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Abstract

Quantum one-loop corrections to various propagators on a de-Sitter background have been extensively
studied by Woodard, Park, Prokopec and collaborators . In the current master thesis, we investigate
the one-loop corrections to the graviton propagator due to the presence of massive non-minimally
coupled scalar fields. Our background geometry is the open conformal coordinate patch of de-Sitter
spacetime. We define the graviton to be a small fluctuation around the de-Sitter background while
the massive non-minimally coupled scalar propagator is the so-called Chernikov-Tagirov propagator.
Two Feynman diagrams contribute to the self-energy of the graviton. The quartic contribution,
which corresponds to local contribution, has already been renormalized by R. Koelewijn (”Gravitons
on de Sitter modified by quantum fluctuations of a nonminimally coupled massive scalar. MS thesis.
2017.” [1]). We focus our attention to the cubic contribution (non-local) which is proportial to the TT
correlator computed by R.Koelewijn. Our aim is to reorganize the expression for the TT correlator
in such a way that it will allow us to renormalize it, using dimensional regularization scheme. In
particular, we localize the divergences that appear onto local δ-function terms, and subtract them by
using the local counterterms R2 and C2 introduced in the 80’s by G. t’Hooft and M.Veltman. Since
our final goal is to quantum correct the linearized Einstein’s equations, the final form of the graviton
self energy should contain only terms which are integrable in D = 4 dimensions and finite.

1





Contents

1 Quantum Field Theory In Curved Space Time 8
1.1 Quantum Field theory In Minkowski spacetime . . . . . . . . . . . . . . . . . . . . . 8
1.2 Quantum Field Theory In a General Curved backround . . . . . . . . . . . . . . . . . 10

1.2.1 The Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Bogoliubov Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Non-minimally coupled massive scalar field on a Friedmann-Lemaitre-Robertson-Walker
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Friedmann-Lemaitre-Robertson-Walker Metric . . . . . . . . . . . . . . . . . . 14
1.3.2 Case: de-Sitter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Chernikov-Tagirov Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Cosmological Particle Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Classical Theory Of Inflation 22
2.1 Big Bang Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Cosmic Inflation to the rescue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Two Puzzles are ”begging” for solution . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Scalar Inflationary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Single Field Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Tree Level Inflationary Quantum Fluctuations 31
3.1 Linear cosmological perturbation theory in a nutshell . . . . . . . . . . . . . . . . . . 31

3.1.1 Scalar-Vector-Tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Fluctuations non uniquely defined-Choice of gauge . . . . . . . . . . . . . . . 32
3.1.3 Metric and Matter Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Comoving Curvature Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Primordial Scalar Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 The calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Primordial Tensor Power Spectrum- A rigorous derivation . . . . . . . . . . . . . . . 40

2



4 Loop corrections to primordial power spectra 45
4.1 ε-suppression patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Secular growth effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Graviton self-energy 1 loop corrections due to Massive non minimally coupled
scalar fields 53
5.1 Graviton self energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Graviton self energy ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Renormalization of the quartic contribution . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Towards the renormalization of cubic vertex . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Chernikov-Tagirov propagator: A closer look . . . . . . . . . . . . . . . . . . . 58
5.3.2 TT-correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.3 Spin zero structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.4 y-independent coefficients for the D

2
powers . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions and Future work 70

A Massive scalar propagator in dS contains no divergences at D=4 limit 73

B Tracing the TT-correlator 75

C Z(y) coefficients in (5.49) 77

D Z(y) decomposition 82

E Extracting D’Alembertians 86

3



Introduction

During the last 3 decades, cosmology undergoes a scientific revolution. It has entered a new era,
the so-called ”Precision Cosmology” era [2][3] in which ground and space based experiments provide
us with a huge amount of data. Under those circumstances, cosmological models are ruled out by
observations, while others are favoured. This situation has led cosmology to progress rapidly, trans-
forming the field from a ”speculative” into a ”hard” science.

Primordial inflation, a short period in the cosmic history during which the Universe expanded expo-
nentially, is an example of a theory whose parameters are highly constrained by observations [4][5].
Inflation was introduced during the 90’s by Guth, Starobinski and Linde [6][7][8] in order to solve
some of the Big Bang puzzles. The importance of the specific model is related to the fact that,
nowadays, we believe that the large structure we observe in the Universe (stars, galaxies, clusters of
galaxies etc) have their origin in the physics of early Universe. In particular, the evolution of the
quantum fluctuations produced during inflation, create density fluctuations as well as fluctuations in
the metric in the period of decoupling, roughly 380.000 years after the Big Bang, which we observe
today as temperature anisotropies in the Cosmic Microwave Background map (CMB).
This situation, i.e the direct contact of these quantum effects with the observations, motivates cos-

mologists to extensively study the quantum phenomena during inflation. Moreover, it is known that
inflation produces a vast ensemble of particles. This idea can be traced back to the first half of the
twentieth centure, where Erwin Schrodinger suggested that the expansion of the Universe can spon-
taneously create particles out of the vacuum [9]. Parker and Grishchuk were the first to show that
for an accelerating expanding Universe, the effect of cosmological particle production is maximized
from massless and non-conformally coupled fields (gravitons and scalars) [10][11][12][13]. We believe
that these particles are the ones that comprise the primordial scalar and tensor fluctuations. The
former has already been observed while for the latter, a discovery is anticipated within the next years.

Gravitons and massless minimally coupled scalars (MMC) produced during inflation, interact with
themselves as well as with other particles that exist this period. Woodard, Park, Prokopec et al, have
extensively studied 1-loop corrections to various propagators on de-Sitter background [14][15][16][17][18]
[19][20][21][22][23][24][25]. Some of their work is
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Figure 1: Taken from https://www.spacetelescope.org/. Large scale structure. In this picture, we
can see roughly 10000 galaxies of different ages and distances from us (redshift). We believe that the
initial conditions which seeded the formation of stars, galaxies and all the structure we observe today,
have their origin in the very early Universe. In particular, inflation stretched the primordial quantum
fluctuations which at later times induced density fluctuations. The latter, grew via gravitational
instability into this beautiful structure depicted above.

• Interactions between gravitons and MMC scalar fields [14][15]

• MMC scalar quantum electrodynamics [26][27]

• MMC scalar fields with a quartic self interaction [28]

Woodard and Park [14][15] studied the effect of massless minimally coupled (MMC) scalar fields
on the propagation of free gravitons during inflation. In particular, they computed the renormalized
1-loop contribution of MMC scalars to the graviton self-energy Σ

(Ren)
µνρσ (x;x′) and used the result in

order to quantum correct the linearized Einstein’s equation using the so-called Schwinger-Keldysh
formalism [29]. Based on this computation, Woodard, Park, Leonard and Prokopec [21] showed that
the presence of MMC scalar fields during the period of primordial inflation do not affect the propa-
gation of gravitons at 1 loop order.

In [16], Woodard, Park and Prokopec , using the renormalized result for the graviton self energy,
computed the quantum corrections to gravitational potentials caused by a static massive particle.
They found the important result that the gravitational potentials exhibit secular effects which grow
with time and can eventually become large at late times. The form of the potentials at late times is
given in [16]
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Notice the ∝ ln (α) terms in the expressions above. To obtain some intuition above this result, we
refer the flat space results [30][31][32]

φflat(x) = −GM
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20πc3
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]
Comparing the expressions for the potentials on de-Sitter with the corresponding flat space results,
we conclude that the terms ∝ GH2 are de-Sitter corrections which, although are suppressed by a
small number ~GH2

πc5
→ 10−10, they depend on ln(α) which grow with time.

The previous work, done by the authors mentioned above, motivates the topic of this thesis. The
idea is to generalize the results for the case of massive non minimally coupled scalar fields (MNMC).
In other words, we are interested in loop corrections to the graviton propagator on a de-Sitter back-
ground, in the presence of MNMC scalars. The aim is to renormalize the graviton self-energy due to
the presence of MNMC scalars, using dimensional regularization scheme [33] and by using Schwinger-
Keldysh [29] formalism to solve the quantum corrected linearized Einstein’s equation

√
−ḡDµνρσhρσ(x)−

∫
d4x′Σµνρσ

Ren (x;x′)hρσ(x′) = T µνlin(x)

where Dµνρσ is the so-called Lichnerowicz operator on de-Sitter and hµν(x) is the graviton field. The
graviton is defined as a small fluctuation around a de-Sitter background while the form of the Lich-
nerowicz operator can be obtained by expanding the Einstein-Hilbert action up to first order in the
fluctuations hµν . Solving the linearized Einstein equation, in terms of perturbation theory, will allow
us to study whether MNMC scalar fields during the period of inflation induce a significant effect on
gravitons at late times.

This thesis is organised in the following way. In chapter 1, we introduce some basic knowledge
of quantum field theory in curved spacetime. In chapter 2, the classical theory of inflation will be
briefly introduced. In particular, we will see how the Big Bang puzzles are solved by introducing a
period of accelerating exponential expansion. In chapter 3, quantum fluctuations produced during
inflation will be studied. More specifically, after briefly introducing some features of linear cosmo-
logical perturbation theory, the computation of primordial scalar and tensor power spectra will be
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sketched. In chapter 4, we study the effect of loop corrections to the tree level results. In particular,
we quantify how large these corrections are compared to the tree level results and discuss the possi-
bility of secular growth effects to occur (section 4.2). In chapter 5, we tackle the main issue of this
thesis. Renormalization of the graviton self energy due to presence of massive non minimally coupled
scalar fields during inflation. In chapter 6, we discuss our results and adress the future work which
should be done. Finally, we include a rich bibliography which intends to help the reader map the
field of study. Some appendices are also included in order to provide the reader with some relevant
calculations performed.
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Chapter 1

Quantum Field Theory In Curved Space
Time

In this chapter we follow closely [34] [35] [36]

1.1 Quantum Field theory In Minkowski spacetime

We consider a classical, real scalar field in Minkowski backround. For future convenience, we will try
to keep the analysis as general as possible and work in D spacetime dimensions. The action of the
massive scalar field is given by

Sφ =

∫
dDx

[
−1

2
ηµν∂µφ∂νφ−

1

2
m2φ2

]
(1.1)

where ηµν is the usual Minkowski metric diag[+1,−1,−1,−1] and m is the mass of the scalar field
φ. The equation of motion for the dynamical field φ can be obtained by extremizing the action (1.1)
, i.e

δSφ = 0⇒
(
2−m2

)
φ = 0 (1.2)

where 2 ≡ ηµν∂µ∂ν . This is the famous Klein-Gordon equation for a scalar field propagating in a
flat Minkowski backround.

Equation (1.2) admits plane waves solutions, i.e

uk(t,x) = Aeikx−ıωt (1.3)

where A is a normalization constant which will be specified soon, x and k are D − 1 dimensional
vectors and the frequency ω satisfies the dispersion relation

ω =
√
k2 +m2 (1.4)
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where k ≡ |k|.

Minkowski spacetime contains a huge amount of symmetry. The line element ds2 = ηµνdx
µdxν

is invariant under the action of Poincare group. The symmetries of the metric tensor are called
Isometries. Since the coefficients of Minkowski metric ηµν do not depend on time t, the vector
K = ∂t generates temporal translations and satisfies the Killing equation. Therefore, K = ∂t is a
Killing vector.

As a result, in Minkowski spacetime, it is possible to define positive and negative frequency modes
with respect to t in a universal fashion, namely positive and negative frequency modes for all inertial
observers. These modes uk(t,x) and u∗k(t,x) are eigenfunctions of Killing vector K = ∂t , i.e

∂tuk(t,x) = −ıωuk(t,x) (1.5)

∂tu
∗
k(t,x) = +ıωu∗k(t,x) (1.6)

where in both equations ω > 0.

Remark: The argument above does not hold for a general curved spacetime with metric gµν .
As we will see shortly, in curved spacetimes there is not such a Killing vector which generates time
translations in a universal way. This subtelty will be analyzed in detail in a subsequent section.

The inner product of two different solutions φ1,φ2 of (1.2) is defined as :

(φ1, φ2) = −ı
∫

Σt

dD−1x (φ1∂tφ
∗
2 − φ∗2∂tφ1) (1.7)

where Σt is a hypersurface of constant time t. The set of modes uk(t,x) are orthormal and by

choosing A = [2ω(2π)D−1]−
1
2 , they satisfy

(uk, uk′) = δD−1(k − k′) (1.8)

We now proceed with the quantization of the field φ(t,x). We will use the canonical quantization
approach. The field φ(t,x) and its conjugate momentum π(t,x) are promoted to operators, φ̂(t,x)
and π̂(t,x) satisfying the equal time commutation relations

[φ̂(t,x), π̂(t,x′)] = ıδD−1(x− x′) (1.9)

[φ̂(t,x), φ̂(t,x′)] = 0 (1.10)

[π̂(t,x), π̂(t,x′)] = 0 (1.11)

The field φ(t,x) can be expanded in terms of the complete set of mode functions uk(t,x) and u∗k(t,x).

φ̂(t,x) =
∑
k

(
âkuk(t,x) + â†ku

∗
k(t,x)

)
(1.12)
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where âk and â†k′ are the creation and annihilation operators satisfying following commutation rela-
tions

[âk, â
†
k′ ] = δkk′ (1.13)

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 (1.14)

The next natural step is to define the vacuum state |0〉. The vacuum is the state that is annihilated
when we act with the operators âk, i.e

âk|0〉 = 0 (1.15)

for all the values of k.

Acting once with the creation operator â†k on the vacuum, we get the state |1k〉. This is a one-
particle state characterized by the quantum number k. More generally, by acting on the vacuum
with â†ki , where ki for ı = 1, 2, ...n denotes different momenta, we obtain the so-called multiparticle
states which are eigenstates of the number operator

N̂ =
∑
i

n̂ki =
∑
i

â†ki âki (1.16)

Those multiparticle states, denoted as |ni〉 , construct the Fock basis of the theory.

1.2 Quantum Field Theory In a General Curved backround

In the scope of this thesis, we will be interested in 1-loop quantum corrections to the graviton
propagator during inflation. As already mentioned, the loop diagrams will contain massive scalar
fields which couple non-minimally to gravity. The aim of this chapter is to briefly introduce the
MNMC scalar field on a general curved backround. In a following section, we will specialize our
results in the de-Sitter case. In anticipation of dimensional regularization, we will keep working in
D-dimensions.

1.2.1 The Action

The action of this theory is given by

Sφ =

∫
dDx
√
−g
[
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2 − 1

2
ξRφ2

]
(1.17)

where m is the mass of the scalar field, R is the Ricci scalar, ∇µ is the covariant derivative and ξ is
a dimensionless parameter.

In the case of ξ = 0, the matter content of the theory is coupled to the gravity sector through
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√
−g. This is called minimally coupling.

For ξ = D−2
4(D−1)

, we have the so called conformal coupling and if m = 0 the theory is invariant
under local Weyl rescalings of the metric tensor.

It is obvious that the non-minimally coupling term in the action contributes to the mass of the
scalar field. Therefore we define the effective mass

m2
eff = m2 + ξR (1.18)

Varying the action (1.17) we obtain the equation of motion for the scalar field φ :(
2−m2

eff

)
φ = 0 (1.19)

where 2 = gµν∇µ∇ν is the covariant D’Alembertian. This is the so-called Klein-Gordon equation.

The scalar product of two solutions φ1, φ2 of the Klein-Gordon equation is defined as

(φ1, φ2) = −ı
∫

Σ

(φ1∇µφ
∗
2 − φ∗2∇µφ1)

√
−gΣn

µdΣ (1.20)

where Σ is a spacelike hypersurface and nµ is a unit normal vector orthogonal to Σ.

1.2.2 Quantization

We procced now to canonically quantize the theory. We promote the field φ(η, x) and the conju-
gate momentum π(η, x) to operators φ̂(η, x) and π̂(η, x) which satisfy the equal-time commutation
relations

[φ̂(η, x), π̂(η, x′)] = ıδD−1(x− x′) (1.21)

[φ̂(η, x), φ̂(η, x′)] = 0 (1.22)

[π̂(η, x), π̂(η, x′)] = 0 (1.23)

Following the same procedure as in the case of Minkowski background, we will expand the field φ̂ in
terms of the modes ui(x). The reason why we can do that, is that these modes are orthonormal in
the product of solutions (φ1, φ2) and form a complete set. Therefore, any solution φ̂ can be expanded
in terms of modes functions , i.e

φ̂(x) =
∑
i

(
âiui(x) + â†iu

∗
i (x)

)
(1.24)
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where âi and â†i are the creation and annihilation operators satisfying the usual commutation relations

[âi, â
†
j] = δij (1.25)

[âi, âj] = [â†i , â
†
j] = 0 (1.26)

We define the vacuum state |0〉 as the state which , when the annihilation operators act upon, give
zero, i.e âi|0〉 = 0 , ∀i. Acting N-times on the vacuum with the creation operators â†i , for different
values of ı, we construct N-particle states which constitute the basis of the Fock space.

In the previous chapter, for Minkowski spacetime, we were able to define a natural set of modes
and expand the field in terms of those modes. Such a decomposition was possible due to the symme-
tries of Minkowski spacetime. The action of Poincare group (translations,rotations and boosts) leaves
the Minkowski line element invariant. In other words, the vector ∂t is a Killing vector in Minkowski
spacetime with eigenvalues ±ıω for positive values of ω. Namely,

∂tui(x) = −ıωui(x) (1.27)

∂tu
∗
i (x) = +ıωu∗i (x) (1.28)

The ui(x) are called positive frequency modes whereas the u∗i (x) negative frequency modes. There-
fore, we were able to define positive modes corresponding to the killing vector. All inertial observes
will agree on the definition of those modes and consequently on the vacuum |0〉 as a zero particle state.

In a general curved spacetime, the above analysis is no longer valid. We know that in curved
spacetime ∂t is not a Killing vector since Poincare group in no longer a symmetry group. Therefore,
the price we pay when we make the transition from flat to curved spacetimes, is that we cannot
define positive and negative frequency modes in a unique fashion. This implies that there is not a
unique mode decomposition of the field φ̂ and thus no unique definition of the vacuum state.

1.2.3 Bogoliubov Coefficients

In order to make the above arguments more clear, we decompose the field φ̂ in terms of the complete
set of mode functions υj(x) , i.e

φ̂(x) =
∑
j

[
b̂jυj(x) + b̂†jυ

∗
j (x)

]
(1.29)

In terms of this decomposition, the vacuum is defined as the state in which the action of b̂j will give

zero, i.e b̂j|0̄〉 = 0 for every value of j. Since both sets of mode functions are complete, we can relate
each other, namely we can express the new mode functions υj(x) in terms of ui(x) and vice versa.
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After a short computation, it can be shown that the creation and annihilation operators âi , b̂j , â†i ,

b̂†j are related according to

âi =
∑
j

[
αjib̂j + β∗jib̂

†
j

]
(1.30)

b̂j =
∑
i

[
α∗jiâi − β∗jiâ

†
i

]
(1.31)

This is the famous Bogoliubov transformation and the coefficients αji and βji are called Bogoliubov
coefficients.

