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Abstract

Recent studies have shown that low dimensional semiconducting nanomaterials with a non
trivial geometry possess interesting topological properties. In fact, as a consequence of the
curved geometry, non trivial insulating phases can arise in those systems.
In this thesis we analyse the in�uence of the curvature properties on the topological supercon-
ducting phase. We start by considering a model designed to reproduce topological superconduc-
tivity in a straight 1D semiconducting nanowire. Superconductivity is induced by proximity with
a conventional superconductor and the presence of Rashba spin orbit coupling and an external
magnetic �eld in orthogonal directions allows for the realization of a topological superconducting
phase in the semiconductor. Consequently, we analyse the dynamical properties of an electron
moving in a curved nanowire, showing that they result in a local spin orbit coupling, inducing a
local canting of the electron spin. Finally, we study the robustness of the topological phase of the
system against the perturbation introduced by the curvature, and we �nd that the topological
phase is suppressed as a result of the presence of the local spin orbit coupling.
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Chapter 1

Introduction

1.1 Topological states of Matter

Quantum theory of matter predicts the existence of a great variety of phases such as su-
perconductivity, super�uidity, ferromagnetism, charge density waves and many others. These
phases can be explained by the phenomenological Landau-Ginzburg theory for phase transitions
which implies the existence of a local order parameter that changes from zero to a �nite value
when the system is driven in the higher ordered phase (an example is the magnetization in the
case of a ferromagnet).
However, the discovery of the integer Quantum Hall E�ect (QHE) in 1980 [1] paved the way for
the study of new phases of matter which do not seem to �nd an explanation in the framework
of the Landau-Ginzburg theory, the topological phases.
The integer QHE occurs when electrons are con�ned to move in a two dimensional surface in
presence of an external magnetic �eld perpendicular to that surface.

Figure 1.1: The �gure on the left shows a trivial atomic insulator, whereas the �gure on the right shows
the Hall state, in which we see that the particle localized at the edge and constrained to rotate clockwise
by the magnetic �eld, are bounced back by the edge and therefore are circulating counterclockwise along
the edges of the 2D material. Considering only one isolated edge, we have a 1D system with only one
chiral mode, which cannot be obtained in a conventional one dimensional wire. This �gure has been
taken from [2]

As shown in picture 1.1, the di�erence between a conventional insulator and the QH state
is manifested at the edges of the system. In fact, as a typical insulator, the integer QH has a
gap in the bulk spectrum separating the highest occupied and the lowest empty energy levels,
but it has gapless states at the edges. We can take the preceding as a �rst de�nition of a
topological material implying that the latter is a material with a gapped bulk spectrum (like
an insulator or a superconductor) and conducting edges. The concept of topological ordered
states of matter was �rstly introduced by Kosterlitz and Thouless in [3, 4] and, later, Thouless,
Kohmoto Nightingale and den Nijs (TKNN) derived the quantized Hall conductance by means
of topological considerations [5].
As the name already suggests, there is a deep connection between topological states of matter and
the bunch of mathematics called topology. In mathematical topology, two topological spaces are
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said to be equivalent if they can be continuously deformed one into the other [6]. For example,
a ball can be continuously deformed into a pot, but it cannot be deformed into a doughnut
without cutting a hole in it , whereas the latter can be continuously deformed into a mug. In
topology, the continuous deformation that divides the topological spaces into equivalence classes
is called homeomorphism and the quantity which is invariant under homeomorphism goes under
the name of topological invariant . It follows that if two spaces have di�erent topological
invariant, they belong to two di�erent topological classes.
In the same way topological spaces are insensitive to smooth transformations, the properties of
a topological phase of matter do not depend on the local smooth variation of the parameters of
the system: the system does not change unless it undergoes a topological phase transition.
That is, the QH state cannot be driven into a trivial insulating phase by smoothly changing the
parameters in the Hamiltonian describing the system. These topologically distinct phases of the
system are individuated by the topological invariant which is determined by the symmetries of
the system and it can be individuated by looking at the bulk band spectrum only [7, 8]. This
remarkable property that allows one to establish the presence or absence of conducting edge
states by having informations only regarding the bulk of the system, goes under the name of
bulk-edge correspondence [9, 10].

Ever since their discovery, topological materials have been studied intensively. The main
reason is that the conducting states situated at the edge (or surface for a three dimensional
material) exhibit unique properties that arise from these states being at the boundary of a
higher dimensional material, and which cannot be recovered in a purely 1D or 2D system. In
the QH state for example, each one dimensional edge, hosts one chiral mode, moving in one
direction. In a purely one dimensional system, it is not possible to have only one chiral state
as for each Fermi energy one always has two chiral (left and right-moving) states. These exotic
properties of the boundary states have opened up the way for engineering new technologically
advanced materials[11, 12]. Of particular interest, are the zero energy excitation arising at the
boundaries of topological superconducting materials [13, 14, 15], which can potentially be the
new frontier for topological quantum computation[16, 17].

1.2 Majorana Modes in Condensed Matter

In relativistic quantum �eld theory, fermions are described by the Dirac equation

(iγµ∂µ −m)ψ = 0 (1.1)

where the index µ = 0, 1, 2, 3, and the matrices γµν , obeying the anticommutation relation
{γµ, γν} = 2gµν(with gµν Minkowski metric), have complex elements. The general solutions of
the equation ψ(x) are complex Dirac spinors which are not symmetric under charge conjugation.
In fact, since charge conjugation operator sends ψ → ψ∗, (that is, it sends a particle in its
antiparticle: a particle with same mass and spin but opposite charge), eigenstates of the charge
conjugation must be real solutions of the 1.1.
The Majorana particles are de�ned as particles which are their own antiparticles. Thus, they are
individuated as real solutions of the Dirac equation. Although Majorana introduced the concept
almost one century ago, chargeless fermions are still central topic in modern high energy physics
research, and in the last decades, Majorana's idea started being explored also in solid states
systems by condensed matter physicists.
However, unlike Majorana particles in high energy physics, the ones pursued in condensed matter
are not fundamental particles (as the fundamental constituents of a solid system are electrons
and ions) but rather quasiparticles excitations over a many-body system ground state [18].

The quasiparticles excitation of a superconducting ground state, the Bogoliubov quasipar-
ticles, are a superposition of opposite charges: for this reason, superconducting systems are
regarded as natural grounds for pursuing Majorana quasiparticles in solid states systems. Nev-
ertheless, the operator annihilating a Bogoliubov quasiparticles in conventional superconductors
(the microscopic theory for those superconductors is the well-known BCS theory) is γ = uc†↑+vc↓,
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which is physically distinct from γ† = v∗c†↓+u∗c↑ as in fact Cooper pairing occurs between elec-
trons carrying opposite spin (note that the pairing in conventional superconductors is referred to
as s- wave pairing since, as the electrons are paired up in a singlet state, the spatial wavefunction
in symmetric).
In order to circumvent this problem, one needs then to consider electronic systems with only one
active spin projection, or 'spinless' systems . Superconducting pairing in those systems must
occur with antisymmetric spatial wavefunction due to Pauli exclusion principle, which results
into p-wave and, possibly, in px + ipy superconductivity in one and two dimensions respectively.
Those superconductors are special, as they manifest topological superconductivity, with zero
energy modes at their boundaries (ends for 1D superconductors) and topological defects [15].
Indeed, if Majorana modes are to appear in such a 'spinless' superconductor, they have to be
zero energy Bogoliubov excitations as Bogoliubov quasiparticles operators are still symmetric
under particle-hole, that is γ†E = γ−E (creating a particle at energy E is identical to annihilate

a hole at energy -E), which constrains the Majorana modes to zero energy, with γ†0 = γ0 and
γ2

0 = 1.
Therefore, Majorana modes (or Majorana quasipartciles excitations) are chargeless, spinless and
massless excitations, localised at the boundaries of the topological superconductor.
We have introduced the Majorana operators, but we have not mentioned an important part of
the story yet. Indeed, in order to obtain a usual fermionic operator with a well-de�ned occu-
pation number, we need to combine two of the Majorana operators above: f = 1

2(γ1 + iγ2) (we
omitted the subscript zero as it is clear now that the operators refer to the zero energy modes),
thus Majorana modes should be rather regarded as 'half' a fermion.
Despite being a regular fermionic operator, f is quite special since the two modes combining
into a fermion can be situated very far apart, yielding a highly non-local fermion, and, if that
is the case, the ground state of the system is two-fold degenerate as one can add or remove this
fermion to the system with no energy cost.
The non-locality of the fermionic state also leads to another fundamental characteristics: the
'topological protection'. The zero-energy fermionic state is immune to any local perturbation
(i.e perturbations that do not couple the two Majorana modes), and the two modes stay lo-
calised at the boundaries as long as the system is in its topological phase, that is, as long as the
superconducting bulk gap stays open.
Furthermore, it has been shown that the zero energy modes obey non-Abelian statistics [19],
which highly increased the interest in probing Majorana modes, since non-Abelian anyons are
regarded as potential elementary units of fault tolerant quantum computation [20].

Given the high interest in the �eld and the astonishing consequences that observation of
Majorana end modes would have, much e�ort has been put in designing systems which can host
Majorana fermions[21, 22]. Among all, it has been proved that two dimensional semiconducting
thin �lms and one dimensional semiconducting nanowires with external applied magnetic �eld
and s-wave superconductivity induced by proximity, can host Majorana fermions at their bound-
aries and defect (e.g the impurities for electron or hole-doped semiconductors)[23]. As we shall
see later on in the thesis, in order to obtain topological superconductivity in such structures,
the spin orbit coupling in semiconductors plays a crucial role.
In this thesis, we will be concerned with Majorana modes emerging in the topological phase of
the 1D superconductor-semiconductor heterostructure.

