and morphisms between objects, and then some of their properties. Many of the
properties of pro-categories that we deduce in this chapter are used throughout chapters
3 and 4.

In chapter 3, we define and study profinite groupoids. In particular, weak equivalences
between profinite groupoids are defined and studied extensively. At the end of this chapter,
we construct a fibrantly generated model structure on the category of profinite groupoids.

Chapter 4 is about profinite spaces, which we also define there. We construct their
fundamental groupoid, a profinite groupoid in the sense of chapter 3, and cohomology
with local coefficients. We subsequently use these to define weak equivalences of profinite
spaces, and prove that they are the weak equivalences for a certain fibrantly generated
model structure. We end this chapter by developing a theory of coverings for profinite
spaces.

This is followed by an appendix on fibrantly generated model categories, the dual of
the more common cofibrantly generated model categories.

1.2 Preliminaries

Some familiarity with category theory is required; the reader should at least be com-
fortable with heavy use of (co)limits and adjunctions. Some basic knowledge of model
categories is also required, chapter 7 and some parts of chapter 8 of [Hir03] should suffice.
Fibrantly generated model categories, which play an important role in chapters 3 and 4,
are treated in the appendix. Familiarity with simplicial sets is needed as well, at least the
first three chapters of [Lam68], although some experience with cohomology of simplicial
sets and the Dold-Kan equivalence might also be useful.



Chapter 2

Pro-categories

This chapter is devoted to defining and studying pro-categories and related notions. It
should be seen as an introduction to pro-categories, and it covers many definitions and
results which are needed for the study of profinite groupoids and profinite spaces presented
in chapters 3 and 4, respectively.

In the first section, we define the category of pro-objects in a given category, which
we will call the pro-category of this given category. We then study some basic properties
of these pro-categories. In particular some results on functors between pro-categories
and the existence of (co)limits in pro-categories are proved. In the second section, we
study a few concrete examples of pro-categories, namely the categories of profinite sets,
profinite groups and profinite G-sets. We show that there exist point-set topological
models for these objects. More specifically, we show that one can view profinite sets as
Stone spaces, profinite groups as topological groups whose underlying space is a Stone
space, and profinite G-sets as Stone spaces with a continuous G-action. In section 3, we
construct a so-called profinite completion functor, and study it in the context of profinite
sets and profinite groups. The last section is devoted to categories of the form Pro(C)I . We
show that, under some assumptions on the categories I and C, this category is equivalent
to the pro-category Pro(D) for a certain full subcategory D of CI . This will prove useful
in chapter 4, when we study simplicial profinite sets, or as they are called there, profinite
spaces.

The main sources for the material in this chapter are [Isa01] and [GAV72]. In section
2.2 some results are taken from [RZ10], although most of the results are the author’s own
work. The inspiration for the main result shown in section 2.4, Theorem 2.82, came from
the proof of [BHH17, Proposition 7.4.1].

2.1 The category of pro-objects

We begin this section by defining pro-objects in a category C and the appropriate notion
of morphism between pro-objects, to obtain a category Pro(C) of pro-objects. We then
consider some basic examples of pro-categories and of their dual notion, ind-categories.
After these examples, we study the behaviour of cofiltered limits in pro-categories and
prove a universal property characterizing pro-categories. The last part of this section is
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2.1. THE CATEGORY OF PRO-OBJECTS 5

devoted to the study of Pro(C) when C is essentially small and has finite limits, as the
pro-category has many useful and desirable properties in this case.

2.1.1 Pro-objects

Recall that a directed set is a preorder (I,≤) such that I 6= ∅ and for any i, j ∈ I, there
exists a k ∈ I such that i, j ≤ k. Dually, a codirected set (I,≤) is a nonempty preorder
such that for any i, j ∈ I, there exists a k ∈ I such that k ≤ i, j. For a preorder (I,≤),
we denote by (Iop,≤op) the pre-order such that i ≤op j if and only if j ≤ i in I. Note that
I is directed if and only if Iop is codirected. If the preorder is also a partial order, then we
call it a (co)directed poset . A directed poset I is cofinite if the set {j ∈ I | j ≤ i} is finite
for every i ∈ I, and dually a codirected poset is cofinite if Iop is cofinite. (Co)directed
sets can be used to define a special kind of (co)limit. We can view I as a category, where
the objects are the elements of I and there is a unique arrow i→ j if and only if i ≤ j.

Definition 2.1. Let I be a directed set and C a category. A diagram of the form I → C
is called an inductive diagram. Dually, a diagram of the form I → C with I codirected
is called a projective diagram. A limit of a projective diagram is called a projective limit
and a colimit of an inductive diagram is called an inductive limit . ♦

Notable examples of projective and inductive limits are the ones over I = Nop and I =
N, respectively, which are sometimes called sequential limits. It is possible to generalize
the notion of a directed set to categories which have multiple arrows between objects.

Definition 2.2. A nonempty category I is said to be cofiltered if

(i) For any objects i, j ∈ I, there exists a k ∈ I such that there are arrows k → i and
k → j.

(ii) If we are given two morphisms α, β : i → j in I, then for some k there exists a
morphism γ : k → i such that αγ = βγ.

Dually, a category I is said to be filtered if Iop is cofiltered. If I is (co)filtered and I → C
is a diagram, then we call this a (co)filtered diagram. A limit over a cofiltered category is
called a cofiltered limit , and dually a colimit over a filtered diagram is a filtered colimit . ♦

Remark 2.3. It is easy to see that if I is a codirected set, then as a category it is
cofiltered (note that (ii) is trivially satisfied, since any two arrows i → j are equal).
In fact, codirected sets are precisely those cofiltered categories with at most one arrow
between any two objects. ♦

Remark 2.4. If I and J are cofiltered categories, then the product category I×J is also
cofiltered. In fact, any arbitrary product of cofiltered categories is again cofiltered. If I
and J are (co)directed sets, then the product category I × J also has at most one arrow
between any two objects, hence it is also a (co)directed set. More specifically, the order
on I × J is defined by (i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′. ♦
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We will see later that cofiltered limits can always be given as projective limits, i.e.
limits over a codirected set. The reason to work with cofiltered limits is that in some
contexts they occur more naturally than projective limits.

A well-known fact on filtered colimits is that they commute with finite limits in Set,
the category of sets.

Theorem 2.5. Let I be a filtered category, J a finite category and D : I × J → Set be a
diagram. Then

colim
i

lim
j
D(i, j) = lim

j
colim

i
D(i, j).

For a proof, see Theorem IX.2.1 in [Mac88].

Definition 2.6. Let C be a category. A pro-object in C is a diagram I → C where I is
cofiltered. Dually, an ind-object in C is a diagram I → C where I is filtered. ♦

Remark 2.7. Note that a pro-object is by definition the same as a cofiltered diagram,
and that an ind-object is a filtered diagram. However, as we will treat them differently
than diagrams, we define them seperately. In particular, morphisms between pro-objects
and ind-objects will not be defined as natural transformations, although this is the usual
way of defining a morphism between diagrams. ♦

We will often write {Ai}i∈I or {Ai} for a diagram in a category C indexed by I. We
will also use this notation for pro-objects, implicitly assuming that I is cofiltered.

Note that pro stands for projective and ind for inductive in the above definition. A pro-
object can be seen as a formal projective limit. The reason for working with pro-objects
is that in computing the actual limit, one can lose certain information. For example, we
will see in Example 2.13 that a pro-object in the category Set contains more structure
than the actual limit in Set. There turns out to be a natural way to define maps between
pro-objects (or, dually, ind-objects).

Definition 2.8. For a category C, define the category Pro(C) with as objects all pro-
objects in C. For two pro-objects X : I → C and Y : J → C, define

HomPro(C)(X, Y ) = lim
j

colim
i

HomC(X(i), Y (j)),

where the (co)limits are taken in Set. One can dually define the category Ind(C) of
ind-objects by setting

HomInd(C)(X, Y ) = lim
i

colim
j

HomC(X(i), Y (j)). ♦

We usually call Pro(C) the pro-category of C, and Ind(C) the ind-category of C.
One can deduce from the above definition that (Ind(Cop))op = Pro(C). We can associate
to any object C ∈ C the diagram ∗ → C with value C, where ∗ is the category with
one object and one arrow. This defines a functor ι : C → Pro(C) and ι : C → Ind(C).
Sometimes we will abusively write C for ι(C). One can easily deduce that both functors
ι are fully faithful, hence we can view C as a full subcategory of Pro(C) and Ind(C)
respectively. We call the objects in the image of ι representables . In Proposition 2.36,
we will see that the representable presheaves in (SetC)op and SetC

op

correspond to the
representables in Pro(C) and Ind(C), respectively, thus justifying their name.
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Remark 2.9. The constructions of Ind(C) (resp. Pro(C)) can be seen as “freely ad-
joining filtered colimits (resp. cofiltered limits)” to C. In the case that C already has
these (co)limits, this does not mean that Ind(C) (resp. Pro(C)) is again the category C
(compare this to SetC

op

, the free cocompletion of C). In the case that C has all small
filtered colimits, then ι : C → Ind(C) is right adjoint to | · | : Ind(C) → C, where the
functor | · | computes the actual colimit of an ind-object in C. Indeed, one can easily
verify that there is a natural bijection HomC(colimiX(i), Y ) ' HomInd(C)(X, ιY ) for any
ind-object X : I → C and any object Y ∈ C. In the case that C has all small cofiltered
limits, then ι : C → Pro(C) is left adjoint to | · | : Pro(C) → C, where |{Xi}i| = limiXi

for any pro-object {Xi}i∈I . This can be proved in a similar way, or by noting that
Pro(C) = Ind(Cop)op. ♦

The above definition of the Hom-sets of Pro(C) are somewhat abstract, and it may
also be unclear how to compose morphisms. We will therefore unravel their definition.
There are easy descriptions for filtered colimits and cofiltered limits in Set. If we are
given a filtered diagram D : I → Set, then

colim
i

D(i) =

(∐
i

D(i)

)/
∼ .

For x ∈ D(i) and y ∈ D(j), we define x ∼ y if and only for some k there exist α : i→ k,
β : j → k such that D(α)(x) = D(β)(y) in D(k). If we are given a cofiltered diagram
E : J → Set, then

lim
i
E(i) =

{
(xi) ∈

∏
i

E(i)

∣∣∣∣∣ E(α)(xi) = xj for all α : i→ j in J

}
. (2.1)

Looking at the above definition of the Hom-sets of Pro(C), we see that a morphism
f : X → Y is a J-indexed tuple ([fj])j, where [fj] is an equivalence class of maps X(i)→
Y (j). Here i may vary, and the representative fj is a map X(ij)→ Y (j) for some ij ∈ I.
Using this it is not hard to prove the following proposition, which can also be taken as a
definition. It is taken from [EH76]. The details are left to the reader.

Proposition 2.10. Let X, Y be pro-objects of C indexed by the cofiltering categories I
and J , respectively. A morphism f : X → Y in Pro(C) can be represented by a map
θ : Ob(J) → Ob(I) (which need not be order preserving) and morphisms fj : X(θ(j)) →
Y (j) for every j ∈ J , such that for every α : j → j′ in J , there exist β : i → θ(j) and
γ : i→ θ(j′) for which the diagram

X(i) X(θ(j)) Y (j)

X(θ(j′)) Y (j′)

X(β)

X(γ)

fj

Y (α)

fj′
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commutes. (θ, fj) and (θ′, f ′j) represent the same morphism in Pro(C) precisely if for
every j ∈ J there exist α : i→ θ(j) and β : i→ θ′(j) such that

X(i) X(θ(j))

X(θ′(j)) Y (j)

X(α)

X(β) fj

f ′j

commutes. �

Remark 2.11. Note that if we are given two pro-objects X, Y : I → C indexed by
the same cofiltered category I, then a morphism X → Y is not the same as a natural
transformation from X to Y . Any natural transformation induces a morphism X → Y
in Pro(C), as can easily be seen from the above proposition. However not all morphisms
come from a natural transformation and different natural transformations need not induce
different morphisms of pro-objects, as can be seen in the next example. ♦

Example 2.12. Consider the two cofiltered diagrams X, Y in Set given by {0, 1} ←
{0, 1}, where the arrow is the identity map for X, and the constant map 0 for Y . There
exist four natural transformations from Y to X, and four morphisms Y → X in Pro(Set)
(which correspond to the four maps {0, 1} → {0, 1}). However, one can verify that only
two of these morphisms are induced by a natural transformation from Y to X. We
conclude that not all morphisms come from natural transformation, and that different
natural transformations can induce the same morphism in Pro(Set). ♦

Example 2.13. This example illustrates that a pro-object contains more information
that its actual limit. Consider the N-indexed diagram

N≥1 N≥1 N≥1 · · ··2 ·2 ·2

in Set. The limit of this diagram in Set is empty, however there exist many non-equal
morphisms in Pro(Set) with this diagram as their domain or codomain. The reader is
advised to try his or her hand at finding such morphisms using Proposition 2.10. ♦

Before we begin studying the structure of the category Pro(C), we will consider some
examples of ind- and pro-categories.

Example 2.14. Let FinSet be the category of finite sets. Then Ind(FinSet) ' Set, the
category of sets. ♦

Example 2.15. Let FinVect be the category of finite dimensional vector spaces. Then
Ind(FinVect) ' Vect. Similarly, the category of groups Grp is the ind-category of
the category of finitely generated groups, and the same holds for the category of abelian
groups Ab. ♦
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Example 2.16. There is also a nice description for pro-objects in FinSet. Denote the
category Pro(FinSet) by Ŝet. If we are given a cofiltered diagram D : I → FinSet of
finite sets, then its limit in Set can be computed as in (2.1). If we give all these finite
sets the discrete topology and limiD(i) the subspace topology of the product topology on∏
D(i), then morphisms in Ŝet can be shown to correspond to continuous maps between

these actual limits. This means that Ŝet is a full subcategory of the category Top of
topological spaces, with all cofiltered limits of discrete finite spaces as objects. One can
show that a space is a cofiltered limit of finite discrete spaces precisely if it is a Stone space,
i.e. a totally disconnected compact Hausdorff space. We therefore have an equivalence of
categories Ŝet ' Stone. This will be proved in detail in section 2.2. ♦
Example 2.17. Using Stone duality, there exists a particularly slick proof for the above
equivalence of categories. As in the above examples, if one uses the ind-construction on
the category of finite boolean algebras FinBool, then one obtains the category of boolean
algebras Bool. Stone duality states that Boolop ' Stone (and this equivalence restricts
to an equivalence FinBoolop ' FinSet), hence we have

Pro(FinSet) ' Ind(FinSetop)op ' Ind(FinBool)op ' Boolop ' Stone. ♦

Example 2.18. Another example that one often encounters is that of a profinite group,
i.e. a pro-object in the category of finite groups FinGrp. Denote the category of profinite

groups by Ĝrp. The construction of a cofiltered limit as in (2.1) also works for groups.
If we give these finite groups the discrete topology, then the cofiltered limit will be a
topological group that is also a Stone space. One can show that the category of profinite
groups is equivalent to the category of topological groups that are Stone spaces. We will
also discuss this proof in section 2.2. ♦
Example 2.19. The two categories that we will mainly study in this thesis are Pro(FinG)
and Pro(Scofin). Here FinG is the category of finite groupoids, and Scofin the category
of simplicial finite sets which are k-coskeletal for some k. We will see that Pro(FinG)
is a full subcategory of the category of topological groupoids, and that Pro(Scofin) is the

category of simplicial objects in Ŝet, or equivalently in Stone. ♦

2.1.2 Reindexing pro-objects and level representations

In many situations we need to replace a pro-object by an isomorphic one that is indexed in
a more convenient way. For example, in certain situations it is convenient if a pro-object
is indexed by a codirected poset instead of an arbitrary cofiltered category. The following
proposition, which states that the limit of a cofiltered diagram is this diagram itself in
Pro(C), is particularly important when constructing such reindexed pro-objects.

Proposition 2.20. Let X : I → C be a pro-object in a category C and let ι : C→ Pro(C)
be the inclusion. Then limi ι(X(i)) = X in Pro(C).

Proof. One can easily show that X has the universal property of the limit limi ι(X(i)).
Assume we are given a pro-object Y and natural morphisms µi : Y → ι(X(i)). Then it
is a straightforward application of Proposition 2.10 to see that this precisely defines a
unique morphism Y → X. �
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The above proposition is particularly useful since it implies that if we are given an
initial functor F : I → J between cofiltered categories, and a pro-object Y : J → C, then
Y F and Y are isomorphic pro-objects (by uniqueness of limits). Recall that a functor
F : I → J is called initial if for every j ∈ J , the comma category (F ↓ j) is nonempty
and connected, and that we have the following theorem (for a proof, see Theorem IX.3.1
of [Mac88]).

Theorem 2.21. If F : I → J is initial and Y : J → C is a functor such that limi Y F (i)
exists, then limj F (j) exists and these limits are equal.

The comma category (F ↓ j) is nonempty if there exists an i ∈ I such that there is
an arrow F (i) → j. It is connected if for any two such arrows F (i) → j and F (i′) → j
there exists a commutative diagram of the form

F (i) F (i2) F (i3) · · · F (in) F (i′)

j j j · · · j j

F (α1) F (α2) F (αn)

in J . If we are working with cofiltered categories and F is full, i.e. surjective on Hom-sets,
then this last condition of connectedness can be dropped. In particular, an initial functor
between codirected sets I and J is simply an order-preserving map f such that for any
j ∈ J , there exists an i ∈ I with f(i) ≤ j.

By uniqueness of limits, we obtain the following result.

Corollary 2.22. Let {Ai}i∈I be a pro-object in a category C, and let f : J → I be an
initial functor of cofiltered categories. Then {Af(j)}j∈J ∼= {Ai}i∈I in Pro(C). �

The following construction can be found in [GAV72, Exposé 1, 8.1.6]. For a given
cofiltered category I, let M(I) be the set of all finite diagrams in I with an initial point,
i.e. all functors D : K → I where K is a finite category with an initial object. If x ∈ K is
the initial object of K, then we call D(x) the initial point of D. We say that D′ ≤ D if D′

is a subdiagram of D. If D : K → I and D′ : K ′ → I, this means that K ′ is a subcategory
of K and that D|K′ = D. It is immediate that this defines a poset. It is in fact codirected.
To see this, let D and D′ be diagrams with domain K and K ′ respectively. Define the
category K ′′ by taking the disjoint union of K and K ′ and adjoining an initial object
x. Let y and y′ be the initial objects of K and K ′ respectively, pick i ∈ I with arrows
i → D(y) and i → D′(y′). Then we can extend D and D′ to diagram D′′ : K ′′ → I
with D′′(x) = i, such that D,D′ ≤ D′′. We conclude that M(I) is codirected. Since all
diagrams are finite, it is a cofinite codirected poset. Hence we have the following theorem.

Theorem 2.23. The functor t : M(I)op → I which sends a diagram D to its initial
point, is initial. As a corollary the category Pro(C) is equivalent to the full subcategory
of pro-objects indexed by a cofinite codirected poset.

Proof. If we are given two diagrams D′ ≤ D, then there is a canonical arrow from the
initial point of D to the inital point of D′, making t indeed into a functor. Using what is
stated above, the proof is straightforward and left to the reader. �
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From hereon we assume that objects of Pro(C) are indexed by a codirected poset,
unless stated otherwise. We still talk about cofiltered limits sometimes, when we want
to stress that a certain statement not only holds for projective limits, but in practice we
only work with projective diagrams indexed by a codirected poset.

In order to compute (finite) limits and colimits in pro-categories, it is useful to have
so-called level representations of diagrams in pro-categories.

Definition 2.24. Let X = {Xi}i∈I and Y = {Yj}j∈J be pro-objects in a category C, and
let f : X → Y be a morphism of pro-objects. A representation of f is a map g : Xi → Yj
for some i ∈ I and j ∈ J such that

X Y

Xi Yj

f

g

commutes. More generally, if D : K → Pro(C) is a diagram, we say that D′ : K → C
represents D if every map in D′ is a representation of the corresponding map in the
diagram D. More precisely, for any arrow α in K, we ask that D′(α) is a representation
of D(α). ♦

Definition 2.25. Let f : X → Y be a map of pro-objects in a category C. A level
representation of f consists of two cofiltered diagrams {Xi}i∈I and {Yi}i∈I indexed by the
same category, natural maps fi : Xi → Yi and isomorphisms X ∼= {Xi}, Y ∼= {Yi} such
that

X Y

{Xi} {Yi}

f

∼= ∼=
{fi}

commutes. More generally, if D : K → Pro(C) is a diagram, then a level representation

of D consists of a diagram D̃ : I×K → C; (i, k) 7→ D̃i(k) with I a cofiltered category and

isomorphisms D(k) ∼= {D̃i(k)}i∈I , such that for every arrow α : k → k′ in K, the maps

{D̃i(α)}i∈I : {D̃i(k, i)}i∈I → {D̃i(k
′, i)}i∈I are a level representation for D(α) : D(k) →

D(k′). ♦

The above definition of a level representation of a diagram may seem somewhat cryptic.
In the definition of a level representation of a map f of pro-objects, we replace the domain
and codomain of the map f by pro-objects that are indexed by the same index category,
in such a way that f can be represented by a natural transformation between these pro-
objects. What is actually meant in the definition of a level representation of a diagram is
that we pick level representations of all the maps at the same time, all indexed by the same
index category, and such that everything commutes levelwise. In fact, this can be seen as
a pro-object in the diagram category CK . When trying to construct a level representation
of a diagram in a pro-category, we are actually trying to associate a pro-object in CK to
it. This viewpoint will be studied more thoroughly in section 2.4.
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Level representations of maps always exist, but level representations of arbitrary dia-
grams in Pro(C) do not always exist. However, under certain assumptions on the index
category of the diagram and the category C, they do exist. Here we consider the case
where the index category is a finite loopless category, and we will discuss some other cases
in section 2.4. The following is based on appendix 3 of [AM69].

Definition 2.26. Let K be a category. We say that K is loopless if for any chain of
composable non-identity arrows α1, . . . , αn, the domain and codomain of the composition
α1α2 . . . αn are distinct. We say that K is finite if it has finitely many arrows. ♦

Note that a category K is loopless precisely if the only cycles in its underlying directed
graph are the identity arrows.

Proposition 2.27. Let D : K → Pro(C) be a diagram, where K is finite and loopless,

and C is any category. Then D has a level representation D̃. Moreover, this level repre-
sentation D̃ can be chosen in such a way that, for any k, if D(k) = {Xik}i∈Ik , then for
every i ∈ I, where I indexes the level representation, there exists an ik ∈ Ik such that
D̃i(k) = Xik .

The second part of this proposition might look somewhat technical. It says that D̃j

represents D in the sense of Definition 2.24. The idea is that, when constructing the level
representation D̃ of D, we do not change the objects of C that we are working with,
but only change the way in which they are indexed. This is useful, for example, when
one of the pro-objects X = D(k) in the diagram D is indexed as X = {Xj}j∈J where

the Xj have certain convenient properties. The pro-object {D̃i(k)} corresponding to X
in this level representation is then still a cofiltered diagram consisting of objects having
these convenient properties. Note that since for every cofiltered category I ′ there is a
codirected poset I with an initial functor I → I ′, we can assume that every cofiltered
diagram is indexed by a codirected poset. In particular, level representations can always
be indexed by a codirected poset.

Proof. We proceed by induction on the number of objects of the index category. If K
consists of one object, then the proposition is trivial. Assume the proposition holds for
index categories with n objects, and let K be a finite loopless category with n+1 objects.
Let D : K → Pro(C) be a diagram. Since K is finite and loopless, there exists an object
k0 ∈ K such that no arrow in K has k0 as target. Write K ′ for the category obtained by
removing k0 and all arrows coming out of k0. Then the diagram D′ := D|K′ has a level

representation by induction, as its index category has n objects. Let {D̃′j : K ′ → C}j∈I
be the level representation of D′, indexed by a codirected poset J . Furthermore, write
X = D(k0), and assume X = {Xi}i∈I , indexed by a codirected poset. Define the set L
to consist of triples (i, j,Dl) where i ∈ I, j ∈ J , and where Dl : K → C is a diagram

such that Dl|K′ = D̃′j, for which Dl(k0) = Xi and such that Dl represents D, i.e. for any
α : k0 → k in K, the square

D(k0) D(k)

Dl(k0) Dl(k)

D(α)

Dl(α)
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commutes. Note that we only have to check this for maps out of k0, as we already know
that D̃′j represents D′ by the induction hypothesis. We say that (i, j,Dl) ≤ (i′, j′, Dl′) if
i ≤ i′, j ≤ j′ and if the induced map Dl → Dl′ is a morphism of diagrams (meaning it is
natural). This makes L into a poset.

Now note that we can define a diagram D̃ : L × K → C by mapping ((i, j,Dl), k)

to Dl(k). We will show that D̃ is a level representation of D. As the second statement

of this proposition clearly holds for the diagram D̃, this completes the proof. Showing
that D̃ is a level representation amounts to showing that L is codirected and that the
projections pI : L → I, pJ : L → J onto the first and second coordinate, respectively,
are initial. The fact that these maps are initial will provide us with the isomorphisms
D(k) ∼= {D̃′j(k)}j∈J ∼= {D̃l(k)}l∈L for k ∈ K ′ and D(k0) ∼= {Xi}i∈I ∼= {D̃l(k0)}l∈L that we
need. Proving these three properties of L, which we do in the rest of this proof, is not
very hard, but rather technical. It might be more instructive for the reader to convince
themself that these properties are true, and then skip the rest of this proof.

We first show that L → J is initial. Let j ∈ J be given. For every α : k0 → k in
K, there exists for some i a map Xi → D̃′j(k) that represents D(α) : D(k0) → D(k), by
definition of morphisms between pro-objects. Since I is codirected and K finite, for some
i there exists such a map Xi → D̃′j(k) for every α coming out of k0. By Proposition 2.10,

and the fact that K is finite, we can choose i′ ≤ i such that the maps Xi′ → D̃′j(k) fit

in a diagram Dl : K → C satisfying Dl|K′ = D̃′j (i.e. such that everything that should
commute, does so). Then (i′, j,Dl) ∈ L, and pJ(i′, j,Dl) = j, so pJ : L→ J is surjective,
hence initial.

To observe that L → I is indeed initial, let i ∈ I be given. By the above proof that
L→ J is initial, we see that L is nonempty, so let (i′, j,Dl) be in L. Pick i′′ ∈ I such that

i′′ ≤ i′ and i′′ ≤ i. Then, by precomposing the maps Xi′ → D̃j(k) with Xi′′ → Xi′ , we
obtain a diagram Dl′ : K → C such that (i′′, j,Dl′) is an element of L. As pI(i

′′, j,Dl′) ≤ i,
we see that pI is initial.

To see that L is codirected, let (i0, j0, Dl0) and (i1, j1, Dl1) be elements of L. Pick
j2 such that j2 ≤ j1 and j2 ≤ j0. By the above proof that L → J is surjective, we
know that there exists an element (i2, j2, Dl2) in L. Now let α : k0 → k be given, and

let Dl2(α) : Xi2 → Dl2(k) = D̃j2(k) and Dl0(α) : Xi0 → Dl0(k) = D̃j0(k) be the maps
representing D(α) : D(k0) → D(k). As they represent the same map, we know that for
some i3 ≤ i2, the diagram

Xi3 Xi2 D̃j2(k)

Xi0 D̃j0(k)

Dl2
(α)

Dl0
(α)

commutes. Since I is codirected, we can pick i3 such that this holds for all arrows α
in K coming out of k0, and we can pick i3 such that this holds for the diagram Dl1 as
well, and not just Dl0 . Let Dl3 be the diagram obtained by precomposing the arrows
Xi2 → Dl2(k) with Xi3 → Xi2 . We then see that (i3, j2, Dl3) is an element of L and
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that (i3, j2, Dl3) ≤ (i1, j1, Dl1) and (i3, j2, Dl3) ≤ (i0, j0, Dl0). We conclude that L is
codirected. �

Corollary 2.28. For any category C, any map in Pro(C) has a level representation.

Proof. Apply the above proposition with ∗ → ∗ as index category K. �

2.1.3 Cofiltered limits in pro-categories

Using the fact that we only need to consider cofinite codirected posets, we will prove
that Pro(C) is complete with respect to cofiltered limits. The idea is to find a level

representation D̃ of a diagram D : I → Pro(C) where I is a cofinite codirected poset.

This level representation D̃ will be a diagram D̃ : I × J → C for a cofinite codirected
poset J . As the product I × J is again a cofiltered category, this diagram is an object of
Pro(C). We will show that this object is the limit limiD(i) of D in Pro(C). The following
proof is taken from [Isa01, Theorem 3.3].

Theorem 2.29. Let I be a cofinite codirected poset and D : I → Pro(C) a diagram of

pro-objects. Then there exists a level representation D̃ : I ×J → C of D with J a cofinite
codirected poset.

Proof. Let, for each a ∈ I, the pro-object D(a) be given by D(a) = Xa = {Xa
j }j∈Ja ,

where Ja is a cofinite codirected poset. Now let J be an arbitrary cofinite codirected set
with cardinality greater than or equal to the cardinalities of each of Ja. For example,
we can take J to be the collection of finite subsets of some set X, where the cardinality
of X is greater than taJa, ordered by reverse inclusion. Also pick arbitrary surjections
ha : J → Ja (which only need to be surjections of sets, they need not be order-preserving).

For every a ∈ I, we will construct a new pro-object X̃a isomorphic to Xa, by con-
structing an order-preserving map fa : J → Ja which is initial. The pro-object X̃a is then
the composition of fa with Xa : Ja → C. More explicitly, X̃a = {Xa

fa(j)}j∈J . The level

representation D̃ of D will be given by D̃j(a) = X̃a
j = Xa

fa(j). We will construct these
maps fa by induction on a, which is possible since J is cofinite codirected.

Let a ∈ I be given, and assume that f b : J → J b has already been constructed for all
b > a. We define fa inductively, utilizing the fact that J is cofinite codirected. Let j ∈ J
and assume fa(k) has already been defined for k > j. We will choose a sufficiently small
fa(j), such that all of the following holds:

(i) Choose fa(j) such that fa(j) ≤ fa(k) for all k > j. This will imply that fa : J → Ja

is order-preserving.

(ii) Choose fa(j) such that fa(j) ≤ ha(k) for all k > j. This will imply that fa : J → Ja

is initial.

(iii) Choose a sufficiently small fa(j) such that for all b > a in I, there are maps Xa
fa(j) →
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Xb
fb(j)

representing Xa → Xb and satisfying that

Xa
fa(j) Xb

fb(j)

Xa
fa(k) Xb

fb(k)

commutes for all k > j. This will guarantee that the resulting morphism X̃a → X̃b

is a level representation of Xa → Xb.

(iv) Choose fa(j) sufficiently small such that for all c > b > a in I, the diagram

Xa
fa(j) Xb

fb(j)

Xc
fc(j)

commutes. This will guarantee that, for j ∈ J fixed, the diagram I → C, given by
a 7→ X̃a

fa(j), is indeed a diagram. Hence, it guarantees that D̃ is a level representation
of D.

Note that in properties (iii) and (iv), there are only finitely many b > a and c > b > a.
For each of these b and c, we can find a j′ ∈ Ja which satisfies these properties. Then,
by codirectedness of Ja, there always exists a small enough j′ satisfying these properties
for all b and c at the same time. Then, since we only stated a finite number of properties
above, we can always find a j′ that is small enough such that it satisfies all four of them.
We then define fa(j) to be such a j′.

Since the maps fa : J → Ja are initial, we see that the induced morphisms {Xa
j′}j′∈Ja →

{Xa
fa(j)}j∈J are an isomorphism for every a ∈ I. By construction D̃ is a level representa-

tion of D. �

Since we have {D̃j(i)}j∈J = limj∈J D̃j(i), we see that

lim
i∈I

D(i) = lim
i∈I
{D̃j(i)}j∈J = lim

i∈I

(
lim
j∈J

D̃j(i)

)
= lim

(i,j)∈I×J
D̃j(i).

Note that we write D̃j(i) for the object in Pro(C) which corresponds to D̃j(i) under the

inclusion C → Pro(C). Since the right-hand side is equal to the pro-object {D̃j(i)}, we
see that limiD(i) exists in Pro(C). We have proved the following.

Theorem 2.30. The category Pro(C) is complete with respect to cofiltered limits. �

The construction of Pro(C) can be seen as “freely adjoining all cofiltered limits to
C”. It is therefore not surprising that it can be characterized by the following universal
property.
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Proposition 2.31. For any category C and any category D that is complete with respect
to cofiltered limits, there exists a natural equivalence between functors C→ D and functors
Pro(C)→ D that preserve cofiltered limits.

Proof. Let a functor F : C → D be given. We will construct a functor F̃ : Pro(C) → D
making the diagram

C D

Pro(C)

F

ι
F̃

commute. For any pro-object X = Xii∈I in C, set F̃ (X) = limi∈I F (Xi). This defines a

functor F̃ : Pro(C)→ D satisfying F = F̃ ι. It preserves cofiltered limits of representables
by construction. By an argument similar to the proof of Theorem 2.30, i.e. by writing a
cofiltered limit in Pro(C) as a cofiltered limit of representables, we see that it preserves
all cofiltered limits.

To obtain a functor F : C → D from a functor F̃ : Pro(C) → D, of course define

F = F̃ ι.
If we are given another functor F̃ ′ also extending F , then we obtain a natural iso-

morphism F̃ ′ → F̃ from the fact that limits are unique up to a canonical isomorphism.
This shows that we have a natural equivalence between functors C → D and functors
Pro(C)→ D preserving cofiltered limits. �

Corollary 2.32. Let F : C → D be a functor. Then F induces a cofiltered limit-
preserving functor F̃ : Pro(C)→ Pro(D). Furthermore, a fully faithful functor induces a
fully faithful one, adjoints induce adjoints, and equivalences induce equivalences.

Proof. We define F̃ ({Ci}i) = {F (Ci)}i. Note that F̃ : Pro(C) → Pro(D) is the functor
corresponding to ι ◦ F : C→ Pro(D) in the universal property of ι : C→ Pro(C) proved

above. In particular, it preserves cofiltered limits. One can easily see that ĩdC = idPro(C)

and F̃ G̃ = F̃G.
For the case where F : C→ D is an equivalence with inverse G, note that the natural

isomorphisms GF ' idC and FG ' idD induce natural isomorphisms G̃F̃ ' idPro(C) and

F̃ G̃ ' idPro(D). One can also see that adjoints are sent to adjoints by a similar argument,

noting that the unit and counit of F a G induce a unit and counit for F̃ a G̃. This can
also be seen directly. If we assume F a G, then

Hom(F̃{Ci}, {Dj}) = lim
j

colim
i

Hom(FCi, Dj) ∼= lim
j

colim
i

Hom(Ci, GDj)

= Hom({Ci}, G̃{Dj}),

so F̃ a G̃.
If F is fully faithful, note that

Hom(F̃{Ci}, F̃{C ′j}) = lim
j

colim
i

Hom(FCi, FC
′
j)
∼= lim

j
colim

i
Hom(Ci, C

′
j)

= Hom({Ci}, {C ′j})
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so F̃ is fully faithful. �

As an application of the above proposition, consider the functor HomC(−, C) : C →
Setop for any category C and any object C ∈ C. Its essentially unique extension, in
the sense of Proposition 2.31, is the functor HomPro(C)(−, C) : Pro(C) → Setop which
takes cofiltered limits to cofiltered limits in Setop, which are filtered colimits in Set. We
therefore see that HomPro(C)(limiXi, Y ) = colimi HomPro(C)(Xi, Y ) if Y is a pro-object in
the image of C ↪→ Pro(C). Such objects can be thought of as “small” in a certain sense.

Definition 2.33. Let X be an object in a category C with all filtered colimits. X is
compact if, for any filtered colimit colimi Yi in C, the canonical map

colim
i

HomC(X, Yi)→ HomC(X, colim
i

Yi)

is a bijection. Dually, if C has all cofiltered limits, then we say that X is cocompact if,
for any cofiltered limits limi Yi in C, the canonical map

colim
i

HomC(Yi, X)→ HomC(lim
i
Yi, X)

is a bijection. ♦
Example 2.34. In Set, the compact objects are finite sets. In fact, in many categories
those objects which are “finitely presented” in some sense are the compact objects. If we
consider the category of topological spaces, and restrict our attention to cofiltered limits
of “sufficiently nice” inclusions (for example inclusions of sub-CW-complexes) instead of
all maps, then compact topological spaces are compact in the above sense. In the case
of sub-CW-complexes, this follows from the fact that compact subsets of CW-complexes
are contained in a finite subcomplex. ♦
Remark 2.35. By what we saw above, representables in ind-categories are compact,
and representables in pro-categories are cocompact. In general, these need not be all the
compact or cocompact objects of an ind-category or pro-category. However, one can show
that if a pro-object is isomorphic to one where all arrows are epimorphisms (which is often
the case), then it is cocompact if and only if it is isomorphic to a pro-object in the image
of ι : C→ Pro(C). ♦

Recall that SetC
op

is the free cocompletion of C. By duality of limits and colimits, we
see that (SetC)op is the free completion of C, where the inclusion C → (SetC)op comes
from the Yoneda embedding Cop → SetC. This means that there is a natural equivalence
between functors C → D and functors (SetC)op → D if D is complete. From this one
can deduce that Pro(C) is contained as a full subcategory of (SetC)op.

Proposition 2.36. Pro(C) is equivalent to the full subcategory of (SetC)op whose objects
are all cofiltered limits of representables.

Proof. The inclusion Pro(C) → (SetC)op is obtained by mapping a cofiltered diagram
X : I → C to the corresponding limit of representables in (SetC)op. To see that this is an
equivalence onto the full subcategory of cofiltered limits of representables, one can show
that this full subcategory also has the universal property of Proposition 2.31. One can
also give a direct proof that HomPro(C)(X, Y ) ∼= Hom(SetC)op(limi y(Xi), limj y(Yj)), where

X = {Xi}, Y = {Yj} and y is the (co)Yoneda embedding C→ (SetC)op. �
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2.1.4 Pro-categories of categories with finite limits

We will now study Pro(C) for (small) categories C with finite limits. We will show that
Pro(C) is both complete and cocomplete in this case. We also provide a nice description of
Pro(C)op as a full subcategory of SetC, which will be used to define profinite completion
in section 2.3.

We can prove the following regarding limits in pro-categories.

Proposition 2.37. Let C be a category.

(i) If C has finite products, then Pro(C) also has finite products. Furthermore, the
product of X = {Xi} and Y = {Yi} is given by

X × Y = {Xi × Yj}(i,j)∈I×J .

(ii) If C has pullbacks, then Pro(C) also has pullbacks.

(iii) If C has all finite limits, then Pro(C) is complete.

Proof. The first statement is left to the reader as an exercise.
For the second statement, let the pullback diagram X → Z ← Y be given. Then

there exists a level representation of this diagram by Proposition 2.27, i.e. an isomorphic
diagram {Xi} → {Zi} ← {Yi} where all objects are indexed by the same index set
I, and where the two morphisms come from natural transformations. For such a level
representation, it is straightforward to verify that X×Z Y = {Xi×Zi

Yi}i∈I . In particular
all pullbacks exist in Pro(C).

For the third statement, note that Pro(C) has finite products and pullbacks by the first
two statements. It also has all cofiltered limits by Theorem 2.30. Since arbitrary products
can be written as cofiltered limits of finite products (see Theorem IX.1.1 of [Mac88]), and
any category with arbitrary products and pullbacks is complete, we conclude that Pro(C)
is complete. �

From the above proof, we also learn the following.

Proposition 2.38. Let C be a category with finite limits, and let D be a category with
all limits. Then the equivalence between functors C → D and the functors Pro(C) → D
which preserve cofiltered limits, restricts to an equivalence between functors C → D that
preserve finite limits and functors Pro(C)→ D that preserve all limits.

Proof. Recall from Proposition 2.31 that the equivalence is given by associating to F : C→
D the functor F̃ : Pro(C)→ D given by F̃ ({Ci}) = limi F (Ci). Conversely, to a functor

F̃ : Pro(C) → D we associate the functor F̃ ◦ ι : C → D, where ι : C → Pro(C) is the
inclusion. We see from the construction of pullbacks and products in the above proof that
ι preserves finite limits. In particular, if F̃ preserves all limits, then F̃ ◦ ι preserves all
finite ones.

Conversely, we need to show that if F preserves finite limits, then F̃ preserves all
limits. We first show that F̃ preserves finite limits. It is sufficient to show that F̃
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preserves pullbacks and finite products. This follows by choosing level representations of
the diagrams, noting that finite limits are computed levelwise, and that cofiltered limits
commute with finite limits. For example, if {Xi} → {Zi} ← {Yi} is a level representation
for a pullback diagram, then we see that

F̃ ({Xi ×Zi
Yi}) = lim

i
F (Xi ×Zi

Yi) = lim
i
F (Xi)×F (Zi) F (Yi)

= lim
i
F (Xi)×limi F (Zi) lim

i
F (Yi) = F̃ ({Xi})×F ({Zi}) F ({Yi}).

Now note that F̃ also preserves cofiltered limits. We can deduce from this that F̃
preserves all products, since arbitrary products can be written as cofiltered limits of
finite products in a canonical way (see Theorem IX.1.1 of [Mac88]). We conclude that F̃
preserves all limits, since it preserves finite limits and arbitrary products. �

For small categories C with finite limits, the following proposition gives a nice char-
acterization of Pro(C)op as a full subcategory of SetC, also found in [GAV72, Théorème
I.8.3.3].

Proposition 2.39. If C is small and has all finite limits, then a functor C → Set
is a filtered colimit of representable functors if and only if it preserves finite limits. In
particular it uniquely extends to a representable functor Pro(C)→ Set.

Proof. Note that representable functors C → Set preserve limits, in particular finite
limits. By Theorem 2.5 finite limits commute with filtered colimits in Set, hence a
filtered colimit of representable functors must preserve finite limits. For the converse we
will make use of the fact that any F : C → Set is a colimit of representable functors.
Recall the basic fact1 that F is the colimit of the diagram

el(F )op Cop SetC.U Y

Here el(F ) is the category of elements of F , whose objects are pairs (C, x) with C ∈ C
and x ∈ F (C), and whose arrows (C, x) → (C ′, x′) are all arrows f : C → C ′ for which
F (f)(x) = x′. The functor U is the forgetful functor mapping (C, x) to C, and Y is the
Yoneda embedding. To see that F is in fact a filtered colimit of representables, we will
show that el(F )op is a filtered category, or equivalently that el(F ) is cofiltered. Assume we
are given (C, x) and (C ′, x′) in el(F ). Since C has all finite limits and F preserves these, we
see that there is a unique element y ∈ F (C×C ′) ∼= F (C)×F (C ′) such that F (p1)(y) = x
and F (p2)(y) = x′. Here p1 and p2 are the projections of C×C ′ onto C and C ′ respectively.
In particular there are arrows (C×C ′, y)→ (C, x) and (C×C ′, y)→ (C ′, x′), so property
(i) of Definition 2.2 holds. For property (ii) the proof is similar. If we are given two
arrows (C, x)→ (C ′, x′), then these come from two arrows f, g : C → C ′. By constructing
their equalizer in C and using the fact that F preserves equalizers, property (ii) follows.

1This fact, or actually its dual, usually goes under the name that “every presheaf is a colimit of
representables”.
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For the last statement, note that

F = colim
(C,x)∈el(F )op

Y U(C, x) = colim
el(F )op

HomC(C,−) ∼= HomPro(C)

(
lim
el(F )

C,−
)
,

so F is represented by {C}(C,x)∈el(F ) = limel(F ) C in Pro(C). This pro-object is unique
up to canonical isomorphism. To see this, let {Ci} and {Dj} be pro-objects of C, both
representing a functor that extends F . Then we have natural isomorphisms

HomPro(C)({Ci}, {Ak}) ∼= lim
k

HomPro(C)({Ci}, Ak) ∼= lim
k
F (Ak),

and similarly HomPro(C)({Di}, {Ak}) ∼= limk F (Ak). This means that {Ci} and {Di}
represent the same functor Pro(C) → Set, so by Yoneda’s lemma they are canonically
isomorphic. �

As we saw above, Pro(C)op is the full subcategory of SetC whose objects are fil-
tered colimits of representables. By the above theorem, this is equivalent to saying that
Pro(C)op is the full subcategory of SetC with as objects the functors C → Set which
preserve all finite limits. This allows for a simple proof of the cocompleteness of Pro(C).
Given two categories C and D with finite limits, we denote the category of functors
C→ D that preserve finite limits by FunL(C,D).

Theorem 2.40. Let C be a small category with finite limits. Then Pro(C) is complete
and cocomplete.

Proof. We already proved completeness in Proposition 2.37. Cocompleteness of Pro(C)
is equivalent to completeness of Pro(C)op. Identify Pro(C)op with the full subcategory
FunL(C,D) of SetC. As limits commute with finite limits, and limits in SetC are com-
puted pointwise, we see that for a diagram I → FunL(C,Set), its limit in SetC is again
in FunL(C,Set). This in particular implies that FunL(C,Set) is complete. �

One can also use the identification of Pro(C)op with FunL(C,Set) to show that
Pro(C)I ' Pro(CI) for any finite diagram I if C is small and has all finite limits, as
is done in [Mey80, §4]. In section 2.4, we will use this result to study pro-categories of
diagram categories where the index category I has finite Hom-sets, but its set of objects
may be infinite. We will prove that Ŝ = s(Ŝet) is equivalent to Pro(Scofin) for a certain
full subcategory Scofin of sFinSet.

Corollary 2.41. If C is small and has finite limits, then cofiltered limits and finite
colimits commute in Pro(C).

Proof. This is dual to saying that filtered colimits and finite limits commute in Pro(C)op.
Note that filtered colimits and finite limits commute in Set by Theorem 2.5, so this also
holds in SetC. The inclusion Pro(C)op → SetC preserves filtered colimits by construction,
and it preserves all limits by the above proof. It therefore follows that cofiltered limits
and finite limits also commute in Pro(C)op. �

Remark 2.42. The above theorem in fact holds for any category C, see Theorem 6.1 of
[Isa01]. The above proof will not work for any category C, however, since it is necessary
that the inclusion Pro(C)op → SetC preserves finite limits, for which we use Proposi-
tion 2.39. ♦
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2.2 Profinite sets and Stone spaces

In this section we will prove some useful results on projective diagrams of finite sets. We
will also give a direct proof that Ŝet is equivalent to Stone, without using Stone duality,

and similarly show that Ĝrp is equivalent to StoneGrp, the category of group objects
in Stone. We will then prove a similar result for profinite G-sets, and deduce some of
their basic properties which we need in the subsequent chapters.