We can thus conclude that the annihilation operators âi are different from b̂j as long as βji 6= 0.
The action of âi on the vacuum |0̄〉 gives

âi|0̄〉 =
∑
j

[
αjib̂j + β∗jib̂

†
j

]
|0̄〉 =

∑
j

β∗jib̂
†
j|0̄〉 =

∑
j

β∗ji|1̄〉 6= 0 (1.32)

On the other hand, by the way we defined |0〉 above, âi|0〉 = 0.

Going a bit further and calculating the number of particles in |0〉, we find that

〈0|b̂†j b̂j|0〉 =
∑
i

|βij|2 6= 0 (1.33)

whereas
〈0|â†i âi|0〉 = 0 (1.34)

Let’s assume that a particular observer (let’s call him Bob) decomposes the field φ̂ in terms of the
mode functions ui(x). This means that Bob, defines the vacuum state |0〉 as the state that gives zero
every time he ”acts” on it with the annihilation operator âi. Another observer (let’s call her Alice)
decomposes the field with respect to the complete set of modes υj(x). Alice, labels the vacuum state,

|0̄〉, and the action of the operator b̂j|0̄〉 gives zero. From Equations (1.33) and (1.34) we conclude
that Bob measures no particles when he takes the expectation values of the number operator with
respect to the vacuum state |0〉 while Alice measures |βij|2 particles.

The upshot of the previous analysis is that, in quantum field theory in curved spacetime, the concept
of particles has not a universal applicability. Different observers who make different field decom-
positions will define different vacua. The underlying reason why in Minkowski spacetime we were
able to define the notion of particle is that the Minkowski vacuum is invariant under the action of
Poincare group. The same holds for the observers in the Minkowski spacetime. They are related to
each other with translations, rotations and boosts. In curved spacetime, the vacuum is not invariant
under the Poincare group, ∂t is not a Killing vector and there is not a universal definition of positive
and negative modes.
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In many cosmological models, we assume that we have an asymptotically flat (Minkowski or confor-
mally Minkowski) spacetime. This means that at t → ±∞ (in and out regions) we can define the
Minkowski vacuum for all intertial observers. In that case, the notion of particle is well defined and
all inertial observers will agree on the particle content of a specific measurement. Later on, when we
discuss about cosmological particle production, we will see that in the asymptotically flat regions (in
and out regions), inertial observers measure different particle content in the vacuum. The solution to
this puzzle will lead to the idea that the expansion of the universe has spontaneously created particles.

1.3 Non-minimally coupled massive scalar field on a Friedmann-

Lemaitre-Robertson-Walker background

Having the machinery of the previous section at our disposal, we are now ready to tackle the case of
a massive scalar field in a curved FLRW background. After briefly introducing the FLRW spacetime,
we will focus on a particular case which will be relevant for the thesis. The de-Sitter space and the
corresponding propagator, i.e the Chernikov-Tagirov propagator.

1.3.1 Friedmann-Lemaitre-Robertson-Walker Metric

Current observations show that on large scales, roughly 100Mpc, the Universe is spatially homo-
geneous and isotropic. These observational information drive us to describe the universe on large
scales as a manifold M = R×Σ where Σ is a 3-dimensional maximally symmetric manifold equipped
with a metric gij and R represents the temporal direction. Maximally symmetric spaces contain the
maximum number of Killing vectors. In D dimensions, the number of Killing vectors is 1

2
D(D + 1).

Therefore, taking into account homogeneity and Isotropy of Σ, it can be shown that the most general
invariant line element of this geometry can be put in the form

ds2 = −dt2 + α2(t)δijdx
idxj (1.35)

where t is the physical time and α(t) is the scale factor. This is the so-called Friedmann-Lemaitre-
Robertson-Walker (FRW) metric.

The evolution of the Universe described by (1.35) is fully determined as soon as a specific expression
for the scale factor is obtained by solving the Einstein equations. The form of this expression is also
related to the matter content of the universe, i.e the stress-energy tensor on the right hand side of
Einstein’s equation.

The next step is to introduce the conformal time η which is given by dη = dt
α(t)

. The invariant
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Future Light Cone 

Past Light Cone 

Event

Causally Disconnected 

               Region

space

η

Figure 1.1: Causal structure of FLRW geometry in terms of conformal time η. Light travel at 45o on
the so called null geodesics. The set of all photon trajectories which pass through the event is called
lightcone. Regions inside the light cone are causally connected to the event whereas points which lie
outside the lightcone are causally disconnected.

line element can be rewritten, in terms of the conformal time, as

ds2 = α2(η)(−dη2 + δijdx
idxj) (1.36)

The advantage of introducing the conformal time is that (1.36) is manifestly conformal to Minkowski
spacetime. This means that the causal structure of FLRW spacetime is determined in terms of
Minkowskian light cones by solving the equation ds2 = 0. Therefore, the null geodesics that light
follows, satisfy

x(η) = ±η + constant (1.37)

The lightcone is given in figure 1.1. In terms of the physical time t, the lightcones in a curved
backround wouldn’t be straight lines. Two extremely important quantities are the Hubble parameter

H(t) ≡ α̇(t)
α

and the first slow roll parameter ε(t) ≡ − Ḣ(t)
H2(t)

. More details on the physical significance
of those two parameters will be given in chapter 2, when we introduce the classical theory of inflation.

Our goal is to solve the equation of motion for the field φ̂. We decompose the field into Fourier
modes, i.e

φ̂(η, x) =
α

2−D
2

(2π)
D−1
2

∫
dD−1k

[
eikxU(k, η)b̂(k) + e−ikxU∗(k, η)b̂†(k)

]
(1.38)

Plugging equation (1.38) in (1.19), we find the equation of motion for the mode function U(k, η).[
d2

dη2
+ k2 +

(
m2 + (ξ − ξc)R

)
α2

]
U(k, η) = 0 (1.39)

This is an equation of motion for an harmonic oscillator with a time-dependent mass. We notice
that in case we have massless conformally coupled fields ,i.e m = 0 and ξ = ξc = D−2

4(D−1)
, the
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problem simplifies tremenderously. It is just an harmonic oscillator equation with constant frequency!
Nevertheless, the problem we have to face in this thesis (loop corrections of graviton propagator due
to the presence of massive non-minimally coupled scalar fields) drive us to consider a non-zero value
for ξ.

1.3.2 Case: de-Sitter Space

Next, we specialize our analysis to de-Sitter spacetime. de-Sitter spacetime is maximally symmetric.
This implies that if we calculate the curvature at one point on the manifold, by making use of the
isometries, it has the same value everywhere. The Ricci scalar in D-dimensions is given by

R = D(D − 1)H2 = const (1.40)

Plugging this into (1.39), we find that[
d2

dη2
+ k2 +M2

η

]
U(k, η) = 0 (1.41)

where

M2
η = α2H2

(
1

4
− ν2

D

)
(1.42)

with νD given by

νD =

√
(D − 1)2

4
−
[
m2

H2
+D(D − 1)ξ

]
(1.43)

The solution to (1.41) is given in terms of the Hankel functions of first and second kind H
(1)
ν and

H
(2)
ν [1][37]

U(k, η) = αk

√
−πη

4
H(1)
ν (−kη) + βk

√
−πη

4
H(2)
ν (−kη) (1.44)

where αk and βk are the Bogoliubov coefficients. Since equation (1.41) is a second order ordinary
differential equation, we need two boundary conditions in order to specify the solution. The first
boundary condition is (1.20). This is satified if and only if

|αk|2 − |βk|2 = 1 (1.45)

The second boundary condition is the so-called vacuum choice. In the asymptotic region, we want
the solution to reduce to the Bunch-Davies vacuum.
Imposing these boundary conditions, we have to choose

αk = 1

βk = 0
(1.46)
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Therefore, the mode functions are given by

U(k, η) =

√
−πη

4
H(1)
ν (−kη) (1.47)

Since the mode functions U(k, η) are specified, the solution φ̂ to equation (1.41) is obtained, i.e

φ̂(η, x) =
α

2−D
2

(2π)
D−1
2

∫
dD−1k

√
−πη

4

[
eikxH(1)

ν (−kη)b̂(k) + e−ikxH∗(1)
ν (−kη)b̂†(k)

]
(1.48)

Using the fact that H
∗(1)
ν (−kη) = H

(2)
ν (−kη), we finally get

φ̂(η, x) =
α

2−D
2

(2π)
D−1
2

∫
dD−1k

√
−πη

4

[
eikxH(1)

ν (−kη)b̂(k) + e−ikxH(2)
ν (−kη)b̂†(k)

]
(1.49)

1.3.3 Chernikov-Tagirov Propagator

Having an expression for φ̂, we are now ready to calculate the propagator of the massive non min-
imally coupled scalar field. The following analysis turns out to be extremely relevant for our work
since the loop corrections to the graviton propagator will contain MNMC scalar fields. Therefore, an
explicit expression for the MNMC scalar field propagator is required.

The two-point function we want to compute is defined as

ı∆(x, x′) = 〈T{φ̂(x)φ̂(x′)}〉 (1.50)

where

T{φ̂(x)φ̂(x′)} = θ(η − η′)φ̂(x)φ̂(x′) + θ(η′ − η)φ̂(x′)φ̂(x) (1.51)

Plugging (1.49) into (1.50), it can be shown [1][35] that the propagator has the form

ı∆(x, x′) =
HD−2

(4π)
D
2

Γ(D−1
2
− νD)Γ(D−1

2
+ νD)

Γ(D
2

)
.2z1

(
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
;
1

2

(
1− y

4

))
(1.52)

where 2z1

(
D−1

2
+ νD,

D−1
2
− νD; D

2
; 1

2
(1− y

4
)

)
is the Gauss hypergeometric function.

At this point it should be stressed that we are assuming positive effective mass, i.e

m2
eff ≡ m2 + ξR > 0 (1.53)
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For this values, the propagator is de-Sitter invariant [38]. We will return back to some issues of the
MNMC scalar field on chapter 5.

1.4 Cosmological Particle Production

In this section, the cosmological particle production in an expanding universe will be discussed. The
aim is to illustrate the basic concepts and implications using a simple toy-model Universe. To prevent
confusion with the bogoliubov coefficient α, notice that in this subsection, the scale factor is denoted
as → a instead of α that is denoted in the other chapters.

We assume an homogeneous and isotropic two dimensional universe described by the metric gij.
For simplicity, we consider one expanding spatial dimension x. The line element is given by

ds2 = gijdx
idxj = dt2 − a2(t)dx2 (1.54)

Introducing the conformal time η, defined by dη = dt
a(t)

the corresponding spacetime will be conformal
to Minkowski, i.e

ds2 = a2(η)(dη2 − dx2) (1.55)

We assume that the scale factor has the form of

a2(η) = c1 + c2 tanh(c3η) (1.56)

where c1, c2 and c3 are constants. For η → +∞ , a2(η)→ c1 +c2 while for η → −∞ , a2(η)→ c1−c2,
i.e the scale factor takes constant values at future and past infinity [figure 1.2]. This implies that the
in and out regions are Minkowski regions. Therefore, since we have an asymptotically flat spacetime,
we expect that inertial observers will agree on the definition of the vacuum state as well as the particle
content of a specific state.

We now assume that the matter fields living in the specific spacetime are minimally coupled, massive
scalar fields. Following exactly the same procedure as before, namely expanding the field in terms of
mode functions uk(η, x) we find that they satisfy the harmonic oscillator differential equation with
time dependent frequency ω2(η) = a2(η)m2 , i.e[

− d2

dx2
+

d2

dη2
+ ω2(η)

]
uk(η, x) = 0 (1.57)

Homogeneity of the spacetime implies that we can split the mode function uk(η, x) into a product of
a spatial and a temporal function.

uk(η, x) = eikxυk(η) (1.58)
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Figure 1.2: Scale factor as a function of the conformal time η. In the far past and future η → ±∞
the scale factor has constant values. In this regions, spacetime is asymptotically Minkowski.

Thus, we have to solve [
d2

dη2
+ k2 + ω2(η)

]
υk(η) = 0 (1.59)

The solution to this equation is known in bibliography [35]. It is given in terms of the Gauss
hypergeometric functions 2z1(a, b; c; z).

uk(η, x)in =(4πωin)−
1
2 exp

(
ikx− ıω+η − ı

ω−
c3

ln[2 cosh(ηc3)]

)
×

×2 z1

(
1 + ı

ω−
c3

, ı
ω−
c3

; 1− ıωin
c3

;
1

2
(1 + tanh c3η)

) (1.60)

uk(η, x)out =(4πωout)
− 1

2 exp

(
ikx− ıω+η − ı

ω−
c3

[2 cosh(ηc3)]

)
×

×2 z1

(
1 + ı

ω−
c3

, ı
ω−
c3

; 1 + ı
ωout
c3

;
1

2
(1− tanh c3η)

) (1.61)

where

ωin =
[
k2 +m2(c1 − c2)

] 1
2 (1.62)

ωout =
[
k2 +m2(c1 + c2)

] 1
2 (1.63)

ω± =
1

2
(ωout ± ωin) (1.64)

We are interested in finding solutions in the asymptotic regions, namely at η → ±∞.

For the in region (η → −∞)

uk(η, x)in → (4πωin)−
1
2 eı(kx−ωinη) (1.65)
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whereas for the out region (η → +∞)

uk(η, x)out → (4πωout)
− 1

2 eı(kx−ωoutη) (1.66)

From (1.65) and (1.66) it is clear that the mode functions in the two asymptotic regions are not the
same (since ωin 6= ωout). But what does this imply?

Any change in the mode functions uk(η, x), that leaves the solution for the field φ(η, x) the same,
induces a change in the definition of creation and annihilation operators and hence a change in the
definition of vacuum state. Therefore, the message of the above result is clear. The bogoliubov
coefficients are different from zero. The explicit expressions for the latter are given by

|αk|2 =
sinh2(πω+

c3
)

sinh(πωin
c3

)sinh(πωout
c3

)
(1.67)

|βk|2 =
sinh2(πω−

c3
)

sinh(πωin
c3

)sinh(πωout
c3

)
(1.68)

It has already been said that in the far past (η → −∞) , the spacetime is described by the Minkowski
metric. Therefore, all the inertial observers will define the vacuum state |0〉 in terms of uk(η, x)in. In
other words, if we prepare the system in the state |in, 0〉 all inertial observers in the spacetime will
agree that the state contains no particle excitations.

In the far future (η → +∞), the inertial observers denote the vacuum state as |out, 0〉 in terms
of the uk(η, x)out modes. But the field in the out region will be still in the |in, 0〉 state (if we as-
sume that the evolution of the quantum field is in the Heisenberg picture). This means that inertial
observers at η → +∞ will register particles in the vaccum |in, 0〉. The upshot of this analysis is
that inertial observers, although should agree on the definition of the physical vacuum, it turns out
that they don’t. The solution to this puzzle is that the expansion of the universe has spontaneously
created k mode excitations (particles) given by (1.68).

In the limit that ω− → 0 (and assuming m 6= 0) it follows that ωin = ωout ⇒ c2 = 0. This
means that the Bogoliubov coefficient |βk|2 vanishes when c2 = 0. Therefore, in a non-expanding
universe (c2 = 0), there is a uniquely defined vacuum state for all inertial observers and no spon-
taneous particle production occurs. We conclude that the rate of expansion of the universe plays
a significant role in cosmological particle creation. In the limit the rate goes to zero, there is an
exponential decline of the particle production. This can be quantified with the parameter c3

ωin
, i.e

|βk|2 → e
−2πωin
c3 → 0 (1.69)

as c3
ωin
→ 0. The smallness of this parameter is related to the magnitude of the frequency ωin. For
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large values of ωin (or equilavently for large mass and/or momenta), the particle production is ex-
ponentially suppressed. Therefore, the expansion of the universe excite insufficiently high mass and
momenta particles. Even though the reader can point out that these conclusions were withrawn
using a simplified toy model (namely a 2-dimensional Universe with an ansatz scale factor a(η) of our
choice), the above features hold in any FLRW metric with a smooth scale factor. During inflation,
a period of rapid expansion of the universe (see chapter 2), low energy and mass excitations are
favoured, too.

The above feature will turn to be extremely relevant in our problem, where we will assume that
the quantum loop corrections to the graviton propagator during inflation is due to the presence of an
enseble of infrared scalars. This will allow us to perform gravitational computations in a perturbative
way despite the fact the theory is not renormalizable and we do not have a fundamental theory of
quantum gravity (effective field theory approach).

Let’s discuss one last remark. In the case we are dealing with massless scalar fields, we see that
ω− = 0. This means again that the Bogoliubov coefficient |βk|2 vanishes. This is something that
we expect since the spacetime is conformal to Minkowski and the massless scalar field is also invari-
ant under conformal transformations. The upshot of this is that spontaneous particle production
occurs when we introduce mass to the scalar fields, i.e when conformal symmetry is broken. This
becomes more clear if we think what does it technically mean ”add mass to the scalar field”. When
we couple the massive scalar field to gravity, in semiclassical approximation (matter fields are quan-
tized whereas gravity is treated classically), there exist vertices that couple gravity (in other words
spacetime expansion) to scalar fields via the mass term. Thus, the time dependent expansion of the
universe transfers energy to the scalar modes.

The lessons taught in this section are the following :

1) Cosmological particle production occurs in a smoothly expanding universe.
2) Low mass and momenta particle production is favoured. In constract, high mass and momentum
excitations are exponentially supressed.
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Chapter 2

Classical Theory Of Inflation

In this chapter we follow closely [34] [39]

2.1 Big Bang Theory

In 1927, Georges Lemaitre proposed that the universe is expanding. This idea, even though physi-
cists nowadays are familiar with, was a rather revolutionary idea for that period. The main idea is
that since the Universe is expanding, if we rewind the situation, in the far past it should have been
emerged from a state with incredibly huge density and temperature. This state of the Universe is
called Big Bang. From current observations of supernovas type IIA as well as the cosmic microwave
backround, we know that this happened approximately 13.7 billion years ago. This idea gained some
reputation in 1929 when the American astronaumer Edwin Hubble, by studing various galaxies and
their relation between distances and redshift, made the observation that all the galaxies are recced-
ing from us. This observation was consistent with the idea of Lemaitre and played a crucial role in
convincing the physicists to adopt it as the main theory for the birth of the Universe.
The Bing Bang model relies on two important assumptions. First of all, it is assumed that the initial
state was homogeneous and isotropic. This is called cosmological principle. It turns out to be a
really crucial property since it allows us to build cosmological models and recreate the history of the
Universe. Secondly, we assume that the laws of physics, and especially Einstein’s theory of general
relativity, are valid.

