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A mathematical model of vegetation-topography feedbacks and their impact on the
resilience of arid ecosystems

by Tri J. M. SAMBAS

Vegetation in arid ecosystems is a well-known example of self-organized spatial patterns.
The pattern of vegetation bands interspersed with bare soil is explained as a result of pos-
itive feedback between infiltration and vegetation. In gently sloped landscapes, vegetation
patterns appear as vegetation bands which are perpendicular to the direction of the slope.
Moreover, it is widely observed that vegetation bands are found to be arced and convex
up-slope. Previous studies suggest that the underlying topography plays a role in shaping
the bands as the straight bands are changing to arced when it grows on top of valley-like
landscapes. Although it is clear that topography affects the shape of vegetation patterns, it
is yet unknown how feedbacks between vegetation and topography influence the resilience
of self-organized patterns in arid ecosystems.

In this study, we develop a mathematical model based on the interaction between hydro-
dynamics, vegetation, and topography. We start with modifying the surface water model by
Rietkerk et al., 2002 into the shallow water equations and adding a topography dynamics
to allow soil erosion. Additionally, we simulate the effect of environmental changes, for
example, rainfall pattern to the resilience of vegetation in the presence of topography evo-
lution. The simulation results show that a long dry period could trigger channel formation
which then causes an accumulation of water. We also found that as the amount of water
increasing in the channels, vegetation begins to inhabit the channels and prevent soil ero-
sion to deepen the channels further. Therefore, we argue that the topographic depression
and channels could increase the resilience of vegetation bands in dealing with harsh condi-
tions, by helping the vegetation in concentrating and harvesting water. Finally, our findings
suggest that these arced band patterns could be an indicator of a system that is recovering.

Keywords: arid ecosystems, self-organization, spatial patterns, Turing pattern, shallow
water equations, geomorphology.
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Chapter 1

Introduction

Arid ecosystems are found on nearly every continent, i.e., Africa, Asia, America, and Aus-
tralia. This ecosystem is characterized by a limited amount of water found in the area due
to lack of precipitation and also classified as drylands (details can be found in Figure 1.1).
Same as the other drylands system, arid ecosystems are prone to desertification. Overgraz-
ing and changes in land use by human activities could pose a threat to the ecosystems (Adeel
et al., 2005, Gowda, Iams, and Silber, 2018). Moreover, climate change could also play a role
in land degradation due to the change in rainfall patterns (Hendrix and Salehyan, 2012).
Therefore, research regarding the evolution of composition in ecosystems, especially vege-
tation, are needed to assess the potential threats in ecosystem management.

FIGURE 1.1: The classification and distribution of dryland systems in the earth
surface, starting from dry sub-humid to hyper-arid (desert). This image was
taken from Adeel et al., 2005. Dryland systems contribute to about 41 % land
mass of earth surface and are home to around 35% of the population in the

world.

Many arid ecosystems, especially those are untouched by human, exhibit spatial vege-
tation patterns. The patterns consist of bare soil areas alternating with vegetation patches.
The examples of these patterns are spots, gap, labyrinth, and regular bands. The first three
examples are mostly found in flat landscapes whereas the lasts are found in gently sloping
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landscapes (Couteron and Lejeune, 2001, Rietkerk et al., 2002, Deblauwe et al., 2011, Basti-
aansen et al., 2018). It has been suggested by many (Klausmeier, 1999, Rietkerk et al., 2002,
Hardenberg et al., 2001, Gilad et al., 2004) that these patterns can emerge due to positive
feedbacks between infiltration and vegetation. A higher infiltration rate in vegetated areas
than in bare soil areas leads the net displacement of water from run-off areas into vegetation
patches. This process of making large-scale spatial patterns from random distributed initial
conditions through local interactions is usually called spatial self-organization (Rietkerk and
Koppel, 2008).

Mathematical modeling has become a well-known tool to simulate spatial vegetation
patterns and assess potential threats to ecosystems health. In a study by Klausmeier, 1999,
they built a simple mathematical model which could reproduce a regular stripes vegetation
pattern found in arid and semi-arid ecosystems. Furthermore, HilleRisLambers et al., 2001,
which was then extended by Rietkerk et al., 2002, expanded water modeling as two de-
pendent variables, i.e., surface water and soil water which could recreate the whole range of
distinctive patterns in arid ecosystems. In other previous studies (Scheffer et al., 2001, Rietk-
erk et al., 2004), they indicate a mechanism of patterns transformation from one to another
by reducing and increasing resource input which could be an indicator of a catastrophic shift
from a vegetated to a degraded state. However, their models have not taken into account
the influence of topography variation on vegetation patterning. Meanwhile, the studies by
Macfadyen, 1950 and Deblauwe et al., 2011 suggest the importance of topography role in
shaping vegetation pattern. In an aerial photograph, Macfadyen, 1950 shows two different
vegetation conditions sitting side by side; one is a gently sloped landscape with vegeta-
tion banded patterns while the other one is a highly eroded landscape with less vegetation.
Correspondingly, the study by Deblauwe et al., 2011 reveals that vegetation bands are only
found in topography with a gradient between 0.25 - 1%. These two findings suggest that
topography plays an important role in influencing the resilience of arid ecosystems. There-
fore, it is essential to include the effect of topography variation into mathematical modeling
of arid ecosystems.

Several previous studies have investigated the influence of topography variation in veg-
etation patterning by using extended models, but its impact on the resilience remains un-
explored. Gandhi et al., 2018 extended the Klausmeier model to take the non-uniformity
of underlying topography into account. The results show that vegetation "arced" bands
are related to the curvature of valley-like landscapes. Saco, Willgoose, and Hancock, 2007,
which later extended by the second paper Saco and Moreno-De Las Heras, 2013, were the
first to introduce topography dynamics coupled with vegetation and hydrodynamics in arid
ecosystems. The studies found that bumpy landscapes, which are seen in Australia, are a
result of feedbacks between erosion and vegetation. Additionally, they indicate abiotic pa-
rameters (i.e., slope steepness, soil erodibility, and soil dispersion) impact on the biotic (i.e.,
vegetation patterning) which results in vegetation bands breaking up into stripes. However,
they have not considered vegetation patterns responses to environmental changes, such as
the change of rainfall pattern in which dry areas become drier while wet areas become wetter
(Hendrix and Salehyan, 2012). Heterogeneous topographic conditions may alter the vegeta-
tion responses to the environmental changes. For example, topographic depressions, which
are related to vegetation "arced" bands, might have a crucial role in low rainfall conditions
since they form ponds of temporary water supply after rains (Macfadyen, 1950). Therefore,
the interaction between vegetation and topography feedbacks give rise to further investiga-
tions.

In this study, we try to explain the observations done by Macfadyen, 1950 and Deblauwe
et al., 2011. Based on the remote sensing data, vegetation bands only appear on gently
sloped terrains. However, vegetation bands are observed side by side to a highly eroded
landscape which has much less dense vegetation as shown in the photos of Macfadyen,
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1950 (see Figure 1.2). The first finding suggests that vegetation bands maintain a relatively
flat gradient while the second suggests that within the same conditions (i.e., rainfall pattern,
soil composition), the two vegetation conditions with related landscapes are alternating to
each other. In other words, in the first observation, negative feedbacks between vegetation
and topography preserve the slope gradient whereas the second observation suggests that
positive feedbacks can dominate the system which then generate a highly eroded landscape.
Therefore, these observations indicate that feedbacks between vegetation and topography
could control the resilience of arid ecosystems.

FIGURE 1.2: An aerial photograph of vegetation bands (foreground) and
a highly eroded landscape (background) in a observational study by Mac-
fadyen, 1950. The arrow represents the direction of the slope. Both conditions

appear to be located side by side.

1.1 Hypotheses and Research Questions

Here we provide a complete explanation of two competing hypotheses which could explain
the emergence of these two observed conditions. The hypotheses can be described as fol-
lows,

• Negative feedback hypothesis: Channels or topographic depressions concentrate wa-
ter from rains thereby facilitating the growth of vegetation in the channels which pre-
vent further erosion of the channels. Therefore, shallow depressions and channels
induce an establishment of vegetation "arced" bands. Furthermore, the positive re-
sponse from the channels to the vegetation growth could increase the resilience of the
ecosystem against environmental changes. The illustration of this hypothesis can be
found in Figure 1.3a.

• Positive feedback hypothesis: Deeper channels or topographic depressions concen-
trate more water thereby increasing water flow velocity. Because of the higher flow
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velocity in the channels than the one goes to vegetation patches, it allows a "com-
petition" between the vegetation and the channels in collecting water. The increased
"competition" could lead to decreased vegetation density, due to the low water level
on the ridges, and increased erosion rates on the valleys leading to deeper channels.
Furthermore, the negative response from the channels to the vegetation growth could
decrease the resilience of the ecosystem. The illustration of this hypothesis can be
found in Figure 1.3b. Additionally, we can see that the highly eroded landscape is
present next to vegetation banded patterns suggesting alternative stable ecosystem
states and the potential for irreversible ecosystem degradation.

(A) Negative feedback hypothesis (B) Positive feedback hypothesis

FIGURE 1.3: The illustrations of negative and positive feedback hypothe-
ses which explain vegetation "arced" banded patterns and "feather" pat-
terns. Modern images are taken from the Google Earth Pro (A) in coor-
dinates (9°19’55.52" N 48°45’25.68" E) and (B) in coordinates (9°17’11.10" N

48°43’25.72" E).

In this study, we want to investigate the implications of the interaction between biolog-
ical processes that generate spatial vegetation patterns and morphological processes that
determine soil erosion, to the resilience of arid ecosystems. In particular, we would like to
address these two questions,

• Which biogeomorphic feedback dominates when it comes to the present vegetation
"arced" bands and highly eroded landscapes?

• How do these feedbacks influence the stability/resilience of the ecosystem against
environmental changes?

1.2 Aims

Our aims in this study can be described as follows,
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• First, we would like to build a mathematical model which couples hydrodynamics,
vegetation, and topography dynamics in arid ecosystems.

• Second, we want to investigate the influence of topography dynamics on the vegeta-
tion patterns and vice versa by using numerical simulations. In particular, we are in-
terested in the evolution of vegetation patterns along with topography development.

• Third, we would like to analyze the impact of climate change, i.e., decreasing or in-
creasing rainfall intensity, on the resilience of arid ecosystems.

1.3 Outline

In this study, we start with describing an established arid vegetation ecosystem modeling in
Rietkerk et al., 2002 then modifying the surface water modeling to allow non-uniform water
flow. Besides, we also add a topography dynamics to take the landscape formation into
account. Furthermore, we include essential feedbacks between hydrodynamics, vegetation,
and topography dynamics. Then, we use a numerical method to obtain the approximated
solutions. Finally, we investigate the vegetation-topography relationship and its implication
to the ecosystem resilience by using the proposed model.