2.2.1 Cofiltered limits of finite sets

The following theorem is an essential ingredient in many proofs involving projective limits
of finite sets. The proof is taken from [RZ10], Proposition 1.1.4.

Theorem 2.43. A cofiltered limit of finite nonempty sets is nonempty.

Proof. As we have already seen, any cofiltered diagram can be replaced by a projective di-
agram indexed by a codirected poset. So let {Xi}i∈I be a projective diagram of nonempty
finite sets, with maps pij : Xi → Xj for i ≤ j. Give all sets Xi the discrete topology.
Then limiXi is a compact space by Tychonoff’s theorem. For each j ∈ I, let Yj ⊆

∏
iXi

be the set consisting of all (xi)i∈I such that if j ≤ k, then pjk(xj) = xk. Then clearly
limiXi =

⋂
i Yi. Using the axiom of choice, we see that Yj is nonempty for every j (since

products of nonempty sets are nonempty). One can also easily verify that it is closed.
Now assume

⋂
i Yi = ∅. By compactness, this implies that Yi1 ∩ . . . ∩ Yin = ∅ for some

i1, . . . , in ∈ I. Pick j ≤ i1, . . . , in. Then Yj ⊆ Yi1 ∩ . . . ∩ Yin by construction, which is a
contradiction since Yj 6= ∅. We conclude that limiXi =

⋂
i Yi 6= ∅. �

Remark 2.44. The above proof more generally works for any projective limit of nonempty
compact Hausdorff spaces. ♦

The Mittag-Leffler condition is a condition on a projective diagram, which is often
considered in the context of abelian groups. Its interest comes from the fact that it ensures
that the derived functor lim1 vanishes. We will consider the condition for diagrams of
sets and show that it holds for all diagrams of finite sets.

Definition 2.45. Let I be a codirected set and let {Xi}i∈I be a projective diagram of
sets with maps pji : Xj → Xi. We say that {Xi}i∈I satisfies the Mittag-Leffler condition
if for every i ∈ I there exists a j ≤ i such that⋂

k≤i

pki (Xk) = pji (Xj). ♦

Remark 2.46. The Mittag-Leffler condition can be defined in any category with a suit-
able notion of “image” and “intersection of images”. However, doing this here would
needlessly complicate matters. ♦

Proposition 2.47. Any projective diagram of finite sets {Xi} satisfies the Mittag-Leffler
condition. Furthermore, im(pi) =

⋂
k≤i p

k
i (Xk) for each i ∈ I, where pi : limiXi → Xi is

the projection map. In particular im(pi) = pji (Xk) for some j ≤ i.
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Proof. Let {Xi}i∈I be a diagram of finite sets with maps pji : Xj → Xi, and let i ∈ I
be given. Let {x1, . . . , xn} = Xi \

⋂
k≤i p

k
i (Xk). Then there are j1, . . . , jn ≤ i such that

xm 6∈ pjmi (Xjm) for each 1 ≤ m ≤ n. Let j ≤ j1, . . . , jn. Then xm 6∈ pji (Xk) for each m,
hence pji (Xi) =

⋂
k≤i p

k
i (Xi).

For the second part of the proposition, note that pi(limiXi) ⊆
⋂
k≤i p

k
i (Xk) trivially.

For the other direction, let x ∈
⋂
k≤i p

k
i (Xk). Note that the inclusion of I≤i = {j ∈

I | j ≤ i} in I is initial, so limj≤iXj = limj∈I Xj. Now define Yj = (pji )
−1({x}) for

each j ≤ i. Then the Yj are all nonempty, and the maps pkj |Yk make {Yj}j≤i into a
projective diagram. By Theorem 2.43, limj≤i Yj is nonempty, and we also have limj≤i Yj ⊆
limj≤iXj = limj∈I Xj. An element y ∈ limj≤i Yj corresponds to an element x′ ∈ limiXi

with pi(x
′) = x by construction, hence x ∈ pi(limiXi). �

Remark 2.48. Since the image of a group homomorphism is simply the set theoretic
image, we see that the above proposition also holds for diagrams of finite groups. ♦

Corollary 2.49. A projective diagram of finite sets or finite groups is isomorphic to a
projective diagram where all maps are surjective, indexed by the same codirected set.

Proof. Let {Xi} be a projective diagram of sets or groups, with maps pji : Xj → Xi for
j ≤ i. Then set X ′i :=

⋂
k≤i p

k
i (Xk). The maps pji can be restricted to maps X ′j → X ′i,

making {Xi} into a projective diagram indexed by the same codirected set. Using the
Mittag-Leffler condition, one can show that the maps X ′j → X ′i are surjective and that
the levelwise inclusion of {X ′i} into {Xi} is an isomorphism of pro-objects. �

2.2.2 Profinite sets and profinite groups

We will now prove that Ŝet ' Stone. The following proposition is useful when trying
to recognize if a category is a certain pro-category. Recall from Definition 2.33 that an
objectX in a category C that has cofiltered limits is called cocompact if Hom(limi Yi, X) =
colimi Hom(Yi, X) for any cofiltered limit limi Yi.

Proposition 2.50. Let F : C→ D be a functor with D cofiltered complete, and assume
that

(i) F is fully faithful,

(ii) every D ∈ D is the limit of a cofiltered diagram of the form I C D,F and

(iii) F (C) is cocompact in D for every C ∈ C.

Then the induced functor F̃ : Pro(C)→ D is an equivalence of categories.

Proof. To see that F̃ is essentially surjective, note that every D ∈ D can be written as a
cofiltered limit limi F (Xi), hence D ∼= F̃ ({Xi}).
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Recall that for a pro-object {Xi}, F̃ is defined by F̃ ({Xi}) = limi F (Xi). Considering
that every object of the form F (C) is cocompact, we see that

HomD(F̃ ({Xi}), F̃ ({Yj})) ∼= HomD(lim
i
F (Xi), lim

j
F (Yi)) ∼= lim

j
HomD(lim

i
F (Xi), F (Yi))

∼= lim
j

colim
i

HomD(F (Xi), F (Yi)) ∼= lim
j

colim
i

HomC(Xi, Yi),

so F̃ is fully faithful. �

Remark 2.51. In the above proof, we only need that F (C) is cocompact in D with
respect to projective limits of objects of the form F (C ′i). In particular, to apply the above
lemma, we only need to prove that colimi HomD(F (C ′i), F (C)) = HomD(limi F (C ′i), F (C))
for projective diagrams {C ′i} in C. ♦

From Example 2.16, we already know that a projective limit limiXi of finite discrete
spaces is a Stone space. This induces a functor F : Ŝet → Stone, which computes the
limit of a pro-object of finite sets as topological space, where all finite sets are given the
discrete topology.

Theorem 2.52. The functor F : Ŝet→ Stone is an equivalence of categories.

Proof. We need to verify that the assumption of Proposition 2.50 holds for the inclusion
FinSet → Stone. The proof that a projective limit of Stone spaces is again a Stone
space (which implies that Stone is cofiltered complete) is left to the reader.

(i) It is clear that FinSet→ Stone is full and faithful.

(ii) We need to show that any Stone space X is a projective limit of finite sets. Define
R(X) to be the set of all equivalence relations on X such that each equivalence
class is open in X, ordered by inclusion. By compactness, for each R ∈ R(X), X/R
is finite and discrete. The inclusion of an equivalence relation R ⊆ R′ induces a
map X/R → X/R′. The finite sets X/R therefore define a projective diagram in
FinSet. By the universal property of limits, the quotient maps X → X/R induce
a continuous map f : X → limR∈R(X)X/R. Since all spaces are compact Hausdorff,
this map is a homeomorphism if and only if it is bijective.

For injectivity, let x 6= y be elements of X. Then there is a clopen U ⊆ X such that
x ∈ U and y 6∈ U . Let R be the equivalence relation on X with equivalence classes
U and X \ U . Then R ∈ R(X), and we have qR = pR ◦ f , where qR : X → X/R is
the quotient and pR : limR′∈R(X) X/R

′ → X/R the projection. Since qR(x) 6= qR(y),
we see that f(x) 6= f(y), so injectivity follows.

For surjectivity, let x ∈ limX/R. Let pR(x) denote the equivalence class correspond-
ing to x in X/R. Then pR(x) is a closed subset of X, and f(x′) = x if and only if
x′ ∈

⋂
R∈R(X) pR(x). We therefore need to prove that

⋂
R∈R(X) pR(x) 6= ∅. Assume

that this intersection is empty. Then, by compactness, there are R1, . . . , Rn ∈ R(X)
such that pR1(x)∩ . . .∩pRn(x) = ∅. Choose an R ∈ R(X) such that R ⊆ R1, . . . , Rn.
Then pR(x) ⊆ pR1(x) ∩ . . . ∩ pRn(x), yet pR(x) 6= ∅ by definition. We conclude that
f is surjective.
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(iii) To see that finite discrete sets are cocompact in Stone, note that we only need to
show that the canonical map colimi Hom(Xi, Y ) → Hom(limiXi, Y ) is a bijection
for {Xi} a projective diagram of finite sets and Y a finite set. Write X = limXi, let
pi : X → Xi be the projection map and denote the maps Xj → Xi for j ≤ i by pji .

We will first prove surjectivity. Assume we are given a continuous map f : X → Y .
Note that, by definition of the product topology, an open U ⊆ X contains a subset
of the form (

∏
i Zi)∩X, where Zi ⊆ Xi for all i and Zi = Xi for all but finitely many

i. Since I is codirected and we are intersecting
∏

i Zi by X, we can assume that
Zi = Xi for all but one i. Now let y ∈ Y be given, then f−1(y) contains a subset of
the form

∏
i Zi ∩X with Zi = Xi for all i except some iy ∈ I. Since Y is finite, we

can pick j ∈ I such that j ≤ iy for all y. Then there is a map fj : pj(X)→ Y such
that fjpj = f . Now use Proposition 2.47 to pick a k ≤ j such that im(pj) = im(pkj )
and define fk : Xk → Y by fk = fjp

k
j . Then fkpk = f .

For injectivity, assume we are given f : Xi → Y and f ′ : Xj → Y such that fpi =
f ′pj. We need to show that fpli = f ′plj for some l ∈ I, as this means that f and f ′

represent the same element in colimi Hom(Xi, Y ). Since there is a k such that k ≤ i
and k ≤ j, we may assume without loss of generality that i = j = k. Now denote by
X ′k the set {x ∈ Xk | f(x) 6= f ′(x)}. There can be no y ∈ X such that pk(y) ∈ X ′k,
since then f(pk(y)) = f ′(pk(y)) by definition of f and f ′. Pick l ≤ k such that
im(plk) = im(pk). Then, as f and f ′ are obviously equal on im(pk), we see that
fplk = f ′plk, hence f and f ′ represent the same element in colimi Hom(Xi, Y ). �

The above proof can be modified to obtain the well-known similar result for profinite

groups. We have a similar functor F : Ĝrp → StoneGrp coming from the inclusion
FinGrp → StoneGrp. One problem occurs when translating the above proof to the
context of profinite groups. We will, for now, call a topological group that is compact
Hausdorff and totally disconnected a Stone group. To show that any Stone group is a
projective limit of finite discrete groups, we need to consider equivalence relations on a
Stone group G for which the quotient is a finite discrete group. One easily sees that such
equivalence relations correspond to open normal subgroups. We will therefore need to
show that the canonical map

f : G→ lim
NEG
N open

G/N

is an isomorphism if we want to prove that any Stone group is a projective limit of finite
discrete groups. Surjectivity follows in the same way as above, but injectivity is slightly
more complex, since Stone groups have fewer quotients than Stone spaces. Injectivity
essentially follows from the following lemma, which states that there exist “enough” open
normal subgroups.

Lemma 2.53. Let G be a Stone group. Then⋂
NEG
N open

N = {1}.

For a proof, see [RZ10], Theorem 2.1.3.
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Theorem 2.54. The functor F : Ĝrp→ StoneGrp is an equivalence of categories.

Proof. We again check the assumption of Proposition 2.50. To see that StoneGrp is
cofiltered complete, one can simply show that a projective limit of Stone groups is again
a Stone group.

(i) FinGrp→ StoneGrp is clearly fully faithful.

(ii) We need to show that the canonical map f : G→ limN G/N is an isomorphism. It is
surjective by the exact same proof as above. For injectivity, assume that g ∈ ker(f).
Then by definition g ∈ N for each open normal subgroup N of G, so by the above
theorem g = 1, the identity element, hence f is injective. We conclude that f is a
bijection, hence an isomorphism of Stone groups.

(iii) For cocompactness of finite discrete groups, let {Gi} be a projective diagram of finite
groups and H a finite group. The proof that colimi Hom(Gi, H)→ Hom(limiGi, H)
is an isomorphism is exactly the same as in the above proof for finite sets and Stone
spaces. The only problem is that it is not immediately clear that, given a continuous
map f : limiGi → H, the obtained map fk : Gk → H is a group homomorphism.
Considering that k was chosen such that im(pkj ) = im(pj) in the proof of Theorem
2.50, this is however not difficult to verify, and is therefore left to the reader. �

One easily sees that the above equivalence restricts to an equivalence Âb ' StoneAb,
where Âb denotes Pro(FinAb).

Corollary 2.55. The functor F : Âb→ StoneAb is an equivalence of categories. �

2.2.3 Profinite G-sets and profinite G-modules

In chapters 3 and 4, we will encounter continuous actions by profinite groups. In particu-
lar, we will need some results on profinite G-sets. By a profinite G-set we mean a profinite
set X together with an action of G on X such that the map G×X → X is continuous.
Similarly, by a profinite G-module, we mean a profinite abelian group A together with
an action of G on A such that the map G × A → A is continuous. We will consider
left-G-actions below, but of course everything proved will also hold for right-G-actions.

We denote the category of profinite G-sets by ŜetG and the category of profinite G-
modules by ÂbG. By a finite G-set (resp. G-module) we mean a profinite G-set (resp.
G-module) such that the underlying set is finite. The corresponding categories are denoted

by FinSetG and FinAbG. Then ŜetG ' Pro(FinSetG) and ÂbG ' Pro(FinAbG).

Theorem 2.56. For any profinite group G, there is an equivalence of categories ŜetG '
Pro(FinSetG).

Proof. The proof follows the same steps as the proof of Theorem 2.54. Parts (i) and (iii)
can both be translated directly to the context of profinite G-sets. Part (ii), showing that
every profinite G-set is a projective limit of finite G-sets, requires some further work. We
will first look at the case where G is a finite group.
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If G is a finite group, then a profinite G-set X is simply a profinite set together
with a group homomorphism G → Aut(X). Since G is discrete, the corresponding map
G × X → X will always be continuous, so we can drop this requirement. If we view G
as a category (or groupoid, in fact) with one object, then a homomorphism G→ Aut(X)

is the same as a functor G → Ŝet which maps the object of G to X. We therefore see
that ŜetG is just the functor category Pro(FinSet)G. It is proved in [Mey80, §4], stated
as Proposition 2.75 of this thesis, that for a finite category I and an (essentially) small
category C with finite limits, there is an equivalence Pro(CI)→ Pro(C)I . Applying this
to the case C = FinSet and I = G, we obtain the desired equivalence Pro(FinSetG) '
ŜetG. In particular, any profinite G-set is a projective limit of finite G-sets when G is a
finite group.

Now assume that G is profinite. As stated above, we only need to show that a profinite
G-set is a projective limit of finite G-sets. Let X be a profinite G-set. We will show that
the canonical map X → limRX/R, where R ranges over all G-equivariant equivalence
relations on X for which X/R is finite and discrete, is an isomorphism. By a G-equivariant
equivalence relation on X, we mean that xRy if and only if (g · x)R(g · y), which is the
necessary condition to give X/R an induced G-action. This canonical map is surjective
by the same argument as in Theorem 2.52. To see that it is injective, let x, y ∈ X be two
distinct points. We need to show that there exists a map of G-sets f : X → Y such that
Y is a finite G-set and f(x) 6= f(y). The collection of g ∈ G satisfying g ·x = y is a closed
(possibly empty) subset of G, not containing the unit 1. In the proof of [RZ10], Theorem
2.1.3, it is shown that for a profinite group G, any open neighborhood of 1 contains an
open normal subgroup H. In particular, there exists an open normal subgroup H such
that no h ∈ H satisfies h ·x = y. Then x and y remain distinct in the quotient X/H. The
action of G on X/H factors through the finite group G/H, i.e. X/H is a profinite G/H-
set. Then, since G/H is finite, we can write X/H as a projective limit of finite G/H-sets
as we saw above. In particular there is a map X/H → Y for some finite G/H-module
Y , such that x and y are mapped to different elements in Y . Composing the action of
G/H on Y with the quotient map G → G/H gives Y the structure of a G-set, and the
composition X → X/H → Y is the desired map of G-sets. �

The following theorem follows by combining Lemma 5.1.1(b) and Proposition 5.3.6(c)
of [RZ10], to which we refer the reader for a proof.

Theorem 2.57. For any profinite group G, there is an equivalence of categories ÂbG '
Pro(FinAbG).

This theorem in particular implies that for any profinite G-module M , the canon-
ical map M → limN M/N , where N ranges over all open G-submodules of M , is an
isomorphism.

We will now prove some results on profinite G-sets that are used in chapters 3 and 4.

Lemma 2.58. Let S be a profinite G-set for a profinite group G. Then the quotient S/G,
computed in Top, is a Stone space.

Proof. We view S as a Stone space, on which G acts continuously. We will first show that
S/G is Hausdorff. This is equivalent to showing that the diagonal ∆S/G ⊆ S/G × S/G
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is closed. Note that the quotient map π : S → S/G is open, since for any U ⊆ S
we have π−1(π(U)) =

⋃
g∈G g(U), which is open. The product of the quotient map

S × S → S/G× S/G is therefore also open. The inverse image of ∆S/G is given by

R := {(s, g · s) | s ∈ S and g ∈ G}.

This is the image of S × G → S × S, (s, g) 7→ (s, g · s). Since S × G is compact, we see
that R is closed, hence (S × S) \ R is open. Now note that the image of (S × S) \ R
under S × S → S/G× S/G is open, and that it is precisely the complement of ∆S/G. We
conclude that ∆S/G is closed, hence that S/G is Hausdorff.

To see that S/G is a Stone space, we also need to show that it is totally disconnected.
So let [s], [t] ∈ S/G be given. Pick an open neighborhood U of [s] in S/G which does not
contain [t]. Then π−1(U) is an open subset in S/G which is disjoint from the closed subset
[t]. We can write π−1(U) as a union of clopens. Since finitely many of these clopens cover
[s], we obtain a clopen subset C of S which contains [s], and which is disjoint from [t].
Now note that π is an open map because of what we saw above, and that it is a closed
map since S and S/G are compact Hausdorff. We therefore see that π(C) is a clopen
neighborhood of [s] in S/G, and that it does not contain [t]. We conclude that any two
points in S/G can be seperated by clopens, and hence that S/G is a Stone space. �

Lemma 2.59. Let G be a profinite group and S a profinite G-set. Then limN S/N ∼= S,
where N ranges over all open normal subgroups of G.

Proof. We will view S as a Stone space. The quotient S/N is a Stone space by the above
lemma. S/N inherits an action from G, defined by g · [s] = [g · s], where [s] denotes an
equivalence class in S/N . This is well-defined since N is a normal subgroup of G. We
therefore also have a G-action on limN S/N . There is a canonical map φ : S → limN S/N
given by s 7→ ([s]N), where [s]N denotes the element of S/N represented by s. This map
is clearly G-equivariant. To see that it is a homeomorphism, we only need to show that
it is a bijection, as a continuous bijection between Stone spaces is a homeomorphism.

For injectivity of φ, let s, t ∈ S and assume φ(s) = φ(t). Define the subset HN ⊆ N
by

HN = {h ∈ N | h · s = t}

for every N . Then HN is nonempty since φ(s) = φ(t). It is also closed since it is the
inverse image of t under the map g 7→ g · s. In particular, HN is compact Hausdorff for
every N and hence limN HN is nonempty. But this is just

⋂
N HN . As HN ⊆ N for every

N , we see that
⋂
N HN ⊆

⋂
N N = {1}, so 1 ∈ HN for every N . By definition of HN , this

implies that s = 1 · s = t, so φ is injective.
For surjectivity, let ([sN ]N) ∈ limN S/N . Then [sN ]N is a closed subset of S for every

N , and φ(s) = ([sN ]N) precisely if s ∈
⋂
N [sN ]N = limN [sN ]N for every N . It follows by

the same argument as above that the right-hand side is nonempty, hence that such an s
exists. We conclude that φ is surjective, hence an isormorphism. �

We will also need to study free profinite G-sets. It turns out that any free continuous
G-action on a profinite set is trivial if G is a profinite group.



28 CHAPTER 2. PRO-CATEGORIES

Lemma 2.60. Let S be a Stone space together with a free G-action for some finite group
G, and let T = S/G. Then S ∼= G× T by a G-equivariant homeomorphism.

Proof. Denote the map S → T by p. Let x ∈ T . Then p−1(x) is discrete, hence finite, say
p−1(x) = {y1, . . . , yn}. Since any compact Hausdorff space is normal, and S has a basis
of clopens, there exists a clopen U such that U ∩ p−1(x) = {y1}. Then for any g ∈ G,
g(U) is a clopen such that g(U) ∩ p−1(x) = {yi} for some i > 1. Choose a clopen V ⊆ U
around y1 such that V ∩ g(U) = ∅ for any g ∈ G \ {e}. Then g(V ) ∩ V = ∅ since V ⊆ U .
Let W = p(V ) ⊆ T . Then W is clopen, as p−1(W ) =

⋃
g∈G g(V ) is clopen in S. We also

see that G×W ∼= p−1(W ). This isomorphism is given by first noting that p : V → W is
a homeomorphism, and then mapping (g, v) ∈ G× V to g · v ∈ g(V ) ⊆ p−1(W ).

We have now seen that there is a cover of clopens of T such that S → T is trivial over
each of these clopens. By compactness, we can pick a finite cover of such clopens, and by
intersecting these, we can assume that they are also disjoint. In particular S → T is a
disjoint union of trivial G-bundles, hence it is a trivial G-bundle. �

Proposition 2.61. Let S be a Stone space together with a free, continuous G-action
for some profinite group G, and let T = S/G. Then S ∼= G × T by a G-equivariant
homeomorphism.

The proof of this lemma is very similar to that of Proposition 1 of [Ser97, Chapter 1].
This proposition states that any continuous, surjective homomorphism between profinite
groups has a continuous section (which is usually not a homomorphism). In fact, it is
easily seen that this proposition is a special case of the lemma we are about to prove.

Proof. The statement that S ∼= G × T is equivalent to saying that a continuous section
T → S of the quotient map exists. Indeed, if s : T → S is such a section, then the map
G× T → S, (g, t) 7→ g · s(t) is a G-equivariant homeomorphism. We will show that such
a section s exists. Define the set P to consist of pairs (H, s), where H ≤ G is a closed
subgroup, and where s : T → S/H is a section of the quotient map S/H → T . We give
P an ordering by saying that (H, s) ≤ (H ′, s′) if H ′ ⊆ H and

S/H ′ S/H

T
s′ s

commutes, where S/H ′ → S/H is the quotient map.
The set P is nonempty since it contains the element (G, idT ). Assume we are given a

totally ordered subset {(Hi, si)} of P . We will see that this subset has an upper bound.
Let H =

⋂
iHi. Then the canonical map φ : S/H → limi S/Hi is a homeomorphism.

To see this, we need to show that it is injective and surjective. The proof is similar to
that of Lemma 2.59. For surjectivity, let ([xi]Hi

)i ∈ limi S/Hi be given, where [xi]Hi
is

the class in S/Hi containing xi. Then [xi]Hi
is a closed subset of S for every i, hence⋂

i[xi]Hi
= limi[xi]Hi

6= ∅. Any x in this intersection satisfies φ([x]H) = ([xi]Hi
)i. For

injectivity, let φ([x]H) = φ([y]H). Define Li ⊆ Hi by g ∈ Li if and only if g · x = y. Then
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Li is nonempty and closed for every i, hence
⋂
i Li = limi Li is nonempty. As

⋂
i Li ⊆ H,

we conclude that [x]H = [y]H .
The sections si : T → S/Hi induce a section s : T → limi S/Hi

∼= S/H by the universal
property of the limit. We see that (H, s) is an upper bound of {(Hi, si)}. By Zorn’s lemma,
there is a maximal element (H, s) ∈ P . We will show that H = {1}, completing the proof.
Assume H 6= {1}. Then there is some h ∈ H such that h 6= 1. By Lemma 2.53, there is
an open normal subgroup N of G such that h 6∈ N . Then N ∩H is also an open normal
subgroup of H, hence H/(N ∩H) is a finite group. Now consider

S/(N ∩H) S/H T.

s′
s

We see that H/(N ∩H) acts freely on S/(N ∩H) and that its quotient is S/H, hence by
Lemma 2.60 there exists a section s′ : S/H → S/(N ∩H). Then (N ∩H, s′s) is an element
of P , and (N, s) < (N ∩ H, s′s), contradicting the maximality of (H, s). We therefore
conclude that H = {1} and that S ∼= G× T by a G-equivariant homeomorphism. �

2.3 Profinite completion

We will encounter the following situation many times. We are given a category C and a
subcategory FinC, whose objects are the objects of C that are finite in a certain sense.
To any object C ∈ C we want to associate some object Ĉ ∈ Pro(FinC) in a natural way.

We denote Pro(FinC) by Ĉ for brevity. More specifically, we want a natural bijection

HomC(C,D) ∼= HomĈ(Ĉ,D) for any D ∈ FinC. We first give a general construction of
such a profinite completion functor, under some mild conditions on the categories FinC
and C. We then study the profinite completion functor in two specific cases, namely
profinite sets and profinite groups.

2.3.1 General construction of the profinite completion functor

The main ingredient in constructing a profinite completion functor is Proposition 2.39,
which states that pro-objects correspond to Set-valued functors that preserve finite limits.

Theorem 2.62. Let C be a complete category and D a small, full subcategory which has
finite limits, such that the inclusion D → C preserves finite limits. Then there exists a

functor (̂·) : C → Pro(D) and a morphism i : C → Ĉ in Pro(C) for every C ∈ C, such

that for every morphism f : C → D in C with D ∈ D, there is a unique f : Ĉ → D such
that the diagram

C Ĉ

D

i

f
f

commutes in Pro(C). In particular (̂·) is left adjoint to | · | : Pro(D) → C, the functor
mapping a pro-object to its limit in C.
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Proof. Under the assumptions of this theorem, the functor HomC(C,−) : D → Set pre-
serves all finite limits, hence it is representable by a unique pro-object by Proposition 2.39.
We define this pro-object to be Ĉ. We now have a natural bijection HomC(C,D) ∼=
HomPro(D)(Ĉ,D) by construction. The pro-object Ĉ can be described concretely as the
diagram el(HomC(C,−)) → D. Note that an object in el(HomC(C,−)) is a pair (D, f)
with D ∈ D and f ∈ HomC(C,D). These maps f : C → D together define a natural

transformation, hence a morphism i : C → Ĉ in Pro(C). One now easily sees that the

bijection HomPro(D)(Ĉ,D) ∼= HomC(C,D) is given by f 7→ f ◦ i, proving the first claim
of the theorem.

If we are given a morphism g : C → C ′ in C, then we obtain an induced functor
g∗ : el(HomC(C ′,−)) → el(HomC(C,−)) which maps a pair (D, f) to (D, fg). Precom-

posing this with the diagram el(HomC(C,−))→ D, which is by definition equal to Ĉ, we

obtain an arrow ĝ : Ĉ → Ĉ ′ in Pro(D), so the profinite completion (̂·) is indeed a functor
C→ Pro(D).

For the second claim, let {Di} be a pro-object in D. Then

HomC(C, lim
i
Di) ∼= lim

i
HomC(C,Di) ∼= lim

i
HomPro(D)(Ĉ,Di) ∼= HomPro(D)(Ĉ, {Di}). �

Remark 2.63. Let C and D be as above. Suppose we are given an object C ∈ C and
a set I0 consisting of pairs (D, f), where D ∈ D and f : C → D (i.e. I0 is a subset
of the set of objects of el(HomC(C,−))). Furthermore, assume that any f ′ : C → D′,

where D′ ∈ D, factors as C D D′
f g

for some (D, f) ∈ I0 and some g : D → D′.
Then the inclusion I ↪→ el(HomC(C,−)), where I is the full subcategory that has I0 as
its set of objects, is an initial functor. For example in Set, any map X → Y factors as
X → X/R→ Y for some equivalence relation R on X. This means that for the profinite
completion of a set X, we only need to consider finite quotients X/R of X, instead of all
maps X → Y for all finite sets Y . ♦

Remark 2.64. A natural choice for the set I0 in the above remark would be the set of all
pairs {(D, f)} where f is epi. In many examples, the inclusion I ↪→ el(HomC(C,−)) is
indeed an initial functor, where I is the full subcategory whose set of objects is I0. As a
morphism g : (D, f) → (D′, f ′) is precisely a morphism D → D′ satisfying gf = f ′, only
one such morphism can exist. In particular, the subcategory I of el(HomC(C,−)) is a
codirected set, instead of just a cofiltered category. If we furthermore pick precisely one
representative for each isomorphism class of I, we obtain a codirected poset. ♦

The cases of interest to us are Set, Grp, the category of groupoids G and the category
of simplicial sets S. The full subcategories that we will consider are FinSet, FinGrp,
the category of finite groupoids FinG and the category of cofinite simplicial sets Scofin.
A finite groupoid is a groupoid whose set of arrows is finite, which automatically implies
that its set of objects is finite as well. A cofinite simplicial set is a simplicial finite set
which is k-coskeletal for some k. Theorem 2.62 gives us profinite completion functors for
all four of these cases. Note that, strictly speaking, these subcategories are not small;
however we can always restrict our attention to an equivalent small subcategory.
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The rest of this section will be devoted to the study of the profinite completion of sets
and groups. We will go into the profinite completion of groupoids and simplicial sets in
chapters 3 and 4, respectively.

2.3.2 Profinite completion of sets and groups

As mentioned above, we only need to consider quotients of X when constructing the
profinite completion of a set X. We will state this as a definition.

Definition 2.65. Let X be a set, and let R(X) be the set of equivalence classes on X for
which X/R is finite. Then R(X), ordered by reverse inclusion, is a codirected set. Define

the profinite completion X̂ as the pro-object limR∈R(X) X/R. ♦

Remark 2.66. The reader familiar with profinite groups might recognize this construc-
tion. For the profinite completion of a group, instead of using the collection of equivalence
relations R(X), one uses the collection of all normal subgroups with a finite index. ♦

There is another description of the profinite completion of a set which might be more
familiar. Recall that Ŝet ' Stone. A construction having the same universal property as

(̂·), but with respect to all compact Hausdorff spaces, is the Stone-Čech compactification

(applied to a set viewed as a discrete space). To see that X̂ is indeed the Stone-Čech
compactification of X, we need to prove the following lemma.

Lemma 2.67. Let X be a discrete space. Then the Stone-Čech compactification βX is
totally disconnected.

Proof. Let i : X → βX be the canonical map. We will first show that the image of X is
dense in βX. Let Y ⊆ βX be the closure of i(X). Then Y is compact Hausdorff since it
is closed in βX. By the universal property of βX, we obtain a map f : βX → Y such that
f ◦ i = i. We also see by the universal property that ιY ◦ f = idβX , where ιY : Y ↪→ βX.
This implies that ιY is surjective, hence Y = βX.

To prove that βX is totally disconnected, note that we can associate a clopen Ũ ⊆ βX
to any subset U ⊆ X in the following way. Let χU : X → {0, 1} be the characteristic
function of U , i.e. χU(x) = 1 if and only if x ∈ U . Then χU extends to a unique continuous

map χ̃U : βX → {0, 1}, let Ũ = χ̃−1
U (1) ⊆ βX. To see that βX is totally disconnected, it

is enough to show that for any a, b ∈ βX there exists a clopen set V ⊆ βX containing
a but not b. To find such a set, choose disjoint opens Ua and Ub containing a and b

respectively. Using that i(X) is dense in βX, one now easily sees that ˜i−1(Ua) is a clopen
set containing a but not containing b. �

Corollary 2.68. The profinite completion X̂ of a set X is the Stone-Čech compactification
βX of the discrete space X.

Proof. Using the universal properties of X̂ and βX, we obtain continuous maps X̂ → βX
and βX → X̂ which must be inverse to each other. �
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The profinite completion functor for sets has the very unfortunate property that it
does not preserve products. It is interesting to remark that this problem is precisely the
reason why Horel needs to consider “weak operads” instead of operads when defining the
profinite completion of an operad in [Hor17].

Proposition 2.69. The profinite completion functor for sets does not preserve products.

Proof. We will use that the profinite completion is the Stone-Čech compactification. For
a discrete set X, the Stone-Čech compactification βX consists of all ultrafilters on X,
given the Stone topology. If profinite completion preserves products, then the canonical
map β(X × Y )→ βX × βY must be an isomorphism. We will show that this is not the
case for X = Y = N.

The map φ : β(N× N)→ βN× βN maps an ultrafilter U on N× N to the ultrafilters
V1 and V2, where Vi = {V ⊆ N | p−1

i (V ) ∈ U}, where pi is the projection map N×N→ N
on the i-th coordinate. This map φ fails to be injective. If we are given a non-principal
ultrafilter U on N, then consider the set S = {U × V | U, V ∈ U}. Any ultrafilter V
with S ⊆ V satisfies φ(V) = (U ,U). Let N1 = {(m,n) ∈ N × N | m < n} and let
N2 = {(m,n) ∈ N × N | m > n}. Define F1 and F2 to be the smallest filters containing
S∪{N1} and S∪{N2} respectively. These both satisfy ∅ 6∈ Fi, hence there exist ultrafilters
V1 and V2 containing F1 and F2 respectively. Since Ni ∈ Vi and N1 ∩N2 = ∅, we see that
V1 6= V2. However, φ(V1) = φ(V2) = (U ,U), so we conclude that φ is not injective. �

As a fun application of the profinite completion functor, we will show that Ŝet is not
cartesion closed. Recall that a category is called cartesian closed if it has binary products
and if for each object X, the functor (−)×X has a right adjoint. In particular, if Ŝet is
cartesian closed, then (−)×X preserves colimits for every profinite set X. Note that as
the profinite completion functor is left adjoint, it preserves colimits. This can sometimes
be used to compute certain colimits in pro-categories. Two examples of such computations
are given in the following proof. It will follow from these computations that (−)× N̂ does
not preserve colimits.

Proposition 2.70. The category of profinite sets Ŝet is not cartesian closed.

Proof. Recall that Ŝet ' Stone, so we may work with Stone spaces instead of profinite
sets. We will show that (−) × N̂ does not preserve colimits, where N̂ is the profinite
completion of N. Consider the coproduct tN{∗} over a countably infinite number of
copies of the one-point space in Stone. If we compute this coproduct in Set, then we
obtain N. Since profinite completion preserves coproducts, this implies that tN{∗} = N̂
in Stone. In particular, (tN{∗})× N̂ ∼= N̂× N̂.

In order to compute tN({∗} × N̂), note that the inclusion FinSet ↪→ Top, view-
ing finite sets as finite discrete spaces, satisfies all the assumptions of Theorem 2.62. In

particular, there is a profinite completion functor (̂·) : Top → Stone left adjoint to the
inclusion Stone ↪→ Top. Note that this notation is unambiguous, as the profinite com-
pletion functor for sets agrees with the above one on discrete topological spaces. The
coproduct tN({∗} × N̂) is equal to N × N̂ when computed in Top, so this coproduct is
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equal to N̂× N̂ when computed in Stone. We have the following canonical isomorphisms

for every Stone space S, considering that (̂·) is left adjoint to the inclusion Stone ↪→ Top:

HomStone(N̂× N̂, S) ∼= HomTop(N× N̂, S) ∼= tN HomTop(N̂, S) ∼= tN HomTop(N, S)

∼= HomTop(N× N, S) ∼= HomStone(N̂× N, S).

By Yoneda’s lemmma, we see that N̂× N̂ ∼= N̂× N. In the above proof, we saw that

N̂× N 6∼= N̂× N̂, so we conclude that (−)× N̂ does not preserve coproducts. In particular,

Ŝet is not cartesian closed. �

Contrary to the case of sets, the profinite completion of groups does preserve products.
Note that, similarly to the case of sets, the profinite completion of a group G can also be
defined as

Ĝ = lim
N
G/N,

or, more formally, as the diagram {G/N}N . Here N ranges over all normal subgroups of
G such that G/N is finite. One easily verifies that

Ĝ× Ĥ = lim
NG

G/NG × lim
NH

H/NH = lim
NG,NH

(G×H)/(NG ×NH),

so Ĝ× Ĥ is the limit of a subdiagram of the diagram used to define Ĝ×H.

Proposition 2.71. The profinite completion functor for groups preserves products.

Proof. Let G,H be groups. As stated above, the profinite group Ĝ× Ĥ is the limit of the
diagram {(G×H)/(NG×NH)}NG,NH

, which is a subdiagram of {(G×H)/N}N . The limit

of the latter diagram is by definition Ĝ×H, so the proof that Ĝ× Ĥ ∼= Ĝ×H amounts
to proving that this inclusion is initial. As we work with diagrams of codirected posets,
this comes down to proving that for any cofinite N E G×H, there are cofinite NG E G
and NH E H such that NG×NH ⊆ N . Let ιG and ιH be the inclusions of G,H in G×H
respectively, and let q : G×H → (G×H)/N be the quotient map. Define NG = ker(q◦iG)
and NH = ker(q◦iH). Since G/NG and H/NH are isomorphic to subgroups of (G×H)/N ,

they are finite. It is also clear that NG×NH ⊆ N . We conclude that Ĝ×Ĥ ∼= Ĝ×H. �

2.4 Pro-objects in presheaf categories

In this section we will study the relation between the categories Pro(CI) and Pro(C)I ,
that is, the relation between diagrams of pro-objects and pro-objects of diagrams. We
will apply the obtained results to the case where I = ∆op, the opposite simplex category,
to gain a better understanding of simplicial objects in pro-categories.
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2.4.1 Diagrams in pro-categories versus pro-objects in diagram
categories

Note that there is an obvious functor Pro(CI) → Pro(C)I for any pair of categories C
and I. If we are given a pro-object in Pro(CI), say a cofiltered diagram X : J → CI , then
we obtain a diagram I → CJ . Since J is cofiltered, we also obtain a diagram I → Pro(C),
i.e. an object in Pro(C)I . The reader is invited to check that this defines a functor, in
particular that morphisms in Pro(CI) induce morphisms in Pro(C)I . This functor can
also be obtained by noting that Pro(C)I has all cofiltered limits, hence that the obvious
map CI → Pro(C)I extends to a functor Pro(CI) → Pro(C)I by Proposition 2.31. In
the rest of this section this functor will be denoted by L. It is straightforward to verify
that a diagram D : I → Pro(C) has a level representation in the sense of Definition 2.25
precisely if D is in the essential image of L : Pro(CI)→ Pro(C)I .

This functor may in general fail to be fully faithful and to be essentially surjective.
The following example shows that fully faithfulness can fail. For an example in which L
is not essentially surjective, see [Mey80, §5].

Example 2.72. Let X be any simplicial finite set that is not n-coskeletal for any n (this
notion is defined in Example 2.78). We can view X as an object of Pro(FinSet∆op

) via the
inclusion FinSet∆op → Pro(FinSet∆op

), and similarly as an object of Pro(FinSet)∆op
=

Ŝ. Under these identifications we have LX = X. We can also define the pro-object
X ′ := {cosknX}n∈Nop in Pro(FinSet∆op

). This comes with a map f : X → {cosknX},
coming from the canonical maps X → cosknX for every n. Using the above definition of
L, we see that (LX ′)i = {(cosknX)i}n∈Nop = limn∈Nop(cosknX)i for every i ∈ N. Since
(cosknX)i = Xi for all n > i, we see that (LX ′)i ∼= Xi for all i ≥ 0, and that L(f) : LX →
LX ′ is an isomorphism in Pro(FinSet)∆op

. However, f is not an isomorphism. If f were
an isomorphism, then for some n there must exist a morphism g : coskn(X) → X such
that gf = idX . However, one can deduce from this that fg = idcoskn(X) must hold as well,

hence that X ∼= coskn(X) is n-coskeletal. We conclude that Pro(FinSet∆op

) → Ŝ is not
fully faithful, as it does not preserve isomorphisms.

Note that, however, Pro(FinSet∆op

) → Ŝ is essentially surjective, which we will see
in Corollary 2.83. ♦

In the above example, fully faithfulness of L fails because ∆op is an infinite category.
Indeed, if we consider finite diagrams, then we have the following proposition.

Proposition 2.73. Let C be any category, and let I be a finite category. Then the functor
L : Pro(CI)→ Pro(C)I is fully faithful.

Proof. Note that for two diagrams A,B ∈ CI , we have that

HomCI (A,B) = eq

 ∏
i∈Ob(I)

HomC(A(i), B(i))⇒
∏

α∈Ar(I)

HomC(A(s(α)), B(t(α)))

 .

Here s and t denote the source and target, and the two maps in the equalizer are given by
mapping the tuple (fi)i∈Ob(i) to the tuples (ft(α) ◦ A(α))α∈Ar(I) and (B(α) ◦ fs(α))α∈Ar(I).
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Now let X, Y ∈ Pro(CI) be given, say X : J → CI and Y : K → CI with J and K
cofiltered. Then

HomPro(CI)(X, Y ) = lim
k

colim
j

eq

 ∏
i∈Ob(I)

HomC(X(j)(i), Y (k)(i))

⇒
∏

α∈Ar(I)

HomC(X(j)(s(α)), Y (k)(t(α))

 .

Since I is finite, we see that both the products occuring in the equalizer are finite. Further-
more, an equalizer is of course also a finite limit. Since limits commute with each other and
filtered colimits commute with finite limits by Theorem 2.5, we can put the limit and col-
imit over K and J inside the products. Noting that limk colimj HomC(X(j)(i), Y (k)(i′))
is by definition equal to HomPro(C)((LX)(i), (LY )(i′)) for all i, i′ ∈ Ob(I), we see that

HomPro(CI)(X, Y ) ∼= eq

 ∏
i∈Ob(I)

HomPro(C)((LX)(i), (LY )(i))

⇒
∏

α∈Ar(I)

HomPro(C)((LX)(s(α)), (LY )(t(α)))

 .

The right-hand side of this expression is, as we saw at the beginning of this proof, equal
to HomPro(C)I (LX,LY ). We therefore see that HomPro(CI)(X, Y ) ∼= HomPro(C)I (LX,LY )
and conclude that L : Pro(CI)→ Pro(C)I is fully faithful. �

In the above proof, it is essential that the filtered colimits commutes with the products
indexed by Ob(I) and Ar(I). We should therefore not hope for the same result if I is
infinite.

A level representation of X ∈ Pro(C)I is the same as an isomorphism from X to an
object in the image of L : Pro(CI) → Pro(C)I . Saying that this functor is essentially
surjective is equivalent to saying that every I-indexed diagram has a level representa-
tion. We have already seen two such cases, namely when I is a finite loopless category
(Proposition 2.27) and when I is a cofinite codirected poset (Theorem 2.29).

We saw in the above proposition that Pro(CI) → Pro(C)I is fully faithful if I is
finite. In many of the cases that we will consider, it is even an equivalence. By combining
Proposition 2.27 with the above example, we obtain the following result.

Proposition 2.74. Let C be a category and let I be a finite loopless category. Then
Pro(CI)→ Pro(C)I is an equivalence of categories. �

If C has finite limits, then we may in fact consider any finite index category I.

Proposition 2.75. Let C be a small category with finite limits, and let I be a finite
category. Then Pro(CI)→ Pro(C)I is an equivalence of categories.
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This is proved in [Mey80, §4].
The rest of this section is devoted to the case where the index category I has finite

Hom-sets. The above proposition is not quite true in this case, as we have already seen
in Example 2.72. However, we will prove a very similar result.

2.4.2 When the index category has finite Hom-sets

In [BHH17, Proposition 7.4.1], Barnea, Harpaz and Horel prove that Pro(Scofin) ' Ŝ,
where Scofin is the category of “cofinite spaces”, i.e. coskeletal simplicial finite sets, and

where s(Ŝet) = Ŝ. We will prove a generalization of this proposition. This proposition is
useful as it gives us many cocompact objects for free, which are needed for constructing a
fibrantly generated model structure using the cosmall object argument (see Appendix A).
Furthermore, the universal property of pro-categories allows us to extend many known
functors to the profinite context. For profinite spaces and profinite groupoids, this is
illustrated in section 4.2. Here we obtain a profinite version of the usual nerve and
fundamental groupoid, satisfying many useful properties, and without having to do any
hard work.

We will first need some lemmas. In the following, a category which has finite Hom-sets
is called a locally finite category .

Using Kan extensions, we can prove the following.

Lemma 2.76. Let F : J → I be a functor, I a small and locally finite category, I a finite
category, and C a category with finite limits. Then the induced F ∗ : CI → CJ has a right
adjoint F∗. Furthermore, if F is fully faithful, then F∗ is fully faithful.

Proof. We apply Theorem X.3.1 of [Mac88]. Here it is shown that if, for X ∈ CJ , we
define

F∗(X)(i) = lim
←−

(X ◦Q : (i ↓ F )→ J → C)),

then F∗(X) defines a functor I → C and that F∗ is right adjoint of F ∗ (assuming that all
these limits exist). The category (i ↓ F ) is the comma category, whose objects are pairs
(f, j), where f : i→ F (j). An arrow (f, j)→ (f ′, j′) is an arrow g : j → j′ such that the
diagram

i

F (j) F (j′)

f ′f

F (g)

commutes. The functor Q : (i ↓ F ) → J is the “forgetful functor” which maps an object
(f, j) to j, and an arrow g : (f, j) → (f ′, j′) to g : j → j′. Since J is finite and I locally
finite, we see that (i ↓ F ) is finite, hence the above limit exists. We conclude by Theorem
X.3.1 of [Mac88] that F ∗ has a right adjoint F∗.