However, the Bing Bang model couldn’t give explanation to some crucial problems of cosmology:

1) Flatness problem
2) Horizon problem

The theory which comes to the rescue, and gives theoretical explanations to those problems, is
called cosmic inflation.
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2.2 Cosmic Inflation to the rescue

2.2.1 The Basics

In section 1.3.1 , the FRW metric was briefly introduced. The form of the line element (1.35) is
determined by the assumption of spatial isotropy and homogeneity. Moreover, the Hubble parameter
H as well as the first slow roll parameter ε(t) were introduced. In this section, our aim is to find the
equations that determine the evolution of the scale factor α(t). In the next step, we will figure out
how inflation solves the horizon and flatness problems.

In order to determine the dynamics of the scale factor, we first introduce the Einstein’s equations.

Gµν = Tµν (2.1)

where Gµν and Tµν are the Einstein and stress-energy tensors respectively. Note that we set 8πG = 1.
Eistein Tensor can be written in terms of the Ricci tensor Rµν and Ricci scalar R, i.e

Gµν ≡ Rµν −
1

2
gµνR (2.2)

where
Rµν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓ

β
µα (2.3)

and
R = gµνRµν (2.4)

Moreover, Γαβγ are the so-called Christoffel symbols.

As a source of energy and momentum, we assume a perfect fluid. The stress-energy tensor takes
the form

Tµν = (ρ+ p)UµUν + pgµν (2.5)

where ρ and p are energy and momentum densities respectively (assuming that we work at the rest
frame of the fluid) and Uµ is the fluid’s 4-velocity.

Recall that the FRW metric has components gµν =diag[1,−α(t),−α(t),−α(t)].

Having all the ingredients at our disposal, we are now ready to solve the Einstein’s equations and
find the dynamical equations which determine the evolution of the scale parameter α.

The components of the Ricci tensor and the expression for the Ricci scalar for the FRW geome-
try are given by
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Rij =

[
2α̇2 + αα̈ +

2k

α2

]
δij (2.6)

R00 = −3
α̈

α
(2.7)

R = 6

(
α̈

α
+

(
α̇

α

)2

+
k

α2

)
(2.8)

Solving the (00) component of (2.1), i.e G00 = T00, we obtain

H2 ≡
(
α̇

α

)2

=
1

3
ρ− k

α2
(2.9)

This is the so-called 1st Friedmann equation.

Taking the trace of (2.1), the 2nd Friedmann equation is derived, i.e

Ḣ +H2 ≡ α̈

α
= −1

6
(ρ+ 3p) (2.10)

Making use of the equation ∇µT
µν = 0, i.e the covariant conservation of the stress energy tensor, we

get the continuity equation:

ρ̇ = −3H(1 + w)ρ (2.11)

where w is defined as
w =

p

ρ
(2.12)

For constant values of the parameter w, we can solve the continuity equation and obtain

ρ ∝ α−3(1+w) (2.13)

Since we obtained an equation for the energy density ρ, we can substitute it in the 1st Friedmann
equation and find the solutions for the evolution of the scale factor. These solutions will depend on
the value of the parameter w as well as the spatial curvature of the Universe k.

For a flat Universe, i.e k = 0, and w 6= −1

α(t) ∝ t
2

3(1+w) (2.14)
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while for a flat universe with w = −1
α(t) ∝ eHt (2.15)

For a cosmological fluid consisting of non-relativistic and collisionless particles , w = 0. This implies
that ρ ∝ α−3 and the scale factor increases as t2/3. For a universe dominated by radiation, w = 1

3
.

The energy density falls off as ρ ∝ α−4 and the scale factor increases as t1/2. The fact that the
energy density declines faster is due the redshift that photons suffer from. Finally, if we assume a
Universe driven by the cosmological constant Λ, we have that w = −1 and the scale factor is given
by a(t) = eHt.

2.2.2 Two Puzzles are ”begging” for solution

The aim of this subsection is to briefly discuss two problems that arise from the Big Bang theory. The
flatness problem and the horizon problem. The next step is to see how a period of cosmic inflation
in the beginning of the universe actually solves these problems in an elegant and simple way.

Flatness problem

In order to shed some light to the flatness problem, we consider the first Friedmann equation, i.e

H2 =
1

3
ρ(α)− k

α2
(2.16)

Dividing the equation above with H2 we get

1− Ω(a) =
−k

(αH)2
(2.17)

where

Ω(a) ≡ ρ(α)

3H2

In case we assume that the strong energy condition (SEC) is not violated, i.e 1 + 3w > 0 , the
so-called comoving Hubble horizon increases monotonically with time. Namely,

d

dt
(αH)−1 > 0 (2.18)

This implies that 1−Ω(α0) should diverge today. Instead, what we currently observe is Ω(α0) of order
one. In order to explain this observation, one should impose extremely fine tuned initial conditions
for Ω in the begining of the Universe. The fact that we should impose by hand the initial conditions
is not a paradox of the Big Bang theory. However, many physicists feel a bit unconfortable with that.
A slight deviation of the initial conditions would lead to a much different Universe than the one we
live in. Therefore, a mechanism that explains this extreme fine tuning would be highly appreciated.
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Horizon Problem

In order to present this problem, we define an important quantity, the so called comoving particle
horizon. This is related to the Hubble comoving horizon via the relation

τ =

∫ α

0

dα′

α′
1

α′H
(2.19)

where the primes above indicate the integration variables. Assuming a Universe described by a per-
fect fluid, the Hubble radius is given by

(αH)−1 = H−1
0 α

1
2

(1+3w) (2.20)

For w > −1
3
, we clearly see that (αH)−1 increases with time. In other words, if the strong energy

condition is valid, the comoving Hubble horizon is a monotonically increasing function with time.
From (2.19), we can also conclude that the comoving particle horizon increases with time. Extrap-
olating back to the period of decoupling, the particle horizon was much smaller. This implies that
during that period, there should exist comoving scales outside the horizon. The puzzle arises by
taking into consideration the high degree of homogeneity of the cosmic microwave backround.

How is it possible to observe such an homogeneous Universe (up to 10−5 accuracy) taking into
account that there were around 104 causally disconnected regions?

Introducing Inflation

One crucial thing that we need to stress at this point is the behaviour of the comoving Hubble hori-
zon. The fact that is monotonically increasing leads to the horizon and flatness problems. Therefore,
it seems natural to wonder what if there was period in the cosmic history in which the comoving
Hubble horizon was decreasing ? Which would be the implications?

Starting with the flatness problem, the decreasing comoving Hubble radius leads to a flat universe.
This can be concluded by observing the relation (2.17). Clearly, for decreasing values of (αH)−1,
Ω(a)→ 1. This is amazing news. If inflation last for an adequate amount of time, whatever curvature
the universe had in the beginning, it will become negligible at late times. Therefore, the flatness we
observe today need not an extreme fine tuning of the initial conditions.

Let’s see which are the implications for the horizon problem.

By assuming a period of the Universe in which (αH)−1 was decreasing implies that scales which
now enter the horizon, in the early universe, they were inside the horizon. This means that there
were in causal contact in the far past, eliminating all the inhomogeneities that could in principle have
been created.
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Thus, we see that this assumption solves the two puzzles in a really simple and elegant way. The
next step, is to create a model which will quantify the above considerations and lead to predictions
which can be tested. Before that, one last thing which is important to refer at this point are the
conditions which should be satisfied in order to have an inflationary period.

We already have at our disposal the initial condition, i.e (αH)−1 decreasing with for a sufficient
period of time. By using the relation

d

dt
(αH)−1 = − α̈

(αH)2
(2.21)

we conclude that during the period of Inflation, we have accelerating expansion, i.e

α̈ > 0 (2.22)

Another equivalent condition for inflation comes from the second Friedmann equation. Accelerating
expansion implies that

ρ+ 3p < 0 (2.23)

i.e the strong energy condition is violated.

2.2.3 Scalar Inflationary Models

We consider a scalar field φ minimally coupled to gravity. The action of this theory is given by

Sφ =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
(2.24)

Varying the action (2.24) with respect to the field φ we obtain the equation of motion for the scalar
field φ :

2φ+
dV

dφ
= 0 (2.25)

where the box operator in a general curved backround is given by 2 = 1√
−g∂µ(

√
−g∂µ).

The variation of the action with respect to the metric tensor gµν gives the stress-energy tensor,
i.e

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂ρφ∂ρφ− V (φ)

)
(2.26)

In a FLRW backround, the scalar field φ as well as the scale factor α depend only on time t. Therefore,
the equation of motion for the scalar field (2.25) becomes

φ̈+ 3Hφ̇+
dV

dφ
= 0 (2.27)
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Calculating the (00) and (ii) components of Tµν we can find the expressions for the energy and
momentum densities in terms of the field φ and the potential V (φ), i.e

ρ =
1

2
φ̇2 + V (φ) (2.28)

p =
1

2
φ̇2 − V (φ) (2.29)

From the first Friedmann equation (2.9), assuming that k = 0 (reasonable assumption based on
observations) and equation (2.28), we find that the scale factor obeys

H2 =
1

3
ρ =

1

3

(
1

2
φ̇2 + V (φ)

)
(2.30)

2.2.4 Single Field Slow-Roll Inflation

Recall that relation (2.23) is a condition for an accelerating expansion. Combining this with equations
(2.28) and (2.29) we get that accelerated expansion occurs if

φ̇2 < V (φ) (2.31)

We introduce the first slow roll parameter ε,

ε ≡ − Ḣ

H2
=

1

2

φ̇2

H2
(2.32)

Accelerated expansion occurs when the kinetic term φ̇2 is smaller than the energy which drives
inflation H2. Therefore, the first slow roll parameter ε should satisfy

ε < 1 (2.33)

A condition for exponential expansion can be found by writting down the equation of state:

w =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(2.34)

Exponential expansion occurs when w = −1, which implies that

φ̇2 << V (φ) (2.35)

In both cases, the conclusion is that in order to create a model for inflation, we need a potential V (φ)
which dominates upon the kinetic energy of the scalar field. This condition ensures that inflation
will happen at some time t.
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Figure 2.1: [39] The inflaton field φ slowly rolls down the potential. ∆φ denotes the displacement of
the field.

Furthermore, it turns out that one more condition is required if we want inflation to last for a
sufficient amount of time. This condition can be deduced by observing the equation of motion (2.27)
for the scalar field φ. We want the acceleration of the scalar field φ̈ to be much smaller than 3Hφ̇
and dV

dφ
. In that case, no kinetic energy is induced and the condition (2.31) is satisfied. If φ̈ becomes

large enough, it will ”feed” the kinetic energy and therefore (2.31) will be violated signaling the end
of inflation. This second condition is quantified by introducing the second slow roll parameter η,

η ≡ − φ̈

Hφ̇
< 1 (2.36)

Those two slow roll parameters can be rewritten in terms of the potential V (φ) as

ε(V ) ≡
M2

pl

2

(
dV
dφ

V

)2

(2.37)

η(V ) ≡M2
pl

d2V
dφ2

V
(2.38)

Comment

In this chapter we introduced the classical theory of inflation. The way the topic was presented
would leave the reader with the feeling that inflation is an extremely successful phenomenological
theory solving the Big Bang puzzles in a simple and elegant way suffering from no ambiguities. How-
ever, one could in principle argue that inflation solves these puzzles ”by construction”. This is a
reasonable argument. After realizing that in the heart of the Big Bang puzzles lies the monotonically
increasing comoving Hubble radius, we postulated a period during cosmic history in which it was
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shrinking. This solved the flatness and horizon problems.

In the next chapter, we will combine quantum mechanics with inflation. This marriage turns out to be
extremely fruitful. Primordial quantum fluctuations produced during inflation will leave an imprint
in the patterns of temperature anisotropies and polarization on the CMB map. Quantum phenomena
will costraint the space of possible solutions of the Big Bang puzzles. It turns out that most quantum
mechanical observations (for example, the acoustic peaks appearing in the temperature-temperature
correlators) related to the CMB, are ”crying out” for inflation.
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Chapter 3

Tree Level Inflationary Quantum
Fluctuations

In this chapter we follow closely [39] [40]

The goal of this chapter is to obtain the primordial power spectra of scalar and tensor fluctuations
created during the period of cosmic inflation. In the first section, a brief overview of linear cosmo-
logical perturbation theory is given. In particular, we introduce the metric and matter perturbations
as well as discuss ambiguity related to the gauge choice. In section 2, we sketch the calculation
of the primordial scalar spectrum . At this point, some basics concepts of quantum field theory is
de-Sitter spacetime is required (Chapter 1). In the last section, the power spectrum of primordial
tensor fluctuations is computed. We end the chapter with some comments which encapture some
essentials features of the primordial scalar and tensor fluctuations.

3.1 Linear cosmological perturbation theory in a nutshell

One of the most important cosmological observations is considered to be the CMB anisotropies map.
During the period of decoupling, just before the moment when electrons and protons coupled to form
neutral hydrogen atoms, the Universe was nearly homogeneous. Small inhomogeneities exist at 10−5

level. These inhomogeneities can be studied within linear cosmological perturbation theory. The
way this can be done is by expanding all the relevant physical quantities X(t,x) around a FLRW
backround plus small fluctuations, i.e

X(t,x) ≡ X̄(t) + δX(t,x) (3.1)

The overbar quantities refer to background values. Notice that the background quantity X̄(t) is
independent of the spatial coordinates due to the isometries of the FLRW spacetime. In contrast,
fluctuations are assumed in general to depend both in time and space. The smallness of the fluc-
tuations δX(t,x) implies that the solution can be found using the linearized version of Einstein
equations, i.e

δGµν = 8πGδTµν (3.2)
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3.1.1 Scalar-Vector-Tensor decomposition

Linear cosmological perturbation theory is a really powerful method of computing small fluctuations
around a background value. One of the reasons is the so-called Scalar-Vector-Tensor (SVT) decom-
position.

A perturbation δX(t,x) can be expanded in Fourier modes as

δXk(t) =

∫
d3xδX(t,x)eikx (3.3)

Under a rotation of the coordinate system around the direction of the mode k by angle θ , the Fourier
mode δXk changes as

δXk → eimθδXk (3.4)

Depending on the value of m, the perturbation is characterized as scalar (m = 0) vector (m = ±1)
or tensor (m = ±2). Thus, the modes are decomposed according to the transformation under θ. An
important implication is that different type of perturbations (Scalar, vector and tensor type) evolve
independently without mixing, at linear level. This is a result of rotational invariance of the linear
equation of motion. Away from linear order, this is no longer valid. Similarly, it can be shown that
due to translation invariance of linear Einstein’s equations (3.2), different modes k do not mix [39].
To clarify this, let’s assume for example two scalar modes with k1 and k2 respectively. These scalar
modes, do not mix at linear level.

These two features of the linear perturbation theory, simplify the analysis a lot and will turn out
to be an extremely useful tool in studying primordial fluctuations produced during the period of
Inflation.

3.1.2 Fluctuations non uniquely defined-Choice of gauge

An important issue which should be stressed at this point is that the decomposition (3.1) is not
unique, namely there is not a unique way of splitting a cosmological quantity X(t,x) into background
and fluctuations. It is highly dependent on the way we choose our coordinates of spacetime. This
means that different slicing (i.e different way of choosing hypersurfaces constant time) and different
threading (i.e different choice of worldlines of constant x) define different fluctuations. It is possible
to show that one can choose such a slicing of the spacetime that real fluctuations vanish (wrongly).
Equivalently, we can also create fictitious perturbations by choosing a corresponding coordinate
system. This ambiguity should be resolved. The way this can be done is by introducing gauge
invariant quantities, i.e quantities that do not depend on coordinate transformations (slicing and
threading of spacetime). Furthemore, the matter and metric fluctuations are related to each other
via the linearized Einstein equations (3.2). This means that after a coordinate transformation, metric
fluctuations can be transferred to matter sector or vice versa. Therefore, it is crucial to keep all the
fluctuations in order to keep track of this interplay between matter and gravity sectors.
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3.1.3 Metric and Matter Perturbations

At this point, we get a bit more specific by discussing metric and matter fluctuations around the
FLRW background. As far as metric perturbations are concerned, the most general way to write
them is

ds2 = −(1 + 2Φ)dt2 + 2αBidx
idt+ α2[(1− 2Ψ)δij + Eij]dx

idxj (3.5)

where
Bi = ∂iB − Si (3.6)

and
Eij = 2∂i∂jE + ∂iFj + hij (3.7)

By demanding that hij is transverse and traceless, it can be shown that it corresponds to a tensor
perturbation, i.e it transforms under a rotation by an angle θ as δhij → e±2iθhij. Moreover, Si and
Fi transform as vectors under rotation so they correspond to vector (divergence-free) perturbations.

Check

In principle, a metric has 10 dynamical degrees of freedom.

4 scalars → (B,Ψ,Φ, E) = 4 degrees of freedom.
2 divergence-free vectors → (Si, Fi) = 2× 2 = 4 degrees of freedom.
1 transverse traceless tensor → (hij) = 2 degrees of freedom.

Indeed, the way we decomposed the metric has the correct amount of degrees of freedom. In case the
stress energy tensor does not contain anisotropic stress, it can be shown that vector perturbations
are subdominant during inflation and will not be relevant here. Taking this into account, the most
general metric fluctuations can be written in form

ds2 = −(1 + 2Φ)dt2 + 2α∂iBdx
idt+ α2[(1− 2Ψ)δij + ∂i∂jE + hij]dx

idxj (3.8)

Notice that (3.8) contains 6 dynamical degrees of freedom instead if 10 (since we got rid of the
vector perturbations). Primordial scalar fluctuations are sourced by the scalar part of (3.8) (it is
not exactly true, someone needs to take account also the matter perturbations which also source the
scalar flutuations. We soon return back to that point), i.e

ds2 = −(1 + 2Φ)dt2 + 2α∂iBdx
idt+ α2[(1− 2Ψ)δij + ∂i∂jE]dxidxj (3.9)

whereas primordial tensor perturbations are entirely sourced by hij

ds2 = −dt2 + (δij + hij)dx
idxj (3.10)
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Focusing our attention to (3.9) we immediately see that there are 4 scalar dynamical degrees of
freedom. At the same time, we have the freedom to choose our coordinates in such a way that 2 dy-
namical degrees of freedom are gauged (gauge choice). Finally, assuming that there in no anisotropic
stress, we end up with 1 dynamical degree of freedom [39].

Under gauge/coordinate transformations

t→ t+ a (3.11)

xi → xi + δij∂jβ (3.12)

scalar quantities that appear in the metric (3.9) transform as

δΦ = −ȧ (3.13)

δE = −β (3.14)

δΨ = Ha (3.15)

δB = aα−1 − αβ̇ (3.16)

where α is the scale factor that appears in the FLRW metric.

In constrast, tensor fluctuations hij do not change under gauge transformations (3.11) and (3.12). It
is a gauge invariant object.

