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Abstract 

A novel model was developed to find the dynamic relationship between the climate 

variables and regional leaf area index (LAI). The NASA MODIS datasets were used for 

the LAI and Land Use Data. The Climate Research Unit (CRU) provided meteorological 

data. The model was developed in Python programming language with the NumPy and 

Gdal packages. The examination of the climatic variables reveals that temperature, 

precipitation, vapour pressure, and potential evapotranspiration influence LAI the most 

on a regional and global scale. The local analysis was performed for five locations at the 

Temperate and Tropical Zone of the Köppen’s Classification. The results revel relatively 

good prediction. By taking additional parameters in the model (for instance radiation) 

the model could improve its performance at the local scale. The global analysis of the 

most influential climate variable shows strong connection between potential 

evapotranspiration and precipitation at the equator. The temperature and vapour 

pressure increase in importance with northern and southern direction. The climate 

variables, that influence the regional LAI, depend more on the climate zone then plant 

functional type. The satellite data is very sensitive and LAI measurements are dependent 

on the correct interpretation of the data and on accurate filtering measurements errors 

(clouds). To improve the predictive equation for the LAI estimation, climate variables 

should have a memory of the previous months. 

 

Key words: predictive model, LAI, satellite dataset (MODIS), Köppen’s Climate Zone, 

python  
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1. Introduction 

Seasons and foliage duration of plant vegetative cycles, determine exchange of carbon 

dioxide and water between the Earth’s surface and the atmosphere (Jolly et al., 2005). 

Over the last 50 years climate change has altered the vegetation (Betts et al., 1990), 

thus this exchange differs in time and its potential capacity. The long-term change in 

environmental conditions affect the vegetation, as a result of which nutrient cycles, 

microbial activities, and physiological activities of plants differs (Mohammad, 2013). The 

vegetation determines regional and continental hydrological cycle by factors like: the 

water holding capacity of the vegetation system, the transport of water to deeper levels, 

and transport of moisture within the ground (Rind, 2013). Thus, to improve 

understanding of the hydrological response to climate change, the variability in seasonal 

canopy characteristics must be implemented in the hydrological model. 

To follow the rapid climate change, and its effect on interannually variability, the 

hydrological model requires dynamic calculations. Environmental conditions are caused 

by climate variables, that increasingly differ annually with climate change. Therefore, the 

demand of climate variables to determine response of the hydrological models increases 

(Nielson et al., 1994). However, most of them neglect the link of driving variables, such 

as climatic conditions, and use fixed vegetation phenology parameters (Sellers et al., 

1996; Jolly et al. 2005). The hydrological model to describe vegetation use parameters, 

such as leaf area index (LAI), derived by the satellite-observations (Baret and Guyot, 

1991). LAI is a dimensionless quantity that characterizes plant canopies, defined as the 

one-sided green leaf area per unit ground surface area (LAI = leaf area / ground area, 

m2 / m2) in broadleaf canopy (Watson, 1947). In most of the hydrological models the 

LAI have a prescribed seasonal function. In another words, LAI estimations are 

prescribed for an ‘’average year’’. This means, that observed extreme events, such as 

lengthy dry and wet periods, are not implemented in the predictions.  

High-accuracy spatial distribution of LAI is an essential contributor to model atmosphere-

biosphere interactions (Tang et al., 2014). The attempt to derive LAI based on climatic 

conditions has been a subject of very few studies. For instance, Tesemma et al. (2015) 

developed a regional nonlinear model for estimating changes in LAI due to climatic 

fluctuations. The results demonstrated the importance of including the effects of changes 

in LAI in projections of discharge. While, Tesemma et al. (2015) developed a regional 

model, Jolly et al. (2005) proposed a globally generalized index that describes regional 

vegetation from climatic conditions. A good agreement (r>0.8) between the developed 

Growing Season Index (GSI) and Normalized Difference Vegetation Index (NDVI) was 

demonstrated. However, Jolly et al. (2005) did not propose a direct and dynamic 
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calculation of LAI. Thus, a general formula (or series of formulas) to describe the link 

between climate variables and global LAI has still to be developed. 

The main objective of this research is to examine the effects of climate variables 

(precipitation, temperature, vapour pressure deficit, and evapotranspiration) on the 

seasonal changes of LAI. The aim is to develop a predictive model to simulate the 

dynamics of local LAI for different land cover types. The sought formula can be equally 

applied under future or past conditions. The constituent regression analysis, of the time 

series of climate data, highlights the contribution of the individual meteorological 

variables to temporal and spatial variations in LAI. Moreover, the model provided an 

important opportunity to advance the understanding of using dynamic LAI calculations 

with ‘meteorological memory’, thus by using the meteorological dataset over the 

previous period of time to predict current LAI. This study therefore sets out to assess the 

effectiveness of dynamic LAI predictions and the influence of short-term climate 

conditions on current LAI predictions. This regression analysis is developed and 

illustrated on the basis of five characteristic locations that represent various climatic 

zones and land cover types. Future studies are expected to implement the formula in the 

hydrological model PCR-GLOBWB, and to demonstrate whether modelling dynamic LAI, 

in the way that responds to climatic conditions, is a key factor for modelling discharge of 

the study area. 

1.1. Research questions 

A novel method must be developed to answer the following research questions:  

1) What are the main variables (e.g., precipitation and temperature) that 

influence LAI? 

2) What is the relationship between those variables and LAI? How does it vary 

regionally, globally, and in different climatic zones?  

3) What can be improved to obtain a predictive equation for LAI estimation, 

without using remote sensing, for any given time and place? 

Therefore, the objectives of this studies are (i) examination of the climate variables that 

influence LAI on a regional and global scale; (ii) development of relationship(s) between 

these variables and LAI as a numerical predictive model; (iii) spatial distribution of the 

climatic variables that influence LAI in the global scale; and (iv) evaluation of the results. 
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2. Methods 

This section provides details about the data set, the characteristics of the selected study 

areas and the modelling approach. The data characteristics used in this research are 

briefly described in sect. 2.1. The data processing is explained in sect. 2.2. The model 

development for five locations (local analysis) is presented in sect. 2.3, and the global 

analysis is described in 2.4 The various dynamic formulas (predictive models) at widely 

diverse locations are judge against satellite-derived LAI (MODIS15A) in sect. 2.5. The 

possible application in the hydrological model is described in sect. 2.6. 

2.1. Data sets characteristics 

The LAI dataset (MODIS15AH2) and Land Use Type Cover dataset (MODIS12Q1) are 

obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer) platform 

run by the NASA Earth Observing System. The data sets are derived from the satellite 

imagery and describe features of the Earth’s surface and the atmosphere, that are used 

worldwide for studies of processes and trends on local to global scale 

(www.lpdaac.usgs.gov). The meteorological dataset is provided by the CRU (Climate 

Research Unit) from various datasets of climatic variables that they offer 

(www.cru.uea.ac.uk). 

2.1.1. The LAI dataset 

The leaf area index (LAI) data obtained from the MODIS LAI/FPAR product is in a 

Sinusoidal grid at 500 m resolution. The algorithms choose the “most accurate” pixel 

available from all the acquisitions of both MODIS sensors located on NASA’s Terra and 

Aqua satellites from within an 8-day period (LPDAAC, 2018). However, to obtain the 

monthly LAI, the 8-day value is recalculated to the same eight values for each of the 

eight days. Then an average value for a month (30 or 31 days) is calculated. The dataset 

provides direct LAI value with a valid range from 0-100, over a 10-year period (2001-

2010). 

 

2.1.2. The Land Use Type Cover dataset 

The MODIS Land Cover Type product (MCD12Q1) dataset provides data characterizing 

five global land cover classification system with a resolution of 500 m (LPDAAC, 2018). 

In the research the Type 5 Classification is used with 11 land cover types (Table 1). 

However, LAI represents natural vegetation, thus for the calculations were taken land 

cover types of numbers from 1-8. The classification is based on the Plant Functional Type 

(PFT) scheme that is measured annually at a global scale. This classification has been 

chosen for its diversity in natural vegetation types, and for excluding detailed 

characteristics of anthropogenic land covers. This paper used the dataset from the year 
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2010 with an assumption that it represents the natural vegetation in the year period 

2001-2010. 

Table 1. Land Cover Types Description: Type 5 classification (lpdaac.usgs.gov) 

 

2.1.3. Meteorological data 

Climatic Research Unit represents the meteorological data for four climate variables: 

precipitation (mm/month), temperature (oC), vapour pressure (hPa), and potential 

evapotranspiration (mm/month) (CRU TS v. 3.24) from 2000 to 2010. These climate 

variables are chosen based on the preceding literature review (Jolly 2005, Tesemma 

2015) as the most influential regional LAI climatic conditions. The dataset is at a 0.5° by 

0.5° resolution with the monthly average value for each location over a 10-year period 

(2001-2010). 

 

2.2. Data processing 

The data processing was made in Python with a NumPy library. Transformations where 

done using gdal extracted metadata. Visualization was done with Matplotlib extension. 

The data was stored in Hierarchical Data Format 5 (HDF5) to build a multidimensional 

array that connects the datasets and allows manipulation within the NumPy 

environment. For each granule of MODIS grid were created an hdf5 file which contained 

all datasets. 

 

2.2.1. Data preparation 

To be able to do computations with the three different dataset sources, they need to 

correspond in dimensions and time. The CRU data is at the global scale at 720 longitude 

degrees and 360 latitude degrees. This covers the entire globe like a sphere. It is 

important to realize that each position in the dataset is not a square, although it is 
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represented this way. For the local analysis the meteorological dataset is selected based 

on the latitude and longitude of the place. However, for the spatial distribution of the LAI 

driven variables, meteorological datasets are selected based on the LAI grid borders that 

are represented by latitude and longitude. The MODIS datasets have a much higher 

resolution then CRU data. Each MODIS tile is 1200 by 1200 km and represents 500 m by 

500 m cell. Thus, the resolution is 2400 by 2400 pixel. The climatic dataset uses Latitude 

Longitude of wg84 of ESPI:4326 in 0.5 degrees. MODIS grid is at the equator 10 by 10 

degrees, and the cover area decreases in both directions from the equator. 