For the second statement, note that since F∗ is right adjoint to F ∗, it is fully faithful
precisely if F ∗F∗ ' idCJ . If F is fully faithful, then for any j ∈ J , we see that (idF (j), F (j))
is an initial object in (F (j) ↓ F ), hence the limit in the above definition of F∗(X)(F (j))
is canonically isomorphic to X(j). We therefore see that (F ∗F∗(X))(j) = F∗(X)(F (j)) ∼=
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X(j) for all objects j ∈ J . Using the definition of F∗(X) on arrows (see the proof of
[Mac88, Theorem X.3.1]), we see that the isomorphisms are natural and conclude that
F ∗F∗(X) = X. �

Remark 2.77. If, in the above lemma, C has all finite colimits, then the dual statement
holds, namely that F ∗ has a left adjoint. Since most categories that we consider have both
finite limits and colimits, the functor F ∗ usually has both a left and a right adjoint. ♦

Example 2.78. A notable example of the above lemma is the n-coskeleton of a simplicial
set. Given the simplex category ∆, we denote the full subcategory on the linear orders
[0], . . . , [n] by ∆≤n. The inclusion ∆≤n → ∆ induces a functor τn : C∆op → C∆op

≤n for
any category C. This functor is called the n-th truncation functor, since it cuts off all
simplices above dimension n. If C has finite colimits, then the left adjoint of τn is usually
denoted skn and called the (simplicial) n-skeleton. If C has finite limits, then the right
adjoint of τn is denoted coskn and called the n-coskeleton. We call a simplicial object
X ∈ C∆op

n-skeletal if it is in the image of skn, and n-coskeletal if it is in the image of
coskn. We denote by Scofin the full subcategory of sFinSet whose objects are n-coskeletal
for some n. We return to this example in more detail in section 4.1. ♦

The above example inspires the following definition.

Definition 2.79. Assume we are given a small category I, a full subcategory J and a
category C. Denote by τJ : CI → CJ the functor associated to the inclusion J → I.
Denote its right adjoint by coskJ and its left adjoint by skJ , if they exist. Define (CI)cofin
to be the full subcategory of CI whose objects are in the image of coskJ for a finite full
subcategory J of I. ♦

One can verify that Scofin as defined in the above example agrees with (FinSet∆op

)cofin
as defined in the above definition. If we are given X ∈ CI , we will abusively write
coskJ(X) and skJ(X) for coskJ(τJ(X)) and skJ(τJ(X)), respectively.

Lemma 2.80. Let I be a locally finite small category and let C be a category with finite
limits. Then for any X ∈ CI we have

X ∼= lim
J⊆I

coskJ X,

where J ranges over all finite full subcategories of I, and this limit is a projective limit.

Proof. To see that the limit is projective, note that the collection of finite full subcategories
of I is directed. If we are given two finite full subcategories J ′ ⊆ J , then note that
τJ ′ coskJ(X) = τJ ′(X), using that τJ coskJ(X) = τJ(X) and that τJ ′ factors through τJ .
We therefore see that

Hom(τJ ′(X), τJ ′(X)) = Hom(τJ ′ coskJ(X), τJ ′(X)) ∼= Hom(coskJ X, coskJ ′ X),

so the identity morphism τJ ′(X) → τJ ′(X) induces a morphism coskJ X → coskJ ′ X,
which is the unique morphism satisfying that (coskJ X)(C)→ (coskJ ′ X)(C) is the iden-
tity morphism for every C ∈ J ′. These morphisms make {coskJ X}J into a projective
diagram.
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To see that X is indeed the limit of this diagram, note that limits are computed point-
wise in CI , meaning that (limJ coskJ X)(C) = limJ(coskJ X)(C). As (coskJ X)(C) =
X(C) for any full subcategory J containing I, we see that limJ(coskJ X)(C) = X(C) and
conclude that limJ(coskJ X) = X �

Remark 2.81. In the above example, we do not need to consider all finite full subcat-
egories J of I. It is of course enough to consider a (directed) collection of finite full
subcategories whose union is I. For ∆op, we can in particular consider the filtration
∆op
≤0 ⊆ ∆op

≤1 ⊆ ∆op
≤2 ⊆ . . ., and see that

X = lim
n∈N

cosknX. ♦

Theorem 2.82. If I is a locally finite small category and C is small and has finite limits,
then

Pro((CI)cofin) ' Pro(C)I .

Proof. By Proposition 2.50, we need to show that (CI)cofin → Pro(C)I is fully faithful,
that all objects in its image are cocompact in Pro(C)I , and that every object of Pro(C)I

is a cofiltered limit of objects in (CI)cofin.
For the first property, note that ι : C→ Pro(C) is fully faithful, hence CI → Pro(C)I

is fully faithful. Since (CI)cofin is a full subcategory of CI , we conclude that (CI)cofin →
Pro(C)I is fully faithful.

For the second property, let X ∈ (CI)cofin. Then X = coskJ(X ′) for some finite full
subcategory J of I and some X ′ ∈ CJ . We now have

Hom(lim
i
Yi, X) = Hom(lim

i
Yi, coskJ(X ′)) = Hom(lim

i
τJ(Yi), X

′).

Here we use that τJ(limi Yi) = limi τJ(Yi), which follows since limits in functor cate-
gories are computed levelwise. Now note that Pro(C)J ' Pro(CJ) and hence that X ′ is
cocompact in Pro(C)J , which follows from Proposition 2.75. We conclude from this that

Hom(lim
i
τJ(Yi), X

′) = colim
i

Hom(τJ(Yi), X
′) = colim

i
Hom(Yi, X),

hence X is cocompact.
Lastly, we need to show that any X ∈ Pro(C)I is a cofiltered limit of objects in

(CI)cofin. We see by Lemma 2.80 that X = limJ⊆I(coskJ X), with J ranging over all
finite full subcategories of I. Since a cofiltered limit of cofiltered limits is again a cofiltered
limit (see Theorem 2.29), it suffices to show that coskJ X is a cofiltered limit of objects
in (CI)cofin. Since Pro(C)J ' Pro(CJ), we see that τJ(X) is a cofiltered limit limiXi

of objects of CJ . Since coskJ is a right adjoint, it preserves limits, hence coskJ(X) =
limi(coskJ Xi). We conclude that any X ∈ Pro(C)I is a cofiltered limit of objects of
(CI)cofin, and hence that Pro((CI)cofin) ' Pro(C)I . �

Noting that we have the following commutative triangle

Pro((CI)cofin) Pro(C)I

Pro(CI),

'

L
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we conclude the following.

Corollary 2.83. If I is a locally finite small category and C has finite limits, then

Pro(CI)→ Pro(C)I

is essentially surjective. �

By Remark 2.81, we see that we do not need to consider all full subcategories of ∆op

for the above theorem to hold. In particular, we can use the filtration ∆op
≤0 ⊆ ∆op

≤1 ⊆ . . . ⊆
∆op.

Corollary 2.84. The inclusion Scofin → Ŝ induces an equivalence Pro(Scofin) ' Ŝ. �

Remark 2.85. There is of course also a dual statement. Assume that the same hypotheses
hold as in Theorem 2.82, except that C needs to have all finite colimits instead of finite
limits. Then

Ind((CI)skfin) ' Ind(C)I ,

where (CI)skfin is the full subcategory of CI spanned by all objects which are in the
image of skJ for some finite full subcategory J ⊆ I. This for example implies that the
ind-category of the category of simplicial sets with finitely many non-degenerate simplices
is the category of all simplicial sets. ♦



Chapter 3

Profinite groupoids

In this chapter we will study profinite groupoids, which are defined as pro-objects in the
category of finite groupoids. The goal is to put a fibrantly generated model structure on
Ĝ, the category of profinite groupoids. The main source for the material of this chapter
is Horel’s paper [Hor17], which in particular contains the construction of the fibrantly
generated model structure. We will fill in some gaps of Horel’s construction, and correct
a few minor mistakes. The main difference between Horel’s approach and the approach
presented here is that we extensively study weak equivalences between profinite groupoids
before we prove the existence of the fibrantly generated model structure. We also discuss
a different way of looking at profinite groupoids than as pro-objects in the category of
finite groupoids, namely as certain topological groupoids. This viewpoint allows for a
characterization of all connected profinite groupoids.

In the first section of this chapter, we recall some basic notions about groupoids and
define profinite groupoids. In the second section we compare profinite groupoids to topo-
logical groupoids, proving that the category of profinite groupoids is a full subcategory
of the category of topological groupoids. We also provide a simple description of all
connected profinite groupoids. The third section is devoted to the profinite completion
functor for profinite groupoids. We obtain a concrete description of the profinite com-
pletion functor, and show that it preserves products of profinite groupoids with finitely
many objects. In the fourth section, weak equivalences are defined and studied. We show
that there are three equivalent definitions of weak equivalences of profinite groupoids,
and prove that weak equivalences of connected profinite groupoids are in fact homotopy
equivalences. In the last section, we prove the existence of the fibrantly generated model
structure of [Hor17].

The main source for the material in this chapter is [Hor17, §4]. Section 3.2 of this chap-
ter, where we compare profinite groupoids to topological groupoids, is the author’s own
work. The proof in section 3.3 that the profinite completion functor preserves products
of groupoids with finitely many objects, is the author’s own work, as the proof given in
[Hor17] was based on the wrong assumption that the set-theoretical image of a morphism
of groupoids is again a groupoid. Most of the proofs and construction in section 3.4 on
weak equivalences are work by the author himself. The proof of the model structure in
section 3.5 is based on Horel’s proof [Hor17, Theorem 4.12], where the main differences

40
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are due to our different approach to weak equivalences in section 3.4.

3.1 Some basic facts on (profinite) groupoids

We start this section by recalling some basic constructions of groupoids, introducing
notation that we will use along the way. We then recall the construction of the nerve of a
groupoid, which relates groupoids to simplicial sets. We end this section by introducing
profinite groupoids, the main object of study in this chapter.

3.1.1 Basic constructions with groupoids

Recall that a groupoid is a small category in which all morphisms are invertible. We
will call the morphisms in a groupoid arrows to distinguish them from morphisms be-
tween groupoids. Morphisms between groupoids are functors. We denote the category of
groupoids by G. For a groupoid A and two objects x, y of A, we denote the set of arrows
from x to y by A(x, y), and the arrows form x to x by A(x). Note that A(x) is a group.
A groupoid A consists of a set of objects Ob(A), a set of arrows Ar(A), a source map
s, a target map t, an identity or unit map e, an inverse map ι and a multiplication or
composition map m, pictured as

Ar(A)×Ob(A) Ar(A) Ar(A) Ob(A).m

ι

s

t

e

These maps of course satisfy all of the relations that make A into a groupoid, i.e. a
category where every map has an inverse.

In the context of homotopy theory groupoids arise naturally, the most notable example
being the fundamental groupoid of a space or a simplicial set. These can be seen as a
generalization of the fundamental group. We will first consider some important examples
of groupoids.

Example 3.1. Let X be a topological space. Define the fundamental groupoid Π1(X)
with as objects the points of X. The arrows x → y are given by the homotopy classes
of paths from x to y, relative to the beginning and end-point. The composition of two
arrows is given by concatenating paths. One can easily check that this indeed defines a
groupoid. The fundamental groupoid can be seen as a generalization of the fundamental
group. In particular, for any x ∈ X, the group π1(X, x) is the group of automorphisms
of x in Π1(X). ♦

Example 3.2. There is also an analogue of the above construction for simplicial sets X.
The fundamental groupoid Π1(X) has X0 as its set of objects. Given x, y ∈ X0, define
precisely one arrow x→ y for every u ∈ X1 with d1(u) = x and d0(u) = y. This defines a
directed graph with set of edges X0. Let Π′1(X) be the free category on this graph, modulo
the relation u ◦ v = w if there is a z ∈ X2 with d0(z) = u, d1(z) = w and d2(z) = v.
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Define Π1(X) to be the groupoid completion of this category, i.e. the groupoid obtained
by adding inverses for each arrow in Π′1(X).

For a more concrete description, let X−1
1 = {u−1 | u ∈ X1} be the set of formal inverses

of the 1-simplices of X. Define d0(u−1) = d1(u) and d1(u−1) = d0(u), since we view
inverses as paths in the reverse direction. Then an arrow x→ y is an equivalence class of
finite sequences v1 . . . vn of elements of X1tX−1

1 which satisfy d1(v1) = x, d0(vi) = d1(vi+1)
and d0(vn) = y. Here the equivalence relation between such sequences is defined in the
obvious way (one can replace uv by w if there is a z ∈ X2 with d0(z) = u, d1(z) = w
and d2(z) = v, etc.), and composition of arrows is defined by concatenating such finite
sequences. ♦

Example 3.3. Let S be a set with a left action by a group G. Denote by S � G the
translation groupoid. Its set of objects is S, and the arrows s→ t are the g ∈ G for which
g · s = t. For the one element set ∗ and a trivial G-action, obtain a groupoid ∗ �G with
one object whose arrows are precisely those of G. The assignment G 7→ ∗ � G embeds
Grp in G as a full subcategory. We will abbreviate ∗ �G by G∗. ♦

Example 3.4. Given a set S, the discrete groupoid Disc(S) has S as its set of objects,
and the only arrows are the identities for each object. The codiscrete groupoid Codisc(S)
also has S as its set of objects, but instead there is exactly one arrow s → t for every
s, t ∈ S. ♦

Example 3.5. LetX be a set with an equivalence relation R. We then define the groupoid
X � R with set of objects X, and with one arrow x → y precisely if xRy. The discrete
and codiscrete groupoid are two special cases of groupoids of the form X �R, namely the
case where any object is only equivalent to itself, and the case where any two objects are
equivalent. ♦

Example 3.6. We write I[n] for the groupoid Codisc({0, 1, . . . , n}). We will later see
that I[1] serves as a unit interval. Note that there are morphisms δi : I[n− 1]→ I[n] and
σi : I[n+ 1]→ I[n] for 0 ≤ i ≤ n which, on objects, are defined by

δi(m) =

{
m if m < i

m+ 1 m ≥ i
; σi(m) =

{
m if m ≤ i

m+ 1 m− 1 > i.

The groupoids I[n] together with these morphisms define a cosimplicial groupoid I. ♦

Example 3.7. If we are given two groupoids A and B, then the product A×B is simply
the product of A and B as categories. We define BA to be the groupoid whose objects
are morphisms A → B and whose arrows are natural transformations. Since all arrows
in a groupoid are isomorphisms, one sees that a natural transformation between two
morphisms A → B is in fact a natural isomorphism, hence BA is again a groupoid. The
functor A× (−) is left adjoint to (−)A. ♦

Example 3.8. Given a set S and a group G, denote by G[S] the groupoid with S as
its set of objects, and whose arrows s → t are the elements of G, for any s, t ∈ S. The
composition h ◦ g of g : s→ t and h : t→ u is then defined as hg : s→ u. Note that G[S]
is canonically isomorphic to the groupoid Codisc(S)×G∗. ♦
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Denote the functors G → Set sending a groupoid to its underlying set of objects or
arrows by Ob and Ar respectively. Note that the functor Ob is represented by I[0], and
Ar by I[1]. A groupoid is called connected if for any objects x and y, there exists an arrow
x → y, and a connected component is a maximal connected subgroupoid. The functor
π0 : G→ Set maps a groupoid to its set of connected components. More concretely, π0A
is defined as the coequalizer of the source and target map Ar(A) ⇒ Ob(A). Together
with the functors Disc and Codisc, we have some easy-to-prove adjunctions:

π0 a Disc a Ob a Codisc .

If we are given a connected groupoid A with set of objects S and whose automorphism
group at some point x ∈ S is G, then there is a non-canonical isomorphism A ∼= G[S].
Such an isomorphism can be obtained by picking, for each y ∈ S \ {x}, some arrow
αy : x→ y, and mapping an arrow h : y → y′ in A to α−1

y′ hαy : y → y′ in G[S].

Given a groupoid A, we will work with the groupoid AI[1] when defining the notion of
homotopy for morphisms of groupoids. We can view objects of AI[1] as arrows in A, and an
arrow k between two arrows α, β of A consists of two arrows k0, k1 such that k1α = βk0.
Since k1 is uniquely determined as βk0α

−1, we can simply view an arrow k between two
arrows α, β of A as an arrow between the sources s(α) and s(β). Denote by ev0, ev1 the
maps which send an arrow α of A to its source s(α) or target t(α) respectively. An arrow
k in AI[1] between two objects α, β can be seen as an arrow k : s(α)→ s(β) in A, and we
define ev0(k) = k, ev1(k) = βkα−1.

The category of groupoids is complete and cocomplete. We have the following propo-
sition on the computation of limits in G, which reduces it to a computation in Set. The
proof is left to the reader.

Proposition 3.9. Let {Gi} be a diagram of groupoids. Then limiGi has limi Ob(Gi) as
its set of objects, and limi Ar(Gi) as its set of arrows. The source, target, inverse, identity
and composition maps are induced by the corresponding maps in Gi. �

3.1.2 The nerve of a groupoid

One can view groupoids as spaces which only contain information in dimensions 0 and
1. This idea is made precise by the construction of the nerve of a groupoid. The nerve
of a groupoid will be a Kan complex X in which every horn Λn

k → X (with n > 1) has
a unique filler. This uniqueness implies, in a sense, that X contains no information in
dimensions greater than 1. In particular, such a Kan complex is 2-coskeletal, meaning
that any map ∂∆n → X extends uniquely to a map ∆n → X when n > 2. For the
definition of the nerve of a groupoid, recall the construction of the cosimplicial groupoid
I from Example 3.6.

Definition 3.10. Define the nerve functor B : G → S as follows. For any groupoid A,
the nerve BA is given by

(BA)n = HomG(I[n], A), di = δ∗i and si = σ∗i



44 CHAPTER 3. PROFINITE GROUPOIDS

where δi : I[n− 1]→ I[n] and σi : I[n + 1]→ I[n] are as in Example 3.6. If we are given
a morphism of groupoids f : A → C, define Bf : BA → BC by (Bf)n(g) = fg for any
g ∈ (BA)n = HomG(I[n], A) and any n ≥ 0. ♦

Note that a morphism of groupoids φ : I[n]→ A is precisely a sequence composible of
arrows

x0 x1 · · · xn−1 xn.
α0

1 α1
2 αn−1

n

In particular, we can view (BA)n as ArA ×ObA . . . ×ObA ArA. We will write this as
(α0

1, . . . , α
n−1
n ) in A. Here αii+1 is the image of the unique arrow i → i + 1 in I[n] under

φ. The face and degeneracy maps are then given by

d0(α0
1, . . . , α

n−1
n ) = (α1

2, . . . , α
n−1
n )

dn(α0
1, . . . , α

n−1
n ) = (α0

1, . . . , α
n−2
n−1)

di(α
0
1, . . . , α

n−1
n ) = (α0

1, . . . , α
i
i+1α

i−1
i , . . . , αn−1

n ) for 0 < i < n

si(α
0
1, . . . , α

n−1
n ) = (α0

1, . . . , α
i−1
i , idxi , α

i
i+1, . . . , α

n−1
n ).

Remark 3.11. One can define the nerve of any category C. If one replaces I[n] by the
category with one unique arrow i → j for every i ≤ j, and no arrow i → j if j < i,
then one obtains a cosimplicial object in Cat, the category of small categories. Using this
cosimplicial object, one can generalize the above definition to a functor Cat → S which
agrees with B : G→ S on groupoids. ♦

To see that any horn Λn
k → BA with n > 1 has a unique filler, first note that this is

clear for n = 2 using that any morphism can be inverted. Now assume we are given an n-
horn f : Λn

k → BA with n > 2. Denote by [i, j] with i ≤ j the 2-simplex of Λn
k connecting

the i-th and j-th vertex. Since k > 2, this 2-simplex exists for all 0 ≤ i ≤ j ≤ n. Define
αii+1 = f([i, i + 1]). Then α := (α0

1, . . . , α
n−1
n ) is an n-simplex of BA which fills the horn

f : Λn
k → BA. Uniqueness follows trivially from this. To see that the faces of α indeed

agree with those of this horn, one can use (by induction) that (n− 1)-horns have unique
fillers.

If X is a simplicial set where horns have unique fillers, then it must be 2-coskeletal.
To see this, let a simplicial map f : ∂∆n → X with n > 2 be given. If we now remove the
face d0(∆n), then we obtain a horn, which has a unique filler f̃ : ∆n → X. To see that f̃
agrees with f on d0(∆n), remove the face d0d0(∆n) and use that this horn has a unique
filler, which must be equal to both f(d0(∆n)) and f̃(d0(∆n)).

One can show that Π1(BA) = A for any groupoid A, and that there is a natural
bijection HomG(Π1X,A)→ HomS(X,BA). We therefore have the following theorem.

Theorem 3.12. The functor B : G→ S is full and faithful and is right adjoint to Π1. �

3.1.3 Profinite groupoids

We say that a groupoid A is finite if Ar(A) is finite, and denote the category of finite
groupoids by FinG. As limits in FinG can be computed by considering the sets of arrows
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and computing the corresponding limit in Set, we see that a finite limit of finite groupoids
is again finite. We denote the category Pro(FinG) of profinite groupoids by Ĝ. Most of
the constructions from the first part of this section also work for profinite groupoids; in
particular one can define the profinite groupoids G∗, Disc(S), Codisc(S) and G[S] for any
profinite group G and profinite set S. For example, if S = {Si}i∈I and G = {Gj}j∈J , then
one can define G[S] = lim(i,j)∈I×J Gj[Si]. One can also define the translation groupoid
S � G for a profinite G-set S, by noting that any profinite G-set is a projective limit of
finite G-sets, and that the action of a profinite group G on a finite set always factors
through a finite quotient of G.

For a profinite groupoid A = {Ai}i∈I , we define the profinite sets, or Stone spaces,
Ob(A) and Ar(A) by {Ob(Ai)}i∈i and {Ar(Ai)}i∈i, respectively. The source, target, unit,
inverse and multiplication map of the groupoids Ai induce source, target, unit, inverse
and multiplication maps between Ar(A)×Ob(A) Ar(A), Ar(A) and Ob(A).

All functors in the sequence of adjunctions π0 a Disc a Ob a Codisc restrict to
adjunctions between FinG and FinSet. By Corollary 2.32, we obtain an induced sequence
of adjunctions π0 a Disc a Ob a Codisc between Ĝ and Ŝet. The adjunction Π1 a B can
similarly be extended to an adjunction between profinite spaces and profinite groupoids.
This will be done in section 4.2 of chapter 4, once we have developed some theory on
profinite spaces.

We will shortly discuss connectedness of profinite groupoids. Note that there are two
ways of defining connectedness. One could define a profinite groupoid A to be connected
if π0(A) = {∗}, or if Ob(A) is nonempty and for every x, y ∈ Ob(A) there exists an
α ∈ Ar(A) with source x and target y. Note that for the second definition, we identify
the profinite sets Ob(A) and Ar(A) with Stone spaces (or with their limit in Set), so that
we are able to talk about elements of Ob(A) and Ar(A). Luckily, the two above-mentioned
notions of connectedness turn out to be equivalent.

Proposition 3.13. Let x, y ∈ Ob(A). Then Ob(A)→ π0(X) maps x and y to the same
connected component precisely if there is an α ∈ Ar(A) with source x and target y. In
particular, A is connected precisely if Ob(A) is nonempty and for any x, y ∈ Ob(A), there
exists an α ∈ Ar(A) with source x and target y.

Proof. Let A = {Ai}i∈I be a profinite groupoid, and let (xi)i, (yi)i ∈ limi Ob(Ai) = Ob(A)
be given. Let (αi) ∈ limi Ar(Ai) = Ar(A) be an arrow with source (xi)i and target (yi)i.
Then s(αi) = xi and t(αi) = yi by definition, so xi and yi get mapped to the same
object in π0Ai for every i, hence they get mapped to the same connected component by
Ob(A)→ π0A = limi π0Ai.

For the converse, assume that (xi)i and (yi)i get mapped to the same connected com-
ponent by A → π0A. Then xi and yi get mapped to the same connected component
by Ai → π0Ai for every i. In particular, the set Ai(xi, yi) is nonempty for every i.
This set is also finite, and we see that for j ≤ i, the map Aj → Ai restricts to a
map Aj(xj, yj) → Ai(xi, yi). Therefore {Ai(xi, yi)}i∈I is a projective diagram of finite
nonempty sets. By Theorem 2.43, the limit limiAi(xi, yi) = A((xi)i, (yi)i) is nonempty.
Any (αi)i ∈ limiAi(xi, yi) has source (xi)i and target (yi)i. �

Recall that for profinite sets and profinite groups, we can replace a pro-object by one
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where all maps are surjective. For profinite groupoids, this is not possible since the set-
theoretic image of a morphism f : A → B between groupoids is not always a groupoid.
By the set-theoretic image, we mean f(Ar(A)) ⊆ Ar(B). However, there is still a good
notion of image for maps between groupoids. Namely, we define im(f), the image of f , to
be the smallest subgroupoid of B containing all arrows of the form f(α) with α ∈ Ar(A).
One can show that such a groupoid indeed exists, and that im(f) consists precisely of
those arrows β of B that can be written as a composition f(α1)f(α2) . . . f(αn) for certain
α1, . . . , αn ∈ Ar(A). Note that although f(α1), . . . , f(αn) can be composed in B, this
does not have to hold for α1, . . . , αn in A.

One can also show that f is epi if and only if im(f) = B. It is easy to see that
im(f) = B implies that f is epi; we leave this to reader to verify. The proof that
im(f) = B holds if f is epi is more involved, and somewhat similar to the proof that
epimorphisms of groups are surjective. As we do not ever need this result, we will not
prove it here.

Using the notion of image defined above, we can prove the following proposition. Note
that the proof uses Corollary 3.19 from the next section. However, the author found it
more natural to state it in this section.

Proposition 3.14. Let A be a profinite groupoid. Then there exists a projective diagram
{Ai} with Ai finite groupoids and with A ∼= {Ai}, such that for each j ≤ i, the map
Aj → Ai is epi, and such that the projection A→ Ai is epi for every i.

Proof. Let A = {A′i}i∈I be a profinite groupoid. Let pi : A → A′i be the projections, and
denote the maps A′i → A′j for i ≤ j by pij. Define Ai = im(pi) ⊆ A′i, where im(pi) denotes

the smallest subgroupoid of A′i containing pi(Ar(A)). Note that pji (im(pj)) ⊆ im(pi),
i.e. pji (Aj) ⊆ Ai, so the maps pji : A′j → A′i restrict to maps Aj → Ai. In particu-
lar {Ai}i∈I is a projective diagram of finite groupoids. The inclusions Ai ↪→ A′i induce
a map of profinite groupoids {Ai}i∈I → {A′i}i∈I . The corresponding map on arrows
limi Ar(Ai) → limi Ar(A′i) = Ar(A) is clearly injective. It is also surjective. Indeed,
for (ai)i ∈ limi Ar(A′i) = Ar(A), we see that aj = pj((ai)i) ∈ pj(Ar(A)) ⊆ A′j for ev-
ery j, hence (ai)i ∈ limi Ar(Ai). Since a continuous bijective map of Stone spaces is a
homeomorphism, we conclude by Corollary 3.19 that {Ai} ∼= A.

Since im(pj) = Aj, we see that pj : A → Aj is epi. Since pi = pjipj, we conclude that
pji : Aj → Ai is epi as well. �

3.2 Profinite groupoids as topological groupoids

Recall from Example 2.16 that profinite sets can be seen as certain topological spaces,

and that similarly Ĝrp is a full subcategory of the category of topological groups. More

specifically, Ŝet ' Stone and Ĝrp ' StoneGrp, where StoneGrp is the category of
group objects in the category of Stone spaces. In this section we will show that Ĝ similarly
is a full subcategory of the category of groupoids internal to the category of Stone spaces,
which in turn is a full subcategory of the category of topological groupoids TopG. We
start by defining topological groupoids.
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Recall that a groupoid A consists of two sets Ob(A) and Ar(A) and several maps

Ar(A)×Ob(A) Ar(A) Ar(A) Ob(A)m

ι

s

t

e (3.1)

which satisfy certain relations that can be expressed through commutative diagrams. Here
m is the composition or multiplication map, ι maps an arrow to its inverse, s and t map
an arrow to its source and target respectively, and e maps an object to its identity arrow.
By Ar(A)×Ob(A) Ar(A) we mean the pullback

Ar(A)×Ob(A) Ar(A) Ar(A)

Ar(A) Ob(A).

s

t

This construction can be generalized to any category C having pullbacks, in particular to
Top and Stone.

Definition 3.15. A topological groupoid consists of two topological spaces Ar(A) and
Ob(A) and continuous maps m, ι, s, e and t as in (3.1). These morphisms must satisfy the
usual relations defining a groupoid. A morphism between two topological groupoids A
and B consists of continuous maps Ar(A)→ Ar(B) and Ob(A)→ Ob(B) which commute
with all the maps of (3.1). A Stone groupoid is a topological groupoid A such that Ob(A)
and Ar(A) are Stone spaces. The category of Stone groupoids StoneG is defined as a
full subcategory of the category of topological groupoids TopG. ♦

Note that pullbacks of Stone spaces (in Top) are again Stone spaces. In particular, the
pullback Ar(A)×Ob(A) Ar(A) is the same when computed in Stone as when computed in
Top, so the above definition of a Stone groupoid indeed makes sense. Since e is a section
of s, we can regard Ob(A) as a subspace of Ar(A). Many of the constructions of section
3.1 also exists for topological groupoids and Stone groupoids. When speaking about a
connected (topological or Stone) groupoid, we will mean that the underlying groupoid
itself is connected. This has nothing to do with the connectedness of the spaces Ob(A)
and Ar(A).

Example 3.16. Let Π1S
1 be the fundamental groupoid of the topological space S1.

We can give Π1S
1 the structure of a topological groupoid. Assume we are given [γ] ∈

Ar(Π1S
1), represented by γ : I → S1. Let U0, U1 ⊆ S1 be open with γ(0) ∈ U0 and

γ(1) ∈ U1. Define Vγ(U0, U1) ⊆ Ar(A) by

Vγ(U0, U1) = {[α0 · γ · α1] | αi : I → Ui, α0(1) = γ(0), α1(0) = γ1}

The subsets of the form Vγ(U0, U1) generate a topology on Ar(Π1S
1), giving Π1S

1 the
structure of a topological groupoid. For any x ∈ S1, the subspace of Ar(Π1S

1) of paths
starting at x is the universal cover of S1. ♦



48 CHAPTER 3. PROFINITE GROUPOIDS

If we are given a profinite groupoid A = {Ai}i∈I , then we can associate a topological
groupoid TA to it, by viewing Ai as topological groupoids with a discrete set of arrows,
and letting TA = limiAi. In this way we obtain a functor from Ĝ to StoneG. We denote
this functor Ĝ → StoneG by T . If we are given a profinite groupoid A = {Ai}, then
the associated topological groupoid TA satisfies Ar(TA) = limi Ar(Ai) and Ob(TA) =
limi Ob(Ai). In fact, any limit in TopG is computed by Ar(limiAi) = limi Ar(Ai) and

Ob(limiAi) = limi Ob(Ai). As in the proof that Ŝet ' Stone, Theorem 2.52, we will

use lemma Proposition 2.50 to show that Ĝ is the full subcategory of StoneG of those
Stone groupoids that can be written as a cofiltered limit of finite discrete groupoids. It
is immediately apparent that this subcategory has all cofiltered limits, that FinG →
StoneG is fully faithful, and that any object is a cofiltered limit of objects in the image
of FinG→ StoneG. We therefore only have to show that finite groupoids are cocompact
in this full subcategory.

Proposition 3.17. The category Ĝ is equivalent to a full subcategory of StoneG. Both

the inclusions Ĝ→ StoneG and Ĝ→ TopG have a left adjoint (̂·).

Proof. Let D ⊆ StoneG denote the full subcategory of Stone groupoids that are a cofil-
tered limit of finite groupoids. As stated above, we only have to check the cocompactness
assumption of Proposition 2.50. Since any object in D is a cofiltered limit of finite discrete
groupoids, we only have to check cocompactness with respect to projective limits of finite
discrete groupoids.

Let {Ai} be a projective diagram of finite groupoids, and let B be a finite groupoid.
Denote A = limiAi, write pi for the projection map A → Ai, and denote the maps
Ai → Aj for i ≤ j by pij. We need to show that the canonical map colimi Hom(Ai, B)→
Hom(limiAi, B) is a bijection. For injectivity, note that a morphism f : limiAi → B is
fully determined by the induced map of profinite sets limi Ar(Ai) → Ar(B). Injectivity
therefore follows from the fact that the canonical map colimi HomStone(Ar(Ai),Ar(B))→
HomStone(limi Ar(Ai),Ar(B)) is injective (see Theorem 2.52).

For surjectivity, let f : limiAi → B be given, again noting that it is fully determined by
f ′ : limi Ar(Ai)→ Ar(B). By Theorem 2.52, there is some i and some map fi : Ar(Ai)→
Ar(B) such that f ′ = fipi. This map fi does not in general correspond to a morphism
of groupoids. To obtain a morphism of groupoids, note that Ar(A) ×Ob(A) Ar(A) =
limi(Ar(Ai)×Ob(Ai) Ar(Ai)). Let qi : Ar(A)×Ob(A) Ar(A)→ Ar(Ai)×Ob(Ai) Ar(Ai) be the
projection and qij the map Ar(Ai)×Ob(Ai)Ar(Ai)→ Ar(Aj)×Ob(Aj)Ar(Aj) for i ≤ j. There
is a k ≤ i such that im(qi) = im(qki ) by Proposition 2.47. The map f ′pki : Ar(Ak)→ Ar(B)
induces a map of groupoids fk : Ak → B satisfying fkpk = f ; we leave it to the reader to
verify this.

The existence of the left adjoints follows directly from Theorem 2.62, which asserts
that there exist profinite completion functors StoneG→ Ĝ and TopG→ Ĝ. �

Remark 3.18. The above proof could also have been given in an easier, but less direct,
way. Namely, note that a Stone groupoid is in particular a diagram F : I → Stone ' Ŝet
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where I is given by

A2 A1 A0,
m

ι

s

t

e

where the arrows satisfy the usual relations of a groupoid. Such a diagram F is a Stone
groupoid precisely if F (A2) = F (A1) ×F (A0) F (A1). In particular, we see that StoneG
is a full subcategory of StoneI . We already know that StoneI ' Pro(FinSetI), since
Stone ' Pro(FinSet), I is finite and FinSet is essentially small and has finite limits.

If we now view FinG as a full subcategory of FinSetI , then we can view Ĝ as a full
subcategory of Pro(FinSetI). By inspecting the equivalence Pro(FinSetI) → StoneI ,
we see that this full subcategory gets mapped to a full subcategory of StoneG ⊆ StoneI ,
which also proves the above proposition. ♦

Corollary 3.19. Let f : A→ B be a morphism of profinite groupoids such that the induced
map Ar(A)→ Ar(B) is a bijection. Then f is an isomorphism.

Proof. As Ĝ is a full subcategory of StoneG, we can view f as a morphism between Stone
groupoids. Then Ar(A)→ Ar(B) is a continuous bijection, hence a homeomorphism. The
inverse map Ar(B) → Ar(A) defines a map of groupoids g : B → A, and is continuous,
hence it is a morphism of Stone groupoids. We conclude that f has an inverse g, hence
that it is an isomorphism. �

3.2.1 Characterizing profinite groupoids among Stone groupoids

When seeing Proposition 3.17, one might wonder which Stone groupoids are a cofiltered
limit of finite ones. The examples of profinite groups, profinite G-sets and profinite G-
modules from section 2.2 might suggest that the fully faithful functor Ĝ→ StoneG is, in
fact, an equivalence of categories. This is, however, not the case, as Example 3.20 below
will illustrate. The author has not been able to give a precise characterization of profinite
groupoids among Stone groupoids, but some partial results are presented here.

In section 3.1, we defined π0 : Ĝ → Ŝet by extending the usual π0 : FinG → FinSet
to a functor that preserves cofiltered limits. This means that, for a profinite groupoid
A = {Ai}i∈I , π0A is defined as {π0Ai}i∈I . According to Proposition 3.13, for any two
objects x, y ∈ Ob(A), there is an arrow x→ y in Ar(A) precisely if x and y are mapped
to the same element of π0A, viewing Ob(A), Ar(A) and π0A as Stone spaces. As a
surjective map between Stone spaces is always a quotient map, we see that π0A is a
quotient of Ob(A). Denote the equivalence relation corresponding to this quotient by ∼,
so ∼ is defined by x ∼ y if and only if there exists an α ∈ Ar(A) with source x and target
y. Note that this implies that the quotient π0(A) = Ob(A)/ ∼, when computed in Top,
is always a Stone space.

For a Stone groupoid B, we can define the same equivalence relation, meaning that
for x, y ∈ Ob(B), we have x ∼ y if and only if there exists an arrow x → y. Denote the
Ob(B)/ ∼, computed in Top, by πT

0 (B). If B is a profinite groupoid, then by what we
just discussed, πT

0 (B) is a Stone space. Hence a necessary condition for B to be a profinite
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groupoid, is that πT
0 (B) is a Stone space. However, as the next example illustrates, this

is not always the case.

Example 3.20. Let C = {0, 1}N be the space of infinite sequences of 0’s and 1’s, with
the product topology. As this is a product of finite discrete spaces, it is a Stone space.
Recall that Cantor constructed an embedding C → [0, 1], where [0, 1] is the unit interval,
by mapping a sequence (an)n∈N to the infinite sum

∞∑
n=0

2an
3n+1

.

The image of this embedding, usually called the Cantor set, can also be constructed by
removing the middle 1/3rd of the unit interval, then removing the middle 1/3rd of the
remaining two (closed) intervals, and continuing this procedure indefinitely. Points in the
Cantor set can be described by stating in which of the two intervals (left or right) the
point lies, at every stage of this construction. If we write 0 for left, and right to 1, then
the above embedding C → [0, 1] precisely maps a sequence to the point in the Cantor set
that it describes.

We can consider a variation of this map, which is surjective instead of injective. Define
f : C → [0, 1] by

f((an)n∈N) =
∞∑
n=0

2an
2n+1

.

If we are given a point r ∈ [0, 1], then it is either in the left half [0, 1/2] or right half
[1/2, 1] of [0, 1] (possibly in both). It is then, again, either in the left half or right half
of this interval, and so on. This way, we can associate a (not unique) sequence (an)n∈N
of 0’s and 1’s to r, where 0 means left and 1 means right. Then f((an)n∈N) = r, so f is
surjective. Define R ⊆ C × C by

R = {(x, y) ∈ C × C | f(x) = f(y)}.

Then R is closed in C, hence a Stone space, and C/R ∼= [0, 1] in Top, as a surjection
between compact Hausdorff spaces is always a quotient map.

Define a Stone groupoidA by Ob(A) = C and Ar(A) = R. The projections p1, p2 : R→
C are the source and target map. This defines a Stone groupoid in the obvious way: for
two arrows (z, w), (x, y) ∈ Ar(A) = R, their composition (z, w)(x, y) exists if and only if
z = y, and in this case it is given by (x,w). We see that πT

0 (A) ∼= [0, 1], so A is not a
profinite groupoid. ♦

We call a Stone groupoid A connected if πT
0 (A) = {∗}. We will show that any con-

nected Stone groupoid is a projective limit of finite ones. This means that the functor
T : Ĝ→ StoneG becomes an equivalence when we restrict connected profinite groupoids
and connected Stone groupoids. We will in fact prove something stronger, namely that
any connected Stone groupoid is of the form G[S], where G is a profinite group, and S a
profinite set.
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Proposition 3.21. If A is a connected Stone groupoid, then A is of the form G[S] for
a profinite group G and a profinite set S. In particular, A is a projective limit of finite
groupoids.

Proof. Pick a ∈ Ob(A). Then t−1(a) is a closed subset of Ar(A), consisting precisely of all
arrows whose target is a. Define G := A(a). Then A(a) acts on t−1(a) by defining α · γ =
αγ for any α ∈ A(a) and γ ∈ t−1(a). This action is continuous since the multiplication
of the Stone groupoid is continuous, and it is clearly a free action. We therefore obtain
an isomorphism φ : t−1(a) → (t−1(a)/G) × G by Proposition 2.61. Note that the map
s : t−1(a)→ Ob(A) is a quotient map, and that s(β) = s(γ) if and only if β = αγ for some
α ∈ G. We therefore obtain a canonical isomorphism t−1(a)/G ∼= Ob(A). By translating
if necessary, we can assume without loss of generality that φ(ida) = (a, ida) ∈ Ob(A)×A.
Define the continuous map q : Ob(A)→ Ar(A) by q(a′) = φ−1(a′, ida). We then see that
t(q(a′)) = a and s(q(a′)) = a′ for every a′ ∈ Ob(A).

Now define a map of Stone groupoids f : A → G[Ob(A)] by f = idOb(A) on objects,
and by f(α) = q(t(α))αq(s(α))−1. This map is continuous since the maps q, s and t are
continuous, and since the inverse map and multiplication map of A are continuous. It
is easily verified that f is indeed a map of groupoids, and that it is in fact a bijection
on arrows. Since continuous bijections between Stone spaces are homeomorphisms, we
conclude that f is an isomorphism of Stone groupoids.

To see that A is a projective limit of finite groupoids, let G = limi∈I Gi and Ob(A) =
limj∈J Sj, with Gi finite groups and Sj finite sets. Then

A ∼= G[Ob(A)] ∼= lim
(i,j)∈I×J

Gi[Sj]. �

In particular, we have the following useful corollary. However, note that the isomor-
phism A ∼= G[S] is not canonical.

Corollary 3.22. Let A be a connected profinite groupoid. Then A ∼= G[S] for some
profinite group G and profinite set S. �

We have the following (partial) characterization of profinite groupoids among Stone
groupoids.

Corollary 3.23. Let A be a Stone groupoid. If πT
0 (A) is finite, then A is a profinite

groupoid. If A is a profinite groupoid, then πT
0 (A) must be a Stone space. �

3.3 Profinite completion

In this section we show that the profinite completion functor for groupoids can be de-
scribed in terms of the profinite completion functor for groups and sets and the coproduct
of profinite groupoids. Unfortunately, the coproduct of infinitely many profinite groupoids
is not easy to describe, but we do obtain a fairly concrete description of the profinite com-
pletion of a groupoid with finitely many connected components. We then deduce from
this that the profinite completion functor behaves well with respect to products if we work
with groupoids that have a finite set of objects.

The following proposition is a direct consequence of Theorem 2.62.
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Proposition 3.24. There exists a profinite completion functor (̂·) : G → Ĝ, left adjoint

to the functor | · | : Ĝ → G that sends a profinite groupoid {Ai}i∈I to its limit limiAi in
G. �

Recall that the profinite completion functor of sets does not preserve products, yet the
profinite completion functor of groups does preserve products. One easily sees that the
profinite completion of the groupoid Codisc(S) is Codisc(Ŝ) for any set S, in particular
for N× N. However, we see that

Codisc(N̂× N) 6∼= Codisc(N̂× N̂) ∼= ̂Codisc(N)× ̂Codisc(N),

so profinite completion of groupoids in general does not preserve products. However, it
does preserve products of groupoids with finitely many objects, as we will prove below.

Recall that, for a morphism f : A → B of groupoids, we defined im(f) to be the
smallest subgroupoid of B containing all arrows of the form f(α) with α ∈ Ar(A). If
B = im(f), then f is epi. We in particular see that any morphism of groupoids f : A→ B
factors as an epi followed by a mono A → im(f) → B. If B is finite, then im(f) is also
finite. By Remark 2.63, we see the following.

Proposition 3.25. Let A be a groupoid. Define I to be the category with objects (B, f),
where B is a finite groupoid and f : A→ B is epi, and whose arrows (B, f)→ (B′, f ′) are
morphisms g : B → B′ such that gf = f ′. Then I is cofiltered (in fact it is a codirected
poset) and the forgetful functor I → FinG defines a pro-object canonically isomorphic to

Â. �

Remark 3.26. One can in fact show that any morphism of groupoids A → B with B
finite, factors as A → C → B with A → C surjective on arrows, and C finite. As a
corollary, we only need to consider morphisms A→ B that are surjective on arrows when
constructing Â. As we will not need this stronger version of the above proposition, we
leave the proof of this to the reader. ♦

Lemma 3.27. Let G be a group and S a finite set. Then Ĝ[S] ∼= Ĝ[S].

Proof. We will show that any morphism G[S]→ A with A finite, factors through the map
q : G[S]→ G/N [S] for some normal subgroup N of G with G/N finite, where q is induced

by the quotient map G → G/N . By Remark 2.63, this implies Â = {G/N [S]}N , where
N ranges over all normal subgroups of G with G/N finite, which is by definition equal to

Ĝ[S].
To see that this indeed holds, let f : G[S] → A with A finite be given. Since we only

need to consider epimorphisms by the above proposition, we see that A must be connected.
Without loss of generality A = G′[S ′] for some finite group G′ and some finite set S ′. Pick
x ∈ S. Let fx the homomorphism G→ G′ induced by f at x, and let N = ker(fx). Note
that N does not depend on the choice of x ∈ S. Now f factors through G→ G/N [S]. To

see this, define f̃ : G/N [S]→ G′[S ′] by mapping the arrow [g] : y → z, for some y, z ∈ S,
to the arrow f(g) from f(y) to f(z), where we see g as an arrow y → z in G[S]. It is left
to the reader to verify that this is well-defined. �
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Remark 3.28. By slightly modifying the above proof, one can in fact show that for any

group G and any set S one has Ĝ[S] ∼= Ĝ[Ŝ]. Noting that any groupoid A is of the form⊔
iGi[Si] for certain groups Gi and sets Si, we see that Â ∼=

⊔
i Ĝi[Ŝi]. Here we use that

profinite completion is left adjoint, hence that it preserves coproducts. However, if the
coproduct

⊔
i Ĝi[Ŝi] is infinite, then it is not computed by taking “disjoint unions”, as

the result will not be a profinite groupoid (infinite disjoint unions of compact spaces are
not compact). This coproduct can be computed by first computing it in the category
of topological groupoids TopG, where it is just a disjoint union, and then applying the
profinite completion functor TopG→ Ĝ, which exists by Theorem 2.62. ♦

Proposition 3.29. Let A and B be groupoids with finitely many objects. Then Â×B ∼=
Â× B̂.