Finally, the perturbations to the matter sector can be written as

T 0
0 = −(ρ̄+ δρ) (3.17)

T 0
i = (ρ̄+ p̄)αυi (3.18)

T i0 = −(ρ̄+ p̄)α−1(υi −Bi) (3.19)

T ij = δij(p̄+ δp) + Σi
j (3.20)

where again we mention that the overbar quantities refer to background values, ρ is the energy
density, p is pressure, υi the three velocity, α the scale factor and Σi

j is the so-called anisotropic
stress. For future convenience, we also introduce the quantity ∂iδq = (ρ̄ + p̄)υi. Scalar quantities
such as q, p, ρ transform under gauge transformations (3.11) and (3.12) as

δp→ δp− ˙̄pa (3.21)

δρ→ δρ− ˙̄ρa (3.22)

δq → δq + (ρ̄+ p̄)a (3.23)
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3.1.4 Comoving Curvature Perturbation

As we have already mentioned, it is crucial in our analysis to construct gauge invariant quantities,
i.e quantities that do not transform under coordinate transformations (3.11)-(3.12). An important
quantity which we will use in the calculation of the primordial power spectra is the so-called comoving
curvature perturbation ζ. It is defined

ζ = Ψ− H

ρ̄+ p̄
δq (3.24)

It is easy to check that under gauge transformations, Ψ and δq transform in such a way that the
comoving curvature perturbation remains invariant. Moreover, it is crucial to notice that this quantity
is a combination of metric (Ψ) and matter (δq) perturbations. The importance of this quantity is
that is remains constant on superhorizon scales (k < αH). This implies that one can calculate this
quantity at horizon crossing and be sure that when reenters the horizon at later times, the evolution
of the modes at superhorizon scales was insignificant. This freezing of the comoving curvature
perturbation will be relevant in the next section.

3.2 Primordial Scalar Power Spectrum

3.2.1 Importance

We now proceed to the one of the two main calculations of this chapter. The primordial power
spectrum of the scalar fluctuations produced during the period of inflation. Before moving on, it is
important to realize the importance of this calculation.

Primordial scalar fluctuations induce a local time delay δt at which the inflation ends. This im-
plies that different patches of the universe inflate more or less than other patches. In other words,
inflation does not stop globally at a specific time. In turn, this means that different cosmological
patches experience slightly different evolutions. This can be translated in a difference in the energy
density δρ of the Universe which will finally be encoded as temperature fluctuations on the CMB
map that we have observed.

Of equal (or probably of bigger) importance is the calculation for the primordial tensor fluctuations.
The latter induce primordial gravitational waves, i.e gravitational waves directly from the period of
inflation. Their signature is expected to be encoded in the polarization of the CMB (more specifically
to the so-called B-modes of the CMB polarization) [41] [42]. Their discovery is expected with great
anticipation from the scientific community since their it will contain important information about
the energy scale that cosmic inflation occured.

Therefore, due to the contact with observations, the following calculation is of a great significance.
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Figure 3.1: Taken from https://www.wikipedia.org/. This is the famous CMB map. Blue spots have
lower temperature than the red and yellow spots. The difference in temperature is roughly of order
10−4 K.

3.2.2 The calculation

We assume an inflationary model of a single inflaton field which rolls slowly a potential V (φ). The
primordial scalar fluctuations are sourced by a scalar field action minimally coupled to gravity (one
could in principle assume non-minimal coupling. However, with field redefinition of the theory, it can
always be transformed to minimal coupled gravity at least at the classical level. For cosmological
quantum perturbations, we refer the reader to [43][44][45] ).

Sφ =
1

2

∫
d4x
√
−g
[
R− (∇φ)2 − 2V (φ)

]
(3.25)

We choose to work in the comoving gauge. In this gauge, the inflaton field in unperturbed and the
dynamical degrees of freedom reside in the metric, i.e

δφ = 0→ δq = 0 (3.26)

E = 0 (3.27)

gij = α2(1− 2Ψ)δij (3.28)

From (3.24) we immediately see that for δq = 0→ ζ = Ψ. Therefore, (3.28) can be rewritten as

gij = α2(1− 2ζ)δij (3.29)

36



Moreover B and Φ that appear in (3.9) are related to ζ via the linearized Einstein’s equation. So the
only dynamical degree of freedom is ζ.

Expanding the action to second order in ζ we obtain [46]

S(2) =
1

2

∫
d4xα3 φ̇

2

H2

[
ζ̇2 − α−2(∂iζ)2

]
(3.30)

Important Comment:

At this point we should stress that the action above is a free field action. The calculation we
are performing is a tree level calculation, i.e we include no loop corrections to the primordial scalar
fluctuations. In chapter 1, it is shown that an expanding universe spontaneously produces IR scalars
and gravitons. In turn, these particles will enter in loops in the primordial fluctuations. Therefore, it
is of primary importance to study whether these loop corrections have significant late time effects on
the propagation of the dynamical primordial scalars and gravitons. This issue is lying in the heart
of this thesis. We return at this in chapter 4 and 5.

Let’s go back to the calculation. We observe that the kinetic term in the action S(2) is multiplied
with a time dependent coefficient. In other words, it is not in canonical form. Therefore, in order to
faciliate the quantization procedure, it is useful to introduce the so-called Mukhanov variable

υ ≡ zζ (3.31)

where

z2 ≡ α2
˙̄φ2

H2
= 2α2ε (3.32)

Recall that the last equally is due to the fact that the slow roll parameter ε is equal to 1
2

˙̄φ2

H2 .

Rewritting the action (3.30) in terms of the Mukhanov variable, we get

S(2) =
1

2

∫
dτd3x

[
(υ′)2 + (∂iυ)2 +

z′′

z
υ2

]
(3.33)

where primes correspond to derivatives with respect to the conformal time τ . Notice that by intro-
ducing the Mukhanov variable, the kinetic term has indeed been put in canonical. The price we pay
for that, is that now there is a time dependent mass term.

The next step is to expand υ(t,x) in Fourier modes.

υ(t,x) =

∫
d3k

(2π)3
υk(τ)eikx (3.34)
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The mode functions depend only on time τ due to isotropy and homogeneity of spatial dimensions.
Variation of the action, gives the equation of motion for the υk(τ)

υ′′k(τ) +

(
k2 − z′′

z

)
υk(τ) = 0 (3.35)

This is an equation for motion for an harmonic oscillator with time dependent frequency. It is crucial
to notice that z is a function of the slow roll parameter ε. In single field slow roll inflation, ε is written
in terms of the potential and the first derivative (check relation (2.37)). This means that the solutions
for the modes υk depend on the dynamics of the background. One can in principle solve (3.35) nu-
merically. Instead, we will try to find an approximation scheme which will lead to analytical solutions.

Since we are dealing with a second order differential equation, we need two boundary conditions
to uniquely specify the mode solutions.

First Boundary Condition

< υk, υk >≡
i

~
(υ′kυ

∗
k − υ∗′k υk) = 1 (3.36)

This boundary condition results from canonically quantizing the modes υk and demanding that the
creation and anihilation operators satisfy the usual commutation relations (1.25).

Second Boundary Condition

The second boundary condition is the so-called vacuum selection. As we discussed in chapter 1,
in quantum field theory in curved backround there is not a uniquely defined vacuum as opposed to
the Minkowski background, in which all inertial observers agree on the definition of the vacuum, and
subsequently on the particle content of a specific state.

A similar situation holds when we deal with the quantum mechanics of an harmonic oscillator with
time dependent frequency. Vacuum in not uniquely defined. By assuming that the slow roll param-
eter is slowly varying (derivatives with respect to time vanish ,i.e ε̇ = 0 ), we find that

z′′

z
=
α′′

α
=

2

τ 2
(3.37)

We see that in the fast past τ → −∞
z′′

z
→ 0
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This means that deep inside the horizon, the modes do not feel the expansion of the Universe and it
is as if they live in a Minkowski background. In Minkowski space, there is a preferred vacuum , the
one which minimizes the energy of the system. The choice of this preferred vacuum uniquely fixes the
mode functions. Therefore the second boundary condition corresponds to the so called Bunch-Davies
vacuum, i.e

lim
τ→−∞

υk =
e−ikτ√

2k
(3.38)

The unique solution of (3.35) satisfying the two boundary conditions is

υk =
e−ikτ√

2k
(1− i

kτ
) (3.39)

Since we have obtained the mode functions, we can plug the solutions in (3.31) and find the solution
for the comoving curvature perturbation ζ.

The primordial scalar power spectrum Pζ(k) is related to the 2-point function of the fluctuations
ζ. Namely,

< ζkζ
∗
k′ >= (2π)3δ(k − k′)Pζ(k) (3.40)

The dimensionless power spectrum for the scalar fluctuations computed at horizon crossing, k = αH,
is given by

∆2
ζ ≡

k3

2π2
Pζ(k) =

~GH2

πc5

1

ε

∣∣∣∣
k=αH

(3.41)

This result is the famous power spectrum of the primordial scalar fluctuations produced during cos-
mic inflation.

We imediately realize the dependence of the power spectrum from the energy scale of inflation
H as well as the model of inflation we use for the calculation (hidden into the definition of ε). Us-
ing a different potential for inflation, leads to a change in ε which in turn changes the power spectrum.

An important feature of the scalar power spectrum is that it appears to be almost scale invariant.

Pζ(k) = As

(
k

k∗

)ns−1

(3.42)

where As is the amplitude, k∗ is a pivot scale and ns the so-called spectral index which measures the
deviation from scale invariance. The observed values for these parameters are the following [4][5]
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As → 10−9

ns → 0.96

Note that ns = 1 corresponds to a perfect scale invariant power spectrum.

3.3 Primordial Tensor Power Spectrum- A rigorous deriva-

tion

The calculation for the tensor fluctuations turns out to be much simpler. The reason is that tensor
fluctuations are gauge invariant. Under a general gauge transformation (namely under a change of
coordinates) they remain invariant. This was not the case for the scalar fluctuations. In this section
we are interested in computing the power spectrum of tensor fluctuations slightly more rigorously
than the way we did for the scalar fluctuations. In other words, we will compute the spectrum up to
first order in the slow roll ε. For extra details, the reader is advised to review [39][40].

Tensor fluctuations are derived from the Einstein-Hilbert action by expanding up to second order in
the fluctuations.

S(2) =
M2

pl

8

∫
dτd3xα2

[
(h′ij)

2 − (∂lhij)
2
]

(3.43)

where prime denotes derivative ith respect to conformal time. Going to Fourier space, the graviton
field can be decomposed in terms of creation and anihilation operators, i.e

hij(x) =
2

Mpl

∑
s=x,+

∫
d3k

(2π)3

[
εsij(k)hs(k, τ)âk,se

ikx + ε∗sij (k)hs∗(k, τ)â†k,se
−ikx

]
(3.44)

where s denotes the 2 different values of the polarization for the tensor modes. â†k,s and âk,s are the
creation and anihilation operators respectively which satisfy the usual commutation relations (check
chapter 1).

Defining

υs(k, τ) ≡ α

2
Mplh

s(k, τ) (3.45)

we can rewrite the action in the following way

S(2) =
∑
s

1

2

∫
dτd3k

[(
(υs(k, τ))′

)2

−
(
k2 − α′′

α

)(
υs(k, τ)

)2
]

(3.46)
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Given this action, the equation of motion can be easily found[
∂2
η + k2 − α

′′

α

]
υ(k, τ) = 0 (3.47)

where α′′

α
is equal to [40]

α′′

α
=

2− ε
(1− ε)2

1

τ 2
+O(ε

′
) (3.48)

Note that we are interested in solving (3.47) in power law inflation and for small values of ε, i.e
ε << 1 and the scale factor to be of the form,

α(τ) =

(
(ε− 1)H0τ

) 1
ε−1

(3.49)

where
H0 = Hαε (3.50)

Moreover, we assume that the change of ε with time is negligible. In other words, ε
′
<< 1.

Plugging (3.48) into (3.47) and introducing a new variable τ̃ = −kτ we find[
d2

dτ̃ 2
+ 1− 2− ε

(1− ε)2

1

τ̃ 2

]
υ(k, τ) = 0 (3.51)

Notice that for ε = 0, i.e for perfect de Sitter, the scale factor (3.49) and the equation of motion
(3.51) reduce to the well know results [47]. The differential equation (3.50) is the so-called Bessel
differential equation. The solution of this equation is given in terms of the Hankel functions

υ(k, τ) =

√
−πτ

4
H(1)
ν (kτ) (3.52)

and

υ∗(k, τ) =

√
−πτ

4
H(2)
ν (kτ) (3.53)

where

ν =
3− ε

2(1− ε)
(3.54)

41



The power spectrum for tensor fluctuations is given as usual by computing the 2-point function [40],
i.e

< hij(x, τ)hkl(x
′, τ) >≡

∫
dk

k
∆h(k, τ)

sin(kr)

kr

1

4
[tensor]ijkl (3.55)

where r = |x− x′| and the tensor structure is the following

Tensorijkl =

[
PikPjl + PilPjk − PijPkl

]
(3.56)

with Pik to be the so called transverse operator in k-space [40]

Pij = δij −
kikj
k2

(3.57)

The dimensionless power spectrum for the tensors is given by

∆h(k, τ) =
4k3

π2

|h(k, τ)|2

M2
pl

(3.58)

As we have already discussed in the beginning of this chapter, when fluctuation modes enter on
superhorizon scales, they freeze. We are interested in computing the power spectrum on superhorizon
scales. One can expand expand the Hankel functions in terms of Bessel functions and after some
computation [40], by using some identities for the Bessel functions, we end up with an expression for
the primordial tensor power spectrum

∆h(k, τ) =
2H2

0

π2M2
pl

2
3−ε
1−εΓ2

(
3− ε

2(1− ε)

)
(1− ε)

2
1−ε

(
k

H0

)− 2ε
1−ε

(3.59)

Keeping terms up to the leading order in ε we finally find that

∆h(k, τ) = ∆h∗

(
k

k∗

)n
(3.60)

where

∆h∗ =
2H2

0

π2M2
pl

[
1 + 2ε(1− γE − ln 2)

]
(3.61)

and
n = −2ε (3.62)

Comments
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• The first thing we should stress once more is that the result (3.61) is given for a power law
inflation, i.e for a scale factor satisfying (3.49), for small non vanishing slow roll ε. One can of course
recover the de-Sitter space result, i.e ε = 0. The computation for the de-Sitter case can be found in
[39][40].

• Another important feature of the tensor power spectrum which we should notice is the depen-
dence of (3.61) upon the slow roll ε. The 0th order expansion is ε is

P∗ =
2H2

0

π2M2
pl

(3.63)

Recall that in the case of scalar fluctuations, the power spectrum is enchanced by a factor 1
ε
. Con-

sidering a value for ε < 0.01 [4][5], we conclude that the signal of primordial scalar fluctuations is at
least 100 times bigger than the tensorial one. This is the reason why we have measured the scalars
and not the tensor modes.

• This result shows that the power spectrum is directly related to H2. This means that detec-
tion of the primordial tensor fluctuations (gravitational waves from the early Universe) gives a direct
piece of information about the energy scale that inflation occured. Combining with the spectrum of
primordial scalar fluctuations, can also provide information about the inflationary model consistent
with the observational values.

• The equation of motion for the tensor fluctuations is given by

u
′′

+ 3Hu
′
+
k2

α2
u = 0 (3.64)

where the derivatives are with respect to the conformal time τ . Recall that the equation of motion
for the scalar fluctuations υ is the following

υ
′′

+

[
3H +

ε̇

ε

]
υ
′
+
k2

α2
υ = 0 (3.65)

In perfect de-Sitter space, i.e ε = 0, the equations of motion for the scalar and tensor fluctuations
coincide [40]. In other words, if we compute the power spectrum of scalar modes, it is a trivial
exercise two generalize it for the tensors (tensors are equivalent to two copies of MMC scalars. [39])

• One comment about scalar fluctuations. By following exactly the same procedure as for the
tensors, we find that the primordial power spectrum for scalars is

Pζ(k, τ) = P ∗ζ

(
k

(1− ε)αH

)ns−1

(3.66)
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where

P ∗ζ =

[
1 + 2ε(5− 3 ln 2− 3γE)− 2η(2− ln 2− γE)

]
H2

8M2
plπ

2ε
(3.67)

and

ns − 1 = (−6ε+ 2η) +
2

3

(
−13ε2 + 4εη + η2

)
(3.68)

The result of this computation is more general that the one we found in section 3.2.2. At order
O(1

ε
), there is an agreement between the two results.

• One last comment. At leading order in the slow roll, the spectral index for the scalar fluctua-
tions is

ns − 1 = −6ε+ 2η (3.69)

while for the tensor fluctuations is

nt = −2ε (3.70)

The scalar to tensor ration is equal to
r = 16ε (3.71)

Combining (3.70) and (3.71), we end up with the consistency relation

r = −8nt (3.72)
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Chapter 4

Loop corrections to primordial power
spectra

In this chapter we start the discussion of loop corrections to primordial power spectra. In particular,
we quantify the magnitude of the loop corrections and discuss the motivation for studing those effects.
For further information, the reader is advised to review [48] [49].

4.1 ε-suppression patterns

In the previous chapter, the primordial scalar and tensor power spectra were computed. The com-
putations were based on free actions (3.30) and (3.43). What we are now interested in, is to identify
the dependence of the action as well as the power spectra upon the slow roll parameter ε.

Recall that the free field action (3.30) is suppressed by a factor φ̇2

H2 which is related to ε via

ε =
1

2

φ̇2

H2
(4.1)

Therefore,

S(2) =

∫
d4xα3ε

[
ζ̇2 − α−2(∂iζ)2

]
(4.2)

The scalar power spectrum computed using the free action (4.2), after reintroducing units, is given by

∆2
ζ =

~GH2

πc5

1

ε
(4.3)

For the tensor power spectrum, recall that the free action which was the calculation based on, was
the following

S(2) =
M2

pl

8

∫
dτd3xα2

[
(h′ij)

2 − (∂lhij)
2
]

(4.4)
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The resulting power spectrum was found to be

∆2
t =

16~GH2

πc5
(4.5)

We also introduced the so-called tensor to scalar ration r which is given by

r =
∆2
t

∆2
ζ

= 16ε

Remark

A crucial difference between the primordial scalar and tensor power spectra is that the former is
suppressed by 1

ε
whereas the latter is independent of ε. Assuming a value of ε ∼ 0.07 [4][5] during

primordial inflation, we conclude that the scalar power spectrum is enhanced by a factor of 100
compared to tensor power spectrum. This is the reason why we have measured the signal of scalar
modes coming from the early universe and still haven’t detected tensor modes (B mode polarization).
Moreover, the appearance of the slow roll parameter in the actions S(2) also deserves a comment. In
perfect de Sitter space (ε = 0) the action vanishes. This corresponds to a pure gauge mode [46]. In
order to make a non trivial calculation, we need the slow roll parameter ε to have a small non-zero
value. In other words, we perform the calculation in a quasi-de Sitter space. In physical terms, for
ε = 0 (i.e perfect de-Sitter space), inflation cannot occur since the potential is flat (no-slow roll).

Finally, as already mentioned, the primordial power spectra computed in chapter 3, correspond
to tree level results. They are just free propagators which we denote them as

Graviton

scalar

ζ self interactions

In 2002, J.Maldacena was the first one to calculate the 3-point function < ζk1ζk2ζk3 >, the so-called
primordial non-Gaussianity [46]. In 2006, the 4-point function was computed < ζk1ζk2ζk3ζk4 > [50].
Finally, 5 and 6-point interactions were calculated [51].