 

Data correction 

Remote sensing datasets, as MODIS, contain errors that occur during the 

measurements. The mistakes are due to the natural obstacles (ex. clouds, pollution) 

between the satellite sensors and Earth’s surface. In the measurements the errors from 

MODIS15A were smoothed using the Savitzky Filter. The filter was described by Savitzky 

and Golay (1964) and the methodology described by Chen et al. (2004) offers easy 

implementation. The filter itself is based on the polynomial fit within a width of the 

window. The data points are replaced by the polynomial function, with specific degree, in 

a dedicated width of the window that surrounds the point. In this paper, the degree of 4, 

and width of 9, is used (Figure 1). 

 

 
Figure 1. LAI time series correction in Germany. The blue line indicates the original dataset. The 

orange line indicates corrected (smoother) time series of the LAI. 
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Standardization 

Prior to the regression analysis, the meteorological data and LAI dataset were 

standardized (Equation 1). 

Z(x(i)) =
x(i)−average(x)

standard deviation (x)
     (1) 

 

2.2.2. Multivariate regression analysis 

Multivariate regression analysis is used as a statistical technique which uses more 

than one variable to generate the output. In climate modelling, the key to the use 

of regression analysis is the assumption that a linear fit of the meteorological 

variable in three dimensions is relatively correlated in the chosen area (Splitt, 

2002). 

2.2.3. Akaike information criterion (AIC) 

The quality of the LAI predictive model is measured by Akaike information 

criterion (AIC), that was proposed by the statistician Hirotugu Akaike (Akaike, 

1973). The AIC is a world-wide  known estimator of quality for statistical models. 

It offers an estimation of the information lost by using a given model for the 

calculations of the results, in relative to the other models. It can be used to find 

compromise between correctness of the fit and simplicity of the model.  

The AIC formula is based on the number of estimated parameters k, and the 

maximum value of the likelihood function L (Equation 2). 

AIC = 2k − ln(L)     (2) 

A predictive model, with a low root-mean-square-error and a low AIC, is one to 

be considered to be applied globally. There is an infinite amount of possible 

combinations of predictors for LAI. Therefore, the AIC criterion is used as a tool to 

limit model options. 

 

2.3. Model development for five locations (local analysis) 

Analysis of the historical LAI datasets for five characteristic study areas in terms 

of their climatic conditions (temperature, precipitation, vapour pressure, potential 

evapotranspiration) was conducted. All five study-locations were chosen to 

represent the natural vegetation of different climatic zones with contrasting 

meteorological conditions (Figure 2).  
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Figure 2. Locations of study areas, with their latitude and longitude, respectively (coast line from 

www.didu.me). 

 

Table 2. Land Cover Types Description: Type 5 classification for five study locations. 

Location Class Plant Functional Type (PFT) 

Germany 4 Deciduous Broadleaf trees 

Brazil 2 Evergreen Broadleaf trees 

Mexico 2 Evergreen Broadleaf trees 

USA 4 Deciduous Broadleaf trees 

Malaysia 2 Evergreen Broadleaf trees 

 

The meteorological dataset was represented by 120 data points (monthly values 

over a 10-year period) for each climate variable (temperature (T), precipitation 

(P), vapour pressure deficit (V), and potential evapotranspiration (PET)). The 

dataset is optimized with the historical LAI dataset by using the lstsq SciPy 

package to predict the LAI over the same period. After the calculations were done 

for the local analysis, the further computations were made for the spatial 

distribution most influencing climate variable on the regional LAI. The calculations 

were done for every 0,50 by 0,50 area. In each area were collected all pixels of 

the LAI dataset, that represents natural vegetation. They were combined with the 

meteorological dataset. 

The analysis required developing a few simple formula(s), that based on the time 

series of climate and historical LAI dataset of the location, predicts the LAI. The 

formulas share the shape, however the variances of the climate variables were 

optimized for each of the five locations (Equation 3). 

 

𝐿𝐴𝐼 (𝑝𝑟𝑒𝑑𝑖𝑡𝑒𝑑) = 𝐴 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐵 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐶 ∗ 𝑣𝑎𝑝𝑜𝑢𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 

𝐷 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛   (3) 
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Where A, B, C, D are the variances of climate variables for each location that 

optimize the prediction. 

To determine the contribution in the LAI by each of the climate variables, the 

unexplained variance (UV) was calculated. UV is the fraction of variance of 

dependent variable (predicted LAI) which cannot be explained by independent 

variables (climate variables).  

 

2.4. Global analysis 

The global analysis required obtaining all the MODIS15A (LAI) grids for the period 

2001-2010 (Figure 3) and all the MODIS12Q1 (Land Type Cover) grids for the 

year 2010 

 

Figure 3. Modis grid distribution in horizontal and vertical direction (www.modis-land.gsfc.nasa.gov) 

 

There are 460 non-fill tiles. The size of tiles is 10 degrees by 10 degrees at the 

equator. The size changes according to the latitude and longitude of the grid. The 

tile coordinate system starts at (0,0) (horizontal tile number, vertical tile number) 

in the upper left corner and proceeds right (horizontal) and downward (vertical). 

The tile in the bottom right corner is (35,17) (www.modis-land.gsfc.nasa.gov). 

 

Global analysis was made by using SciPy and NumPy packages and resulted in 

eight global maps at the resolution of 0,5 degrees. Maps represented the 

dominant climate variable of the eight plant functional type. To support the 

results of the dominant climate variable of the plant functional type per, global 

LAI data were visualized as mean LAI over a 10-year period, maximum and 

minimum LAI, and standard deviation of the calculations for each dominant plant 

functional type. The maps are in the 720 by 360 pixels resolution. Each pixel 

corresponds to 0.50 by 0.50 and contains three types of datasets: meteorological 
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dataset, LAI and Land Use. Land Use data was used to determine the type of the 

vegetation. The meteorological dataset and LAI dataset covers 10-year period.  

 

2.5. Predictive model 

Three formulas were used to calculate predictions of LAI. The formulas were 

compared at the local scale and global scale by using RMSE. 

 

Antecedent Net Precipitation Index (ANPI) 

The Antecedent Net Precipitation Index (ANPI) is used as an extended formula for 

the multivariate regression analysis of the 5 study locations. The function includes 

a conditioning factor as growing degrees days (GDD), that are days when the 

temperature persistently is below 5˚C. 

𝐿𝐴𝐼 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑎 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑏 ∗ (𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑜𝑛𝑡ℎ) +  

𝑐 ∗ (𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡𝑤𝑜 𝑚𝑜𝑛𝑡ℎ𝑠 𝑏𝑒𝑓𝑜𝑟𝑒) + 𝑑 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠    (4) 

 

Jolly Formula 

The Jolly Formula is a transformed formula from Jolly et al. (2005) inspired by 

globally generalized index that describes regional vegetation from climatic 

conditions. 

𝐿𝐴𝐼 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑎 ∗ (
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 200𝐶

700𝐶
) + 𝑏 ∗ (1 −

𝑣𝑎𝑝𝑜𝑢𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 0.9𝑘𝑃𝑎

5𝑘𝑃𝑎
) (5) 

 

SFormula 

SFormula is the developed formula in this paper, based on literature and results 

from the previous prediction models. Once the software was completed a large 

amount of models were experimented with. Experience was gained over which 

models or part of models were the best predictors. With the AIC criteria as 

guidance, a selection of model functions and functions with time memory was 

used to create a new model which outperformed previous models on the entire 

globe. 

𝐿𝐴𝐼 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑎 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑣𝑎𝑝𝑜 + 𝑏 ∗ (𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡𝑤𝑜 𝑚𝑜𝑛𝑡ℎ𝑠 𝑏𝑒𝑓𝑜𝑟𝑒) +  

𝑐 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑑 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠     (6)  
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2.6. PCR-GLOBWB 

The proposed LAI estimation improvements are dedicated to being built in future 

into the existing global hydrological model: The PCRaster Global Water Balance 

model (PCR-GLOBWB) developed by Van Beek & Bierkens (2008). The model 

provides a grid-based representation of terrestrial hydrology. The spatial 

resolution is 30’ (~50x50 km) or 5’ (~10x10 km), thus the current resolution of 

the dynamic LAI model has to be adjust. The developed predictive formulas can 

be used in the seasonal prediction, to measure the hydrological effects of climate 

variability and to observe changes in climate.  
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3. Results 

The results are divided into three sections: first is a local analysis for five study 

locations (sec. 3.1), second spatial distribution of climatic variables at the global 

scale for different land covers (3.2) and predictive model (3.3). 

  

3.1. Local analysis for five study locations 

The multivariate linear regression was obtained for the five study locations. The 

predictive model was run using Python to estimate the LAI from the four climatic 

variables (temperature, precipitation, vapour pressure, and potential 

evapotranspiration).  

 

Deciduous Broadleaf trees 

Deciduous Broadleaf Trees land cover is represented by two locations: Germany 

and USA (Arkansas). According to the Köppen’s climate classification, they are 

both located in the Temperate Zone (30-60˚). The climate is characterized by a 

smaller angle of solar radiation, more regular distribution of precipitation and 

differing daylength over the course of the year. In the time series of climate 

variables (Appendix B) are clear annual patterns for the temperature, vapour 

pressure, and potential evapotranspiration. The effect of this annual seasonality 

can be seen on the local LAI time series. The predictive model estimate LAI over 

the same period of time, 2001-2010. The comparison of the time series shows 

smoother values of LAI for the predictive model (Figure 4, 5), except for the low 

temperature in the USA, where predictive model estimates lower LAI then in 

reality. 