1.3 Nanomaterials with non Trivial Geometry

A primary role in the designing of topological materials, is played by semiconducting nano-
materials in low dimensions [24, 25, 26]. In the last decades, the progress in nanostructuring
techniques, has allowed to engineer new nanostructures with complex curved geometric shapes
like nanotubes or nanohelics, like the ones showed in 1.2 which retain many potential appli-
cations in nanoelectronics [27, 28, 29]. Furthermore, semiconducting nanostructures with non
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Figure 1.2: Figure shows examples of curved nanostructures that can be engineered in nowadays nano-
electronics. The images have been taken by Zhang et al. Nano Letters 6, 1311 (2006).

trivial geometry, are considered as suitable candidates for being employed in biological system
[30]. As a consequence of the growing interest on these semiconducting materials, in recent
years, their electronic properties have been studied, and it has been shown that the quantum
mechanical properties of electrons con�ned in a curved low dimensional material can in�uence
the topology of the ground state of the system [31].
A legitimate question that arises, concerns therefore the in�uence of the curvature induced trans-
port properties of the electrons in the semiconducting wire, and the topological superconducting
phase hosting Majorana zero modes at the ends.

1.4 In this thesis

The purpose of this thesis is to attempt to answer the question proposed above, in particular
we propose to verify if the topological phase of the system is robust against the local perturba-
tion induced in real space by a 1D semiconducting system in a curved geometry.

The structure of this thesis is the following. In chapter two we revise the fundamental model
for a one dimensional topological superconductor: the Kitaev chain. In order to fully understand
the model, we �rstly recall the BCS theory for a conventional superconductor. Furthermore, we
add some basic notions on topological classes and topological invariants to be able to show that
in the Kitaev model there are two distinct superconducting phases: the trivial phase (charac-
terised by a certain topological invariant) and the topological phase (characterised by a di�erent
topological invariant).
In order to experimentally reproduce the topological superconducting phase predicted in the
theoretical Kitaev model, many systems have been engineered. Among those, we focus on the
one introduced in [23]. In the last part of chapter two, we therefore provide a detailed analysis of
the features of this model, since the work done in this thesis is based on the latter. In fact, in this
model, topological superconductivity is obtained in a 'conventional' semiconducting nanowire,
where with conventional we mean that the wire is thought to have a trivial geometric shape.
Therefore, our work consists in considering a bent nanowire rather than straight, and analyse
the interplay of the curvature in real space and the topological order of the system.
In chapter three we thus derive the e�ective one dimensional Hamiltonian describing the motion
of the electron in the curved semiconducting wire in presence of spin orbit coupling (SOC),
showing that it leads to a local canting of the electron spins due to the curvature induced lo-
cally varying SOC. Given its important role in the description of the system, we dedicate the
�rst part of chapter three to revise the origin of spin orbit coupling and to discuss the SOC in
semiconductors.
Finally, the last two chapters of the thesis, will be devoted to the study of the stability of the
topological superconducting phase of the model introduced in chapter two, against the per-
turbation introduced by the curved shape of the wire. As mentioned above, the e�ect of the
curvature, can be incorporated in the e�ective 1D Hamiltonian by including a local SOC. There-
fore, in chapter four, we �rst consider a simpli�ed 'toy' model to better understand the e�ect
of a modulated SOC. In this model, the semiconducting wire has a trivial geometric shape, and
the locally varying SOC is introduced by externally modulating the electric �eld generating the
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SOC. In chapter �ve, we then proceed with the analysis of the model with a curved nanowire,
for which we choose a periodic serpentine-like shape.
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Chapter 2

From Conventional Superconductivity

to Majorana End Modes

.

2.1 Superconductivity

It was April 1911 when Kammerlingh Onnes found that the resistivity of Mercury (Hg) when
cooled down at 4 K drops to zero [32]. Electrical resistivity dropping to zero at low temperatures,
the existence of persistent currents (i.e currents circulating without energy dissipation) and the
expulsion of the magnetic �ux from the bulk of the material (also called perfect diamagnetism)
in many kinds of metals (or alloys) are the hallmark of superconductivity.
The superconducting phase of the system, realised below a critical temperature Tc, is charac-
terised by a long range phase coherence of the macroscopic ground state wave function, robust
to any local perturbation.

The �rst theory succeeding in explaining what is now called conventional superconductivity

or s-wave superconductivity was formulated in 1957 by Bardeen-Cooper-Schrie�er, and, named
after its creators, it is renown as BCS theory of superconductivity.
The BCS theory describes a many body system and it includes the interactions among electrons
by making use of the mean �eld approximation, as we shall brie�y see in what follows.
The starting point of BCS theory is the Cooper problem. Basing his analysis on Frölich and
Bardeen's work, Cooper analysed the spectrum of a pair of electrons interacting attractively,
above a quiescent Fermi sphere [33]. The latter forbids the scattering of the electron pairs in
states with momenta k < kF smaller than the Fermi momentum. From his study, Cooper con-
cluded that, among the possible �nal states of the process, there is a low energy state being a
bound state between the two electrons. The Fermi sphere is thus unstable towards the formation
of such electron pairs.

The starting point to investigate a system involving a macroscopic number of electron pairs
is the BCS Hamiltonian

HBCS =
∑
k,σ

εkc
†
k,σck,σ +

∑
k,k
′

V
k,k
′ c†
k
′
,↑
c†
−k′↓

c−k,↓ck,↑ (2.1)

where the operators c†k,σ and ck,σ are fermionic creation and annihilation operators. Note the
interaction term in the above involves scattering between time-reversed states, as the initial
(and consequently �nal) states have opposite momenta and opposite spins. In 2.1, the matrix
elements Vk,k′ are negative and non vanishing only in the interval εF ± ωD. For simplicity we
furthermore assume the interaction coupling to be constant, setting Vk,k′ = −V0 in the whole
range εF ± ωD.
In order to decouple the quartic interaction term, we then proceed via mean �eld approximation,
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de�ning the order parameter ∆ through the expectation value of electron pairs on the ground
state as

∆ = −
∑
k

V0〈c−k,↓ck,↑〉

∆∗ = −
∑
k

V0〈c†k,↑c
†
−k,↓〉

(2.2)

where, as said above, V0 is only non-zero in the ring εF±ωD. Thus we can write the pair creation
and annihilation operators as their mean value plus small �uctuations δc−k,↓ck,↑ as

c−k,↓ck,↑ = 〈c−k,↓ck,↑〉+ δc−k,↓ck,↑

c†
k
′
,↑
c†
−k′ ,↓

= 〈c†
k
′
,↑
c†
−k′ ,↓

〉+ δ
c†
k
′
,↑
c†
k
′
,↓

(2.3)

Plugging the 2.3 in 2.1, neglecting second order terms in �uctuations, and then replacing back
δc−k,↓ck,↑ and δc†

k
′
,↑
c†
k
′
,↓
by inverting relations 2.3, we get the BCS Mean Field Hamiltonian

HBCS =
∑
k,σ

εkc
†
k,σck,σ +

∑
k

∆c†k,↑c
†
−k,↓

+
∑
k

∆∗c−k,↓ck,↑ − V0

∑
k,k
′

〈c†
k
′
,↑
c†
−k′ ,↓

〉〈c−k,↓ck,↑〉.
(2.4)

In the above, the last term is a constant shift in Energy that we will neglect in the following.
We are now left with a quadratic Hamiltonian, which is nevertheless non diagonal in particle
creation and annihilation operators in momentum space.
The 2.4 is known as Bogoliubov-de Gennes Hamiltonian (or Bogoliubov Gor'kov in
Russian literature).
We can write the equation in matrix form as follows

HBdG =
∑
k

(
c†k,↑ c−k,↓

)( εk ∆
∆∗ −εk

)(
ck,↑
c†−k,↓

)
.

Introducing Nambu Spinor notation

Ψ†k =
(
c†k,↑ c−k,↓

)
,Ψk =

(
ck,↑
c†−k,↓

)
,

we �nally write the equation in the compact form

HBdG =
∑
k

Ψ†kHkΨk. (2.5)

The aim now is to diagonalize this Hamiltonian. In order to do so, we introduce the new
operators αk and α†k and a canonical transformation which goes under the name of Bogoliubov
transformation (as he �rst applied this transformation for bosonic operator in his treatment of
super �uid Helium). The transformation in terms of those operators reads(

αk,↑
α†−k,↓

)
=

(
u∗k vk
−v∗k uk

)(
ck,↑
c+
−k,↓

)
where (

u∗k vk
−v∗k uk

)
= U−1

k .
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The constants uk and vk are normalised such that |uk|2+|vk|2 = 1, and therefore Uk is a unitary
matrix. In order to diagonalize the matrix Hk we need to introduce a unitary transformation
which de�nes a similarity relation

U †kHkUk = Dk (2.6)

with a diagonal matrix Dk.
Solving the equation above with little algebra (see appendix A for details on the computation),
and taking into account that the eigenvectors are normalised to one, we arrive at the expres-
sions for the eigenvector components uk and vk and the eigenvalues λk of the new diagonal
Hamiltonian expressed in terms of the Bogoliubov operators αk and α†k

|uk|2 =
1

2

(
1 +

εk
λk

)
; |vk|2 =

1

2

(
1− εk

λk

)
(2.7)

λk = ±
√
ε2k + |∆|2 (2.8)

HBdG =
∑
k

λk

(
α†k,↑αk,↑ + α†k,↓αk,↓

)
(2.9)

With the Hamiltonian in the diagonal form in the new basis, we were able to �nd the eigenvalues
given by 2.8, from which it appears clear that the energy spectrum of the system is now gapped,
as no excitations can exist at energies lower than |∆|.
The Bogoliubov operators α†k and αk which form a diagonal basis for the Hamiltonian, are
respectively creation and annihilation operators of Bogoliubov quasi-particles (sometimes also
called Bogoliubons) which produce the excitation spectrum of the BCS ground state, and which
are superposition of particles and holes.
The BCS ground state is de�ned as αk|ΨGS〉 = 0, since no quasiparticle excitations are assumed
to exist in the ground state. The ket |ΨGS〉 = 0 is given by

|ΨGS〉 =
∏

k
αk,↑α−k,↓|Ω〉 (2.10)

and |Ω〉 is the state annihilated by all the operators ck. The excited states are obtained by

acting with α†k on the BCS ground state and they are the result of breaking a Cooper pair, as
already mentioned by Cooper in [33].