In order to find the contributions of ζ self couplings to the primordial scalar power spectrum, we
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need to have the explicit expressions for the Lagrangians from which we will deduce the Feynman
rules. The corresponding expressions are [46][50][51]

1

~
Lζ3 ∝

c4ε2αD−1

16~πG
ζ(∂ζ)2 (4.6)

1

~
Lζ4 ∝

c4ε2αD−1

16~πG
ζ2(∂ζ)2 (4.7)

1

~
Lζ5 ∝

c4ε3αD−1

16~πG
ζ3(∂ζ)2 (4.8)

1

~
Lζ6 ∝

c4ε3αD−1

16~πG
ζ4(∂ζ)2 (4.9)

Note that the ζ3 and ζ4 interactions are suppressed by a factor ε2 whereas the 5 and 6 point inter-
actions are suppressed by ε3.

The Feynman diagrams which contribute to 1-loop quantum corrections to the primordial scalar
power spectrum are the following :

(4.10)

ζ-h interactions

In case we are interested in interactions between the scalar ζ and the graviton h, the corresponding
Lagrangians are the following [52]

1

~
[Lζh2 + Lζ2h + Lζ2h2 ] ∝

c4εαD−1

16~πG
[
ζ(∂h)2 + h(∂ζ)2 + h2(∂ζ)2

]
(4.11)

These interaction vertices give rise to the following Feynman diagrams which contribute to the scalar
power spectrum
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Since we have explicit expressions for the interactions that appear in the Lagrangians above, we can
quantify the maginitude of the loop corrections. Let’s take as a first example the Feynman diagram

(4.12)

The mathematical expression for this Feynman diagram has the form

∫
dDy

∫
dDy′ı∆ζ(x; y)ı∆ζ(x

′; y′) [ı∆ζ(y; y′)]
2
Vζ3(y

′)Vζ3(y) (4.13)

where points x and x′ are fixed and points y and y′ are integrated over since they correspond to
vertices. Moreover, Vζ3(y) and Vζ3(y

′) correspond to vertex functions which can be deduced from the
corresponding Lagrangian with 3-point interactions.

Quantifying the corrections

We can now evaluate the strength of each diagram taking into account the following rules

• For every scalar propagator ∆ζ that appear in mathematical expressions similar to (4.13), we

include a factor ~GH2

c5
1
ε
.

• For every graviton propagator ∆h, we include a factor of the form ~GH2

c5
.

• For each vertex with any number of graviton lines and 2N or 2N − 1 scalar lines ζ, we include a
factor c5εN

~GH2 .

Case: ζ self-coupling corrections to scalar power spectrum

Given these rules, for the Feynman diagram, which contains vertices with 4 scalar lines (4.12), we
find that [

~GH2

c5

1

ε

]4

×
[
c5ε2

~GH2

]2

=

[
~GH2

c5

1

ε

]
×
[
~GH2

c5
ε

]
≡ ∆2

ζ ×
[
~GH2

c5
ε

]
(4.14)

where ∆2
ζ is the tree level 2 point function we found above (4.3).

Similar computation for the other Feynman diagram (4.10), which contains one vertex with 4 scalar
lines, gives a contribution to the scalar power spectrum of the form[

~GH2

c5

1

ε

]3

×
[
c5ε2

~GH2

]1

=

[
~GH2

c5

1

ε

]
×
[
~GH2

c5

]
≡ ∆2

ζ ×
[
~GH2

c5

]
(4.15)
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Case: ζ-h interaction corrections to scalar power spectrum

Taking into account vertices which arise from the Lagrangians (4.11), i.e interactions of the form

• ζh2

• ζ2h
• ζ2h2

we get the following contributions to the scalar power spectrum.

For the ζ2h vertex:[
~GH2

c5

1

ε

]3

×
[
~GH2

c5

]1

×
[

c5ε

~GH2

]2

=

[
~GH2

c5

1

ε

]
×
[
~GH2

c5

]
≡ ∆2

ζ ×
[
~GH2

c5

]
(4.16)

For the ζ2h2 vertex:[
~GH2

c5

1

ε

]2

×
[
~GH2

c5

]1

×
[

c5ε

~GH2

]1

=

[
~GH2

c5

1

ε

]
×
[
~GH2

c5

]
≡ ∆2

ζ ×
[
~GH2

c5

]
(4.17)

For the ζh2 vertex:[
~GH2

c5

1

ε

]2

×
[
~GH2

c5

]2

×
[

c5ε

~GH2

]2

=

[
~GH2

c5

1

ε

]
×
[
~GH2

c5
ε

]
≡ ∆2

ζ ×
[
~GH2

c5
ε

]
(4.18)

We thus conclude that the corrections to the scalar power spectrum due to interactions between ζ
and h are suppressed by the factor ~GH2

c5
. In case of ζh2 vertex, there is an extra ε suppression.

ζ-h interaction corrections to tensor power spectrum

Following the same rules as before, we can find the strength of loop corrections to tensor power
spectrum due to interactions between ζ and gravitons. The corresponding Feynman diagrams are
the following:

(4.19)

(4.20)

49



(4.21)

As an example to illustrate, we compute the contribution of the Feynman diagrams (4.19) and (4.21)
to the tensor power spectrum and we find that

For the hζ2 vertex:[
~GH2

c5

1

ε

]2

×
[
~GH2

c5

]2

×
[

c5ε

~GH2

]2

=

[
~GH2

c5

]
×
[
~GH2

c5

]
≡ ∆2

h ×
[
~GH2

c5

]
(4.22)

For the h2ζ2 vertex:[
~GH2

c5

1

ε

]1

×
[
~GH2

c5

]2

×
[

c5ε

~GH2

]1

=

[
~GH2

c5

]
×
[
~GH2

c5

]
≡ ∆2

h ×
[
~GH2

c5

]
(4.23)

For the h2ζ vertex:[
~GH2

c5

1

ε

]1

×
[
~GH2

c5

]3

×
[

c5ε

~GH2

]2

=

[
~GH2

c5

]
×
[
~GH2

c5
ε

]
≡ ∆2

h ×
[
~GH2

c5
ε

]
(4.24)

The conclusion of the analysis above is clear. Loop corrections to primordial power spectra experience
a suppression compared to the tree level scalar and tensor propagators by a factor ~GH2

c5
∼ 10−10.

Some diagrams, on the top of this suppression, they get suppressed by the slow roll parameter ε.
Therefore, 1-loop corrections to the tree level results are extremely small.

4.2 Secular growth effects

Taking into account the analysis of the previous section, it is reasonable to ask whether there is
an importance in studying loop corrections to the tree level primordial power spectra. The 1-loop
corrections experience a huge suppression compared to the tree level results which make it impossible
to be experimentally proved soon. However, in some cases loop corrections to various propagators
can create the so-called ’secular growth effects’. In order to understand where these effects come
from, recall that the equations of motion for the scalar and tensor modes υ and u are given by

• Tensor modes

u
′′

+ 3Hu
′
+
k2

α2
u = 0 (4.25)

• Scalar modes

υ
′′

+

[
3H +

ε̇

ε

]
υ
′
+
k2

α2
υ = 0 (4.26)
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At first horizon crossing, at time t = t∗, and for simplicity assuming that ε̇ = 0, the mode functions
are given by [53]

|u(t, k)|2 → H2(t∗)

2k3

1

π
Γ2

(
1

2
+

1

1− ε

)
[2(1− ε)]

2
1−ε (4.27)

|υ(t, k)|2 → H2(t∗)

2ε(t∗)k3

1

π
Γ2

(
1

2
+

1

1− ε

)
[2(1− ε)]

2
1−ε (4.28)

Initially, during inflation and before they experience the first horizon crossing, the scalar and tensor
modes are oscillating [48]

u(k, t) ∝ 1

α(t)
√

2k
e
−ik

∫
dt′
α(t′) (4.29)

υ(k, t) ∝ 1

α(t)
√

2kε(t)
e
−ik

∫
dt′
α(t′) (4.30)

This transition from the oscillating behaviour at early times, to a constant field configuration after
first horizon crossing is the so-called freezing that primordial scalar and tensor modes experience.
This is the reason why these modes can survive at later times [53].

As we already mentioned in chapters 2 and 3, during Inflation, the comoving Hubble horizon is
shrinking. This means that as long as inflation occurs, more and more oscillating modes experience
first horizon crossing and freeze. This results in secular growth to the scalar and tensor 2-point
functions, i.e

i∆h(x;x′)|secular =
1

4π2

∫ Hα dk

k
H2(t∗)Γ

2

(
1

2
+

1

1− ε

)
[2(1− ε)]

2
1−ε (4.31)

i∆ζ(x;x′)|secular =
1

4π2

∫ Hα dk

k

H2(t∗)

ε(t∗)
Γ2

(
1

2
+

1

1− ε

)
[2(1− ε)]

2
1−ε (4.32)

For perfect de-Sitter space, it was first found [53]

i∆h(x;x′)|secular =
H2

4π2
ln(
√
α(t)α(t′)) (4.33)

Woodard, Park, Prokopec and collaborators, have calculated quantum loop corrections to various
propagators. The secular effects can occur in case the particles under study can keep on interacting
for a sufficient period of time.

• For a graviton loop correction to the MMC scalar propagator, no secular growth occurs [54][55].
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This is an expected result since graviton couples to the MMC field via its kinetic energy. Therefore,
the vertex is suppressed in the IR limit (kinetic energy redshifts as the Universe expands) and we
expect no significant late time effects.

• For a fermion propagator with a graviton loop, there is significant interaction due to the spin
that both particles possess [17][56]

• Interactions between photons and gravitons is persisting at late times due to the spin that both
particles carry. This results in secular growth effects. [18][22][57]

Finally, as already mentioned in the introduction, the potentials in de-Sitter acquire corrections
proportional to lnα which grow with time.

Therefore, we are interested in loop corrections to the tree level results since they may come with
logarithms of the scale factor. This means that these effects may be stronger than we initially thought.
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Chapter 5

Graviton self-energy 1 loop corrections
due to Massive non minimally coupled
scalar fields

5.1 Graviton self energy

The aim of this section is to find the form of the 1-loop graviton self energy due to the presence of
non minimally massive scalar fields. Recall from chapter 1 the following scalar action

Sφ =

∫
dDx
√
−g
[
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2 − 1

2
ξRφ2

]
(5.1)

We are interested in performing the calculation is de-Sitter space. Therefore the graviton hµν is
defined as a fluctuation around the classical de-Sitter background ḡµν , i.e

κhµν = gµν − ḡµν (5.2)

where κ =
√

16πG, G is the Newton constant and gµν is the full metric.

In order to find the interaction vertices between scalars and gravitons, we have to expand the action
(5.1) up to second order in the graviton hµν . This can be done by expanding the metric gµν , the Ricci
scalar R and the determinant of the metric

√
−g with respect to (5.2). After a tedious computation

one obtains [1][58]

S = S̄ + S(3) + S(4) (5.3)

where S̄ is the background action, namely the action (5.1) with the substitution g → ḡ, R → R̄,
gµν → ḡµν .
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The expansion up to first order in the graviton field hµν , i.e expansion to order O(κ), leads to
the following form for the action

S(3) =
κ

2

∫
dDx
√
−ḡhµν(x)T̄µν(x) (5.4)

where T̄µν(x) is the background stress energy tensor. Varying the action with respect to the graviton
field and setting it to zero at the end of the calculation (hµν → 0), we find following expression

T̄µν(x) = ∂µφ(x)∂νφ(x)− 1

2
ḡµν∂αφ(x)∂αφ(x)− 1

2

[
ḡµνm

2 + ξ

(
Ḡµν(x) + ḡµν2− ∇̄µ∇̄ν

)]
φ2(x) (5.5)

Note that in the massless (m = 0) and minimally coupled case (ξ = 0) we recover the well know
result for the stress energy tensor in a general background gµν [34].

Finally, the S(4) action comes from the expansion up to second order in the fluctuations, i.e up
to O(κ2)

S(4) =
κ2

2

∫
dDx

∫
dDx′
√
−ḡhµν(x)Vµνρσ(x− x′)hρσ(x′) (5.6)

where Vµνρσ(x − x′) is a rather long expression which can be found at [1]. This expression will not
be needed in the present work.

The corresponding vertices are the following:

• 3-point interaction

• 4-point interaction

where the wiggly lines correspond to gravitons and dash lines to scalar particles. By making use of
the effective action, we find that [1]

−ı [Σµνρσ] (x;x′) = −ı [Σµνρσ]3pt (x;x′) +−ı [Σµνρσ]4pt (x;x′) (5.7)
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where the three and four point contributions are given by [1]

−ı [Σµνρσ]3pt (x;x′) = −κ
2

4

√
−ḡ(x)

√
−ḡ(x′) < T̄µν(x)T̄ρσ(x′) > (5.8)

−ı [Σµνρσ]4pt (x;x′) = ıκ2
√
−ḡ(x) < Vµνρσ(x− x′) > (5.9)

The TT correlator < T̄µν(x)T̄ρσ(x′) > that appears in (5.8) is extremely relevant for our work. The
aim of this thesis to rewrite this TT correlator in a form which could be renormalized. From (5.8)
we conclude that renormalization of TT correlator is equivalent to renormalization of the cubic con-
tribution to the graviton self energy.

Given the Feynman vertices above, the diagrams that contribute to the graviton self energy at
1-loop loop order are

• 3-point non local contribution

• 4-point local contribution

5.1.1 Graviton self energy ansatz

In the previous section, we obtained an expression for the self energy in terms of the TT correlator
and the Vµνρσ(x − x′). We are now interested in obtaining another represention of the graviton self
energy. Under symmetry considerations, it was shown in [14] [21], that assuming

• Traversality
• Symmetry under µ ↔ ν and ρ ↔ σ
• Symmetry under x ↔ x′

the graviton self energy can be expressed as

−ı [Σµνρσ] (x;x′) =
√
−ḡ(x)

√
−ḡ(x′)P µν(x)P ρσ(x′)F0(y)+

+
√
−ḡ(x)

√
−ḡ(x′)P µν

αβγδ(x)P ρσ
κλθφ(x′)TακT βλT γθT δφ

(
D − 2

D − 3

)
F2(y)

(5.10)
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where F0(y) and F2(y) are the so called spin-0 and spin-2 structure functions which depend only on
the de Sitter length function y(x;x′) which has the form

y(x;x′) = αα′H2
[
||x− x′||2 − (|η − η′| − iε)2

]
(5.11)

The latter is related to the geodesic distance l(x;x′), which connects two points xµ and x′µ on de
Sitter, via the relation

y(x;x′) = 4sin2

(
H

2
l(x;x′)

)
(5.12)

Moreover, the Tακ(x;x′) that appears in the self-energy ansatz is given by

Tακ(x;x′) = − 1

2H2

∂2y(x;x′)

∂xα∂x′κ
(5.13)

P µν(x) and P µν
αβγδ(x) are second order differential operators which can be found by expanding the

scalar Ricci curvature and Weyl curvature around de Sitter background (5.2), i.e

R−D(D − 1)H2 = P µνκhµν +O(κ2h2) (5.14)

Cαβγδ = P µν
αβγδκhµν +O(κ2h2) (5.15)

The form that P µν operator has is [14]

P µν = ∇µ∇ν − ḡµν
[
2 + (D − 1)H2

]
(5.16)

with ∇µ correspond to the covariant derivative in de Sitter space and 2 = ∇µ∇µ.

For the P µν
αβγδ(x), we get [14]

P µν
αβγδ = Dµναβγδ +

1

D − 2

[
ḡαδDµνβγ − ḡβδD

µν
αγ − ḡαγD

µν
βδ + ḡβγDµναδ

]
+

+
1

(D − 1)(D − 2)
[ḡαγ ḡβδ − ḡαδḡβγ]Dµν

(5.17)

where

Dµναβγδ ≡
1

2

[
δ(µ
α δ

ν)
δ ∇γ∇β − δ(µ

β δ
ν)
δ ∇γ∇α − δ(µ

α δ
ν)
γ ∇δ∇β + δ

(µ
β δ

ν)
γ ∇δ∇α

]
(5.18)

Contracting (5.18) with ḡαγ and ḡαγ ḡβδ we get the following expressions for the other two operators
Dµνβδ and Dµν that appear in (5.17)

Dµνβδ =
1

2

[
δ

(µ
δ ∇

ν)∇β + δ
(µ
β ∇δ∇ν) − δ(µ

β δ
ν)
δ 2− ḡµν∇δ∇β

]
(5.19)

Dµν = ∇(µ∇ν) − ḡµν2 (5.20)
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5.2 Renormalization of the quartic contribution

As far as the four point contribution to the self energy is concerned, this has already been renor-
malized in [1] using dimensional regularization [33] to extract 1

D−4
terms from the < Vµνρσ(x− x′) >

which at the end are subtracted with the addition of appropriate counterterms. Here, we just give the
final expression for the renormalized four point function and a brief discussion. For detailed analysis
of the computation we refer the reader to [1]

The renormalized quartic contribution to the graviton self-energy is

−ı
[
Σren
µνρσ

]
4pt

(x;x′) =[Tensor1]×

[
H4

64π2

m2

H2

(
m2

H2
+ 12ξ − 2

)
+ 2ı∆

(
Λ

16πG

)
f

]
× δD(x− x′)−

− [Tensor2]× ı∆
(

1

16πG

)
f

× δ4(x− x′)

(5.21)

where

Tensor1 = ıκ2α4

[
1

4
ḡµν ḡρσ −

1

2
ḡµ(ρḡσ)ν

]
(5.22)

Tensor2 = ıκ2α4

[
1

2
ḡµ(ρḡσ)ν2−

1

2
ḡµν ḡρσ2 +

1

2

(
ḡµν∇̄(ρ∇̄σ) + ḡρσ∇̄(µ∇̄ν)

)
− ḡ(µ|(ρ∇̄σ)∇̄|ν)

]
(5.23)

and the parameters ı∆
(

Λ
16πG

)
f

, ı∆
(

1
16πG

)
f

are finite coefficients that can be found in [1].

Note that the counterterms which are added are the cosmological constant counterterm and the
inverse Newton contanst G. In other words, the counterterm action is

Sct =

∫
dDx

√
−g(x)

[
∆

(
1

16πG

)
R− 2∆

(
Λ

16πG

)]

Explicit expressions for the coefficientsin Sct can be found in [1].
In the case of m = 0 and ξ = 0, considering that the finite parameters vanish in that limit (see page
33, [1]), the quartic vertex does not contribute to the self energy , i.e

−ı
[
Σren
µνρσ

]
4pt

(x;x′) = 0 (5.24)

This result is in agreement with the result of Woodard and Park [14] for the case of minimally coupled
massless scalar fields.
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5.3 Towards the renormalization of cubic vertex

5.3.1 Chernikov-Tagirov propagator: A closer look

In chapter 1, we found an expression for the so called Chernikov-Tagirov propagator, which describes
the propagation of a massive non minimally coupled scalar field in a de Sitter background.