 

Figure 4. Time series of Original Normalized LAI (blue line) and Predicted LAI (orange line) from the 

climate variables over a 10-year period (2001-2010) in Germany. 
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Figure 5. Time series of Original Normalized LAI (blue line) and Predicted LAI (orange line) from the 

climate variables over a 10-year period (2001-2010) in USA. 

  

Figure 6. Pie charts with the percentage distribution of the climate variables that influence the local 

LAI. 

 

The unexplained fraction (UV) differs for both of the locations: Germany 48%, 

USA 21%. LAI and temperature varies more extremely over the year in Germany 

than in the USA. The temperature is the most dominant climate variable for both 

locations. However, it has more influence on the local LAI in the USA than in the 

Germany. The potential evapotranspiration is important in both of the location 
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with higher percentage value in the USA. This might be due to a warmer climate 

in the USA (with increasing temperature, potential evapotranspiration is higher). 

 

Evergreen Broadleaf Trees 

Evergreen Broadleaf Trees land cover is represented by three locations: Brazil, 

Mexico, and Malaysia. According to Köppen’s climate classification, they are all 

situated in the Tropical Zone (0-30˚). The characteristics for this zone are very 

warm conditions caused by nearly vertical solar radiation at noon through almost 

the entire year. However, the elevated temperature causes high evaporation and 

high moisture in the air. This results in dense cloud cover that reduces the effect 

of solar radiation. 

 

Figure 7. Time series of Original Normalized LAI (blue line) and Predicted LAI (orange line) from the 

climate variables over a 10-year period (2001-2010) in Brazil. 

 
Figure 8. Time series of Original Normalized LAI (blue line) and Predicted LAI (orange line) from the 

climate variables over a 10-year period (2001-2010) in Mexico. 
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Figure 9. Time series of Original Normalized LAI (blue line) and Predicted LAI (orange line) from the 

climate variables over a 10-year period (2001-2010) in Malaysia. 

In comparison to the local LAI of the Deciduous Broadleaf Trees (DBT), the 

estimations of the predictive model for Evergreen Broadleaf Trees (EBT) are less 

accurate. The variability of the annual LAI is also much lower in the EBT. The 

extremely low values are presented in the Malaysia and Brazil, which are 

underestimated by the prediction. 

 
Figure 10. Pie charts with the percentage distribution of the climatic variables that influence the local 

LAI. 

The unexplained variance is much higher for Evergreen Broadleaf Trees Land 

Type cover (37% - 62%). Locations have different dominant climate variables. 

Brazil’s most important climatic variable that influences local LAI is precipitation. 
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The time series shows clear seasonality of the precipitation, that influences 

vegetation, thus LAI. Moreover, potential evapotranspiration is also high in 

importance and negatively correlated to precipitation (Appendix B). The reason is 

that with high precipitation there is low potential evapotranspiration, however, 

after precipitation the elevated temperature on the equator allows for high 

potential evapotranspiration, that also stimulate the growth of the plants. Mexico 

has two dominant variables: vapour pressure and temperature. The dominant 

climate variable for Malaysia is temperature, that shows the strongest seasonality 

in comparison to other climate variables. Vapour pressure might also influence 

local LAI because the air moisture is lower than in the Brazil. Malaysia’s dominant 

climate variables is temperature, that has the strongest seasonality from all the 

climate variables in this typical tropical zone. 

Table 3. Statistical properties over time series for multivariate analysis of five locations. 

Location 
Average 

Original LAI 

Standard 

deviation of 

Original LAI 

RMSE R2 

Germany 1.52 0.82 0.34 0.52 

USA 2.62 1.95 0.26 0.79 

Brazil 4.03 1.77 0.29 0.63 

Mexico 2.83 1.82 0.49 0.38 

Malaysia 4.42 1.69 0.28 0.38 

 

The average mean value of LAI for the Deciduous Broadleaf Trees Land Type 

Cover is relatively low 1.52 and 2.62, for Germany and the USA respectively 

(Table 3). Standard deviation for Germany is unexpectedly low (0.82), that 

means that LAI values does not differ much from the mean value over the year. 

However, the USA shows high standard deviation with very different values of LAI 

over a year. The cause might be smaller deviation in temperature for Germany, 

sometimes with values below 0˚C. The root-mean-square error (RMSE) is in the 

similar range for both types of land covers. 

The average mean value of LAI for the Evergreen Broadleaf Trees Land Type 

Cover is high 4.03, 2.83 and 4.42, for Brazil, Mexico, and Malaysia, respectively 

(Table 3). The standard  deviation is similar for all locations. The mean higher 

values of LAI are more difficult to predict then relatively low mean values. 

3.2. Spatial distribution of climate variables at the global scale for 

different land type covers (global analysis) 

The first set of analyses examined the impact of climate variables on the 

vegetation of each land type cover. 
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3.2.1. Global maps of the highest mean LAI and its representative plant 

functional type. 

The combined datasets of climate data, LAI data and Land Use data were 

analysed at the global scale. The outputs produced by the model consists of time 

series of global maps comprised of 0.50 by 0.50 cells containing the values of the 

parameters. However, there are also seen errors at the regional scale that are 

caused by inferior quality data and limited factors that were used to force model 

with the prediction.  

 
Figure 11. Global map of the maximum mean LAI of the plant functional type per grid cell. 

Global maps were created in order to analyse climate influence on the LAI 

pattern. The Land Use dataset was used to select natural vegetation within each 

0.50 by 0.50 area. The natural vegetation represented eight plant functional types. 

Further, for each plant functional type were determined the maximum, minimum, 

mean LAI, and additionally standard deviation of LAI over a 10-year period. 

Based on those results, the global maps were created for each plant functional 

type (Appendix E, F, G, H). 

Because of much higher resolution of MODIS data, each 0.50 by 0.50 area 

contained several plant functional types, thus several mean, maximum and 

minimum LAI outputs. To compare all the results, additional maps were made. 

The highest mean LAI were taken for each 0.50 by 0.50 (Figure 11) and the plant 

functional type to which it belongs (Figure 12) to determine the most dominant 

plant functional type that represents LAI over 0.50 by 0.50 area. 
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Figure 12. Global map of the dominant plant functional type that represent the maximum mean LAI. 

The global well-known vegetation pattern is clearly seen on the global map of the 

dominant plant functional type that represents the highest mean LAI over the 

area. Moreover, the highest mean regional LAI is driven by the same plant 

functional type at the same climatic zone (the horizontal pattern). The tropical 

zone (0-300) is mostly dominated by the Evergreen Broadleaf Trees that response 

to the warm climate conditions of the equator. This is seen in South America, 

Africa, as well as Indonesia. The highest precipitation also occurs at the equator 

as well as high evapotranspiration. The climate conditions allow for the optimal 

growth of the plants of the year, thus the high mean LAI. As further to the 

northern and southern direction, the more dominant becomes Evergreen 

Needleleaf Trees which is characteristic for the plant type that can survive more 

extreme and various climate conditions. The grass is a dominant land cover type 

for the LAI at the 40 degrees in America and in Europe which is temperate zone. 

In the Asia grass land cover corresponds to the higher altitude of the region. 

Deciduous Needleleaf trees represents LAI mostly in the harsh conditions of the 

North-Western Asia. The lack of the optimal climate conditions (low precipitation, 

low temperature) exclude other types of the plant functional type. Shrubs are the 

most dominant plant functional type of the LAI in Australia. The regional LAI, that 

is determined by plant functional type, is strongly correlated to the annual 

variations of the climate variables. 
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Figure 13. Standard deviation of  the global mean LAI type per grid. 

The map reveals the difference in the standard deviation of the global mean LAI 

type per grid cell (Figure 13). The difference is correlated to the climate 

conditions and plant functional type of the region. The optimal climate conditions 

of the equator allow for the sustainable annually growth of the plants, thus the 

standard deviation is relatively low. In the northern hemisphere (North America, 

Europe, and North-Eastern Asia) the standard deviation of the mean LAI over the 

year is very low. Comparing the dominant plant functional type that represent the 

Max Mean LAI map (Figure 12), it can be seen that this is strongly correlated to 

the plant functional typ. The areas that are mostly represented by the Evergreen 

Needleleaf Trees, are less effected by climate conditions and are more dependent 

on the groundwater resources, as well they can survive harder climate conditions. 

In opposition, Grass land type cover has high standard deviation and responds to 

the seasonal changes faster. 

3.2.2. The dominant climate variables that determines the regional LAI 

for plant functional type. 

To determine the direct connection between climate variables and regional LAI at 

the global scale, eight maps were generated (for each plant functional type). They 

reveal the most dominant of the four climate variables (precipitation, 

temperature, vapour pressure, or potential evapotranspiration) that determines 

the regional LAI. It has to be noticed that those variables are strongly correlated 

to each other, and where in the local scale it was possible to measure, this was 

the limitation for the global scale. 
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Figure 14. Spatial distribution of the climate variables with the dominant influence on regional LAI for 

Evergreen Needleleaf Trees. 

 
Figure 15. Spatial distribution of the climate variables with the dominant influence on regional LAI for 

Evergreen Broadleaf Trees. 

 
Figure 16. Spatial distribution of the climate variables with the dominant influence on regional LAI for 

Deciduous Needleleaf Trees. 
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Figure 17. Spatial distribution of the climate variables with the dominant influence on regional LAI for 

Deciduous Broadleaf Trees. 

 

The Trees land type covers occurs mostly at the northern hemisphere except for 

Evergreen Broadleaf Trees that appear at the equator. Similarity can be found between 

both types of deciduous trees and Evergreen Needleleaf Trees: the temperature 

determines LAI in further north and vapour pressure in the degrees below. The Broadleaf 

Trees that are at the equator have in common that LAI is mostly driven by potential 

evapotranspiration. Precipitation does not seem to influence LAI at the large scale. 

 

 
Figure 18. Spatial distribution of the climate variables with the dominant influence on regional LAI for Shrub. 
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Figure 19. Spatial distribution of the climate variables with the dominant influence on regional LAI for Grass.  