In order to understand the implications of the energy gap, we have to �nd an expression for
the mean �eld parameter ∆. This can be done self consistently i.e computing the expectation
value on the right hand side of 2.2 in the new diagonal basis 1.
Thus, starting from 2.2 we get

∆ = −
∑
k

V
k,k
′ 〈c−k,↓ck,↑〉

= −
∑
k

V
k,k
′ 〈(ukα−k,↓ − vkα†k,↑)(ukαk,↑ + vkα

†
−k,↓)〉

= −
∑
k

V
k,k
′ukvk

(
〈α−k,↓α†−k,↓〉 − 〈α

†
k,↑αk,↑〉

)
.

(2.11)

The Bogoliubov quasiparticles obey the Fermi-Dirac distribution, thus we have

∆ = −
∑
k

V
k,k
′ukvk

(
1− 〈α†−k,↓α−k,↓〉 − 〈α

†
k,↑αk,↑〉

)
= −

∑
k

V
k,k
′ukvk(1− 2nF (λk))

(2.12)

1It can be shown indeed that this procedure for �nding the mean �eld parameter is equivalent to minimize
the free energy with respect to ∆. [34]
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where nF is the Fermi Dirac distribution corresponding to the energy value λk; and

2nF =
2

exp{−βλk}+ 1
=

exp{−βλk} − 1

exp{−βλk}+ 1
.

Furthermore, from relations 2.7 we �nd

ukvk =
1

2

∆√
ε2k + ∆2

.

At this point, we go to the continuum limit, sending the sum over ks to an integral:
∑
k →∫

D(E)dE, with D(E) density of states. We recall that the potential V
k,k
′ is non zero (and we

also assumed it to be constant in this energy range) only in the interval εF ± ωD. If we also
assume the density of states being constant in this interval, the self-consistent equation for ∆
reads

∆ = −∆

2
V0D(EF )

∫ ωD

−ωD

dE√
ε2k + ∆2

exp
{
−β
√
ε2k + ∆2

}
− 1

exp
{
−β
√
ε2k + ∆2

}
+ 1

 (2.13)

where D(EF ) is the density of states at the Fermi level. This leads to the gap equation

2

V0D(EF )
= −

∫ ωD

−ωD

dE√
ε2k + ∆2

tanh (−β
√
ε2k + ∆2). (2.14)

At zero Temperature, the gap equation above becomes

2

V0D(EF )
=

∫ ωD

−ωD

dE√
ε2k + ∆2

= arcsinh

(
2ωD
∆0

)
(2.15)

Thus,

∆0 =
ωD

sinh(2/V0D(E))
. (2.16)

At given temperature and chemical potential, the gap equation can be solved numerically. Set-
ting ∆ = 0 and solving for T = TC , one �nds the critical temperature for which the transition
between the normal and the superconducting phases occurs.

2.2 Topology and the Kitaev Model

In this section, we introduce the Kitaev model, a toy-model for a 1-D chain of spinless
electron, which can host Majorana modes at its boundary when the system is in the topological
phase.

Before analysing the model in detail, we give a very brief and intuitive explanation of what
we mean by topological phase of a material, in order to recap some basic notions useful for the
understanding of the rest of the thesis.

2.2.1 Discrete Symmetries and Topological Invariants

As mentioned in the introduction, the study of topological states of matter is a central topic
in nowadays physics. It is a very broad subject, since it can be studied from many perspectives,
and a deep understanding of this �eld involves both knowledge on mathematical topology and
homotopy groups, and physical knowledge on condensed matter systems. The purpose of this
section is to give an intuitive idea behind the classi�cation of system Hamiltonians in di�erent
topological classes, and how one in practice can derive a criterion (te topological invariant) in
order to understand from the bulk band structure if the system undergoes a topological phase
transition at a particular point in the parameter space of the Hamiltonian.
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Intuitively, in topology, one is interested in understanding if two 'objects' can be continu-
ously deformed (or smoothly connected) one into the other. If that is the case, they are said
to be topologically equivalent. We need �rst to de�ne these 'objects' we are interested in, and
the equivalence relation between them (i.e we need to de�ne what we mean by 'continuously
deformed one into the other'). In quantum many body theory, the 'objects' we considered are
Hamiltonians of the many body systems and the equivalence relation between them is the adi-
abatic principle [35]. In the adiabatic approximation, a time-dependent Hamiltonian H(t) is
assumed to vary on time much slower than the typical quantum oscillations of the system. In
this limit of slowly-varying Hamiltonian, the adiabatic theorem states that if the system is in
an eigenstate of the Hamiltonian at an initial time ti , then it will remain in the instantaneous
eigenstate of H(t) during all the evolution till tf .
In Hamiltonians with a gapped spectrum, the ground state is separated by the bulk excitation
by means of an energy gap ∆E0, thus, starting in the ground state of the Hamiltonian, and
evolving the system adiabatically, we must remain in the instantaneous ground state.
Considering two gapped Hamiltonians, and taking the adiabatic evolution, we say that these two
Hamiltonians are 'smoothly' connected if they can be deformed into the other without closing
the energy gap during the adiabatic evolution in parameter space. If these two Hamiltonians
are smoothly connected, then they are topologically equivalent.
If that is not the case, the two Hamiltonians are in two di�erent topological phases, and a topo-
logical phase transition occurs at the closing of the band gap.
Since the topology is a generic feature of the Hamiltonian and it cannot depend on a particular
time evolution in parameter space of the Hamiltonian, in order to identify the occurrence of a
topological phase transition, we need a a quantity that changes only when the gap in the energy
spectrum closes. This quantity is precisely the topological invariant. The type and the presence
of the topological invariant is completely determined by the symmetries of the Hamiltonian,
which also allow us to locate the Hamiltonian in di�erent topological classes. For one particle
quadratic Hamiltonians, the relevant discrete symmetries for the determination of the topolog-
ical classes of general random Hamiltonians (and the corresponding topological invariants) are:
Time Reversal, Particle-Hole and Chiral (or sublattice) symmetries. The formal derivation of
topological invariant and the subsequent classi�cation of the topological classes of the Hamilto-
nians based on the symmetries they posses will not be examined in details here. We will rather
extrapolate the results useful for our future discussion.
Let us start by considering the action of the three symmetries listed above on a Bloch Hamilto-
nian H(k), where k is the Bloch wavevector in the �rst Brillouin zone.
Time reversal symmetry 'reverses' the arrow of time and, in momentum space, it sends k → −k.
It is an anti-unitary transformation, and, as such, its operator is de�ned as T = UK, where
K indicates complex conjugation, and U is a general unitary matrix. By computing T 2 =
UKUK = UU∗ we observe that Time Reversal squares to ±1. In particular, for particles with
spin 1/2, the Time Reversal symmetry operator is de�ned by T = iσyK where σy is the second
Pauli Matrix, and it squares to −1.
Particle-Hole symmetry exchanges particles with holes and it is again an anti-unitary operator.
Once again, P 2 = ±1 and applying Particle-Hole on the momentum space Hamiltonian we ob-
tain PH(k)P † = −H(−k).
Pausing here for a moment, we see that, if we have to classify the Hamiltonians basing on T 2 and
P 2 we have 9 possible combinations as T (P ) = 0 if the Time-Reversal (Particle-Hole) symmetry
is absent, or T (P ) = ±1 when the symmetry is present and it squares to either 1 or −1.
We now add the third symmetry, the Chiral, or sublattice, symmetry. Applying the latter on
the Bloch Hamiltonian we obtain CH(k)C† = −H(k). The Chiral symmetry can be written as
a product of the two previous symmetries C = TP . It is a unitary symmetry, so we can always
re-adjust the phase such that C2 = 1.
Note however that Chiral symmetry can still be present when both Time Reversal and Particle-
Hole are broken, adding one more possibility to the previous 9 arising from the combination
of Particle-Hole and Time Reversal. This makes it a total of ten di�erent symmetry classes in
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T P C 1d 2d 3d 4d 5d 6d 7d 8d

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 2.1: Altland-Zirnbauer periodic table. The �rst column contains the 10 symmetry classes, for each
class is indicated the presence or the absence of one of the three symmetry listed in the text, and for T
and P it is indicated if they square to 1 or −1. The last eight columns indicate the type of topological
invariant (when it exists) for the particular symmetry class in 1, 2, 3...8 dimension.

which the quadratic random Hamiltonians with a gapped spectrum can be classi�ed.
Those classes and the relative topological invariant, are summarized in the periodic table 2.1.
The �rst classi�cation of the Hamiltonian in those 10 classes was made by Altland and Zirnbauer
[36], and Kitaev in 2009 was able to generalize the Altland-Zirnbauer periodic table to arbitrary
dimensions [37]. This table is useful for us as, once we know the symmetry of our Hamiltonian,
we know if we expect the system to undergo a topological phase transition and which type of
topological invariant is associated to that.

2.2.2 Kitaev Model

The tight binding Hamiltonian proposed by Kitaev [38] is

H = −µ
∑
i

c†ici −
1

2

∑
i

(tc†ici+1 + ∆eiφcici+1 + h.c) (2.17)

where µ is the on site chemical potential, t ≥ 0 is the strength of the hopping between nearest
neighbouring sites, ∆ ≥ 0 is the superconducting pairing between electrons in neighbouring site,
and φ is the superconducting phase.
Let us �rst analyse the bulk band structure. By imposing periodic boundary conditions on
the chain, we can Fourier transform the operators c†i and ci, and write them in terms of the

momentum space creation and annihilation operators c†k, ck. We can then arrange them in a
two-component vector

Ck =

(
ck
c†−k

)
which allows us to re-write 2.17 in matrix form as

H =
1

2

∑
k

C†kHkCk (2.18)

with

Hk =

(
εk ∆̄∗

∆̄ −εk

)
(2.19)

where εk = −t − cos k − µ is the kinetic energy and ∆̄ = −i∆eiφ sin k is the superconducting
pairing after Fourier transforming to k space. Note that the superconducting pairing, rather
than being constant as in the s-wave superconductor that we saw previously, is an odd function
of the momentum.
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To diagonalise the BdG Hamiltonian 2.18, we introduce the Bogoliubov quasiparticles operators

ak = ukck + vkc
†
−k

a†k = u∗kc
†
k + v∗−kck

(2.20)

in terms of which the 2.18 takes the diagonal form

H =
∑
k

Eka
†
kak. (2.21)

Ek is the dispersion relation in the quasiparticles basis and it reads

Ek =
√
ε2k + |∆̄k|2 (2.22)

while the coe�cients of the Bogoliubov transformation are

uk =
∆̄

|∆̄|

√
Ek + ε√

2Ek

vk =

(
Ek − ε

∆̄

)
uk.