ı∆(x, x′) =
HD−2

(4π)
D
2

Γ(D−1
2
− νD)Γ(D−1

2
+ νD)

Γ(D
2

)
.2z1

[
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
; 1− y

4

]
(5.25)

By making use of the formula

.2z1

[
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
; 1− y

4

]
=

Γ(D
2

)Γ(1− D
2

)

Γ(1
2
− νD)Γ(1

2
+ νD)

×

× .2z1

[
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
;
y

4

]
+
(y

4

)1−D
2 Γ(D

2
)Γ(D

2
− 1)

Γ(D−1
2
− νD)Γ(D−1

2
+ νD)

×

.2z1

[
1

2
+ νD,

1

2
− νD; 2− D

2
;
y

4

] (5.26)

and expanding the Gauss hypergeometric functions in power series,

.2z1 [a, b; c; z] =
∞∑
n=0

(a)n(b)n
(c)nn!

zn (5.27)

where (z)n = Γ(z+n)
Γ(z)

denotes the so-called Pochhammer symbol, we obtain an expression for the scalar
propagator written in terms of two infinite series. One containing D-dependent powers of y and the
other D-independent. Namely,

G(y) = A

∞∑
n=0

An

(y
4

)n
+B

∞∑
n=0

Bn

(y
4

)(n+1−D
2

)

(5.28)

where

A =
HD−2

(4π)
D
2

Γ(D−3
2
− νD)Γ(D−3

2
+ νD)

Γ(1
2
− νD)Γ(1

2
+ νD)

[
(D − 3)2

4
− ν2

D

]
Γ

(
1− D

2

)
(5.29)

B =
HD−2

(4π)
D
2

Γ

(
D

2
− 1

)
(5.30)

An =

(
D−1

2
+ νD

)
n

(
D−1

2
− νD

)
n(

D
2

)
n

1

n!
(5.31)
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Bn =

(
1
2

+ νD
)
n

(
1
2
− νD

)
n(

2− D
2

)
n

1

n!
(5.32)

νD =

√
(D − 1)2

4
−
(
m2

H2
+D(D − 1)ξ

)
(5.33)

We should notice at this point that the propagator depends only on the de Sitter length function
y(x;x′) , which is related to the geodesic distance between two points x and x′ in de Sitter. Moreover,
in order to write the propagator as a function of y(x;x′), we have to assume that the vaccum state
is invariant under the de Sitter group O(1, D). For further details on vaccum states for massless and
massive scalar fields on de-Sitter, we refer the reader to review the really nice paper by Bruce Allen
[38].

Important remark :
A careful reader may pointed out the offensive term Γ

(
1− D

2

)
which resides inside the coefficient A,

which in turn is part of the scalar propagator G(y). Expanding around D = 4 dimensions, we get

Γ

(
1− D

2

)
=

2

D − 4

[
1 +

D − 4

2
(−1 + γE)

]
(5.34)

where γE is the so-called Euler-Mascheroni constant. The propagator G(y) seems to diverge in the
D = 4 limit. But this cannot be true! A divergent propagator is meaningless. A more careful in-
spection of the situation shows that the coefficients Bn also contain 1

D−4
divergences for every n > 0.

At every order in powers of y, the coefficients in front of the divergent terms coming from the two
sums exactly cancel. This property is preserved when we take derivatives of G(y) with respect to y.
In appendix A, a proof of the above statement can be found.

In our computation, it turns out that we will need the exact values of An for n = 0, 1, 2, 3 and
Bn for n = 0, 1, 2, 3, 4. These are given on the table 1 below
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Table 1:Values of An and Bn for relevant n
A0 1
B0 1

A1
(D−1

2 )
2
−ν2D

D
2

A2

[
(D−1

2 )
2
−ν2D

][
(D+1

2 )
2
−ν2D

]
D(D

2
+1)

A3

[
(D−1

2 )
2
−ν2D

][
(D+1

2 )
2
−ν2D

][
(D+3

2 )
2
−ν2D

]
3D(D

2
+1)(D

2
+2)

B1

1
4
−ν2D

2−D
2

B2
[ 14−ν2D][ 94−ν2D]

6−D
1

2−D
2

B3
[ 14−ν2D][ 94−ν2D][ 254 −ν2D]

6(3−D
2

)(4−D
2

)
1

2−D
2

B4
[ 14−ν2D][ 94−ν2D][ 254 −ν2D][ 494 −ν2D]

24(3−D
2

)(4−D
2

)(5−D
2

)
1

2−D
2

(5.35)

Notice that An do not contain 1
D−4

whereas Bn for n > 0 contain.

5.3.2 TT-correlator

As it has already been mentioned above, the object we are interested in renomalizing is the TT
correlator < T̄µν(x)T̄ρσ(x′) >. After a rather lengthy computation performed in [1], the final result is

(4π)D

H2D−4
< T̄µν(x)T̄ρσ(x′) >=

[
α1G

d4G

dy4
+ α2

dG

dy

d3G

dy3
+ α3

(
d2G

dy2

)2
]
×
[
∂µy∂νy∂

′

ρy∂
′

σy
]

+

+

[
β1G

d3G

dy3
+ β2

dG

dy

d2G

dy2

]
×
[
∂(µy∂ν)∂

′

(ρy∂
′

σ)y
]

+

+

[
γ1G

d2G

dy2
+ γ2

(
dG

dy

)2
]
×
[
∂µ)∂

′

(ρy∂
′

σ)∂(νy
]

+

+H2

[
(2− y)δ11G

d3G

dy3
+ (2− y)δ12

dG

dy

d2G

dy2
+ δ21

(
dG

dy

)2

+ δ22G
d2G

dy2

]
×

×
[
ḡ
′

ρσ∂µy∂νy + ḡµν∂
′

ρy∂
′

σy
]

+H4
[
ḡµν ḡ

′

ρσ

]
×[

ε31G
d2G

dy2
+ ε33

(
dG

dy

)2

+ (4y − y2)ε11

(
dG

dy

)2

+ (2− y)ε21G
dG

dy
+ ε34G

2

]
(5.36)

where the coefficients which appear in the expectation value of the TT correlator are given in table
2.
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Table 2: Explicit values of the coefficients that appear in TT correlator (5.36)
α1 4ξ2

α2 −8ξ(1− 2ξ)
α3 2(1− 4ξ + 6ξ2)
β1 16ξ2

β2 4(1− 8ξ + 12ξ2)
γ1 8ξ2

γ2 2(1− 2ξ)2

δ11 4ξ2

δ12 D − 2− 8ξ(D − 1) + 4ξ2(4D − 1)
δ21 1−M2 + 4ξ(D − 1 + 2M2)− 4ξ2(3D − 1 + 4M2)
δ22 −M2 + 8M2ξ − 4ξ2(D + 1 + 4M2)

ε11
1
2

[
−(D − 1)2 + 2M2 + 4ξ

(
(2D − 1)(D − 1)− 4M2

)
− 8ξ2(2D2 − 2D + 1− 4M2)

]
ε31 16ξ2

ε34 M4 − 2M2ξ(D − 1 + 4M2) + 2ξ2

(
(D − 1)2 + 2M2(2D − 3) + 8M4

)
ε33 2(D2 −D − 4)− 16ξ(D2 − 3) + 16ξ2(2D2 + 2D − 3)
ε21 −(D − 1)M2 + 8DM2ξ − 4ξ2(D − 1 + 4(D + 1)M2)

where

M2 =
m2

H2
+D(D − 1)ξ (5.37)

3 comments :

First, we notice that the coefficients in the table depend on the physical parameters of our problem
(ξ, D, m and H) and they are independent of y(x;x′). This will be relevant in a bit and we will
return back to this point.

Second, notice that the TT correlator has been written in terms of 5 tensor structures each one
multiplied a coefficient which contains products of the scalar propagator and derivatives of it. As we
will soon show, these coefficients can be further simplified and collected in a clever way in order to
make the computation more tractable.

Third, the highest power derivative of the scalar propagator G(y) that appears in the TT correlator
is four. The existence of higher order derivatives than two, implies that the cubic vertex contribution
to graviton self energy will contain many more divergent terms compared to the massless minimally
coupled case. In the latter, third and fourth order derivatives were absent. This can be immediately
seen from the TT correlator above. Taking the limit ξ = 0 and m = 0, all the coefficients which
multiply d3G

dy3
and d4G

dy4
, vanish.
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5.3.3 Spin zero structure

Taking the trace of (5.10) , the tensor structure that multiplies the spin-2 structure function F2(y)
vanishes , so we obtain an expression for the spin-0 part of the graviton self energy, i.e

ḡµν ḡ
′
ρσ√

−g
√
−g′

(−ı) [Σµνρσ] (x;x′) ≡ ḡµν ḡ
′

ρσP
µν(x)P ρσ(x′)F0(y) = (D − 1)2

[
2 +DH2

]2
F0(y) (5.38)

Note that in the last equality above of (5.38), we do not care about the primed and unprimed box
operators since they act in the same way on the function y(x;x′).

Taking the trace of (5.7) or in other words, tracing the TT correlator, is a long computation which
can be found in Appendix B. Note that (5.9) is a local contribution to the self energy, so at this point
we do not need to take the trace of it. It will not contribute to the spin-zero part of the self energy.
The result of this computation is

ḡµν√
−g

ḡ
′ρσ√
−g′

(−ı) [Σµνρσ] (x;x′) ≡ −κ
2

4
ḡµν ḡ

′ρσ < T̄µν(x)T̄ρσ(x′) >=

= −κ
2

4

H2D

(4π)D

[
(4y − y2)2αR(y) + (4y − y2)(2− y)βR(y) +

(
4D − (4y − y2)

)
γR(y)+

+ 2D(4y − y2)δR(y) +D2εR(y)

] (5.39)

where the coefficients αR(y), βR(y), γR(y), δR(y), εR(y) are given in the table 3 below.

Table 3: Coefficients of (5.39). Their origin can be traced back to TT correlator (5.36)

• αR(y) = α1GG
′′′′

+ α2G
′
G
′′′

+ α3(G
′′
)2

• βR(y) = β1GG
′′′

+ β2G
′
G
′′

• γR(y) = γ1GG
′′

+ γ2(G
′
)2

• δR(y) = (2− y)δ11GG
′′′

+ (2− y)δ12G
′
G
′′

+ δ21

(
G
′)2

+ δ22GG
′′

• εR(y) = ε31GG
′′

+ ε33

(
G
′)2

+ (4y − y2)ε11

(
G
′)2

+ (2− y)ε21GG
′
+ ε34G

2

(5.40)

Note that they depend on y(x;x′) since they are written in terms of products of the scalar propagator
and its corresponding derivatives which explicitly depend on y(x;x′).
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Equating the relations (5.38) and (5.39) we find an equation for the spin zero structure

F0(y) =
−κ2H2D

4(D − 1)2(4π)D

[
2

H2
+D

]−2
[
G2Q9(y) +G′2

(
Q5(y)−Q4(y)

)
+

+ (G′′)2

(
Q3(y) +Q1(y)−Q2(y)

)
+ (G2)′

Q8(y)

2
+ (G2)′′

Q4(y)

2
+ (G2)′′′

Q6(y)

2
+

+ (G2)′′′′
Q1(y)

2
+
[
(G
′
)2
]′ (1

2
Q7(y)− 3

2
Q6(y)

)
+
[
(G
′
)2
]′′ (
−2Q1(y) +

Q2(y)

2

)] (5.41)

where the primes above denote derivates of the propagator G(y) with respect to y(x;x′). In order
to reach (5.41), we converted the expressions for the scalar propagator appearing in the coefficients
αR(y), βR(y), γR(y), δR(y), εR(y) according to the following table

Table 4: Scalar propagator → derivative manipulations

• GG′ = 1
2
(G2)

′

• GG′′ = 1
2
(G2)

′′ − (G
′
)2

• GG′′′ = 1
2
(G2)

′′′ − 3
2

[
(G
′
)2
]′

• GG′′′′ = 1
2
(G2)

′′′′ − 2
[
(G
′
)2
]′′

+ (G
′′
)2

• G′G′′ = 1
2

[
(G
′
)2
]′

• G′G′′′ = 1
2

[
(G
′
)2
]′′
− (G

′′
)2

(5.42)

In other words, we expressed them in terms of G2, (G′)2, (G′′)2 and their derivatives. The Qi(y)’s
that appear in (5.41), for i = 1, 2, ..., 9 are given in table 5. Note their explicit y dependence. Recall
that the various αi, βi, γi, δij and εij do not depend on y (table 2).

Table 5: Values for the Q′is that appear in equation (5.41)
• Q1(y) = (4y − y2)2α1

• Q2(y) = (4y − y2)2α2

• Q3(y) = (4y − y2)2α3

• Q4(y) = (4y − y2)(−γ1 + 2Dδ22) + 4Dγ1 +D2ε31

• Q5(y) = (4y − y2)(D2ε11 + 2Dδ21 − γ2) + 4Dγ2 +D2ε33

• Q6(y) = (4y − y2)(2− y)(β1 + 2Dδ11)
• Q7(y) = (4y − y2)(2− y)(β2 + 2Dδ12)
• Q8(y) = (2− y)ε21

• Q9(y) = ε34

(5.43)

Let’s pause for a moment and reflect a bit on what we have already obtained. The spin-0 function
F0(y), given by (5.41), is expressed in terms of G2, (G′)2 and up to 4 and 2 derivatives acting on
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those respectively. It is also written in terms of (G′′)2. These expressions contain terms which are
non integrable in D = 4 spacetime dimensions. Since our aim is to quantum correct the linearized
Einstein equation

√
−gDµνρσhρσ(x)−

∫
d4x′Σµνρσ

Ren (x;x′)hρσ(x′) = T µνlin(x)

the graviton self energy should contain only terms which are integrable in D = 4 dimensions. Con-
sequently, our next goal is to isolate those non-integrable terms that appear in the equation (5.41).
The process we followed was to find the explicit expression for G2 (by taking the square of (5.28)),
identify the non-integrable terms and recursively find the non-integrable terms for the more compli-
cated expressions of the propagator (for example for (G2)

′′′′
).

The expression for G2 is

G2 =
∞∑
l=0

Gl

(y
4

)l
+
∞∑
l=0

Fl

(y
4

)l+1−D
2

+
∞∑
l=0

Cl

(y
4

)l+2−D
(5.44)

where the coefficients Gl, Fl and Cl are given in terms of A, B, An, Bn which are defined at (5.29)-
(5.32).

Gl = A2

l∑
n=0

AnAl−n (5.45)

Cl = B2

l∑
n=0

BnBl−n (5.46)

Dl = 2AB
l∑

n=0

AnBl−n (5.47)

Note that the coefficient Gl that appears in equation (5.45) has nothing to do with the propagator
G(y). For every value of l, it corresponds to just a y-independent coefficient. We should also stress
once more that 1

D−4
terms reside inside Bn and A. We will come back to this at a later point. The

relevant values for our computation turn out to be the one given at Table 6 below.

Table 6: Values for the D′ls and C ′ls for l = 0, 1, 2, 3, 4
• D0 = 2AB
• D1 = 2AB(A1 +B1)
• D2 = 2AB(A2 +B2 + A1B1)
• D3 = 2AB(A3 +B3 + A2B1 + A1B2)
• C0 = B2

• C1 = 2B2B1

• C2 = B2(2B2 +B2
1)

• C3 = B2(2B3 + 2B1B2)
• C4 = B2(2B4 + 2B1B3 +B2

2)

(5.48)
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After a tedious calculation, we can rewrite equation (5.41) explicitly in terms of powers of y that are

not integrable in D = 4 dimensions, i.e terms of the form ( 4
y
)D+i for i = −2,−1, 0, ... and ( 4

y
)
D
2

+i for
i = 0, 1, 2... .These terms are the one’s we are primarily interested in, since the process of making them
integrable (by extracting d’Alembertian operators, check appendix E), will give rise to divergences.
The result of the computation is

F0(y) =
−κ2H2D

4(D − 1)2(4π)D

[
2

H2
+D

]−2
[
Z0(y)

(
4

y

)D
2

+ Z1(y)

(
4

y

)D
2

+1

+ Z2(y)

(
4

y

)D
2

+2

+

+ Z3(y)

(
4

y

)D
2

+3

+ Z4(y)

(
4

y

)D+1

+ Z5(y)

(
4

y

)D+2

+ Z6(y)

(
4

y

)D
+ Z7(y)

(
4

y

)D−2

+

+ Z8(y)

(
4

y

)D−1
]

(5.49)

The coefficients Zi(y) for i = 0, 1, 2, ..., 8 are complicated expressions of A, B, An’s, Bn’s, Qi’s, Fi’s,
and Ci’s as well as on the number of spacetime dimensions D. The explicit expressions can be found
in appendix C.

Important Remark :
Let’s have a closer look on (5.49). One can notice two different ”families” of powers, i.e

• Powers of the form ( 4
y
)
D
2

+i for i = 0, 1, 2, 3 and

• Powers of the form ( 4
y
)D+i for i = −2,−1, 0, 1, 2.

The former powers were absent in the massless minimally coupled case. Their presence in our work is
undesirable since they correspond to non-local contributions to the spin-0 structure function F0(y).
Our expectation is that these terms should disappear in our final formula for the spin-0 structure
function F0(y) (with coefficients which do not depend on y). Our work in the next subsection is
towards this direction.

As far as the ( 4
y
)D+i terms are concerned, the method we will use to make the coefficients Zi(y)

independent of y, will reduce the powers of D. After this procedure, D’Alembertian operators can
be extracted in order to end up with integrable powers of ( 4

y
)D+i, i.e for i < −2. By doing this,

divergences will appear which should be substracted off by local counterterms, as already performed
for the massless minimally coupled case in [14] and partially performed (for the quartic contributions
to the graviton self energy) in [1]. More details on the method of extracting d’Alembertian operators
can be found in appendix E.
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5.3.4 y-independent coefficients for the D
2 powers

As already mentioned, the spin zero structure F0(y) is written in terms of D
2

-dependent powers.
Moreover, the coefficients Zi(y) for i = 1, 2, ..., 9 contain the Qi(y)′s which depend on y (see table 5).
Our aim is to obtain an expression for the spin zero structure F0(y) in powers of y multiplied with
coefficients which are independent of y. To demostrate this, we take the part of (5.49) which we are
interested in manipulating at this subsection, i.e

Z0(y)

(
4

y

)D
2

+ Z1(y)

(
4

y

)D
2

+1

+ Z2(y)

(
4

y

)D
2

+2

+ Z3(y)

(
4

y

)D
2

+3

=

= 4
D
2

[
Z0(y)

(
1

y

)D
2

+ 4Z1(y)

(
1

y

)D
2

+1

+ 16Z2(y)

(
1

y

)D
2

+2

+ 64Z3(y)

(
1

y

)D
2

+3
]

(5.50)

For each Zi(y), with i = 0, 1, 2, 3, we introduce a new notation which aims to show the explicit
y-dependence of each coefficient.

