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1 Introduction

Normally in game theory we assume that a player wants to maximize its own payoff. In 2012,
Dyson and Press wrote an article [2] about the prisoner’s dilemma, where they didn’t look at
the maximum payoff of the player, but at the payoff of the co-player. The article looks at the
iterated prisoner’s dilemma with memory-one strategies, and shows that there are strategies
such that you can enforce a constraint for the payoff of the co-player, regardless of which strat-
egy the co-player is using.

In a one-shot prisoner’s dilemma there is a dominant strategy, but that strategy is not Pareto
optimal. If we look at the iterated prisoner’s dilemma, it is possible to get a Nash equilibrium.
Assume that both players start with cooperating. If one of them will defect, then the other
will also defect, to get a higher payoff. But mutual defection gives a smaller payoff for both
players than mutual cooperation. In this game, it’s quite remarkable that one player can enforce
something.

We will first give some basic notations. After that we get a Lemma that is the foundation
for this article. Then we differentiate between people who are nice to each other and people
who are cautious, where we get a space of strategies. With those strategies we can enforce a
certain payoff or a constraint for the payoff of the co-player. With zero-determinant strategies
we can even be more specific; we can enforce a linear relationship between the two payoffs. This
thesis is based on an article from Hilbe, Traulsen and Sigmund [1].

2 Memory-one strategy

We first have to introduce some notations and definitions, beginning with just looking at the
one-shot prisoner’s dilemma. When we look at the payoff matrix we see that the two players

C D

C R,R S,T

D T,S P,P

can choose between cooperation and defection. If they both choose
to cooperate, they’ll both get a payoff of R. If they both choose to
defect, they’ll both get a payoff of P . If the first player chooses to
cooperate and the second player chooses to defect, then the first
player will receive a payoff of S and the second player a payoff of
T . Here we assume that T > R > P > S, such that defection is
the dominant strategy.

If the prisoner’s dilemma is played more than once, and the players remember previous
outcomes and change their strategy based on that, the game is called an iterated prisoner’s
dilemma. If 2R < T + S, then it’s best for the players to alternate between cooperation and
defection in order to get the highest payoff (CD,DC,CD,DC, . . .). We’re just looking at a
memory-one strategy, which means that the players will just remember the previous outcome
of the game. If the previous outcome is DD, then both players won’t know who didn’t play C,
since they only remember DD. In this article, we will therefore assume that 2R > T + S, such
that we won’t have this issue.

We want to define the players’ expected payoffs in round t, with the help of some vectors.
First we say that va(t) is the probability that a ∈ {CC,CD,DC,DD} is the outcome in round
t, and we use the vector notation v(t) = (vCC(t), vCD(t), vDC(t), vDD(t)). We also define the
vectors gI and gII as the possible payoffs for player I and player II, so

gI = (R,S, T, P )

gII = (R, T, S, P ) (1)

2



With these notations we can now define the players’ expected payoffs in round t, since
that is equal to the probability on a certain outcome times the payoff for that outcome, so
πI(t) = gI · v(t) and πII(t) = gII · v(t). We use a discount factor δ, which is the probability
that the game will continue. We differentiate between δ < 1 and δ = 1, since you might play a
different strategy if you’re sure that the game will continue, than when you’re not sure that it
will continue.

With this factor, the (normalized) expected payoffs can be defined as

πI = (1− δ)
∞∑
t=0

δtπI(t) = gI · v, (2)

and similarly πII = gII · v, where v = (vCC , vCD, vDC , vDD) refers to the mean distribution

v = (1− δ)
∞∑
t=0

δtv(t). (3)

In the case when δ = 1, the payoff is given by

πI = lim
τ→∞

1

τ + 1

∞∑
t=0

πI(t) (4)

(if this limit exists), and a similarly for πII.

We want to define a vector equal to the probability that the player will play C or D in the
next round. Since we look at memory-one strategies, we only need to consider the outcome of
the previous round in this probability vector. For example, we assume that player I applies a
Tit-For-Tat strategy. Due to the definition of the TFT strategy, we know that player I will
cooperate in the first round. After that, he will play what the co-player did in the previous
round. So if the co-player played C in the previous round, the player will play C in this round,
and vice versa. Now let p0 be the probability that player I cooperates in the first round, which
for TFT is equal to p0 being 1. For the other rounds, we define pa as the probability that
player I will cooperate in the next round, where a ∈ {CC,CD,DC,DD} is the outcome of the
previous round. Here the first letter in the subscript refers to the player’s own action in the
previous round, and the second letter to the co-player’s action in the previous round.