Proof. Pick isomorphisms A ∼= tiGi[Si] and B ∼= tjHj[Tj]. Then A × B ∼= ti,jGi ×
Hj[Si × Sj]. Since profinite completion is left adjoint, it preserves coproducts. Since
profinite completion of groups preserves products, we see that

Â×B ∼= ti,j(Ĝi × Ĥj)[Si × Sj] ∼= tiĜi[Si]× tjĜj[Sj] ∼= Â× B̂. �

3.4 Weak equivalences of profinite groupoids

In the next section we will construct a model structure on Ĝ which in some sense corre-
sponds to the canonical model structure on G. This section is devoted to defining and
studying the weak equivalences in Ĝ. We will look at their behaviour with respect to
cofiltered limits, show that they are precisely the fully faithful and essentially surjective
morphisms of profinite groupoids, that they have a level representation by weak equiva-
lences, and we will show that they agree with homotopy equivalences between connected
profinite groupoids.

First recall the well-known canonical model structure on G.

Proposition 3.30. There exists a model structure on G such that

(i) a morphism f : A → B is a weak equivalence precisely if it is an equivalence in the
categorical sense, i.e. f is fully faithful and essentially surjective,

(ii) a morphism f : A→ B is a cofibration if it is injective on objects, and

(iii) a morphism f : A→ B is a fibration if it has the right lifting property with respect to
the inclusion δ1 : I[0]→ I[1], meaning that for any commutative square of the form

I[0] A

I[1] B,

δ1 f

there exists a diagonal (the dotted arrow) making both triangles commute.
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In this model structure all objects are fibrant and cofibrant. �

Note that a natural isomorphism between morphisms of groupoids A→ B can be seen
as morphism H : A→ BI[1] such that ev0H = f and ev1H = g. This is a straightforward
check and left to the reader. We will call f and g homotopic if such a morphism H exists,
and we call f a homotopy equivalence if an inverse up to homotopy exists. Denote by πG
the category whose objects are those of G, and whose morphisms are homotopy classes of
morphisms in G. The homotopy category Ho(G) corresponding to the canonical model
structure on G is equivalent to πG. The reason for this is that every object of G is fibrant
and cofibrant and that BI[1] is a path object for every groupoid B.

3.4.1 The definition of a weak equivalence

For a profinite groupoid A = {Ai}, note that A× I[1] = {Ai × I[1]} defines the product

with I[1] in Ĝ. If we define AI[1] = {AI[1]
i }, then (−) × I[1] is left adjoint to (−)I[1].

The evaluation morphisms ev0, ev1 : A
I[1]
i → Ai induce morphisms ev0, ev1 : AI[1] → A.

The naive approach to doing homotopy theory in Ĝ would be to define two morphisms
of profinite groupoids f, g : A → B to be homotopic if there exists some H : A → BI[1]

with ev0H = f and ev1H = g, and define the homotopy category πĜ by identifying
homotopic maps.

Definition 3.31. We say that two morphisms f, g : A→ B in G (resp. Ĝ) are homotopic
if there exists some H : A→ BI[1] with ev0H = f and ev1H = g. This defines a congru-
ence on the category G (resp. Ĝ), and we denote the category obtained by identifying

all homotopic morphisms by πG (resp. πĜ). ♦

Note that, in the above definition, HomπG(A,B) is by definition the coequalizer of
the pair (ev0)∗, (ev1)∗ : HomG(A,BI[1]) → HomG(A,B), and similar for HomπĜ(A,B).

However, when defining the homotopy category of Ĝ in this way, we run into some
problems. For example, if we are given two profinite groupoids {Ai}, {Bi} indexed by
the same set, and a levelwise weak equivalence fi : Ai → Bi (i.e. a natural transformation
consisting of weak equivalences), then the induced morphism f : {Ai} → {Bi} will not
always be a homotopy equivalence of profinite groupoids. An example of such a morphism
will be given in Example 3.50, in the last part of this section.

We therefore need a “weaker” notion of weak equivalence. Using the Yoneda lemma,
we see that a morphism f : A→ B of groupoids (resp. profinite groupoids) is a homotopy
equivalence if and only if the induced map f ∗ : HomπG(B,C) → HomπG(A,C) (resp.
f ∗ : HomπĜ(B,C)→ HomπĜ(A,C)) is an isomorphism for every groupoid (resp. profinite
groupoid) C. The following notion of weak equivalence turns out to be the right one in

Ĝ.

Definition 3.32. Let f : A→ B be a morphism in Ĝ. We say that f is a weak equivalence
if for every finite groupoid C, the induced map

f ∗ : HomπĜ(B,C)→ HomπĜ(A,C)

is a bijection. ♦
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To check if f : A → B is a weak equivalence, we only need to check the cases C =
Disc(S) and C = G∗ for finite sets S and finite groups G.

Proposition 3.33. Let f : A→ B be a morphism of profinite groupoids, and assume that
for any finite set S and any finite group G, the maps

f ∗ : HomπĜ(B,DiscS)→ HomπĜ(A,DiscS)

f ∗ : HomπĜ(B,G∗)→ HomπĜ(A,G∗)

are bijections. Then f is a weak equivalence.

Proof. We call f a C-equivalence if the map

f ∗ : HomπĜ(B,C)→ HomπĜ(A,C)

is an isomorphism. We want to show that f is a C-equivalence for all finite groupoids C,
so let C be any finite groupoid. Then C is homotopy equivalent to a finite groupoid of the
form G1 t . . . t Gn where G1, . . . , Gn are finite groupoids with one object. A homotopy
equivalence between finite groupoids is an isomorphism in πĜ, so f is a C-equivalence
if and only if f is a G1 t . . . t Gn-equivalence. Now note that HomπĜ(D,E × F ) ∼=
HomπĜ(D,E)×HomπĜ(D,F ), for all (pro)finite groupoids D,E and F , so f is an E×F -
equivalence if F is both an E-equivalence and an F -equivalence. In particular, f is by
assumption a G1× . . .×Gn×{1, . . . , n}-equivalence, where {1, . . . , n} denotes the discrete
groupoid with n objects. We see that G1t. . .tGn is a retract of G1×. . .×Gn×{1, . . . , n},
where the inclusion is given by mapping g ∈ Gi to (0, . . . , 0, g, 0 . . . , 0, i), and where the
retraction is given by mapping (g1, . . . , gn, i) to gi ∈ Gi. We leave it to the reader to verify
that if f is a D-equivalence, and E is a retract of D, then f is also an E-equivalence.
This completes the proof. �

Remark 3.34. Horel’s approach in [Hor17] to defining weak equivalences is slightly dif-
ferent. He defines the cohomology H0(−;S) and H1(−;G), and defines f to be a weak
equivalence if it induces a bijection on H0(−;S) and H1(−;G) for any finite set S and
finite group G. It is then proved that H0(−;S) ∼= HomπĜ(−,Disc(S)) and H1(−;G) ∼=
HomπĜ(−, G∗), and later that a weak equivalence induces bijections HomπĜ(B,C) →
HomπĜ(A,C) for all finite groupoids C. This definition of a weak equivalence is conve-

nient when comparing the model structure on Ĝ to the model structure on Ŝ, which we
will define in chapter 4, but the above definition seems more natural when working in a
pro-category. ♦

3.4.2 Basic properties of weak equivalences

The following proposition is immediate from Yoneda’s lemma.

Proposition 3.35. Let f : A → B be a morphism of finite groupoids. Then f is a weak
equivalence in G if and only if f is a weak equivalence in Ĝ. �

The universal property of the profinite completion functor implies that it preserves
weak equivalences.
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Proposition 3.36. Let f : A → B be a weak equivalence in G. Then f̂ : Â → B̂ is a
weak equivalence in Ĝ.

Proof. Note that there is a natural bijection HomG(A,C) ∼= HomĜ(Â, C) for any finite
groupoid C. Thus there is also a natural bijection

HomπG(A,C) = coeq(HomG(A,CI[1])⇒ HomG(A,C))

∼= coeq(HomĜ(Â, CI[1])⇒ HomĜ(Â, C)) = HomπĜ(Â, C).

Since f ∗ : HomπG(B,C)→ HomπG(A,C) is a bijection, we conclude by the above natural

bijection that f ∗ : HomπĜ(B̂, C)→ HomπĜ(Â, C) is so as well. �

By noting that a groupoid with finitely many connected components is weakly equiv-
alent to a groupoid of the form

∐n
i=1(Gi)∗, we obtain the following.

Corollary 3.37. Let A be a groupoid with finitely many connected components. Then Â
is weakly equivalent to a profinite groupoid of the form

∐n
i=1(Ĝi)∗. �

As stated above, a levelwise weak equivalence {fi} between two profinite groups is

generally not a homotopy equivalence in Ĝ, i.e. an isomorphism in πĜ. This in partic-
ular implies that HomπĜ(A,B) is in general not equal to limj colimi HomπG(Ai, Bj) for
profinite groupoids A = {Ai} and B = {Bj}. If this were to hold, then the homotopy
inverses gi of fi would induce a homotopy inverse of {fi}. However, it does hold if either
{Ai} or {Bj} is a finite groupoid.

Proposition 3.38. Let A = {Ai}i∈I be a profinite groupoid, let B be a profinite groupoid
with finitely many objects and let C be a finite groupoid. Then there are natural isomor-
phisms

HomπĜ(A,C) ∼= colim
i

HomπG(Ai, C)

and
HomπĜ(B,A) ∼= lim

i
HomπĜ(B,Ai).

Proof. The first isomorphism follows since coequalizers commute with colimits, and since
HomπĜ(A,C) is the coequalizer of HomĜ(A,CI[1])⇒ HomĜ(A,C).

The second isomorphism requires more work to prove. Denote the maps Aj → Ai for
j ≤ i by pji . Let f : B → A be a morphism of profinite groupoids. Then f consists of
maps fi : B → Ai satisfying fip

j
i = fj, so we obtain an element in limi HomπG(B,Ai). To

see that this defines a well-defined map φ : HomπĜ(B,A) → limi HomπG(B,Ai), assume
f ' g. Let H : B → AI[1] be a homotopy. Then H consists of homotopies Hi : B →
A
I[1]
i from fi to gi by definition, hence (fi)i and (gi)i represent the same element in

limi HomπG(B,Ai).
To see that φ is injective and surjective, observe that since B has finitely many objects,

for any fi : B → Ai there can only exist finitely many homotopies Hi : B → A
I[1]
i satisfying

ev0Hi = fi. Indeed, assume we are given such a homotopy Hi, and let α : x → y be an
arrow in B. Then Hi(α) is a natural transformation between Hi(x) and Hi(y), i.e. a
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pair of arrows β, β′ in Ai satisfying Hi(y)β = β′Hi(x). Since ev0Hi = fi, we see that
β = ev0H(α) = f(α), and β′ = Hi(y)βHi(x)−1, so Hi is fully determined by some map

Ob(B) → A
I[1]
i . Since both Ob(B) and A

I[1]
i are finite, we conclude that only finitely

many homotopies Hi with ev0Hi = fi can exist.

For surjectivity, let ([fi])i ∈ limi HomπG(B,Ai) be given, where [fi] is the homotopy
class of the map fi : B → Ai. Then by the above observation, [fi] is a finite set for
every i. We also see that the maps pji : Aj → Ai restrict to maps [fj] → [fi], so {[fi]}i∈I
is a projective diagram of finite, nonempty sets. In particular its limit is nonempty by
Theorem 2.43, so let f ∈ limi[fi]. Then f is by definition a morphism f : B → A satisfying
φ([f ]) = ([fi])i, so φ is surjective.

For injectivity, let φ([f ]) = φ([g]), with f = (fi)i and g = (gi)i. Let Xi be the

set of all homotopies Hi : B → A
I[1]
i satisfying ev0Hi = fi and ev1Hi = gi. By the

above observation each Xi is a finite nonempty set. The maps pji : Aj → Ai induce maps
Xj → Xi, so by Theorem 2.5, there is some H ∈ limiXi. Then H is by construction a
homotopy B → AI[1] satisfying ev0H = f and ev1H = g, hence [f ] = [g]. We conclude
that φ is a bijection. �

Corollary 3.39. Let A,B be profinite groupoids with finitely many objects, and let f : A→
B be a weak equivalence. Then f is a homotopy equivalence.

Proof. By the second isomorphism of Proposition 3.38, we see that if f ∗ : HomπĜ(B,C)→
HomπĜ(A,C) is an isomorphism for all finite groupoids C, then it is so for every profinite
groupoid. By Yoneda’s lemma f is a homotopy equivalence. �

Proposition 3.40. Weak equivalences in Ĝ are stable under cofiltered limits. In particu-
lar, if A = {Ai} and B = {Bi} are profinite groupoids with the same index category, and if
f : A→ B is levelwise a weak equivalence, meaning f is represented by weak equivalences
fi : Ai → Bi in G, then f is a weak equivalence in Ĝ.

Proof. The contravariant functor HomπĜ(−, C) preserves cofiltered limits of representa-
bles (or, more precisely, maps them to the corresponding filtered colimit) by the above
proposition. By a proof similar to Proposition 2.31, it preserves all cofiltered limits. Now
let F,G : I → Ĝ be two cofiltered diagrams, let {fi} : F → G be a natural transforma-
tion that is levelwise a weak equivalence, and let f : limi F (i) → limiG(i) denote the
corresponding morphism between the limits. Then

f ∗ : HomπĜ(lim
i
G(i), C)→ HomπĜ(lim

i
F (i), C)

is the colimit of the maps

f ∗i : HomπG(G(i), C)→ HomπG(F (i), C).

Since all the f ∗i are isomorphisms, we see that f ∗ is an isomorphism, and conclude that
f is a weak equivalence. �
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3.4.3 Weak equivalences are fully faithful and essentially surjec-
tive

In this part we will show that weak equivalences are fully faithful and essentially surjective.
A morphism f : A → B between profinite groupoids is essentially surjective or fully
faithful if the morphism |f | : |A| → |B| between the underlying groupoids is so. We start
by showing that a weak equivalence of profinite groupoids induces an isomorphism on the
set of connected components, which in particular implies that it is essentially surjective.
Note that the set of connected components is a profinite set, and not just a set.

Proposition 3.41. Let f : A→ B be a morphism of profinite groupoids. Then the induced
map π0(f) : π0(A)→ π0(B) is an isomorphism of profinite sets if and only if

f ∗ : HomπĜ(B,Disc(S))→ HomπĜ(A,Disc(S))

is an isomorphism for all finite sets S. In particular, if f is a weak equivalence of profinite
groupoids, then π0(f) : π0(A)→ π0(B) is an isomorphism of profinite sets.

Proof. Note that, for any finite set S and any profinite groupoid A,

HomπĜ(A,Disc(S)) = HomĜ(A,Disc(S)),

which follows from Disc(S)I[1] = Disc(S). Also note that π0 a Disc. We therefore see
that f ∗ : HomπĜ(B,Disc(S)) → HomπĜ(A,Disc(S)) is an isomorphism if and only if
π0(f)∗ : HomŜet(π0(B), S)→ HomŜet(π0(A), S) is so. But if the latter holds for all finite
sets S, then it also holds for any profinite set S, hence by Yoneda’s lemma π0(f) : π0(A)→
π0(B) is an isomorphism of profinite sets. �

As one would expect, a weak equivalence of profinite groupoids also induces weak
equivalences on each connected component. However, this is not that straightforward, as
a profinite groupoid is generally not a coproduct of connected profinite groupoids.

Proposition 3.42. Let f : A → B be a weak equivalence of profinite groupoids. Then f
is also a weak equivalence on each connected component.

Proof. Let A = {Ai}i∈I and B = {Bj}j∈J , and let pi : A → Ai, qj : B → Bj be the
projection maps. Pick a point x = (xi)i ∈ Ob(A) and denote the connected component
of x by Ax. By Proposition 3.13, Ax consists of all arrows α in A such that there are
arrows from x to both the source and target of α. Let Ai,x denote the connected component
containing pi(x) in Ai. One easily verifies that Ax = {Ai,x}. Define Bx to be the connected
component containing f(x) and define Bj,x ⊆ Bj similarly to Ai,x. Note that f can be
represented by maps fj : Aθ(j) → Bj, where θ is a map J → I. Since fj(Aθ(j),x) ⊆ Bj,x, we
see that f restricts to a map f ′ : Ax → Bx represented by restrictions f ′j : Aθ(j),x → Bj,x

of fj. We will show that f ′ is a weak equivalence.
For surjectivity, let u′ : Ax → C be given with C a finite groupoid. Then u′ is repre-

sented by some map Ai,x → C. We can extend this to a map Ai → C by mapping all
other connected components of Ai to idu′(x) ∈ Ar(C), hence we obtain a map u : A → C
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such that u|Ax = u′. Since f is a weak equivalence, there is some v : B → C such that
vf ' u. This homotopy restricts to a homotopy v′f ′ ' u′, where v′ = v|Bx , so we see that
(f ′)∗ : HomπĜ(Bx, C)→ HomπĜ(Ax, C) is surjective.

For injectivity, let u′, v′ : Bx → C be given and assume u′f ′ ' v′f ′. We then have a
commutative diagram of the form

Ax CI[1]

Bx C2

f ′

H′

(ev0 , ev1)

(u′,v′)

so there are i and j such that the diagram

Ai,x CI[1]

Bj,x C2

f ′j

H′i

(ev0 , ev1)

(u′j ,v
′
j)

commutes, where u′j, v
′
j and H ′i represent u′, v′ and H ′. We can extend u′j, v

′
j and H ′i

to maps (uj, vj) : Bj → C2 and Hi : Ai → CI[1] such that the diagram still commutes.
These represent morphisms u, v : B → C together with a homotopy uf ' vf . Since f is a
weak equivalence, u and v are homotopic as well. Restricting this homotopy to Bx gives
a homotopy u′ ' v′, since u and v extend u′ and v′ by construction. We conclude that
(f ′)∗ : HomπĜ(Bx, C)→ HomπĜ(Ax, C) is a bijection. �

To prove that a weak equivalence is fully faithful, we need the following lemma on
profinite groups.

Lemma 3.43. Let f : G → H be a homomorphism of profinite groups and assume that
for any finite group K, the map

f ∗ : HomπĜ(H∗, K∗)→ HomπĜ(G∗, K∗)

is a bijection. Then f is an isomorphism.

Proof. By the second isomorphism of Proposition 3.38, we see that

f ∗ : HomπĜ(H∗, K∗)→ HomπĜ(G∗, K∗)

is a bijection for any profinite group K. By the Yoneda lemma (applied to the full

subcategory of πĜ of profinite groupoids with one object), we see that f : G∗ → H∗
is a homotopy equivalence. Let g : H∗ → G∗ be the homotopy inverse. Note that a
homotopy equivalence between maps of profinite groups is just an inner automorphism
of the codomain of these maps. In particular there are automorphisms φ : G → G and
ψ : H → H such that φgf = idG and fgψ = idH , hence f has both a left and right inverse.
We conclude that f is an isomorphism of profinite groups. �
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Theorem 3.44. Let f : A → B be a weak equivalence. Then f is essentially surjective
and fully faithful.

Proof. The fact that f is essentially surjective follows from Proposition 3.13 and Propo-
sition 3.41. To see that f is fully faithful, note that a morphism g : C → D between
connected (profinite) groupoids is fully faithful if and only if there is some x ∈ Ob(C)
such that g : C(x) → D(g(x)) is an isomorphism. Here C(x) and D(g(x)) denote the
(profinite) groups of arrows which all have source and target x and g(x), respectively.
Since f is a weak equivalence on each connected component by Proposition 3.42, we may
assume that A and B are connected profinite groupoids. Now let x = (xi)i ∈ Ob(A) be
given. Then the inclusion A(x)→ A is represented by the levelwise inclusion Ai(xi)→ Ai.
Since this is levelwise a weak equivalence, we see that A(x) → A is a weak equivalence.
We similarly see that B(f(x)) → B is a weak equivalence. We now have a commutative
square

A(x) A

B(f(x)) B

f ′ f

where f ′ is the restriction of f to A(x). Since three of these maps are weak equivalences,
we see that f ′ is a weak equivalence as well. By Lemma 3.43, f ′ is an isomorphism. We
conclude that f is fully faithful. �

3.4.4 Level representations of weak equivalences

To show that an essentially surjective and fully faithful morphism of profinite groupoids
is indeed a weak equivalence, we will need to consider a certain construction, where we
change the (profinite) set of objects of a groupoid. This will not only allow us to show
that fully faithful and essentially surjective maps are weak equivalences, but also that
they have level representations by weak equivalences.

First, assume we are given a groupoid A (not profinite), and let f : S → Ob(A) be
any map of sets. We define a groupoid AS by Ob(AS) = S and by letting Ar(AS) be the
pullback

Ar(AS) Ar(A)

S × S Ob(A)×Ob(A),

(s,t)

(f,f)

where s and t are the source and target map, respectively. The map Ar(AS)→ S × S is
then the source and target map. Note that an arrow of Ar(AS) consists of two elements
x, y ∈ S, and an arrow α : f(x) → f(y) in A. The omposition of arrows in AS is defined
by composing them in A. It is clear that this defines a groupoid with set of objects S.
The construction also gives a canonical map AS → A which is fully faithful. If the map
S → Ob(A) hits each component of A at least once (i.e. S → π0(A) is surjective), then
AS → A is furthermore essentially surjective, hence a weak equivalence.
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To generalize this construction to profinite groupoids, remark that for any (profinite)
groupoid A there is a canonical morphism A→ Codisc(Ob(A)), the unit of the adjunction
Ob a Codisc. Concretely, this morphism is given by mapping an arrow α : x → y to the
unique arrow x → y in Codisc(Ob(A)). If A is a groupoid, S a set and f : S → Ob(A)
any map, then it is a straightforward verification that AS, as defined above, can also be
given as the pullback

AS A

Codisc(S) Codisc(Ob(A)).
f

This construction can also be carried out in Ĝ.

Definition 3.45. Let A be a profinite groupoid and let f : S → Ob(A) be a map of
profinite sets. We define AS, the pullback of A along f , by the pullback

AS A

Codisc(S) Codisc(Ob(A))
f

in Ĝ. ♦

Note that the functor Ar: Ĝ → Ŝet preserves limits, as it is corepresented by I[1]
(i.e. HomĜ(I[1], A) ∼= Ar(A) for all profinite groupoids A). Applying Ar to the pullback
square defining AS above, we see that

Ar(AS) Ar(A)

S × S Ob(A)×Ob(A)

(s,t)

(f,f)

is a pullback square in Ŝet. In particular the above definition of AS is the correct gener-
alization to Ĝ.

Lemma 3.46. Let A be a profinite groupoid and S → Ob(A) be a map of profinite sets
such that S → π0(A) is surjective. Then there is a level representation of AS → A by
weak equivalences. If S → Ob(A) is injective, then the level representation can be chosen
in such a way that every map is injective on objects.

Proof. Note that giving a map f : S → Ob(A), with A a profinite groupoid, is equivalent
to giving a morphism of profinite groupoids f : Disc(S)→ A. Pick a level representation
fi : Bi → Ai of f . We may assume by Proposition 3.14 that the diagrams {Bi} and {Ai}
are indexed by epimorphisms, and that the morphisms A → Ai, Disc(S) → Bi are epi
for every i. Since Disc(S) is discrete, this implies that Bi is discrete for every i, hence
Bi = Disc(Si) with limi Si = S. Since epimorphisms induce surjections on the (profinite)
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sets of objects, we see that Ob(A) → Ob(Ai) is surjective for every i, and in particular
that π0A→ π0Ai is surjective for every i.

As pullbacks can be computed levelwise, we see that AS = limi(Ai)Si
, where (Ai)Si

is
the pullback of Ai along fi : Si → Ob(Ai), and that AS → A has a level representation
given by (Ai)Si

→ Ai. Now note that S → π0(A)→ π0(Ai) is surjective, and that

S π0(A)

Si π0(Ai)

commutes, hence Si → π0(Ai) is surjective. By the discussion above, (Ai)Si
→ Ai is an es-

sentially surjective and fully faithful morphism of finite groupoids, i.e. a weak equivalence,
for every i.

For the last part of the lemma, assume that S → Ob(A) is an injection. Let the
maps fi : Si → Ob(Ai) be as above. Define S ′i = Si/∼i, where x ∼i y if and only if
fi(x) = fi(y). The quotient maps Si → S ′i induce a map limi Si → limi S

′
i. One easily

shows that limi S
′
i
∼= im(f) ⊆ Ob(A), and hence that the canonical map limi Si → limi S

′
i

is a bijection by injectivity of f , and therefore an isomorphism. This implies that in
the above proof, we can replace Si by S ′i for every i. As S ′i → Ob(A) is injective by
construction, we see that the maps (Ai)Si

→ Ai are all injective on objects, so all the
maps in the level representation are injective on objects. �

The above lemma can be used to show that any fully faithful and essentially surjective
morphism in Ĝ has a level representation by weak equivalences.

Proposition 3.47. Let f : A→ B be an essentially surjective and fully faithful morphism
between profinite groupoids. Then there exists a level representation {fi} : {Ai} → {Bi}
of f such that fi : Ai → Bi is essentially surjective and fully faithful for every i. If f is
injective on objects, then the level representation can be chosen such that fi is injective
on objects for every i.

Proof. We start with the observation that A ∼= BOb(A), i.e. that A is the pullback of B
along Ob(A) → Ob(B). To see that this is indeed the case, note that f : A → B and

A → Codisc(Ob(A)) induce f̃ : A → BOb(A) by the universal property of the pullback.
This map is by construction the identity on objects, and it is fully faithful since f is so.
We therefore see that Ar(A)→ Ar(BOb(A)) is an isomorphism, so f̃ is an isomorphism of
profinite groupoids by Corollary 3.19.

By the lemma proved above and the fact that f is essentially surjective, we see that
BOb(A) → B has a level representation by weak equivalences, i.e. there are projective
diagrams of finite groupoids {Ai} and {Bi} and natural weak equivalences fi : Ai → Bi

and isomorphims A ∼= BOb(A)
∼= {Ai}, B ∼= {Bi} such that

A B

{Ai} {Bi}

f

∼= ∼=
{fi}
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commutes.

It follows from the last part of Lemma 3.46 that we can choose the level representation
such that all maps fi are injective on objects. �

We arrive at the following characterization of weak equivalences.

Theorem 3.48. Let f : A → B be a morphism between profinite groupoids. Then the
following are equivalent:

(i) f is a weak equivalence;

(ii) f is essentially surjective and fully faithful;

(iii) f has a level representation by weak equivalences between finite groupoids.

Proof. This follows by combining Proposition 3.40, Theorem 3.44 and Proposition 3.47.
�

3.4.5 Comparing weak equivalences to homotopy equivalences

As promised earlier, we start with an example of a morphism f : A→ B that has a level
representation by weak equivalence, but that is not a homotopy equivalence. To give this
example, we need a surjection between Stone spaces that has no section.

Lemma 3.49. There exists a continuous surjection between Stone spaces that has no
continuous section.

Proof. By Stone duality, this is equivalent to giving a monomorphism between Boolean
algebras that has no retraction. We will give such a monomorphism. P(N), the power
set of the natural numbers, has the structure of a Boolean algebra. Here objects are
ordered by inclusion, and the meet and join of X and Y are given by X ∩ Y and X ∪ Y ,
respectively. It has a Boolean subalgebra Pf (N) defined by

Pf (N) = {X ⊆ N | X is finite or N \X is finite}.

The inclusion Pf (N) ↪→ P(N) is a monomorphism since it is injective. To see that it has
no retraction, assume such a retraction r : P(N) → Pf (N) exists. Then r must be order
preserving, and r(X) = X for all X ⊆ N that are either finite or cofinite. If X ⊆ N is
arbitrary, then for any x ∈ X, we have {x} = r({x}) ⊆ r(X), hence X ⊆ r(X). Now
note that r(2N) ∪ r(2N + 1) = r(N) = N and r(2N) ∩ r(2N + 1) = r(∅) = ∅, so one of
r(2N) and r(2N + 1) must be finite and the other cofinite. However, as 2N ⊆ r(2N) and
2N+ 1 ⊆ r(2N+ 1), this is not possible. We conclude that no retraction exists. The map
that corresponds to the inclusion Pf (N) ↪→ P(N) under Stone duality is a surjection that
has no section. �
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Example 3.50. Let f : S → T be a surjection between Stone spaces that has no section.
Define the groupoid B by B = Disc(T ), and define A as the pullback of B along f , i.e.
A is defined by the pullback

A Disc(T )

Codisc(S) Codisc(T ).

g

f

We see that for any x, y ∈ Ob(A) = S, there is precisely one arrow x→ y if f(x) = f(y),
and there is no arrow x → y otherwise. It follows directly from this that π0A = T , and
that g induces an isomorphism π0A → π0B. Since g is also fully faithful, we conclude
that g is a weak equivalence. Now assume that h : B → A is a homotopy inverse. As
B = Disc(T ), we see that h is just a map T → Ob(A) = S. The fact that h is a
homotopy inverse implies that gh(x) and x are in the same path component of B for
every x ∈ Ob(B) = T . Since B = Disc(T ), this implies gh(x) = fh(x) = x for every
x ∈ T . This contradicts the fact that f has no continuous section, so we conclude that g
cannot be a homotopy equivalence. ♦

The above example illustrates that for finding a homotopy inverse, certain continuous
sections have to exist. However, we saw in Proposition 2.61 that for a free G-action on
a Stone space S, with G profinite, the quotient map always has a section. In Corol-
lary 3.22, we used this to prove that any connected profinite groupoid is of the form G[S]
for a profinite group G and a profinite set S. This can be used to show that for any
connected profinite groupoid A and any x ∈ Ob(A), the inclusion A(x) ↪→ A is a homo-
topy equivalence. It will follow from this that any weak equivalence between connected
profinite groupoids is a homotopy equivalence.

Lemma 3.51. Let A be a profinite groupoid and x ∈ Ob(A) any point. Then A(x) ↪→ A
is a homotopy equivalence, with a retract A→ A(x) as homotopy inverse.

Proof. Write G = A(x). By Corollary 3.22, we can assume without loss of generality
that A = G[S], where S is a profinite set, and that i : G∗ → G[S] is the inclusion at a
given s0 ∈ S. We define a retract r : G[S] → G∗ by mapping an arrow g : t → t′ to the
corresponding element g of G. Then clearly ri = idG∗ . To see that ir ' idG[S], we need to
construct a homotopy H : G[S] → (G[S])I[1]. Note that Ob((G[S])I[1]) = Ar(G[S]). On
objects, we define H by H(t) = (e : t → s0), where e is the identity element of G. On
arrows, H is defined by

(g : t→ t′) 7→
t t′

s0 s0.

g

e e

g

It follows immediately from the definition of H that ev0H = idG[S] and that ev1H = ir.
We conclude that i is a homotopy equivalence. �
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Theorem 3.52. Let f : A → B be a weak equivalence of connected profinite groupoids.
Then f is a homotopy equivalence.

Proof. Pick x ∈ Ob(A). Since f is a weak equivalence, it is fully faithful, so it induces
an isomorphism A(x)→ B(f(x)). In particular, we obtain a commutative diagram of the
form

A

A(x)

B.

f

Since two of the arrows are homotopy equivalences by Lemma 3.51, we conclude that
f : A→ B is a homotopy equivalence as well. �

3.5 A fibrantly generated model structure on Ĝ

We will now construct a fibrantly generated model structure on Ĝ using the dual of
Theorem 11.3.1 in [Hir03], which is Theorem A.18 in this thesis. We will follow the
approach of Horel in [Hor17], Theorem 4.12. The proof is (a slight modification) of
Horel’s proof given there. Let S be a set containing at least one representative for each
isomorphism class of finite sets. Let G be the set of all groups whose underlying set is in
S. Define P to be the set containing all morphisms of the form

(i) G �G→ G∗, where (k : g → h) 7→ k;

(ii) (ev0, ev1) : (G∗)
I[1] → (G∗)

2;

(iii) G∗ → ∗;

(iv) Disc(S)→ ∗; and

(v) Disc({0})→ Disc({0, 1})

for all S ∈ S and G ∈ G. We can also view the map G � G → G∗ as Codisc(G) → G∗,
where (g → h) 7→ hg−1, and where Codisc(G) is the codiscrete groupoid on the underlying
set of G.

Define Q to be the set containing all morphisms of the form Codisc(S) → ∗, with
S ∈ S nonempty.

Before proving that these sets are the generating (trivial) fibrations for a model struc-

ture on Ĝ, we will show that the following lemmas hold.

Lemma 3.53. For any finite groupoid C, the maps C → ∗ and (ev0, ev1) : CI[1] → C2

are P -fibrations.
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Proof. The main ingredient in this proof is that the P -fibrations are closed under finite
coproducts. Note that the coproduct of two profinite groupoids {Ai} and {Bj} is just
{Ai tBj}. If {0, 1} is the discrete groupoid with two elements, then

A {0}

A tB {0, 1},

is a pullback square, so the inclusion A→ A t B is a P -fibration. Here the bottom map
is defined by sending A to 0 and B to 1.

Now assume we are given two P -fibrations f : A → B and g : C → D with A and C
nonempty. Then pick a0 ∈ Ob(A) and c0 ∈ Ob(C), and define AtC ↪→ A×C×{0, 1} by
including A as A×{c0}×{0} and C as C×{a0}×{1}, and define A×C×{0, 1} → AtC
by projecting A× C × {0} on A and A× C × {1} on C. Define similar maps for B tD,
with f(a0) and g(c0) as basepoints. Then the diagram

A t C A× C × {0, 1} A t C

B tD B ×D × {0, 1} B tD

id

id

commutes, hence A t C → B t D is a retract of A × C × {0, 1} → B × D × {0, 1}.
Since products of P -fibrations are again P -fibrations, we see that A t C → B t D is a
P -fibration.

Now if C is a finite connected groupoid, then C ∼= G[S] ∼= G∗ × Codisc(S). Since
G∗ → ∗ and Codisc(S)→ ∗ are P -fibrations, we see that C → ∗ is so as well. If C is not
connected, then C is a finite disjoint union tiGi[Si]. By the above, tiGi[Si] → ti∗ is a
P -fibration. Since ti∗ → ∗ is also a P -fibration, we conclude that C → ∗ is a P -fibration
for every finite groupoid C.

For CI[1] → C2, again assume C is connected, say C = G[S]. Then

G[S]I[1] G
I[1]
∗

G[S]2 G2
∗

(ev0 , ev1) (ev0 , ev1)

is a pullback square, where the horizontal maps are given by forgetting about S, i.e. by
mapping an arrow g : x→ y to the arrow g : ∗ → ∗ in G∗. We therefore see that CI[1] → C2

is a P -fibration. Now assume we are given A,B such that AI[1] → A2 and BI[1] → B2 are
P -fibrations. Then (AtB)I[1] ∼= AI[1]tBI[1] and (AtB)2 ∼= A2tB2t (A×B)t (B×A).
Under these isomorphisms, the map (A tB)I[1] → (A tB)2 corresponds to the map

AI[1] tBI[1] → A2 tB2 → A2 tB2 t (A×B) t (B × A).
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Both of these maps are P -fibrations by the above discussion on coproducts of P -fibrations.
We now inductively see that CI[1] → C2 is a P -fibration for every finite groupoid C. �

Lemma 3.54. Let f : A→ B is Q-projective if and only if f is injective on objects.

Proof. f is Q-projective precisely if f ∗ : HomĜ(B,Codisc(S)) → HomĜ(A,Codisc(S))
is a surjection for all finite sets S. By the adjunction Ob a Codisc, this is equivalent
to f ∗ : HomŜet(Ob(B), S) → HomŜet(Ob(A), S) being a surjection for every finite set
S. Using that for any x, y ∈ Ob(A), there is a continuous map h : Ob(A) → {0, 1} for
which h(x) = 0 and h(y) = 1, we see that f is injective. For the converse, note that if
a map X → Y between Stone spaces is injective, then any map X → S for any finite
nonempty set S extends to a map Y → S, so the result follows again by the adjunction
Ob a Codisc. �

Lemma 3.55. Let f : A → B be a weak equivalence of profinite groupoids, let C and D
be finite groupoids, and let a commutative diagram

A C

B D

u

f g

v

be given. Then there exists a commutative diagram

A A′ C

B B′ D

u

f f ′ g

v

where A′ and B′ are finite groupoids and where f ′ : A′ → B′ is a weak equivalence. If f
is injective on objects, then f ′ can be chosen to be injective on objects as well.

Proof. Pick a level representation fi : Ai → Bi of f by weak equivalences, which exists by
Theorem 3.48. It follows from Proposition 2.10 that there exist an i and maps Ai → C,
Bi → D such that

A Ai C

B Bi D

u

f fi g

v

commutes. Note that by Proposition 3.47, we may assume fi is injective on objects if f
is so. �
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Corollary 3.56. Let f : C → D be a map between finite groupoids and assume f has the
right-lifting property with respect to all weak equivalences between finite groupoids that are
injective on objects. Then f has the right-lifting property with respect to all Q-projective
weak equivalences between profinite groupoids.

Proof. This follows directly by applying Lemma 3.54 and the previous lemma. �

Theorem 3.57. The category Ĝ has a model structure for which P is a set of generating
fibrations, Q a set of generating trivial fibrations, and where the weak equivalences are as
in Definition 3.32. In this model structure, the cofibrations are the maps that are injective
on objects.

Proof. We will check all the conditions of Theorem A.18. The class of weak equivalences
is clearly closed under retracts and satisfies the two out of three property.

1. Since all codomains of morphisms in P and Q are finite groupoids, they are cosmall
by Example A.4. In particular P and Q permit the cosmall object argument.

2. To show that Q-fibrations are weak equivalences, we only have to show this for Q-
cocell complexes, since the weak equivalences are closed under retracts. Since weak
equivalences are stable under cofiltered limits (so in particular under transfinite
precomposition) by Proposition 3.40, we only have to prove that pullbacks of maps in
Q are weak equivalences. Let A = {Ai} be a profinite groupoid, and let Codisc(S)→
∗ be in Q. The pullback of this map along A→ ∗ is the product A×Codisc(S)→ A.
This map is induced by the levelwise projection {Ai × Codisc(S)} → {Ai}. Since
these projections are weak equivalences of groupoids, we see by Proposition 3.40
that A× Codisc(S)→ A is a weak equivalence.

To see that Q-fibrations are P -fibrations, we only need to show that maps in Q are
P -fibrations. Let S be a nonempty finite set. Let G be any group with underlying
set S. Then G � G ∼= Codisc(S). Since G � G → G∗ and G∗ → ∗ are in P , we see
that their composition G �G→ ∗ is a P -fibration.

3. A P -projective map has the left-lifting property against all P -fibrations, so it is in
particular Q-projective.

To see that P -projective maps are weak equivalences, let f : A→ B be P -projective.
Then f has the left-lifting property against the maps C → ∗ and (ev0, ev1) : CI[1] →
C2 for any finite groupoid C by Lemma 3.53. The left-lifting property against C → ∗
implies that f ∗ : HomπĜ(B,C) → HomπĜ(A,C) is surjective. For injectivity, let
g, h : B → C be given and assume gf ' hf , i.e. there exists a map H : A → CI[1]

such that the diagram

A CI[1]

B C2

H

f (ev0 , ev1)

(g,h)

Ĥ

commutes. Since f is P -projective, there exists a lift Ĥ : B → CI[1] which is the
desired homotopy from g to h. We conclude that f is a weak equivalence.
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4. We will show that any map that is Q-projective and a weak equivalence is also
P -projective. This amounts to showing that any map in P has the right-lifting
property with respect to Q-projective weak equivalences. By Corollary 3.56, we
only need to prove that maps in P have the right-lifting property with respect to
weak equivalences f : A→ B between finite groupoids that are injective on objects.
Such a map f is a trivial cofibration in the canonical model structure on G. Since
all maps in P are fibrations in the canonical model structure on G, we conclude
that f is P -projective by Proposition 3.30.

It follows from Lemma 3.54 that the cofibrations are indeed the maps that are injective
on objects. �

Since the cofibrations are the maps that are injective on objects, we see that all profi-
nite groupoids are cofibrant in this model structure. Recall that at the end of section
3.4, we showed that a weak equivalence between connected profinite groupoids is a ho-
motopy equivalence. This might suggest that connected profinite groupoids are always
fibrant. This is not quite true; however, we have the following characterization of the
fibrant objects among the connected profinite groupoids.

Proposition 3.58. In the model structure of Theorem 3.57, any profinite groupoid is
cofibrant. Furthermore, a connected profinite groupoid A is fibrant precisely if Ob(A) is

an injective object in Ŝet.

Proof. We directly see from Theorem 3.57 that any profinite groupoid is cofibrant.

For the second part of this proposition, we first show that profinite groupoids with
one object are fibrant. Let G be a profinite group, and let G∗ → RG∗ be a fibrant
replacement. Then this map is a weak equivalence. In the proof of Lemma 3.51, we saw
that such a map has a retraction. In particular G∗ is a retract of RG∗, hence fibrant.

Let B be any connected profinite groupoid. By Corollary 3.22, we see that B ∼= G[S]
for a profinite group G and for S = Ob(B). Since G[S] = G∗×Codisc(S), we see that G[S]
is fibrant precisely if G∗ and Codisc(S) are so. We already saw that G∗ is fibrant. To see
when Codisc(S) is fibrant, note that Codisc(S)→ ∗ is a weak equivalence, so Codisc(S) is
fibrant precisely if it has the right-lifting property with respect to all morphisms C → D
of profinite groupoids that are injective on objects. By the adjunction Ob a Codisc, we
see that Codisc(S) → ∗ has the right-lifting property with such morphisms of profinite
groupoids, precisely if for any injective map X → Y of Stone spaces and any map X → S,
an extension exists as in the following diagram:

X S

Y.

Since a map between Stone spaces is a monomorphism precisely if it is injective, we see
that this is equivalent to S being an injective object in Ŝet. �
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Recall that the profinite completion functor (̂·) : G→ Ĝ is left adjoint to the functor

| · | : Ĝ → G which maps a profinite groupoid {Ai} to its limit limiAi, computed in G.

This adjunction is a Quillen pair when considering the above model structure on Ĝ and
the canonical model structure on G.

Proposition 3.59. The functors (̂·) and | · | form a Quillen pair. Furthermore, they both
preserve weak equivalences.

Proof. By [Hir03, Proposition 8.5.3], to see that ((̂·), | · |) is a Quillen pair it is sufficient to

show that |·| preserves (trivial) fibrations. As the model structure on Ĝ is fibrantly gener-
ated, we only have to check this for the generating (trivial) fibrations. As all morphisms
in P are morphisms between finite groupoids, and they are fibrations in the canonical
model structure on G, it follows that | · | preserves fibrations. Since Codisc(S) → ∗ is
clearly a weak equivalence in G for any finite set S, we see that | · | preserves trivial

fibrations as well. Recall from Proposition 3.36 that (̂·) preserves weak equivalences. To

see that | · | preserves weak equivalences, note that weak equivalences f : A→ B in Ĝ are
fully faithful and essentially surjective by Theorem 3.44, which by definition means that
|f | : |A| → |B| is essentially surjective and fully faithful. In particular | · | preserves weak
equivalences. �



Chapter 4

Profinite spaces

The goal of this chapter is to put a fibrantly generated model structure on Ŝ, the category
of profinite spaces. This is the model structure defined by Quick in [Qui08], which was
later corrected in [Qui11a]1. We will take a slightly different approach than Quick, also
filling in some of the gaps in his proof, using the theory on profinite groupoids developed in
chapter 3. The main difference is that we will use a different construction of the profinite
fundamental group(oid), and that we will give a more precise and rigorous definition
of cohomology with local coefficients. Our definition of a weak equivalence will also be
slightly different, but we will come back to this difference in section 4.5, when we have
constructed the model structure on Ŝ.

In the first section of this chapter, we will recall some basic notions about simplicial
sets, and define some basic notion for profinite spaces, which will be used throughout
the rest of the chapter. In the second section, we define what connectedness means for
a profinite space (in particular we define π0), and we define the fundamental groupoid.
The third section is used to develop the theory of principal G-bundles of profinite spaces.
The fourth section is then devoted to cohomology with local coefficients, which we will
use to define our weak equivalences. In the fifth section we will give a detailed proof of
the existence of the model structure of [Qui08]. The last section is about covering spaces
and the fundamental groupoid as defined by Quick in [Qui08], which we will compare to
the fundamental groupoid as defined in section 4.2. We will show that they are naturally
isomorphic whenever we are able to make Quick’s construction work.

The main sources for the material in this chapter are [Qui08] and [Qui11a]. The proof
in section 4.3 that profinite principal G-bundles are classified by the profinite space BG,
is the author’s own work. The treatment of cohomology with local coefficients in section
4.4 is based on sections 2.2 of [Qui08] and VI.4 of [GJ09], although most proofs are the
author’s own work. The construction of the model structure in section 4.5 is taken from
[Qui08] and [Qui11b], with a slightly different approach to weak equivalences. The work
on profinite coverings in section 4.6 is the author’s own work, where [Gro+71, Exposé V

1There is an updated version of this paper, since the set of generating fibrations was still chosen too
small. This version can be found on G. Quick’s homepage https://folk.ntnu.no/gereonq/ as the set
of generating fibrations was too small. The fibrations, cofibrations and weak equivalences of the model
structure are defined in Definition 2.9 of this updated version, and in Theorem 2.10 it is proved that this
defines a (fibrantly generated) model structure.

71

https://folk.ntnu.no/gereonq/
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§4] and [Len97] were used as sources for the material on Galois categories.