The thesis organization is arranged as follows; in chapter 2, we would like to introduce
the proposed model, numerical methods, and model analysis. In the proposed model, we
provide descriptions of each model dynamics and a modeling scheme. For the numerical
methods, we introduce the finite difference method to solve the system numerically. After
that, to analyze the model results, we use the spectral analysis method and the continuation
method. At the end of the chapter, we also would like to direct the reader to the initial setups
of the numerical simulations. In chapter 3, we present the simulation results and analysis.
Further elaboration of the results will be given in the discussion in chapter 4.
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Chapter 2

Material and Methods

In this chapter, we are going to explain how vegetation, infiltration, and erosion feedbacks
in arid ecosystems can be described as a set of mathematical expressions. After that, we
will explain a numerical method called finite difference method to solve the equations nu-
merically. In the end of the chapter, we would like to introduce two mathematical tools to
analyze simulation results. Furthermore, we will also introduce three scenarios to mimic
environmental changes.

2.1 Model Descriptions

Previous study by Rietkerk et al., 2002 has provided a basic model to explain the emergence
of regular spatial patterns which are found in arid ecosystems. The model included positive
feedback between infiltration and vegetation that influence water redistribution (see Figure
2.1). Water flow is assumed to be uniform, flat, and one-directional flow. Nevertheless, one
of the keys to topographic variation in arid ecosystems is non-uniform water flow which
allow an accumulation of water. Thus, we modify the surface water modeling by replacing
the equation dynamics into shallow water equations to favor the non-uniform flow.

FIGURE 2.1: A conceptual model of arid ecosystem showing the interaction
between vegetation, water, and topography dynamics. Black arrows are pos-
itive feedbacks to allow regular spatial patterns in arid ecosystems (study by
Rietkerk et al., 2002) while red arrows represent the proposed feedbacks and

a new proposed dynamic in this study.

Shallow water equations can generate non-uniform water flow via pressure differences
and convective accelerations on x and y directions. Pressure differences, which come from
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different height in water level, lead to varying local flow accelerations in the system. Mean-
while, convective accelerations allow increasing or decreasing flow speed which depend on
underlying topography whether entering narrowing or opening, respectively. Both of them
play a major role in creating non-uniform flow in fluid dynamics.

Non-uniform water flows induce topographic variations through soil erosion. As the
water flow speed increases through narrow surfaces, soil erosion begin to take place. The
erosion rates in narrow surfaces are higher compared to flat surfaces due to flow speed dif-
ferences. Therefore, the narrow surfaces will get deeper through continuous soil erosion
whereas the flat surfaces are barely eroded. The whole process of creating topographic vari-
ation is proposed to be called channelization process.

As the channelization process begins, topography is changing over time and give posi-
tive feedback to water flow. The change in topography will cause a redirection of water flow
and an adjustment to the flow velocity. Channels divert flow directions from spreading out
into concentrated and cause an accumulation of water. The accumulation of water induces
pressure differences thereby increasing flow speed in the channels. Thus, water flow and
erosion are two important properties in heterogeneous topography formation.

Here in this section, we combine hydrodynamics, vegetation, and topography dynamics
into one coupled model. Starting with introducing two dynamics used in the previous study,
then we describe the shallow water equation as the surface water modeling and topography
dynamics. The conceptual model of this study is depicted in Figure 2.1. Since we deal with
high variance time-scales, three methods are discussed to tackle the issue. Further details
regarding assumptions and limitations of the model are discussed in each section.

2.1.1 Vegetation Dynamics

In arid ecosystems, vegetation growth is limited to availability of water. Here, we treat
water as two different dependent variables in this model, infiltrated water as soil water
while run-off as surface water. Growth rate of vegetation is assumed to be limited to the
amount of soil water available. It is defined as a multiplication of a half-saturation function
of soil water with a constant k1, water up-take rate, gmax, and conversion rate, c. Moreover,
vegetation density is assumed to be loss due to vegetation life-span with mortality rate, d.
Furthermore, vegetation in arid ecosystems can disperse spatially when neighboring areas
with better resources are available. Here, the movement is modelled by a diffusion term with
a coefficient, Dp. Thus, the phenomena above can be written as a mathematical expression
which is given by,

Biomass Dynamics→ [Growth]− [Death] + [Plants Dispersal]
∂p
∂t

= cgmax
w

w + k1
p− dp + Dp∆p. (2.1)

2.1.2 Soil Water Dynamics

Soil water, which come from infiltration of surface water, are absorbed by vegetation, evap-
orates, and are flowing through gaps inside the soil. Infiltrated water from the surface be-
come the only water input in soil water dynamics. The infiltration rate is defined as a half-
saturation function of vegetation density with a constant k2. The maximum infiltration rate
is α in vegetation patches while αw0 in bare soil areas. Besides absorbed by vegetation, some
amount of soil water will evaporate or seep out of system through drainage at linear rate rw.
Furthermore, we assume that the soil water can disperse through some gaps inside the soil
due to capillary forces. The movement is describe with a diffusion term at a constant rate,
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Dw. Thus, the soil water dynamics can be defined as a partial differential equation below,

Soil Water→ [Infiltration]− [Water-uptake]− [Evaporation] + [Capillary Forces]

∂w
∂t

= αh
p + k2w0

p + k2
− gmax

w
w + k1

p− rww + Dw∆w. (2.2)

2.1.3 Surface Water Dynamics

In arid ecosystems, rain (or rainstorms specifically) only happen in discrete events and in
short-period of time. Here in the model, we assume the water input from rainfall is a contin-
uous event and homogeneous. A specific amount of water is added throughout the spatial
domain continuously. Therefore, it allows a thin-sheet water column flowing in the system
during continuous period.

Surface water is modeled by using shallow water equations. The shallow water equa-
tions consist of two main equations, continuity and momentum equations. Water level
depth characteristic in the shallow water equations, h, is assumed to be much smaller than
the horizontal length of water column. Therefore, the surface water dynamics are consid-
ered to be more lateral than vertical directions.

Here in this section, we provide the explanations on how we implement shallow water
equations into the arid ecosystems modeling. Beside that, we introduce one of wetting-
drying algorithms to deal with dry areas in the shallow water equations.

Continuity Equation

Continuity equation explains the amount of water in the cells which depends on the amounts
that are coming into and going out of the cells. In this model, we assume the water flow can
be coming from x and y directions. Therefore the flux of water coming into and going out of
the cell can be described as net fluxes which are the multiplication of water flow and column
in x and y directions. Beside that, to complete the equation, we add one external source to
model water input from rainfall and one external sink to describe water infiltration into soil.
Then, we can have an adjusted continuity equation,

Local Water Height Dynamic + Net Flux→ [Rainfall]− [Infiltration]
∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= R− αh
p + k2w0

p + k2
. (2.3)

On the left hand side, we have local height dynamics which depends on the net fluxes. The
fluxes are determined by how fast water flow in x and y direction are coming into and out
from the cell then multiplied by water columns. On the other side, rainfall is modeled as a
constant input for all cells, R, and infiltration is modeled as a saturation function of vegeta-
tion density and availability of water. As the patches get denser, infiltration rate increases
and then plateaus after passing the half saturation constant, k2. In other cases, where is no
vegetation present, infiltration rate is at the lowest value, αw0.

Momentum Equations

The next component of shallow water equations is momentum equations. The equations
describe how momentum in the water flow are changed and transferred between water col-
umn through the interactions with bed topography and gravity. The change in inertia is
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modeled by local dynamics and convective accelerations. Here are the mathematical ex-
pression of the momentum equations,

Local Inertia + Conv. Acc.→ −[Pressure]− [Friction Loss] + [Turbulent]

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
(

∂(h + z + zre f )

∂x

)
− S f x + Du∆u, (2.4)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
(

∂(h + z)
∂y

)
− S f y + Dv∆v, (2.5)

with the bottom friction can be defined as a quadratic function of the velocities (Kämpf,
2009),

S f x =
g

C2h
u
√

u2 + v2, (2.6)

S f y =
g

C2h
v
√

u2 + v2,

and the coefficient C, Chézy coefficient, follows Baptist et al., 2007 in case of emergent veg-
etation,

C =

√√√√ 1
1

C2
b
+ CD ph

2g

,

where Cb and Cd represent bed roughness coefficient and bulk drag vegetation density.
In the model, pressure gradient consist of hydrostatic pressure and two slope gradient

of topography. First gradient comes from the reference slope gradient which represented as
zre f while the other gradient, z, comes from an erodible bed topography. The last term on
the right hand side represents turbulent "eddy" stress which is modelled by diffusion term
with diffusion constants, Du and Dv for x and y directions, respectively.

Wetting-Drying: Thin-film Algorithm

A deterministic mathematical model consider continuous processes that are happening in
the dynamics instead of several discrete occurrences. Here we assume that an average an-
nual rainfall is added into the all spatial grids in the system as a constant water input at
every time step. However, when water flow gets accumulated in the channels, some areas
are drier than the others. The shallow water equation cannot evaluate a cell with zero value
of water depth due to the infinite friction loss (low water level h induces very high friction,
see equation 2.6). Therefore, one needs to use a wetting-drying algorithm to shallow water
equations continuing the computation process.
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FIGURE 2.2: An illustration image to wetting-drying algorithms. The image
is taken from Medeiros and Hagen, 2012. In this study, we implement the

algorithm in group 1: thin-film algorithm.

Here we implement a thin-layer algorithm in mimicking wet and dry areas. We evaluate
each cell using the shallow water equations and at the end of each iteration, the low water
level cells (can be negative or zero value) are corrected by a thin layer of water, hmin while
the rest remain the same. Therefore, dry areas would have a thin-layer of water as an input
for shallow water equation while wet areas are not changed. The illustration of this method
can be seen in Figure 2.2 on group 1. The benefit of this method is one does not need to
remove any cells in the computation scheme and can use all cells on every iteration. Fur-
ther explanations and other options regarding wetting-drying algorithms can be found in
Medeiros and Hagen, 2012.

2.1.4 Bed Evolution Equation

Topography dynamics is modelled as two layer of beds. The first layer is called erodible
dynamics bed while the second layer is non-erodible static bed. The non-erodible gives us
a static slope gradient which also represents a hard rock layer on the earth crust. On the
other hand, the erodible layers, which represent red sandy and silty sand, are changing
over time due to soil erosion. Additional slopes will be given to the present slope as the
erosion shaping up the topography. The illustration of these two layers of bed topography
is depicted in Figure 2.3. Furthermore, we consider an external source in the topography
dynamics as a constant tectonic up-lift to represent an external force keeping topography
reference. Therefore, topography dynamics will be present as a non-uniform landscape in
steady state condition instead of a flat eroded landscape.
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FIGURE 2.3: Landscape modeling using two layer of bed topography, one is
flat and erodible, z, and the other is non-erodible that has a slope gradient,
zre f . These erodible and non-erodible layers represent red sandy - silty sand

soil and hard rock layers, respectively.