Where Grass appears all over the world, Shrubs are mostly in the northern hemisphere, Australia, 

south of Africa, and south of South America. Temperature and vapour pressure are dominant 

climate variables in the north. Interestingly, in Australia potential evapotranspiration and vapour 

pressure determines LAI. Precipitation is not important at the large scale, except for the Grass in the 

middle Asia, where this pattern might be connected with the higher altitudes of the region. 

 
Figure 20. Spatial distribution of the climate variables with the dominant influence on regional LAI for Cereal 

Crops. 
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Figure 21. Spatial distribution of the climate variables with the dominant influence on regional LAI for Broadleaf 

Crops. 

Crops does not appear at the large scale. The cereal crops covers middle Asia, and 

middle of North America. In the northern hemisphere the most dominant climate 

variable is vapour pressure. In the surroundings of the equator the LAI is mostly 

influenced by potential evapotranspiration. 

 

Figure 22. Spatial distribution of the climate variables with the dominant influence on regional LAI for the plant 

function type that represents the highest mean LAI (Figure 11 & 12). 

Additionally, was made a map that represents the spatial distribution of the climate 

variables with the dominant influence on regional LAI for the plant functional type that 

represents the highest mean LAI (Figure 11 & 12). The temperature has a dominant 

influence on the north, vapour pressure at the lower degrees, and potential 

evapotranspiration in the surroundings of the equator. The precipitation is import in the 

south-eastern Asia.  
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3.3. Predictive model for the LAI with use of climate variables 

Predictive models were based on the three formulas: ANPI, Jolly, and SFormula. The 

purpose of the formulas was to find a direct connections between climate variables and 

LAI. The formulas predicted LAI over the same 10-year period (2001-2010). The 

validation of the models was not performed due to underestimated time of prepossessing 

the datasets. The root-mean-square error (RMSE) and Akaike’s Information Criterion 

(AIC) measured the performance at the local scale, where only RMSE was used to 

measure the performance of the models at the global scale. 

3.3.1. Predictive model for five locations (Local scale) 

Predictive model was made for two locations in the Temperate Zone and three locations 

in the Tropical Zone of Köppen’s climate zone. The analyse was conducted to reveal the 

most dominant climate variable in the LAI predictions. For each climate variable of the 

formulas was determined the variance. The higher determined variance, the higher 

importance in the prediction of local LAI. The negative values of variances were 

negatively correlated, thus as smaller negative values, then the higher importance of the 

local LAI. 

Table 4. The performance of the models for the locations in the Temperate Zone. 

 
Köppen’s climate zone 

 

Temperate Zone (30-60˚) 
 

Germany 

Formula 
Temperat

ure 

Precipit

ation 

Vapour 

Pressure 
PET 

Precipitat

ion one 

month 
before 

Precipitati

on two 

months 
before 

RMSE AIC 

Multivariate Analysis 0.65 -0.08 0.59 
-

0.91 
- - 0.34 87.23 

Jolly -0.57 - -1.16 - - - 0.36 99.34 

ANPI 0.54 gdd 0.20 - - 0.00 0.09 0.39 118 

S Formula 
0.31/ 0.52 

gdd 
- -4.3 

-

1.00 
- -0.02 0.33 86 

USA 

Formula 
Temperat

ure 
Precipit

ation 
Vapour 

Pressure 
PET 

Precipitat

ion one 
month 

before 

Precipitati

on two 
months 

before 

RMSE AIC 

Multivariate Analysis 2.04 -0.21 0.29 
-

1.56 
- - 0.26 28.94 

Jolly -0.22 - -0.97 - - - 0.37 106 

ANPI 0.77 gdd 0.19 - - 0.08 -0.20 0.38 117 

S Formula 
0.95/ 0.95 

gdd 
- -0.32 

-
1.44 

- -0.06 0.27 34 
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Table 5. The performance of the models for the locations in the Tropical Zone. 

Köppen’s climate zone 

Tropical Zone (0-30˚) 

 

Brazil 

Formula 
Tempera

ture 

Precipi

tation 

Vapour 

Pressu
re 

PET 

Precipitat

ion one 

month 
before 

Precipitatio

n two 

months 
before 

RMSE AIC 

Multivariate 
Analysis 

0.10 -0.05 -0.19 0.60 - - 0.29 50.95 

Jolly 1.25 - 0.91 - - - 0.31 67 

ANPI 
-0.07 

gdd 
-0.48 - - -0.19 0.47 0.28 41 

S Formula 
-0.01/-

0.01 gdd 
- 0.11 0.53 - -0.28 0.28 43 

Mexico 

Formula 
Tempera

ture 

Precipi

tation 

Vapour 
Pressu

re 

PET 

Precipitat
ion one 

month 

before 

Precipitatio
n two 

months 

before 

RMSE AIC 

Multivariate 

Analysis 
-1.29 0.41 0.95 -0.14 - - 0.49 

174.5

7 

Jolly -1.77 - -1.46 - - - 0.49 173 

ANPI 
-0.27 

gdd 
0.38 - - 0.50 1.46 0.32 76.61 

S Formula 
-0.34/-

0.34 
- -0.63 -0.10 - 1.64 0.32 77.14 

Malaysia 

Formula 
Temperat

ure 

Preci

pitati
on 

Vapour 

Pressu
re 

Potential 

Evapotransp
iration 

Precipitat

ion one 
month 

before 

Precipitatio

n two 
months 

before 

RMSE AIC 

Multivariate 
Analysis 

0.61 -0.15 -0.03 -0.46 - - 0.28 44.95 

Jolly 0.48 - 0.12 - - - 0.31 69 

ANPI 0.23 gdd -0.02 - - 0.22 0.43 0.28 50 

S Formula 
0.29/0.29 

gdd 
-- 0.17 -0.33 - -0.35 0.26 35 
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Figure 23. Comparison of RMSE of the models. 

 
Figure 24. Comparison of AIC of the models. 

The Temperate Zone has a strong connection and is highly correlated to the formulas 

that are based on the temperature, thus: Multivariate Analysis and SFormula. Location in 

Germany has slightly better prediction by using the SFormula. The LAI over the year is 

dependent on the climate variables, and there is observed more seasonality over the 

year. Location in USA (Arizona) has the best performance with Multivariate Analysis and 

it can be assumed that the vegetation is highly correlated to the temperature. It clearly 

shows that seasonality determines the vegetation grow, thus LAI. The ANPI formula, 

which depends mainly on the precipitation shows the worst prediction for both locations. 

That, together with parameters, reveals that precipitation is not high in importance for 

the temperate zone.  

The LAI predictions show high dependency on the precipitation at the locations in 

Tropical Zone. The ANPI formula had the best performance for the locations in Brazil, 

and in Mexico, thus the vegetation might be highly dependent on the dry and wet 

season. Interestingly, Jolly Formula had the best performance for the locations at the 

Tropical Zone, however AIC classify it as the poorest model. 
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3.3.2. Predictive models of the LAI at the global scale 

The predictive formulas were applied globally. For each 0.50 by 0.50 location was 

predicted LAI based on the all-natural vegetation covers and climate variables. Then the 

predicted LAI was compared to the historical LAI over the same period (2000-2010). The 

RMSE shows the average difference between the values for each location. 

However, it has to be noticed that MODIS data contains a lot of errors (clouds, 

limitations of satellite measurements), which appears on the map in the ‘patterned 

shape’. 

 
Figure 25. The ANPI predictive model performance at the global scale. 

 
Figure 26. The Jolly predictive model performance at the global scale. 
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Figure 27. The SFormula predictive model performance at the global scale. 

The Jolly and ANPI formulas have relatively high RMSE at the most of the globe locations. The Jolly 

model has better performance at the location where the temperature is a dominant climate variable 

for the LAI prediction (northern hemisphere). The SFormula predictive mode has the most similar 

values of predictive LIA in comparison to the historical LAI. 

 
Figure 28. The best performance for each location of the predictive models at the global scale. 

The comparison of all predictive models were made on the additional map. The map reveals which 

of the three predictive models had the best result. The map shows that SFormula is the most 

accurate predictive formula at the global scale. However, at the location of equator, the ANPI 

formula increases in importance. The same trend has been see in the middle Asia. 
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4. Discussion 

The examination of the climate variables reveals that temperature, precipitation, vapour 

pressure, and potential evapotranspiration are the most influential factors for the LAI 

prediction at the local and global scale. The local analysis reveals high unexplained 

variance, which suggests search for the additional factors that could improve 

performance at the local scale (for instance radiation or altitude). The relationship 

between the variables and LAI is highly dependent on the climate zone. The local 

analysis shows better prediction where the climate variables are seasonal, thus Germany 

and USA. The local LAI at those locations is mostly dependent on the temperature. The 

local analysis of the Tropical Zone’s locations reveals strong connection to the 

precipitation. The model performed worse predictions of lower degrees locations, in 

tropical and subtropical zones are more difficult to estimate because other factors are 

important or most likely the climate stays within reasonable boundaries for plant growth 

year around. Higher mean LAI values for Evergreen Broadleaf Trees are more difficult to 

predict from this four climate variables. This is proved by low correlation of predicted LAI 

to original LAI, and high RMSE, the reason might be that this four climate variables do 

not matter there as much as climate itself and another variables (solar radiation, soil 

type, humidity, altitude). The fluctuations are caused by cloudy measurements. The 

more away from the equator the more useful climatic predictions becomes. The climate 

changes more due to seasonal changes.  

The spatial distribution of the climate variables and Land Use Type shows very clear 

pattern. The trees covers are influenced by temperature and vapour pressure in the 

Northern Hemisphere. This might be caused by harder availability of water and lower 

amount of the exposition to the sun. Moreover, all plant functional types shows very 

strong connections to the characteristic climate variables of the climate zones. Trees 

covers were less influent by climate variation then “lower vegetation” for instance grass 

and crops. 