• If the outcome of the previous round is CC, then both players cooperated. Since player
I plays what player II did in the previous round, player I will play C in the next round.
So the probability that player I will cooperate in the next round is 1.

• If the outcome of the previous round is CD, then player I cooperated, but player II didn’t.
Since player I plays what player II did in the previous round, player I will play D in the
next round. So the probability that player I will cooperate in the next round is 0.

• If the outcome of the previous round is DC, then player I didn’t cooperate, but player II
did. Since player I plays what player II did in the previous round, player I will play C in
the next round. So the probability that player I will cooperate in the next round is 1.

• If the outcome of the previous round is DD, then both players defected. Since player I
plays what player II did in the previous round, player I will play D in the next round. So
the probability that player I will cooperate in the next round is 0.

We see that we can write the TFT strategy as a vector p = (pCC , pCD, pDC , pDD; p0) =
(1, 0, 1, 0; 1). In general we let pa, with a ∈ {CC,CD,DC,DD}, be the probability that the
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player will cooperate in the next round, when a was the outcome of the previous round. Since
at t = 0 we don’t have a previous round, we define p0 as the probability to cooperate in the first
round. We can write this as p = (pCC , pCD, pDC , pDD; p0). Again the first letter in the subscript
refers to the player’s own action in the previous round, and the second letter to the co-player’s
action in the previous round. We define this vector without the p0 as p̃ := (pCC , pCD, pDC , pDD).

Using the previous definitions, we can find a formula to determine the resulting mean distri-
bution v, which we will use later on. Assume that player I uses the memory-one strategy p =
(pCC , pCD, pDC , pDD; p0) and player II uses the memory-one strategy q = (qCC , qCD, qDC , qDD; q0).
We get

v = (1− δ)v(0) · (I4 − δM)−1. (5)

Here is v(0) the probability that player I and player II will play C or D in the first round,
which is equal to v(0) = (p0q0, p0(1− q0), (1− p0)q0, (1− p0)(1− q0)). I4 is, as normal, the 4× 4
identity matrix, and M is the transition matrix of the Markov chain given by

M =


pCCqCC pCC(1− qCC) (1− pCC)qCC (1− pCC)(1− qCC)
pCDqDC pCD(1− qDC) (1− pCD)qDC (1− pCD)(1− qDC)
pDCqCD pDC(1− qCD) (1− pDC)qCD (1− pDC)(1− qCD)
pDDqDD pDD(1− qDD) (1− pDD)qDD (1− pDD)(1− qDD)

 (6)

Until now we’ve only introduced a few notations. We defined (5) such that it only yields
when both players apply a memory-one strategy. In the next Lemma, we will show that there
is still a strong connection between p and v when just one of the players applies a memory-one
strategy. This Lemma is the foundation for this article.

Lemma 1 ([1], Lemma 1). Suppose player I applies a memory-one strategy p, and let the
strategy of player II be arbitrary, but fixed.

(i) In the case with discounting (δ < 1), let v denote the mean distribution of the repeated
game. Then

(δpCC − 1)vCC + (δpCD − 1)vCD + δpDCvDC + δpDDvDD = −(1− δ)p0, (7)

or in vector notation, (δp̃− g0) · v = −(1− δ)p0, where g0 = (1, 1, 0, 0).

(ii) In the case without discounting, we have

lim
τ→∞

1

τ + 1

τ∑
t=0

(p̃− g0) · v(t) = 0. (8)

The proof of this Lemma is shown in Appendix A. We’ve introduced a vector g0 = (1, 1, 0, 0),
which we use for the proof. It is important to notice that this Lemma is really general. It doesn’t
matter what the strategy of player II is, and it doesn’t depend on the constraints of the prisoner’s
dilemma.

In (5) we saw that v depends on p and q, but Lemma 1 only depends on p. It’s quite
exceptional that it doesn’t matter what the strategy of player II is. It doesn’t even have to be
a memory-one strategy. Because of this, there are some consequences, which will be shown in
Section 4.
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Fig. 1. Here we see a schematic representation of partner strategies and competitive strategies. The grey area
are the potential payoffs for player I and player II, where player I plays the strategy that is mentioned. The
white dot is the payoff that the players will get when they use the same strategy.

3 Nice and cautious strategies

As said in the introduction, we will differentiate between people who are nice and people who
are cautious. First we define a partner strategy and a competitive strategy, which we’ll use to
get a space of strategies with certain constraints for the payoff of the co-player.

Definition 1 ([1], Def. 2). A player’s strategy is nice, if the player is never the first to defect,
so for a memory-one strategy p0 = pCC = 1. A player’s strategy is cautious if the player is
never the first to cooperate, so for a memory-one strategy p0 = pDD = 0.