The bed evolution modeling consists of three terms. Firstly, we model a constant tectonic
up-lift as mentioned at the beginning of the section. The up-lift is computed by spatially
averaging the erosion each iteration. Secondly, soil erosion modeling consists of maximum
erosion rate, βmax, absolute speed of water flow, and effective water level. The erosion rates
are vary as water flow are non-uniform. A concentrated flow enhances soil erosion due to
an increased flow speed. Moreover, the height of water column improves the erosion rate
since there is more capacity for sediments to be transported by the water flow. We model the
enhancement by water level as a half-saturation function with a constant, κ. Lastly, we also
add a soil dispersion as a diffusion movement at a constant rate, Dz to model small scale
landslides. Here is the mathematical expression of the bed evolution equation,

Local Bed Evolution→ [Tectonic Up-lift]− [Erosion] + [Soil Dispersion]

∂z
∂t

= U − βmax

√
u2 + v2

he f f

he f f + κ
z + Dz∆z, (2.7)

with he f f = h− hmin is the effective water level. Here we assume there is an external force
from below that keeps bed reference in level through the addition of erodible soil. Therefore
we can obtain a varied topography instead of a fully eroded landscape at the steady state
condition. To do so, we calculate a spatially averaged value of the amount of soil eroded in
the domain and apply it back to the domain as a constant input of uplift. In general, we can
derive the tectonic uplift equation which is given by,

U =
1

LxLy

∫ Lx

0

∫ Ly

0
E(x, y)dxdy,

where Lx and Ly represent the length of observation in x and y directions, and,

E(x, y) = βmax

√
u(x, y)2 + v(x, y)2 h(x, y)

h(x, y) + κ
z(x, y).

The equation of U is derived from computing a volume under a surface which is charac-
terized by a function of two variables as derived in Varberg, Purcell, and Rigdon, 2007 and
then divided by the area of the domain to obtain the average value.
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2.1.5 Time-scale Differences

Coupling hydrodynamics, vegetation dynamics, and topography dynamics increases the
complexity of the model. Each dynamics has its own time scale of evolution to see notice-
able changes (see Figure 2.4). Hydrodynamics is changing at very fast time scale i.e. seconds
whereas vegetation could show the growth or colonization progress in days or even months.
Moreover, topography dynamics has even longer time scale to be established, i.e. years or
decades. Using a straightforward computation, one could obtain a reliable solution which
represents the accurate physical phenomenon. However, it would cost very expensive com-
putations and take really long time since a small change in topography dynamics need a
large number of hydrodynamics iterations. Therefore, we need to include an assumption
to tackle this issue. Here in this section, we would like to discuss three options that can be
chosen to handle the large difference in time scales.

FIGURE 2.4: A scheme of time-scale differences between hydrodynamics, veg-
etation growth, and bed evolution in the proposed model.

Quasi-Steady State Approximation

One of the well-known methods to solve different time scale dynamics is quasi-steady state
approximation or quasi-steady state assumption. This method was firstly introduced in
Segel and Slemrod, 1989 and mainly used in the biochemistry field. In this method, it is
assumed that if one or more dynamics in the system appear to be constant over time interval
concerned, then we can approximate the dynamics equal to zero over time. Thus, the fast
dynamics become independent of time.

Many scientists usually apply this method to reduce the complexity of the differential
equations by removing one or more equations. One of the examples is in Weerman et al.,
2010; they reduce the number of differential equations from three equations into two equa-
tions because one of the dynamics can be expressed algebraically independent of time using
the method. Therefore, by using this method, we can simplify the system of partial differ-
ential equations and reduce the complexity.

Pseudo-transient Method

A numerical method called pseudo-transient method can also handle the time scale dif-
ferences by utilizing multiple time scale computations. Instead of reduce the number of
equations, firstly, we can simulate the fast dynamics until it reaches steady state and then
use the result as an input for the slow dynamics. After the slow dynamics is updated, then
the result becomes an input for the fast dynamics to reach a new steady state solution. The
processes are going on until it reaches a prescribed time period concerned. The examples of
the implementation of this method can be found in Simpson and Castelltort, 2006 and Saco,
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Willgoose, and Hancock, 2007. This method has advantage that we could still use same
equations without changing the meaning. However, the method will impose an expensive
computation time due to multiple iteration stages. Thus, a justification between simple com-
putation method and computation time is needed to obtain more realistic solutions or less
waiting time.

Morphological Speed-up Factor

Another option to deal with different time scales is by speeding up the update process in
the slow dynamics to keep up with the fast dynamics. This method is called morphologi-
cal speed-up factor. In principle, the method favors the parameters in slow dynamics to be
multiplied by a specific magnitude to allow the rate of change to be close enough to the fast
dynamics (Ranasinghe et al., 2011). However, in some cases, this method might be not ideal
because it may overestimate the impact, for example the fast dynamics has a crucial influ-
ence to the slow dynamics. Therefore, a balance between realistic results and computation
time need to be considered in this case.

In this study, we use the morphological speed-up factor to produce simulation results.
We increase the impact of hydrodynamics changes to vegetation and topography dynamics.
Therefore, all three dynamics become in a same time scale period. Here are the explanation
how we implement the speed-up factor,

1
ϕ1

∂w
∂t

= αh
p + k2w0

p + k2
− gmax

w
w + k1

p− rww + Dw∆w,

1
ϕ1

∂p
∂t

= cgmax
w

w + k1
p− dp + Dp∆p,

1
ϕ1

[
∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

]
= R− αh

p + k2w0

p + k2
,

1
ϕ2

∂z
∂t

= U − βmax

√
u2 + v2 h− hmin

(h− hmin) + κ
z + Dz∆z.

We do not apply the morphological factor into the momentum equations as it is already in
seconds time scale. Then, we have the adjusted parameters as follow,

∂w
∂t

= ϕ1αh
p + k2w0

p + k2
− ϕ1gmax

w
w + k1

p− ϕ1rww + ϕ1Dw∆w,

∂p
∂t

= cϕ1gmax
w

w + k1
p− ϕ1dp + ϕ1Dp∆p,

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= ϕ1R− ϕ1αh
p + k2w0

p + k2
,

∂z
∂t

= ϕ2U − ϕ2βmax

√
u2 + v2 h− hmin

(h− hmin) + κ
z + ϕ2Dz∆z.

Therefore, we have ten adjusted parameters to the morphological factor, i.e. ϕ1α, ϕ1gmax,
ϕ1rw, ϕ1Dw, ϕ1d, ϕ1Dp, ϕ1R, ϕ2U, ϕ2βmax, and ϕ2Dz. The values of ϕ1 and ϕ2 are estimated
in this study. Further study is needed to discuss reliable values for morphological speed-up
factors in comparison with observational studies.

2.1.6 Initial and Boundary Conditions

A well-posed mathematical problem needs to have a set of initial and boundary conditions
to complete a system of partial differential equations. Initial and boundary conditions are
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prescribed in each case. In this study, we deal with a system of partial differential equations
in two dimension. Therefore, we need to assign a set of initial conditions for each vari-
able and boundary conditions for each boundary. Thus, our system of partial differential
equations has a unique solution.

Initial Conditions

Initial condition is a prescribed condition of all variables at time is equals zero for all spatial
domain. It also means that the starting conditions of all physical features that are going to
evolve over time in the system dynamics. The problem is we usually do not know how the
initial condition was. Therefore, we draw an assumption that the initial condition of the
system comes from homogeneous steady state solutions which derived in A. Thus, we can
obtain a system of partial differential equations that has a unique solution.

Boundary Conditions

Besides initial conditions, to solve a system of partial differential equations mathematically,
we need to impose boundary conditions. Many options can be made to prescribe the bound-
ary conditions. Here in this study, we explain three boundary conditions that are relevant
to the current modeling concept.

Periodic Boundary
Periodic boundary is widely used for solving a system of partial differential equations which
the solution is known analytically. This type of boundary allows matters, which go out of
the system, come back into the system from the other side of boundary (Kämpf, 2009). The
boundary is useful to impose infinite domain to our system. It means that the boundary
of our computation is less restrictive. Therefore, this type of boundary is appropriate for
simulations that are not limited to the condition of boundary.

Closed Boundary
A closed boundary is a boundary condition that does not allow matters to go out of the sys-
tem. It is usually used to represent coastline or experimental wall setup. This boundary is
classified into two types, no-slip and full-slip boundaries (Kämpf, 2009). No-slip boundary
means flow or matters, that come toward the boundary, will be diminished due to zero flow
condition at the boundary. In other words, no matter or flow is at the boundary. On the
other hand, full-slip boundary allows water flow to be present but there is no exchange of
flow at the boundary. Therefore, the normal derivative with respect to the direction of the
flow is equals to zero.

Open Boundary
An open boundary is a counter condition of the closed boundary, instead of keeping matters
or flow inside the system, it allows matters or flow go out of the system. Using this type of
boundary, it is also possible to fix a source input at the boundary, for example tide waves
as in the shore. Therefore, the idea of this type of boundary is to allow matters originating
from the system leave the domain without influencing the interior solution. In this study,
we focus on the open boundary that allows matters or flow go out of the system to simulate
drainage channels.
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2.2 Finite Difference Method

Most of cases in mathematical modeling of ecology incorporate non-linear interactions be-
tween compartments or variables. Finding analytic solutions of a system of partial differ-
ential equations is difficult due to the complexity of non-linear equations. Therefore, one
usually implements a numerical method to approximate the solutions. However, the nu-
merical solutions are not as accurate as the exact solutions because of an approximation of
the smooth curve by several numbers of grids. The accuracy of numerical methods depend
on how many terms are considered in the approximation. The more terms are ignored, the
less precise the method is. In this section, we are going to explain a numerical method for
approximating the solution of a system of partial differential equations which is called a
finite difference method.

Finite difference method is a numerical method for solving differential equations by ap-
proximating the solution using difference equations LeVeque, 2007. The method proceeds
by replacing the differential equations by finite difference equations then computes the so-
lution using defined grids. The difference equations are derived from the Taylor series.
Consider a Taylor series,

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)
2!

h2 + . . . , (2.8)

with x is the independent variable and h is a step size. To approximate the first derivative,
f ′(x), we can neglect the higher order terms and rearrange the equation. Then we can have,

f ′(x) ≈ f (x + h)− f (x)
h

.

This approximation of the first derivative is called forward finite difference. The method
approximates the derivative from one-sided since the derivative f ′ is estimated at a point x
from the right side of h. There is another option of one-sided approximation which is given
by,

f ′(x) ≈ f (x)− f (x− h)
h

.

This approximation is called backward difference method. The illustration of both approxi-
mations can be seen in Figure 2.5. The slope gradient (red line) can be approximated by two
options, the forward finite difference (yellow line) or the backward finite difference (purple
line). In this case, as the slope gradient at x is positive, then forward difference estimate
the derivative better than backward difference. However, in other cases, when the slope
gradient x is negative, the backward difference performs better than a forward difference.
Therefore, it is important to take the possible exact gradient into a consideration when using
a numerical method.
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FIGURE 2.5: An illustration to finite difference methods. Forward-Backward
difference are presented here.

In numerical methods, numerical accuracy and numerical stability are important mea-
sures to ensure that the solutions came from a convergence approximation. Both one-sided
approximations explained above give a first order accurate of estimation. It means that the
errors compared to approximated results are related in the first order of magnitude h. There-
fore, when we reduce the grid size h to h2, then the errors will be linearly reduced which is
equal to a constant multiplied by h. Besides that, the numerical stability analysis is also an
important feature to avoid numerical artifacts or numerical instability. As we approximate
the solution in a finite number of grids, the numerical method should not amplify the error
between the approximation and the exact solutions to obtain a stable solution. Therefore, it
is necessary to take into account the numerical stability in the study.