4.1 Some basic facts on simplicial (profinite) sets

Define ∆ to be the category with objects [n] = {0 < 1 < . . . < n}, and with order
preserving maps as morphisms. Recall that a simplicial set is a functor ∆op → Set.
We will usually write S for the category of simplicial sets, although we will sometimes
write Set∆op

if we want to stress the fact that simplicial sets are functors, or sSet if we
want to stress that they are simplicial objects in the category Set. We will denote the
image of [n] in S under the Yoneda embedding by ∆n. There is a natural isomorphism
HomS(∆n, X) ∼= Xn by the Yoneda lemma. We can of course define simplicial objects
in any category C as functors ∆op → C. If we define morphisms of simplicial objects in
C to be natural transformations, then we obtain the category of simplicial objects in C,
which we will denote by sC or C∆op

. The category we are particularly interested in is
s(Ŝet), the category of simplicial profinite sets. We will denote this category by Ŝ, and
we will call its objects profinite spaces. Since ∆n is a simplicial finite set, we see that
∆n is an object of Ŝ for every n ≥ 0. In particular, we see that the natural bijection
HomŜ(∆n, X) ∼= Xn holds for profinite spaces as well.

4.1.1 Skeletal and coskeletal simplicial sets

We first recall the notions of skeletal and coskeletal simplicial sets. For n ≥ 0, we define
∆≤n be the full subcategory of ∆ on the objects [0], . . . , [n]. We define the n-truncation

functor τn : Set∆op → Set∆op
≤n by precomposing a functor X : ∆op → Set with the inclu-

sion ∆op
≤n → ∆op. The truncation functor τn has both a left and right adjoint, denoted

skn and coskn respectively.

Definition 4.1. Let X be a simplicial set. Then X is called

(i) n-skeletal if X = skn Y for some Y ∈ Set∆op
≤n ;

(ii) n-coskeletal if X = coskn Y for some Y ∈ Set∆op
≤n ;

(iii) skeletal if X is n-skeletal for some n ≥ 0; and

(iv) coskeletal if X is n-coskeletal for some n ≥ 0. ♦

Remark 4.2. In Example 2.78, we showed that skn and coskn indeed exist. The proof
given there, i.e. the proof of Lemma 2.76, in fact applies for any category with finite
limits and colimits, not just Set. This in particular implies that sknX and cosknX are
simplicial finite sets if X is so, since FinSet has finite (co)limits and skn and coskn are left

and right adjoint to the n-truncation FinSet∆op → FinSet∆op
≤n . The proof also implies

that skn and coskn are fully faithful. ♦

Remark 4.3. We will usually write skn and coskn for the functors skn ◦τn and coskn ◦τn
as well. In this notation, we easily see that skn a coskn. ♦



4.1. SOME BASIC FACTS ON SIMPLICIAL (PROFINITE) SETS 73

There is a nice description for n-(co)skeletal simplicial sets.

Proposition 4.4. A simplicial set X is n-skeletal if and only if all its simplices above
degree n are degenerate, i.e. if X has dimension ≤ n. A simplicial set X is n-coskeletal if
and only if for any map ∂∆k → X with k > n, there exists a unique extension ∆k → X.

Proof. The statement about n-skeletal simplicial sets is immediate from the fact that skn
is left adjoint to τn.

For the statement about n-coskeletal sets, note that we have natural isomorphisms

(cosknX)k ∼= HomS(∆k, cosknX) ∼= HomS(skn ∆k, X).

We also have the natural isomorphism Xk
∼= HomS(∆k, X). Noting that X is n-coskeletal

precisely ifX = cosknX, we see thatX is coskeletal if and only if the map HomS(∆k, X)→
HomS(skn ∆k, X) coming from the inclusion skn ∆k → ∆k is an isomorphism. This can
be rephrased as saying that any map skn ∆k → X extends uniquely to a map ∆k → X.
It follows inductively that this is the case precisely if for any k > n, all maps ∂∆k → X
extend uniquely to maps ∆k → X. �

The skeletal simplicial finite sets can, in a sense, be seen as the “finitely generated”
simplicial sets, as they contain finitely many non-degenerate simplices. If Sfin denotes
the full subcategory of S with as objects all skeletal simplicial finite sets, then one can
prove that Ind(Sfin) ' S. Compare this to Example 2.14 and Example 2.15, where we
saw that a similar statement holds for finite sets, finite dimensional vector spaces and
finitely generated groups. In section 2.4, we proved that a statement similar to (and dual
to) Ind(Sfin) ' S holds in general for categories of functors DC, under some assumptions
on the categories D and C. In this chapter, Corollary 2.84, which is Proposition 7.4.1 of
[BHH17], will play an important role, so we state it as a seperate theorem here. Define
Scofin to be the category of all coskeletal simplicial finite sets, viewed as full subcategory

of S. Note that Scofin is also a full subcategory of Ŝ = Ŝet
∆op

in the obvious way.

Theorem 4.5. The inclusion Scofin → Ŝet
∆op

induces an equivalence Pro(Scofin) →
Ŝet

∆op

. �

In light of this equivalence, we will write Ŝ for the categories Pro(Scofin), Ŝet
∆op

and
Stone∆op

. Whenever we are in a situation where it matters in which of these categories
we work, it should be clear which category is meant from the context. The usefulness of
the above theorem lies in the fact that it allows us to use both the abstract theory of pro-
categories, as developed in chapter 2, and point-set topological arguments, when studying
profinite spaces. For example, when defining and studying the profinite fundamental
groupoid in section 4.2, we will mostly use abstract arguments, while section 4.3 on
principal G-bundles will have a more point-set topological flavour. The above theorem
also provides us with a lot of cosmall objects in Ŝ, namely all coskeletal simplicial finite
sets, which will be useful since we’re constructing a fibrantly generated model structure
on Ŝ.
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4.1.2 Simplicial homotopy

Throughout this chapter, we will use the notion of simplicial homotopy many times.

Definition 4.6. Let f, g : X → Y be maps of simplicial sets or profinite spaces. We say
that H : X×∆1 → Y is a simplicial homotopy from f to g if Hi0 = f and Hi1 = g, where
i0 and i1 are the inclusions X → X ×∆1 at the starting point and endpoint, respectively.
If there is a simplicial homotopy from f to g, we say that f is simplicially homotopic to
g. ♦

Remark 4.7. Note that simplicial homotopy in general does not give an equivalence
relation on Hom(X, Y ) for X, Y simplicial sets of profinite spaces. It is therefore common
to consider the equivalence relation generated by simplicial homotopy, and call two maps
simplicially homotopic if they are equivalent under this equivalence relation. In this
chapter, however, we will only need to consider homotopic maps with a given simplicial
homotopy, and so this problem will not play any role. ♦

Remark 4.8. Note that the above definition makes sense for both simplicial sets and
profinite spaces. ∆1 is a simplicial finite set, so in particular a simplicial profinite set, i.e.
an object of Ŝ. We can therefore define the product X ×∆1 for any X ∈ Ŝ. ♦

Note that in the case of profinite groupoids, because of the adjunction (−) × I[1] a
(−)I[1] we can see homotopies as maps A→ BI[1]. A similar statement holds for simplicial
sets and profinite spaces. We first note that S (like any presheaf category) is cartesian
closed, meaning that for any X ∈ S, the functor (−) × X has a right adjoint (−)X .
Explicitly, Y X is given by (Y X)n = HomS(X × ∆n, Y ). For any α : [n] → [m], the
Yoneda embedding provides us with a map α∗ : ∆n → ∆m, which in turn induces a map
α∗ : (Y X)m → (Y X)n, giving Y X the structure of a simplicial set. We in particular get
from this that (−)×∆1 has a left adjoint (−)∆1

, and hence that we can view a simplicial
homotopy from f to g as a map H : X → Y ∆1

satisfying ev0H = f and ev1H = g.
The category of profinite spaces Ŝ is not cartesian closed, since HomŜ(X, Y ) is not a

profinite set in any natural way. The proof in Proposition 2.70 that Ŝet is not cartesian
closed can be translated directly to s(Ŝet). However, if X is a simplicial finite set, then
there does exist a natural way to give HomŜ(X, Y ) the structure of a profinite set. To see
this, write Y = limi Yi with Yi ∈ Scofin for all i. Then HomŜ(X, Y ) = limi HomŜ(X, Yi).
Since Yi is coskeletal for some n, we see that

HomŜ(X, Yi) = HomsFinSet(X, Yi) = Hom
FinSet

∆
op
≤n

(τnX, τnYi)

for some n. Since the right-hand side is clearly a finite set, we see that HomŜ(X, Y ) is
a projective limit of finite sets, hence a profinite set. In particular, HomŜ(X × ∆n, Y )

is a profinite set for every n if X is a finite simplicial set, so we can define Y X ∈ Ŝ by
(Y X)n = HomŜ(X ×∆n, Y ). Note that (Y X)n = limi(Y

X
i )n levelwise, so Y X = limi Y

X
i .

We therefore see that (−)X is just the extension of the functor (−)X : Scofin → Ŝ in the
sense of Proposition 2.31.

Proposition 4.9. Let X be a simplicial finite set. Then (−)×X : Ŝ→ Ŝ is right adjoint
to (−)X .
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Proof. We let (−)X be as in the discussion above. Then it is the unique extension of

(−)X : Scofin → Ŝ which preserves projective limits. Since products commute with limits,

we see that (−)×X also preserves projective limits. Now let Y, Z ∈ Ŝ be given and write
Y = limi Yi, Z = limj Zj with Yi and Zj coskeletal and finite for all i, j. We see that

HomŜ(Y ×X,Z) ∼= lim
j

HomŜ(lim
i

(Yi ×X), Zj) ∼= lim
j

colim
i

HomŜ(Yi ×X,Zj)

∼= lim
j

colim
i

HomŜ(Yi, Z
X
j ),

where for the last equality we used that morphisms between simplicial finite sets in Ŝ are
just morphisms in sFinSet, and we know that (−)×X is left adjoint to (−)X there.

On the other hand, we also have

HomŜ(Y, ZX) ∼= HomŜ(lim
i
Yi, (lim

j
Zj)

X) ∼= lim
j

HomŜ(lim
i
Yi, Z

X
j ).

If ZX
j happens to be coskeletal and finite, then the right-hand side of this equation will

be equal to limj colimi HomŜ(Yi, Z
X
j ), proving that (−)×X is left adjoint to (−)X .

This indeed turns out to be the case. Assume Zj is n-coskeletal. We already saw that
(ZX

j )k is finite for every k in the discussion above, since

(ZX
j )k = Hom

FinSet
∆
op
≤n

(τn(X ×∆k), τnZj).

To see that ZX
j is n-coskeletal, first note that τn preserves products. We therefore see

that τn((−) × X) ∼= τn(−) × X as functors. They have right adjoints, coskn(−)X and
coskn((−)X), respectively, so by uniqueness of adjoints we conclude that there is a natural

isomorphism coskn(−)X ∼= coskn((−)X). Since Zi = cosknW for some W ∈ FinSet∆op
≤n ,

we conclude that ZX
i
∼= coskn(WX). So ZX

i is indeed coskeletal, and we conclude that
(−)×X is left adjoint to (−)X . �

From the above proposition we deduce that we can view a simplicial homotopy between
maps of profinite spaces f, g : X → Y as a map H : X → Y ∆1

satisfying ev0H = f
and ev1H = g, where ev0, ev1 : Y ∆1 → Y are obtained by composing the inclusions
i0, i1 : Y ∆1 → Y ∆1 ×∆1 with the evaluation map ev : Y ∆1 ×∆1 → Y .

4.1.3 Profinite completion

In the last part of this section we will investigate the profinite completion functor. Note
that Scofin has finite limits. Indeed, let {Xi} be a finite diagram in Scofin. Choose
ni such that Xi is ni-coskeletal for every i. If we pick n such that n ≥ ni for all i,
then every Xi is n-coskeletal. We now see that limiXi = coskn(limi τn(Xi)), using that

coskn τn(Xi) = Xi, that coskn preserves limits, and that FinSet∆op
≤n has all finite limits.

In particularc Ŝ has all limits and colimits by Theorem 2.402 and there is a profinite

2Note that this in fact follows immediately when we view Ŝ as Ŝet
∆op

, since we can compute limits
and colimits pointwise.
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completion functor (̂·) : S → Ŝ by Theorem 2.62. By the same theorem, this profinite

completion functor is left adjoint to the functor | · | : Ŝ→ S which sends a profinite space

to its underlying simplicial set. When we view Ŝ as Stone∆op

, then | · | is levelwise just
the forgetful functor Stone→ Set, whose left adjoint is the Stone-Čech compactification
β : Set→ Stone. This implies that the left adjoint of | · | is levelwise given by the Stone-
Čech compactification, so by uniqueness of adjoints, we see that the profinite completion
functor is levelwise the Stone-Čech compactification.

Proposition 4.10. The profinite completion functor (̂·) : S→ Ŝ is levelwise given by the

Stone-Čech compactification, when viewing Ŝ as Stone∆op

. �

As the Stone-Čech compactification does not preserve products (see Proposition 2.69),

we immediately see that the profinite completion functor (̂·) : S → Ŝ does not preserve
products.

Corollary 4.11. Profinite completion of simplicial sets does not preserve products. �

4.2 Connectedness and the fundamental groupoid

In the first part of this section, we discuss the definition of π0X, the profinite set of
path components of a profinite space X. In the second part, we define the fundamental
groupoid Π1X of a profinite space X, which will be a profinite groupoid.

4.2.1 Connected profinite spaces

Given a profinite space X ∈ s(Ŝet), a first guess might be to say that X is connected if
its underlying simplicial set is connected. A natural definition for π0 would then be the
set of connected components of the underlying simplicial set. By “underlying simplicial
set”, we mean the simplicial set we obtain by forgetting about the topology on each Stone
space Xn. To (hopefully) give π0 the topology of a Stone space, we could define π0 as a
quotient of X0 (more precisely, as the coequalizer of d0, d1 : X1 ⇒ X0 in Top). The next
example illustrates that this is the wrong approach though.

Example 4.12. Let I1 be the simplicial unit interval, i.e. I1 = ∆[1]. We define I2

by attaching two copies of I1 to each other, the endpoint of the first to the starting
point of the second (i.e. d0(I1) gets glued to d1(I1) of the second copy). Repeating this
construction, we define In+1 by attaching a copy of I1 to In. For every n > 1, we define
a map In → In−1 by mapping In−1 ⊆ In to itself, and by mapping the attached copy of
I1 to a degeneracy in In−1. For clarity, the map I4 → I3 is drawn below.

0

1

2

3

0

1

2

3

4
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If we now consider the limit I∞ of the diagram {In}n∈N in s(Ŝet), we obtain a profinite
space whose underlying simplicial set looks like the following

0

1

2

3

...

∞

It can be seen as an infinitely long line with an endpoint at infinity. The space of 0-
simplices I∞0 is the limit limn∈N I

n
0 = limn∈N[n], where [n] = {0, . . . , n} and where the

map [n]→ [n− 1] is the identity on [n− 1] and maps n to n− 1. We see that this limit is
the Stone space N∪{∞}, where U ⊆ N∪{∞} is open precisely if U ⊆ N or if∞ ∈ N and
the complement of U is finite. We see that limn I

n is not connected in the sense discussed
above, even though In is connected for every n. We see that π0(I∞) contains two elements,
yet π0(In) contains only one element for n ∈ N. When working with pro-categories, it is
natural to ask of our functors that they preserve projective limits, so this suggests that
π0(I∞) should only contain one element. We also see that, if π0(I∞) is considered as a
quotient of I∞0 , then it is not Hausdorff, hence not a Stone space.

Recall that if a nonempty simplicial set (or a topological space) X is not connected,
then there always exists nonconstant map X → {0, 1}. We however see that any map
I∞ → {0, 1} must be constant due to the topology on I∞0 . Indeed, if f : I∞ → {0, 1},
then f(∞) = f(x) for all but finitely many x ∈ I∞0 . Since all x ∈ I∞0 \{∞} are connected
by a sequence of 1-simplices, we see that this implies that f(∞) = f(x) for all x ∈ I∞0 ,
and hence that f is constant. This suggests that a good notion of connectedness should
imply that I∞ is connected.

A third reason why this notion of connectedness is not the right one, is that the
connected components of a profinite space need not be profinite spaces. In the above
example, we see that the connected component which is an infinite line, is not a profinite
space, as it is infinite and has a discrete topology. This is problematic as we will sometimes
need to prove statements by checking them for each connected component, which will
require these components to be profinite spaces. ♦

The above example suggests we need another notion of connectedness, and another
definition of π0 for profinite spaces. Note that we can view a set S as a discrete simplicial
set, by identifying S with the constant functor ∆op → Set equal to S. If X is a simplicial
set, the map X → π0(X) which maps a simplex of X to the connected component it is
contained in, is universal. This explicitly means that if we are given a map X → S for
some discrete simplicial set S, then there is a unique map π0(X)→ S making the diagram

X S

π0(X)
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commute. Note that this is equivalent to saying that π0(X) is the coequalizer of X1 ⇒ X0.

We can use this approach to define π0(X) for a profinite space X, by defining X →
π0(X) as the arrow having the universal property expressed in the above diagram for all

profinite sets S (where we view profinite sets as objects in s(Ŝet) having only degenerate
simplices above dimension 0). This is equivalent to defining π0(X) as the coequalizer of

d0, d1 : X1 ⇒ X0 in Ŝet. This coequalizer always exists, as Ŝet is cocomplete. Note that
we can also compute the coequalizer in Stone, of course. One should be careful however,
as colimits in Stone are in general not the same as colimits in Top.

Definition 4.13. Let X be a profinite space. Define its profinite set of connected com-
ponents π0(X) as the coequalizer of d0, d1 : X1 ⇒ X0 in Ŝet. We say that X is connected
if π0(X) = {∗}. If the underlying simplicial set of X is connected as well, then we call X
strongly connected. ♦

Proposition 4.14. π0 preserves cofiltered limits.

Proof. Note that Ŝet, finite colimits commute with cofiltered limits by Corollary 2.41.
Since π0 is a coequalizer in Ŝet, and cofiltered limits in Ŝ = s(Ŝet) are computed levelwise,
we see that π0 commutes with cofiltered limits. �

The distinction between these two notions of connectedness can be important when
considering covering spaces. In [Qui08], Quick uses covering spaces to define the profinite
fundamental group and the profinite fundamental groupoid of a profinite space X. It is
stated that for a (connected) profinite space X, the category of finite covering spaces forms
a Galois category in the sense of [Gro+71]. However, using Quick’s notion of a covering
space, it turns out that axioms (G3) and (G6) of the definition of a Galois category in
[Gro+71] need not be satisfied if the profinite space is not strongly connected. This is for
example the case for the profinite space I∞ of the above example. We will show this in
Example 4.68 of section 4.6. We will fix this problem in this section by giving a slightly
different definition of a covering space, which works for all connected profinite spaces. For
now we will take a different approach to defining the fundamental group of a profinite
space, based on Horel’s definition of the profinite fundamental groupoid in [Hor17, p. 33].
Many desirable properties are easier to deduce using this definition, and we will show in
section 4.6 that both approaches are equivalent for connected profinite spaces.

4.2.2 The fundamental groupoid of a profinite space

For Horel’s definition of the fundamental groupoid, we need to view Ŝ as Pro(Scofin). We
write Πc

1 for the “classical” fundamental groupoid of a simplical set, which is a functor
S→ G. Recall its definition from Example 3.2.

Definition 4.15. Define Π1 : Ŝ→ Ĝ by Π1({Xi}) = limi Π̂c
1Xi, where (̂·) : G→ Ĝ is the

profinite completion functor, and where {Xi} is a pro-object in Scofin. ♦
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Remark 4.16. We need to consider the profinite completion of Πc
1Xi in the above def-

inition, since Πc
1Xi for Xi ∈ Scofin does not have to be a finite groupoid3. For example

Πc
1(∆1/∂∆1) ∼= Z∗. ♦

Remark 4.17. Recall that the nerve of a groupoid is always 2-coskeletal. Since the nerve
of finite groupoid is clearly finite, we obtain a fully faithful functor FinG→ Scofin, hence

a fully faithful functor B : Ĝ→ Ŝ by Corollary 2.32. ♦

We now list some basic properties of Π1 : Ŝ→ Ĝ.

Proposition 4.18.

(i) Π1 : Ŝ� Ĝ : B is an adjunction, and Π1BA = A for any profinite groupoid A.

(ii) Π1 preserves projective limits.

(iii) Π1(X̂) = Π̂c
1X for any simplicial set X.

(iv) π0Π1X = π0(X) for any profinite space X.

(v) Ob(Π1X) = X0 for any profinite space X.

Proof.

(i) Let X = {Xi} be a profine space and A = {Aj} a profinite groupoid. We see that

HomĜ(Π1X,A) = HomĜ(lim
i

Π̂c
1Xi, {Aj}) ∼= lim

j
colim

i
HomĜ(Π̂c

1Xi, Aj)

∼= lim
j

colim
i

HomG(Πc
1Xi, Aj) ∼= lim

j
colim

i
HomScofin

(Xi, BAj)

∼= HomŜ(X,BA),

where all isomorphisms are natural, hence Π1 a B. Since B is fully faithful, we see
that Π1BA = A for any profinite groupoid A.

(ii) This follows from Proposition 2.31.

(iii) Let | · |G : Ĝ → G be the functor that maps a profinite groupoid to its limit in G,

and let | · |S : Ŝ→ S map a profinite space to its limit in S. Both of these functors
are right adjoint to a profinite completion functor. We therefore see that the functor

(̂·) ◦ Πc
1 is left adjoint to B ◦ | · |G, and Π1 ◦ (̂·) is left adjoint to | · |S ◦ B. As B

preserves limits, we see that B ◦ | · |G and | · |S ◦ B are naturally isomorphic. By

uniqueness of adjoints, we see that there is a canonical isomorphism Π1(X̂) ∼= Π̂c
1X.

(iv) Note that for finite simplicial sets X, π0(X) = π0Π1X. Since both π0 and π0Π1 are

functors Ŝ → Ŝet that preserve cofiltered limits, and they agree on Scofin, we see
that they are naturally isomorphic by Proposition 2.31.

3It is mistakenly assumed that Πc
1X is a finite groupoid for any X ∈ Scofin in [Hor17], in between

Remark 5.6 and Proposition 5.7
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(v) Left to the reader. �

One can similarly define the fundamental group π1(X, x) by writing X, with basepoint
x, as a cofiltered limit {Xi} of simplicial finite sets with basepoints xi. Then π1(X, x) is

defined as limi
̂π1(Xi, xi). This is clearly equivalent to the following definition.

Definition 4.19. Let X be a profinite space and x ∈ X0. Then define π1(X, x) :=
(Π1X)(x), the automorphism group of Π1X at x ∈ Ob(Π1X). ♦

4.3 Principal G-bundles and H1(X ;G)

In this section we will study principal G-bundles over profinite spaces, for profinite groups
G. We will prove a profinite analogue of the statement that BG classifies principal G-
bundles. This will allow us to view the set of principal G-bundles over a profinite space
X as H1(X;G), the first cohomology class of X with coefficients in a (not necessarily
abelian!) profinite group G.

First recall the following definition.

Definition 4.20. Let G be a group and X, E simplicial sets. An action of G on E is a
group homomorphism G→ Aut(E). A simplicial set E together with an action of a group
G is called a G-space. The quotient E/G is the simplicial set defined by (E/G)n = En/G
for each n ∈ N. A map p : E → X is called a principal G-bundle if G acts freely on E, p
is G-invariant and p induces an isomorphism E/G→ X. ♦

Example 4.21. For G a group, we can construct the simplicial set BG as in Defini-
tion 3.10, where we view G as a groupoid with one object. Then (BG)n = Gn. For an
object (g1, . . . , gn) of (BG)n, we have

d0(g1, . . . , gn) = (g2, . . . , gn)

dn(g1, . . . , gn) = (g1, . . . , gn−1)

di(g1, . . . , gn) = (g1, . . . , gi−1, gi+1gi, gi+2, . . . gn) for 0 < i < n

si(g1, . . . , gn) = (g1, . . . , gi, e, gi+1, . . . , gn).

Define the simplicial set EG by (EG)n = Gn+1, and define the face maps and degeneracy
maps by

di(g0, . . . , gn) = (g0, . . . , gi−1, gi+1gi, gi+2, . . . , gn) for 0 ≤ i < n

dn(g0, . . . , gn) = (g0, . . . , gn−1)

si(g0, . . . , gn) = (g0, . . . , gi−1, gi, gi, gi+1, . . . , gn).

Define the map p : EG → BG by p(g0, . . . , gn) = (g1, . . . , gn). There is an action of G
on EG given by h · (g0, . . . , gn) = (g0h

−1, . . . , gn). The reader is invited to check that
p : EG→ BG is a principal G-bundle. This bundle is called the universal G-bundle, and
BG the classifying space of G, names which are justified by the following theorem. Note
that the above constructions also work for profinite groups G, giving (BG)n and (EG)n
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the product topology. Furthermore note that EG = B(G � G), and that p : EG → BG
comes from the map G � G → G∗ which maps an arrow g → h in G � G to hg−1. The
reader should verify that EG is 0-coskeletal. ♦

The following well-known theorem states that principal G-bundles are classified by
homotopy classes of maps to BG.

Theorem 4.22 ([GJ09, Theorem V.3.9]). The space BG classifies principal G-bundles.
More specifically, for any simplicial set X, there is a bijection between homotopy classes
of maps X → BG and isomorphism classes of principal G-bundles E → X. This bijec-
tion is given by sending the class of a map f : X → BG to the pullback f ∗(EG)→ X of
EG→ BG.

In the rest of this section will prove a profinite version of the above theorem.

4.3.1 BG classifies profinite G-bundles

We of course start by defining profinite principal G-bundles.

Definition 4.23. Let X be a profinite space and G a profinite group. An action of G
on X is a levelwise continuous map G ×X → X satisfying the usual axioms of a group
action. A profinite space together with a group action of a profinite group G is called a
(profinite) G-space. ♦

Definition 4.24. Let p : E → X be a map of profinite spaces and let G be a profinite
group acting continuously on E. Then p is called a (profinite) principal G-bundle if p is
G-invariant and induces an isomorphism E/G→ X. A morphism of principal G-bundles
over X is a G-equivariant map f : E → E ′ of profinite spaces. ♦

Example 4.25. The above example of the principal G-bundle EG→ BG can be gener-
alized to the context of profinite G-bundles. Note that if G is a profinite group, then Gn

is a Stone space for every natural number n, so we can view EG and BG as objects of Ŝ.
We again see that EG = B(G �G), where G �G is a profinite groupoid. ♦

Example 4.26. This example is similar to the above one, and can be seen as a gener-
alization. If we are given a profinite groupoid A and an object x ∈ A, we can form the
profinite groupoid A ↓ x whose objects are arrows x′ → x in A with target x, and whose
arrows are commutative diagrams of the form

x′′ x′

x.

To see that we can define a profinite groupoid this way, let A = {Ai} and let xi ∈ Ob(Ai)
correspond to x for every i. If we then set A ↓ x = {Ai ↓ xi}, we see that A ↓ x is a
profinite groupoid satisfying Ob(A ↓ x) = {α ∈ Ar(A) | t(α) = x} and Ar(A ↓ x) =
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Ob(A ↓ x)×Ob(A) Ar(A). The forgetful functor A ↓ x→ A is then a morphism of profinite
groupoids.

Note that the profinite group A(x) acts on A ↓ x. On objects, this action is given
by α · β = αβ, where α ∈ A(x) and where β : x′ → x is an object of A ↓ x. If A is a
connected profinite groupoid, then this action makes B(A ↓ x) → BA into a principal
A(x)-bundle. ♦

To deduce the main result about profinite principal G-bundles, we need a few lemmas.

Lemma 4.27. Let f : E → E ′ be a morphism of principal G-bundles over X. Then f is
an isomorphism.

Proof. Let p : E → X and p′ : E ′ → X be the quotient maps. Since fn : En → E ′n is a
map of Stone spaces for each n ≥ 0, we just need to show that fn is a bijection for every n.
For injectivity, assume fn(y) = fn(z) for y, z ∈ En. Then p(y) = p(z), since p = p′f . We
can therefore pick g ∈ G such that g · y = z. Then fn(z) = fn(g · y) = g · fn(y) = g · fn(z).
Since G acts freely on En, we see that g = e, hence z = e · y = y.

For surjectivity, let y′ ∈ E ′n. Choose y ∈ En such that p′(f(y)) = p(y) = p′(y′). Such
a y always exists since the fibers of E → X are nonempty Then there is some g ∈ G such
that g ·f(y) = y′. Since f is G-equivariant, we see that f(g ·y) = y′, so f is surjective. �

Lemma 4.28. Let X be a profinite G-space for some profinite group G. There is a 1-1
correspondence between continuous G-equivariant maps X0 → G, with G acting on itself
from the left, and G-equivariant maps of profinite spaces X → EG.

Proof. Note that G acts on (EG)0 = G by g · h = hg−1. As a profinite G-set, this is
isomorphic to G acting on itself from the left, under the isomorphism G→ G, h 7→ h−1.
So a G-equivariant map X0 → G is the same as a G-equivariant map X0 → (EG)0.
Noting that EG is 0-coskeletal, this is the same as a G-equivariant map X → EG. �

Lemma 4.29. Let p : E → X be a (profinite) principal G-bundle. Then for any n > 0
and any 0 ≤ i ≤ n, the square

En En−1

Xn Xn−1

di

pn pn−1

di

is a pullback.

Proof. Let n > 0 and 0 ≤ i ≤ n be given. To see that the above square is a pullback,
consider the continuous map En → Xn ×Xn−1 En−1 given by y 7→ (pn(y), di(y)), arising
from the universal property of the pullback. This is a map of principal G-bundles over
Xn, so it is an isomorphism by Lemma 4.27. �

Proposition 4.30. Let f, g : X → X ′ be homotopic maps of profinite spaces and let
E → X ′ be a principal G-bundle. Then f ∗E and g∗E are isomorphic as G-bundles over
X ′ by a canonical isomorphism.
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Proof. Let h : X × ∆1 → X ′ be a homotopy from f to g, and let ι0, ι1 be the inclusion
X → X ×∆1 at the vertices 0 and 1 of ∆1. Then hι0 = f and hι1 = g, so f ∗E and g∗E
are the pullback of h∗E along ι0 and ι1 respectively. We therefore are reduced to proving
that for any profinite space X and any bundle E → X × ∆1, the bundles ι∗0E and ι∗1E
are isomorphic. We will show that ι∗0E ×∆1 is isomorphic to E. By a similar argument
ι∗1E ×∆1 ∼= E, and the result will follow.

To see that ι∗0E ×∆1 ∼= E, note that by Lemma V.3.4 of [GJ09], there exists such an
isomorphism φ which agrees with the inclusion ι∗0E ↪→ E on ι∗0E × {0} if we forget the
topology on ι∗0E ×∆1, E and G. We will show that such an isomorphism is continuous.
From this proof it will also follow that φ is the unique isomorphism ι∗0E ×∆1 ∼= E which
extends the inclusion ι∗0E ↪→ E.

Note that we can write (ι∗0E×∆1)1 as a disjoint union tα∈(∆1)1
ι∗0E1. On the component

corresponding to s0(0) ∈ (∆1)1, we see that φ1 is just the inclusion of (ι∗0E)1 into E1, hence
continuous. Write D for the component corresponding to the nondegenerate 1-simplex 01
connecting the vertices 0 and 1. Then d1φ1 = φ0d1, where φ0 is the inclusion of (ι∗0E)0

into E0, so in particular φ0 is continuous. We therefore see that φ1|D must be the map
arising from the pullback

D

E1 E0

(X ×∆1)1 (X ×∆1)0.

φ0d1

φ1|D

d1

d1

In particular, φ1|D is continuous. By similar arguments one can show that φ is continuous
on (ι∗0E)0 × {1} and on the third component of (ι∗0E × ∆1)1, the one corresponding to
s0(1) ∈ (∆1)1. This means that φ0 and φ1 are continuous. Now note that φn can be
obtained from φn−1 via the pullback

(ι∗0E ×∆1)n

En En−1

(X ×∆1)n (X ×∆1)n−1,

φn−1d0

φn

d0

d0

so we conclude by induction that φn is continuous for every n. �

Theorem 4.31. Let X be a profinite space and G a profinite group. Let PBG(X) denote
the set of isomorphism classes of principal G-bundles over X. Then the map

φ : [X,BG]→ PBG(X); f 7→ f ∗EG

is a bijection.
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Proof. This map is well-defined by Proposition 4.30. For surjectivity of φ, let p : E → X
be a principal G-bundle. Since E0 is a Stone space and G acts freely on E0, we see by
Proposition 2.61 that E0 is isomorphic to G×X0 as a G-space, so in particular there exists
a G-equivariant map E0 → G. By Lemma 4.28, there is G-equivariant map f ′ : E → EG
extending this map. This map factors through the quotients as a map f : X → BG. We
claim that E ∼= f ∗EG. By the universal property of the pullback, there exists a map
g : E → f ∗EG making the diagram

E

f ∗EG EG

X BG

f ′

p

g

f

commute. This is in particular a map of G-bundles, hence an isomorphism by Lemma 4.27.
For injectivity of φ, let f, g : X → BG and assume that f ∗EG ∼= g∗EG. We can

identify both f ∗EG and g∗EG with the same vector bundle p : E → X. Then there exist
commutative squares

E EG E EG

X BG X BG,

f ′

p

g′

p

f g

where f ′ and g′ are G-equivariant. If we can construct a G-equivariant homotopy from
f ′ to g′, then we will obtain an induced homotopy f ' g. To do this, note that E ×∆1

is naturally a G-space, where we let G act trivially on ∆1. A G-equivariant homotopy
E × ∆1 → EG is then the same as a G-equivariant map (E × ∆1)0 → (EG0). Since
(E×∆1)0 = E0×{0, 1}, we can define such a G-equivariant map h0 by h0(y, 0) = f ′0(y) and
h0(y, 1) = g′0(y). By Lemma 4.28, we obtain a G-equivariant homotopy h : E×∆1 → EG
with h(·, 0) = f ′ and h(·, 1) = g′, and therefore a homotopy f ' g. �

Remark 4.32. The above theorem can in fact be strengthened a bit. One can give
[X,BG] and PBG(X) both the structure of a groupoid. For [X,BG] the objects of
this groupoid are morphisms f : X → BG, and the arrows of this groupoid are simpli-
cial homotopies. Two homotopies can be composed using the fact that horns in BG
have unique fillers. For PBG(X), the objects are principal G-bundles and the arrows
are morphisms of principal G-bundles, which are always isomorphisms. The above map
φ : [X,BG] → PBG(X) can be interpreted as a morphism of groupoids. We constructed
an isomorphism f ∗EG → g∗EG out of a homotopy H from f to g in Proposition 4.30.
We constructed this isomorphism by considering a certain lift ι∗0E ×∆1 → H∗EG, where
H : X ×∆1 → BG is the homotopy. It can be shown that this lift is unique, and there-
fore that there is a canonical isomorphism f ∗EG → g∗EG corresponding to H. One
can also show that the composition of two homotopies corresponds to the composition of
the induced isomorphisms, so φ is indeed a morphism of groupoids. The above theorem



4.3. PRINCIPAL G-BUNDLES AND H1(X;G) 85

then states that φ induces a bijection on the connected components of these groupoids.
However, more can be shown, namely that φ is also fully faithful, and hence that φ is
an equivalence of groupoids. To see this, one needs to show that for any f : X → BG,
φ induces a bijection between the homotopies f ' f and automorphisms of f ∗EG. By a
careful analysis of how, in the proof of Theorem 4.31, one obtains an isomorphism from
a homotopy, and how one obtains a homotopy from an isomorphism, this indeed follows.
We leave this to the reader to verify, as we will not explicitly need it. ♦

Recall that for simplicial sets, there is a natural bijection between H1(−;A) and
[−, BA], where A is any abelian group.

Definition 4.33. Let X be a profinite space and G a profinite group. Define the first
cohomology group of X with coefficients in G by

H1(X;G) := [X,BG]. ♦

Remark 4.34. In general, H1(X;G) does not have the structure of a group, so we

should view H1(−;G) as a contravariant functor Ŝ → Set. Note that since cohomology
is contravariant, cofiltered diagrams are mapped to filtered diagrams. This is why the
codomain of H1(−;G) is Set = Ind(FinSet) instead of Ŝet. ♦

Proposition 4.35. Let A be a profinite groupoid. Then [X,BA] = HomπĜ(Π1X,A).

Proof. Note that there is a 1-1 correspondence between HomŜ(X,BA) and HomĜ(Π1X,A).
To see that this 1-1 correspondence takes homotopic maps to homotopic maps, it is enough
to note that (ev0, ev1) : (BA)∆1 → (BA)2 is equal to B(ev0, ev1) : B(AI[1])→ B(A2). This
is left as an exercise to the reader. �

Corollary 4.36. Let X = limiXi be a cofiltered limit of profinite spaces, and let G be a
finite group. Then H1(X;G) ∼= colimiH

1(Xi;G).

Proof. If we combine the above proposition and Proposition 3.38, then we see that

H1(X;G) ∼= HomπĜ(Π1X,G∗) ∼= colim
i

HomπĜ(Π1Xi, G∗) ∼= colim
i

H1(Xi;G),

using that G is finite. �

Corollary 4.37. Let f : X → Y be a map of profinite spaces. Then Π1f : Π1X → Π1Y is
a weak equivalence if and only if π0(f) and f ∗ : H1(Y ;G)→ H1(X;G) are isomorphisms
for all finite groups G.

Proof. By the above proposition, H1(Y ;G) → H1(X;G) is an isomorphism precisely
if HomπĜ(Π1Y,G∗) → HomπĜ(Π1X,G∗) is so. Furthermore, the fact that π0(f) is an
isomorphism is equivalent to π0Π1f being an isomorphism, which is equivalent to the
map HomπĜ(Π1Y,DiscS) → HomπĜ(Π1X,DiscS) being an isomorphism for all finite
sets S. Combining these two things and Proposition 3.33 implies the desired result. �
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Corollary 4.38. Let X be a connected profinite space, let x ∈ X0 and let G be a profinite
group. Then there is a 1-1 correspondence between isomorphism classes of principal G-
bundles and continuous homomorphisms π1(X, x)→ G up to inner automorphism, i.e.

PBG(X) ∼= H1(X;G) ∼= HomĜrp(π1(X, x), G)/G,

where G acts on HomĜrp(π1(X, x), G) by conjugation.

Proof. Note that PBG(X) ∼= [X,BG]. By Proposition 4.35 and the fact that the inclusion
π1(X, x)→ Π1X is a homotopy equivalence by Theorem 3.52, we obtain isomorphisms

[X,BG] ∼= HomπĜ(Π1X,G∗) ∼= HomπĜ(π1(X, x)∗, G∗).

The result now follows by noting that two maps f, g : π1(X, x)∗ → G∗ are homotopic
precisely if there is an inner automorphism h : G→ G such that fh = g. �

4.4 Cohomology with local coefficients

Recall that instead of defining (co)homology with coefficients in a fixed abelian group, it is
also possible to define (co)homology with coefficients in a so-called local system of abelian
groups. The advantage of defining (co)homology with local coefficients, is that it takes
into account the action of the fundamental group of the space. In this section, we will
define cohomology with local coefficients for profinite spaces. We follow Quick’s approach
in [Qui08], making some slight modifications and filling in some gaps. His approach is
based on the alternative characterization of cohomology with local coefficients as given in
[GJ09].

Remark 4.39. The approach to cohomology with local coefficients for profinite spaces
presented in this section, is actually not the right one. The problem lies in the definition
of a local coefficient system on a profinite groupoid. This definition does not really take
the profinite structure of the groupoid into account. If we view a profinite groupoid A as
a topological groupoid (see section 3.2), then the definition of a local coefficient system
given below only takes into account the topology present on A(x, y) for all x, y ∈ Ob(A),
but not the topology present on Ob(A) or Ar(A). Especially if π0(A) is not finite, this may
lead to strange behaviour of cohomology with local coefficients. As an example, see part
(i) of Lemma 4.48. This statement involves a product, but a statement involving cofiltered
limits and filtered colimits should actually be expected. However, in the rest of this thesis,
we only need to consider finite local coefficient systems on finite groupoids. These are, of
course, simply functors to the category of finite abelian groups FinAb, since both finite
abelian groups and finite groupoids have discrete topologies. In particular, there is no
extra structure present that has to be taken into account in the definition of a finite local
coefficient system on a finite groupoid. We do obtain the right definition of cohomology
with local coefficients in this case, so we will not encounter any real problems in the rest
of this thesis by using the definition presented in this section.

The author has found several ways of defining profinite local coefficient systems which
fix the above issue, but unfortunately he did not have enough time to work this out.
This section will hopefully be rewritten somewhere in the near future, using the correct
definition of a profinite local coefficient system. ♦
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4.4.1 Profinite local coefficient systems

Definition 4.40. Let A be a profinite groupoid. A (profinite) local coefficient system M
on A is a functor M : A→ Âb such that, for any x, y ∈ Ob(A), the map

A(x, y)×M(x)→M(y); (α,m) 7→ M(α)(m)

is continuous. Here Âb is the category of profinite abelian groups and A(x, y) is the

profinite set of arrows x→ y in A. By a functor A→ Âb, we mean a functor |A| → Âb,
where |A| is the underlying groupoid of the profinite groupoid A. ♦

Definition 4.41. Let X be a profinite space. A (profinite) local coefficient system on X
is a profinite local coefficient system on Π1X. ♦

Remark 4.42. Local coefficient systems are a generalization of G-modules for (profinite)
groups G. Indeed, viewing G as a (profinite) groupoid with one object, we see that a
(profinite) local coefficient system on G is the same as a G-module. ♦

Example 4.43. As an example, consider the space X = ∆1/∂∆1. We see that Π1X =

Ẑ, so local coefficient systems on X are Ẑ-modules (where we view Ẑ as a group, not

as a ring!). An example of a Ẑ-module could be any finite abelian group A with a

distinguished automorphism σ : A→ A. To see this, note that a Ẑ-module structure on A
is just a continuous map Ẑ→ Aut(A), hence, by the universal property of Ẑ, just a map
Z → Aut(A). Maps Z → Aut(A), however, simply correspond to elements of Aut(A).
In particular, a finite local coefficient system on X is a finite abelian group A with a
distinguished automorphism. ♦

Recall the construction of A ↓ x of example Example 4.26, together with the A(x)-
bundle map A ↓ x → A. Any arrow x → y in A induces a morphism A ↓ x → A ↓ y
by composition, which commutes with the maps A ↓ x → A, so we obtain a functor
A → Ĝ/A. Here Ĝ/A is the category whose objects are morphisms with codomain A,
and whose morphisms are commutative triangles, similarly to the definition of A ↓ x.
Composing with the functor B : Ĝ → Ŝ defines a functor A → Ŝ/BA. Define, for any

f : X → BA in Ŝ/BA, the functor X̃ : A→ Ŝ by the pullback

X̃(a) B(A ↓ a)

X BA
f

for any a ∈ Ob(A). Since any arrow a → a′ in A induces a map B(A ↓ a) → B(A ↓ a′),
we also obtain a map X̃(a) → X̃(a′) from the universal property of the pullback. X̃ is
called the covering system of f . Any commutative triangle

X Y

BA
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induces a natural transformation X̃ → Ỹ , also following from the universal property of
the pullback. Note that given a covering system X̃, we obtain for any n the functor
X̃n : A→ Ŝet, mapping a ∈ Ob(A) to the profinite set of n-simplices of X̃(a).

Definition 4.44. Let A be a profinite groupoid, X → BA a map of profinite spaces, and
let M be a local coefficient system on A. Define the cochain complex C

∗
A(X;M) by

C
n

A(X;M) = {all natural transformations X̃n →M},

where we viewM as a functor landing in Ŝet. We define the cochain complex C∗A(X;M)
to consists of those natural transformations that are zero on all degenerate simplices of

X. Note that the maps di : X̃n+1 → X̃n induce maps d∗i : C
n

A(X;M) → C
n+1

A (X;M).
Define the differential by

dn : Cn
A(X;M)→ Cn+1

A (X;M); dn =
n+1∑
i=0

(−1)id∗i .

If A = Π1X and X → BΠ1X is the unit of the adjunction Π1 a B, then write
C∗(X;M) := C∗Π1X

(X;M). We usually write d for dn. ♦
Note that in the above definition, the simplicial identities for di and sj ensure that

d(µ) vanishes on all degenerate simplices if µ : X̃n → M does so. The cochain complex
C∗A(X;M) can be seen as the normalized version of C

∗
A(X;M). Note that we can also

view Cn
A(X;M) as the collection of natural transformationN(X̃n)→M, where byN(X̃n)

we denote the non-degenerate simplices of X̃n.

Definition 4.45. Let A,M and X → BA be as above. Define the cohomology of X with
local coefficients in M, denoted H∗A(X;M), to be the cohomology of the chain complex
C∗A(X;M). As above, if A = Π1X, we write H∗(X;M) := H∗A(X;M). ♦

It is not hard to see that C∗A(−;M) is a contravariant functor Ŝ/BA → coCh≥0, by
using the above observation that any map X → Y over BA induces a map of covering
systems X̃ → Ỹ . In particular, H∗A(−;M) is a contravariant functor.

We should also investigate what happens if we are given a map of profinite groupoids
f : A → C. Let such a map be given and let M be a local coefficient system on C.
Precomposition with f gives a local coefficient system f ∗M on A. Now assume we are
given a map of profinite spaces X → BA. Composition with Bf : BA → BC gives
us a map X → BC. Denote the corresponding covering systems by X̃A and X̃C . The
map f : A → C induces maps A ↓ a → C ↓ f(a), so the universal property of the

pullback gives us natural maps X̃A(a) → X̃C(f(a)). Precomposition with these maps
induces a map of chain complexes C∗C(X;M) → C∗A(X; f ∗M) and in particular a map
f ∗ : H∗C(X;M)→ H∗A(X; f ∗M) in cohomology.

Now let f : X → Y be profinite spaces, and M a local coefficient system on Y . If
we now combine the above two cases, with A = Π1X and C = Π1Y , then we obtain a
chain map C∗(Y ;M) → C∗(X; f ∗M) and hence a map f ∗ : H∗(Y ;M) → H∗(X; f ∗M)
in cohomology. Here f ∗M is the local coefficient system on X obtained by precomposing
M : Π1Y → Âb with Π1f : Π1X → Π1Y . We first look at the behaviour of H∗A with
respect to cofiltered limits.
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Proposition 4.46. Let A be a finite groupoid, M a finite local coefficient system on A
and let X = limi∈I Xi be a cofiltered limit of profinite spaces. Furthermore let a map
X → BA be given. Then H∗A(X;M) = colimi∈Iop H

∗
A(Xi;M).