In Section 2 we have shown that vector notation for the strategy TFT is (1, 0, 1, 0; 1), which
is nice, according to the above definition. Another example is the strategy AllD, which means
that the player will always play D, so the vector notation is (0, 0, 0, 0; 0). This is a cautious
strategy, according to the definition. We’ll now introduce a Lemma which will help us to give
some constraints for the payoff of the co-player.

Lemma 2 ([1], Lemma 2). If 2R > T + S, then the payoffs satisfy πI + πII ≥ 2R if and only if
πI = πII = R (which for δ < 1 is equivalent to both players being nice). Similarly, if 2P < T+S,
then πI + πII ≤ 2P if and only if πI = πII = P (which for δ < 1 is equivalent to both players
being cautious).

Proof. From (2) we see that πI + πII = (gI + gII) · v = (2R, T + S, T + S, 2P ) · v. Now
πI+πII ≥ 2R > T+S implies that πI and πII must both be R, so vCC = 1. For δ < 1, this means
that both players should cooperate in every round. For δ = 1, it only requires the players to
cooperate in almost every round. Similarly, for a prisoner’s dilemma with πI+πII ≤ 2P < T+S,
it implies that πI and πII must both be P , so vDD = 1.

Definition 2 ([1], Def. 3).

(i) A partner strategy for player I is a nice strategy such that, irrespective of the co-player’s
strategy,

πI < R⇒ πII < R. (9)

(ii) A competitive strategy for player I is a strategy such that, irrespective of the co-player’s
strategy,

πI ≥ πII. (10)

If the two strategy classes exist, then we see a schematic representation of the potential
payoffs for player I and player II in Fig. 1. We’re not sure that every outcome is reached, if a
partner strategy or competitive strategy is played.
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For the partner strategy we see that when the payoff of player I is smaller than R, the payoff
of player II also has to be smaller than R. The grey area is therefore bounded by R as the payoff
of player II. When both players apply a partner strategy, they will both never be the first to
defect, since a partner strategy is a nice strategy. Therefore the payoff of both players will in
that case be R, which is shown by the white dot. For player II the best response to player I,
who applies a partner strategy, is to also cooperate to get the highest payoff.

For the competitive strategy we see that the payoff of player I will always be greater or
equal to the payoff of player II. We can see that player I has to play a cautious strategy,
otherwise, if player II plays D, it’s possible that player I receives a payoff S and player II re-
ceives T , which means that the payoff of player I is not greater or equal to the payoff of player II.

By the definition of a partner strategy, the best reply to a player applying a partner strategy
is to also apply a partner strategy. We see that condition (9) is equivalent to (πI ≥ R)⇒ (πII ≥
R), and due to Lemma 2 we get πII ≥ R implies πI = πII = R. This means that a player with
a partner strategy will always get the payoff R, if the co-player applies a strategy that results
in the best outcome for the co-player.

4 Space of strategies

We have defined a partner and a competitive strategy, but only in the general case. If the
strategy classes exist, we want to find the strategies p for which the constraints from Def. 2
yield. Therefore we will derive two propositions, with the help of Lemma 1.

Proposition 1 ([1], Prop. 1). For a player I with a nice memory-one strategy p, the following
are equivalent:

(i) p is a partner strategy;

(ii) If the co-player uses either AllD or the strategy (0, 1, 1, 1; 0), then πII < R;

(iii) The two inequalities B1 < 0 and B2 < 0 hold, with

B1 = δ(T −R)pDD − δ(R− P )(1− pCD) + (1− δ)(T −R)

B2 = δ(T −R)pDC − δ(R− S)(1− pCD) + (1− δ)(T −R). (11)

For example, we can compute the constraints of δ to let TFT (1, 0, 1, 0; 1) and WSLS
(1, 0, 0, 1; 1) be partner strategies. We begin with B1 < 0 for a player with a TFT strategy.

B1 < 0

δ(T −R)pDD − δ(R− P )(1− pCD) + (1− δ)(T −R) < 0

δ(T −R) · 0− δ(R− P )(1− 0) + (1− δ)(T −R) < 0

δP − δR+ T −R− δT + δR < 0

δ(T − P ) > T −R

δ >
T −R
T − P

We compute the other constraints in a similar way. This implies that TFT is a partner strategy
if and only if δ > T−R

T−P and δ > T−R
R−S , whereas WSLS is a partner strategy if and only if δ > T−R

R−P
and δ > T−R

T−S .
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Fig. 2. Here we see the space of partner strategies and competitive strategies. The grey block is the set of
strategies such that you are playing the strategy that is mentioned. We set δ = 2

3
, and T = 5, R = 3, P = 1, S = 0.