In this section, we explain how we implement a finite difference method to approximate
the spatial and temporal grids. For the spatial grids, we perform a centered finite differences
method to avoid the effects of the precondition of the slope gradient. We also introduce the
two approximation method for the time integration, i.e., explicit-implicit method and the
Runge-Kutta method. Furthermore, we consider two stability criteria for numerical approx-
imations, i.e., Courant-Friedrich-Lewy condition and Mesh Péclet number, to ensure the
solution is numerically stable.

2.2.1 Spatial Grid Approximation

This study works with two-dimensional space of x and y and a temporal grid. To obtain the
solutions of our system, we discretize our spatial into several numbers of uniform grids. The
size of grids in x and y axes is also the same. To obtain higher accuracy results, we impose
centered finite difference method into our spatial grids. This method has a second order of
accuracy meaning that it is more precise than the two methods discussed before. Further,
we discuss mesh Péclet number as a numerical stability criterion for spatial approximation.

Centered Finite Differences

Centered finite differences method approximates the slope at the center based on the aver-
age value of two-sided approximations. In short, mathematically, we consider its neighbor
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values instead of itself,

f ′(x) ≈ f (x + h)− f (x− h)
2h

=
1
2

(
f (x + h)− f (x)

h
+

f (x)− f (x− h)
h

)
.

The illustration of this method can be found in Figure 2.6. The advantages of this method
are simple in the implementation and more accurate than the one-sided approximation. This
approximation has a second order of errors h2 meaning that as we impose a higher number
of grids, the error will be reduced quadratically.

FIGURE 2.6: An illustration to center finite difference methods. Centered fi-
nite difference (yellow line) approximates the slope of the function f (x) by

averaging two-sided approximations.

In our system, we have two types of spatial derivative, first (advection) and second (dif-
fusion) order derivatives. Lets consider u is a discrete approximation of function f . Then
using this method, we can approximate the derivatives as follows,

∂u
∂x

∣∣∣∣∣
xi=i

≈ ui+1 − ui−1

2∆x
,

∂2u
∂x2

∣∣∣∣∣
xi=i

≈ ui+1 − 2ui + ui−1

∆x2 ,

with ∆x is a spatial grid size. However, in some cases, this method could produce unstable
oscillatory solutions due to method inability to dampen the errors. The sign of oscillation
emergence is described in mesh Péclet number.

Mesh Péclet number
The oscillatory solution may emerge in the system of partial differential equations which has
an advection-diffusion equation when we use centered finite difference method. To avoid
the oscillatory behavior, we need to keep Péclet number as low as possible. The number is
a dimensionless value which compute the ratio between the advection and diffusion rate.
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From the article by Veldman, 2001, the Péclet number is defined as,

Pe =
u

Du
∆x,

or in general, when we have a two dimensional system, we can rewrite the equation above
as follows,

Pe =
√

u2 + v2

max(Du, Dv)
∆x,

with ∆x represents the spatial grid size, u, v are water flow velocity in x and y directions,
and Du, Dv are diffusion constants. The numerator represents the absolute velocity in a grid
while the denominator represents the maximum value between diffusion constants in x and
y directions. Large Péclet number corresponds to a higher influence of advection instead of
diffusion transport. Therefore, in advection-dominated flow, we could consider diffusion
as zero. However, in the cases where diffusion transport is essential, we need to consider
taking finer grids as small as possible. The balance between computation time and realistic
parameters are essential in mathematical modeling to ensure that our model generates a
reliable solution.

2.2.2 Time Integration Method

The approximation for time derivative is discussed here. The simplest method in approxi-
mating time derivative is forward Euler method another name of forward difference method.
The method is included in a category of explicit computation methods. The explicit com-
putation means that we can calculate the next time step directly based on the solution
at present. Similarly to backward difference, in time integration method, we also have a
method so-called backward Euler. In this method, instead of computing the next time step
directly, we need to compute the backward operator inversely to calculate the next time step.
Because of this inverse computation, this method is also called an implicit method. Explicit
method is way easier to implement compared to implicit method since inverse computation
is quite heavy and complicated. However, in most cases, the explicit method is more nu-
merically unstable than the implicit method. Other option between the two explicit-implicit
scheme, there is a method called semi-implicit. In this method, we still have the straight-
forward computation to obtain the solution, but we could include several newly computed
results into the explicit computation. Therefore, the advantage of the implicit method can
be utilized while using the explicit method.

Finally, we would like to explain one another time integration method, which is called
the Runge-Kutta 4th order. This method is still a family of the explicit methods but using
several mid-steps before computing the one full time step solution. Therefore, the Runge-
Kutta method has more predictive power than the other options here.

Explicit Scheme

Lets consider a system of partial differential equations as follows,

∂u
∂t

= f (t, u),

where u is a vector of dependent variables and f is a spatial interaction function, for in-
stance, a reaction-diffusion function. In the explicit scheme, we can compute the dependent
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variables for the next time step directly from known variables and parameters at the mo-
ment. A well-known explicit method is the forward Euler method which can be expressed
as follows,

un+1 = un + ∆t f (tn, un),

where ∆t is a temporal step size, n is an index of time and f (t, u) is a discretization of spa-
tial interaction function. The method is easy to implement in any system of differential
equations and quite straightforward. However, the option to chose the temporal step size
is limited to a Courant-Friedrich-Lewy condition in which the size of time step should be
sufficiently small to avoid non-physical meaning attributed to the next computation.

Courant-Friedrich-Lewy Condition
Courant-Friedrich-Lewy criterion is a necessary condition for solving partial differential
equations numerically to obtain a stable solution. The criterion is based on stability anal-
ysis of numerical methods. The condition states that the numerical methods must be used
in such a way that all the computation come from physically meaningful grids. In other
words, the grid size of computation (both spatial and temporal) must be sufficient enough
to incorporate the source grids that have correct physical meaning (Weisstein, 2018). For one
dimensional case, CFL condition, λ, of shallow water equations is defined by (Kämpf, 2009),

λ =
∆t
∆x

√
ghmax ≤ 1,

where ∆t, ∆x are temporal and spatial grid sizes, g is gravity acceleration and hmax is the
maximum water depth encountered in the system. If we expand the condition to the two
dimensional case, we can have,

λ = 2∆t
√

ghmax

√
1

∆x
+

1
∆y
≤ 1.

Because of its attribute as a necessary condition, if this condition is violated then the method
will be not convergence to the solutions while if this condition is satisfied, the method might
be convergence. However, the actual stability analysis must be conducted to prove the con-
vergence.

Semi-implicit Method
Other option to relax the necessary condition is a semi-implicit method. This method utilizes
the newly computed variables from the next time step into the following variables. It means
that there are several variables which are computed in the same time step whereas the other
computed in mixed time step. The semi-implicit method can be described as follows,

un+1 = un + ∆t f (tn, u1
n, u2

n+1),

where u1 and u2 are chosen at different time steps. Since this method is still categorized as
a family of explicit methods, parameter of choices needs to follow the Courant-Friedrich-
Lewy condition.

Runge-Kutta Method
Runge-Kutta method is one of an explicit numerical method which includes multistage ap-
proximation in time integration. Instead of calculating the next time step in one go, this
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method computes the average of multiple time integration between one step. There are nu-
merous options of Runge-Kutta methods; we consider the Runge-Kutta 4th order method
in this study. The fourth order means that we average four multiple steps between one-time
step and it also has 4th order accuracy. Here are the mathematical expression of this method,

un+1 = un +
∆t
6
(k1 + 2k2 + 2k3 + k4),

where the k1, k2, k3 and k4 are defined as,

k1 = f (tn, un),

k2 = f (tn +
∆t
2

, un +
k1

2
),

k3 = f (tn +
∆t
2

, un +
k2

2
),

k4 = f (tn + ∆t, un + k3).

The first step, k1 means that we compute the slope using forward Euler while k2 and k3
means that we calculate the slope in the half-way computation using k1 and k2 as an input,
respectively. The last step is the corrector step which means we compute the full step slope
using k3 as an input. Thus, we can compute each one step of iteration entirely using average
multiple time steps.

Using the Runge-Kutta method, we can acquire more accurate computation compared
to forward Euler and could relax the Courant-Friedrich-Lewy condition. This method also
helps the calculation to avoid divergent numerical solutions better than the forward Euler
and semi-implicit method. However, the computation time of this method is higher than
the forward Euler due to additional middle steps. To compete for the speed of the forward
Euler computation, we could also increase the time step in this method. Therefore, we could
obtain a better computation time with reasonable results. Thus, the balance between com-
putation time and accuracy become an important feature that needs to be into consideration.

2.3 Model Analysis

In this section, we explain how we analyze numerical simulation results of the proposed
model. Firstly, we describe continuation method which is used to simulate the impact of en-
vironmental changes on the arid ecosystems. Secondly, we present spectral analysis method
to analyze regularity of spatial patterns emerged from the system. After that, we provide
default initial setups of the model which consist of initial-boundary conditions, parame-
ters, and discretizations. Lastly, further explanations on how we set up scenarios to mimic
environmental changes, i.e., decreasing/increasing rainfall, are discussed in this section.

2.3.1 Continuation Method

The idea of the continuation method is to compute steady-state solutions if one or more pa-
rameters are varied (Meijer, Dercole, and Oldeman, 2009). Numerical continuation method
is usually used to conduct the stability analysis of a non-linear system of equations. Sta-
bility of steady states has become an important indicator in ecological studies since it can
predict the condition of ecosystems in a long period of time. If the steady-state solutions are
unstable, it means that by using a small perturbation, the solutions will shift to new stable
steady-state solutions or lie in a continuous cycle (on limit cycle trajectories). On the other
case, if the steady-state solutions are stable, then it has a certain level of resilience towards
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perturbations that keeps it stays in undisturbed conditions. Therefore, it is essential to know
the stability of the steady state solutions for an ecosystem modeling as a tool to simulate a
long period of time evolution.

In the proposed model, we have a system of six non-linear partial differential equations
and more than 20 parameters. Numerical computation is very limited to the complexity
of the system. Therefore, we implement the simplest continuation method available in the
current project. Firstly, we compute the approximated solution by using the finite difference
method. The simulations run until it reaches a steady-state condition. However, instead
of calculating the approximated the steady-state solutions by using iterative methods (for
example, Newton method), we run the simulations until the change in spatially averaged
vegetation density is small enough (in a degree of 10−2) to ensure that the system is in a
steady-state condition. Secondly, after we obtain the steady-state solutions, small magnitude
perturbations are imposed and distributed spatially to the vegetation density in 0.05% of
random patches. Then, we rerun the numerical method by using the new parameter value
and the previous result as a new initial condition. The procedures continue until we obtain
the prescribed the end value of the parameters.

2.3.2 Spectral Analysis

Regular spatial patterns usually can show a particular periodicity at a certain magnitude.
This periodicity is usually subjected to a specific wavelength. In an arid ecosystem, the
pattern is generated by the interspersed patches between vegetation and bare soil. Wave-
length determines a distance between two different vegetation patches or bare soil areas. In
most cases, patterns have a specific directional component with a certain magnitude to see
repeated arrangements. The wavelength analysis should be conducted in the same direc-
tion as the directional component to obtain a proper calculation. However, in other cases,
the patterns can have several directional components that will increase the complexity of
pattern analysis. A circular pattern, for instance, has almost one full circle directional com-
ponents in order to find a repeating pattern. Therefore, to analyze the regularity of spatial
pattern, we need a tool which can account for the wavelength and the orientation of the
pattern.