Proof. Without loss of generality, assume the index category I is a codirected poset. The
statement that H∗A(X;M) = colimi∈Iop H

∗
A(Xi;M) is a slight abuse of notation, as we do

not have maps Xi → BA. However, since BA is a coskeletal simplicial finite set, we see
that X → BA factors through Xi for some i ∈ I, so we can define colimj∈Jop H∗A(Xj;M),
where J = {j ∈ I | j ≤ i}. Since the inclusion J ↪→ I is initial, we see that limj∈J Xj = X.

Note that Cn
A(X;M) consists of natural transformations X̃n → M, where X̃(a) =

X ×BA B(A ↓ a). Since pullbacks and limits commute, we see that X̃(a) = limj(Xj ×BA
B(A ↓ a)). Write X̃j for the covering system of Xj → BA, i.e. X̃j(a) = (Xj ×BA B(A ↓
a)). SinceM(a) is finite for every a, and A is finite, we see that any natural transforma-

tion X̃n → M factors through (̃Xj)n for some j ∈ J . Since HomŜet(X̃n(a),M(a)) ∼=
colimj HomŜet((X̃j)n(a),M(a)) holds for any a ∈ Ob(A), we see that Cn

A(X;M) =
colimj C

n
A(Xj;M). Since taking filtered colimits is an exact functor, we conclude that

colimj H
∗
A(Xj;M) = H∗(X;M). �

Corollary 4.47. Let {fi : Xi → Yi}i∈I be natural maps of profinite sets, indexed by a
cofiltered category. Let A be a finite groupoid, M a finite local coefficient system on A
and let natural maps Yi → BA be given. Assume that f ∗i : Hn

A(Yi;M) → Hn
A(Xi;M) is

an isomorphism for every i. Then f ∗ : Hn
A(Y ;M)→ Hn

A(X;M) is an isomorphism.

Proof. By the above proposition, f ∗ : Hn
A(Y ;M)→ Hn

A(X;M) is a filtered colimit of the
maps f ∗i : Hn

A(Yi;M)→ Hn
A(Xi;M), which are all isomorphisms. �

4.4.2 Homotopy invariance

The maps defined above, rather unsurprisingly, turn out to be invariant under homotopy.
We first need the following lemmas.

Lemma 4.48. Let X be a profinite space, A a profinite groupoid, f : X → BA a map
of profinite spaces and M a local coefficient system on A. Then the following properties
hold:

(i) For Ai ∈ π0A a connected component of A, write Xi for f−1(BAi) andMi for the re-
striction ofM to Ai. Then there is a canonical isomorphism

∏
Ai∈π0A

Hn
Ai

(Xi;Mi)→
Hn
A(X;M) for every n ≥ 0.

(ii) If A is connected, then for any a ∈ Ob(A), the chain complex C∗A(X;M) is naturally

isomorphic to the chain complex of A(a)-equivariant maps X̃n(a) → M(a). Here
A(a) denotes the profinite groups of arrows in A whose source and target is a.

Proof. For property (i), write X̃ for the covering system corresponding to X → BA and

X̃i for the covering system corresponding to Xi → BAi. It is straightforward to see that
a natural transformation µ : X̃n →M is the same as a tuple of natural transformations
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µi : (X̃i)n → Mi indexed by Ai ∈ π0(A). We therefore obtain a canonical isomorphism∏
Ai∈π0A

Cn
Ai

(Xi;Mi) → Cn
A(X;M) which induces the desired isomorphism on cohomol-

ogy.
To prove (ii), let A be a connected profinite groupoid and let a ∈ Ob(A). Note

that a natural transformation X̃n →M is uniquely determined by the A(a)-equivariant

map X̃n(a)→M(a), and that any such A(a)-equivariant map can be uniquely extended

to a natural transformation X̃n → M. This gives the desired isomorphism of chain
complexes. �

Lemma 4.49. Let A be a profinite groupoid, let X be a profinite space, let h : X ×∆1 →
BA be a homotopy from f to g and let X̃f , X̃g and X̃h be the corresponding covering
systems. Then there are (canonical) isomorphisms X̃f ×∆1 ∼= X̃h ∼= X̃g×∆1 over X×I,

such that the restrictions X̃f × {0} → X̃h and X̃g × {1} → X̃h are the inclusions of X̃f

and X̃g in X̃h.

Proof. Note that we can restrict to connected components of A. Indeed, let a ∈ Ob(A)
be given and let A′ be the connected component containing a. Then A ↓ a ∼= A′ ↓ a, since
any arrow with target a is contained in A′. For a homotopy h : X × ∆1 → BA, we see
that h−1(B(A′)) = X ′ ×∆1 for some X ′ ⊆ X, and

X̃h(a) = X ×BA B(A ↓ a) ∼= X ′ ×B(A′) B(A′ ↓ a) = (X̃ ′)h(a).

Therefore, when constructing the isomorphisms X̃f (a) ×∆1 ∼= X̃h(a) ∼= X̃g(a) ×∆1 for
all a ∈ A′, we can restrict our attention to the connected profinite groupoid A′ ⊆ A and
the profinite subspace X ′ ⊆ X. So from now on, assume A is connected.

Since A is connected, we see that the map B(A ↓ a)→ BA is a principal A(a)-bundle

for every a ∈ Ob(A). We will only construct the isomorphism X̃f × ∆1 ∼= X̃h, the
isomorphism for g is contructed similarly. By the proof of Proposition 4.30, we see that
there is a unique isomorphism φa

X̃f (a) X̃h(a)

X̃f (a)×∆1 X ×∆1

ι0
φa

of A(a)-bundles, for every a ∈ Ob(A), such that the restriction X̃f (a) × {0} → X̃h(a)

agrees with the inclusion X̃f (a) ↪→ X̃h(a).

We are left with proving naturality for these isomorphisms X̃f (a)×∆1 → X̃h(a). This
follows from their uniqueness. Assume we are given an arrow α : a′ → a. Then we get
induced isomorphisms α∗ : X̃

f (a′) → X̃f (a) and α∗ : X̃
h(a′) → X̃h(a). We need to show

that

X̃f (a′)×∆1 X̃h(a′)

X̃f (a)×∆1 X̃h(a)

φa′

α∗×id∆1 α∗

φa
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commutes. The arrow α also induces an isomorphism A(a′) → A(a) by conjugation,
which allows us to see the maps α∗ as maps of principal A(a)-bundles. The uniqueness of
the isomorphism φa now implies naturality. Namely, by the uniqueness of φa, we see that
φa = α∗ ◦ φa′ ◦ (α∗ × id∆1)−1, hence φa ◦ (α∗ × id∆1) = α∗ ◦ φa′ . �

Proposition 4.50. Let M be a local coefficient system on a profinite groupoid C.

(i) If f, g : X → Y are homotopic maps of profinite spaces and Y → BC is any map,
then f ∗, g∗ : HC(Y ;M)→ HC(X;M) are equal.

(ii) If f : A → C is weak equivalence of profinite groupoids, and X → BA is any map
of profinite spaces, then f ∗ : C∗C(X;M)→ C∗A(X; f ∗M) is an isomorphism.

(iii) If f : X → Y is a homotopy equivalence of profinite spaces and N is a local coefficient
system on Y , then f ∗ : H∗(Y ;N )→ H∗(X; f ∗N ) is an isomorphism.

Proof. (i) Let h be a homotopy from f to g. Denote the map Y → BC by φ. The maps
φf, φg : X → BC are then homotopic by the homotopy φ ◦ h. Using Lemma 4.49,
we see that there are natural isomorphisms X̃h ∼= X̃f × ∆1 ∼= X̃g × ∆1, and that
this restricts to an isomorphism X̃g → X̃f over X, by restricting the isomorphism
to X̃g × {1}. We therefore identify X̃g with X̃f . We have a commutative diagram
of the form

X̃f (c)×∆1

X̃h(c) Ỹ (c) B(C ↓ c)

X × I Y BC,

∼= h̃c

h φ

where the map h̃c is natural in c. We will omit the subscript c from the notation. The
map h̃ι0 is the map X̃f (c)→ Ỹ (c) obtained from the pullback along f . The map h̃ι1,

under the identification X̃f ∼= X̃g made above, is the map X̃f (c) → Y (c) induced
by g. We therefore need to show that the chain maps C∗C(Y ;M) → C∗C(X;M)

corresponding to h̃ι0 and h̃ι1 induce the same map in cohomology. By a standard
argument, we see that the homotopy h̃ induces a chain homotopy between these two
chain maps, so this is indeed the case. For an example of such an argument, dualize
the proof of [Lam68, Satz V.1.4], where homotopy invariance of homology is proved.

(ii) Let f : A→ C be a weak equivalence. Then f is fully faithful and essentially surjec-
tive. In particular, it induces an isomorphism π0(A) → π0(C), so by Lemma 4.48,
we can reduce to the case where A and C are connected. One can show in this case
that for any a ∈ Ob(A), the diagram

A ↓ a C ↓ f(a)

A C
f
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is a pullback square. If we write X̃A and X̃C for the covering systems corresponding
to X → BA and X → BA → BC respectively, then we see that the left and right
square of the diagram

X̃A(a) B(A ↓ a) B(C ↓ f(a))

X BA BC
Bf

are pullbacks (B preserves pullbacks since it is left adjoint), hence the whole square is

a pullback as well. This implies that the map X̃A(a)→ X̃C(f(a)) induced by f is an
isomorphism. By part (ii) of Lemma 4.48, we can view Cn

C(X;M) as the C(f(a))-

equivariant maps X̃C
n (f(a)) → M(f(a)), and Cn

A(X;M) as the A(a)-equivariant

maps X̃A
n (a) → M(f(a)). As f induces isomorphisms XA(a) → XC(f(a)) and

A(a) → C(f(a)), we see that the chain map f ∗ : C∗C(X;M) → C∗A(X; f ∗M) is
indeed an isormorphism.

(iii) Note that Π1 preserves homotopies, since Π1 preserves products and Π1∆1 = I[1].
In particular Π1f is a homotopy equivalence, hence a weak equivalence. The result
now follows from the fact that H∗(Y ;N )→ H∗(X; g∗N ) factors as H∗Π1Y

(Y ;N )→
H∗Π1Y

(X;N )→ H∗Π1X
(X; g∗N ). The map on the left is an isomorphism by part (i),

and the map on the right by part (ii) with A = Π1X and C = Π1Y . �

It is well known that the Eilenberg-MacLane spaces K(A, n) represent cohomology
with coefficients in some abelian group A. One way to prove this is by using the Dold-
Kan equivalence, as is done in [Lam68, §VIII.3]. We will construct profinite spaces similar
to K(A, n) which represent cohomology with local coefficients for profinite spaces X.

4.4.3 Representing cohomology with local coefficients

We first recall the situation for ordinary cohomology and the construction of K(A, n)
using the Dold-Kan equivalence. We will try to find a suitable translation to the situation
of profinite spaces and local coefficients. The Dold-Kan equivalence is an equivalence
M : sAb � Ch≥0 : D. Here M computes the so-called Moore complex of a simplicial
abelian group, and D recovers the simplicial abelian group from its Moore complex. The
functor M furthermore satisfies πn(A•) = Hn(M(A•)) for any simplicial abelian group
A•. The functor D is defined by

(DC∗)n =
⊕

[n]→[k]
surjective

Ck,

where the sum ranges over all possible order preserving surjections [n] → [k], for any
k. For more information on this functor, and a proof of the Dold-Kan equivalence, see
[Wei94, §8.4].

Note that there is also an adjunction Z[−] : sSet� sAb : U , where U is the forgetful
functor and Z[−] is levelwise the free abelian group on a simplicial set X, i.e. Z[X]n =
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Z[Xn]. Combining this with Dold-Kan equivalence, we obtain an adjunction C∗ : sSet�
Ch≥0 : D, where C∗ is just the (normalized) chain complex of X. Both the functors C∗
and D preserve homotopies, hence there is a natural bijection between homotopy classes
of maps [C∗(X), A∗] ∼= [X,D(A∗)] for every simplicial set X and chain complex A (see
[Lam68, Satz 2.3]4). Define, for an abelian group A and n ≥ 0, two chain complexes
k∗(A, n) and l∗(A, n) by

ki(A, n) =

{
A if i = n

0 if i 6= n
; li(A, n) =

{
A if i = n, n+ 1

0 if i 6= n

where the differential ln+1(A, n) → ln(A, n) is given by idA. Now define the simplicial
sets K(A, n) := D(k∗(A, n)) and L(A, n) := D(l∗(A, n)). Note that there is an obvious
map l∗(A, n) → k∗(A, n + 1), and hence a map L(A, n) → K(A, n + 1). Using the
properties of C∗ and D discussed above, one can deduce the following proposition. We
write Zn(X;A) = ker(Cn(X;A) → Cn+1(X;A)) and Bn(X;A) = im(Cn−1(X;A) →
Cn(X;A)) for the cocycles and coboundaries, respectively.

Proposition 4.51. Let X, Y be a simplicial set, f : X → Y a map, A an abelian group
and n ≥ 0.

(i) There are natural bijections

HomsSet(X,K(A, n)) ∼= Zn(X;A) and HomsSet(X,L(A, n)) ∼= Cn(X;A).

(ii) There is a natural bijection [X,K(A, n)] ∼= Hn(X;A).

(iii) f has the left-lifting property (llp) with respect to L(A, n) → ∗ if and only if
f ∗ : Cn(Y ;A) → Cn(X;A) is surjective. This is in particular the case if f is a
monomorphism.

(iv) f has the llp with respect to K(A, n) → ∗ if and only if f ∗ : Zn(Y ;A) → Zn(X;A)
is surjective, which in particular implies that f ∗ : Hn(Y ;A) → Hn(X;A) is surjec-
tive. If f is a monomorphism, then the converse also holds, i.e. f ∗ : Zn(Y ;A) →
Zn(X;A) is surjective if f ∗ : Hn(Y ;A)→ Hn(X;A) is surjective.

(v) If f has the llp with respect to L(A, n)→ K(A, n + 1), then (f ∗)−1(Bn+1(X;A)) ⊆
Bn+1(Y ;A), or, equivalently, f ∗ : Hn+1(Y ;A) → Hn+1(X;A) is injective. If f is
a monomorphism and f ∗ : Hn+1(Y ;A) → Hn+1(X;A) is an isomorphism, then the
converse holds as well.

The author is aware that the proof below is not the most efficient one, however it can
be directly translated to the case of cohomology of profinite spaces with local coefficients,
as we will see later.

4Although a relative version of the statement is proved there, the proof of the absolute case is identical.
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Proof. Statements (i) and (ii) follow directly by applying the adjunction C∗ a D and
noting that maps C∗(X)→ k∗(A, n) and C∗(X)→ l∗(A, n) are just cocycles and cochains,
see for example [Lam68, Satz VIII.3.6].

For the proof of statement (iii), note that by the adjunction C∗ a D, a lift in the
diagram

X L(A, n)

Y

f

is equivalent to a lift in the diagram

C∗(X) l∗(A, n)

C∗(Y ).

σ

f∗

Since chain maps C∗(X) → l∗(A, n) correspond to cochains Cn(X) → A, and similarly
for C∗(Y ), we see that a lift exists if and only if there is some τ ∈ Cn(X) such that
f ∗(τ) = σ. We conclude that the llp with respect to L(A, n) → ∗ is equivalent to
Cn(Y ;A) → Cn(X;A) being surjective. For the case that f is a monomorphism, note
that we can view Cn(X;A) as all possible maps N(Xn) → A, where N(Xn) denotes the
set of non-degenerate n-simplices of X. Since f induces an injection N(Xn) → N(Yn),
we see that any map N(Xn)→ A extends to a map N(Yn)→ A, hence f ∗ : Cn(Y ;A)→
Cn(X;A) is surjective.

Statement (iv) is similar. Again using the adjunction C∗ a D and noting that maps
C∗(X) → k∗(A, n) are cocycles, we see that the llp with respect to K(A, n) → ∗ is
equivalent to Zn(Y ;A)→ Zn(X;A) being surjective. Now assume f is a monomorphism
and f ∗ : Hn(Y ;A) → Hn(X;A) is surjective. Let σ ∈ Zn(X;A) be given. Then by
assumption σ = f ∗(τ) + d(ν) for some τ ∈ Zn(X;A) and some ν ∈ Cn+1(Y ;A). By part
(iii), we can pick ν ′ ∈ Cn+1(X;A) such that f ∗(ν ′) = ν. Then τ + d(ν ′) ∈ Zn(X;A) and
f ∗(τ + d(ν ′)) = σ, so indeed f ∗ : Zn(Y ;A)→ Zn(X;A) is surjective.

For statement (v), by similar arguments as above, the llp with respect to L(A, n) →
K(A, n + 1) is equivalent to the statement that for any σ ∈ Cn(X;A) and τ ∈ Zn(Y ;A)
such that f ∗(τ) = d(σ), there exists a ν ∈ Cn(Y ;A) such that d(ν) = τ and f ∗(ν) = σ.
This can be neatly phrased by stating that the map

Cn(Y ;A)→ Cn(X;A)×Zn+1(X;A) Z
n+1(Y ;A)

is surjective. This in particular implies that (f ∗)−1(Bn+1(X;A)) ⊆ Bn+1(Y ;A), i.e., that
f ∗ : Hn+1(Y ;A)→ Hn+1(X;A) is injective.

For the latter part of statement (v), assume that f is a monomorphism and that
f ∗ : Hn+1(Y ;A) → Hn+1(X;A) is an isomorphism. Then in particular f ∗ : Zn(Y ;A) →
Zn(X;A) is surjective by (iv). Assume that we are given some σ ∈ Cn(X;A) and τ ∈
Zn(Y ;A) such that f ∗(τ) = d(σ). From the injectivity of f ∗ : Hn+1(Y ;A)→ Hn+1(X;A)
we see that τ = d(τ ′) for some τ ′, and from the surjectivity of f ∗ : Cn(Y ;A)→ Cn(X;A),
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we see that f ∗(σ′) = σ for some σ′. Then d(f ∗(σ′ − τ ′)) = d(f ∗(σ′)) − f ∗(d(τ ′)) = 0,
so by surjectivity of f ∗ : Zn+1(Y ;A) → Zn+1(X;A), there is some ν ′ such that f ∗(ν ′) =
f ∗(σ′ − τ ′) and d(ν ′) = 0. Now set ν = ν ′ + τ ′. Then d(ν) = d(ν ′) + d(τ ′) = τ and
f ∗(ν) = f ∗(ν ′) + f ∗(τ ′) = f ∗(σ′) = σ, so ν ∈ Cn(Y ;A) defines the desired lift. �

We will now consider the case of profinite spaces and cohomology with local coefficients
over a profinite group. Note that we are working with profinite groups here, and not
groupoids. This will however be enough to prove the existence of the model structure in
section 4.5. Let a profinite group G be given, and let M be a profinite left-G-module,
i.e. a profinite abelian group with a continuous left-G-action. Recall that for an abelian
group A, the simplicial abelian groups L(A, n) and K(A, n) are levelwise just direct sums
of copies of A. In particular, we can define simplicial profinite abelian groups L(M,n)
and K(M,n) by endowing these simplicial abelian groups with the product topology in
every degree. Noting that, for every l ∈ N, there is a G-action on

⊕l
i=1 M by letting

G act on every copy of M simultaneously, we obtain a left action of G on L(M,n) and
K(M,n).

Recall that a map of simplicial sets f : X → L(M,n) corresponds to the n-cochain
N(Xn) → M given by x 7→ f(x) ∈ M = L(M,n), where N(Xn) is the set of non-
degenerate n-simplices of X. We therefore immediately see that for a profinite space
X with a continuous G-action, the G-equivariant maps X → L(M,n) correspond to G-
equivariant maps N(Xn) → M . Similarly the G-equivariant maps f : X → K(M,n)
correspond to G-equivariant maps σ : N(Xn)→ M such that dσ =

∑n
i=0(−1)iσ ◦ di = 0.

If we are given a map of profinite spaces X → BG, then the covering system X̃ of this
map consists of one space with a left-G-action. For the single object ∗ ∈ Ob(G∗), we see
that B(G∗ ↓ ∗) = EG, so the covering system of X → BG is simply the space EG×BGX
with its natural left-G-action.

Remark 4.52. Note that in the above discussion, a more formal approach is possible as
well. The categorie ÂbG of profinite G-modules can be shown to be abelian. In particular,
this implies that there is a Dold-Kan equivalence s(ÂbG) ' Ch≥0(ÂbG) which preserves

homotopies. The forgetful functor U : ÂbG → ŜetG has a left adjoint FG : Ŝet → ÂbG,
hence the forgetful functor U : s(ÂbG) → s(ŜetG) has a left adjoint as well. One can
show that this left adjoint also preserves simplicial homotopies. Composing this forgetful
functor with the equivalence s(ÂbG)→ Ch≥0(ÂbG) defines a homotopy-preserving func-

tor CG
∗ : s(ŜetG) → Ch≥0(ÂbG) left adjoint to D : Ch≥0(ÂbG) → s(ŜetG). It can be

shown that C∗G(X;M) as defined above is the dual of the complex CG
∗ (X). The above dis-

cussion on ordinary cohomology of simplicial sets therefore translates well to the context
of profinite sets and cohomology with local coefficients. ♦

The following proposition relates ŜG, the category of profinite spaces with a continuous
G-action, to Ŝ/BG, the category of profinite spaces over BG.

Proposition 4.53. For any profinite group G, there is an adjunction EG ×BG (−) a
EG×G (−), i.e. there is a natural bijection

HomŜG
(EG×BG X, Y ) ∼= HomŜ/BG(X,EG×G Y )
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for every X ∈ Ŝ/BG and Y ∈ ŜG. Here EG ×G Y is called the Borel construction or
the homotopy orbit space. These functors also preserve homotopies, in the sense that
G-equivariant homotopies are sent to homotopies over BG and vice versa.

Proof. The functor EG ×BG (−) : Ŝ/BG → ŜG is defined by taking the pullback. Re-
call that (EG)n = Gn+1, and that G acts from the left on EG by h · (g0, . . . , gn) =
(g0h

−1, . . . , gn). The G-action on EG ×BG X is simply defined to be the action of G on
EG.

For defining the functor EG×G (−) : ŜG → Ŝ/BG, recall that if G acts from the right
on the set Z, and form the left on W , then one defines

Z ×GW :=
Z ×W

{(zg, w) ∼ (z, gw)}
.

We define EG×GY by (EG×GY )n = EGn×GYn degreewise, with the obvious boundary
and degeneracy maps. Elements of EG ×G Y will be denoted as [g0, . . . , gn, y], where
[g0, . . . , gn, y] = [g0h

−1, . . . , gn, hy] for all h ∈ G. Note that as the map p : EG → BG
is G-invariant, it induces a map EG ×G Y → BG, explicitly given by [g0, . . . , gn, y] 7→
(g1, . . . , gn) in degree n. We also obtain, for every n, a map qn : (EG×G Y )n → Yn given

by qn([g0, . . . , gn, y]) = g0y. This map is not a map in Ŝ/BG however, as it generally does
not commute with the boundary maps.

Now assume we are given a map of profinite spaces f : X → BG, a profinite G-space
Y and a G-equivariant morphism φ : EG ×BG X → Y . Then we can define a morphism
φ̃ : X → EG ×G Y by φ̃(x) = [e, f(x), φ(e, f(x), x)], noting that f(x) ∈ Gn for x ∈ Xn.

It directly follows that φ̃ is a morphism in Ŝ/BG. For the converse, assume we are

given a morphism ψ : X → EG ×G Y . Then define a morphism ψ̃ : EG ×B GX → Y by
ψ̃(g0, . . . , gn, x) = g−1

0 ·q(ψ(x)). One can show that this indeed defines the desired natural
bijection

HomŜG
(EG×BG X, Y ) ∼= HomŜ/BG(X,EG×G Y ),

the details of which are left to the reader.
To see that these functors preserve homotopies, note that a G-equivariant homotopy

is just a G-equivariant map Y ×∆1 → Z for profinite G-spaces Y and Z, where G acts
trivially on ∆1. Similarly, a homotopy over BG is just a map X ×∆1 → W with X,W
spaces over BG, for which the square

X ×∆1 W

X BG

pX

commutes. Since EG ×BG (X × ∆1) = (EG ×BG X) × ∆1 and EG ×G (Y × ∆1) =
(EG×G Y )×∆1 in these two cases, we see that both functors preserve homotopies. �

Now note that HomŜG
(EG×BGX,L(M,n)) corresponds to the G-equivariant contin-

uous maps N((EG×BGX)n)→M as we saw above, which are by definition the elements
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of Cn
G(X;M), and that similarly HomŜG

(EG ×BG X,K(M,n)) ∼= Zn
G(X;M). We there-

fore define LG(M,n) := EG ×G L(M,n) and KG(M,n) := EG ×G K(M,n). Note that
LG(M,n) and KG(M,n) should be considered as profinite spaces over BG, i.e. they nat-
urally come with a map to BG. We can now translate Proposition 4.51 to the context of
profinite spaces and cohomology with local coefficients.

Proposition 4.54. Let G be a profinite group, M a G-module and n ≥ 0. For statements
(i) and (ii), let X → BG be an object of Ŝ/BG, and for statements (iii)-(v), let f : X → Y

be a morphism in Ŝ.

(i) There are natural bijections

HomŜ/BG(X,KG(M,n)) ∼= Zn
G(X;M) and HomŜ/BG(X,LG(M,n)) ∼= Cn

G(X;M).

(ii) There is a natural bijection [X,KG(M,n)] ∼= Hn
G(X;M). Here [X,KG(M,n)] con-

sists of the homotopy classes of maps X → KG(M,n) over BG, where the homo-
topies are also homotopies over BG.

(iii) f has the llp with respect to LG(M,n) → BG in Ŝ if and only if f ∗ : Cn
G(Y ;M) →

Cn
G(X;M) is surjective for any map Y → BG. This is in particular the case if f is

a monomorphism in Ŝ.

(iv) f has the llp with respect to KG(M,n) → BG in Ŝ if and only if f ∗ : Zn
G(Y ;M) →

Zn
G(X;M) is surjective for any map Y → BG, which in particular implies that

f ∗ : Hn
G(Y ;M) → Hn

G(X;M) is surjective. If f is a monomorphism, then the con-
verse also holds, i.e. f ∗ : Zn

G(Y ;M) → Zn
G(X;M) is surjective if f ∗ : Hn

G(Y ;M) →
Hn
G(X;M) is surjective.

(v) If f has the left-lifting property with respect to LG(M,n) → KG(M,n + 1), then
(f ∗)−1(Bn+1

G (X;M)) ⊆ Bn+1
G (Y ;M), or, equivalently, the map f ∗ : Hn+1

G (Y ;M) →
Hn+1
G (X;M) is injective for any map Y → BG. If f is a monomorphism and

f ∗ : Hn+1
G (Y ;M) → Hn+1

G (X;M) is an isomorphism for any map Y → BG, then
the converse holds as well.

Proof. For (i), note that we have HomŜ/BG(X,KG(M,n)) ∼= HomŜG
(EG×BGX,K(M,n)).

We already saw in the discussion below the proof of Proposition 4.51 that the latter is
naturally isomorphic to Zn

G(X;M). The proof for LG(M,n) is similar.
For (ii), note that we already have the bijection

HomŜ/BG(X,KG(M,n)) ∼= Zn
G(X;M)

from part (i). A map f : X → KG(M,n) is sent to a G-equivariant map f̃ : (EG ×BG
X)n → M . By Proposition 4.53, we see that a homotopy between maps f, g : X →
KG(M,n) over BG corresponds to a G-equivariant homotopy h : (EG ×BG X) × ∆1 →
K(M,n). We have seen in Proposition 4.51 that a homotopy h : (EG ×BG X) × ∆1 →
K(M,n) corresponds to a map h̃ : (EG ×BG X)n−1 → M satisfying dh̃ = f̃ − g̃. Un-
der this correspondence, G-equivariant homotopies are mapped to G-equivariant maps
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h̃ : (EG ×BG X)n−1 → M , a fact which we leave to the reader to check. In particular,

[f̃ ] = [g̃] in Hn
G(X;M) if and only if f ' g as maps over BG.

For statement (iii), assume we are given a square of the form

X LG(M,n)

Y BG.

σ̃

f

g

In particular, we have the maps g : Y → BG and gf : X → BG, so we can view Y
and X as spaces over BG. Under the natural bijection of part (i), σ̃ corresponds to
a σ ∈ Cn

G(X;M), and we see that a lift exists if and only if f ∗(τ) = σ for some τ ∈
Cn
G(Y ;M). We conclude that f has the llp with respect to LG(M,n) → BG if and only

if f ∗ : Cn
G(Y ;M)→ Cn

G(X;M) is surjective for any Y → BG.
Now assume f : X → Y is a monomorphism. We need to show that f ∗ : Cn

G(Y ;M)→
Cn
G(X;M) is surjective. This means that for any continuous G-equivariant σ : N((EG×BG

X)n)→M , there should be a continuousG-equivariant map τ : N((EG×BGY )n)→M for
which σ = τ ◦f . Since f is a monomorphism, it induces an injection N((EG×BGX)n)→
N((EG ×BG Y )n). Since G acts freely on EGn, it acts freely on N((EG ×BG Y )n). By
the lemma below, the desired τ exists.

The proofs of statements (iv) and (v) are analogous to the proofs in Proposition 4.51.
�

Lemma 4.55. Let G be a profinite group and M a profinite G-module. Then for any
injective G-equivariant map X → Y of free profinite G-sets, and any continuous G-
equivariant map f : X →M , there exists an extension Y →M making

X M

Y

f

commute.

The following proof is a modification of the proof of [Qui08, Lemma 2.7] to the case
of profinite G-modules and profinite G-sets.

Proof. Let a diagram of the form

X M

Y

f

be given, with X, Y free profinite G-sets. Let P be the set of pairs (S, s) with S ⊆ M
a closed sub-G-module, and s : Y → M/S an extension of X → M → M/S. We order
P by (S, s) ≤ (S ′, s′) if and only if S ′ ⊆ S and qs′ = s, where q : M/S ′ → M/S is the
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quotient map. This makes P into a poset, which is nonempty since (M, 0) ∈ P , where
0 denotes the trivial map. We want to apply Zorn’s lemma, so assume we are given a
chain {(Si, si)}i∈I in P . Define T = ∩i∈ISi. Then T is a closed submodule of M , and
M/T = limiM/Si. Let t : Y → T/M be the map limi si. Then (T, t) ∈ P , and (T, t)
is an upper bound for {(Si, si)}i∈I . By Zorn’s lemma, there exists a maximal element
(S, s) ∈ P . We will show that S = {0}, which concludes the proof.

Suppose S 6= {0}. Then pick an open submodule U ⊆M such that S∩U 6= S. Such a
submodule must exist since M = limV M/V by Theorem 2.57, where the limit ranges over
all open submodules V of M . Then U ∩ S is an open submodule of S, hence S/(U ∩ S)
is finite. There is a homeomorphism of Stone spaces M/(U ∩ S) ∼= M/S × S/(U ∩ S)
such that the quotient map M/(U ∩ S) → M/S corresponds to the projection onto the
first coordinate. To see this, note that by Proposition 1 of [Ser97, Chapter I], or Exercise
2.2.3 of [RZ10], there exists a continuous section σ : M/S → M/(U ∩ S) of the quotient
map M/(U ∩ S)→ M/S. (Note that since U is an open in M , it has finite index, hence
it is also closed.) The map

M/S × S/(U ∩ S)→M/(U ∩ S); ([m], [n]) 7→ (σ([m]) + [n])

then defines a continuous bijection, hence a homeomorphism. The problem of finding an
extension Y → M/(U ∩ S) is therefore reduced to finding an extension Y → M/S and
Y → S/(U ∩ S). For the first extension we take s, for the second extension we use the
following lemma, noting that S/(U ∩ S) is finite. Denote the constructed extension by
s′ : Y → M/S. Then (S ∩ U, s′) > (S, s), contradicting the maximality of (S, s). We
therefore conclude that S = {0}. �

Lemma 4.56. For a profinite group G, let X → Y be an injective map of profinite G-sets
and let f : X → Z be a map of profinite G-sets with Z finite. Assume furthermore that
G acts freely on X and Y . Then f can be extended to a map Y → Z.

Proof. Let X ↪→ Y be a monomorphism in ŜetG, i.e. a continuous, injective G-equivariant
map. We can just view X as a closed subspace of Y for which g · x ∈ X for any x ∈ X
and g ∈ G. By Proposition 2.61, there is a G-equivariant homeomorphism Y ∼= G × T
for some Stone space T , where G acts trivially on T . As X is a closed subspace of Y , we
see that this homeomorphism restricts to a homeomorphism X ∼= G× S for some closed
subspace S of T .

There is a 1-1 correspondence between continuous G-equivariant maps X → Z and
continuous maps S → Z, and similarly for Y . To see this, let h : S → Z be given. Then
we can associate to h the map G × S → Z which maps (g, x) to g · h(x). This reduces
the problem to showing that for an injection S ↪→ T of Stone spaces, any continuous
map S → Z with Z finite, nonempty and discrete can be extended to a continuous map
T → Z, which is indeed possible. �

4.5 A fibrantly generated model structure on Ŝ

In this section we will prove the existence of a fibrantly generated model structure on
Ŝ, as in Theorem 2.10 of Quick’s paper [Qui11a]. We first repeat the definition of weak
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equivalences, cofibrations and fibrations as given in Definition 2.9 of Quick’s paper, with
a slightly different definition of a weak equivalence.

Definition 4.57. A morphism f : X → Y in Ŝ is called

(i) a weak equivalence if the induced map Π1f : Π1X → Π1Y is a weak equivalence of
profinite groupoids, and f ∗ : Hn

G(Y ;M) → Hn
G(X;M) is an isomorphism for every

finite group G, every finite G-module M , every morphism Y → BG and every n ≥ 0;

(ii) a cofibration if f is a (levelwise) monomorphism; and

(iii) a fibration if it has the right-lifting property with respect to every cofibrations that
is also a weak equivalence. ♦

4.5.1 Weak equivalences

Before proving the existence of the fibrantly generated model structure on Ŝ, we will study
the notion of weak equivalence defined above. Like in the case of profinite groupoids, the
weak equivalences in Ŝ are stable under cofiltered limits.

Proposition 4.58. Weak equivalences in Ŝ are stable under cofiltered limits. More pre-
cisely, if {fi : Xi → Yi}i∈I is a diagram of morphisms of profinite sets, indexed by a
cofiltered category I, and fi is a weak equivalence of profinite spaces for every i, then the
limit f : limiXi → limi Yi is a weak equivalence.

Proof. Write X = limiXi and Y = limi Yi. Without loss of generality I is a codirected
poset. Since Π1 preserves cofiltered limits, we see that Π1f : Π1X → Π1Y is a weak
equivalence. Now let a finite group G, a finite G-module M and a map Y → BG be given.
Then Y → BG factors through Yi for some i. Let J consist of those j ∈ I that satisfy j ≤ i.
Then the inclusion J ↪→ I is initial, and f ∗j : H∗(Yj;M)→ H∗(Xj;M) is an isomorphism
for every j ∈ J . By Proposition 4.46, we see that f ∗ : H∗(Y ;M) → H∗(X;M) is the
colimit of the isomorphisms f ∗j : H∗(Yj;M)→ H∗(Xj;M), hence an isomorphism. �

In [Qui11a], Quick defines weak equivalences as maps f : X → Y which induce iso-
morphisms π0(X) → π0(Y ), π1(X, x) → π1(Y, f(x)) for every basepoint x ∈ X0, and
Hn(Y ;M) → Hn(X; f ∗M) for every local coefficient system of finite abelian groups
M on Y . Since weak equivalences between profinite groupoids are the same as essen-
tially surjective and fully faithful morphisms, we see that this is the same as asking that
Π1f : Π1X → Π1Y is an isomorphism of profinite groupoids, and that f ∗ : Hn(Y ;M) →
Hn(X; f ∗M) is an isomorphism for every local coefficient system of finite abelian groups
M on Y . We will show that this notion of weak equivalence agrees with the one that we
define above for maps between connected profinite spaces. This proof does not work for
profinite spaces that are not connected, and the proof of uses some ideas from the theory
of (profinite) covering spaces, which we develop in section 4.6. For these reasons we use
the notion of weak equivalence given in Definition 4.57, instead of the definition of a weak
equivalence given in [Qui11a].
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For a map f : X → Y of profinite spaces, Π1f : Π1X → Π1Y is a weak equivalence
precisely if π0(X)→ π0(Y ) is an isomorphism of profinite sets and π1(X, x)→ π1(Y, f(x))
is an isomorphisms for any basepoint x ∈ X0. We are therefore left with proving the
following proposition, if we want to show that both notions of weak equivalence agree for
connected profinite spaces. For the second part of the proof, the reader has to be familiar
with the covering space theory which we develop in section 4.6. The proof is given at this
stage, since it feels more natural to already include this proposition in this section.

Proposition 4.59. Let f : X → Y be a morphism of connected profinite spaces, and
assume that Π1f : Π1X → Π1Y is a weak equivalence. Then f ∗ : Hn

G(Y ;M)→ Hn
G(X;M)

is an isomorphism for every finite group G, every finite G-module M , every morphism
Y → BG and every n ≥ 0, precisely if f ∗ : Hn(Y ;N )→ Hn(X; f ∗N ) is an isomorphism
for every n ≥ 0 and every local coefficient system of finite abelian groups N on Y .

Proof. For the first direction, let a finite local coefficient system N on Y be given and
assume that f ∗ : H∗G(Y ;M) → H∗G(X;M) is an isomorphism for every finite group G,
every finite G-module M and every morphism Y → BG. The morphism Π1f : Π1X →
Π1Y is a weak equivalence, so by property (ii) of Proposition 4.50, we see that it induces
an isomorphism C∗Π1Y

(X;N ) → C∗(X; f ∗N ) of chain complexes. So f ∗ : H∗(Y ;N ) →
H∗(X; f ∗N ) is an isomorphism if f ∗ : H∗Π1Y

(Y ;N )→ H∗Π1Y
(X;N ) is so.

Now pick y ∈ Y . Note that the inclusion π1(Y, y)→ Π1Y is a homotopy equivalence,
which has a retract Π1Y → π1(Y, y) as homotopy inverse, by Lemma 3.51. By property
(ii) of Proposition 4.50, the following diagram commutes

C∗(Y,N ) C∗(Y, (ir)∗N ) C∗π1(Y,y)(Y, i
∗N )

C∗Π1Y
(X,N ) C∗Π1Y

(X, (ir)∗N ) C∗π1(Y,y)(X, i
∗N ),

∼=

f∗ f∗

∼=

f∗

∼= ∼=

where all horizontal maps are isomorphisms. We are therefore left with proving that
Hn
π1(Y,y)(Y, i

∗N ) → Hn
π1(Y,y)(X, i

∗N ) is an isomorphism for every n ≥ 0. Here i∗N is a

finite local coefficient system on π1(Y, y), or equivalently, a finite π1(Y, y)-module, for
which we will write N .

Since N is finite, the action of π1(Y, y) on N factors through a finite quotient G :=
π1(Y, y)/U of π1(Y, y). Note that Cn

π1(Y,y)(Y,N) is the collection of π1(Y, y)-equivariant

maps Yn×B(π1(Y,y))n E(π1(Y, y))n → N . Since the action of Π1(Y, y) on N factors through
G, we see that these are just the G-equivariant maps Y ′n → N , where we define Y ′

to be the quotient (Y ×B(π1(Y,y)) E(π1(Y, y)))/U . The profinite space Y ′ is canonically
isomorphic to Y ×BG EG over Y , so we see that we can just consider G-equivariant
maps Yn ×BGn EGn → N . However, this is the definition of Cn

G(Y,N), so the quotient
map π1(Y, y) → G induces an isomorphism Cn

π1(Y,y)(Y,N) → Cn
G(Y,N). Of course, this

argument works for any profinite space with a map to Bπ1(Y, y), in particular we also
obtain an isomorphism Cn

π1(Y,y)(X,N)→ Cn
G(X,N).

By assumption, the map f ∗ : H∗G(Y,N)→ H∗G(X,N) is an isomorphism. We therefore
see that f ∗ : H∗(Y ;N )→ H∗(X; f ∗N ) must be an isomorphism as well.
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For the converse, assume that f ∗ : H∗(Y ;N ) → H∗(X; f ∗N ) is an isomorphism for
every local coefficient system of finite abelian groups N on Y . Let a finite group G, a
morphism Y → BG and a finite G-module M be given. The morphism Y → BG factors as

Y BΠ1Y BG
η Bφ

for a certain morphism of profinite groupoids φ : Π1Y → G, where

η is the unit of the adjunction Π1 a B. We will show that φ∗ : C∗G(Y ;M)→ C∗(Y ;φ∗M)
is an isomorphism of chain complexes. The same argument will show that we also have
an isomorphism of chain complexes C∗G(X;M) → C∗(X; (φ ◦ Π1f)∗M), since X → BG
factors as

Y BΠ1Y BG.
η B(φ◦Π1f)

To see that φ∗ : : C∗G(Y ;M)→ C∗(Y ;φ∗M) is an isomorphism, note that by property
(ii) of Lemma 4.48 we can view Cn(Y ;φ∗M) as the π1(Y, y)-equivariant maps (Y ×BΠ1Y

B(Π1Y ↓ y))n → M for an arbitrary fixed basepoint y ∈ Y0. Here the action of π1(Y, y)
on M comes from the map φ : Π1Y → G, restricted to π1(Y, y). We will denote this
restriction to π1(Y, y) by φ as well. By Proposition 4.99, we see that Y ×BΠ1Y B(Π1Y ↓ y)
is a universal cover of Y with a distinguished basepoint (the point corresponding the

the identity arrow y → y in Π1Y ↓ y), so we will denote it by Ỹ from now on, and

its basepoint by ỹ. In particular, π1(Y, y) is the automorphism group of Ỹ as object
over Y , and it acts freely and transitively on each fiber. The map φ induces a canonical
map B(Π1Y ↓ y) → EG which maps the basepoint of B(Π1Y ↓ y) (the identity arrow
y → y of Π1Y ) to the basepoint 1 of EG, where 1 is the unit of G = (EG)0. By

the universal property of pullbacks, we obtain an induced map φ̃ : Ỹ → Y ×BG EG,
and the map φ∗ : : C∗G(Y ;M) → C∗(Y ;φ∗M) is given by mapping a G-equivariant map

σ : (Y ×BGEG)n →M to the π1(Y, y)-equivariant map σ ◦ φ̃ : Ỹ →M , where we use that

we can view C∗(Y, φ∗M) as the π1(Y, y)-equivariant maps Ỹ →M .

Since Ỹ is a universal cover of Y , we see that φ̃(Ỹ ) ⊆ Y ×BG EG is a (connected)
cover of Y by Proposition 4.86. If we identify the fiber above y with π1(Y, y), we see

that φ̃, when restricted to the fiber above y, is precisely the map φ : π1(Y, y) → G. In

particular, we see that that H := im(φ : π1(Y, y)→ G) acts on φ̃(Ỹ ). If h ∈ H, then the

map Ỹ → Y ×BG EG given by z 7→ h · φ̃(z) maps ỹ to h ∈ (EG)0, which is contained

in φ̃(Ỹ ). Since Ỹ is connected, we see that Ỹ gets mapped to the connected component

φ̃(Ỹ ) of Y ×BG EG. We see that h ∈ H precisely if h(φ̃(Ỹ )) = φ̃(Ỹ ) for every h ∈ H.

We will now show that restricting a map (Y ×BG EG)n → M to a map φ̃(Ỹ )n → M
gives a 1-1 correspondence between G-equivariant maps (Y ×BG EG)n → M and H-

equivariant maps φ̃(Ỹ )n → M . We then show that H-equivariant maps φ̃(Ỹ )n →
M correspond to π1(Y, y)-equivariant maps Ỹ → M . We denote the G-equivariant
maps (Y ×BG EG)n → M by HomG((Y ×BG EG)n,M), and similarly use the notation

HomH(φ̃(Ỹ )n,M) and Homπ1(Y,y)(Ỹn,M). For the first statement, let a G-equivariant map
σ : (Y ×BG EG)n → M be given. Since H is a subgroup of G, it is clear that restricting

to φ̃(Ỹ )n gives an H-equivariant map σ|φ̃(Ỹ )n
: φ̃(Ỹ )n →M . To see that the restriction to

φ̃(Ỹ )n induces an a bijection HomG((Y ×BGEG)n,M)→ HomH(φ̃(Ỹ )n,M), note that the

image of φ̃ : Ỹ → Y ×BG EG is a nonempty covering of Y . In particular, for any y′ ∈ Yn,
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there is a ỹ′ ∈ Ỹ such that φ̃(ỹ′) lies in the fiber above y′. Since G acts transitively and

freely on each fiber, and φ̃(Ỹ )n contains at least one point of every fiber over Y , we see

that an H-equivariant map σ′ : φ̃(Ỹ )n → M extends uniquely to a G-equivariant map

σ : (Y ×BG EG)n →M . This proves that HomG((Y ×BG EG)n,M)→ HomH(φ̃(Ỹ )n,M)
is a bijection.