Proposition 2 ([1], Prop. 2). Suppose player I applies the memory-one strategy p. Then the
following are equivalent:

(i) p is a competitive strategy;

(ii) If the co-player uses either AllD or the strategy (0, 0, 0, 1; 0), then πI ≥ πII;

(iii) The entries of p satisfy p0 = pDD = 0 and δ(pCD + pDC) ≤ 1.

The proof of Proposition 1 is shown in Appendix B, and the proof of Proposition 2 is shown
in Appendix C.

With the help of these propositions, we see that the strategy classes exist. The space of
partner strategies and competitive strategies is shown in Fig. 2. We see that the grey block is
bounded by the constraints given in Proposition 1 for partner strategies and the constraints given
in Proposition 2 for competitive strategies. So this figure shows the strategies you can apply
such that (9) yields for the partner strategies, and (10) yields for the competitive strategies.
With these strategies you can enforce the payoff of your co-player.

5 ZD strategies

We have now found some strategies for which you can enforce the payoff of your co-player. In
this paragraph we will be even more specific; we can enforce a linear relationship between the
payoffs from player I and player II. First we define what a zero-determinant strategy is.

Definition 3 ([1], Def. 4). A memory-one strategy p is said to be a ZD strategy if there exist
constants α, β, γ such that

δp̃ = αgI + βgII + (γ − (1− δ)p0) 1 + g0. (12)

With this definition we can get a linear relationship between the payoffs of both players.

Proposition 3 ([1], Prop. 5). Let δ < 1, and suppose player I applies a memory-one strategy
p satisfying Eq. (12). Then, irrespective of the strategy of the co-player,

απI + βπII + γ = 0. (13)

The same relation holds for δ = 1, provided that the payoffs πI and πII exist.

The proof of Proposition 3 is shown in Appendix D. It’s not really clear yet that there
is a linear relationship between both payoffs. That’s why we will introduce new parameters:
α = φχ, β = −φ, and γ = φκ(1− χ). This can be put in (12), and we get

δp̃ = φχgI − φgII + (φκ(1− χ)− (1− δ)p0) 1 + g0

δp̃ = φ [(1− χ)(κ1− gI) + (gI − gII)]− (1− δ)p01 + g0 (14)
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Fig. 3. Schematic payoffs according to (15), where the grey area is the set of possible payoffs. Here the strategy
of player I is fixed, and the strategy of player II is the mean of 1000 random memory-one strategies. The white
dots are the expected payoffs for player I and player II, if player I plays the strategy that is mentioned.
From (15) we see that the payoffs when a ZD-strategy is played, lie on a line where the slope is equal to χ and
where they intersect at κ. For equalizer strategies we assume that χ = 0, which means that the payoff of player
II is equal to κ, independent of his strategy. For extortion strategies we assume that κ = P and 0 < χ < 1, and
for generous strategies we assume that κ = R and 0 < χ < 1. We set δ = 4

5
, and T = 5, R = 3, P = 1, S = 0.

We can now rewrite (13) as

φχπI − φπII + φκ(1− χ) = 0

χ(πI − κ)− πII + κ = 0

πII − κ = χ(πI − κ) (15)

The schematic representation of (15) is shown in Fig. 3. We also define a few other strategies
beside a ZD-strategy, where we have restrictions for κ and χ.

Players cannot always enforce the co-players payoff with (15). The equation depends on p̃,
so κ, χ and φ need to have some restrictions. Therefore we have the following definition.

Definition 4 ([1], Def. 5). For a given δ, we call a payoff relationship (κ, χ) ∈ R2 enforceable
if there are χ ∈ R and p0 ∈ [0, 1] such that each entry of the continuation vector p̃ according to
(14) is in [0, 1]. We refer to the set of all enforceable payoff relationships as Eδ.

With this definition we get the following proposition.

Proposition 4 ([1], Prop. 6).

(i) The set of enforceable payoff relationships is monotonically increasing in the discount
factor: if δ′ ≤ δ′′, then Eδ′ ⊆ Eδ′′.

(ii) There is a δ < 1 such that (κ, χ) ∈ Eδ if and only if −1 < χ < 1 and

max

{
P,
S − Tχ
1− χ

}
≤ κ ≤ min

{
R,

T − Sχ
1− χ

}
, (16)

with at least one inequality (16) in being strict.