Here in this section, we introduce a method to investigate the wavelength and the orien-
tation of a regular spatial pattern which is called spectral analysis. This method explains a
pattern wavelength and orientation by using three different statistics; periodogram, radial
spectrum, and angular spectrum. A periodogram is a transformed dataset by cosine waves
at different frequencies or wavenumbers. This transformation allows us to create the pro-
portion of the image variance thereby giving us the information regarding periodicity in the
data. On the other hand, radial spectrum method is a way to collect information regarding
the scale of the pattern by binning the elements of periodogram for which have a same fre-
quency. Lastly, the orientation of spatial patterns is determined by the radial spectrum in
which the values of periodogram are binned based on angular segments. The full explana-
tion of this method can be found in Renshaw and Ford, 1984, then the implementation can
be found in Couteron and Lejeune, 2001, and Koppel et al., 2005.

Periodogram

Before calculating the periodogram, the data set, Ymn with m and n denoting size, are scaled
by mean-corrected value. This method are shifting the average value of the data set to zero.
Denote this mean-corrected data set by Xst, where s = 1, ..., m and t = 1, ..., n. Periodogram,
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Ipq can be calculated by using equations below,

Ipq = mn(a2
pq + b2

pq),

where

apq =
1

mn

m

∑
s=1

n

∑
t=1

Xst cos
[

2π

(
ps
m

+
qt
m

)]
,

and

bpq =
1

mn

m

∑
s=1

n

∑
t=1

Xst sin
[

2π

(
ps
m

+
qt
m

)]
,

for p = 0, ..., m − 1 and q = 0, ..., n − 1. Image variances, which correlates to periodicity,
in the data set would get amplified by applying this transformation. Therefore, the peri-
odogram allows us to analyze the approximation of wavenumber and orientation of the
pattern.

Radial and Angular Spectrum

Radial and angular spectrum analyses are conducted by counting and binning the values
of periodogram, Ipq, which are related to each wavenumber and each orientation. First, we
define the interval of the bin in which the values will be collected, i.e., ten bins are equals to
10 different intervals of 180 degrees, then we can have 0 ≤ θ ≤ 10o, 11o ≤ θ ≤ 20o,... On
the other hand, for the radial spectrum, define r =

√
(p2 + q2) as one wavenumber group

then do the same procedure for each p and q. The collected data are clustered into each
wavenumber and also its orientation by using these two bins. Then, both spectrums are
rescaled by using dataset variance. Thus, the distribution of radial and angular spectrum
can be presented in each wavenumber and each angle, respectively.

2.3.3 Initial Setup

The default setup of the simulations is discussed here. First, we describe initial and bound-
ary conditions which are used in the numerical simulations. After that, we modify the pa-
rameters based on the article Rietkerk et al., 2002 by using the morphological speed-up fac-
tor. At the end of the section, we describe how we implement the finite difference method
to discretize the differentials.

Initial and Boundary Conditions

In this study, initial conditions are obtained from the homogeneous steady state solutions of
our system. The derivation of the solutions can be found in A. Therefore we can have the
initial condition for each variable as follows,

w̄ =
R
rw

,

h̄ =
R

αw0
,

ū = 0,
v̄ = 0.
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To allow self-organized spatial patterns, we introduce a high density of vegetation, p̄, which
inhabits 5% of all cells. For the initial bed topography, z̄, we impose two layers of bed
topography, the top layer is a flat erodible soil with 2.5 meter thickness and spatial random
perturbations between 0 and 0.1, and the bottom layer is a non-erodible layer that has a
slope gradient, 0.25%, along x axis. The direction of the slope is from the left (up-slope) to
the right (down-slope) boundaries. The illustration of the initial conditions of vegetation
and bed topography can be found in Figure 2.7.

FIGURE 2.7: Initial conditions for vegetation density, p̄, and erodible bed to-
pography z̄. The trivial homogeneous steady state of vegetation density is
perturb by 5% of cells with a high vegetation density while a random spatial

distribution of noise is added to erodible bed topography.

The default setup of the boundary condition for all four boundaries is the periodic
boundary condition. Matters and flow can go out of and return to the system through the
two boundaries facing each other. We implement this type of boundary to let the area of
interest which is not restricted to the boundary condition.

Parameters

Parameters are obtained from the article Rietkerk et al., 2002 with several adjustments. We
transform unit parameter used in the article, mm/day, into universal unit parameter, m/s.
Therefore, we have parameter values in a same time scale. Moreover, using this method, we
can continue our computations with the current equations. As discussed in the section 2.1.5,
we impose a speed-up factor ϕ1 which is equals to 10,000 times. In this study, the speed-up
factor is estimated based on our period of interest. Further study is needed to justify the
estimated value for speed-up factor. The summary of parameter values are presented in
Figure 2.1.
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TABLE 2.1: Value of all parameters used in the numerical simulations before
multiplied by a speed-up factor (except topographic parameters).

Parameter Description (Unit) Value
ϕ1 Speed-up factor for vegetation (-) density 104

ϕ2 Speed-up factor for topography (-) dynamics -
α Maximum infiltration rate (s−1) 2.32× 10−6

k2 Half-saturation constant for infiltration rate (g/m2) 5
w0 Maximum infiltration rate of bare soil (-) 0.06
gmax Maximum water uptake rate by vegetation (m3/(gs)) 5.79× 10−10

k1 Half-saturation constant for water up-take (m) 0.005
rw Drainage and evaporation rate (1/s) 2.32× 10−6

Dw Diffusion coefficient for soil water dispersal (m2/s) 1.16× 10−6

c Conversion rate (g/m3) 104

d Senescence rate of vegetation (1/s) 2.89× 10−6

Dp Diffusion coefficient for vegetation (m2/s) 1.16× 10−5

R Range of average constant rainfall (mm/s) (0− 1.16)× 10−8

dzre f
dx Slope gradient of reference (unerodible) bed (-) 0.25%

Cb Chézy friction coefficient for bottom (
√

m/s) 20
Cv Chézyzy friction coefficient for vegetation (-) 0.2
Du, Dv Diffusion constant for turbulent "eddy" stress (m2/s) 0.006
zbase Amount of erodible bed layer (m) 2.5
ϕ2U Tectonic up-lift (m/s) -
ϕ2βmax Maximum erosion rate (s/m2) 4.75× 10−4

κ Half-saturation constant for water flow capacity (m) 0.05
ϕDz Diffusion constant for soil dispersion (m2/s) 0.0425

Discretizations

We implement a technique called method of lines to solve the system of partial differential
equations. This method allows discretization of all dimension except one intended deriva-
tive (LeVeque, 2007). We discretize two spatial dimensions in x and y directions by using
centered finite difference. Therefore, we can have a system of ordinary differential equa-
tions which only depends on the variable t. For temporal derivative, we apply an explicit
time integration, Runge-Kutta 4th order, as a final step. We set up 100 by 100 of spatial grids
which represent 1 km by 1 km area of interests (dx = dy = 10 meters) while for the tempo-
ral domain, we simulate each case for about 20,000 seconds or more than five hours which
represent about six years of real observation with time step dt = 0.1 second. Thus, we can
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have a semi-discrete system which is defined by,

∂p
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

≈ cgmax
wi,j

wi,j + k1
pi,j − dpi,j

+ Dp

[
pi+1,j − 2pi,j + pi−1,j

∆x2 +
pi,j+1 − 2pi,j + pi,j−1

∆y2

]
,

∂w
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

≈ αhi,j
pi,j + k2w0

pi,j + k2
− gmax

wi,j

wi,j + k1
pi,j − rwwi,j

+ Dw

[
wi+1,j − 2wi,j + wi−1,j

∆x2 +
wi,j+1 − 2wi,j + wi,j−1

∆y2

]
,

∂h
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

≈ R− αhi,j
pi,j + k2w0

pi,j + k2

−
hi+1,jui+1,j − hi−1,jui−1,j

2∆x
−

hi,j+1vi,j+1 − hi,j−1vi,j−1

2∆y
,

∂u
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

= −g
ηx

i+1,j − ηx
i−1,j

2∆x
− Sc f x

− ui,j
ui+1,j − ui−1,j

∆x
− vi,j

ui,j+1 − ui,j−1

∆y

+ Du

[
ui+1,j − 2ui,j + ui−1,j

∆x2 +
ui,j+1 − 2ui,j + ui,j−1

∆y2

]
,

∂v
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

= −g
η

y
i,j+1 − η

y
i,j−1

2∆y
− Sc f y

− ui,j
vi+1,j − vi−1,j

∆x
− vi,j

vi,j+1 − vi,j−1

∆y

+ Dv

[
vi+1,j − 2vi,j + vi−1,j

∆x2 +
vi,j+1 − 2vi,j + vi,j−1

∆y2

]
,

∂z
∂t

∣∣∣∣∣
(xi ,yj)=(i,j)

= Uc− βmax

√
u2

i,j + v2
i,j

hi,j

hi,j + κ
zi,j

+ Dz

[
zi+1,j − 2zi,j + zi−1,j

∆x2 +
zi,j+1 − 2zi,j + zi,j−1

∆y2

]
,

with ηx = h + z + zre f for x direction and ηy = h + z for y direction. Moreover, the dis-
cretized friction function and tectonic up-lift are defined as,

Sc f x =
g

C2hi,j
ui,j

√
u2

i,j + v2
i,j,

Sc f y =
g

C2hi,j
vi,j

√
u2

i,j + v2
i,j,

Uc =
1

Nx My

Nx

∑
i=1

My

∑
j=1

βmax

√
u2

i,j + v2
i,j

hi,j

hi,j + κ
zi,j,

with Nx and My are the number of grids in x and y directions. If we assume all the equations
on the right hand side are a discrete operator F = L + M in which L is a linear operator and
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M is a non-linear operator, then we can implement the time integration method as follow,

Un+1 = Un +
∆t
6
(K1 + 2K2 + 2K3 + K4) with U =



pi,j
wi,j
hi,j
ui,j
vi,j
zi,j

 ,

where the K1, K2, K3 and K4 are defined as,

K1 = F(Un),

K2 = F(Un +
K1

2
),

K3 = F(Un +
K2

2
),

K4 = F(Un + K3).

2.3.4 Scenarios

In this study, we are interested in looking at the resilience of the ecosystem towards envi-
ronmental changes and the emergence of "feather" pattern. To do so, we simulate three sce-
narios, i.e., decreasing/increasing rainfall and open boundary condition (to let water leave
out of the system). Here in this section, we present an explanation on how we implement
these three scenarios. Any other configurations, which are not prescribed, will refer to the
initial setup as a default.

Scenario 1: Land Degradation

Water as a primary resource in arid ecosystems provide all nutrients that are beneficial for
vegetation. A scarcity of rain occurrences in arid areas leads to a potential threat for being
degraded. It is predicted that rainfall is going to be less common in dry areas (Hendrix
and Salehyan, 2012). This environmental change could influence vegetation pattern in arid
ecosystems. In this thesis, we study how this environmental change influences the resilience
of arid ecosystems towards environmental changes.