To see that the map φ∗ : HomH(φ̃(Ỹ )n,M)→ Homπ1(Y,y)(Ỹn,M), given by precompo-
sition with φ, is a bijection, note that injectivity follows from the fact that φ is levelwise
a surjection. To see that φ∗ is a surjection, let σ : Ỹn → M be a π1(Y, y)-equivariant

map. We need to show that it factors through φ̃(Ỹ ), so let z, w ∈ Ỹn be given, and

assume φ̃(z) = φ̃(w). Then z and w lie in the same fiber over Y , so there is an

α ∈ π1(Y, y) such that α · z = w. Then φ̃(w)φ̃(α · z) = φ(α) · φ̃(z) = φ(α) · φ̃(w),

so φ(α) = 1, since H acts freely on φ̃(Ỹ ). We now see that σ(w) = σ(α · z) =

φ(α) · σ(z) = σ(z), so indeed σ factors through φ̃(Ỹ ). It is clear from the defini-
tion of the π1(Y, y)-module structure on M that it factors as an H-equivariant map,

so we conclude that φ∗ : HomH(φ̃(Ỹ )n,M) → Homπ1(Y,y)(Ỹn,M) is a bijection. Com-

bining this with the restriction map HomG((Y ×BG EG)n,M) → HomH(φ̃(Ỹ )n,M), we
see that φ∗ : Cn

G(Y ;M) → Cn(Y ;φ∗M) is an isomorphism for every n. In particular
φ∗ : H∗G(Y ;M) → H∗(Y ;φ∗M) is an isomorphism. By the similar argument for X, we
see that φ∗ : H∗G(Y ;M)→ H∗(Y ; (φ ◦ Π1f)∗M) is an isomorphism as well. Note that the
local coefficient system (φ ◦ Π1f)∗M is by definition equal to f ∗φ∗M . We now have the
commutative diagram

H∗G(Y ;M) H∗G(X;M)

H∗(Y ;φ∗M) H∗(X; f ∗φ∗M),

f∗

φ∗∼= φ∗∼=

f∗

∼=

where the bottom map is an isomorphism by assumption, noting that φ∗M is a finite
local coefficient system on Y . We conclude that the map HG(Y ;M) → HG(X;M) is an
isomorphism. �

As the proof of the two out of three property requires some work, we state it as a
seperate lemma.

Lemma 4.60. The class of weak equivalences is closed under retracts and satisfies the
two out of three property.

Proof. The proof for retracts is straightforward and left to the reader. For the two out
of three property, there is only one difficult case. Namely, showing that if f : X → Y
and g : Y → Z are morphisms such that gf and g are weak equivalences, then f is so
as well. We have already seen that if Π1g and Π1(gf) are weak equivalences, then this
also holds for Π1f . So what remains, is proving that f ∗ : Hn

G(Y ;M) → Hn
G(X;M) is an

isomorphism for all maps s : Y → BG and all finite G-modules M . The problem is that
such a map s does not need to factor through some map Z → BG, so in principle we do
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not have a commutative diagram of the form

Hn
G(X;M) Hn

G(Z;M)

Hn
G(Y ;M),

f∗

(gf)∗

∼=

g∗

∼=

since Hn
G(Z;M) is not defined. However, the map s : Y → BG does factor through

Z → BG up to homotopy, which will be enough to prove the desired statement.
Since Π1g is a weak equivalence, by definition the induced map HomπĜ(Π1Z,G∗) →

HomπĜ(Π1Y,G∗) is a bijection. By Proposition 4.35, g∗ : [Z,BG]→ [Y,BG] is a bijection,
so there is a map t : Z → BG such that tg ' s. Now note that the chain complex
C∗G(Y ;M) is given, in degree n, by the continuous G-equivariant maps (Y ×BG EG)n =
(s∗EG)n → M which are zero on degenerate simplices. By Proposition 4.30, s∗EG and
(tg)∗EG are isomorphic. This means that we can replace the map s : Y → BG by tg : Y →
BG in the definition of C∗G(Y ;M) and H∗G(Y ;M). Since sf and tgf are homotopic by
the same homotopy (precomposed with f), we can also replace the map sf : X → BG
by tgf : X → BG in the definition of H∗G(X;M). Since g and gf are weak equivalences,
we get a commutative diagram as above, and hence f ∗ : Hn

G(Y ;M) → Hn
G(X;M) is an

isomorphism for all n ≥ 0. �

4.5.2 The model structure

We define two (countable) sets of morphisms P and Q in Ŝ, which will be the generating
fibrations and generating trivial fibrations respectively. Let S be a countable set contain-
ing at least one representative for every isomorphism class of finite sets, let G be the set
of all finite groups whose underlying set is in S, and for every G ∈ G, let LG be the set of
all finite G-modules whose underlying set is in S. P consists of the following maps

(i) {0} ↪→ {0, 1};

(ii) S → ∗;

(iii) EG→ BG;

(iv) BG→ ∗;

(v) (ev0, ev1) : (BG)∆[1] → BG×BG;

(vi) LG(M,n)→ KG(M,n); and

(vii) KG(M,n)→ BG

for every finite set S ∈ S, every G ∈ G, every M ∈ LG and every n ≥ 0. Here S denotes
the discrete zero-dimensional simplicial set with S as it set of 0-simplices.

We define Q to be the set of morphisms

(i) EG→ ∗; and
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(ii) LG(M,n)→ BG

for every G ∈ G, every M ∈ LG and every n ≥ 0.
If Q is the set of generating trivial fibrations, and the cofibrations are the monomor-

phisms, then the monomorphisms should precisely be the maps having the left-lifting
property with respect to all maps in Q.

Lemma 4.61. The Q-projective maps are precisely the monomorphisms in Ŝ.

Proof. Note that a map in Ŝet
∆op

is a monomorphism precisely if it is levelwise a monomor-
phism. We will show that a morphism of profinite spaces f : X → Y is Q-projective if and
only if fn : Xn → Yn is a monomorphism for every n. To see that a monomorphism has
the left-lifting property with respect to EG→ ∗ for every finite group G, note that since
EG is 0-skeletal and (EG)0 = G, this follows since finite sets are injective objects in Ŝet.
By Proposition 4.54, property (iii), we see that f is in llp(Q) if fn is a monomorphism for
every n. For the converse, consider the case where G is the trivial group and M = Z/2.
Then the map LG(M,n)→ BG is just the map L(Z/2, n)→ ∗, so the left-lifting property
with respect to this map is equivalent to f ∗ : Cn(Y ;Z/2)→ Cn(X;Z/2) being surjective.
Note that Cn(X;Z/2) is just the collection of all maps N(Xn)→ Z/2, where N(Xn) are
the non-degenerate simplices of Xn, and the similar statement holds for Cn(Y ;Z/2). By
an argument similar to the proof of Lemma 3.54, this implies that f restricts to an injec-
tion N(Xn)→ N(Yn) (note that one also has to prove that fn(N(Xn)) ⊆ N(Yn)). One can
show that f is levelwise a monomorphism if and only if it restricts to a levelwise monomor-
phism on non-degenerate simplices, so we conclude that f is a monomorphism. �

In order to use the cosmall objects argument, we need that the codomains of all maps
in P and Q are cosmall. Since Ŝ = Pro(Scofin), this follows if they are (finite and)
k-coskeletal for some k. As this is not directly clear for KG(M,n), we prove this as a
lemma.

Lemma 4.62. For any finite group G and finite G-module M , the simplicial set KG(M,n)
is coskeletal.

Proof. We will show that KG(M,n) is (n + 1)-coskeletal. First note that K(M,n) is
(n + 1)-coskeletal. To see this, recall that K(M,n) is a minimal Kan complex (meaning
that K(M,n) → ∗ is a minimal fibration), and that its homotopy groups vanish above
degree n. Assume we are given a map ∂∆k → K(M,n), with k > n + 1. Noting that
πk−1(K(M,n)) vanishes, we can use arguments similar to the proof of Theorem I.7.10 of
[GJ09] to conclude that this map extends to a map ∆k → K(M,n). The vanishing of
πk(K(M,n)) then guarantees that this extension is unique up to homotopy (rel. ∂∆k).
Since K(M,n) is minimal, this implies that this extension is unique.

To complete the proof, we will show the general statement that if p : X → Z is a
principal G-bundle, Y a G-set and if Z and Y are both n-coskeletal, then X ×G Y is
n-coskeletal. This implies the lemma, since KG(M,n) = EG×GK(M,n). The definition
of X ×G Y is the same as the definition of EG×G Y as given in Proposition 4.53, where
we note that X has a right-G-action given by x · g = g−1x.
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Assume W : ∂∆k → X ×G Y is given with k > n. The map p : X → Z is G-invariant,
so it induces a map p′ : X ×G Y → Z. Then the map p′W : ∂∆k → Z uniquely extends
to a k-simplex z ∈ Zk. Let x ∈ Xk be a k-simplex such that p(x) = z. Now write
W = ([x0, y0], . . . , [xn, yn]), where [xi, yi] ∈ (X ×G Y )k−1 is the i-th face of W . We can
pick xi and yi such that dix = xi for every i, since G acts transitively on X, and yi is
uniquely determined by the choice of xi since G acts freely on X. We see that for any
i < j,

[dixj, diyj] = di([xj, yj]) = dj−1([xi, yi]) = [dj−1xi, dj−1yi].

Since dixj = dj−1xi for all i < j, and since G acts freely on X, we see that diyj = dj−1yi
for all i < j. This implies that (y0, . . . , yn) determines a map ∂∆k → Y . Let y ∈ Yk be the
unique k-simplex that extends this map to a map y : ∆k → Y . Then [x, y] ∈ (X ×G Y )k
is the unique k-simplex extending W : ∂∆k → X ×G Y . �

Theorem 4.63. The category Ŝ has a fibrantly generated model structure with the weak
equivalences, cofibrations and fibrations as in Definition 4.57. The set P is a set of
generating fibrations, and Q a set of generating trivial fibrations for this model structure.
Any object is cofibrant in this model structure.

Proof. We will check all the conditions of Theorem A.18. The class of weak equivalences
is closed under retracts and satisfies the two out of three property by Lemma 4.60.

1. To see that P and Q permit the cosmall object argument, we will show that the
domains of all the maps in P and Q are a coskeletal simplicial finite set. The
result then follows since Ŝ = Pro(Scofin). First note that a finite discrete set of
points is 1-coskeletal. The fact that BG is coskeletal has been proved in section 3.1,
when we defined the nerve of a groupoid. Products of coskeletal simplicial sets are
again coskeletal since coskn is right adjoint for every n, hence preserves limits. By
Lemma 4.62, KG(M,n) is coskeletal.

2. Since any map in Q is a composition of maps in P , we see that Q ⊆ fib(P ), hence
fib(Q) ⊆ fib(P ). To see that any Q-fibration is a weak equivalence, note that the Q-

projective maps are precisely the monomorphisms in Ŝ, so fib(Q) consists precisely of
those maps that have the right-lifting property with respect to all monomorphisms.
Now let f : X → Y be a Q-fibration. Then there exists a lift g in the following
diagram

∅ A

B B

f
g

idB

hence there is a g : B → A satisfying fg = idB. We also see that the following
diagram commutes

A t A A

A×∆1 B,

idA tgf

ι0tι1 f

fpA

h
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so there exists a lift h : A × ∆1 → A which is a homotopy from gf to idB. We
conclude that f is a simplicial homotopy equivalence. Since Π1 preserves ho-
motopies, we in particular see that Π1f is a weak equivalence. We proved in
part (i) of Proposition 4.50 that a homotopy equivalence induces isomorphisms
Hn
G(Y ;M)→ Hn

G(X;M), so we conclude that f is a weak equivalence.

3. Let f : X → Y be a P -projective map. Since fib(Q) ⊆ fib(P ), we see that f must
be Q-projective as well. In particular, it is a monomorphism.

To see that Π1f is a weak equivalence, note that by the adjunction Π1 a B, Π1f
has the left-lifting property with respect to Disc({0})→ Disc({0, 1}), Disc(S)→ ∗,
G�G→ G, G→ ∗ and GI[1] → G×G. For the maps G�G→ G and GI[1] → G×G,
note that EG = B(G�G) and that the map (ev0, ev1) : (BG)∆[1] → BG×BG is the
map B(ev0, ev1) : B(GI[1]) → B(G × G). By part 3 of the proof of Theorem 3.57,
we see that this implies that Π1f is a weak equivalence of profinite groupoids.

Now let a map Y → BG and a finiteG-moduleM be given, withG a finite group. By
properties (iv) and (v) of Proposition 4.54 and the llp with respect to LG(M,n)→
KG(M,n) and KG(M,n) → BG, we see that f ∗ : Hn

G(Y ;M) → Hn
G(X;M) is an

isomorphism for every n ≥ 0. We conclude that f is a weak equivalence.

4. For the last step we will show that any Q-projective map that is a weak equivalence,
is P -projective. Note that a Q-projective weak equivalence is just a monomorphism
that is also a weak equivalence. Let f : X → Y be such a map. To see that Π1f
is a weak equivalence of groupoids, we again use the adjunction Π1 a B. By this
adjunction, f has the llp with respect to the maps (i) - (v) of P precisely if Π1f has
the llp with respect to Disc({0})→ Disc({0, 1}), Disc(S)→ ∗, G �G→ G, G→ ∗
and GI[1] → G×G. By part 4 of the proof of Theorem 3.57, this is indeed the case
if Π1f is injective on objects and a weak equivalence.

It therefore remains to show that f has the llp with respect to LG(M,n)→ KG(M,n)
and KG(M,n)→ BG. This follows from parts (iv) and (v) of Proposition 4.54, the
injectivity of f and the fact that f ∗ : Hn

G(Y ;M) → Hn
G(X;M) is an isomorphism

for all finite groups G, all finite G-modules M and all morphisms Y → BG.

As the cofibrations are the levelwise injective maps, we see that every object of Ŝ is
cofibrant. �
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4.5.3 Relation to other model categories

We have seen a couple of adjunctions between the categories Ŝ, Ĝ, S and G, which are
expressed in the following commutative diagram:

S G

Ŝ Ĝ.

Π1

(̂·)

B

a

(̂·)

Π1

|·|a

B

a

|·|a (4.1)

If we give S the Kan-Quillen model structure, G the canonical model structure, Ĝ
the model structure of section 3.5 and Ŝ the model structure defined above, then all these
adjunctions are Quillen pairs.

Proposition 4.64. All four adjunctions of diagram (4.1) are Quillen pairs. Furthermore,

each of these functors preserve weak equivalences, except for | · | : Ŝ→ S.

Proof. The adjunction (̂·) a | · | between G and Ĝ has already been treated in Proposi-
tion 3.59.

Now consider the adjunction (̂·) a | · | between S and Ŝ. Note that the generating

fibrations in Ŝ are all Kan fibrations between simplicial finite sets, hence the functor | · |
maps them to fibrations in S. We also see that EG→ ∗ and LG(M,n)→ BG are trivial
fibrations in S, as they are Kan fibrations with contractible fibers. We therefore see that

| · | preserves fibrations and trivial fibrations, hence ((̂·), | · |) is a Quillen pair. We see by
[Hir03, Proposition 8.5.7] that | · | preserves weak equivalences between fibrant objects,

and that (̂·) preserves weak equivalences between cofibrant objects. As every object in S

is cofibrant, we conclude that (̂·) preserves weak equivalences.

The functor Π1 : Ŝ → Ĝ preserves cofibrations. This follows since cofibrations in Ŝ
are levelwise injective maps, cofibrations in Ĝ are maps that are injective on objects, and
Ob(Π1X) = X0. We also see that Π1 preserves weak equivalences by definition of the

weak equivalences in Ŝ. In particular, Π1 preserves trivial cofibrations, hence (Π1, B) is a

Quillen pair. To see that B : Ĝ→ Ŝ preserves weak equivalences, let f : A→ C be a weak
equivalence in Ĝ. By Theorem 3.48, there is a level representations {fi : Ai → Ci} of f by
weak equivalences. A weak equivalence between finite groupoids is a homotopy equiva-
lence, and B preserves homotopies, so Bfi : BAi → BCi is a (simplicial) homotopy equiv-
alence between profinite spaces, in particular a weak equivalence. By Proposition 4.58,
Bf : BA→ BC is a weak equivalence.

Lastly, we look at the adjunction Π1 a B between S and G. The proof that Π1

preserves (trivial) cofibrations and weak equivalences is identical to the one given above.
To see that B preserves weak equivalences, note that weak equivalences are homotopy
equivalences in G, and that B preserves homotopy equivalences. �
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4.6 Coverings of profinite spaces

In this section, we develop a theory of covering spaces for profinite spaces. We begin by
correcting Quick’s definition of a finite covering given in [Qui08]. We then prove that the
finite coverings of a connected profinite space indeed form a Galois category, providing us
with an alternative construction of the fundamental group. Subsequently, we deduce some
basic properties and define profinite coverings of profinite spaces. These notions are then
used to provide an alternative construction of the fundamental groupoid of a connected
profinite space X. It is shown that this fundamental groupoid is naturally isomorphic to
the one defined in section 4.2. In particular, the profinite fundamental group constructed
using finite coverings agrees with the one defined in section 4.2.

4.6.1 Finite coverings

It was mentioned in section 4.2 that for a connected profinite space X, the category of
finite covering spaces as defined by Quick in [Qui08] does not always satisfy the axioms
of a Galois category given in [Gro+71, Exposé V §4]. Quick defines a map Y → X of
profinite spaces to be a covering map if for any solid arrow diagram of the form

∆1 Y

∆n X

∃!

there exists a unique lift ∆n → Y . A covering p : Y → X is called finite if for every
x ∈ X0, the profinite set p−1(x) ⊆ Y0 is finite. It is then claimed that, fixing some x ∈ X0,

the category of finite coverings of X, as a full subcategory of Ŝ/X, together with the
fiber functor Fx which maps a covering space p : Y → X to the fiber p−1(x), is a Galois
category.

However, we mentioned in section 4.2 that axioms (G3) and (G6) of a Galois category
are not always satisfied when using this definition, even for a connected base space X. As
promised there, we will illustrate this with an example, and then offer a slightly different
definition of a covering space, which fixes this issue. We first recall the definition of a
Galois category as originally given in [Gro+71, Exposé V §4]. Our treatment of Galois
categories is based on the one given in chapter 3 of [Len97].

Definition 4.65. Let C be an essentially small category, and F : C→ FinSet a functor.
We call C a Galois category with fundamental functor F if the following is satisfied.

(G1) C has a terminal object and pullbacks (or, equivalently, all finite limits).

(G2) C has finite coproducts (including an initial object) and quotients by finite group
actions.

(G3) Any morphism u in C can be factored as u′u′′ where u′ is a monomorphism and u′′

an epimorphism. Furthermore, any monomorphism u : X → Y is an isomorphism
with a direct summand of Y .



110 CHAPTER 4. PROFINITE SPACES

(G4) F preserves finite limits.

(G5) F preserves finite coproducts, epimorphisms and quotients by finite group actions.

(G6) For any morphism u in C, if F (u) is an isomorphism, then u is an isomorphism. ♦

Remark 4.66. If we call a category C a Galois category, then we implicitly assume that
a fundamental functor F : C→ FinSet is also given. ♦

Remark 4.67. Note that in axiom (G3) we dropped the strictness from the assumption
that u′′ is a strict epimorphism. According to the text at the beginning of chapter 3 of
[Len97], this strictness is not needed to prove that a Galois category is equivalent to the
category FinSetG for some some profinite group G. In particular, the above axioms (G1)
- (G6) already imply that any epimorphism is strict, as this is true in FinSetG. ♦

Before giving the right definition of a finite covering, we consider an example of a
connected space X for which its category of finite coverings does not satisfy (G3) and
(G6). The profinite space I∞ of Example 4.12 can be used for this, but we will give
a slightly different example. Namely, we consider an example of a profinite space with
a nontrivial fundamental group, which therefore should entail an interesting theory of
covering spaces.

Example 4.68. Let C1 be the space obtained from two copies of ∆1, where the beginning
and endpoints are glued to each other. More generally, we define Cn to be the space
obtained from two copies of In (the spaces of Example 4.12), where the beginning and
endpoints are glued to each other. The maps In+1 → In then induce maps Cn+1 → Cn

for all n ≥ 1. Below is a picture of the profinite spaces and map C4 → C3.

We now define C∞ = limnC
n. Then C∞ can be pictured as the following space, which

resembles some sort of infinitely long circle.

...
...

∞

We can now consider the inclusion ∆1 ↪→ C∞ at the point ∞, and the identity map
C∞ → C∞. Both are covering spaces according to the definition given above. One of
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the things that axiom (G3) states is that a monomorphism is an isomorphism onto a
direct summand. The map ι∞ : ∆1 ↪→ C∞, seen as a map between covering spaces, is a
monomorphism, yet its image, the point∞, is not a direct summand of Y , since C∞\{∞}
is not a profinite space (the topology on (C∞)0 \ {∞} is not compact). To see that (G6)
is not satisfied, we consider the functor F which maps a covering space p : Y → X to
the fiber p−1(∞). We see that F (ι∞) is an isomorphism, yet ι∞ is not an isomorphism of
covering spaces. ♦

To fix this problem, we should exclude covering spaces such as ∆1 ↪→ C∞. This can
be done by asking that, for a covering Y → X, the map Y0 → X0 is a covering as well
(i.e. a locally trivial map with discrete fibers). The fact that the map ∆1 ↪→ C∞ is then
excluded as a covering is left as an exercise for the reader. Note that since Y0 and X0

are Stone spaces, the fibers of this covering must all be finite (as they are discrete and a
closed subset of Y0), so we can only use this to define finite covering spaces.

Definition 4.69. A map p : Y → X of profinite spaces is called a finite covering (map)
of X if, for any solid arrow diagram of the form

∆1 Y

∆n X,

∃! (4.2)

there exists a unique lift ∆n → Y , and the map p0 : Y0 → X0 is a finite covering of topo-
logical spaces. The category of finite coverings over X is defined as the full subcategory
of Ŝ/X whose objects are finite covering maps of X, and will be denoted Rf/X. ♦

Note that the map ∆1 → ∆n in the above diagram can be the inclusion of ∆1 as any
vertex of ∆n, not necessarily the zeroth one.

Pullbacks of finite coverings are easily seen to be finite coverings as well, so any map
f : X → X ′ induces a functor Rf/X

′ → Rf/X by pullback. The following lemma gives
an equivalent description of a covering space. Compare it to Lemma 4.29.

Lemma 4.70. Let p : Y → X be a map such that p0 : Y0 → X0 is a finite covering of
topological spaces. Then p is a finite covering map if and only if

Yn Yn−1

Xn Xn−1

di

pn pn−1

di

(4.3)

is a pullback square for any n > 0 and any 0 ≤ i ≤ n. In particular pn : Yn → Xn is a
covering map for any n ≥ 0.

Proof. Let n > 0 and 0 ≤ i ≤ n be given. Note that we have the maps pn : Yn → Xn and
di : Yn → Yn−1 which induce a map Yn → Xn ×Xn−1 Yn−1 by the universal property of the
pullback. The above square is a pullback precisely if this map is a bijection, as continuous
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bijections of Stone spaces are homeomorphisms. This amounts to showing that for any
y ∈ Yn−1 and x ∈ Xn satisfying p(y) = di(x), there is a unique y′ ∈ Yn satisfying p(y′) = x
and di(y

′) = y. This is equivalent to showing that for any diagram of the form

∆n−1 Y

∆n X,

δi p

there is a unique lift, where δi is the inclusion of ∆n−1 as the i-th face of ∆n. It follows
inductively that this holds for all n > 0 and 0 ≤ i ≤ n if and only if p is a covering
map. �

Corollary 4.71. Let G be a finite group. Then any principal G-bundle E → X is a finite
covering.

Proof. By Lemma 2.60, the map E0 → X0 is a finite covering of topological spaces. By
Lemma 4.29 and the above lemma, we see that E → X is a finite covering of X. �

4.6.2 Verification of the axioms of a Galois category

For x ∈ X0, we define a functor Fx : Rf/X → FinSet by sending a cover p : Y → X to
p−1(x). We will show that if X is connected (and not necessarily strongly connected), and
x ∈ X0 is any vertex, then Rf/X is a Galois category with fundamental functor Fx. The
verification of axioms (G1) - (G6) follows by combining some ideas of the covering theory
of topological spaces, and some of the covering theory of simplicial sets. For a reminder
on the theory of covering spaces for simplicial sets, we refer the reader to section III.3 of
[Lam68]. We require the following point-set topological lemma, which is Lemma 3.8 of
[Len97]. We direct the reader to those notes for the proof.

Lemma 4.72. Let X, Y, Z be topological spaces, p : Y → X and q : Z → X finite cov-
erings, f : Y → Z a continuous map with p = qf and let x ∈ X. Then there exists an
open neighborhood U of x in X such that f , g and h are “trivial above U”, i.e., such
that there exist finite discrete sets D and E, homeomorphisms α : p−1(U) → U ×D and
β : q−1(U)→ U × E and a map φ : D → E such that the diagram

p−1(U) q−1(U)

U ×D U × E

U U

f

p

α

β

q

pU

idU ×φ

pU

idU

is commutative. In particular, the map f is also a finite covering.
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The last sentence is actually not in Lemma 3.8 of [Len97], but it is a direct consequence,
since the fibers of f are clearly finite, and it trivializes over each copy of U in q−1(U). If
we are given profinite spaces X, Y, Z, finite coverings p : Y → X and q : Z → X and a
map of profinite spaces f : Y → Z satisfying p = qf , then it is easy to see that the lifting
property of Definition 4.69 is satisfied by f as well. Since the above lemma shows that
f0 : Y0 → Z0 is a finite covering of topological spaces, we see that f is a finite covering of
profinite spaces.

Corollary 4.73. If f : Y → Z is a morphism in Rf/X, then f : Y → Z is a finite
covering of Z. �

We are now ready to show that Rf/X is indeed a Galois category.

Theorem 4.74. For any connected profinite space X and any x ∈ X0, the category Rf/X
together with the fiber functor Fx : Rf/X → FinSet is a Galois category.

Proof. (G1) The terminal object of Rf/X is idX : X → X. Now assume we are given
covering spaces Y1, Y2, Y3 of X and fiber preserving maps Y1 → Y3, Y2 → Y3. The
pullback Y1 ×Y3 Y2 in Ŝ naturally comes with the map Y1 ×Y3 Y2 → Y1 → X, and

Y1 ×Y3 Y2 together with this map is the pullback in Ŝ/X as well. Hence, if we
can show that Y1 ×Y3 Y2 is an object of Rf/X, then we are done. To see that
this is indeed the case, note that Y2 → Y3 is a finite covering by Corollary 4.73,
hence the pullback Y1 ×Y3 Y2 → Y1 is a finite covering. Since Y1 → X is a finite
covering, and compositions of finite coverings are again finite coverings, we deduce
that Y1×Y3 Y2 → X is a finite covering map. We conclude that Rf/X has pullbacks.

(G2) If Y → X and Z → X are finite coverings, then the coproduct Y tZ → X is also a
finite covering, hence it is also the coproduct in Rf/X. The initial object of Rf/X
is ∅ → X.

For quotients by finite group actions, let a finite group G act on a finite covering
p : Y → X. The quotient Y/G in Ŝ, which is obtained by taking the quotient
Yn/G levelwise, comes with a canonical map Y/G→ X as Y → X factors through

this quotient. We see that Y/G → X is the quotient in Ŝ/X. Hence, if we can
show that Y/G → X is an object in Rf/X, then we are done. The unique lifting
property expressed in diagram (4.2) of Definition 4.69 can be easily verified. To see
that Y0/G → X0 is a covering space, let x ∈ X0 be given. Note that the quotient
Y0/G is computed in Top by Lemma 2.58. Define, for every g ∈ G, the map Lg by
Lg(y) = gy. Then Lg : Y0 → Y0 is a map over X0. By Lemma 4.72, there is an open
neighborhood Ug of x such that Lg trivializes over Ug. Pick such a neighborhood Ug
for every g ∈ G and set U =

⋂
g∈G Ug. As G is finite, U is an open neighborhood of

x. The group action of G is trivial over U , meaning that p−1(U) ∼= U×S, where S is
discrete and where G only acts on S. We therefore see that p−1(U)/G ∼= U×(S/G),
hence that Y0/G → X0 trivializes over U . We conclude that Y/G → X is a finite
covering.

(G3) Let p : Y → X and q : Z → X be finite covering spaces, and let f : Y → Z be
a morphism in Rf/X. We will show that im(f) ⊆ Z is also a covering space
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of X when q is restricted to im(f). The epi-mono factorization is then given by
Y → im(f) → Z. To see that im(f) is indeed a finite covering space, note that
f0 : Y0 → Z0 is a finite covering of topological spaces, hence its image is open
and closed. Since the restriction of a finite covering of topological spaces to a
clopen subspace is again a finite covering, we see that im(f0) → X0 is a finite
covering of topological spaces. One can also easily deduce the lifting property of
Definition 4.69 for im(f) ⊆ Z, hence im(f) → X is a finite covering, and we
conclude that any morphism in Rf/X can be factored as an epimorphism followed
by a monomorphism.

To see that any monomorphism f : Y → Z is an isomorphism with a direct summand
of Z, we need to show that monomorphisms in Rf/X are levelwise injections. To
see that this is the case, assume we are given a monomorphism f : Y → Z with
f(y) = f(y′) for some y, y′ ∈ Yn, for some n. Define the pullback Y ′ = Y ×Z Y by

Y ′ Y

Y Z.

p1

p2 f

f

We see that fp1 = fp2, so p1 = p2, so y = p1(y, y′) = p2(y, y′) = y′. We conclude
that f is injective. To see that f is an isomorphism with a direct summand of Z, note
that im(f) ⊆ Z is a clopen subset in each degree, since f is a covering of topological
spaces in each degree. Define Wn := Zn \ im(fn). Using the lifting property of
Definition 4.69, one easily shows that di(Wn) ⊆ Wn−1 and si(Wn) ⊆ Wn+1 for every
i and n, so the profinite sets Wn form a profinite space W satisfying im(f)tW ∼= Z.
One easily verifies that the restriction q|W of q : Z → X to W is a finite covering,
so im(f) is a direct summand of Z. Since f is injective in each degree, we see that
f : Y → im(f) is an isomorphism.

(G4) F preserves the terminal object and pullbacks, hence all finite limits.

(G5) F preserves finite coproducts since these are computed underlying in Ŝ. To see that
epimorphisms are preserved, note that epimorphisms are maps that are surjective in
each degree. This follows from the proof of (G3), namely that for f : Y → Z, im(f)
is a direct summand of Z. Indeed, if Z = im(f) tW , then the maps i1, i2 : Z →
im(f)tWtW which map W to either the first or second copy of W satisfy i1f = i2f .
If f is epi, then this implies i1 = i2, hence W = ∅. Now if f : Y → Z is surjective
in each degree, then it is also surjective in each fiber, hence Fx(f) : Fx(Y )→ Fx(Z)
is surjective.

To see that Fx commutes with quotients by finite group actions, let G act on a
finite covering p : Y → X. Then the quotient Y/G is computed by computing the
quotients Yn/G in Top. We therefore see that Fx(Y/G) is the fiber of Y0/G→ X0

over x, which is Fx(Y )/G.

(G6) Let p : Y → X and q : Z → X be finite coverings, let f : Y → Z be a fiber-preserving
morphism, and assume Fx(f) is an isomorphism. We will show that f0 : Y0 → Z0 is
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a homeomorphism. This will imply that f is an isomorphism, since one can deduce
from the pullback squares of Lemma 4.70 that fn : Yn → Zn is a homeomorphism
for all n ≥ 0 if f0 is so. Note that f0 is a homeomorphism if it is a bijection, and
that it is a bijection if it is a bijection in each fiber, i.e. if Fx′(f) : p−1(x′)→ q−1(x′)
is an isomorphism for all x′ ∈ X0. To see that it is a bijection in each fiber, define
V ⊆ X0 by

V = {x′ ∈ X0 | Fx′(f) is an isomorphism}.

Then V is an open subset of X0. To see this, let x′ ∈ V be given. By Lemma 4.72,
there is an open U around x′ such that p0, q0 and f0 are trivial above U . This
implies that Fx′′(f) is a bijection for every x′′ ∈ U , hence U ⊆ V . By a similar
argument, X0 \ V is open as well, so V is a clopen subset of X0. Define the map
s : X0 → {0, 1} by s(x′) = 1 for x′ ∈ V and s(x′) = 0 for x′ 6∈ V . This map is
continuous since V is clopen. If we are given a 1-simplex u ∈ X1, then lifting this 1-
simplex at different starting points gives us natural bijections p−1(d0u) ∼= p−1(d1u)
and q−1(d0u) ∼= q−1(d1u), so Fd0u(f) is a bijection if and only if Fd1u(f) is so.

This implies that the map s coequalizes X1 X0

d0

d1

, hence it factors through the

coequalizer of these maps in Stone, which is π0(X). Since π0X is a single point by
assumption (X is connected), we see that s is constant. As x ∈ V , we know that
s(x) = 1, so V = X0 and therefore Fx′(f) is an isomorphism for all x′ ∈ X0. We
conclude that f is an isomorphism. �

The fact that Rf/X is a Galois category gives us many useful properties. For stating
these properties, we need to define the notions of a connected object and a Galois object
in a Galois category.

Definition 4.75. Let C be a Galois category. An object X of C is called connected if,
whenever we can write X = Y tZ for Y, Z ∈ C, then precisely one of Y and Z is an initial
object. An object X of C is called Galois if it is connected and the quotient X/Aut(X)
is the terminal object of C. ♦

We have the following characterization of connected and Galois objects in Rf/X.

Proposition 4.76. Let X be a connected profinite space.

(i) A finite covering Y → X is a connected object in Rf/X precisely if Y is connected
as a profinite space.

(ii) A finite covering Y → X is a Galois object in Rf/X precisely if it is a connected
principal G-bundle for some finite group G.

Proof. (i) Let Y → X be a finite covering. If Y is a connected profinite space, then

Y = Z tW implies that precisely one of Z and W is the initial object of Ŝ. Since
finite coproducts in Rf/X are computed underlying in Ŝ, we conclude that Y → X
is a connected object of Rf/X. Conversely, assume that Y → X is a connected
object of Rf/X. If Y is not a connected profinite space, then either Y is empty,
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contradicting that Y → X is connected in Rf/X, or Y = Z tW for two nonempty
profinite spaces Z and W . The inclusions Z,W ↪→ Y induce morphisms Z → X and
W → X. These are finite coverings. To see this, note that the unique lifting property
of diagram (4.2) is clearly satisfied. We also have that Yn = Zn tWn levelwise, so
Z0 and W0 are clopen subsets of Y0. This implies that Z0 → X0 and W0 → X0 are
finite coverings, as the restriction of a finite covering map to a clopen subset is again
a finite covering. We therefore see that Y = Z tW in Rf/X, contradicting that Y
is a connected object.

(ii) We already saw that principal G-bundles, with G finite, are finite coverings. If
E → X is a principal G-bundle, then G is a subgroup of Aut(E), where Aut(E) are
the automorphisms of E as space over X. Since E/G ∼= X, we see that E/G→ X is
the terminal object of Rf/X, hence E/Aut(E)→ X is the terminal object of Rf/X
as well. We conclude that a connected principal G-bundle is a Galois object. For the
converse, assume that Y → X is a Galois object. By part (ii) of the next proposition
(whose proof does not rely on this proposition), we see that the automorphism group
Aut(Y ) must act freely on Y . Namely, if φ : Y → Y has a fixed pont, then, as it is
fully determined by what it does to this point, it must be the identity. Now note that
Y/Aut(Y )→ X is the terminal object of Rf/X precisely if Y/Aut(Y ) ∼= X, which
means that Aut(Y ) acts transitively on the fibers of Y → X. This in particular
implies that Y → X is a principal Aut(Y )-bundle. �

The following proposition and theorem follow from the axioms of a Galois category,
and are proved in [Len97] and [Gro+71]. They are translated to the context of finite
coverings of profinite spaces.

Proposition 4.77. Let X be a connected profinite space and let x ∈ X0. The following
hold.

(i) Let Y be a finite connected covering of X, and let Z be any nonempty finite covering
of X. Then any fiber-preserving map Z → Y is an epimorphism.

(ii) Let Y be a finite connected covering of X, and let Z be any finite covering of X.
Then any fiber-preserving map Y → Z is fully determined by what it does on one
vertex.

(iii) For any Y ∈ Rf/X, there exists a finite Galois cover Z such that HomRf/X(Z, Y ) ∼=
Fx(Y ).

(iv) The fiber functor Fx : Rf/X → FinSet is pro-representable by a pro-object of finite
Galois coverings.

Remark 4.78. The second property of the above theorem should actually say that for a
Galois category C, any map f : Y → Z with Z connected is fully determined by what F (f)
does with one element of the finite set F (Y ). However, noting that the pair (Rf/X, Fx)
is a Galois category for any x ∈ X, property (ii) follows. ♦
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The pro-object which pro-represents Fx can be constructed in the following way. Let I
be the category whose objects are pairs (Y, y), where Y is a finite Galois covering of X, and
y ∈ Fx(Y ). Let the arrows (Y, y) → (Z, z) be the fiber-preserving morphisms f : Y → Z
that satisfy f(y) = z. By the above proposition, only one such morphism can exist.
One can show that I is a cofiltered category (and hence a codirected set). Therefore the
diagram I → Rf/X which maps objects (Y, y) to the finite Galois cover Y is a pro-object

in Rf/X. We will denote this pro-object by X̃, and call it the universal cover of X. This
object pro-represents Fx, meaning that for any Y ∈ Rf/X, there is a natural bijection

HomPro(Rf/X)(X̃, Y ) ∼= Fx(Y ). If we are given a map Y → Z between finite Galois
coverings, then one can show that this induces a unique map Aut(Y ) → Aut(Z), so one
can also define a diagram I → FinGrp, which maps (Y, y) to Aut(Y ). Taking the limit

of this diagram gives a profinite group, and one can show that this is precisely Aut(X̃).

Since Aut(X̃) acts on X̃, it also acts on HomPro(Rf/X)(X̃, Y ) ∼= Fx(Y ), giving Fx(Y ) the

structure of a finite Aut(X̃)-set. We can therefore view Fx as a functor Rf/X → FinSetG
The following theorem holds.

Theorem 4.79. Let X be a profinite space with universal cover X̃, and view G := Aut(X̃)
as a profinite set. Then Fx : Rf/X → FinSetG is an equivalence of categories.

The above construction of the universal cover X̃ depends on the basepoint x (although

only up to a non-canonical isomorphism), hence the construction Aut(X̃) also depends on
the basepoint x. Similar to the construction of the étale fundamental group in algebraic
geometry, Quick in [Qui08] defines Aut(X̃) to be the fundamental group of X at x in

[Qui08]. Therefore we will sometimes denote Aut(X̃) by πQ1 (X, x). After we have studied
coverings of profinite spaces in further detail, we will see that πQ1 (X, x) agrees with the
fundamental group defined in section 4.2. We will even see that one can retrieve the
fundamental groupoid Π1X from the universal cover X̃, providing a different construction
for the fundamental groupoid of a connected profinite space. This construction is closer
to the one proposed by Quick in [Qui08]. However, to give this construction, we should
first study the category Pro(Rf/X) more closely.

4.6.3 Profinite coverings

By the above theorem and Theorem 2.56, we see that Pro(Rf/X) ' ŜetG, where the
equivalence is obtained by extending the fiber functor Fx to a functor between pro-
categories. We will show that Pro(Rf/X) is a full subcategory of Ŝ/X, and that the
extension of the fiber functor to Pro(Rf/X) corresponds to the restriction of the fiber

functor Ŝ/X → Ŝet to this full subcategory. We need the following lemma.

Lemma 4.80. Let X = limiXi be a projective limit of connected profinite space and let
Y → X be a finite covering. Then for some i, there exists a finite cover Y ′ → Xi such
that Y ∼= X ×Xi

Y ′.

Proof. We will first show this for the case that Y is a finite Galois covering. Then Y
is a principal G-bundle for some finite group G, hence there is a map X → BG such
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that Y ∼= X ×BG EG. Since BG is a coskeletal simplicial finite set, X → BG factors as
X → Xi → BG for some i, and we see that Y ∼= X ×Xi

Y ′ where Y ′ = Xi ×BG EG.

Now assume that Y is connected. By property (iii) of Proposition 4.77, there exists
a finite Galois covering Z → X with a map Z → Y . This map is surjective by (i) of
Proposition 4.77, so Y is a quotient of Z. Let H ≤ Aut(Z) be the subgroup of those
automorphisms φ that satisfy fφ = f . Then Z/H = Y . We can write Z = X ×Xi

Z ′ as
above, for some i and some finite covering Z ′ → Xi, since Z is Galois. Then Aut(Z) =
Aut(Z ′), as both Z and Z ′ are principal G-bundles with G = Aut(Z). In particular H
acts on Z ′. We then see that Y = Z/H = X×Xi

(Z ′/H), so the lemma holds for connected
coverings as well.

If Y is not connected, then either Y = ∅ or Y = Y1 t . . . t Yn with Y1, . . . , Yn
connected. In the first case, the lemma clearly holds. For the second case, let covers
Z1 → Xi1 , . . . , Zn → Xin with Yk ∼= X ×Xik

Zk for 1 ≤ k ≤ n be given. By picking j
such that j ≤ ik for all k, and pulling back Zk to a cover of Xj, we can assume without
loss of generality i1 = . . . = in = j. We then see that Y is the pullback of the covering
Z1 t . . . t Zn of Xj, proving the case where Y is not connected. �

We now show that the inclusion Rf/X → Ŝ/X extends to a fully faithful functor

Pro(Rf/X)→ Ŝ/X, using Proposition 2.50.

Theorem 4.81. The inclusion Rf/X ↪→ Ŝ/X extends to a cofiltered limit-preserving

and fully faithful functor Pro(Rf/X)→ Ŝ/X. The extension of the fiber functor Fx to a

functor Pro(Rf/X)→ Ŝet corresponds to the restriction of the fiber functor Fx : Ŝ/X →
Ŝet to the image of Pro(Rf/X) under this fully faithful functor Pro(Rf/X)→ Ŝ/X.

Proof. Note that a functor is fully faithful if it gives an equivalence between its domain and
its (essential) image. We therefore apply Proposition 2.50, but instead of considering the

codomain Ŝ/X, we take as codomain the (essential) image of the functor Pro(Rf/X)→
Ŝ/X. This in particular means that we do not have to prove the second assumption of
Proposition 2.50.

Of course, we first have to show that Ŝ/X has all projective limits. Let a projective

diagram {Yi} in Ŝ/X be given. Write pi for the maps Yi → X, and write f ij for the maps

Yi → Yj whenever i ≤ j. We can compute the limit limi Yi in Ŝ. This limit comes with
a canonical map limi Yi → X, since the map limi Yi → Yj → X is independent of j. The

limit of the diagram {Yi} in Ŝ/X is just limi Yi together with this canonical map.

The map Rf/X → Ŝ/X is fully faithful by definition. The only thing that we therefore
still need to check is the cocompactness of objects of Rf/X. Let {Yi} be a projective
diagram of profinite spaces over X, and let a finite cover Z → X be given. Note that
there exist a coskeletal simplicial finite set X ′, a map X → X ′ and a finite cover Z ′ → X ′

such that Z = X×X′Z ′. This follows from the previous lemma by noting that X = limiXi

for Xi coskeletal simplicial finite sets. By the universal property of the pullback, we see
that

HomŜ/X(Y, Z) ∼= HomŜ/X′(Y, Z
′).
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Since X ′ is coskeletal and Z ′ is a finite cover, we see that Z ′ is coskeletal as well. We
therefore have that HomŜ(Y, Z ′) ∼= colimi HomŜ(Yi, Z

′). This implies HomŜ/X′(Y, Z
′) ∼=

colimi HomŜ/X′(Yi, Z
′) as well, which we leave to the reader to check. Now using the

universal property of the pullback again, we see that

HomŜ/X′(Y, Z
′) ∼= colim

i
HomŜ/X′(Yi, Z

′) ∼= colim
i

HomŜ/X(Yi, Z),

so we conclude that Z is cocompact.
To see that the extension F̃x : Pro(Rf/X)→ Ŝet of the fiber functor of finite coverings

is the restriction of the usual fiber functor Fx : Ŝ/X → Ŝet, one needs to show that
this second functor preserves projective limits. This can be shown by considering that
projective limits are computed underlying in Ŝ, as we saw above. This is left to the
reader. �

The above theorem motivates the following definition of a profinite covering.

Definition 4.82. Let X be a connected profinite space. We call p : Y → X a profinite
covering if it is in the essential image of Pro(Rf/X)→ Ŝ/X, i.e. if it is a projective limit

of finite coverings of X. The category of profinite coverings of X is denoted R̂/X. ♦

Remark 4.83. The above definition might appear somewhat ad-hoc, as we define profi-
nite covering spaces through two properties that we want them to have; namely that any
profinite covering is a projective limit of finite ones, and that R̂/X ' ŜetG, where G is the
automorphism group of the universal cover. The author has not found a more “intrinsic”
(and equivalent) definition of a profinite covering, unfortunately. ♦

Recall that the universal cover, in Pro(Rf/X), was the pro-object that pro-represents
the fiber functor Fx : Rf/X → FinSet. This, together with the equivalence Pro(Rf/X) '
R̂/X, motivates the following definition.

Definition 4.84. Let X be a connected profinite space and let p : Y → X be a profinite
covering. Then Y is called a universal cover of X if, for any x ∈ X0, any y ∈ p−1(y) and
any finite cover Z → X, the map

HomR̂/X(Y, Z)→ Fx(Z); f 7→ f(y)

is a bijection. ♦

One can show that if the above definition holds for one x ∈ X0 and one y ∈ p−1(y),
then it holds for every x ∈ X0 and every y ∈ p−1(y). Furthermore, one can show that
there exists an isomorphism between any two universal covers, as they represent isomor-
phic functors. However, this isomorphism is not canonical, as it depends on a choice of
basepoint of both the universal covers. We therefore usually speak about a universal
cover, instead of the universal cover.

Since a map of connected profinite spaces f : X → Y induces a map f ∗ : Rf/Y →
Rf/X by pullback, it also induces a map f̃ ∗ : Pro(Rf/Y )→ Pro(Rf/X). Since projective
limits and pullbacks commute, we see that this corresponds to the restriction of the
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pullback functor f ∗ : Ŝ/Y → Ŝ/X to R̂/Y . In particular we see that a pullback of a
profinite covering is again a profinite covering.

The next proposition assures that profinite coverings have the same lifting properties
as finite coverings.

Proposition 4.85. Let X be a connected profinite space, and let p : Y → X be a profinite
covering. Then the map p also has the unique lifting property expressed through diagram
(4.2).

Proof. Let Y = limi Yi with Yi → X finite coverings. Since maps between finite coverings
are again finite coverings, we see that all maps involved in this limit have the unique
lifting property of diagram (4.2). Combining this with the universal property of the limit
shows that p : Y → X has the same unique lifting property. �

As in the case of finite coverings, the image of a morphism between profinite coverings
is again a profinite covering.

Proposition 4.86. Let Y, Z → X be profinite coverings of a connected profinite space X,
and let a morphism f : Y → Z of profinite coverings be given. Then f(Y ), the levelwise
image of Y → Z, is again a profinite covering. In particular, axiom (G3) of a Galois
category is satisfied.