(2.23)

The pairing ∆, being an odd function of k, vanishes in k = 0 and k = ±π, implying that the
spectrum of Bogoliubov excitations given by the 2.22 is gapless when µ = ±t, which coincides
with the chemical potential being at the top and at the bottom of the conduction band.
There are therefore three regions separated by the gap closing:µ < −t, t < µ < t and µ > t,
however, the �rst and the third are related by particle-hole symmetry so we can restrict ourselves
to the two regions µ < −t and |µ| < t separated by the bulk gap closing at µ = −t.
In order to study the implications of the gap closing, let us �rst recall that any two-by-two
matrix can be expanded in a basis of Pauli matrices (plus, if necessary, a term proportional to
the two-by-two identity matrix). In our case we have that Hk in 2.19 can be written as

Hk = h(k) · σ (2.24)

with h(k) vector components of the expansion which in our case read

h(k) =

 ∆ sin k sinφ
∆ sin k cosφ
−t cos k − µ


The vector changes modulus and direction as k moves in the �rst Brillouin zone from −π to π.
If we assume that the bulk is always gapped, then h(k) is never zero, and we are allowed to

de�ne the unit vector ĥ(k) = h(k)
|h(k)| which maps the �rst Brillouin zone to the unit sphere.

One furthermore notices from symmetries consideration that it is su�cient to specify h(k) in
the interval 0 < k < π since in fact one �nds: hy(k) = −hy(−k) and hz(k) = hz(−k).
Moreover, from these considerations, one concludes that for k=0 and for k = π, the vector must
be aligned along the z direction since hy(0) = hy(π) = 0. This allows us to write

ĥ(0) = ν0ẑ

ĥ(π) = νπẑ
(2.25)

where ν0 and νπ indicate the signs of the kinetic energy in 0 and π with respect to the Fermi
level.
Therefore, one can see that starting with ĥ(k) at one pole of the unite sphere (whether top ot
bottom along z axis, depending on the sign of the kinetic energy in k=0) when k=0, and varying
k till π, one can either end up with ĥ(k) in the same pole or in the opposite pole. In order
for the latter situation to occur, the kinetic energy must change sign for some values of k in
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between 0 and π, meaning that the band gap has to close at some point and then open again.
For the bulk spectrum to be gapless, h(k) has to be zero, i.e the trajectory of the unit vector
ĥ(k) on the unit sphere passes through the origin, where the unit vector is ill-de�ned. In the
former case, where ĥ(0) = ĥ(π), the origin is not included in the trajectory, the unit vector is
never ill de�ned and the bulk gap can never close. These two di�erent trajectories of the unit
vector on the Block sphere are therefore topologically distinct. The de�nitions in (2.25) allow
us to individuate a quantity

ν = ν0νπ (2.26)

that distinguishes between the two di�erent trajectories. In fact, for how it is de�ned, ν can
only assume the values ±1 and it changes sign only when the kinetic energy changes sign, i.e.
when after sweeping k from 0 to π we end up with ĥ(k) in the other pole of the unit sphere.
That is, ν only changes sign when the bulk gap closes.
The topological invariant for the bulk chain of the Kitaev model can be derived also computing
the Pfa�an of the Bloch Hamiltonian H(k) in 2.18 [39]. Following this derivation of the topo-
logical invariant (which we will not discuss in details here for brevity reasons), one �nds that
ν = +1 when the fermion parity of the ground state is even, and ν = −1 when it is odd. The
parity of the ground state of a conventional (trivial) superconductor is taken to be even such
that all the electrons are bound in Cooper pairs.

Having the topological invariant at hand, we can discuss the two di�erent regimes for µ < −t
and |µ| < t. First, we notice that the µ < −t phase can be connected smoothly with the trivial
vacuum (i.e the state containing no fermions) by sending µ→ −∞. The trivial vacuum has even
fermion parity and, given that the BdG Hamiltonian conserves the parity of fermionic pairs, in
the all range µ < −t for each value of the chemical potential, one encounters an even number of
pair of Fermi points. The value of ν for this phase is +1 and it constitutes the trivial phase.
After the gap closes, ν changes sign, thus the phase |µ| < t has ν = −1 and it corresponds to
the topological phase.

2.2.3 Open Chain

The non trivial phase is connected with the appearance of Majorana zero modes at the end
of the open chain. In order to appreciate so, we consider now the chain with open boundaries
described by (2.17). We can write the fermion operators ci and c†i in terms of two Majorana
operators as

c†i =
1

2
(γ1i + iγ2i)

ci =
1

2
(γ1i − iγ2i)

where γ1 = γ†1, γ2 = γ†2 and γ2
1 = γ2

2 = 1 obey fermionic anticommutation relations.
The Hamiltonian for the open chain in terms of γ is

H = −µ
2

N∑
i=1

(1 + iγ2i−1γ2i)−
i

4

N−1∑
i=1

[(∆ + t)γ2iγ2i+1 + (∆− t) + (∆− t)γ2i−1γ2i+1]. (2.27)

In order to simplify the couplings between the modes, we consider two limiting cases for the
parameters µ, ∆ and t, in which the physics becomes evident: the �rst one corresponds to
t = ∆ = 0 and µ < 0, whereas for the the second one we set t = ∆ 6= 0 and µ = 0.

We start by considering the �rst case, setting t=∆=0 and µ < 0. Here (2.27) reduces to

H = −µ
2

N∑
i=1

(1 + iγ2i−1γ2i) (2.28)
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Figure 2.1: In �gure, The lattice unit cells are represented by the rectangles and each dot indicates a
Majorana. Starting from the �rst in the left we have γ1, γ2 (in the �rst cell), γ3, γ4(in the second cell)
and so on. In our notation, if is the cell index, γ2i is paired up with γ2i−1. This �gure has been taken
from the series of online lectures on topological states of matter, Delft University.

where the only coupling surviving is the one between Majorana modes on the same site: all
the modes are paired up to form a fermion on site, as showed in �gure 2.1. From (2.28) we see
that adding one pair of Majorana modes to the system has a cost in terms of energy: if one
considers the ground state as the state where all the fermionic levels up to the Fermi energy are
occupied, adding one fermion drives the system out of the ground state. This implies a unique,
non degenerate, ground state and a gapped excitation spectrum. In the limiting case we are
considering, the spectrum of the �nite chain is gapped like the spectrum we obtained for the
in�nite (bulk) chain, meaning that including the ends of the chain in our treatment does not
matter much.
This excitation spectrum matches with the gapped spectrum of a conventional superconductor,
with a unique ground with even fermion parity in order for all the electrons to pair up in Cooper
pairs.

In the second limiting case, where µ is set to zero and t=∆ 6= 0, (2.27) reads

H = −i t
2

N−1∑
i=1

[γ2iγ2i+1] (2.29)

and we see that Majorana are not paired on site but rather on neighbouring sites. The result is
that the modes at the ends of the chain remain unpaired. Furthermore from (2.29) we observe
that there is still �nite energy cost for adding a fermion to the system in the bulk of the chain,
however, the �rst and the last Majorana modes at the ends of the chain do not appear in
the Hamiltonian. The end modes can be combined to form an ordinary but highly non-local
fermionic state:

f =
1

2
(γ1 + iγN ). (2.30)

Adding such a state to the chain costs zero energy, and the ground state of the system is two
fold degenerate. Thus, in this limiting case, as opposed to what we observed in the previous
one, considering the ends of the chain does make a di�erence: in fact, the excitation spectrum
of the �nite chain is still gapped in the bulk, but has zero energy excitation at its ends.
This con�guration is quite di�erent from the one of a conventional superconductor, as there are
two degenerate ground states with di�erent fermion parity.
Apart from the zero energy cost, f has another peculiarity compared to the fermionic excitations
in the bulk: being non local, means that is immune to local quantum perturbation arising in
the system, and the only way to decouple the two Majorana end modes is to have other states
at zero energy with which they can merge. In other words, to split the two modes localised at
the end of the chain, the bulk gap has to close.
This fact has two important consequences: �rst, it means that the two limiting case considered
above describe two topologically distinct phases, and second, it implies that the end modes are
topologically protected by local perturbations (they stay localized at the end as long as the bulk
gap is open).
The topological protection of the end modes allows us to claim that the conclusions obtained
in the limiting case above, holds also for a more general case, as, changing the values of µ,
t and ∆ from the �ne tuned µ = 0 and t = ∆, does not decouple the Majorana end modes
unless a topological phase transition occurs. As one might already have guessed, the chain with
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Figure 2.2: In �gure, the rectangles delimit the lattice unit cell, and the dots represent Majorana modes.
Here, the the second mode of cell i couples with the �rst mode of cell i+1, leaving the �rst and the last
mode of the chain unpaired.

t,∆ = 0, µ < 0 maps to the trivial superconducting phase described in the bulk by µ < −2t,
whereas the chain where µ = 0 corresponds to the region where |µ| < t in the bulk, where the
topological invariant ν is equals −1.