Ecosystem resilience can be tested by simulating environmental changes in the system.
The term "resilience" means a capacity of ecosystems to respond to a perturbation or distur-
bance. To study the resilience of the ecosystem, we can use the continuation method to test
the stability of steady state solutions toward a small perturbation whether it is still stable or
shifted to a new equilibrium. Because of rainfall pattern in dry areas is predicted to be less
frequent, we use an average annual rainfall to be the bifurcation parameter. Thus, we can
analyze the process of land degradation by looking at the ecosystem resilience.

The simulation setup is discussed here. Starting with a gently sloped landscape, we
simulate the emergence of vegetation bands in high rainfall (1 mm/day). Then, we apply
the continuation method by reducing the amount of rainfall and introducing spatial ran-
dom perturbations to vegetation density. On each iteration, we run the simulation until
obtaining a new stable equilibrium. Rainfall parameter is reduced by 0.05 mm/day each
simulation step until it reaches zero rainfall, 0 mm/day (21 rainfall parameters ranging from
0 to 1 mm/day). Thus, the simulation setup allows us to investigate the influence of external
disturbance toward vegetation and topography in arid ecosystems.
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Scenario 2: Vegetation Colonization

In this scenario, we are interested in the other possibility of increased rainfall to the vegeta-
tion pattern in arid ecosystems. It has been suggested by many (Siteur et al., 2014, Sherratt,
2015) that vegetation patterns can be developed from bare soil with a lower wavelength
before turning into uniform vegetation state at steady state condition as rainfall is getting
higher. Furthermore, the other previous studies (Scheffer et al., 2001, Rietkerk et al., 2004)
suggested that a possible case of hysteresis in which the ecosystem mechanism fails to re-
cover vegetation patches due to no concentration of water feedback. However, they have
not included the effect of topography on the vegetation patterns in their results. In the pres-
ence of topography dynamics, it is possible that topographic variance is developing during
a long dry period which thereby providing water catchment areas as depressions and chan-
nels. Furthermore, as water distribution is not uniform, local vegetation growth are different
between low and high topography which then turning the "stripes" bands into "arcs".

Here, we would like to investigate the impact of feedbacks between vegetation and to-
pography on the origin of vegetation "arced" bands in arid ecosystems. The simulation setup
is the same with the previous scenario except we start with low rainfall.

Scenario 3: Open Boundary Condition

In scenarios 1 and 2, we impose periodic boundary to simulate the infinite domain. It means
there is no way matters can escape from the system instead of through local removal (for ex-
ample natural death or evaporation). However, drainage "feather" patterns come from a
limited or finite domain because up-slope topography is found to be higher than the down-
slope. In this scenario, we would like to impose an open boundary condition for one of the
boundaries to let matters go out of the system. Meanwhile, on the other three boundaries,
we implement a wall boundary condition. This type of boundary is implemented by using
two mathematical boundary conditions. First, for the flow through the boundary, we im-
plement Dirichlet boundary condition, (u, v) = (0, 0) while the tangential component is not
zero. The tangential component is calculated by using Neumann condition, u′ = v′ = 0.
Therefore, we allow flow at the boundary but not the one that is parallel to the wall.

The implementation of open boundary is presented in Table 2.2 and Figure 2.8 in which
n is a normal component of derivatives. On the right boundary, we implement persistent
flux boundary in which the value at boundary is extrapolated linearly from values on two
previous grids. Therefore, we can have the value at the boundary which is defined by,

bN,j = 2bN−1,j − bN−2,j,

where b is a variable and N is the final grid at the right boundary. Using this type of bound-
ary, we want to test out our hypothesis regarding the positive feedbacks loop that gener-
ate the vegetation "feather" pattern. As the water is flowing out of the system, the overall
amount of water available in the system will be less than the previous case. Therefore, we
hypothesize the recolonization of bare soil will be more difficult than periodic boundary
case.
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TABLE 2.2: Implementation of boundary conditions to all four boundaries in
open boundary scenario.

Variable Boundary Conditions

Top Bottom Left Right

p dp
dn = 0 dp

dn = 0 dp
dn = 0 Persistent Flux

w dw
dn = 0 dw

dn = 0 dw
dn = 0 Persistent Flux

h dh
dn = 0 dh

dn = 0 dh
dn = 0 dh

dn = 0
u du

dn = 0 du
dn = 0 u = 0 du

dn = 0
v v = 0 v = 0 dv

dn = 0 dv
dn = 0

z dz
dn = 0 dz

dn = 0 dz
dn = 0 Persistent Flux

FIGURE 2.8: An illustration to open boundary condition. Both lateral and
up-slope boundaries are limited by a wall (no-flow boundary), therefore we
impose a combination of Dirichlet boundary and Neumann boundary condi-
tions. On the down-slope boundary, we impose transmissive flow boundary

which allows the matters to go out of the system.
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Chapter 3

Results

In this chapter, we present our simulation results which are produced by implementing the
finite difference method. In the first part of the chapter, we provide the pattern formation
and the analysis of vegetation bands in preserving the slope gradient. After that, we will
present the scenarios based on the explanation in the previous chapter. Lastly, the simulation
results with open boundary are presented as a glimpse step for further research.

3.1 Pattern Formation

In this section, we present the first simulation results which contain vegetation density (p),
surface water level (h), and topography dynamics (z) at 4000, 12000, and 20000 seconds
which represents about six years of simulation time. The result can be seen in Figure 3.1.
As can be seen in the figure, vegetation bands are established in topography with 0.25% of
slope gradient. The topography allows water flow goes from the up-slope (left boundary)
to the down-slope (right boundary). Vegetation bands orientation is perpendicular to the
slope. Moreover, the vegetation on the up-slope band is denser than the one on the down-
slope due to more abundant of water resources at the top of the bands. This condition also
results in the up-slope movement of vegetation banded patterns. Furthermore, topography
evolution are not changing much since soil erosion is prevented by vegetation bands.

3.1.1 Cross-sectional Area

To analyze the pattern, we take a closer look into the cross sectional area. Cross sectional area
is taken by plotting the value of vegetation density or any variable along one of the axes. In
this case, we present the cross sectional area along x-axis because it is a same direction as the
water flow (see Figure 3.2). We plot the vegetation density along the axis and pick two peaks
of vegetation density to look at closer into vegetated and bare soil areas. Taking a closer look
to the cross-sectional areas, we can see an accumulation of water happened in the bare soil
areas because of the low infiltration (see Figure 3.3). As the water level increases, the flow
velocity becomes faster, and then it allows more erosion in the areas (see Figure 3.3a). On
the other hand, in the vegetation patches, the water flow and water level are decreasing
due to water infiltration and vegetation friction. Furthermore, as the vegetation bands are
moving up-slope, the position of high soil erosion is shifting dependent on the speed of
migration. As soon as the soil eroded, it creates a small depression which collect more water
and facilitate vegetation to move up-slope faster. Therefore, we can find vegetation inhabit
the depressions in the topography (see Figure 3.3b).
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(A) After 4000 seconds

(B) After 12000 seconds

(C) After 20000 seconds

FIGURE 3.1: Numerical results with rainfall 1.0 mm per day showing vege-
tation banded patterns are formed thereby preventing soil erosion and chan-
nelization process. Color maps for vegetation ranging between 0-25 g2/m,

surface water level 0-35 mm, and bed topography 2.4 - 2.65 m.

FIGURE 3.2: An illustration of cross-sectioning areas along x-axis.
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(A) (B)

FIGURE 3.3: Cross sectional areas results along x-axis with two different veg-
etation patches (a spatial location between 350 and 550 meters). (A) is a plot of
surface water level (blue), flow field (red) and vegetation density (green) while
(B) represent vegetation density (green) and topography dynamics (brown).

3.1.2 Vegetation-Topography: Slope Preservation

Bare soil areas allow high soil erosion due to high water flow speed and water column
whereas vegetation patches prevent further erosion through friction loss. Because of vege-
tation bands are already established, soil erosion cannot deepen the channels further thereby
sustaining the current physical topography. However, in case of no vegetation presence, the
soil erosion creates topography variation in the areas. To quantify the difference in both
simulation results, we compute the standard deviation of bed topography as a function of
simulation time. We begin at the same value of standard deviation, i.e. around 0.03 meter.
As the simulations are running over time, we found that the standard deviation of the sim-
ulation with vegetation is decreasing as the topography begin to reach its equilibrium while
the other is increasing due to the channels deepening further (see Figure 3.4). Therefore, our
finding suggests that vegetation bands preserve the slope of topography.

FIGURE 3.4: The standard deviation of bed elevation shows how vegetation
keeps the slope gradient stable after several iterations. Red line represents the
simulation without vegetation while the blue represents the simulation with
vegetation. The standard deviation of the simulation without vegetation is
presented until 6200 seconds of simulation time due to numerical instability.
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3.2 Scenarios

Here in this section, we provide the numerical simulation results of each scenario. Land
degradation scenario results are presented at the beginning of the section. We also present
the comparison between the results and in case of no erosion involved. After that, we
present the simulation results of vegetation colonization. A bifurcation diagram is presented
at each scenario as an indicator of steady state solutions shift as the parameter changes. We
also provide the periodogram of patterns concerning each scenario. Finally, we show the
analysis of arced bands at the end of the section.

3.2.1 Scenario 1: Land Degradation

In the scenario of land degradation, we start with the initial parameters presented in table
2.1 with rainfall parameter is equals to 1 mm/day. The setup results in the pattern in Figure
3.1. The spatial averaged vegetation density of this pattern is around 8 g/mm2 (see point
1 at Figure 3.5). As the rainfall decreases (0.05 mm/day on each step), we can see that the
average biomass is declining linearly. However, at point 2 in the same graph, the linear
decrease begin to decelerate as the vegetation bands are breaking apart (see Figure 3.6b).
This condition leads to a lower pattern wavelength. Because of vegetation bands begin
to retract into shorter stripes, it allows soil erosion to take place in between patches. Soil
erosion creates topographic depression and channels which help vegetation to collect water
(see Figure 3.6c). Therefore, vegetation patches still can survive even though in the condition
of low rainfall.

FIGURE 3.5: Spatially averaged biomass (on y-axis) as a function of rainfall
(on x-axis). The average values of vegetation density are declining as rainfall
decreases. Point 1, 2, and 3 represent the average biomass at rainfall parame-

ters 1, 0.5, and 0.2 mm/day, respectively.
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(A) Point 1

(B) Point 2

(C) Point 3

FIGURE 3.6: The evolution of vegetation pattern and topography as the rain-
fall is decreasing. Figure (A) represents an established vegetation banded pat-
tern while Figure (B) represents the patterns breaking up condition as the rain-
fall is getting lower. In Figure (C), vegetation patches remain to exist in the

system due to the channels and depressions facilitation.