The predictive model, at local scale, revels that formulas that were focused on the 

temperature and potential evapotranspiration play important role in the local prediction 

of the LAI. However, above all the formulas it has been found that the SFormula, which 

uses ‘climate memory of the previous months’ has the best results in all locations. This is 

connected to the statement that vegetation is not dependent on the current 

meteorological conditions, but it is influenced by longer periods of climate data. In 

another words, the LAI predictions over specific area in September are dependent on the 

meteorological conditions of the previous months (for instance June-July-August). 
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1.

 

2.

 

3.  
4.  

Figure 29. Comparison of the time series of climate variables at the locations with errors in the measurements. 
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It has be noticed, that most of the results at the global scale (spatial distribution of 

climate variables, as well as, predictive models), shows errors. The additional analysis 

was made at the locations were those measurements occurs (Figure 29). The 

multivariate analysis and time series of climate variables were studied to explain this 

‘unexpected pattern’. The location in South America, middle Russia, and India shows 

very high peak of the LAI in the year 2001 (at the beginning of the time series). The 

land use area at that location was not classified as a natural vegetation area (it was 

water, ice, or agriculture area). Moreover, the locations in the north Asia (Siberia) have 

a long period of winter and sun does not reach some of the areas. This might cause a 

errors in the calculations. Furthermore, the satellite data presents the LAI measurements 

as a raw dataset, thus it is suggested to use good filter to remove extreme LAI values 

(above 200). 
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5. Conclusion 

The prediction of the local vegetation, as a Leaf Area Index (LAI), based on the climate 

variables is very complex. The literature and previous researches reveals that 

precipitation, temperaturel, potential evapotranspiration, and vapour pressure might be 

used for the determination of the dynamic relationship between LAI. Those variables are 

correlated and dependent. 

The studies at local and global scal reveal that temperature and vapour pressure are the 

most dominant climate variables that determine LAI at the Temperate Zone of Köppen’s 

Classification. This is due to the harder conditions of those places (less water 

availabilty). Those regions also have clear seasonality the climate variables, thus 

predicitons of LAI are more accurate then in the Tropical Zone of Köppen’s Classification. 

In this zone the predictions of the LAI depends mostly on the potential 

evapotranspiration and precipitation. Moreover, the average LAI of this zone is higher  

and does not differ much over the year. Those characteristics make predictions of the 

local LAI more difficult and suggest that addition variable are also important (type of 

soil, radiation, altitude). 

The spatial distribution of the most dominant climate variable for each plant functional 

type reveals that those variables are more dependent on the climate zone than on the 

plant functional type. However, ‘higher vegetation’ for instance Trees are less sensitive 

to meteorological data then ‘lower vegetation’ for instance scrubs. 

The predictive models of the LAI were based on four formulas. The best performance had 

a SFormula that had a ‘meteorological memory’. The vegetation is highly sensitive to the 

wet and dry periods, thus cannot be only modelled based on the current meteorological 

conditions. The most general dynamic formula for the global LAI predictions should be 

highly dependent on the potential evapotranspiration, which is highly correlated to the 

precipitation and temperature. Furthermore, the additional variables are very important 

in the prediction of the regional LAI ( for instance altitude, radiation). 
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6. Outlook and Recommendations 

In this research several subjects needs an additional explanation and recommendations. 

First of all, the model was supposed to be apply in the global hydrological model PCR-

GLOBWB. However, the additional pre-processing of the satellite data (MODIS) 

consumed enormous amount of the data not included at the beginning of the research. 

The satellite data of LAI (MODIS15AH) is obtained as a raw grid of a certain area. It has 

to be noticed that those grids are different sizes, thus a special script had to written to 

match this dataset with the meteorological dataset. 

Furthermore, some additional comments and recommendations has to be added to the 

model. The (predictive) model was made based on the 10-year data period of climate 

variables, which however is rather brief time for the LAI prediction. The model could be 

better trained by using longer period of datasets (for instance 50 years). Moreover, the 

satellite data (MODIS/NASA) itself is very sensitive due to the extreme values, which are 

caused by obstacles like clouds or errors in the measurements. This suggests that more 

focus should be put on the filtering the datasets. The LAI dataset v006 of the entire 

world over a 10-year period is around 512Gb, thus the size of the datasets have to 

counted in the similar future research. Moreover, Land Use dataset can be used for every 

year over the same period as LAI dataset. Furthermore, the meteorological dataset is 

very low compare for the LAI and this makes rather impossible to make an accurate 

model. In a small area the climate can still change a lot due to the altitude or local 

precipitation, thus it is recommended to find a higher resolution of the meteorological 

dataset.  

Last but not least development of the predictive model of the vegetation based on the 

climate (meteorological data) requires finding a compromise between the simplification 

and accuracy. 
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Appendix A: Parameters for climate variables in multivariate analysis for five 

locations 

 

  

Climate variable / Location Brazil Mexico Malaysia Germany USA 

Units [-] % [-] [-] % [-] % % [-] % 

Temperature 0.03 0.02 1.08 0.44 0.352 1.03 0.61 0.20 0.66 0.35 

Precipitation 0.48 0.29 0.19 0.05 0.04 0.04 0.02 0.03 0.25 0.13 

Potential evapotranspiration 0.33 0.20 0.09 0.1 0.08 0.21 0.12 0.02 0.07 0.04 

Vapour pressure 0.04 0.02 1.23 0.34 0.272 0.06 0.03 0.22 0.04 0.02 

Unexplained variance 0.77 0.47 2.93 0.32 0.256 0.32 0.19 0.53 0.86 0.46 

SUM 1.65 1 5.52 1.25 1 1.66 1 1 1.88 1 
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Appendix B: Correlation coefficient between climate variables for five locations 

GERMANY 

 

BRAZIL 

 

MEXICO 

 

USA 

Climate variable Temperature Vapour pressure Precipitation Potential 
evapotranspiration 

Temperature 1 0.97 -0.19 0.95 

Vapour pressure 0.97 1 -0.17 0.91 

Precipitation -0.19 -0.17 1 -0.28 

Potential 
evapotranspiration 

0.95 0.91 -0.28 1 

 

MALAYSIA 

Climate variable Temperature Vapour pressure Precipitation Potential 
evapotranspiration 

Temperature 1 0.64 -0.41 0.46 

Vapour pressure 0.64 1 -0.01 0.33 

Precipitation -0.41 -0.01 1 -0.52 

Potential 
evapotranspiration 

0.46 0.33 -0.52 1 

  

Climate variable Temperature Vapour pressure Precipitation Potential 

evapotranspiration 

Temperature 1 0.74 0.05 0.59 

Vapour pressure 0.74 1 0.44 0.04 

Precipitation 0.05 0.44 1 -0.50 

Potential 
evapotranspiration 

0.59 0.04 -0.50 1 

Climate variable Temperature Vapour pressure Precipitation Potential 

evapotranspiration 

Temperature 1 0.87 0.37 0.57 

Vapour pressure 0.87 1 0.66 0.16 

Precipitation 0.37 0.66 1 -0.31 

Potential 
evapotranspiration 

0.57 0.16 -0.31 1 

Climate variable Temperature Vapour 
pressure 

Precipitation Potential 
evapotranspiration 

Temperature 1 0.96 0.06 0.90 

Vapour pressure 0.96 1 0.16 0.81 

Precipitation 0.06 0.16 1 -0.06 

Potential 
evapotranspiration 

0.90 0.81 -0.06 1 
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Appendix C: Time series of climatic variables in multivariate analysis for five 

locations 
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Appendix D: Multivariate analysis in a python script 

The whole script can be found on the github.com annateuerle named LAI thesis 

 
""" 

- Predict LAI based on the climatic variables. 
 
- Fit a line, y = ax + by + cz + dq + constant 
  for each cru lon, lat location on a modis map 
 

- Plot the end result on a map 
""" 
 
import argparse 

import matplotlib.pyplot as plt 
import matplotlib as mpl 
from mpl_toolkits.basemap import Basemap 
import logging 
import numpy as np 

import os 
 
import math 
import modis_map 
import read_modis 

from datetime import datetime 
 
import settings 
from settings import conf 
import extract_CRU 
import create_lai_cube 
import plot_predictors 
 
from plot_map_progress import plot_lai 
 
log = logging.getLogger(__name__) 
log.setLevel(logging.DEBUG) 
logging.basicConfig(level=logging.DEBUG) 
 
 
CRU_IDX = ('tmp', 'vap', 'pet', 'pre') 
 
OPTIONS = { 
    'debug': False 

} 
 
 
def solver_function_multi( 

        lcru, llai, timestamps, predictors=('tmp', 'vap', 'pet', 'pre'), 
        label='all', showplot=False): 
    """ 
    Fit a line, y = ax + by + cz + dq + constant, 
    through some noisy data-points 

 
    :param lcru:  cru at location (raw , option to still do calculations) 
    :param llai:  lai at location (normalized) 
    :param timestamps datetimes of time period. used to make graph. 
    :param predictors  the dataset names we use to predict. 
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    :param label  we store this predicted lai under pred_{label} 

    :return:  best symbol values and rmse for prediction function in settings. 
    """ 
    measurements = [] 
    plot_predictor_labels = [] 

 
    for ds_key in predictors: 
        if type(ds_key) is str: 
            input_ar = lcru[:, CRU_IDX.index(ds_key)] 
            plot_predictor_labels.append(ds_key) 
        else: 
            input_ar = ds_key(lcru) 
            plot_predictor_labels.append(ds_key.__name__) 
 
        input_ar = normalize(input_ar) 

        measurements.append(input_ar) 
 
    y = llai 
 

    measurements.append(np.ones(len(y))) 
 
    # We can rewrite the line equation as y = Ap, 
    # where A = [[x 1]] and p = [[m], [c]]. 
    # Now use lstsq to solve for p: 

    A = np.vstack(measurements).T  # [[x  y z q 1]] 
 
    try: 
        parameters = np.linalg.lstsq(A, y, rcond=None)[0] 
    except ValueError: 