2.3 Realization of Majorana end Modes in 1D Nanowire

In the last section of this chapter, we introduce the theoretical model for a practical real-
ization of Majorana end modes in a one-dimensional semiconducting nanowire in presence of an
external magnetic �eld and with s-wave superconductivity induced by proximity with a parent
bulk superconductor.
This model, proposed in [23, 40], has been extensively studied as it is considered one of the most
promising system for detecting the Majorana modes.
In further chapter of the thesis, we modify the set-up of the model by introducing a local per-
turbation on the spin orbit coupling of the semiconductor and we ask if this local perturbation
a�ects the topological properties of the system.
We consider therefore important to discuss this model in details and, in particular, to derive the
criterion for the topological phase transition (analogous to the |µ| = t in the Kitaev chain).
The derivation discussed in the following closely follows [16]

The real space Hamiltonian for a semiconducting (1D) wire with Rashba spin orbit coupling
and the Zeeman �eld along perpendicular directions is

H1D =
∑
σ,σ
′

∫
dxΨ†σ(x)

[(
− ∂2

x

2m
− µ

)
δσ,σ′ +Bτ z

σ,σ′
− iατy

σ,σ′
∂x

]
Ψσ′ (x) (2.31)

where we have set once more ~ = 1, τy and τ z are the Pauli matrix y and z acting on electron
spins, and Ψ(x) and Ψ†(x) are fermionic �elds describing the of electrons in the semiconductor
The real space e�ective Hamiltonian for a conventional s-wave superconductor is given by the
BCS mean �eld Hamiltonian already discussed in a previous section

HSC = ∆

∫
dx(Ψ(x)↑Ψ(x)↓ + h.c) (2.32)

Therefore, the total Hamiltonian describing our system reads

H = H1D +HSC (2.33)

Let us consider H1D �rst. The time independent Schrödinger equationat B=0 Ĥ1D|Ψ〉 = E|Ψ〉
is solved by Ψ(x) = eikxχσ. The resulting band energies are

ε±(k) =
k2

2m
− µ± (αk) (2.34)

The bands are illustrated by �gure 2.3. Here, we observe that with the Zeeman �eld at zero,
there is no spinless regime, since for each value of the Fermi Energy, we always have an even
number of pair of Fermi points.
The spinless regime can be obtained turning on the magnetic �eld, thus lifting the degeneracy
in zero. The two bands 2.34 read

ε±(k) =
k2

2m
− µ±

√
(αk)2 +B2 (2.35)
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Figure 2.3: Spin splitted energy bands in presence of Rashba SOC. The energy is in units of m.
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Figure 2.4: Electron bands of the semiconducting wire with magnetic �eld along z direction, orthogonal
to Rashba SOC. When −B < µ < B, the system appears spinless, and, as showed by the black line in
�gure, for a value the chemical potential within this range, one encounters one pair of Fermi points. The
energy is in units of m.

As we appreciate from 2.4, when the Fermi energy resides in between the gap at k = 0 induced
by the magnetic �eld, there is only one pair of Fermi points, yielding the desired 'spinless' regime.
The competition between Rashba SOC and Zeeman �eld in orthogonal direction prevents the
spins in one energy band to be fully polarised, and this is crucial for the inherited s-wave pairing
to be able to open a gap at the Fermi level.

To better understand this, let us consider the Bogoliubov de Gennes form of Hamiltonian
2.33, where α is now set to zero, so the spin degeneracy is removed by the applied magnetic
�eld, which fully polarizes the spins along the z-direction. We Fourier transform to momentum
space and write the Hamiltonian in matrix form as

H =
(

Ψ†(k), Ψ(−k)
)( ξk · I +B · τ z i∆ · τ y

−i∆ · τ y −ξk · I −B · τ z
)(

Ψ(k)

Ψ†(−k)

)
(2.36)

where Ψ(k) = {Ψ(k)↑,Ψ(k)↓, I is the 2x2 identity matrix, τ y,z are the 2 × 2 Pauli matrices

and ξk = k2

2m∗ −µ. Note that
(
Ψ(k),Ψ†(−k)

)T
is the four-component Nambu spinor introduced

before. The band structure, shown in �gure 2.5, is found by diagonalizing the

Hk =

(
ξk · I +B · τ z i∆ · τ y
−i∆ · τ y −ξk · I −B · τ z

)
. (2.37)

As showed in 2.5, in absence of spin orbit coupling, the spin bands carry a well-de�ned
momentum aligned along z, and we can see from the dispersion relation plot that the electron
and hole bands crossing at zero energy carry the same spin. Therefore, carriers in those bands
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Figure 2.5: The �gure shows the energy bands obtained from the BdG Hamitlonian where the strength
of the Rashba coupling α is set to zero. We see no gap opening in the Bogoliubov spectrum since the
electron and hole bands crossing at zero energy carry the same spin, thus cannot be coupled by singlet
pairing. The chemical potential is set to zero and the electronic bands are mirrored along the x-axis by
Particle-Hole symmetry. The energy is in units of m.

cannot be coupled by singlet Cooper pairing. As a result, unless the ∆ pairing is strong enough
to overcome the Zeeman splitting and couple electrons and holes at higher energy, no singlet
pairing can occur in the semiconducting system.
Fortunately, this issue is solved when α 6= 0 as the SOC in the semiconductor cants the spins
away from the z-direction, promoting opposite spins for the states at momenta k and −k.

With the previous analysis, we have established the fundamental role of each term in the
Hamiltonian in order to actually reproduce the ideal environment for the appearance of Majorana
modes: a spinless superconductor.
We are now ready to look at the bulk spectrum of the Hamiltonian 2.33.
By imposing periodic boundary conditions, we can write the Hamiltonian in Fourier space as

H =
∑
σ,σ′

∫
dkΨ†k,σ[(

k2

2m
− µ)δσ,σ′ +Bτ z

σ,σ′
− αkτy

σ,σ′
]Ψk,σ′

+∆

∫
dk[Ψ†↑,kΨ

†
↓,−k + Ψ↓,−kΨ↑,k]

(2.38)

with τx,y,z Pauli matrices acting on spin space, and Ψ†k,σ and Ψk,σ the fermionic �eld in momen-
tum space.
As usual, it is convenient for us to write the Hamiltonian 2.38 in BdG matrix form as

H =

∫
dk( Ψ†k Ψ−k )Hk

(
Ψk

Ψ†−k

)
(2.39)

where, as before, Ψk = (Ψk,↑,Ψk,↓) and the (Ψk,Ψ
†
−k)

T is the 4-component Nambu spinor. In
this basis, the 4× 4 matrix Hk reads

Hk =


k2

2m − µ+B ikα 0 ∆

−ikα k2

2m − µ−B −∆ 0

0 −∆ − k2

2m + µ−B −ikα
∆ 0 ikα − k2

2m + µ+B

 (2.40)

and the diagonalization of Hk leads to the four eigenvalues

E(k) = ±1

2

√
4B2 + k4m2 ± 4

√
B2[a∆2 + (k2m− 2µ)2] + k2α2(k2m− 2µ)2 + 4k2(α2 −mµ) + 4∆2 + 4µ2.

(2.41)

In order to understand where a topological phase transition occurs, we need to �nd the
condition for which the gap of the bulk excitation spectrum vanishes. The BdG Hamiltonian
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conserves Particle-Hole symmetry, i.e Hk = −H−k, thus, from 2.41 we conclude that the energy
gap closes at k = 0. Setting E(0) = 0 one obtains

E(0) =

√
B2 + ∆2 + µ2 ±

√
B2∆2 +B2µ2 (2.42)

which is solved for
B =

√
∆2 + µ2 (2.43)

The 2.43 gives the critical value of the magnetic �eld for which the topological phase transition
occurs.
For B <

√
∆2 + µ2, the wire does not appear spinless, and the superconducting gap occurs

between antiparallel spins in two di�erent energy bands, resulting in conventional superconduc-
tivity, with singlet paring between electrons. In this conditions, the system is in characterized
by a strong pairing regime, and it can be shown that the Hamiltonian describing this phase of
the system maps continuously to the Kitaev Hamiltonian in the regime µ < −t [16].
On the other hand, when B >

√
∆2 + µ2, the wire appears spinless and the only possible pairing

must occur between spins in the same energy band. This pairing is made possible, as underlined
before, by the presence of the SOC, which rotates the spins as one sweeps from −k to k. The
intraband pairing is a momentum dependent pairing and couples spins in a triplet state: it is
the p-wave pairing. Thus for B higher than the critical value, the system resides in the weakly
coupled regime,corresponding to the topological phase of the Kitaev chain for −t < µ < t.
In order to show the emergence of the momentum-dependent superconducting pairing, we per-
form a change of basis on the Hamiltonian 2.38 and re-write it terms of the operators Ψ†±(k) and
Ψ±(k) which create (annihilate) an electron with energy ε±(k) given by the 2.35 at the proximity
between the wire and the superconductor (i.e we change to the basis which diagonalises H1D).
We thus perform the unitary transformation(

Ψ↑(k)
Ψ↓(k)

)
= U

(
Ψ+(k)
Ψ−(k)

)
(2.44)

with U given by the normalized eigenvectors which diagonalise H1D

U =

(
αk
D+

αk
D−

− i(B+A)
D+

− i(B−A)
D−

)
(2.45)

where A =
√
B2 + (αk)2 (the square root term in eigenvalues ε±(k) from the 2.35), D± =√

(αk)2 + (B ±A).
Therefore

Ψ↑(k) =
αk

D+
Ψ−(k) +

αk

D−
Ψ+(k)

Ψ↓(k) = − i(B +A)

D+
Ψ−(k)− i(B −A)

D−
Ψ+(k)

(2.46)

Since we know that H1D is diagonal in the basis of Ψ(k)± and that it explicitly reads

H1D =

∫
dkΨ†+(k)ε+(k)Ψ+(k) + Ψ†−(k)ε−(k)Ψ−(k), (2.47)

all we have to do is to express HSC in this basis, which yields

HSC = −∆

∫
dkΨ↑(k)Ψ↓(−k) + h.c

= −∆

∫
dk

(
αk

D+
Ψ−(k) +

αk

D−
Ψ+(k)

)(
− i(B +A)

D+
Ψ−(−k)− i(B −A)

D−
Ψ+(−k)

)
+ h.c

(2.48)

20



expanding the above we obtain

HSC =

∫
dk
B∆

A
[Ψ−(−k)Ψ+(k) + h.c]

+

∫
dk
αk∆

A
[Ψ+(−k)Ψ+(k) + Ψ−(−k)Ψ−(k) + h.c].

(2.49)

The �rst term indicates the interband conventional s-wave, where the pairing ∆s = B∆√
B2+(αk)2

is symmetric in momentum space, whereas the second term contains the intraband pairing
∆p = αk∆√

B2+(αk)2
which encodes p-wave pairing. The latter, is an odd function of the momen-

tum k as required from Pauli exclusion principle when the pairing occurs in the triplet state.