The proof of Proposition 4 is shown in Appendix E. Due to Definition 4 and the first part
of Proposition 4 we see that (15) is easier to enforce when δ is small, so when the players are
patient. In the second part of Proposition 4, we found restrictions for κ. With those restrictions
we can make a graph with all enforceable pairs (κ, χ). This is shown in Fig 4. We can also see
for which restrictions for κ and χ the strategies from Fig. 3 yield.
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Fig. 4. Here the grey area represents all pairs (κ, χ) that are enforceable according to Proposition 4, when δ is
close enough to one. In this figure we see the strategies introduced in Fig. 3, with the restrictions for κ and χ.
A new strategy here is the fair strategy, where χ = 1, such that πII − κ = πI − κ. This strategy only exist when
δ = 1. Again we set T = 5, R = 3, P = 1, S = 0.

6 Conclusion

In Section 2 we began with some basic notations, working from the one-shot prisoner’s dilemma
to the iterated prisoner’s dilemma. We derived a few vector notations, and with those we got
to Lemma 1.

In Section 3 we differentiated between nice and cautious people, and defined a partner and a
competitive strategy. A schematic representation of the potential payoffs for player I and player
II was shown in Fig. 1. We used two propositions in Section 4 to prove that those strategy
classes exist. With the propositions we’ve shown the space of partner strategies and competitive
strategies. From Fig. 2 we see that, for a certain space of strategies, we can enforce that either
πI < R⇒ πII < R or πI ≥ πII yields.

In Section 5 we first defined zero-determinant strategies. After that, we introduced a few
parameters, in order to get to (15). From that equation we see that there is a linear relationship
between πI and πII, shown in Fig. 3. With the restrictions in Proposition 4, we made a graph
with all enforceable pairs (κ, χ), shown in Fig. 4. It is important to note that we didn’t make
any assumptions on the payoff values, so these results can also be used for other strategic games.

In conclusion we discovered how much control player I has over the outcome of the game
and thus the payoffs of player I and player II, regardless of the strategy of player II.
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A Proof of Lemma 1

Proof. We begin with the first part of the Lemma. Suppose δ < 1, and let qI(t) be the
probability that player I cooperates in round t. Then qI(t) = (vCC(t), vCD(t), 0, 0) = g0 · v(t)
and qI(t + 1) = (pCCvCC(t), pCDvCD(t), pDCvDC(t), pDDvDD(t)) = p̃ · v(t). It follows that
w(t) := δqI(t+ 1)− qI(t) is given by

w(t) = δqI(t+ 1)− qI(t)
= δ (p̃ · v(t))− g0 · v(t)

= (δp̃− g0) · v(t). (17)

Multiplying each w(t) by (1− δ)δt and summing up over t = 0, . . . , τ yields

(1− δ)
τ∑
t=0

δtw(t) = (1− δ)
(
δqI(1)− qI(0) + δ2qI(2)− δqI(1) · · ·+ δτ+1qI(τ + 1)− δτqI(τ)

)
= (1− δ)δτ+1qI(τ + 1)− (1− δ)qI(0). (18)

When τ →∞, we see that the first part of the equation goes to 0, since δτ+1 → 0. The second
part of the equation goes to p0, since qI(0) is the probability that player I cooperates in round
0, which is p0. So

(1− δ)
τ∑
t=0

δtw(t)→ −(1− δ)p0. (19)

On the other hand, due to equation (3) and (9),

(1− δ)
τ∑
t=0

δtw(t) = (1− δ)
τ∑
t=0

δt(δp̃− g0) · v(t)→ (δp̃− g0) · v (20)

As both limits need to coincide, we have confirmed equation (7).

For the case without discounting, we have an analogous calculation as in equation (10).

1

τ + 1

τ∑
t=0

w(t) =
1

τ + 1

τ∑
t=0

(qI(t+ 1)− qI(t))→ 0. (21)

This holds since 1
τ+1 → 0 when τ →∞. Equation (12) becomes

1

τ + 1

τ∑
t=0

w(t) =
1

τ + 1

τ∑
t=0

(p̃− g0) · v(t). (22)

It follows that the limit of 1
τ+1

∑τ
t=0(p̃− g0) · v(t) for τ →∞ exists and equals zero.
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B Proof of Proposition 1

Proof.

(i)⇒ (ii) Assume to the contrary that πII ≥ R. Then the definition of partner strategies
implies that πI = πII = R. Since all players use memory-one strategies, this would
require that everyone cooperates after mutual cooperation, which is neither true for
AllD = (0, 0, 0, 0; 0) nor for the strategy (0, 1, 1, 1; 0).