Z0(y) = Z
(0)
0 y0 + Z

(1)
0 y1 + Z

(2)
0 y2 + Z

(3)
0 y3 + Z

(4)
0 y4 (5.51)

By doing this, the y dependence of the initial Z0(y) has been extracted, leaving coefficients Z
(i)
0 for

i = 0, 1, .., 4, independent of y. The reason why in (5.51) up to 4th order powers of y appear, is a
result of a complicated computation done using Mathematica.

This decomposition allows us to reduce the D
2

+ i powers, for i = 0, 1, 2, 3 that appear in the expres-
sion for the spin zero structure function F0(y) (5.49).

To make this explicit, the result of the decomposition (5.51) when multiplied with
(

1
y

)D
2

is :

Z0(y)

(
1

y

)D
2

= Z
(0)
0

(
1

y

)D
2

+ Z
(1)
0

(
1

y

)D
2
−1

+ Z
(2)
0

(
1

y

)D
2
−2

+ Z
(3)
0

(
1

y

)D
2
−3

+ Z
(4)
0

(
1

y

)D
2
−4

(5.52)

Following the same procedure for the remaining coefficients we get :

Z1(y)

(
1

y

)D
2

+1

= Z
(0)
1

(
1

y

)D
2

+1

+Z
(1)
1

(
1

y

)D
2

+Z
(2)
1

(
1

y

)D
2
−1

+Z
(3)
1

(
1

y

)D
2
−2

+Z
(4)
1

(
1

y

)D
2
−3

(5.53)

Z2(y)

(
1

y

)D
2

+2

= Z
(1)
2

(
1

y

)D
2

+1

+ Z
(2)
2

(
1

y

)D
2

+ Z
(3)
2

(
1

y

)D
2
−1

+ Z
(4)
2

(
1

y

)D
2
−2

(5.54)

Z3(y)

(
1

y

)D
2

+3

= Z
(2)
3

(
1

y

)D
2

+1

+ Z
(3)
3

(
1

y

)D
2

+ Z
(4)
3

(
1

y

)D
2
−1

(5.55)
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The y-independent coefficients appearing in (5.52)-(5.55) has been obtained using Mathematica and

are given in appendix D. Note that the coefficients Z
(0)
2 , Z

(0)
3 and Z

(1)
3 do not appear in (5.54) and

(5.55). This is a result coming from simplifying the expressions for Z2(y) and Z3(y) in Mathematica.

Introducing this notation, there are reductions in the powers. In other words, ( 4
y
)
D
2

+2 and ( 4
y
)
D
2

+2

have disappeared.

Plugging (5.52)− (5.55) into (5.50) and organizing in terms of powers ( 1
y
)
D
2

+i we get

4
D
2

[
Z0(y)

(
1

y

)D
2

+ 4Z1(y)

(
1

y

)D
2

+1

+ 16Z2(y)

(
1

y

)D
2

+2

+ 64Z3(y)

(
1

y

)D
2

+3
]

=

= 4
D
2

[
E1

(
1

y

)D
2

+1

+ E2

(
1

y

)D
2

+ E3

(
1

y

)D
2
−1

+ E4

(
1

y

)D
2
−2

+ E5

(
1

y

)D
2
−3

+ E6

(
1

y

)D
2
−4
]

(5.56)
where the E ′is are given in the table below.

Table 6: y-independent coefficients for l=0,1,2,3,4

• E1 = 4Z
(0)
1 + 16Z

(1)
2 + 64Z

(2)
3

• E2 = Z
(0)
0 + 4Z

(1)
1 + 16Z

(2)
2 + 64Z

(3)
3

• E3 = Z
(1)
0 + 4Z

(2)
1 + 16Z

(3)
2 + 64Z

(4)
3

• E4 = Z
(2)
0 + 4Z

(3)
1 + 16Z

(4)
2

• E5 = Z
(3)
0 + 4Z

(4)
1

• E6 = Z
(4)
0

(5.57)

• Recap

F0(y) ∝ Qi(y)

F0(y) ∝ Zi(y)

F0(y) ∝ Ei

67



The flow chart above shows the route we followed in order to obtain coefficients independent of
y for the spin zero function F0(y). We first wrote F0(y) in terms of the Qi(y)′s (relation 5.41). Next,
we expressed the F0(y) in terms of D

2
and D powers of y (relation 5.49) with coefficients Zi(y). Finally,

decomposing each Zi(y) according to (5.51) we ended up to (5.56) which contains no y-dependent
coefficients Ei.

Check

At this point we would like to check whether our result (5.56) recovers the result found by Woodard

and Park [14]. Their result for the spin zero F0(y) contains no powers of the form ( 1
y
)
D
2

+i for i = 0, 1.
By setting m = 0 and ξ = 0, the coefficients E1 and E2 indeed vanish. This can be easily seen by
observing the coefficients in appendix D. Every term is multiplied either with ξ or with m. Therefore,
setting them to zero, the result of [14] is recovered. The other terms, i.e ( 1

y
)
D
2

+i for i = −4,−3,−2,−1

are integrable in D = 4. Therefore, after checking that there are no 1
D−4

multiplying them, we can
set D = 4 and obtain a finite contribution to the spin zero structure function F0(y).

In case they contain 1
D−4

divergences, then one can combine them with terms of the form ( 1
y
)D+i.

This is an important thing which needs more clarification.

Let’s assume that a term of the following form appears

1

D − 4

(
1

y

)D
2
−1

(5.58)

Although the term is integrable in D = 4, obviously we cannot set D = 4 due to 1
D−4

that appears.

By working the terms ( 1
y
)D+i, a term of the form

1

D − 4

(
1

y

)D−3

(5.59)

may appear. Note that again, in this term, we cannot set D = 4 even though it is integrable in
D = 4. Combining (5.58) and (5.59) we obtain

1

D − 4

[(
1

y

)D−3

−
(

1

y

)D
2
−1
]

=
1

D − 4

(
1

y

)D
2
−1
[(

1

y

)D
2
−2

− 1

]

=
1

D − 4

(
4

y

)D
2
−1[
−(D − 4)

2
ln
(y

4

)]
= −1

2

(
4

y
ln
(y

4

))
(5.60)

Therefore, we see that combining these two types of powers, (5.58) and (5.59), the divergences disap-
pear. In particular, in appendix E, we show that combining these powers, we localize the divergences
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onto δ function terms. In turn, those terms can be subtracted by adding local counterterms. For
further details, we refer the reader to appendix E.

Result

One important result we obtained is the fact that E1 coefficient vanishes. This means that there are
no non-local ( 1

y
)
D
2

+1 contributions to F0(y). We expect that also E2 should vanish. However, it turns
out that, although the extremely complicated initial expression simplifies a lot, the result is still non
zero. We suspect during the whole computation there exist a numerical mistake which leads to the
non-zero coefficient E2. The computation which we performed is extremely sensitive in the sense that
just a numerical factor in front of an expression, can change significantly the result. Neverthless, the
fact that E1 indeed vanish is a good sign that our calculation is on the right way. Our starting point
for future work is to identify the mistake and show that E2 vanishes, as expected.

69



Chapter 6

Conclusions and Future work

In this thesis, we focused our attention on the cubic contribution to the graviton self energy due
to massive non minimally coupled scalar fields in de-Sitter background. In particular, we made
some important first steps towards the renormalization of the TT correlator. It turns out that the
non minimally coupling as well as adding mass to the scalar field, make regularization procedure a
cumbersome computation. Since our goal is to quantum correct the linearized Einstein’s equations

√
−ḡDµνρσhρσ(x)−

∫
d4x′Σµνρσ

Ren (x;x′)hρσ(x′) = T µνlin(x)

the renormalized self energy should be an integrable function in D = 4 dimensions [14]. To reach that
point, one should extract d’Alembertian operators. It turns out that in the MNMC case, higher order
derivatives contribute to the self energy (check first two lines in (5.36)) and in order to make those
contributions integrable, we should extract many more d’Alembertians than the massless minimally
coupled case. We managed to bring the spin zero structure function F0(y) which is almost ready for
renormalization. There are two natural steps that should be done before. Firstly, we should show
that the coefficient E2 indeed vanishes (5.56). This term , ( 1

y
)
D
2 , is a non-local contribution to the

graviton self energy which we cannot renormalize in the BPHZ sense [59] [60], in other words, adding

local counterterms to the initial action. The ( 1
y
)
D
2

+1 term which appeared in our final reduction,
indeed vanishes, as expected. This signals that our computation is on the right way. Next natural
step, is to reduce all the D dependent powers appearing in (5.49). This can be done and we expect
that no difficulties will arise.

Our final goal is to use the renormalized graviton self energy and see whether massive non mini-
mally coupled scalar fields have a significant effect on gravitons at 1-loop order. This can be done
using the so-called Schwinger-Keldysh formalism [29]. Then, since we only computed the 1-loop cor-
rection to the graviton self-energy, we can solve the linearized Einstein’s equation perturbatively up
to order O(κ2). In other words, we expand the graviton field hµν as well as the renormalized graviton
self energy in powers of κ2

hµν = h(0)
µν + κ2h(1)

µν +O(κ4)
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[
Σµνρσ
ren (x;x′)

]
Retarded

= κ2

[
Σµνρσ

(1) (x;x′)

]
+O(κ4)

where

h(0)
µν = εµν(k)u0(η,k)eikx

solves the classical Einstein equation (expansion up to zeroth order in κ) and εµν the polarization
tensor of the graviton. The mode functions of the classical solution u0(η,k) are given by

u0(η,k) =
H√
2k3

[
1− ik

Hα

]
e
ik
Hα

Or equivalently,

u0(η,k) =
H√
2k3

(
1 + ikη

)
e−ikη

where in order to obtain the latter, we have set

α = − 1

Hη

which is the form of the scale factor α(η) in a de-Sitter background.

Expanding up to first order in κ2, we obtain an equation for the 1-loop correction (in absence of
a stress-energy tensor on the right hand side)

√
−ḡDµνρσh(1)

ρσ (x)−
∫
d4x′Σµνρσ

(1) (x;x′)h(0)
ρσ (x′) = 0

Woodard, Park, Prokopec and Leonard [15][61] showed that for the MMC case, there are no sig-
nificant late time effects on gravitons. This is an expected result since MMC scalars and gravitons
couple via a derivative term (the kinetic energy of the MMC scalar). But since inflation produce a
vast ensemble of infrared scalars [10][11][12][13], this vertex experience a suppresion which naturally
leads to the null effect found by the authors mentioned above.

For our case, i.e for a massive non minimally coupled scalars, we expect that there will be sig-
nificant effect on the propagation of the dynamical gravitons. This is because there is a coupling
between the gravitons and MNMC via the effective mass

m2
eff = m2 + ξR

which does not redshift.
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Appendix A

Massive scalar propagator in dS contains
no divergences at D=4 limit

The scalar propagator is given by

G(y) = A
∞∑
n=0

An

(y
4

)n
+B

∞∑
n=0

Bn

(y
4

)(n+1−D
2

)

(A.1)

where the expressions for A, B, An and Bn are given by (5.29)-(5.32). Recall that the terms which
contain 1

D−4
divergence are Bn for every n > 0 and A. Extracting the 0th order from the second sum

and renaming the index we can rewrite the propagator as

G(y) = BB0

(y
4

)1−D
2

+
∞∑
n=0

[
AAn +BBn+1

(y
4

)2−D
2

](y
4

)n
(A.2)

But: (y
4

)2−D
2

= 1− D − 4

2
ln
(y

4

)
+O

(
(D − 4)2

)
(A.3)

First of all, the first term in (A.2) contains no divergences when we expand around D = 4 since
B0 = 1 and B = Γ(D

2
− 1). The expression in the square bracket of (A.2) contains at most 1

D−4

divergence due to the presence of A and Bn+1. Therefore, combining with (A.3), and neglecting
terms O ((D − 4)0) we get:

G(y) =
∞∑
n=0

[AAn +BBn+1]
(y

4

)n
(A.4)

The next step is to expand each quantity that appears on AAn + BBn+1 around D = 4. To do so,
we need to make use of the following

Γ(D−3
2
− νD)Γ(D−3

2
+ νD)

Γ(1
2
− νD)Γ(1

2
+ νD)

= 1 +
D − 4

2

[
ψ

(
1

2
+ ν

)
+ ψ

(
1

2
− ν
)]

(A.5)
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Γ

(
1− D

2

)
=

2

D − 4

[
1 +

D − 4

2
(−1 + γE)

]
(A.6)

Γ

(
D

2
− 1

)
= 1− D − 4

2
γE (A.7)

(
D − 3

2

)2

− ν2
D =

(
1

4
− ν2

)[
1 +

D − 4

2

(
1− δν2

1
4
− ν2

)]
(A.8)

where ψ(z) is the so-called digamma function which does not have divergence at D = 4. Plugging
(A.5)-(A.8) back to (A.4), we obtain

AAn +BBn+1 =
HD−2

(4π)
D
2

2

D − 4

[
An −

1

(n+ 1)!

(
3
2

+ ν
)
n

(
3
2
− ν
)
n

(3− D
2

)n

]
=

=
HD−2

(4π)
D
2

2

D − 4

1

n!

[(
D−1

2
+ νD

)
n

(
D−1

2
− νD

)
n(

D
2

)
n

(
(D − 3)2

4
− ν2

D

)
−

1
4
− ν2

D

n+ 1

(
3
2

+ νD
)
n

(
3
2
− νD

)
n

(3− D
2

)n

]
(A.9)

where in the last line we used the identity for the Pochammer symbols an+1 = a(a+ 1)n in order to
show that

Bn+1 =
1

(n+ 1)!

(
1
2

+ νD
)
n+1

(
1
2
− νD

)
n+1

(2− D
2

)n+1

=
(1

4
− ν2

D)(−2)

n!(D − 4)

1

n+ 1

(
3
2

+ νD
)
n

(
3
2
− νD

)
n

(3− D
2

)n

It is easy to check that taking the limit D→ 4 of the square bracket in (A.9), gives zero for every
n = 0, 1, 2, .... Therefore, the propagator G(y) is finite (since the numerator tends to zero in the
D = 4 limit and the same for the denominator in (A.9)). We thus conclude that the graviton prop-
agator contains no 1

D−4
divergences when we take the limit D → 4.
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Appendix B

Tracing the TT-correlator

Recall the de Sitter length function y(x;x′) given in (5.11). In order to compute the trace of the TT
correlator we need to make use of the following identities [1][62]

∂µy∂
µy = ∂

′

µy∂
′µy = H2(4y − y2) (B.1)

(∂µy)(∂µ∂′νy) = H2(2− y)∂
′νy (B.2)

(∂′σy)(∂µ∂′σy) = H2(2− y)∂µy (B.3)

(∂µ∂′σy)(∂
′σ∂ρy) = 4H4gµρ −H2(∂µy)(∂ρy) (B.4)

(∂
′µ∂σy)(∂σ∂

′ρy) = 4H4g
′µρ −H2(∂

′µy)(∂
′ρy) (B.5)

∇ρ∂
µy = H2(2− y)δµρ (B.6)

∇′ρ∂
′µy = H2(2− y)δµρ (B.7)

∇µ∂
µy ≡ 2y = DH2(2− y) (B.8)

∇′µ∂
′µy ≡ 2

′
y = DH2(2− y) (B.9)

The TT correlator (5.36) consists of 5 tensor structures. Our goal is trace each tensor structure
and end up with relation (5.39). In the derivation of the following we make use of the identities
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(B.1)-(B.9).

gµνg
′ρσ
[
∂µy∂νy∂

′

ρy∂
′

σy
]

= ∂µy∂
µy∂

′

ρy∂
′ρy = H4(4y − y2)2 (B.10)

gµνg
′ρσ
[
∂(µy∂ν)∂

′

(ρy∂
′

σ)y
]

= ∂(νy∂ν)∂
′

(ρy∂
′ρ)y = H2(2− y)∂(νy∂ν)y = H4(2− y)(4y − y2) (B.11)

gµνg
′ρσ
[
∂µ)∂

′

(ρy∂
′

σ)∂(νy
]

= 4DH4 −H2∂ν)y∂(νy = H4[4D − (4y − y2)] (B.12)

gµνg
′ρσ
[
H4gµνg

′

ρσ

]
= H4D2 (B.13)

gµνg
′ρσH2

[
∂µy∂νyg

′

ρσ + gµν∂
′

ρy∂
′

σy
]

= 2DH4(4y − y2) (B.14)

Therefore, the trace of the TT correlator is given by

− 4

κ2

ḡµν√
−g

ḡ
′ρσ√
−g′

(−ı) [Σµνρσ] (x;x′) ≡ ḡµν ḡ
′ρσ < T̄µν(x)T̄ρσ(x′) >=

=
H2D

(4π)D

[
(4y − y2)2αR + (4y − y2)(2− y)βR +

(
4D − (4y − y2)

)
γR + 2D(4y − y2)δR +D2εR

]
(B.15)

with the coefficients given at table 3.
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Appendix C

Z(y) coefficients in (5.49)

In this appendix, the values of the coefficients that appear in (5.49) for the spin zero structure
function F0(y) are given. As the reader can notice, these coefficients Zi(y) have pretty complicated
expressions. They are written in terms of the coefficients Qi(y) that are given in table 5. In turn,
these Qi(y) are combination of the coefficients in table 2. We are interested in isolating potentially
divergent terms 1

D−4
. To do so, we need to identify which coefficients, when expanded around D = 4,

can cause these divergences.

First of all, by observing table 2 and table 5, we immediately conclude that the Qi(y)’s cannot
lead to divergences. Moreover, An’s are also free of divergences (check table 1). As far as the Bn

coefficients are concerned, from table 1, we see that terms 1
D−4

appear for every n > 0. The way we
treated them in our computation was to redefine each coefficient Bn in the following way:

Bn = B̄n
1

2− D
2

(C.1)

for i = 1, 2, 3, 4. The explicit expressions for the B̄i’s are the following

B̄1 =
1

4
− ν2

D (C.2)

B̄2 =

(
1
4
− ν2

D

) (
9
4
− ν2

D

)
6−D

(C.3)

B̄3 =

(
1
4
− ν2

D

) (
9
4
− ν2

D

) (
25
4
− ν2

D

)
6(3− D

2
)(4− D

2
)

(C.4)

B̄4 =

(
1
4
− ν2

D

) (
9
4
− ν2

D

) (
25
4
− ν2

D

) (
49
4
− ν2

D

)
24(3− D

2
)(4− D

2
)(5− D

2
)

(C.5)
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where the coefficients B̄1,B̄2,B̄3,B̄4 are explicitly free of divergences at D = 4 limit. Notice that these
coefficients appear in almost all the Zi(y)’s, i.e for almost every i.

As it has already been pointed out before (check remark in subsection (5.3.1)), the coefficient A,
that appears in the Zi(y) for i = 0, 1, 2, 3, contains a term Γ(1 − D

2
). This term, when expanded

around D = 4, leads to a term ∝ 1
D−4

. Notice that A appears in the Zi(y)’s for i = 0, 1, 2, 3. Finally,
the B coefficient which appears in the Zi(y) for i = 4, 5, 6, 7, 8, when expanded around D = 4, brings
no 1

D−4
terms (check appendix A, relation A.7).