With vs Without Erosion

In this study, we compare the simulation if there is no soil erosion involved in the system
(erodible bed is unchanged). The result can be found in Figure 3.7. The averaged biomass is
about the same which is notified by almost coincided lines. At an interval between 0.15-0.35
mm/day, the simulation results show the influence of topography variance to the vegetation
patches. Vegetation patches in without erosion simulation (blue line) are already extinct as
the rainfall below 0.3 mm/day whereas in the other simulation (red line) vegetation patches
are still present and survive due to the channels and depressions presence. The topographic
variations in the simulation facilitate vegetation in concentrating water. Therefore, vegeta-
tion patches can grow in the valley of the channels and topographic depressions while the
flat erodible bed cannot support the growth of vegetation patches any longer.
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FIGURE 3.7: Comparison of averaged vegetation density as a function of rain-
fall between the simulations with and without erosion in case of decreasing
rainfall. The solid blue line represents the simulation without erosion while

the dashed red line represents the simulation with erosion.

Spectral Analysis

Here we provide the analysis of vegetation banded patterns by using the spectral analysis
method. The method can show the characteristic of the pattern in the form of wavelength
and the pattern orientation. The results can be seen in Figure 3.8. Firstly, we can see in the
periodogram (upper right), there are two solid dots inversely mirroring to the center (blue
dots). These two dots represent the peak of our data which produce a same variance. The
distance from the center to one of either peaks is the same and represents the wave number
while the orientation of the pattern can be seen from the position of the two peaks. As shown
in the radial spectrum, the wave number of our pattern is around ten which indicate ten
bands found in the pattern. This result correlates to the wavelength of 100 meters between
two vegetation bands. Meanwhile, in the angular spectrum, it shows the orientations of
the pattern are mostly found in an interval of angle between 90-110 degrees. This result
corresponds to the pattern which is perpendicular to the slope.
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FIGURE 3.8: The spectral analysis of vegetation banded pattern. The peri-
odogram (upper right) shows two peaks of data variance and the orientation
of the pattern while radial (bottom left) and angular spectrum (bottom right)
count the spectrum which corresponds to each frequency and angle, respec-

tively.

3.2.2 Scenario 2: Vegetation Colonization

In this section, we simulate the colonization of bare soil by vegetation patches as described
in 2.3.4. The result can be seen in Figure 3.9. In a long dry period, which is at an interval
of rainfall between 0-0.2 mm/day, the uniform non-vegetated steady state solution is stable.
As soon as the channels are formed (see Figure 3.10c), vegetation colonize the valleys due to
higher amount of water available than in the ridges. Because of vegetation presence in the
channels, it suppresses the soil erosion. Furthermore, as the rainfall increases, vegetation
"arcs" are developed and the channels begin to transform into topographic depressions (see
Figure 3.10b). Finally, at 1 mm/day rainfall, these topographic depressions are reshaping
vegetation bands from "stripes" into "arcs" (see Figure 3.10a).
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FIGURE 3.9: Spatially averaged biomass (on y-axis) as a function of rainfall (on
x-axis). The average values of vegetation density are improving as rainfall in-
creases. Point 1, 2, and 3 represent the average biomass at rainfall parameters

1, 0.5, and 0.2 mm/day, respectively.

(A) Point 1

(B) Point 2

(C) Point 3

FIGURE 3.10: The evolution of vegetation pattern and topography as the rain-
fall is increasing. In Figure (C), a non-vegetated state remains stable while the
topographic variation is already developed. Figure (B) represents vegetation
arcs and topographic depressions emergence in the system while Figure (A)

represents an established vegetation "arced" band pattern.
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With vs Without Erosion

Using the same setup as described in the previous section, here we provide the simulation
results of with and without erosion modeling. The result can be seen in Figure 3.11. The
same conclusion can be taken from previous result that at an interval 0.2-0.3 mm/day, to-
pographic variation promotes vegetation to recover faster than a flat topography. In the
simulation without soil erosion, the colonization begin to appear after 0.3 mm/day whereas
in the simulation with soil erosion, as the channels have been formed at 0.2 mm/day, the
recovery starts sooner. At the rainfall 1 mm/day simulation, the average vegetation density
is slightly higher than the previous simulation which is about 9 g/m2.

FIGURE 3.11: Comparison of averaged vegetation density as a function of
rainfall between the simulations with and without erosion in case of increas-
ing rainfall. The solid blue line represents the simulation without erosion

while the dashed green line represents the simulation with erosion.

Spectral Analysis

Comparing the pattern resulted in this section to the pattern in Figure 3.1, the "arced" bands
indicate multiple different orientations of patterns due to the topographic variation. Here
in this section, we provide the analysis of the pattern orientation and wavelength in case
of vegetation colonization. Firstly, we can see the periodogram at the upper right of Figure
3.12. The periodogram shows that there are multiple peaks or at least four peaks can be seen
clearly on the data variance. These peaks are represented in the angular spectrum (bottom
right) which shows two high spectrum of pattern orientations, i.e. 70 degree and 100 degree
with respect to the y-axis in a clockwise direction. Corresponding angles are associated with
the direction of the arcing vegetation bands. On the other hand, the radial spectrum shows a
high spectrum at wave number seven in the pattern. This result correlates to the wavelength
of about 142 meters.
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FIGURE 3.12: The spectral analysis of vegetation "arced" bands pattern. The
periodogram shows multiple peaks which correspond to multiple directions
of patterning while the distances between the peaks and the center represent

the wave number found in the result.

Arced Bands: An Indicator of Ecosystems Recovery

Vegetation banded patterns can emerge from both land degradation and vegetation colo-
nization scenarios, but only one can generate "arc" bands. In vegetation colonization sce-
nario, we have shown that vegetation "arced" bands occur in the system due to the presence
of topographic variation (see Figure 3.13b) whereas in the simulation without erosion (see
Figure 3.13d), vegetation bands appear to be more straight and have a higher wavelength.
These two findings indicate that if the topographic variation develops quickly during a long
dry period, "arced" bands will occur in the system due to non-uniform water distribution.
Otherwise, vegetation "straight" bands will prevent the soil erosion and create a topography
which only allows uniform lateral water flow. Moreover, the soil erosion prevention also
helps vegetation "arced" bands to erase and transform channels into topographic depres-
sions in the system (see Figure 3.10a). In other words, vegetation "arced" bands can only
emerge in a condition which is possible to develop topography variance in the first place,
otherwise "straight" bands will dominate the pattern. Therefore, our findings suggest that
vegetation "arced" bands can be an indicator of ecosystems that are recovering from shallow
drainage patterns or degraded lands.

In this study, we also found that vegetation bands are aligned to the topography con-
tour lines. All four patterns that we have in the simulation results agree with this condition.
The results can be seen in Figure 3.13. In case of straight vegetation bands (see Picture (A),
(C) and , (D)), the contour lines (in red line) are in the same direction as vegetation bands.
Meanwhile in case of vegetation "arced" bands (see Picture (B)), the topography contour
lines are reflected by the arcing direction of vegetation bands due to vegetation growth dif-
ferences between vegetation in the valleys and on the ridges. The variation of growth rate
happens because of more water available in the valleys than on the ridges thereby increasing
vegetation growth rate in the valleys. This condition allows vegetation bands to "travel" up-
slope faster compared to the one which grow on the ridges. Therefore, these traveling speed
differences create an effect of arcing direction which is aligned to the topography contour.
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(A) Vegetation "straight" bands as a result of
land degradation simulation.

(B) Vegetation "arced" bands as a result of
vegetation colonization simulation.

(C) Vegetation "straight" bands as a result
of land degradation simulation (without ero-

sion).

(D) Vegetation "straight" bands as a result of
vegetation colonization simulation (without

erosion).

FIGURE 3.13: The plot of topography contour (red line) in the same frame
with vegetation bands (yellow bands). All four cases of vegetation patterns

are aligned to the topography contour.

3.2.3 Scenario 3: Open Boundary Condition

Boundary condition plays a crucial role in determining the exchange of matters from and
into the system besides local external/internal forces. Previous scenarios implement the pe-
riodic boundary condition in which matter cannot go out of the system through boundaries.
Therefore, vegetation bands can sustain in the domain and prevent further soil erosion.
However, in an open boundary condition, the up-slope movement of vegetation can lead
to the creation of channels at the down-slope. The absence of negative response to the soil
erosion leads to channels deepening. The result can be seen in Figure 3.14. Other attempts,
for example changing parameters and other type of open boundary, have been made but
still produced inconclusive results.
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(A) After 3000 seconds

(B) After 8000 seconds

(C) After 12000 seconds

FIGURE 3.14: Numerical results with rainfall 1.0 mm per day showing vege-
tation banded patterns are leaving out of the system which lead to channels
incision down-slope. Color maps for vegetation ranging between 0-25 g2/m,
surface water level 0-120 mm, and bed topography 2 - 2.65 m. Because of nu-
merical instability in the simulation, we only provide the result until 12000

simulation time.
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Chapter 4

Conclusion and Discussion

4.1 Summary and Conclusion

In this study, we have developed an extended version of Rietkerk model which can provide
better information in capturing the impact of topography variation on hydrodynamics and
vegetation patterning. The current surface water modeling can generate non-uniform water
flow which allows topography variation through soil erosion. The results show the emer-
gence of vegetation "arced" bands as a result of a non-uniform distribution of water and
topography variation. The soil erosion modeling, however, is still limited in representing
the real physical process. Although it already includes the positive response of water flow
velocity, the erosion process here is described as evaporated soil instead of transported soil
by water flow. In the real physical process, eroded soil is transported through the water col-
umn to another cell. Further studies should include a better representation of soil erosion
modeling to generate more realistic simulations. Regardless, our modeling study suggests
the consideration to include topography variation into the model as it influences vegetation
patterning.

Vegetation feedback to topography dynamics is a key in the widely observed gently
sloped landscapes in arid ecosystems. Using the proposed mathematical model, we com-
pared the effects of the presence and absence of vegetation bands on topography evolution.
When vegetation bands exist in a gently sloped landscape, the physical topography of the
landscape is preserved through soil erosion prevention. The transverse vegetation bands
act as a natural "bench" to reduce water flow velocity in the system which then decreases
the amount of eroded soil. Moreover, as the flow velocity is reduced, water columns are
building-up at the up-slope part of the bands which then infiltrate more water thereby sus-
taining the presence of vegetation bands. On the other hand, in the absence of vegetation
bands, channels incision begin to appear as the water flow velocity increases over time.
Therefore, topographic variation is unavoidable since there is no negative response to stop
the erosion process. The counteract feedback in this study, however, only include the veg-
etation friction which reduces the water flow velocity. It is also possible for future studies,
to consider the root catchment of vegetation as it diminishes soil erodibility. Thus, we con-
clude that the presence of vegetation bands in arid ecosystems preserve the current physical
topography of the landscape by preventing soil erosion through vegetation friction.