Tight Binding

We now derive the topological criterion for the system discretized on a lattice of points, de-
scribed by a tight binding model. The tight binding Hamiltonian for 2.33 above is obtained de�n-
ing second quantised operators ci and c

†
i which respectively annihilate and create a fermion on the

lattice site i, and using the �nite di�erence to re-write the derivatives as ∂xΨi = Ψi+a −Ψi−a/2a.
Assuming the Rashba SOC along y direction as above and Zeeman splitting along z the tight
binding Hamiltonian in which we consider only nearest neighbours hopping reads

H =− t
∑

<i,j>,σ

c†i,σcj,σ + h.c− µ
∑
i,σ

c†i,σci,σ

+α
∑

<i,j>,σ,σ′

c†i,στ
y

σ,σ′
cj,σ′ + h.c+B

∑
i,σ,σ′

c†i,στ
z
σ,σ′

ci,σ′ + ∆
∑
i

c†i,↑c
†
i,↓ + h.c

(2.50)

where we have set the lattice constant a = 1 for simplicity.
Our aim is to derive the topological critical point in the tight binding description of the system.
Therefore we Fourier transform the operators in momentum space and study the bulk band
structure. The 2.50 then becomes

H =
∑
k,σ,σ′

c†k,σ[(−2t cos k − µ)δσ,σ′ + α sin kτy
σ,σ′

+Bτ z
σ,σ′

]ck,σ′

+ ∆
∑
k

[c†k,↑c
†
−k,↓ + c−k,↓ck,↑].

(2.51)

The diagonalization procedure is the typical one, and after de�ning a Nambu spinor in mo-
mentum space as usual, one �nds the tight binding BdG Hamiltonian, where the matrix HK

reads

Hk =


−µ− 2t cos k B − 2iα sin k 0 ∆
B + 2iα sin k −µ− 2t cos k −∆ 0

0 −δ µ+ 2t cos k −B + 2iα sin k
∆ 0 −B − 2iα sin k µ+ 2t cos k

 (2.52)

where t is the hopping term t = k2/2m. One then diagonalises Hk in (2.52) to �nd the energy
eigenvalues.

The gap closes at the point k = 0 in the �rst mBZ. Therefore, in order to derive the
criterion for the gap closing in parameter space, one sets E(0) = 0 and �nds: E(0) = ±B ±√

(µ+ 2t)2 + ∆2 which implies that, in the tight binding approximation, the gap closes when

B =
√

(µ+ 2t)2 + ∆2. (2.53)

At low-energy and close to k = 0, where the e�ects of the bandwidth can be neglected, the two
models at continuum and the tight binding lead to the same dispersion and to the same criterion
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Figure 2.6: Phase transition diagram in the B/∆ plane in presence of only the constant Rashba SOC.
αr/t =0.3

for the gap closing. Therefore, the tight binding is a good approximation in the limit we want
to consider, and we will use it for modelling our system in the rest of the thesis.

As a last remark, we plot the phase diagram which shows the transition from trivial and
topological phase. The diagram plotted in �gure 2.6 shows that the line µ = −2t, where, ac-
cording to the 2.53, the transition occurs when B = ∆, represents an optimal condition for
driving the system in the topological phase. In fact, shifting the value of µ (provided that one
remains in the spinless regime created by the Zeeman splitting), the trivial phase (right side of
the coloured lines in the plot) gets extended, reducing the portion of the diagram in which the
system is in the topological phase.
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E
/t

Figure 2.7: The �gure shows the band structure at tight binding for the 1D wire where the magnetic
�eld is set to zero. The system preserves Time Reversal symmetry so for each value of the Fermi level,
there are four Fermi points, as stated by Kramer theorem.

Notice furthermore that the value µ = −2t coincides with the energy value of the band
crossing in k = 0 due to Kramer degeneracy when the magnetic �eld is zero.
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Chapter 3

Spin orbit coupling in Curved

Geometries

In the previous chapter, we have introduced the model for a 1D semiconducting nanowire
with spin orbit coupling living in a �at geometry.
As already mentioned in the introduction, experimental progresses have allowed to engineer
curved nanostructures such as spiral-like nanotubes and nanohelics [41, 42]. Studies on those
semiconducting materials, have shown that the non trivial geometry of a curved semiconducting
nanowire can lead to topological insulating phases[43].
Motivated by these recent observations, in this thesis we will be concerned in studying the in-
�uence of the non trivial geometry of the semiconducting wire on the topological phase of the
system hosting Majorana fermions introduced in the previous chapter.
For this purpose, in this chapter, after spending some time in recalling the origin of the SOC in
semiconductors, we derive an e�ective one dimensional Hamiltonian for electrons moving on a
curved geometry, and we show that this non trivial geometrical shape results in fact in a periodic
canting of the electron spins.

3.1 Spin Orbit Coupling

The spin orbit interaction arises as a relativistic e�ect concerning the motion of an electron
in an external electric �eld E.
In the case of the atomic spin orbit coupling, the latter is provided by the interaction between
the electron intrinsic angular momentum (spin) and the electric �eld originating by Coulomb
interaction between the electron and the nucleus. The coupling of the electron spin with the
Coulomb �eld can be explained semi-classically, as it was �rst done by Thomas in 1926 [44], by
using the Bohr model of Hydrogen atom and the kinematics for a relativistic particle.
Following this reasoning, one starts by describing the interaction between electron and nucleus
in the electron rest frame. Due to Lorentz transformation, one �nds that, when the electron is
on its own rest frame, it experiences a magnetic �eld coming from the cyclic orbit of the nucleus
given by B = −v× E

c . The electron magnetic moment µs = −gsµB
~ S (where gs is the giroscopic

constant, almost 2 for the electron, and µB the Bohr magneton) interacts with this magnetic
�eld, leading to a potential term of the form HSO = −µs ·B = µs ·v×∇V . Since the Coulomb
potential is a central potential depending only on the distance radius r, the spin orbit potential
can be written as

HSO =
1

ecr

dV

dr
µs · v × r =

gs
ecr

µB
m~

S · L = − ~
2m2c2

1

r

dV

dr
σ ·L (3.1)

in which the coupling S ·L is manifest. For the last equality we have used that s = ~
2σ.

However, one needs to take into account that the electron rest frame is not an inertial frame,
and the constant acceleration of the electron amounts to subsequent Lorentz boosts. Applying
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two generic (non collinear) Lorentz boosts subsequently, yields to a composition of a boost and
a rotation [45]. Therefore, when taking into account the rotation in the accelerating frame of
the electron, the spin orbit potential reads

HSO = − ~
2m2c2

1

r

dV

dr
σ ·L+

~
4m2c2

1

r

dV

dr
σ ·L = − ~

4m2c2

1

r

dV

dr
σ ·L (3.2)

where the second term in the second equality is the so-called Thomas precession term.
The term in the last equality is the full spin orbit coupling term, which can be shown to co-
incide with the spin orbit coupling term in the Scrödinger-Pauli Hamiltonian derived as a non
relativistic limit of the Dirac equation. Therefore, we follow now this approach to derive the
spin orbit coupling term in a more formal way.

The time independent Dirac equation for spin 1/2 particles reads

(cα · p+ βm0c
2 + V )Ψ = EΨ (3.3)

where

α =

(
0 σ
σ 0

)
(3.4)

with σ being the vector of Pauli matrices σ = {σx, σy, σz}, and

β =

(
12x2 0

0 −12x2

)
. (3.5)

The Diras spinor ψ is a four-component spinor, but the Scrödinger-Pauli equation is an equation
of a two-component spinor (the spin up and spin down projection of a spin 1/2 particle). As a

�rst step, we can thus re-write the Dirac spinor as Ψ =

(
ΨA

ΨB

)
, with ΨA indicating the �rst

two component and ΨB the last two.
The Dirac equation above couples the components ΨA and ΨB, yielding the equations

(σ · p)ΨB =
1

c
(Ē − V )ΨA

(σ · p)ΨA =
1

c
(Ē − V + 2m0c

2)ΨB

(3.6)

where we have de�ned Ē = E −m0c
2.

From the second equation we can �nd ΨB = c(σ·p)
Ē−V+2m0c2

ΨA and re-write the equation for ΨA as

(σ · p)

(
c2

Ē − V + 2m0c2

)
(σ · p)ΨA = (Ē − V )ΨA. (3.7)

In the non relativistic limit, the quantity (Ē−V )
2m0c2

≈ (vc )2 is small so we can Taylor expand the(
c2

Ē−V+2m0c2

)
in the previous expression as

1

2m0c2

(
c2

Ē−V
2m0c2

+ 1

)
=

1

2m0

(
1− (Ē − V )

2m0c2
+ ....

)
. (3.8)

Requiring the Dirac spinor to be normalized to one implies∫
d3xΨ†Ψ = 1→

∫
d3x(Ψ†AΨA + Ψ†BΨB) = 1 (3.9)

which shows that the equation 3.3 for Ψ is not equivalent to the 3.7 for ΨA as the latter itself is
not normalized to one. Substituting in the normalisation relation ΨB = c(σ·p)

Ē−V+2m0c2
ΨA derived

above, and recalling that for an electron moving in an electromagnetic �eld the momentum p
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is the canonical momentum p = (p0 − eA), where A is the vector potential, we have for the
normalization relation

1 =

∫
d3rΨ+

A

[
1 +

1

4m2
0c

2
(σ · (p0 − eA)) (σ · (p0 − eA))

]
ΨA (3.10)

where we have neglected orders higher than (v/c)2. Using the identity (σ · a)(σ · b) = (a · b) +
iσ(a× b) and that (p− eA)× (p− eA) = −ieB, we obtain

1 =

∫
d3rΨ†A

[
1 +

p2 + eσ ·B
4m2

0c
2

]
ΨA, (3.11)

from which we can de�ne the spinor Ψ̄ as

Ψ̄ =

(
1 +

p2 + eσ ·B
8m2

0c
2

)
ΨA (3.12)

which is normalised to unity. Plugging Ψ̄ in the 3.7, up to order (v/c)2 we obtain the Scrödinger-
Pauli equation[

p2

2m0
+ V − p4

8m3
0c

2
− ~

4m2
0c

2
σ · p×∇V0 −

e~2

8m2
0c

2
∇ · E +

e~
2m0

σ ·B − e~p2

4m3
0c

2
σ ·B

]
Ψ̄ = ĒΨ̄

(3.13)
where E = (1/e)∇V0 indicates the electric �eld. In the previous equation, the third term is a
relativistic correction on the kinetic energy, the fourth therm is the spin orbit coupling term, the
�fth term is the so- called Darwin term, the sixth term is the Zeeman term and the last term in
the equation, a relativistic correction on the latter.