Proof. Write Y = limi Yi and Z = limj Zj with Yi and Zj finite coverings of X. Then
fj : Y → Zj factors through some Yi for every j. In particular the image of Y → Zj is
the image of f ′j : Yi → Zj. Since Yi and Zj are finite coverings, we know that the image
fj(Y ) = f ′j(Yi) ⊆ Zj is a finite covering of X. Then f(Y ) ⊆ Z is equal to limj fj(Y ),
which we leave to the reader to verify. Since fj(Y ) → X is a finite covering for every j,
we see that f(Y ) is a projective limit of finite coverings, hence a profinite covering. �

One can of course define connected objects and Galois objects in R̂/X in a similar
way as in Rf/X.

Definition 4.87. Let X be a connected profinite space. An object Y → X of R̂/X is

called connected if, whenever we can write Y = ZtW for Y, Z ∈ R̂/X, then precisely one
of Y and Z is an initial object. Y is called Galois if it is connected and Y/Aut(Y ) = X,
i.e. if Aut(Y ) acts transitively on every fiber. ♦

One can show that properties (i) and (ii) of Proposition 4.77 also hold for profinite

coverings. Connected objects and Galois objects can also be characterized in R̂/X in the
same way as in Rf/X.

Proposition 4.88. Let Y and Z be profinite coverings of X.

(i) Assume Y → X is a connected profinite covering and Z is nonempty. Then any
fiber-preserving map Z → Y is an epimorphism.

(ii) Assume Y → X is a connected profinite covering. Then any fiber-preserving map
Y → Z is fully determined by what it does on one vertex.
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(iii) Y → X is a connected object in Rf/X precisely if Y is connected as a profinite
space.

(iv) Y → X is a Galois object in Rf/X precisely if it is a connected principal G-bundle
for some profinite group G.

Proof. Before proving these properties, we show that if Y = limi Yi with Yi finite coverings
of X and pi : Y → Yi the projections, then we may assume that im(pi) = Yi for every
i. To see this, we define for every i the finite covering Zi ⊆ Yi by Zi :=

⋂
j≤i p

j
i (Yi) (the

intersection taken levelwise). It might not be clear that this is a finite covering (or even
a profinite space). However, to see that this is indeed the case, write Yi = W1 t . . . tWn

as a disjoint sum of connected finite coverings. Since a morphism to a connected finite
covering is always an epimorphism, we see that for 1 ≤ k ≤ n, either Wk ⊆ pji (Yi) or
Wk is disjoint from pji (Yi). We therefore see that Zi =

⋂
j≤i p

j
i (Yi) must be of the form

Wk1 t . . . tWkl for some 1 ≤ k1 < . . . < kl ≤ n, which is a finite covering. By arguments
similar to the proof of Proposition 2.47 and Corollary 2.49, we see that im(pi) = Zi for
all i, that pji (Zj) = Zi for all j ≤ i and that Y = limi Zi.

Now assume that in the above case, Y is a connected object of R̂/X. Then Zi is
connected for every i as well. To see this, assume Zi is not connected for some i, and
write Zi = Vi tWi. Define, for every j ≤ i, Vj := (pji )

−1(Vi) and Wj := (pji )
−1(Wi). Then

Zj = Vj tWj for every j ≤ i, hence

Y = lim
j≤i

Zj = (lim
j≤i

Vj) t (lim
j≤i

Wj).

Since pj : Y → Zj is levelwise surjective, we see that Vj and Wj are always nonempty,
hence the two projective limits on the right-hand side are nonempty as well. We therefore
see that Y is not connected, which is a contradiction. We conclude that for any profinite
covering Y , we can write Y = limi Yi with Yi a finite covering of X for each i, such that
the projections pi : Y → Yi are levelwise surjections, and such that the finite coverings Yi
are connected if Y is so. We now turn to the proofs of the above four properties.

(i) Let f : Z → Y be a map of profinite coverings with Y connected. As the image of
f is a profinite covering by Proposition 4.86 and Z is nonempty, we see that f must
be levelwise surjective, hence an epimorphism.

(ii) Let Y and Z be connected profinite coverings with Y connected. Since Z = limi Zi
for finite coverings Zi, we see that any map f : Y → Z is uniquely determined
by maps fi : Y → Zi. Therefore, in showing that any map f : Y → Z is fully
determined by what it does on one vertex, we can assume that Z is a finite covering.
Now write Y = limi Yi with the projections pi : Y → Yi levelwise surjective, and in
particular with Yi a connected finite covering for every i. Let y ∈ Y be given and
let f, g : Y → Z satisfy f(y) = g(y). Both f and g factor through Yi for some i, i.e.
there exist maps fi, gi : Yi → Z such that g = gipi and f = fipi for some i. Since Yi
is a finite connected covering, and fi(pi(y)) = gi(pi(y)), we see that fi = gi, hence
f = g.
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(iii) First assume Y is a connected object in R̂/X. Then we can write Y = limi Yi
with Yi connected finite coverings. We see that π0(Y ) = limi π0(Yi) = {∗}, so Y is
connected as a profinite space. Conversely, assume that π0(Y ) = {∗}. Then Y is
not empty, so if Y is not a connected profinite covering, then Y = Z tW with Z
and W both nonempty. This contradicts π0(Y ) = {∗}, so Y is a connected profinite
covering.

(iv) First assume Y → X is a Galois covering. Then Aut(Y ) acts transitively on each
fiber. We also see that Aut(Y ) acts freely on Y by part (ii), so Y → X is by definition
a principal Aut(Y )-bundle. Conversely, let E → X be a principal G-bundle, with G
a profinite group and E connected. Then G ≤ Aut(E), where Aut(E) is the group
of fiber-preserving automorphisms of E, as space over X. Since E/G ∼= X, we see
that E/Aut(E) ∼= X as well. To see that E → X is a profinite covering, we need
to show that it is a projective limit of finite coverings. Since quotients of profinite
spaces are computed levelwise, we see by Lemma 2.59 that E = limN E/N , where
N ranges over all open normal subgroups of G. If N is a normal subgroup of G, we
obtain an induced G/N -action on E/N , which makes E/N → X into a principal
G/N -bundle. If N is open, then G/N is finite, hence E/N → X is a finite Galois
covering. In particular, we have written E as a projective limit of finite coverings.
Now note that E is connected by assumption, so by part (iii), E → X is a connected

object in R̂/X. We conclude that E → X is a Galois covering. �

4.6.4 Connected coverings and closed subgroups of π1

The next proposition follows by studying connected objects and Galois objects in ŜetG,
for G a profinite group. It rests on the observation that for a profinite covering Y → X,
the category of profinite coverings R̂/Y is simply (R̂/X)/Y .

Proposition 4.89. Let X be a connected profinite space, and let x ∈ X0 be a base-
point. Then there is a 1-1 correspondence between conjugacy classes of closed subgroups
of πQ1 (X, x) and profinite connected coverings Y → X, such that

(i) the closed subgroup corresponding to Y → X is isomorphic to πQ1 (Y, y), where y is
any point in Y0 above x;

(ii) the universal cover of X corresponds to the trivial subgroup of πQ1 (X, x); in partic-

ular, X̃ → X is a universal cover if and only if πQ1 (X̃, x̃) = {∗} for some x̃ ∈ X̃0;

(iii) Galois coverings Y → X correspond to closed normal subgroups of πQ1 (X, x); and

(iv) for the closed normal subgroup N corresponding to the Galois covering Y → X, we
have Aut(Y ) ∼= πQ1 (X, x)/N .

Proof. We begin by describing connected objects in ŜetG, where G is a profinite group.
These are the objects to which the profinite connected coverings Y → X correspond
under the equivalence R̂/X ' ŜetπQ

1 (X,x). One easily sees that a nonempty S ∈ ŜetG is
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a connected object (i.e. it cannot be written as T1 t T2 with T1, T2 both nonempty) if
and only if G acts transitively on S. If we pick s ∈ S, then H := Stab(s) is a closed
subgroup of G, and the canonical map G/H → S defined by gH 7→ g · s is a well-
defined, continuous, G-equivariant bijection, hence an isomorphism of profinite G-sets.
We see that H depends on our choice of s ∈ S, but only up to conjugacy. We also
see that G/H ∼= G/H ′ as profinite G-sets if H and H ′ are conjugate closed subgroups.
So we conclude that there is a 1-1 correspondence between conjugacy classes of closed
subgroups of πQ1 (X, x) and profinite connected coverings Y → X. We will now prove the
four above-mentioned properties of this 1-1 correspondence.

(i) Let Y → X be a connected cover. Pick a universal cover X̃ → X with basepoint

x̃ above x. Then Fx(Y ) ∼= Hom(X̃, Y ), and the action of πQ1 (X, x) = Aut(X̃) on

Fx(Y ) ∼= Hom(X̃, Y ) is given by φ · f = f ◦ φ−1. If we pick a point y ∈ Fx(Y ), then
the stabilizer of this group action is computed by picking the corresponding map
f : X̃ → Y , and then considering the automorphisms φ satisfying f ◦ φ = f . These
are precisely the automorphisms of f : X̃ → Y in R̂/Y . By Lemma 4.90, X̃ → Y is
a universal covering, so the group corresponding to Y is isomorphic to πQ1 (Y, y).

(ii) Note that a connected object S in ŜetG corresponds to a universal cover if and only
if G acts freely and transitively on S. This means that the stabilizer of any s ∈ S
is trivial, hence a universal cover corresponds to the trivial subgroup of πQ1 (X, x)
under the above 1-1 correspondence. The result now follows from (i).

(iii) A connected covering Y → X is a profinite Galois covering if Aut(Y ) acts transitively
on each fiber. This is equivalent to saying that Aut(Fx(Y )) acts transitively on

Fx(Y ) in ŜetG, where G = πQ1 (X, x). We know that Fx(Y ) is isomorphic to G/H
for some closed subgroup H of G. Now let φ : G/H → G/H be a G-equivariant
homeomorphism. Then φ(H) = gH for some g ∈ G. We see that φ(g′H) = g′φ(H) =
g′gH must hold for every g′ ∈ G. We know that for every g ∈ G, there is some φ such
that φ(H) = gH, since Aut(G/H) acts transitively on G/H. Now let g ∈ G and
h ∈ H be given, and let φg be the automorphism satisfying φg(H) = gH. We then
see that H = φg(g

−1H) = φg(g
−1hH) = g−1hgH, hence g−1hg ∈ H. We conclude

that H is a closed normal subgroup of G.

Conversely, assume the profinite connected covering Y → X corresponds to a closed
normal subgroup H of G = πQ1 (X, x). One easily sees that Aut(G/H) acts transi-

tively onG/H in ŜetG. In particular, the quotient (G/H)/Aut(G/H) is the terminal

object of ŜetG, so by the equivalence R̂/X ' ŜetG we see that Y/Aut(Y ) ∼= X, i.e.
Y is a Galois covering.

(iv) This follows from the fact that for H E G a closed normal subgroup, we have

Aut(G/H) ∼= G/H in ŜetG. �

Lemma 4.90. Let X be a connected profinite space and let Y → X be a connected
covering. Then R̂/Y ' (R̂/X)/Y . In particular, if X̃ → X is a universal covering over

X, then any fiber-preserving morphism X̃ → Y is a universal covering of Y .
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Proof. There is a canonical functor R̂/Y → (R̂/X)/Y , where (R̂/X)/Y is the category of
profinite coverings of X with a morphism to Y . This canonical functor is given by sending
a covering Z → Y to Z → Y → X. There is also a functor in the opposite direction,
which sends an object Z → Y → X of (R̂/X)/Y to the covering Z → Y . These functors
are clearly inverse to each other. However, we do need to show that they are well defined.
Namely, we need to show that a composition of profinite coverings is again a profinite
covering, and that a morphism between profinite coverings is a profinite covering as well.

For the first case, let Z → Y be a profinite covering. We need to show that Z →
Y → X is a projective limit of finite coverings of X. Note that Z is a projective limit of
finite coverings of Y , so it suffices to prove this statement for finite coverings of Y . Write
Y = limi Yi with Yi finite coverings of X. We see by Lemma 4.80 that Z = Y ×Yj Z ′ for
some j and for some finite covering Z ′ → Yj. We now see that

Z = (lim
i≤j

Yi)×Yj Z ′ = lim
i≤j

(Yi ×Yj Z ′).

Since the right-hand side is a projective limit of finite coverings of X, we are done.

For the second case, write p : Y → X and q : Z → Y . Assume p and pq are both
profinite coverings. We need to show that q : Z → Y is a projective limit of finite coverings
of Y . Noting that R̂/X ' Pro(Rf/X), we can write Z = limi Zi and Y = limi Yi both as
projective limits of finite coverings of X, such that q is represented by natural morphisms
qi : Zi → Yi (i.e., we pick a level representation of q, see Definition 2.25). Since Yi and Zi
are finite coverings, we see that qi is a finite covering for every i as well by Corollary 4.73,
hence the pullback Y ×Yi Zi is a finite covering of Y . We now see that

Z ∼= Z ×Y Y ∼= lim
i
Zi ×limi Yi Y = lim

i
(Zi ×Yi Y ).

As the right-hand side is a projective limit of finite coverings of Y , we see that Z → Y is
a profinite covering.

For the last claim of this lemma, let X̃ → X be a universal cover, and pick any
morphism X̃ → Y . To see that X̃ → Y is a universal cover, we will show that it
represents the fiber functor. Let x̃ ∈ X̃0 be a basepoint, and let y ∈ Y0 and x ∈ X0 the
corresponding basepoints of Y and X. Let Z → Y be a profinite covering. We see that
HomR̂/X(X̃, Z) ∼= Fx(Z), by mapping a morphism f : X̃ → Z to f(x̃). We also see that

HomR̂/Y (X̃, Z) is the subset of HomR̂/X(X̃, Z) consisting of those morphisms f : X̃ → Z
such that

X̃ Z

Y

f

commutes. Since X̃ is connected, any morphism X̃ → Y is fully determined by where it
maps x̃. We therefore see that this diagram commutes precisely if f(x̃) lies in the fiber

above y, i.e. if f(x̃) ∈ Fy(Z). Hence the bijection HomR̂/X(X̃, Z) ∼= Fx(Z) restricts to a

bijection HomR̂/Y (X̃, Z) ∼= Fy(Z). �
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4.6.5 An alternative construction of the fundamental groupoid

We will now give an alternative construction of the fundamental groupoid, following
Quick’s ideas in [Qui08]. We will denote, for a profinite space X, this groupoid by
ΠQ

1 X. The idea in [Qui08] is to construct, given vertices x, y ∈ X0, the profinite set

(ΠQ
1 X)(x, y) as the group of fiber-preserving morphisms X̃x → X̃y, where X̃x and X̃y are

the universal covers constructed using the fiber functors Fx and Fy, respectively. All of
these morphisms are isomorphisms, and it is obvious how this defines a groupoid. There
is however no immediate topology on Ar(ΠQ

1 X), so this does not immediately give a
Stone groupoid, let alone a profinite groupoid. As any connected Stone groupoid is of
the form G[S] with G a profinite group and S a profinite set, we could simply give ΠQ

1 X
the topology of πQ1 (X, x)[X0]. However, this feels somewhat unnatural, as the proof that
any connected Stone groupoid is of this form does not give a canonical isomorphism, and
it depends on the axiom of choice. We therefore take a somewhat different approach to
obtain a topology on Ar(ΠQ

1 X). Recall from the usual theory of covering spaces (either

of topological spaces or simplicial sets) that if given a universal cover X̃ of X, two points
x to y in X, and a point x̃ in the fiber above x, then there is a 1-1 correspondence
between homotopy classes of paths from x to y, and points in the fiber above y. This
1-1 correspondence comes from lifting the path to X̃, starting at x̃. One can therefore
represent a path in X (up to homotopy) by a pair of points (x̃, ỹ) in X̃. Two pairs (x̃, ỹ)

and (x̃′, ỹ′) represent the same path precisely if there is an automorphism φ of X̃ such
that φ(x̃) = x̃′ and φ(ỹ) = ỹ′. This idea can also be used to construct the fundamental
groupoid from the universal cover.

Definition 4.91. Let X be a connected profinite space, and let p : X̃ → X be a universal
cover of X. Then define a Stone groupoid ΠQ

1 X by

(i) Ob(ΠQ
1 X) = X0;

(ii) Ar(ΠQ
1 X) = (X̃0 × X̃0)/Aut(X̃), where Aut(X̃) acts on X̃0 × X̃0 by φ(x, y) =

(φ(x), φ(y));

(iii) the source and target maps are given by s([x, y]) = p(x) and t([x, y]) = p(y);

(iv) the multiplication map m is given by m([y′, z′], [x, y]) = [φ(x), z′], where [x, y] de-
notes the class of the pair (x, y) and where φ(y) = y′ (note that a unique such φ
exists if p(y′) = p(y)); and

(v) the inverse map is given by i([x, y]) = [y, x]. ♦

It might not be immediately clear that the above definition is independent of the
choice of universal cover, let alone that it defines a functor. However, one can show that,
given another universal covering X̃ ′ of X, any isomorphism X̃ ′ → X̃ induces the same
isomorphism between the fundamental groupoids. One can also show that, given a map
of profinite spaces X → Y , there always exists a map between universal coverings X̃ → Ỹ
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such that the square

X̃ Ỹ

X Y

commutes, and furthermore that any such map induces the same morphism of Stone
groupoids ΠQ

1 X → ΠQ
1 Y . We state the existence of such a map X̃ → Ỹ as a lemma.

Lemma 4.92. Assume we are given a map f : X → Y between connected profinite spaces,
let x ∈ X, let X̃ → X be a universal cover and let Z → Y be any profinite covering. For
any x̃ ∈ X above x and any z ∈ Z above f(x), there exists a unique map f̃ : X̃ → Z such

that f̃(x̃) = z and

X̃ Z

X Y

f̃

f

commutes.

Proof. Note that maps f̃ : X̃ → Z such that the above diagram commutes are in 1-1
correspondence with maps X̃ → X×Y Z over X, by the universal property of the pullback.
The result now follows since X̃ represents the fiber functor Fx : R̃/X → Ŝet. �

Proposition 4.93. The above construction defines a functor ΠQ
1 : Ŝ0 → StoneG0 ' Ĝ0,

where Ŝ0 denotes the category of connected profinite spaces, StoneG0 the category of
connected Stone groupoids and Ĝ0 the category of connected profinite groupoids.

Proof. We leave the verification that ΠQX is a well-defined Stone groupoid to the reader,
i.e. the verification that all the maps involved in the definition of ΠQ

1 X are indeed well-
defined and continuous.

To see that ΠQ
1 defines a functor, we first need to show that ΠQ

1 X does not depend

on the choice of universal cover. For a universal cover X̃ → X, we for now denote the
corresponding Stone groupoid by (ΠQ

1 X)X̃ . We need to show that for any two universal

covers X̃ → X and X̃ ′ → X, there exists a canonical isomorphism (ΠQ
1 X)X̃

∼= (ΠQ
1 X)X̃′ .

Note that there exists a (non-canonical) isomorphism X̃ → X̃ ′. This isomorphism induces

a well-defined map (X̃0×X̃0)/Aut(X̃)→ (X̃ ′0×X̃ ′0)/Aut(X̃ ′), i.e. a map Ar((ΠQ
1 X)X̃)→

Ar((ΠQ
1 X)X̃′). This map is an isomorphism of Stone groupoids. To see that this map is

canonical, we need to show that this isomorphism does not depend on our choice of map
X̃ → X̃ ′. This follows from what we prove next, taking f = idX .

Let a map f : X → Y between connected profinite spaces be given. We show that f
induces a canonical map ΠQ

1 X → ΠQ
1 Y . Let X̃ → X and Ỹ → Y be universal covers.

Then by the above lemma, there exists a map f̃ : X̃ → Ỹ above f . Pick such a map f̃ .
This map induces a continuous map (X̃0× X̃0)/Aut(X̃)→ (Ỹ0× Ỹ0)/Aut(Ỹ ), i.e. a map
Ar(ΠQ

1 X)→ Ar(ΠQ
1 Y ), which is a map of Stone groupoids. To see that the induced map

of Stone groupoids does not depend on the choice of f̃ , assume f̃ ′ : X̃ → Ỹ is also a map
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above f . Pick a point x̃ ∈ X̃0. Then there is a unique automorphism φ ∈ Aut(Ỹ ) such that

f̃(x̃) = φf̃ ′(x̃). Since Ỹ is connected, this implies that f̃ = φf̃ ′. Now [x, y] = [φ(x), φ(y)]
for any [x, y] ∈ Ar(ΠQ

1 Y ), so we see that the induced map ΠQ
1 X → ΠQ

1 Y does not depend

on the choice of f̃ . In particular ΠQ
1 is well-defined.

To see that ΠQ
1 is indeed a functor, note that if we are given f : X → Y and g : Y → Z,

and if f̃ : X̃ → Ỹ and g̃ : Ỹ → Z̃ lie above f and g, respectively, then g̃f̃ lies above fg. �

4.6.6 Comparing the constructions of the fundamental groupoid

We will now prove that this functor ΠQ
1 is naturally isomorphic to Π1 from section 4.2.

The proof consists of two steps, namely proving that ΠQ
1 and Π1 agree for connected

simplicial finite sets, and then showing that ΠQ
1 preserves projective limits of (connected)

simplicial finite sets.

Lemma 4.94. Let X be a connected simplicial finite set. Then ΠQ
1 X
∼= Π1X.

Proof. Denote the “classical” fundamental groupoid functor S→ G by Πc
1. Then Π1X =

Π̂c
1X by definition, i.e. Π1X is the profinite completion of the classical fundamental

groupoid of X. As ΠQ
1 X is connected, it is a profinite groupoid by Proposition 3.21. In

particular, giving a morphism Π1X → ΠQ
1 X is the same as giving a morphism Πc

1X →
ΠQ

1 X, by the universal property of the profinite completion. Recall that in the classical
theory of coverings of simplicial sets, a map Y → X is called a covering if for any solid
arrow diagram of the form

∆1 Y

∆n X,

∃!

there exists a unique lift ∆n → Y (with no assumptions on the map Y0 → X0). Such
a covering is called finite if the fibers of the map Y → X are all finite. One obtains
a category R/X of “classical” coverings of X, with the full subcategory Rf/X of finite
coverings. For a simplicial finite set, there is no difference between the classical and the
profinite notion of a finite covering. In particular, the categories R/X and R̂/X both
have Rf/X as a full subcategory. By Theorem 2.62 there exists a profinite completion

functor R/X → R̂/X, left adjoint to the functor R̂/X → R/X which forgets the profinite
structure on a profinite covering Y → X (i.e. the Stone topology on Yn). Also recall from
the classical covering theory that R/X ' Setπc

1(X,x), where πc1(X, x) is the “classical”
fundamental group of X at a basepoint x. We also see that Rf/X ' FinSetπc

1(X,x).

Write G = πc1(X, x) and write Ĝ for the profinite completion of G. As a finite G-set is

the same as a finite Ĝ-set, we see that

Pro(FinSetG) ' Pro(FinSetĜ) ' ŜetĜ.

There is, by a similar argument as above, also a profinite completion functor SetG →
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ŜetĜ, so we obtain a commutative diagram

R/X SetG

R̂/X ŜetĜ

(̂·)

Fx

'

(̂·)

Fx

'

where symbols Fx represent the fiber functors. Note that the classical universal cover X̃c

corresponds to G, acting on itself from the left, in SetG, and similarly that the profinite
universal cover X̃ corresponds to Ĝ.

By the universal property of the profinite completion functor, it follows that the profi-
nite completion of X̃c pro-represents the fiber functor Fx : Rf/X → FinSet, hence it is a

profinite universal cover of X. This also implies that Ĝ is the profinite completion of G,

under the profinite completion functor (̂·) : SetG → ŜetĜ. Now note that we can construct

Πc
1X from X̃c exactly like in Definition 4.91. In particular the morphism X̃c → X̃ coming

from the fact that X̃ is the profinite completion of X̃c induces a morphism Πc
1X → ΠQ

1 X,

which induces a morphism Π1X = Π̂c
1X → ΠQ

1 X. This morphism is the identity on
objects, so to see that it is an isomorphism, we need to show that it is fully faithful.

This follows if the induced map (Π̂c
1X)(x) → (ΠQ

1 X)(x) is an isomorphism. However, as

(Πc
1X)(x) ∼= G and (ΠQ

1 X)(x) ∼= Ĝ, this map is just the identity idĜ. We conclude that

Π1X is canonically isomorphic to ΠQ
1 X for connected simplicial finite sets X. �

To see that the functor ΠQ
1 preserves projective limits, we need to show that the

universal cover of X = limiXi can be obtained from those of Xi.

Lemma 4.95. Let X = limiXi be a projective limit of profinite spaces, and let X̃i be
universal covers of Xi. Then limi X̃i is a universal cover of X. Furthermore, Aut(X̃) =

limi Aut(X̃i).

Proof. We first need to specify which maps X̃i → X̃j we pick for i ≤ j. For this, pick a
basepoint x ∈ X. Then x = (xi)i with xi a basepoint of Xi, for every i. Pick a point x̃i
in X̃i above xi for every i. By Lemma 4.92, there are unique maps f̃ ij : X̃i → X̃j above

f ij satisfying f̃ ij(x̃i) = x̃j, for i ≤ j. This uniqueness implies f̃ jk f̃
i
j = f̃ ik for i ≤ j ≤ k,

so we obtain a projective diagram {X̃i}. Note that the maps X̃i → Xi induce a map

limi X̃i → X. We now see that

lim
i
X̃i = X ×X lim

i
X̃i
∼= X ×limiXi

lim
i
X̃i
∼= lim

i
(X ×Xi

X̃i).

Since the right-hand side is a projective limit of profinite coverings of X, we see that
limi X̃i is a profinite covering of X. Denote limi X̃i by X̃, and denote the point (x̃i)i by
x̃.

To see that X̃ is a universal cover, we need to show that it represents the fiber functor
Fx. Define, for Z → X a finite covering, φ : HomR̂/X(X̃, Z) → Fx(Z) by f 7→ f(x̃).
To see that this is an isomorphism, note that Z = X ×Xi

Z ′ for some i and some finite
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covering Z ′ → Xi. For every z ∈ Fxi(Z ′) = Fx(Z) there exists a unique map f : X̃i → Z ′

satisfying f(x̃i) = z. By precomposing this map with the projection X̃ → X̃i, and using

the universal property of the pullback to obtain a map X̃ → Z, we see that φ is surjective.
To see that φ is injective, note that π0(X̃) = limi π0(X̃i) = {∗}, so X̃ is a connected

profinite covering by property (iii) of Proposition 4.88. In particular, if for two maps

f, g : X̃ → Z we have f(x̃) = g(x̃), then f = g by property (ii) of Proposition 4.88.

To see that Aut(X̃) = limi Aut(X̃i), note that there are natural homeomorphisms

Aut(X̃) ∼= Fx(X̃) and Aut(X̃i) ∼= Fxi(X̃i). Since X̃ = limi X̃i, we see that Fx(X̃) =

limi Fxi(X̃) by restricting to the fibers. In particular Aut(X̃) = limi Aut(X̃i). �

Theorem 4.96. The functors Π1 and ΠQ
1 agree for all connected profinite spaces.

Proof. We already know that Π1 and ΠQ
1 agree for connected simplicial finite sets, so

we are left with proving that ΠQ
1 preserves projective limits, as any connected profinite

space is a projective limit of connected simplicial finite sets, and we already know that Π1

preserves projective limits. So let X = limiXi be given. Assume we are given universal
covers X̃i of Xi. By the above lemma, X̃ := limi X̃i is a universal cover of X. The
canonical map ΠQ

1 X → limi Π
Q
1 Xi coming from X = limiXi is, on arrows, given by the

canonical map

(X̃0 × X̃0)/Aut(X̃)→ lim
i

(
((X̃i)0 × (X̃i)0)/Aut(X̃i)

)
.

Using that Aut(X̃) = limi Aut(X̃i), the next lemma implies that the above map is
a homeomorphism, hence the map ΠQ

1 X → limi Π
Q
1 Xi is an isomorphism of profinite

groupoids. �

Lemma 4.97. Let G = limiGi be a projective limit of profinite groups, and let X =
limiXi be a projective limit of profinite Gi-sets, where the maps Xi → Xj are compatible
with the Gi-actions, meaning that

Gi ×Xi Gj ×Xj

Xi Xj

commutes for all i ≤ j. Then X/G ∼= limi(Xi/Gi).

Proof. The canonical map φ : X/G→ limiXi/Gi maps the class [(xi)i] to ([xi])i. We need
to show that this map is a bijection. For surjectivity, let ([xi])i in limiXi/Gi be given.
Then [xi] is a closed subset of Xi for every i, since it is an orbit of a continuous group
action by a profinite group. We therefore see that [xi] is a profinite set for every i. Since
the Gi-actions on Xi are compatible, we see that the profinite sets [xi] form a projective
diagram. Since projective limits of nonempty profinite sets are nonempty, we see that
limi[xi] ⊆ X is nonempty. Since any x ∈ limi[xi] satisfies φ([x]) = ([xi])i, we conclude
that φ is surjective.
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For injectivity, assume φ([(xi)i]) = φ([(yi)i]). Then [xi] = [yi] for every i, so denote by
Hi ⊆ Gi the set of g ∈ Gi satisfying g · xi = yi. Then Hi is a closed subset of Gi, hence
a profinite set. Hi is also nonempty for every i, as [xi] = [yi]. Therefore limiHi is also
nonempty. Since limiHi ⊆ limiGi = G, we see that there exists a g = (gi) ∈ G such that
gi · xi = yi for every i. We conclude that [(xi)i] = [(yi)i], hence that φ is injective. �

In light of the above theorem, we will from now on denote ΠQ
1 by Π1 and no longer

distinguish these two functors. By noting that πQ1 (X, x) = (ΠQ
1 X)(x) and π1(X, x) =

(Π1X)(x), we obtain a natural isomorphism πQ1 (X, x) ∼= π1(X, x) as well.

Corollary 4.98. Let X̃ → X be a profinite covering, with X a connected profinite space.
Then X̃ is a universal covering precisely if Π1X̃ = Codisc(X̃0), or equivalently, if X̃ is

connected and π1(X̃, x) is trivial for any choice of x ∈ X̃. �

This suggests a strategy for computing Π1X for a connected profinite spaceX. Namely,
if we can find a profinite covering Y → X such that Π1Y is codiscrete, then Π1X can be
constructed as a quotient of Y0×Y0. Conversely, we can also compute a universal covering
of X if we know Π1X.

Proposition 4.99. Let X be a connected profinite set, and let x ∈ X be a basepoint.
Then

X ×BΠ1X B(Π1X ↓ x)→ X

is a universal cover of X.

Proof. Note that B(Π1X ↓ x) → BΠ1X is a universal cover. The easiest way to see
this is to note that B(Π1X ↓ x) is a principal π1(X, x)-bundle, hence a profinite (Galois)
covering, and that is Π1(B(Π1X ↓ x)) = Π1X ↓ x is codiscrete.

Now note that the adjunction Π1 a B induces a map X → BΠ1X, which in turn
induces an isomorphism on the fundamental groupoid Π1X → Π1BΠ1X ∼= Π1X, since
the counit Π1BA → A is an isomorphism for any profinite groupoid A. If we construct
Π1X = ΠQ

1 X from a universal cover X̃ → X, then the map Π1X → Π1BΠ1X is obtained
by choosing a map f such that

X̃ B(Π1X ↓ x)

X BΠ1X

f

commutes (see the proof of Proposition 4.93 to recall how ΠQ
1 was defined on arrows).

Since we already know that the induced map Π1X → Π1BΠ1X is an isomorphism, we
see that f must give an isomorphism on the fiber above x by construction of ΠQ

1 . By the

universal property of the pullback, we obtain an induced map f ′ : X̃ → X×BΠ1XB(Π1X ↓
x), which must also be an isomorphism in the fiber above x. Since the fiber functor

Fx : R̂/X → Ŝetπ1(X,x) is an equivalence, we conclude that f ′ itself is an isomorphism. �



Appendix A

Fibrantly generated model categories

The aim of this section is to give a summary of some notions related to fibrantly gen-
erated model categories, which will be used when constructing model structures on pro-
categories. Some familiarity with model categories is assumed, e.g. lifting properties and
retracts. The reader not familiar with such notions should consult an introductory text,
such as chapter 7 of [Hir03].

Fibrantly generated model categories are precisely the dual of cofibrantly generated
model categories, which are more common in the literature. In a cofibrantly generated
model category, the so-called small object argument is used to construct a functorial
factorization of maps into a trivial cofibration followed by a fibration, or a cofibration
followed by a trivial fibration. This argument requires that the domains of the generating
(trivial) cofibrations are ‘small’ objects in a certain sense. However, in the context of
pro-categories, ‘cosmall’ objects occur more naturally than small objects, so it is more
natural to work with fibrantly generated model categories. We follow chapters 10 and 11
of [Hir03], dualizing all required definitions and statements.

Definition A.1. Let C be a category.

(i) Let C have all filtered colimits. A λ-sequence in C, with λ an ordinal, is a diagram
X : λ→ C, i.e. a sequence

X0 → X1 → · · · → Xβ → Xβ+1 → · · · ,

such that for all 0 < γ < λ with γ a limit ordinal, colimβ<γ Xβ = Xγ. We call the
map X0 → colimβ<λXβ the (transfinite) composition of the λ-sequence. Note that
an ω-sequence is precisely an inductive diagram indexed by N.

(ii) Let C have all cofiltered limits. A λ-tower in C, with λ an ordinal, is a diagram
X : λop → C, i.e. a sequence

X0 ← X1 ← · · · ← Xβ ← Xβ+1 ← · · · ,

such that for all 0 < γ < λ with γ a limit ordinal, limβ<γ Xβ = Xγ. We call the
map X0 → limβ<λXβ the (transfinite) precomposition of the λ-tower. Note that an
ω-tower is precisely a projective diagram indexed by Nop. ♦

131
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Definition A.2. Let C be a category, D a subcategory and S an object in C.

(i) Let C have all filtered colimits. We say that S is small relative to D if, for every
ordinal λ and every λ-sequence {Xβ}β<λ such that Xβ → Xβ+1 is in D for all
β + 1 < λ, the canonical map

colim
β<λ

HomC(S,Xβ)→ HomC(S, colim
β<λ

Xβ)

is an isomorphism. This means in particular that any map S → colimβ<λXβ factors
through Xβ for some β < λ. We say that S is small if S is small relative to C.

(ii) Let C have all cofiltered limits. We say that S is cosmall relative to D if, for every
ordinal λ and every λ-tower {Xβ}β<λ such that Xβ+1 → Xβ is in D for all β+1 < λ,
the map

colim
β<λ

HomC(Xβ, S)→ HomC(lim
β<λ

Xβ, S)

is an isomorphism. This means in particular that any map limβ<λXβ → S factors
through Xβ for some β < λ. We say that S is cosmall if S is cosmall relative to
C. ♦

Remark A.3. What we define here as small and cosmall is sometimes called ℵ0-small
and ℵ0-cosmall. An object is then called (co)small if it is κ-(co)small for some cardinal κ,
which is weaker than the notion of (co)smallness defined above. However, the (co)small
objects that we will encounter are always (co)small in the above, stronger, sense. For
purposes of simplicity, we will use the above definition. ♦

Example A.4. This example is the main motivation for us to work with fibrantly gener-
ated model structures. Let C be any category. By Theorem 2.30, Pro(C) has all cofiltered
limits, so in particular we can speak about cosmall objects. In Pro(C) all objects in the
image of the inclusion ι : C ↪→ Pro(C), i.e. the representables, are cosmall. To see this,
note that

HomPro(C)({Di}, ιC) = colim
i

HomC(Di, C) ∼= colim
i

HomPro(C)(ιDi, ιC)

by definition. This means that for all C in C, HomPro(C)(−, ιC), as functor Pro(C) →
Setop, preserves cofiltered limits of representables. By arguments similar to those used
in the proof of Theorem 2.30 and Proposition 2.31, this implies that HomPro(C)(−, ιC)
preserves all cofiltered limits. Since λ-towers are cofiltered limits, we see that ιC is cosmall
in Pro(C) for all C in C. ♦

Example A.5. The dual of the above statement of course holds for Ind(C), meaning
that any object in the image of the inclusion C ↪→ Ind(C) is small. ♦

From now on, we will focus only on fibrantly generated model categories. All of the
definitions, propositions and theorems stated below come from chapters 10 and 11 of
[Hir03], where they are all stated in their dual form.

Definition A.6. Let C be a category and P a set of maps in C.
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(i) The maps having the left-lifting property with respect to every map in P by llp(P ).
These maps are sometimes called P -projective maps.

(ii) Similarly, the maps having the right-lifting property with respect to every map in
P by rlp(P ). These maps are sometimes called P -injective maps.

(iii) The class of P -fibrations is the class of maps defined by fib(P ) = rlp(llp(P )).

(iv) An object C is called P -fibrant if the map C → ∗, where ∗ is the terminal object of
C, is a P -fibration. ♦

Definition A.7. Let C be a complete category, and let P be a set of maps in C.

(i) The class of relative P -cocell complexes is the class of maps that can be constructed
as a transfinite precomposition of pullbacks of products of maps in P . Such a map
is also called P -cocellular. The P -cocellular maps form a subcategory of C with the
same class of objects.

(ii) An object is a P -cocell complex if the map from the object to the terminal object is
a relative P -cocell complex.

(iii) A map is a projection of P -cocell complexes if it is a relative P -cocell complex whose
domain is a P -cocell complex. ♦

Remark A.8. The above definition may need some clarification. By a pullback of a
product of maps in P , we mean the following. If we are given a pullback square

A B

C D,

f g

then we say that f is a pullback of g. Hence a pullback of a product of maps in P is such
a square where g is a product of maps in P . A transfinite precomposition of pullbacks of
products of maps in P is then a map f : limβ<λXβ → X0, where {Xβ}β<λ is a λ-tower,
and where any map Xβ+1 → Xβ fits in a pullback diagram

Xβ+1

∏
j Aj

Xβ

∏
j Bj

∏
j gj

for some maps gj ∈ P . In particular, the class of relative P -cocell complexes is obtained
by first adding all pullbacks, and then adding all transfinite compositions. Lastly, note
that all identity morphisms are P -cocellular maps. To see this, let λ = 1 and define
X0 = X for some X ∈ C. Then limβ<λXβ → X is the identity morphism. ♦
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Remark A.9. In Proposition 10.2.7 of [Hir03], it is proved that coproducts of maps in
P are transfinite compositions of pushouts of maps in P . Dualizing this, we see that
products of maps in P are transfinite precompositions of pullbacks of maps in P . This
means that any map that is a transfinite precomposition of pullbacks of products of maps
in P , is also a transfinite precomposition of pullbacks of maps in P . ♦

Example A.10. To somewhat clarify (the dual of) the above definition, we will consider
relative I-cell complexes in Top, where I is the set of inclusions Sn−1 ↪→ Dn. A relative
I-cell complex is a map obtained by transfinite composition of pushouts of maps in I.
The map Xβ → Xβ+1 then attaches an n-cell to Xβ for some n. A relative I-cell complex
X → Y is an inclusion X ↪→ Y , where Y is obtained by attaching arbitrarily many cells
to X. Say that we are given a λ-sequence {Xβ}β<λ with the extra property that for any
β, if Xβ → Xβ+1 attaches an n-cell, then no m-cell with m > n has yet been attached.
Then the pair (colimβ<γ Xβ, X0) is a relative CW-complex, and any relative CW-complex
is of this form. ♦

Proposition A.11. Every retract of a relative P -cocell complex is a P -fibration.

Proof. Note that a map in P by definition has the right-lifting property with respect to
any map in llp(P ). By a standard argument, pullbacks and retracts of maps in rlp(J)
are again in rlp(J), for any class of maps J . By transfinite induction, one can prove
that rlp(J) is closed under transfinite precomposition. In particular any relative P -cocell
complex is a P -fibration. Again by a standard argument, if a map is in rlp(J), then any
retract of this map is also in rlp(J). �

Definition A.12. Let C be a category and P a set of maps in C. We say that an object
is cosmall relative to P if it is cosmall relative to the subcategory of relative P -cocell
complexes, in the sense of Definition A.2. ♦

The following definition and proposition are the essential ingredients in constructing
a fibrantly generated model structure.

Definition A.13. Let C be a category and P a set of maps in C. We say that P permits
the cosmall object argument if the codomains of the elements of P are cosmall relative to
P . ♦

Proposition A.14 (The cosmall object argument). Let C be a complete category
and let P be a set of maps in C that permits the cosmall object argument. Then there
is a functorial factorization of every map in C into a P -projective map followed by a
P -cocellular map.

Proof. This proof is based on the proof of Proposition 10.5.16 in [Hir03]. We will construct

the factorization of a map f : X → Y in C as X ZP Y
j p

by an ω-tower

Y = Z0 Z1 Z2 · · · Zn · · · (n ∈ N),

X
j0

j1
j2

jn
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where each Zn+1 → Zn is a pullback of products of maps in P , and we let ZP = limn Zn.
We set j = limn jn, and we let p : ZP → Y be the transfinite precomposition. Then
ZP → Y is a P -cocellular map by definition. The idea is to “add” all the P -cocells to Y
which are needed to make the map j : X → ZP P -projective.

If j : X → ZP is P -projective, then for any commutative diagram of the form

X A

ZP B,

j k

with k ∈ P , there must exist a lift. Since B is assumed to be cosmall relative to P , we
obtain a commutative solid arrow diagram of the form

X A

ZP Zn+1 Zn B

k

for some n ∈ N. The idea is now to construct Zn+1 in such a way from Zn that a lift
Zn+1 → A exists. Precomposition with the map ZP → Zn+1 will then give the desired
lift.

To achieve this, we will define the Zn inductively. Let Z0 = Y and let j0 = f . Now
assume Zn has been constructed. Let

Pn = {(ki, g, h) ∈ P × HomC(X,Ai)× HomC(Zn, Bi) | ki : Ai → Bi and kg = hjn}.

Note that we can also view this as

Pn =
∐

(ki : Ai→Bi)∈P

HomC(X,Ai)×HomC(X,B) HomC(Zn, Bi).

We now define Zn+1 to be the pullback (
∏
Ai)×(

∏
Bi) Zn as in the diagram

Zn+1

∏
(ki,g,h)∈Pn

Ai

Zn
∏

(ki,g,h)∈Pn

Bi.

Here the vertical map on the right is given by ki on each component, and the bottom
map is the product of the maps h : Zn → Bi. We construct jn+1 from jn through the
universal property of the pullback, where the map X →

∏
Ai is given by g : X → Ai on

each component.
Now let ZP = limn Zn. One directly sees from the discussion above that X → ZP is

P -projective, and as stated above, ZP → Y is P -cocellular by definition. Functoriality is
left to the reader. �
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Corollary A.15. Let C be a category and let P be a set of maps permitting the cosmall
object argument. Then the class of P -fibrations equals the class of retracts of relative
P -cocell complexes.

Proof. We already proved that a retract of a relative P -cocell complex is a P -fibration.

For the converse, let g : X → Y be a P -fibration. Factor g as X ZP Y
j p

with j a

P -projective map and p a relative P -cocell complex. Then j ∈ llp(P ) and g ∈ rlp(llp(P )),
so there exists a map f : ZP → X satisfying fj = idX and gf = p. In particular the
diagram

X ZP X

Y Y Y

j

idX

g

f

p g

commutes, so we conclude that g is a retract of p. �

Definition A.16. A fibrantly generated model category is a model category C for which
there exist two sets of maps P and Q such that:

(i) P and Q permit the cosmall object argument,

(ii) the class of trivial cofibrations is equal to llp(P ), and

(iii) the class of cofibrations is equal to llp(Q). ♦

Remark A.17. The above definition implies that the class of fibrations in C is given
by fib(P ), and that the trivial fibrations are fib(Q). For that reason, P is the set of
generating fibrations and Q the set of generating trivial fibrations. ♦

The following theorem, which (in its dual form) is attributed to D.M. Kan, is a useful
tool in constructing model structures on pro-categories. It can be found in [Hir03] as
Theorem 11.3.1. Recall that a class of maps W satisfies the “two out of three” axiom if,
for two composible maps f, g, whenever two of the maps f , g and gf are in W , then so
is the third.

Theorem A.18. Let C be a complete and cocomplete category and let W be a class of
maps in C that is closed under retracts and satisfies the “two out of three” axiom. If P
and Q are sets of maps in C such that:

1. both P and Q permit the cosmall object argument,

2. every Q-fibration is both a P -fibration and an element of W ,

3. every P -projective map is both Q-projective and an element of W , and

4. one of the following two conditions hold:

a. a map that is both a P -fibration and an element of W is a Q-fibration, or
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b. a map that is both a Q-projective map and an element of W is P -projective,

then there is a fibrantly generated model structure on C in which W is the class of weak
equivalences, P is a set of generating fibrations and Q is a set of generating trivial fibra-
tions.

Proof. Define the weak equivalences to be maps in W , the fibrations to be the P -fibrations
and the cofibrations to be the Q-projectives. It is straightforward to check the axioms
of a model category, using the cosmall object argument to prove the factorization axiom.
The only part that might give rise to problems is the lifting axiom, so we will prove this
assuming 4a. The proof assuming 4b is similar.

Assume we are given a commutative solid arrow diagram of the form

A X

B Y,

i p

then we want to construct a lift in two cases. The first case is when i is a cofibration (i.e.
a Q-projective map) and p a trivial fibration. In this case i is a Q-fibration by assumption
4a, hence a lift exists by definition of a Q-fibration. The second case is when i is a trivial

cofibration and p a fibration (i.e. a P -fibration). Factor i as A C B
j q

with j a
P -projective map and q a P -fibration. Then by assumption 3, j is a weak equivalence,
hence q is a weak equivalence by the two out of three property. By assumption 4a, q is
a Q-fibration. This means that q has the right-lifting property with respect to i, hence
there exists a map h : B → C such that hi = j and qh = idB. By a proof similar to that
of Corollary A.15, we see that i is a retract of j, hence i has the left-lifting property with
respect to maps in P , hence with respect to P -fibrations. Since p is a P -fibration, we
conclude that a lift in the above diagram exists. �
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