(ii)⇒ (iii) Against a player using a nice memory-one strategy p (with p0 = pCC = 1), the
payoff of an AllD co-player is given by

πII = gII · v
= RvCC + TvCD + SvDC + PvDD (23)

We know that the co-player is playing an AllD-strategy (0, 0, 0, 0; 0), so the co-
player will never cooperate, thus vCC = vDC = 0. In order to establish the payoff
of the co-player, we have to determine vCD and vDD. We will do this by using (5).

v = (1− δ)v(0) · (I4 − δM)−1

= (0, 1− δ, 0, 0) ·


1 δpCC 0 δ(1− pCC)
0 1− δpCD 0 δ(1− pCD)
0 δpDC 1 δ(1− pDC)
0 δpDD 0 1− δ(1− pDD)


−1

If we calculate the inverse-matrix, we get

vCD = (1− δ) · − −δ(−pDD + 1) + 1

(1− δ)(δpCD − δpDD − 1)

vDD = (1− δ) · δ(−pCD + 1)

(1− δ)(δpCD − δpDD − 1)

We put this in (23) and we get

πII = TvCD + PvDD

= T · −(1− δ)(−δ(−pDD + 1) + 1)

(1− δ)(δpCD − δpDD − 1)
+ P · (1− δ)(δ(−pCD + 1))

(1− δ)(δpCD − δpDD − 1)

=
−T + δT − δTpDD + δP − δPpCD

δpCD − δpDD − 1

=
−(1− δ)T − δTpDD + δP − δPpCD

δpCD − δpDD − 1

=
(1− δ)T + δTpDD + δP − δPpCD

1 + δ(pDD − pCD)
(24)

Now pCD < 1, otherwise player I would always cooperate. In that case, the co-
player would get payoff T > R, which is not possible by (ii). This means that πII is
also defined when δ = 1.
We see that

B1 = δ(T −R)pDD − δ(R− P )(1− pCD) + (1− δ)(T −R)

= (1− δ)T + δTpDD + δP − δPpCD −R (1 + δ(pDD − pCD))

= (1 + δ(pDD − pCD))(πII −R) (25)
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In particular, B1 has the same sign as πII − R. Due to (ii), both will be smaller
than zero.
On the other hand, if the co-player uses the strategy (0, 1, 1, 1; 0), we can determine
the payoff in the same way as above. We get

πII =
(1− δ)T + δS + δ ((1− δ)R− S) pCD + δ(T + δR)pDC

1 + δ2(pDC − pCD) + δpDC
(26)

and

B2 =
(
1 + δ2(pDC − pCD) + δpDC

)
(πII −R). (27)

Here B2 has also the same sign as πII −R.

(iii)⇒ (i) Assume that B1 < 0 and B2 < 0, and that πII ≥ R. In order to proof that p is a
partner strategy, we need to show that πI = πII = R. Due to (23), we note that
πII ≥ R is equivalent to

(T −R)vCD − (R− S)vDC − (R− P )vDD ≥ 0. (28)

Using the linear equation 1 · v = vCC + vCD + vDC + vDD = 1 and (i) of Lemma 1
with p0 = pCC = 1, we get

(δ − 1)vCC + (δpCD − 1)vCD + δpDCvDC + δpDDvDD = −(1− δ)
(δ − 1)vCC + (δpCD − 1)vCD + δpDCvDC + δpDDvDD = (δ − 1) · 1
(δ − 1)vCC + (δpCD − 1)vCD + δpDCvDC + δpDDvDD

= (δ − 1)(vCC + vCD + vDC + vDD)

(δ − 1)vCD − (1− δpCD)vCD = δpDCvDC + δpDDvDD − (δ − 1)(vDC + vDD)

(1− pCD)δvCD = (1− (1− pDC)δ) vDC + (1− (1− pDD)δ) vDD

vCD =
(1− (1− pDC)δ) vDC + (1− (1− pDD)δ) vDD

(1− pCD)δ
(29)

We know that B1 < 0, so pCD < 1 which implies that the denominator of vCD is
positive. Plugging (29) into (28) gives us

0 ≤ (T −R) · (1− (1− pDC)δ) vDC + (1− (1− pDD)δ) vDD
(1− pCD)δ

− (R− S)vDC − (R− P )vDD

≤ (T −R) ((1− (1− pDC)δ) vDC + (1− (1− pDD)δ) vDD)

− (R− S)(1− pCD)δvDC − (R− P )(1− pCD)δvDD

≤ ((T −R)(1− (1− pDC)δ)− (R− S)(1− pCD)δ) vDC

+ ((T −R)(1− (1− pDD)δ)− (R− P )(1− pCD)δ) vDD

≤ (T −R− δT + δR+ δTpDC − δRpDC − δR+ δS + δRpCD − δSpCD) vDC

+ (T −R− δT + δR+ δTpDD − δRpDD − δR+ δP + δRpCD − δPpCD) vDD

≤ (δ(T −R)pDC − δ(R− S)(1− pCD) + (1− δ)(T −R)) vDC

+ (δ(T −R)pDD − δ(R− P )(1− pCD) + (1− δ)(T −R)) vDD

This shows, due to (11) that πII ≥ R if and only if

B2vDC +B1vDD ≥ 0 (30)

Thus the assumptions B1 < 0 and B2 < 0 show that vDC = vDD = 0, and by that
vCD = 0. We can conclude that vCC = 1, so πI = πII = R and p is a partner
strategy.