3.1.1 Spin Orbit Coupling in Semiconductors

The Scrödinger-Pauli equation above describes the motion of an electron in an external po-
tential in the vacuum.
When considering the motion of the electron in a semiconductor, the k · p method constitutes
a powerful tool to �nd the band structure of the system in the vicinity of the band edge. In the
following, we underline the main features of this method.

We start from the Scrödinger equation for the electrons in a periodic lattice(
p2

2m0
+ V0(r)

)
Ψ(r) = EΨ(r) (3.14)

where V0(r) is the crystal potential. We then write the wavefunctions Ψ(r) in terms of Bloch
functions as Ψ(r) = eik·ruν,k(r), where ν is the band index. Acting with the momentum operator
p = −i~∂r on the plane waves part of the previous equation we obtain the equation for the
periodic part of the Bloch functions as(

p2

2m0
+

~2k2

2m0
+

~
m0
k · p+ V0(r)+

)
uν,k(r) = Eν,k(k)uν,k(r). (3.15)

Including the Pauli spin orbit coupling term in 3.14 and acting on the plane wave part with the
operator p we get(

p2

2m0
+

~2k2

2m0
+

~
m0
k · p+

~
4m2

0c
2
(σ ×∇V0)(~k + p) + V0

)
un,k(r) = En,k(k)uν,k(r). (3.16)

Note that, since now the orbital and the spin degree of freedom are coupled the conserved
quantity is the total angular momentum J = L + S and the band index n identi�es the bands
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according to their total angular momentum quantum number. De�ning the operator Π via
minimal substitution as

Π = p+
~

4m0c2
(σ ×∇V0) (3.17)

we can re-write the above equation as(
p2

2m0
+

~2k2

2m0
+

~
m0
k ·Π +

~
4m2

0c
2
p · (σ ×∇V0) + V0

)
un,k(r) = Eν,k(k)un,k(r). (3.18)

Recalling that un,k(r) = 〈r|n,k〉, we can write the Scrödinger-Pauli equation for the two com-
ponent spinors |n,k〉. For every k the set of the Bloch periodic functions {|n,k〉} form an
orthonormal basis. Assuming that we are interested in describing the band structure in the
vicinity of the band edge k0, and assuming (as it is indeed the case for many semiconductors)
that the band edge is at the Γ point (k = 0), we can expand the {|n,k〉} in terms of the band
edge periodic functions as

|n,k〉 =
∑
ν,σ

cn,ν,σ(k)|ν, σ〉 (3.19)

where we are considering the band edge eigenfunctions solution of the Scrödinger equation
without spin orbit coupling, since it is convenient to include the SOC further in the calculation
as a small perturbation. Therefore the band edge eigenfunctions |n,k〉 are de�ned as |ν, σ〉 =
|ν,0〉 ⊗ |σ〉.
Multiplying the equation 3.18 by 〈ν ′ , σ′ | and using orthonormality for 〈ν ′ , σ′ |ν, σ〉 we obtain for
the dispersion relation the equation∑

ν,σ

([
E(0) +

~2k2

2m0

]
δσ,σ′ δν,ν′ +

~
m0
k · P ν,ν

′

σ,σ′
+ ∆ν,ν

′

σ,σ′

)
cn,ν,σ(k) =

∑
ν,σ

En(k)cn,ν,σ(k) (3.20)

where the o� diagonal terms read

P ν,ν
′

σ,σ′
= 〈ν ′σ′ |Π|ν, σ〉

∆ν,ν
′

σ,σ′
=

~
4m2

0c
2
〈ν ′σ′ |(p · σ ×∇V0)|ν, σ〉.

(3.21)

In general, the Hamiltonian in 3.20 is an in�nite dimensional matrix, however, many times one
is interested only in a few bands in the vicinity of the band edge, in such a way that the full
k · p interaction and the SOC are taken into account only in those bands near the expansion
point, while the contribution of the furthest bands is included via quasi degenerate perturbation
theory [46], yielding to extra terms in higher order in k in the o� diagonal matrix elements.
Therefore, treated as a perturbation on the k ·p Hamiltonian 3.15, the SOC term is included in
the matrix elements 3.21 between the band edge Bloch functions, and its contribution becomes
stronger the smaller is the energy separation ∆0 between the two bands.

Depending on the type of semiconductor one wants to describe and in which energy bands
one is interested, di�erent k · p models considering N × N k · p Hamiltonians have been con-
structed and analysed. One of them is the 8×8 Kane model [47, 48] which takes into account the
eight bulk energy bands coming from the six-fold degenerate p-like (angular momentum l = 1)
valence band and the two fold degenerate s-like (angular momentum l = 0) conduction band.
We do not discuss the model here, but we use the result that, at �rst order perturbation theory
in the vicinity of Γ, the spin orbit coupling term entering the low energy e�ective Hamiltonian
is linear in k.
From this result, and noting that the spin orbit coupling conserves Time Reversal symmetry, we
conclude that the spin orbit coupling term linear in k entering the Hamiltonian, breaks spatial
inversion symmetry.
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Inversion symmetry is naturally broken in the bulk in asymmetric crystalline structures (bulk
inversion asymmetry, referred to as BIA), like in zinc blend structures without centre of inversion,
yielding a spin orbit term in the Hamiltonian which goes under the name of Dresselhaus spin
orbit coupling.
However, in semiconducting structure, the inversion symmetry can also be broken via structure
asymmetry (structure inversion asymmetry or SIA), for example by engineering heterostructures
of di�erent materials yielding a potential di�erence at the junction, producing an electric �eld.
The spin orbit coupling term entering the e�ective Hamiltonian for these systems is the so-called
Rashba SOC. This is the kind of spin orbit coupling acting in the model for the conventional one
dimensional nanowire designed to host Majorana fermions discussed in the previous chapter.
In order to derive the Rashba SOC from the Kane model, one has to use the envelope function

approximation , which allows for a treatment of the dynamics of electrons and holes in a crystal
structure in presence of external electric (and magnetic) �elds.
Applying this procedure in a two dimensional thin �lm semiconductor, assuming a uniform
electric �eld along the z-direction E = Eẑ one obtains a Rashba term in the Hamiltonian which
takes the form

HR = α(kxσy − kyσx). (3.22)

Here α is a parameter that depends both on the strength of the external electric �eld and on
the intrinsic properties of the material.

3.2 1D semiconducting quantum wire in a curved geometry and

Rashba Superlattice

In this section, we derive the e�ective one dimensional Hamiltonian for a planary curved
semiconducting nanowire living in the two-dimensional x-y plane with Rashba SOC . In doing
that, we closely follow [49].

The derivation relies on the thin-wall quantization method developed �rstly by Jensen and
Koppe in 1971 [50] and later (1981) by da Costa [51]. In this procedure, the particle is constrained
to move on n dimensional surface S embedded in a m dimensional space (with m ≥ n + 1) by
introducing in�nite potential barriers at a distance δ from the surface and taking the limit
δ → 0. Note that there are m − n normal directions to the surface in which one introduces
the con�ning potential barriers. Because of the strong con�nement on the normal direction,
the separation between energy levels along this direction is much higher than the one along the
tangent directions on the surface. Thus, one can project the total Hamiltonian on the lowest
transverse energy level and derive the e�ective Hamiltonian for the motion along the tangential
directions. Jensen and Koppe furthermore demonstrated that the e�ect of the curvature on the
motion of the particle manifests in the dimensional-reduced e�ective Hamiltonian through the
appearance of a potential term which is a function of the extrinsic curvature of the surface. This
potential is known as quantum geometric potential (QGP).
It has been showed that the procedure is legitimate also in presence of external electric and
magnetic �eld [52],[53], and in presence of spin orbit coupling [49].

Our starting point for deriving the e�ecive one dimensional Hamiltonian for a 1D channel
nanaowire is the continuum Pauli-Scrödinger equation in the e�ective-mass approximation to
describe the motion of the carriers in a semiconductor in presence of Rashba SOC(

p2

2m∗
+α · σ × p

)
Ψ = EΨ (3.23)

where Ψ is a two dimensional spinor, σ is the vector of the Pauli matrices generating Cli�ord
algebra in the 3D Euclidean space and obeying the anticommutation relation {σi, σj} = 2ηij ,
and α is the vector directed along the direction of the external electric �eld generating SOC and
of magnitude α corresponding to the Rashba SOC constant.
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Note that as in 3.22 α := αẑ but for convenience we keep it general in the following derivation.
In what follows, we will use Greek indices to indicate the three dimensional tensor component in
curved space, while Latin indices will be used to indicate the tensor component in �at, Euclidean
three dimensional space.

We can generalize the e�ective Schrödinger-Pauli equation in a curved space as

Eψ =

[
− ~2

2m?

(
Gµν∂µ∂ν −Gµν Γλµν∂λ

)
−i ~ Eµνλ αµςν∂λ

]
ψ, (3.24)

where is the inverse metric tensor Gµν in the 3D curved space, and we have used the box operator

�φ = Gµν∇µ∇ν

for the kinetic energy operator in curved space and

Γλµν =
1

2
Gλβ(∂νGβµ + ∂µGβν − ∂βGµν)

is the a�ne connection. Furthermore, in the SOC term we have introduced Eννλ = (||G||)−1/2εµνλ

the contravariant Levi-Civita tensor and the ζµ, ζν generalize the Pauli matrices in curved space
and obey the anticommutation relation {ζµ, ζν} = 2Gµ,ν .