In scenarios of environmental changes, vegetation has an extra advantage in the exis-
tence of topographic variation. In this study, we set up two scenarios which simulating the
change in rainfall patterns, i.e., decreasing (land degradation) and increasing (vegetation
colonization) amount of rains. Each scenario is compared to the condition in which the to-
pographic variation is negligible. The simulation results showed that topographic variation
increases the resilience of vegetation in arid ecosystems through resisting degradation and
faster recovery. The underlying topographic variation such as channels and depressions
facilitate vegetation growth by concentrating water. Therefore, in a low rainfall condition,
vegetation still survives in the system by growing on top of the depressions or channels.
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Correspondingly, vegetation recover from degraded state faster in the presence of topo-
graphic variation than a flat topography since the depressions and channels accumulate
water that is beneficial for vegetation growth. However, the simulations used an estimated
value of parameters and a method of a morphological factor which may overestimate the
impact of hydrodynamics on the vegetation growth and topography evolution. We suggest
in further study to consider a more reliable estimate by comparing to the real observation or
using a combination of pseudo-transient method and GPU computing to achieve an efficient
and fast computation. Nevertheless, our results confirm the negative feedback hypothesis
in which channels and depressions facilitate vegetation to grow thereby increasing the re-
silience of vegetation in arid ecosystems.

4.2 Discussion

We found that the feedback between vegetation loss and soil erosion leads to heterogene-
ity of topography landscapes that allows vegetation to persist or re-establish after severe
drought thereby increasing the resilience of arid ecosystems. As the environmental condi-
tion is getting worse, which is notified by fewer rains, vegetation bands start to break-up,
and soil erosion reshapes the landscape topography to create water ponds or lanes. Then,
these ponds become temporary water reserves for vegetation to survive in harsh conditions.
In other cases, shallow water channels and depressions can emerge during a long dry period
thereby allowing water accumulation. This condition leads to a quick re-establishment of
vegetation in the depressions and channels since the topography variation facilitates vege-
tation in redistributing water flow thereby enhancing the growth rate.

In Rietkerk et al., 2004, decreased rainfall can lead to a sudden shift from a vegetated
state into a degraded state due to the loss of vegetation water-harvesting mechanisms. In-
creased soil erosion along with degradation, however, can enhance topographic variation,
for example, depressions and shallow channels which can concentrate water after rains. The
accumulation of water allows vegetation to re-establish in the depressions thereby prevent-
ing the ecosystem collapse abruptly. Correspondingly, increased rainfall in bare soil state
may recover quicker than it was suggested because of topographic variation facilitates veg-
etation in concentrating water. Therefore, future studies might then need to consider the
feedbacks between vegetation and topography since both feedbacks influence each other
which can alter their response to environmental changes.

Our works agree with a recently published observational study by Gowda, Iams, and
Silber, 2018 that vegetation "arced" bands widen even in a condition with steep increases
of human activities. Bands widening in these areas may appear due to undisturbed shal-
low depressions in creating water accumulation even though the bare soil between bands
are used as roads and dirt tracks. The results would be different in a case with significant
changes in land use, for example, new settlements or agriculture. Undulating valleys may
be transformed into houses or farms which reduce its natural purpose in accumulating wa-
ter after rains. Therefore, we argue that vegetation and topography feedbacks can increase
the resilience of vegetation in arid ecosystems.

Vegetation patterns are closely related to its origin whether it comes from a stability
change in decreased rainfall or vegetation colonization of bare soil. The two different ori-
gins have been suggested to be possible because of the presence of different wavelength
found in the system (Sherratt, 2015). Our results have shown that vegetation "arced" bands
can only appear in a condition which topography variation present in the first place then it
evolves during continuous rains. After the bands are fully intact, vegetation seems to pre-
serve the slope gradient of landscapes which agree with largely observed patterns which
only appear at a certain interval of slope (Deblauwe et al., 2011). These findings suggest
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that the observed vegetation "arced" bands in arid ecosystems can be an indicator of sys-
tems that are recovering from shallow drainage lines. Further studies may need to have
empirical data which shows the origin of vegetation pattern in the ecosystem.

Positive feedback hypothesis is still arguable and open for further studies. Our attempts
to confirming the positive feedback hypothesis by imposing the open boundary condition
still produce an inconclusive result. Vegetation up-slope movement leads to channels in-
cision at the down-slope boundary instead of water concentrating "competition" between
channels and vegetation. One of a possible reason is the steepness of the slope. When
it is steep enough to allow drainage lines, vegetation patterns can break-up which causes
channels deepening (Saco and Moreno-De Las Heras, 2013). Deeper channels do not allow
vegetation bands to grow because the slope is too steep to hold sheet water flow causing
ecosystem collapse. Moreover, the possibility of alternative global bistability between vege-
tation bands pattern and feather pattern is still unexplored even though the recent picture of
Macfadyen, 1950 (see Figure 1.3) strongly suggest both condition are stable. Further model-
ing studies are needed to investigate this possibility since soil erosion may worsen the effect
of being in a degraded state and make ecosystem recovery even more difficult.

We have provided new investigation results suggesting vegetation and topography feed-
backs play a crucial role in vegetation patterning and topography evolution and we argue
that when negative vegetation response to soil erosion dominates the system, topography
variation facilitates vegetation growth thereby increasing the resilience of arid ecosystems.
However, negative topography response domination remains partly unexplored in which
deep drainage lines may be created. The condition keeps further studies to be recommended
and open to promoting mathematical modeling combined with observational studies in
ecosystem management.
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Appendix A

Derivation of the Model

Here we provide the derivation of homogeneous steady state solutions. General solution
of homogeneous steady state solutions are achieved but we implemented a special case of
uniform degraded state for the initial conditions.

A.1 Homogeneous Steady State Derivation

Homogeneous steady state condition is reached when all the variables in the system are
unchanged after several steps of iterations in time. In other words, we could assume homo-
geneous steady state occurs when ∂p

∂t = ∂h
∂t = ∂w

∂t = ∂u
∂t = ∂v

∂t = ∂z
∂t = 0. Then by using this

assumption we can compute the homogeneous steady state condition as follows,
Vegetation Steady State

Biomass Dynamics→ [Growth]− [Death] + [Seeds Dispersal]
∂p
∂t

= cgmax
w

w + k1
p− dp + Dp∆p

0 = cgmax
w̄

w̄ + k1
p̄− dp̄ + Dp∆ p̄

Because it is homogeneous, then all the derivative in space are equal to zero. Therefore, we
can have

0 = cgmax
w̄

w̄ + k1
p̄− dp̄

0 =

(
cgmax

w̄
w̄ + k1

− d
)

p̄

From this equation we found that there are two options,

0 = cgmax
w̄

w̄ + k1
− d or p̄ = 0
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First let us focus on steady state in which all variables are exist (non-zero). Then we can
have,

d = cgmax
w̄

w̄ + k1

d(w̄ + k1) = cgmaxw̄
dw̄ + dk1 = cgmaxw̄

dw̄− cgmaxw̄ = −dk1

w̄ =
−dk1

d− cgmax

w̄ =
dk1

cgmax − d
(A.1)

Then the next computation comes from the second equation,
Surface Water Steady State

Local Water Height Dynamic + Net Flux→ [Rainfall]− [Infiltration]
∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= R− αh
p + k2w0

p + k2

0 +
∂(h̄ū)

∂x
+

∂(h̄v̄)
∂y

= R− αh̄
p̄ + k2w0

p̄ + k2

Using same treatment as in the previous equation, we can have,

0 = R− αh̄
p̄ + k2w0

p̄ + k2

−R = −αh̄
p̄ + k2w0

p̄ + k2

αh̄( p̄ + k2w0) = R( p̄ + k2)

h̄ =
R( p̄ + k2)

α( p̄ + k2w0)
(A.2)

After we have gotten the expression of the equilibrium for the two variables, we can
continue to the third equation,
Soil Water Steady State

Soil Water→ [Infiltration]− [Water-uptake]− [Evaporation] + [Water Movement]

∂w
∂t

= αh
p + k2w0

p + k2
− gmax

w
w + k1

p− rww + Dw∆w

0 = αh̄
p̄ + k2w0

p̄ + k2
− gmax

w̄
w̄ + k1

p̄− rww̄ + Dw∆w̄

Using same treatment as in the previous equation, we can have,

0 = αh̄
p̄ + k2w0

p̄ + k2
− gmax

w̄
w̄ + k1

p̄− rww̄



Appendix A. Derivation of the Model 46

Then substitute what we found in the previous computation, h̄ to the equation A.2, we can
have,

0 = α
R( p̄ + k2)

α( p̄ + k2w0)

p̄ + k2w0

p̄ + k2
− gmax

w̄
w̄ + k1

p̄− rww̄

0 = α
R( p̄ + k2)

α( p̄ + k2w0)

p̄ + k2w0

p̄ + k2
− gmax

w̄
w̄ + k1

p̄− rww̄

0 = R− gmax
w̄

w̄ + k1
p̄− rww̄

gmax
w̄

w̄ + k1
p̄ = R− rww̄

p̄ = (R− rww̄)

[
w̄ + k1

gmaxw̄

]
(A.3)

Furthermore, to get simpler expressions of the steady state, we can substitute w̄ to the
equation of p̄ and h̄. So that we can have,

p̄ =

(
R− rw

dk1

cgmax − d

)[ dk1
cgmax−d + k1

gmax
dk1

cgmax−d

]

p̄ =

(
R− rw

dk1

cgmax − d

) [
d + cgmax − d

gmaxd

]
p̄ =

(
R− rw

dk1

cgmax − d

)
c
d

p̄ =
Rc
d
− rwck1

cgmax − d
(A.4)

On the other hand, for the surface water, we can have,

h̄ =
R(Rc

d −
rwck1

cgmax−d + k2)

α(Rc
d −

rwck1
cgmax−d + k2w0)

(A.5)

Thus, the three equations A.1, A.4, and A.5 are the parameter-based expression of the ho-
mogeneous steady state condition for our system.

Furthermore, if we look at the momentum equation,
Momentum Equation

Local Inertia + Conv. Acc.→ −[Pressure]− [Friction Loss] + [Turbulent]

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
(

∂(h + z + zre f )

∂x

)
− S f x + Du∆u

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
(

∂(h + z)
∂y

)
− S f y + Dv∆v

with the friction function can defined as,

S f x =
g

C2h
u
√

u2 + v2

S f y =
g

C2h
v
√

u2 + v2
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We can develop the homogeneous steady state by looking at one of the equations and the
other will follow. For example in x-direction, we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
(

∂(h + z + zre f )

∂x

)
− S f x + Du∆u

As our system goes to steady state condition and homogeneous, then we have ∂u
∂t = ∂u

∂x =
∂u
∂y =

∂(h+z+zre f )

∂x = ∆u = 0. From that moment, the equation becomes,

0 = −S f x

0 =
g

C2h̄
ū
√

ū2 + v̄2

Because g
C2h 6= 0 then ū

√
ū2 + v̄2 = 0. Lets assume ū 6= 0. Then we have,√

ū2 + v̄2 = 0

ū2 + v̄2 = 0

From here, we know that ū2, v̄2 ≥ 0. So that the only solution to this equation is satisfied
by ū = 0 and v̄ = 0. Thus, our first assumption is unreliable and then we found that the
homogeneous steady state condition for water flow velocity are satisfied by (ū, v̄) = (0, 0).

General equations of non-trivial solution, that fulfills homogeneous steady state condi-
tion, are satisfied by equation A.1, A.4, and A.5. However, if we look at a specific case at
p̄ = 0, then from A.3, we can have one steady state, w̄ = R

rw
and h̄ = R

αw0
. This steady state

tell us that the system is in bare soil condition which has no vegetation grows in the system.
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