        # log.error('missing cru?') 
        return 
 
    predictor_params = "parameters: " 
    for l, p in zip(plot_predictor_labels, parameters): 

        log.debug(l) 
        log.debug(p) 
        predictor_params += ' %s %.4f ' % (l, p) 
 

    m = measurements 
    y_pred = np.zeros(120) 
 
    # for i, p in enumerate(parameters[:-1]):   # we skip K. 
    for i, p in enumerate(parameters): 
        # log.debug('p %s', p) 
        y_pred += p * m[i] 
 
    for v in y_pred: 
        print(v) 

 
    rmse = calc_rmse(y, y_pred) 
    log.info('%s RMSE: %s', label, calc_rmse(y, y_pred)) 
 

    if not showplot: 
        return label, rmse 
 
    # datasets[f'pred_{label}'] = y_pred 
    plot_predictors.plot( 
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        timestamps, y, y_pred, 

        measurements, predictors=plot_predictor_labels, p_label=label, 
        text=predictor_params) 
 
    calculate_ss(y, y_pred, measurements, plot_predictor_labels, parameters) 

 
 
def calculate_ss(y, y_pred, measurements, plot_predictor_labels, parameters): 
    """Calculate SSerr SStot, SSreg, R2, 
 
    not means are always zero since we have standardized the data. 
    """ 
    log.info(conf['groupname']) 
    log.info(plot_predictor_labels) 
    log.info(parameters) 

    ss_err = np.power(y - y_pred, 2).sum() / 120 
    ss_tot = np.power(y, 2).sum() / 120 
    ss_tot_p = np.power(y_pred, 2).sum() / 120 
 

    log.info('ss_err %.3f', ss_err) 
    log.info('ss_tot %.3f', ss_tot) 
    log.info('ss_tot_p %.3f', ss_tot_p) 
 
    sum_r = 0 

    for m, l, p in zip(measurements, plot_predictor_labels, parameters): 
 
        # mss_tot = np.power(m, 2).sum() / 120 
        mss_reg = np.power(m * p, 2).sum() / 120 
        # mss_reg = np.power(mp, 2).sum() / 120 

        log.info('%s %.2f ss_reg %.3f', l, p, mss_reg) 
        sum_r += mss_reg 
 
    log.info('sum regression %s', sum_r) 
    log.info('sum regression + err %.2f', sum_r + ss_err) 

    # fraction of vaiance unexplained. 
    fvu = ss_err / ss_tot 
 
    log.info('fvu %.3f', fvu) 

    log.info('R2 %.3f', 1 - fvu) 
 
 
def make_local_plot(grid, lai, cru, timestamps, geotransform, projection): 
    """Plot LAI, predicted LAI and predictors (temp, vap, pre, pet) 
    of lon lat location defined in settings for current group 
    """ 
    group = conf['groupname'] 
    lon = settings.locations[group]['lon'] 
    lat = settings.locations[group]['lat'] 

    x, y = read_modis.determine_xy(geotransform, projection, lon, lat) 
 
    log.debug('%s %s', x, y) 
    lai_at_location = lai[:, int(y), int(x)] 

    lai_at_location_org = np.copy(lai_at_location) 
    lai_at_location = normalize(lai_at_location) 
 
    log.info('MEAN_LAI %d', lai_at_location_org.mean()) 
    log.info('MEAN_LAI N %d', lai_at_location.mean()) 
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    log.info('STD LAI STD %d', lai_at_location_org.std()) 

    log.info('STD LAI STD N %d', lai_at_location.std()) 
    for v in lai_at_location: 
        print(v) 
    log.info('---' * 15) 

 
    # log.debug(lai_at_location) 
    # find closest cru data 
    min_i = -1 
    min_d = 999999999999 
 
    for i, (glon, glat) in enumerate(grid): 
        distance = (lon-glon)**2 + (lat-glat)**2 
        if distance < min_d: 
            min_d = distance 

            min_i = i 
            # log.debug(f'Distance**2 = {min_d} {glon}, {glat} -> {lon} {lat}') 
 
    cru_at_location = cru[min_i, :, :] 

 
    for label, predictors in MODEL_OPTIONS.items(): 
        solver_function_multi( 
            cru_at_location, lai_at_location, timestamps, 
            predictors=predictors, 

            label=f'{group}-{label}', showplot=True) 
 
 
def normalize(arr): 
    """standardize arr with average around 0 

    """ 
    mean = np.mean 
    std = np.std 
    normalized_data = (arr - mean(arr, axis=0)) / std(arr, axis=0) 
    # normalized_data = normalized_data / abs(normalized_data).max() 

    return normalized_data 
 
 
def calc_rmse(predictions, targets): 

    differences = predictions - targets      # the DIFFERENCES. 
    differences_squared = differences ** 2   # the SQUARES of ^ 
    mean_of_differences_squared = differences_squared.mean()  # the MEAN of ^ 
    rmse_val = np.sqrt(mean_of_differences_squared)        # ROOT of ^ 
    if np.isnan(rmse_val): 
        log.error('P %s', predictions) 
        log.error('T %s', targets) 
    return rmse_val 
 
 

def valid_box(box): 
    """Check if box is valid 
    """ 
 

    if not box: 
        return False 
 
    if any([c is None for c in box]): 
        return False 
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    if len(box) != 4: 
        return False 
 
    # if box[1][1] == box[2][1]: 

    #     log.debug('same y') 
    #     return False 
 
    # if box[0][0] == box[3][0]: 
    #     log.debug('same x') 
    #     return False 
 
    return True 
 
 

def extract_grid_data(box, lai, green_m, grid, debug=False): 
    """For grid location extract relavant data 
    """ 
 

    l, r, d, u = box 
 
    log.info('%d:%d %d:%d', u[1], d[1], l[0], r[0]) 
    cube_lai_at_location = lai[:, u[1]:d[1], l[0]:r[0]] 
    # p4grid.extend([pr, pl, pu, pd]) 

    g_at_loc = green_m[u[1]:d[1], l[0]:r[0]] 
 
    def plot(data): 
        valid_px = grid_to_pixels(grid) 
        # plot the cru pixel we are working on 

        for j, (x, y) in enumerate(valid_px): 
            plt.plot(x, y, 'r+') 
 
        plt.imshow(data) 
        geotransform, projection, bbox = create_lai_cube.extract_lai_meta() 

        plt.show() 
 
    if debug: 
        # debug indexing. 

        # plot what we are doing. 
        # and check if sliceing is going ok 
        dlai = np.copy(lai[20, :, :]) 
        dlai[u[1]:d[1], l[0]:r[0]] = 30 
        plot(dlai) 
 
        green_c = np.copy(green_m) 
        green_c[u[1]:d[1], l[0]:r[0]] = 30 
        plot(green_c) 
 

        plt.imshow(g_at_loc) 
        # plt.colorbar() 
        plt.show() 
        # green_mask = np.logical_and(g_at_loc > 0 

        plt.imshow(g_at_loc) 
        # plt.colorbar() 
        plt.show() 
 
    return cube_lai_at_location, g_at_loc 
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def _rmse_one_location( 
        models, grid, i, g, box, 
        cru, lai, green_m, timestamps, 

        grid_model_rmse, invalid): 
    """ 
    Find lowest rmse for models of one cru grid location in map/dataset 
    """ 
 
    cru_at_location = cru[i, :, :] 
 
    cube_lai_at_location, green_mask = extract_grid_data( 
        box, lai, green_m, grid, debug=OPTIONS['debug']) 
 

    # validate green mask 
    if not np.any(green_mask): 
        invalid.append((g, 'nogreen')) 
        return 

 
    # we want at least more then 10km² 
    if np.sum(green_mask) < 10: 
        invalid.append((g, 'nogreen')) 
        return 

 
    # create a 3d / cube green mask 
    green_mask3d = np.zeros(cube_lai_at_location.shape, dtype=bool) 
    green_mask3d[:, :, :] = green_mask[np.newaxis, :, :] 
    # set ALL LAI values not in green mask are ZERO 

    cube_lai_at_location[~green_mask3d] = 0 
    assert cube_lai_at_location.shape == green_mask3d.shape 
    # Sum lai values in each layer (month) to array of 120 values 
    sum_colums_lai = cube_lai_at_location.sum(axis=1) 
    sum_array_lai = sum_colums_lai.sum(axis=1) 

 
    # we have summed up lai values of 120 months 
    # assert sum_array_lai.size == 120 
 

    # print(sum_array_lai) 
    # normalize input data 
 
    # cru_at_location = normalize(cru_at_location) 
    avg_lai_at_location = normalize(sum_array_lai) 
 
    # print(avg_lai_at_location) 
    if np.isnan(avg_lai_at_location).any(): 
        log.error('%s %s', g, sum_array_lai) 
        invalid.append((g, 'nolai')) 

        return 
 
    for label, p_labels in models.items(): 
        # label = '%s %s' % (label, g) 

        answer = solver_function_multi( 
            cru_at_location, avg_lai_at_location, 
            timestamps, predictors=p_labels, label=label) 
 
        if not answer: 
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            log.error(answer) 

            invalid.append((g, 'normse')) 
            return 
 
        m, rmse = answer 

 
        grid_model_rmse[g].append((rmse, m)) 
 
 
def calculate_models_for_grid( 
        models, cru, lai, green, timestamps, grid, boxes): 
    """ 
    For location in box. which is a cru location, find cru data, 
 
    Parameters 

 
    models:       Dict of models evaluate for each location 
    cru:          925*120*4 of cru information 
    lai:          1200*1200*120 cube of lai information 

    green:        1km² locations of green 
    timestamp:    10 years in months (120) 
    param grid:   all cru lon, lat of current lai data location of world 
    param boxes:  4 points in pixel location, up, down, left, right. 
    """ 

    invalid = [] 
    grid_model_rmse = {} 
    green_m = np.logical_and(green > 0, green < 5) 
 
    for i, g in enumerate(grid): 