12



C Proof of Proposition 2

Proof.

(i)⇒ (ii) Since p is competitive, we know that πI ≥ πII against any co-player.

(ii)⇒ (iii) If player πII applies AllD, then the payoffs are given by

πI − πII = (gI − gII) · v
= (S − T )vCD + (T − S)vDC (31)

We know that the co-player is playing an AllD-strategy (0, 0, 0, 0; 0), so the co-
player will never cooperate, thus vCC = vDC = 0. In order to determine πI − πII,
we have to calculate vCD. We will do this by using (5).

v = (1− δ)v(0) · (I4 − δM)−1

= (0, (1− δ)p0, 0, (1− δ)(1− p0)) ·


1 δpCC 0 δ(1− pCC)
0 1− δpCD 0 δ(1− pCD)
0 δpDC 1 δ(1− pDC)
0 δpDD 0 1− δ(1− pDD)


−1

If we calculate the inverse-matrix, we get

vCD = (1− δ)p0 · −
−δ(−pDD + 1) + 1

(1− δ)(δpCD − δpDD − 1)

+ (1− δ)(1− p0) ·
δpDD

(1− δ)(δpCD − δpDD − 1)

=
p0(δpDD − δ + 1)

1 + δ(pDD − pCD)
− δpDD(1− p0)

1 + δ(pDD − pCD)

=
−δp0 + δpDD + p0
1 + δ(pDD − pCD)

We put this in (31) and get

πI − πII = (T − S)vCD

= (S − T ) · −δp0 + δpDD + p0
1 + δ(pDD − pCD)

= −(T − S) ((1− δ)p0 + δpDD)

1 + δ(pDD − pCD)
(32)

We see that πI ≥ πII implies p0 = pDD = 0.

On the other hand, if the co-player uses the strategy (0, 0, 0, 1; 0), we can determine
the payoff in the same way as above. We get

πI − πII =
δ (T − S) (1− δ(pCD + pDC))

1 + δ (1− (1 + δ)pCD + δpDC)
(33)

From this we see that πI − πII ≥ 0 if and only if δ (T − S) (1− δ(pCD + pDC)) ≥ 0,
which is equivalent to δ(pCD + pDC) ≤ 1.

13



(iii)⇒ (i) Assume that pDD = p0 = 0 and δ(pCD + pDC) ≤ 1. Using (i) of Lemma 1, we get

(δpCC − 1)vCC + (δpCD − 1)vCD + δpDCvDC = 0

δpDCvDC = (1− δpCC)vCC + (1− δpCD)vCD

(1− δpCD)vDC ≥ (1− δpCC)vCC + (1− δpCD)vCD

(1− δpCD)(vDC − vCD) ≥ (1− δpCC)vCC

vDC − vCD ≥
(1− δpCC)vCC

1− δpCD

vDC ≥ vCD +
(1− δpCC)vCC

1− δpCD
≥ vCD (34)

Since vDC ≥ vCD, πI − πII = (T − S)(vDC − vCD) ≥ 0. So p is a competitive
strategy.

D Proof of Proposition 3

Proof. Using Def. 3 and Lemma 1, with the identities πI = gI · v, πII = gII · v, and 1 = 1 · v,
we get

δp̃ = αgI + βgII + (γ − (1− δ)p0) 1 + g0

δp̃− g0 = αgI + βgII + (γ − (1− δ)p0) 1

(δp̃− g0) · v = α(gI · v) + β(gII · v) + (γ − (1− δ)p0) 1 · v
−(1− δ)p0 = απI + βπII + γ − (1− δ)p0

απI + βπII + γ = 0.

E Proof of Proposition 4

Proof.

(i) According to Def. 4, (κ, χ) ∈ Eδ if and only if there are χ ∈ R and p0 ∈ [0, 1] such that
0 ≤ δp̃ ≤ δ1, which is equal to 0 ≤ φ [(1− χ)(κ1− gI) + (gI − gII)]−(1−δ)p01+g0 ≤ δ1.
We will differentiate between the possible outcomes of the game.