A last thing which should be stressed is that the way we wrote down the coefficients is organized
in terms of powers of D − 4. For instance, let’s have a look on the coefficient Z0(y) (C.6). We
can immediately see that when we expand A (which multiplies the whole expression in the square
bracket) around D = 4, Z0(y) is written schematically in the form

Z0(y) =
1

D − 4
Z
′

0(y) + (D − 4)0Z
′′

0 (y) +O(D − 4)

where Z
′
0(y) and Z

′′
0 (y) some divergence-free coefficients which can be read off from (C.6). The terms

which are of order O(D−4) have been neglected since when we set D = 4, they vanish. On the other
hand, terms O((D − 4)0) have been kept, since at the D = 4 limit, they correspond to a constant
contribution to the spin zero structure function F0(y).

Above, the explicit coefficients are given:

Z0(y) = 2AB
(1− D

2
)

4

[(
Q5(y)−Q4(y)

)
A1

4
+

1

8

(
Q1(y) +Q3(y)−Q2(y)

)(
3A3

(−D
2

)

4
+ A2

B̄1

4

)
+
Q8(y)

2
+

+
Q4(y)

2

B̄1

4
+
Q6(y)

2
(A1B̄1 + B̄2)

(3− D
2

)

16
+

1

2

(
Q7(y)− 3Q6(y)

)(
1

16
A1B̄1 +

1

8
A2

(1− D
2

)

4

)
+

+

(
−2Q1(y) +

Q2(y)

2

)
1

16
A1B̄2

(3− D
2

)

4
+
Q1(y)

8

(4− D
2

)

4

(3− D
2

)

4

(
A1B̄2 + A2B̄1 + B̄3

)
+

+
(2 − D

2
)

4

(
Q4(y)

2
A1 +

(
−2Q1(y) +

Q2(y)

2

)(
1

8
A2B̄1 +

6A3

8

(1− D
2

)

4

)
+ A2

Q6(y)

2

(3− D
2

)

4
+

+ A3
Q1(y)

2

(4− D
2

)

4

(3− D
2

)

4

)]
(C.6)
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Notice that when we expand A around D = 4, Z0(y) will contain a term proportional to 1
D−4

and a
term proportial to (D − 4)0.

Z1(y) = 2AB
(1− D

2
)

4

(−D
2

)

4

[
Q4(y)

2
+
Q1(y)

2

(3− D
2

)

16

(
A1B̄1 + B̄2

)
+
Q6(y)

8
B̄1+

+

(
Q7(y)− 3Q6(y)

)
A1

8
+

(
−2Q1(y) +

Q2(y)

2

)(
1

16
A1B̄1 +

A2

2

(1− D
2

)

4

)
+

+

(
Q1(y) +Q3(y)−Q2(y)

)
A2

8
+

(2 − D
2

)

4

(
Q6(y)

2
A1 +

Q1(y)

2
A2

(3− D
2

)

4

)] (C.7)

Z2(y) = 2AB
(1− D

2
)

4

(−D
2

)

4

(−1− D
2

)

4

[
Q6(y)

2
+
A1

4

(
−2Q1(y) +

Q2(y)

2

)
+
Q1(y)

8
B̄1+

+
Q1(y)A1

8

(2 − D
2

)

4

] (C.8)

Z3(y) = 2AB
(1− D

2
)

4

(−D
2

)

4

(−1− D
2

)

4

(−2− D
2

)

4

Q1(y)

2
(C.9)

Z4(y) = B2

[
Q6(y)

2

(2−D)

4

(1−D)

4

(−D)

4
+

1

2

(
Q7(y)− 3Q6(y)

)
(1− D

2
)2

16

(−D)

4
+

+

(
−2Q1(y) +

Q2(y)

2

)
(1−D)

4

(−D)

4

B̄1

2

(1− D
2

)

4
+

(
Q1(y) +Q3(y)−Q2(y)

)
B̄1

2

(−D
2

)

4

(1− D
2

)2

16
+

+Q1(y)B̄1
1

(2 − D
2

)

(3−D)

4

(2−D)

4

(1−D)

4

(−D)

4

]
(C.10)

Z5(y) = B2

[
Q1(y)

2

(2−D)

4

(1−D)

4

(−D)

4

(−1−D)

4
+

(
−2Q1(y) +

Q2(y)

2

)
(−D)
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Z6(y) = B2

[(
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2
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4
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+
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Q2(y)

2

)
(2−D)

4

(1−D)

4

(B̄1)2
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4

)
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+
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Q1(y)

(B̄1)2

4

(3−D)

4
+Q6(y)B̄1

(3−D)

4
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Q2(y)

2
)2B̄2

(1− D
2

)

4

(3− D
2

)

4
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(C.12)
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[
(Q4 −Q5)

(1− D
2

)

4

B̄1

2
+ (Q1 +Q3 −Q2)
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Appendix D

Z(y) decomposition

Recall that we decomposed each coefficient Zi(y) for (i = 0, 1, 2, 3)

Zi(y) = Z
(0)
i y0 + Z

(1)
i y1 + Z

(2)
i y2 + Z

(3)
i y3 + Z

(4)
i y4 (D.1)

• For i = 2:

Z2(y) = Z
(0)
2 y0 + Z

(1)
2 y1 + Z

(2)
2 y2 + Z

(3)
2 y3 + Z

(4)
2 y4 (D.2)

where

Z
(4)
2 =

(D2 − 4) ξ

4096

[
(D − 2)D2ξ − 4M2(Dξ − 4)

]
(D.3)

Z
(3)
2 =

(D2 − 4) ξ

4096

[
−4(D − 2)D2ξ − 4(D + 6)D2ξ + 32M2(Dξ − 4)− 64Dξ

]
(D.4)

Z
(2)
2 =

(D2 − 4) ξ

4096

[
16(D + 6)D2ξ − 64M2(Dξ − 4) + 64(D + 2)Dξ + 256Dξ

]
(D.5)

Z
(1)
2 = − 1

16

(
D2 − 4

)
D(D + 2)ξ2 (D.6)

Z
(0)
2 = 0 (D.7)

• For i = 3:
Z3(y) = Z

(0)
3 y0 + Z

(1)
3 y1 + Z

(2)
3 y2 + Z

(3)
3 y3 + Z

(4)
3 y4 (D.8)

where
Z

(0)
3 = Z

(1)
3 = 0 (D.9)

Z
(2)
3 =

1

128
(D2 − 4)D(D + 4)ξ2 (D.10)

Z
(3)
3 = − 1

256
(D2 − 4)D(D + 4)ξ2 (D.11)
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Z
(4)
3 =

(D2 − 4)D(D + 4)ξ2

2048
(D.12)

• For i = 1:
Z1(y) = Z

(0)
1 y0 + Z

(1)
1 y1 + Z

(2)
1 y2 + Z

(3)
1 y3 + Z

(4)
1 y4 (D.13)

where

Z
(0)
1 =

1

8
(D2 − 4)D2ξ2 (D.14)

Z
(1)
1 =

D − 2

32

[
−Dξ2

{
8 + 4D +D2(8 +D)

}
+ 4M2 {1− 8ξ −D +Dξ(4 + ξ(D − 6))}

]
(D.15)

Z
(2)
1 =

D − 2

1024(D + 2)H4

[
−32(D + 2)(D2 − 3D + 3)H4M2 + 128m2(DH2 +m2)+

(D + 2)H4ξ2

(
−16(D − 12)M4 + 16D(44− 41D)M2 +D2(D + 4)(D(D + 16)− 4) + 64D

)
+

32ξ

(
−4(D + 2)H4M4 + (D + 2)((9D2 − 14D) + 24)H4M2 + 4(D − 2)m2(DH2 +m2)

)]
(D.16)

Z
(3)
1 =

(D − 2)

2048(D + 2)H4

[
16(D3 − 2D + 4)H4M2 − 128m2(DH2 +m2)−

(D + 2)H4ξ2

(
D2(D − 2(D + 2)(D + 4)− 16(D − 12)M4 + 16D(20− 21D)M2

)
−

− 32ξ

(
−4(D + 2)H4M4 + (D + 2)(5D2 − 6D + 8)H4M2 + 4m2(D − 2)(DH2 +m2)

)]
(D.17)

Z
(4)
1 =

(D − 2)

16384(D + 2)H4

[
128m2(DH2 +m2)−

(D + 2)H4ξ2

(
(D2 − 2D − 4M2)(4M2(D − 12) +D(D + 2)(D − 4))

)
−

+ 32ξ

(
−4(D + 2)H4M4 +D(D + 2)(D − 2)H4M2 + 4m2(D − 2)(DH2 +m2)

)] (D.18)
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• For i = 0:

Z0(y) = Z
(0)
0 y0 + Z

(1)
0 y1 + Z

(2)
0 y2 + Z

(3)
0 y3 + Z

(4)
0 y4 (D.19)

where

Z
(0)
0 =

D − 2

16

[
ξ2(D4 − 4D2 + 8D − 8)− 16DM2ξ+

+ 2M2

(
−D3 +D2 + 5D − 5 + 8ξ(D + 2)(D − 1)2 + 2ξ2(8 + 22D − 9D2 − 8D3)

)] (D.20)

Z
(1)
0 =− D − 2

128D(D + 2)H4

[
+ξ2

(
(D5 + 16D4 + 16D2 − 64D2 + 16 + 32D − 64)DH4

− 256D2(D − 2)(D − 1)H2m2 − 256D(D − 2)(D − 1)m4 + 16(D + 2)(31D2 − 6D + 24)H4M4−

16D(D + 2)(16D3 − 13D2 + 42D − 52)H4M2

)
− 8(D − 1)(D + 2)(2D3 − 3D2 +D − 8)H4M2+

32ξ

(
−4(2D3 + 3D2 + 4)H4M4 + (4D5 +D4 + 16D2 − 16D + 16)H4M2+

4(D − 2)(D2 −D + 2)m2(DH2 +m2)

)
+ 32(D + 2)(D2 −D + 1)H4M4−

16(D − 2)(D2 − 2D + 2)m2(DH2 +m2)− 64D2(D + 2)H4M2ξ

]
(D.21)

Z
(2)
0 =

(1− D
2

)

3072

[
− 1536m6

(D2 + 6D + 8)H6
+

1

D

(
−(D − 2)D2(D(D(D(D + 32) + 164)− 176)− 192)ξ2−

− 128M6ξ((D − 12)ξ + 6) + 16M4

(
(D(3(D − 262)D + 320)− 672)ξ2 + 24(D(17D − 14) + 20)ξ−

− 24(D(2D − 3) + 3)

)
+ 16M2

(
2D(D(7D(21D − 29) + 370)− 384)ξ2−

− 3(D(D(D(49D − 108) + 172)− 144) + 64)ξ + 6(D − 2)(D(3(D − 1)D + 5)− 4)

))
+

+
48m2

D(D + 2)(D + 4)H4

(
m2 +DH2

)
× Coeff

]
(D.22)
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where

Coeff =

(
4(3D4 − 2D3 − 58D2 + 8(D + 4)M2 + 60D − 48)−

− (D + 4)ξ2

(
(D − 2)(D3 − 206D2 + 240D)− 4(D − 8)(D − 6)M2

)
−

96(D − 2)(D + 4)(D2 −D + 2)ξ

) (D.23)

Z
(3)
0 =

1− D
2

6144D

[
384m2(m2 +DH2)

(D + 2)(D + 4)H6

(
D2(D + 10)H2 + 4Dm2 − 4(D + 4)H2M2

)
+

+ 48M2ξ

(
(D2 − 2D − 4M2)(D2 − 2D − 4M2 − 8)

)
+
ξ2(D2 − 2D − 4M2)

(D + 2)H4

(
(D − 6)(

D(D2 − 16)(D + 2)2H4 + 48(D − 8)m2(m2 +DH2)

)
+ 4(D + 2)(192 + 56D +D2(D − 26))H4M2−

− 32(D − 12)(D + 2)H4M4

)
+ 12(D + 2)ξ2(D2 − 2D − 4M2)

(
D(D + 2)(D − 4)

+ 4(D − 12)M2

)
+

48

(D + 2)H4

(
4(D − 2)m2(m2 +DH2) +D(D2 − 4)H4M2 − 4(D + 2)H4M4

)
(

2− 16ξ + (−2D +D2(1− 4ξ)2) + 8ξ(1− 2ξ)

)]
(D.24)

Z
(4)
0 =

1− D
2

49152D

[
−384m2(m2 +DH2)

(D + 2)(D + 4)H6

(
D2(D + 10)H2 + 4Dm2 − 4(D + 4)H2M2

)
−

− 48M2ξ

(
(D2 − 2D − 4M2)(D2 − 2D − 4M2 − 8)

)
+
ξ2(−D2 + 2D + 4M2)

(D + 2)H4(
(D − 6)

(
D(D2 − 16)(D + 2)2H4 + 48(D − 8)m2(m2 +DH2)

)

+ 4(D + 2)(192 + 56D +D2(D − 26))H4M2 − 32(D − 12)(D + 2)H4M4

)]
(D.25)
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Appendix E

Extracting D’Alembertians

The aim of this appendix is to outline the way we extract d’Alembertian operators. This method
is extremely relevant for the purposes of this thesis, since the strategy is to extract d’Alembertian
operators until the right hand side of (5.49) is integrable at D = 4. At this point, one can set D = 4
(Of course if there are no 1

D−4
factor).

The master formula we use is[
2

H2
+D

]
f(y) = (4y − y2)f

′′
(y) +D(2− y)f

′
+Df (E.1)

For f(y) ∝ ( 4
y
)
D
2
−1, this identity produces a delta function [1][63]

[
2

H2
− D(D − 2)

4

](
4

y

)D
2
−1

− (4π)
D
2

Γ(D
2
− 1)

ıδD(x− x′)
HD
√
−ḡ

= 0 (E.2)

This identity is extremely useful since it allows us to localize the 1
D−4

divergences onto local δ function
terms. To illustrate this, during our computation there will be terms of the form

1

D − 4

[
2

H2
− D(D − 2)

4

](
4

y

)D−3

(E.3)

Adding zero in (E.3) and using (E.2), we end up with

1

D − 4

[
2

H2
− D(D − 2)

4

]((
4

y

)D−3

−
(

4

y

)D
2
−1
)

+
(4π)

D
2

Γ(D
2
− 1)

ıδD(x− x′)
HD
√
−ḡ

1

D − 4
=

= −1

2

[
2

H2
− 2

](
4

y
ln
(y

4

))
+O(D − 4) +

(4π)
D
2

Γ(D
2
− 1)

ıδD(x− x′)
HD
√
−ḡ

1

D − 4
(E.4)
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In order to show (E.4) we used that

1

D − 4

[(
4

y

)D−3

−

(
4

y

)D
2
−1]

=
1

D − 4

(
4

y

)D
2
−1[(

4

y

)D
2
−2

− 1

]

=
1

D − 4

(
4

y

)D
2
−1[
−(D − 4)

2
ln
(y

4

)]
= −1

2

(
4

y
ln
(y

4

))
(E.5)

where in order to go from the second equality to the third, we expand the function ( 4
y
)
D
2
−2 around

D = 4− ε, for ε → 0 . (
4

y

)D
2
−2

− 1 = eln( 4
y

)(D
2
−2) − 1 = −D − 4

2
ln

4

y

Notice that the 1
D−4

factor in (E.3) has been localized onto a delta function term. By adding the
appropriate local counterterms [14][1][64][65][33], we subtract these terms.

For f(y) ∝ ( 4
y
)p−2, by making use of (E.1) and performing some algebra, we find the important

formula [ 2

H2
+D

]2
(

4

y

)p−2

= (p− 1) (p− 2)

(
p− D

2

)(
p− 1− D

2

)(
4

y

)p
+

+(p− 2)

(
p− 1− D

2

)[
D(2p− 1)− 2(p− 1)2

](
4

y

)p−1

+ (p− 1)2(D − p+ 2)2

(
4

y

)p−2

(E.6)

Or equivalently, we can write (E.5) in the following way

[ 2

H2
+D

]−2
(

4

y

)p
=

1

(p− 1)(p− 2)(p− D
2

)(p− 1− D
2

)

(
4

y

)p−2

−
[ 2

H2
+D

]−2
[

[D(2p− 1)− 2(p− 1)2]

(p− 1)(p− D
2

)

(
4

y

)p−1

+
(p− 1)(D − p+ 2)2

(p− 2)(p− D
2

)(p− 1− D
2

)

(
4

y

)p−2
]

(E.7)
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For different values of p = (D− 2, D− 1, D,D+ 1, D+ 2, D
2

+ 2, D
2

+ 3), (E.7) reduces the powers of
1
y
. One can recursively use (E.7) in order to make the expressions integrable in D = 4. It is apparent

from (E.7) that for p = D
2

and p = D
2

+ 1 the above formula is not useful since the denominator
blows up.

Reductions

At this point, we will use the formula (E.7) in order to reduce the powers of various ( 1
y
)i for

i = (D,D − 1, D − 2).

• For i = D,

[ 2

H2
+D

]−2
(

4

y

)D
= k1

(
4

y

)D−2

−
[ 2

H2
+D

]−2
(
k2

(
4

y

)D−1

+ k3

(
4

y

)D−2
)

(E.8)

• For i = D − 1,

[ 2

H2
+D

]−2
(

4

y

)D−1

= k4

(
4

y

)D−3

−
[ 2

H2
+D

]−2
(
k5

(
4

y

)D−2

+ k6

(
4

y

)D−3
)

(E.9)

• For i = D − 2,

[ 2

H2
+D

]−2
(

4

y

)D−2

= k7

(
4

y

)D−4

−
[ 2

H2
+D

]−2
(
k8

(
4

y

)D−3

+ k9

(
4

y

)D−4
)

(E.10)

where,

Table 7:Values of ki for i = 1, 2, .., 9
k1

4
D(D−1)(D−2)2

k2
2(3D−2)
D(D−1)

k3
16(D−1)
D(D−2)2

k4
4

(D−4)(D−3)(D−2)2

k5
(5D−8)
(D−2)2

k6
36

(D−3)(D−4)

k7
4

(D−3)(D−6)(D−4)2

k8
2(7D−18)

(D−3)(D−4)

k9
64(D−3)

(D−6)(D−4)2

(E.11)
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Finally, important reductions for our analysis are(
4

y

)D
=

4

D(D − 1)(D − 2)2

[( 2

H2

)2

− (D − 2)
2

H2

](
4

y

)D−2

(E.12)

(
4

y

)D−1

=
2D

D(D − 2)2

[
2

H2
− (D − 2)

](
4

y

)D−2

(E.13)

In (E.13) we extract one d’Alembertian and the D− 1 power is reduced to D− 2, whereas in (E.12)
we extracted two d’Alembertians and D reduced by two → D − 2.
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