        # add default value. 
        g = tuple(g) 
        # values should be between 0, 1, 2 will be masked 
        grid_model_rmse[g] = [(2, '')] 
        box = boxes[i*4:i*4+4] 

        # print(box) 
 
        if not valid_box(box): 
            invalid.append((g, 'bbox')) 

            continue 
 
        log.error('%d %d %s', i, len(grid), box) 
 
        log.debug('OK %s', box) 
 
        _rmse_one_location( 
            models, grid, i, g, box, cru, 
            lai, green_m, timestamps, 
            grid_model_rmse, invalid) 

 
    return grid_model_rmse, invalid 
 
 

def aic_criterion(models_to_make, datasets): 
    # load hdf5 measurement data. 
    lai = datasets['lai'] 
    for p, ds_label in models_to_make.items(): 
        p_label = f'pred_{p}' 
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        predicted_lai = datasets[p_label] 

        R = np.square(lai - predicted_lai).sum() 
        # print(R) 
        m = len(ds_label)  # len variables 
        n = len(lai)       # measurements 

        A = n * math.log((2*math.pi)/n) + n + 2 + n * math.log(R) + 2 * m 
        print('%s %.4f' % (p, A)) 
 
 
def tmp_gdd(lcru): 
    """ 
    temperature below 5. 
    """ 
    tmp = np.copy(lcru[:, CRU_IDX.index('tmp')]) 
    tmp[tmp < 5] = 0 

    return tmp 
 
 
def tmp_one(lcru): 

    tmp = np.copy(lcru[:, CRU_IDX.index('tmp')]) 
    tmpone = np.roll(tmp, 1) 
    return tmpone 
 
 

def pet_one(lcru): 
    tmp = np.copy(lcru[:, CRU_IDX.index('pet')]) 
    tmpone = np.roll(tmp, 1) 
    return tmpone 
 

 
def vap_one(lcru): 
    tmp = np.copy(lcru[:, CRU_IDX.index('vap')]) 
    tmpone = np.roll(tmp, 1) 
    return tmpone 

 
 
def pre_one(lcru): 
    pre = np.copy(lcru[:, CRU_IDX.index('pre')]) 

    preone = np.roll(pre, 1) 
    return preone 
 
 
def find_green_location_mask(green): 
    g = green 
    m = np.logical_and(g > 0, g < 5) 
    return m 
 
 

def make_box_grid(grid): 
    """ 
    For each point find 4 neighboring points to calculate ~exact area to 
    take green points from. 

    """ 
    # for grid item find 4 neigbouring points in middle. 
    p4grid = [] 
 
    for (lon, lat) in grid: 
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        pr = (lon + 0.15, lat) 

        pl = (lon - 0.15, lat) 
        pu = (lon, lat + 0.20) 
        pd = (lon, lat - 0.20) 
        p4grid.extend([pl, pr, pd, pu]) 

        # log.debug(f'{lon}:{lat}: {pr}{pl}{pu}{pd}') 
 
    return p4grid 
 
 
def make_basemap(extent): 
    # create map using BASEMAP 
    m = Basemap( 
        llcrnrlon=extent[0], llcrnrlat=extent[3], 
        urcrnrlon=extent[1], urcrnrlat=extent[2], 

        # lat_0=(lat_max - lat_min) / 2, 
        # lon_0=(lon_max - lon_min) / 2, 
        projection='cyl', 
        # projection='cyl', 

        resolution='h', 
        # area_thresh=10000., 
    ) 
 
    m.drawcoastlines(linewidth=0.5) 

    m.drawcountries(linewidth=0.5) 
    parallels = np.arange(49., 79., .5) 
    # labels = [left,right,top,bottom] 
    m.drawparallels(parallels, labels=[False, True, True, False]) 
    meridians = np.arange(0., 49., .5) 

    m.drawmeridians(meridians, labels=[False, True, True, False]) 
 
    plt.tight_layout() 
 
    return m 

 
 
def plot_errors(m, invalid): 
    """Plot data errors on map 

    """ 
 
    for (lon, lat), reason in invalid: 
        if reason == 'bbox': 
            m.scatter(lon, lat, c='yellow', latlon=True, marker='x') 
        elif reason == 'nogreen': 
            m.scatter(lon, lat, c='green', latlon=True, marker='8') 
        elif reason == 'nolai': 
            m.scatter(lon, lat, c='blue', latlon=True, marker='v') 
        elif reason == 'normse': 

            m.scatter(lon, lat, c='red', latlon=True, marker='>') 
        else: 
            raise ValueError('unknown reason') 
 

 
def _plot_and_save(m, cmap, data_g, title): 
    """Plot world map and save output to a location 
    """ 
    data_g = data_g.ReadAsArray() 
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    d = np.flipud(data_g) 

    m.imshow(d, vmin=1, vmax=5, cmap=cmap) 
    plt.title(title) 
    manager = plt.get_current_fig_manager() 
    manager.resize(*manager.window.maxsize()) 

    fig1 = plt.gcf() 
    plt.show() 
    d = datetime.now() 
    date = f'{d.year}-{d.month}-{d.day}' 
    imgtarget = os.path.join('imgs', conf['groupname'], f'{date}-{title}.png') 
    fig1.savefig(imgtarget) 
 
 
def plot_models(models, extent, lons, lats, data_g, invalid, title): 
 

    m = make_basemap(extent) 
 
    model_keys = list(MODEL_OPTIONS.keys()) 
    model_keys.sort() 

 
    data = [] 
 
    for mdl in models: 
        if mdl in model_keys: 

            data.append(model_keys.index(mdl)) 
        else: 
            data.append(-1) 
 
    models_data = np.array(data) 

    mdata = models_data.reshape(len(lons), len(lats)) 
 
    cmap = plt.get_cmap('RdBu', 4) 
    cmap.set_under('0.8') 
    cmap.set_bad('0.8') 

    cmap.set_over('0.8') 
 
    norm = mpl.colors.Normalize(vmin=0, vmax=np.max(mdata), clip=True) 
 

    valid = np.ma.masked_where(mdata == -1, mdata) 
 
    im = m.pcolormesh( 
        # make sure suqares are over the crosses 
        lons - 0.25, lats - 0.25, valid, vmin=-.5, vmax=len(model_keys)-.5, 
        norm=norm, 
        # edgecolors='None', 
        latlon=True, cmap=cmap, alpha=0.6) 
 
    cbar = m.colorbar(im) 

    cbar.ax.set_ylabel(" ".join(model_keys)) 
 
    plot_errors(m, invalid) 
 

    _plot_and_save(m, cmap, data_g, title) 
 
 
def plot_scores(scores, extent, lons, lats, data_g, invalid, title): 
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    m = make_basemap(extent) 

 
    mscores = np.ma.masked_where(scores > 1, scores) 
 
    im = m.pcolormesh( 

        # make sure suqares are over the crosses 
        lons - 0.25, lats - 0.25, mscores, vmin=0, vmax=1, 
        latlon=True, cmap='RdBu_r', alpha=0.4) 
 
    m.colorbar(im) 
 
    cmap = plt.cm.Greens 
    cmap.set_under('0.8') 
    cmap.set_bad('0.8') 
    cmap.set_over('0.8') 

 
    plot_errors(m, invalid) 
 
    scores[scores > 1] = 0 

    mean_rmse = scores.mean() 
 
    _plot_and_save(m, cmap, data_g, f'{title} - mean {mean_rmse}') 
 
 

def plot_model_map( 
        green, grid_model_rmse, invalid, title='rmse', version=None): 
 
    x_size = 1200 
    y_size = 1200 

 
    if version: 
        geotransform, projection, bbox =  \ 
            create_lai_cube.extract_lai_meta_v006() 
        x_size = 2400 

        y_size = 2400 
    else: 
        geotransform, projection, bbox = create_lai_cube.extract_lai_meta() 
 

    grid = grid_model_rmse.keys() 
    grid_model_rmse.values() 
 
    data_g = modis_map.reproject_dataset( 
        green, geotransform=geotransform, x_size=x_size, y_size=y_size) 
 
    geo, pro = read_modis.get_meta_geo_info(data_g) 
 
    lons = [] 
    lats = [] 

 
    for x, y in grid: 
        lons.append(x) 
        lats.append(y) 

 
    lons, lats = np.meshgrid(lons, lats) 
    scores = [] 
    models = [] 
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    for x, y in zip(lons.flatten(), lats.flatten()): 

        rmse_model_list = grid_model_rmse[tuple((x, y))] 
        # order by score 
        rmse_model_list.sort() 
        # lowest rmse 

        scores.append(rmse_model_list[0][0]) 
        # extract the bet model 
        models.append(rmse_model_list[0][1]) 
 
    scores = np.array(scores) 
    scores = scores.reshape(len(lons), len(lats)) 
 
    extent = [ 
        geo[0], geo[0] + data_g.RasterXSize*geo[1], 
        geo[3], geo[3] + data_g.RasterYSize*geo[5]] 

 
    # plot_scores(scores, extent, lons, lats, data_g, invalid, "rmse scores") 
    plot_models(models, extent, lons, lats, data_g, invalid, "models") 
 

 
def grid_to_pixels(grid): 
 
    geotransform, projection, bbox = create_lai_cube.extract_lai_meta() 
 

    valid_px = extract_CRU.find_xy_cru_grid( 
        geotransform, projection, 1200, 1200, grid) 
 
    return valid_px 
 

 
def plot_layer(x, lai, green, grid): 
    """ 
    Plot layer fromm lai cube with 2 projections 
    each with lon, lat grid of cru data 