0 ≤ φ [(1− χ)(κ−R) + 0]− (1− δ)p0 + 1 ≤ δ
−(1− (1− δ)p0) ≤ φ(1− χ)(κ−R) ≤ −((1− δ)(1− p0))

(1− δ)(1− p0) ≤ φ(1− χ)(R− κ) ≤ 1− (1− δ)p0 (35a)

0 ≤ φ [(1− χ)(κ− S) + S − T ]− (1− δ)p0 + 1 ≤ δ
−(1− (1− δ)p0) ≤ φ [(1− χ)(κ− S) + S − T ] ≤ −((1− δ)(1− p0))

(1− δ)(1− p0) ≤ φ [(1− χ)(S − κ) + T − S] ≤ 1− (1− δ)p0 (35b)

0 ≤ φ [(1− χ)(κ− T ) + T − S]− (1− δ)p0 ≤ δ
(1− δ)p0 ≤ φ [(1− χ)(κ− T ) + T − S] ≤ δ + (1− δ)p0 (35c)

0 ≤ φ [(1− χ)(κ− P ) + 0]− (1− δ)p0 ≤ δ
(1− δ)p0 ≤ φ(1− χ)(κ− P ) ≤ δ + (1− δ)p0 (35d)
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From these equations we see that the left hand side is monotonically decreasing in δ,
whereas the right hand side is monotonically increasing in δ. This means that if the
conditions (35a) – (35d) are satisfied for some δ′ ≤ 1, then they are also satisfied for any
δ′′ ≥ δ′.

(ii) (⇒) Suppose (κ, χ) ∈ Eδ, then the conditions (35a) – (35d) hold for φ ∈ R and p0 ∈ [0, 1].
We sum up the first inequality of (35a) with the first inequality of (35d), which gives

(1− δ)(1− p0) + (1− δ)p0 ≤ φ(1− χ)(R− κ) + φ(1− χ)(κ− P )

1− δ ≤ φ(1− χ)(R− P ) (36)

If we do the same for the first inequality of (35b) with the first inequality of (35c),
we get

(1− δ)(1− p0) + (1− δ)p0 ≤ φ [(1− χ)(S − κ) + T − S] + φ [(1− χ)(κ− T ) + T − S]

(1− δ) ≤ φ [S − χS + χT − T + 2T − 2S]

(1− δ) ≤ φ [T − S + χT − χS]

(1− δ) ≤ φ(1 + χ)(T − S) (37)

In particular, 0 < φ(1 + χ) and 0 < φ(1− χ), and therefore φ > 0 and −1 < χ < 1.
Applying this to the conditions (35a) – (35d), we get

0 ≤ φ(1− χ)(κ−R)

0 ≤ φ [(1− χ)(S − κ) + T − S]

0 ≤ φ [(1− χ)(κ− T ) + T − S]

0 ≤ φ(1− χ)(κ− P ) (38)

with φ > 0 and χ < 1. This gives us respectively κ ≤ R, κ ≤ T−Sχ
1−χ , κ ≥ S−Tχ

1−χ
and κ ≥ P , which are exactly the restrictions in (16). If none of the restrictions was
strict, then (35a) and (35b) would require p0 = 1, whereas (35c) and (35d) would
require p0 = 0.

(⇐) Assume that −1 < χ < 1 and max
{
P, S−Tχ1−χ

}
≤ κ < min

{
R, T−Sχ1−χ

}
. Then we

know that the inequalities in (38) hold for φ > 0, with the first two inequalities being
strict. We need to show that the inequalities in (35a) – (35d) are satisfied. Therefore
we choose φ sufficiently small such that each term on the right hand side of (38) is
bounded by 1

2 . If we then set p0 = 0 and choose δ close to one, we see that the
inequalities in (35a) – (35d) are satisfied. Similarly, if we set p0 = 1, we get the same

for κ = min
{
R, T−Sχ1−χ

}
.

15



References

[1] C. Hilbe, A. Traulsen, K. Sigmund, 2015. Partners or rivals? Strategies for the iterated
prisoner’s dilemma, Games and Economic Behavior 92, 41-52.

[2] W.H. Press, F.J. Dyson, 2012. Iterated Prisoner’s Dilemma contains strategies that dominate
any evolutionary opponent, PNAS 109, 10419-10413.

[3] Technology Review, 2012. The Emerging Revolution in Game Theory.

16


	Introduction
	Memory-one strategy
	Nice and cautious strategies
	Space of strategies
	ZD strategies
	Conclusion
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