    """ 
    onelayer = lai[x, :, :] 
 
    geotransform, projection, bbox = create_lai_cube.extract_lai_meta() 

 
    data = modis_map.reproject_dataset( 
        onelayer, geotransform=geotransform, x_size=1200, y_size=1200) 
 
    data_g = modis_map.reproject_dataset( 
        green, geotransform=geotransform, x_size=1200, y_size=1200) 
 
    geo, pro = read_modis.get_meta_geo_info(data) 
 
    points4326 = [read_modis.coord2pixel(geo, lon, lat) for lon, lat in grid] 

 
    boxgrid = make_box_grid(grid) 
 
    # valid = [] 

 
    # for i in range(len(grid)): 
    #     x, y = points4326[i] 
    #     if 0 > x  or x > data.RasterXSize: 
    #         continue 
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    #     if 0 > y or y > data.RasterYSize: 

    #         continue 
    #     valid.append(grid[i]) 
 
    valid_px = extract_CRU.find_xy_cru_grid( 

        geotransform, projection, 1200, 1200, grid) 
 
    box_px = extract_CRU.find_xy_cru_grid( 
        geotransform, projection, 1200, 1200, boxgrid) 
 
    # no projection raw data 
    plot_lai(onelayer, green, valid_px, title='one layer of cube') 
 
    points4326px = extract_CRU.cru_filter( 
        points4326, data.RasterXSize, data.RasterYSize) 

 
    extent = [ 
        geo[0], geo[0] + data.RasterXSize*geo[1], 
        geo[3], geo[3] + data.RasterYSize*geo[5]] 

 
    # create map using BASEMAP 
    m = Basemap( 
        llcrnrlon=extent[0], llcrnrlat=extent[3], 
        urcrnrlon=extent[1], urcrnrlat=extent[2], 

        # lat_0=(lat_max - lat_min) / 2, 
        # lon_0=(lon_max - lon_min) / 2, 
        projection='cyl', 
        # projection='cyl', 
        resolution='h', 

        # area_thresh=10000., 
    ) 
 
    cmap = plt.cm.gist_rainbow 
    cmap.set_under('0.8') 

    cmap.set_bad('0.8') 
    cmap.set_over('0.8') 
 
    d = data.ReadAsArray() 

    data_g = data_g.ReadAsArray() 
    control = np.copy(d) 
    d = np.flipud(d) 
    m.imshow(d, vmin=0, vmax=40, cmap=cmap) 
 
    m.drawcoastlines(linewidth=0.5) 
    m.drawcountries(linewidth=0.5) 
    parallels = np.arange(49., 79., .5) 
    # labels = [left,right,top,bottom] 
    m.drawparallels(parallels, labels=[False, True, True, False]) 

    meridians = np.arange(0., 49., .5) 
    m.drawmeridians(meridians, labels=[False, True, True, False]) 
 
    plt.tight_layout() 

    plt.show() 
 
    plot_lai(control, data_g, points4326px) 
 
    return box_px, boxgrid 
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def _plot_rmse_each_model( 
        model_options, cru, lai, green, timestamps, grid, box_px): 
 

    for k, v in model_options.items(): 
        title = k 
        model_option = {k: v} 
        locations_model_rmse, invalid = calculate_models_for_grid( 
            model_option, cru, lai, green, timestamps, grid, box_px) 
 
        # print(len(locations_model_rmse)) 
        plot_model_map(green, locations_model_rmse, invalid, title=title) 
 
 

MODEL_OPTIONS = { 
    'p4': ['pre', 'pet', 'vap', 'tmp'], 
    # 'p3_tmp-vap-pet': ['tmp', 'vap', 'pet'], 
    # 'p2_vap_pre': ['vap', 'pre'], 

    # 'p3_vap_pre_tmp_one': ['vap', 'pre', tmp_one], 
    # 'p2_vap_pet': ['vap', 'pet',], 
    # 'p2_pet_pre': ['pet', 'pre',], 
    # 'p2_tv': ['tmp', 'vap'], 
    # 'p3_pre_pre_pet': [pre_one, 'pre', 'pet'], 

    # 'gdd2': [tmp_gdd, pre_one], 
    # 'tmp_pet_vap_tmp5': ['vap', 'tmp', 'pet', pet_one, tmp_one, tmp_gdd], 
    # 'p6': ['tmp', 'pre', 'vap', 'pet', pre_one], 
    # 'gdd_tmp': [tmp_gdd, 'tmp'], 
    # 'gdd_tmp_vap': [tmp_gdd, 'tmp', 'vap'], 

    # 'tmp': ['tmp'], 
    # 'vap': ['vap'], 
    # 'pre': ['pre'], 
    # 'pet': ['pet'], 
} 

 
 
def main_world(plotlocation=False): 
    """ 

    """ 
    model_options = MODEL_OPTIONS 
    import h5util 
 
    # h5util.print_paths() 
    grid = h5util.load_dataset('grid') 
    green = h5util.load_dataset('green') 
    lai = h5util.load_dataset('lai/smooth_month') 
    # lai = h5util.load_dataset('lai/month') 
    cru = h5util.load_dataset('cru') 

    timestamps = [ 
        datetime.fromtimestamp(t) for t in h5util.load_dataset('months')] 
 
    geotransform, projection, bbox = create_lai_cube.extract_lai_meta_v006() 

 
    if OPTIONS['debug']: 
        box_px, box_lon_lat = plot_layer(20, lai, green, grid) 
 
    boxgrid = make_box_grid(grid) 
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    box_px = [] 

 
    # plot graph of single location 
    if plotlocation: 
        make_local_plot( 

            grid, 
            lai, cru, timestamps, 
            geotransform, projection) 
        return 
 
    # plot_layer(20, lai, green, grid) 
    # return 
    for lon, lat in boxgrid: 
        x, y = read_modis.determine_xy(geotransform, projection, lon, lat) 
        box_px.append((int(x), int(y))) 

 
    for i, (x, y) in enumerate(list(box_px)): 
        if 0 > x or x > 1199: 
            box_px[i] = None 

            continue 
        if 0 > y or y > 1199: 
            box_px[i] = None 
            continue 
 

    assert len(grid)*4 == len(boxgrid), f'{len(grid)} {len(boxgrid)}' 
 
    # make sure grid and boxgrid match 
    for g, b in zip(grid, boxgrid[::4]): 
        log.debug('%s %s', g, b) 

 
    # aic_criterion(model_options, datasets) 
    #  _plot_rmse_each_model( 
    #   model_options, cru, lai, green, timestamps, grid, box_px) 
 

    # return 
 
    locations_model_rmse, invalid = calculate_models_for_grid( 
        model_options, cru, lai, green, timestamps, grid, box_px) 

 
    # print(len(locations_model_rmse)) 
    plot_model_map( 
        green, locations_model_rmse, invalid, 
        title='lowest rmse', version='006') 
 
 
def main(debug=False, plotlocation=False): 
 
    if debug: 

        OPTIONS['debug'] = True 
 
    model_options = MODEL_OPTIONS 
    import h5util 

 
    # h5util.print_paths() 
    grid = h5util.load_dataset('grid') 
    green = h5util.load_dataset('green') 
    lai = h5util.load_dataset('lai/smooth_month') 
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    # lai = h5util.load_dataset('lai/month') 

    cru = h5util.load_dataset('cru') 
    timestamps = [ 
        datetime.fromtimestamp(t) for t in h5util.load_dataset('months')] 
 

    geotransform, projection, bbox = create_lai_cube.extract_lai_meta() 
 
    if OPTIONS['debug']: 
        box_px, box_lon_lat = plot_layer(20, lai, green, grid) 
 
    boxgrid = make_box_grid(grid) 
    box_px = [] 
 
    # plot graph of single location 
    if plotlocation: 

        make_local_plot( 
            grid, 
            lai, cru, timestamps, 
            geotransform, projection) 

        return 
 
    # plot_layer(20, lai, green, grid) 
    # return 
    for lon, lat in boxgrid: 

        x, y = read_modis.determine_xy(geotransform, projection, lon, lat) 
        box_px.append((int(x), int(y))) 
 
    for i, (x, y) in enumerate(list(box_px)): 
        if 0 > x or x > 1199: 

            box_px[i] = None 
            continue 
        if 0 > y or y > 1199: 
            box_px[i] = None 
            continue 

 
    assert len(grid)*4 == len(boxgrid), f'{len(grid)} {len(boxgrid)}' 
 
    # make sure grid and boxgrid match 

    for g, b in zip(grid, boxgrid[::4]): 
        log.debug('%s %s', g, b) 
 
    # aic_criterion(model_options, datasets) 
    #  _plot_rmse_each_model( 
    #   model_options, cru, lai, green, timestamps, grid, box_px) 
 
    # return 
 
    locations_model_rmse, invalid = calculate_models_for_grid( 

        model_options, cru, lai, green, timestamps, grid, box_px) 
 
    # print(len(locations_model_rmse)) 
    plot_model_map(green, locations_model_rmse, invalid, title='lowest rmse') 

 
 
if __name__ == '__main__': 
    desc = "Create GREEN matrix cubes of LAI" 
    inputparser = argparse.ArgumentParser(desc) 
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    inputparser.add_argument( 
        '--debug', 
        action='store_true', 
        default=False, 

        help="Print raw hdf landuse data from direcotory") 
 
    inputparser.add_argument( 
        '--plotlocation', 
        action='store_true', 
        default=False, 
        help="Make predictor plots of locations definded in settings") 
 
    args = inputparser.parse_args() 
    main(debug=args.debug, plotlocation=args.plotlocation) 
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Appendix E: Global maps of the mean LAI of the plant functional type per grid 

cell
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Appendix F: Global maps of the maximum LAI of the plant functional type per 

grid cell 
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Appendix G: Global maps of the minimum LAI of the plant functional type per 

grid cell
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Appendix H: Global maps of the standard deviation of LAI of the plant function 

type per grid cell 
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Appendix I: Time series of climatic variables in ANPI formula for five locations 
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Appendix J: Time series of climatic variables in Jolly formula for five locations 

  

  
 
 

 

 

 

  



74 
 

Appendix K: Time series of climatic variables in S Formula for five locations 

  

  

 
 

 

 

 