We need now to de�ne a set of coordinates to parametrize the 3D space. Given its convenience
for describing the motion of a carrier along a curve, we will use the Frenet-Serret reference frame
to de�ne our set of local coordinates. In the following we therefore recall the basics characteristic
of this frame.
We start by parametrizing the position of the particle moving on a continuous and smooth
curve to be parametrized by the vector r(t), with the origin of the vector r(t) coinciding with
the origin of a �xed Cartesian reference frame. We can de�ne the in�nitesimal arclength ds as

ds

dt
=

∣∣∣∣∣∣∣∣drdt
∣∣∣∣∣∣∣∣ =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

(3.25)

thus, the arclength is given by

s(t) =

∫ t

t0

dτ

√(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

. (3.26)

If the sets of points on the curve were initially parametrised by t, one can invert the previous
relation for the arclength (as we have assumed the curve to be continuous and smooth) and
obtain r(t(s)) = r(s). We have therefore parametrised the curve using the arclength s. The
tangent vector to the curve in terms of the arclength reads

T (s) =
dr

ds
=
dr

dt

dt

ds
(3.27)

and , due to 3.25 and the fact that dt
ds = (dsdt )

−1, we automatically have that the tangent vector
as a function of s is a unit vector

T̂ (s) =
dr

ds
=

dr
dt

||drdt ||
. (3.28)

If we now consider T̂ ′(s), where the prime means we take the derivative with respect to s, by
using the fact that T̂ (s) is a unit norm vector and by di�erentiating the T̂ (s) · T̂ (s) = 1 we get
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T̂ (s) · T̂
′

(s) = 0, meaning that T̂
′

is orthogonal to T̂ and directed along the normal direction
to the curve. We can de�ne a vector

κ(s) :=
dT

ds
= κ(s)N̂ (3.29)

where N̂ indicates the normal direction. The vector κ expresses the rate of change of the
tangent vector T̂ as one proceeds along the curve, and it is called the curvature vector, and

the proportionality factor κ(s) is de�ned as the curvature [54]. Note that the sense of T̂
′

(s) is

always determined by the curve, whereas the one of N̂ can be chosen arbitrarily. However, by
requiring N̂ to be continuous along the curve, the sign of κ(s) distinguishes between the concave
and convex sides of the curve. In here we follow his convention.
Having introduced the proportionality factor between the tangent and the normal vectors, we
are now able to write down the Frenet-Serret equations of motion

dT̂ (s)

ds
= κ(s)N̂(s)

dN̂(s)

ds
= −κ(s)T̂ (s).

(3.30)

We are now ready to de�ne our set of coordinates. In fact, considering the planar curve
parametrised by the archlength s, we can de�ne the Frenet-Serret coordinates in the three
dimensional space in the vicinity of the curve as

R(s, q2, q3) = r(s) + N̂(s)q2 + B̂q3 (3.31)

where B̂ is the binormal vector, perpendicular to the plane of the curve.

We derive the components of the metric tensor Gµ,ν by constructing the line element

dR2 =

(
∂r(s)

∂s
+ q2

∂N̂(s)

∂s

)
ds2 + (N̂(s))2dq2

2 + B̂2dq2
3 = (1− κ(s)q2)2ds2 + dq2

2 + dq2
3 (3.32)

where for the �rst equality we have used that the orthogonality of the tangent normal and
binormal directions (and therefore their dot product is zero), for the second equality we have

used the Frenet equation ∂sN̂(s) = −κ(s)T̂ (s) and that N̂(s) · N̂(s) = B̂ · B̂ = 1.
The metric tensor is therefore diagonal and reads

G =

 [1− κ(s)q2]2 0 0
0 1 0
0 0 1

 ,

and the determinant ||G|| = (1− κ(s)q2)2.
De�ning at each point a set of one forms eiµ and vector �elds eµi such that eiµe

ν
j = δji , follow-

ing Cartan's dreibein formalism [55], we can write the metric tensor as Gµν = eiµδije
j
ν . This

enables us to de�ne the generators of the Cli�ord algebra in curved space as ζµ = eiµσi. From

the metric above, eiµ can be chosen as eis = (1 − κ(s)q2)T̂
i
(s), eiq2 = N̂

i(s)
,eiq3 = B̂i, yielding

ζs = σt(1−κ(s)q2), ζq2 = σN and ζq3 = σB, where σT is a local Pauli matrix de�ned as σT = σ ·T̂
and the same holds for σN and σB.

In order to constrain the motion of the carriers along the one dimensional planar curve, we
follow the thin-wall quantization procedure introduced above [51]. We thus introduce two strong
potential barriers along the normal and binormal direction, indicated as VλN (q2) and VλB (q3)
where λN and λN are the squeezing parameters.
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We moreover de�ne a spinor �eld χ with norm in Euclidean space given by N =
∫
χ+χdsdq2dq3.

Therefore by norm conservation we have

N =

∫ √
||G||Ψ+Ψdsdq2dq3 =

∫
χ+χdsdq2dq3

implying χ := Ψ× ||G||1/4.
In the limit λN,B →∞ , the normal and binormal direction are squeezed around zero, thus, in
the limit for q2,3 → 0 the equation Scrödinger equation for the spinors χ becomes

E χ =

[
− ~2

2m?

(
ηµν∂µ∂ν +

κ(s)2

4

)
− i~ εµνλ αµσν∂λ

−i~ εµνq2 αµσν
κ(s)

2
+ VλN (q2) + VλB (q3)

]
χ (3.33)

where we have used that in the above limit, the derivatives of Ψ in terms of χ are given by
∂q2ψ = ∂q2χ+

κ(s)

2
χ

∂2
q2ψ = ∂2

q2χ+ κ(s)∂q2χ+
3

4
κ(s)2χ.

and that the only non trivial component of the a�ne connection is Γq2s,s = κ(s).
In equation 3.33 the motion along the tangential direction is coupled with the motion along the
normal direction by the spin orbit interaction. However, due to the strong con�nement of the
normal direction and the high frequency of oscillation of the degrees of freedom along the latter,
we can apply adiabatic approximation and separate the two variables, writing the spinor as

χ(s, q2, q3) = χT (s)χN (q2)χB(q3),

where the χN,B solve the Schrödinger equation

− ~2

2m?
∂2
q2,q3 χN,B + VλN,B

(q2,3)χN,B = EN,B χN,B.

Treating the normal and binormal degrees of freedom as perturbation, the �rst order derivatives
along the latter directions in equation 3.33 vanish. We can therefore write an e�ective one
dimensional Scrödinger-Pauli equation for the degrees of freedom along the tangential direction
χ(s) as

E χT =

[
− ~2

2m?

(
∂2
s +

κ(s)2

4

)
− i~αNσB∂s (3.34)

+i~αTσB
κ(s)

2
+i~αB

(
σN∂s − σT

κ(s)

2

)]
χT .

If we now consider the electric �eld inducing Rashba spin orbit coupling pointing in the

binormal direction as in 3.22 and noticing that

(
σN∂s − σT

κ(s)

2

)
= 1

2{∂s, σN} we can write

the preceding equation as

EχT =

[
p̂2
s

2m?
− ~2κ(s)2

8m?
+ i~

αB
2
{∂s, σN}

]
χT . (3.35)

The Hamiltonian derived above is manifestly Hermitian, and it is the correct one dimensional
operator describing the motion of the electron in the curve-shaped semiconductor.
The e�ect of the curvature is incorporated in the local canting of the electron spins, in fact, as
shown in �gure 3.1 for a serpentine-like wire, the magnitude of the spin orbit remains constant,
but the direction rotates in the x-y plane. Assuming for the curved wire the periodic shape in
�gure 3.1, the 1D SOC Hamiltonian 3.35 is invariant under translations of a full period λ. We
thus introduce a tight binding model for the 3.35 and we show that the local spin orbit coupling
leads to a superlattice structure.
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Figure 3.1: The �gure represents a serpentine nanowire lying in the x-y plane, which displays a periodic
spin canting induced by the curved geometry of the wire.

Tight Binding Model

Le us start by writing the Hamiltonian in equation 3.35 in second quantised form in terms
of the spinor �eld operators Ψ(s)† and Ψ(s) as

H =
∑
σ,σ′

∫
dsΨ†(s)σ,σ′

[
− ~2

2m∗
∂2
s −

iαr
2

(τN (s)∂s + ∂sτN (s))

]
Ψ(s)σ,σ′ . (3.36)

As previously, m∗ is the e�ective electron mass, αr is the strength of the Rashba SOC, and
�nally, τN (s) = τ · N̂(s) is the local Pauli matrix de�ned in the preceding section.

In the x,y plane of the curved nanowire, the vectors T̂ and N̂ of the Frenet-Serret frame can
be written in polar coordinates in terms of an angle θ (depending itself on the arclength s) as

T̂ = {cos θ(s),− sin θ(s), 0}

N̂ = {sin θ(s), cos θ(s), 0}.
(3.37)

From the previous form of the tangent and normal vectors and using the 3.30 we get that
θ(s) is completely determined by the curvature of the nano wire through

θ(s) = −
∫ s

κ(s
′
)ds

′
. (3.38)

At this point, we take the periodic shape of the wire to assume a simple sinusoidal form,
having parametric equation in the Euclidean space r(x) = {x,A sin

(
2πx
λ

)
, 0} where λ indicates

the periodicity and A the height.
In the limit

(
2πA
λ

)
<< 1, the archlength s can be approximated by the coordinate x, and we

can determine the curvature κ(s) ' κ(x) as κ(s) = dT /ds = d2r(s)/ds which, di�erentiating
the equation for the curved wire above, leads to

κ(x) = −A
(

2π

λ

)2

sin

(
2πx

λ

)
. (3.39)

In order to obtain the tight binding model describing the planary curved nanowire in a
discrete lattice space, we need derive the discrete form of the 3.36 in 1D lattice space. The
detailed derivation, which makes use of the �nite di�erence formula is given in appendix B.
In discrete one dimensional lattice, the atomic sites are separated by the lattice constant a,
which we are setting to one throughout the following for simplicity.
In terms of the fermionic �eld operators on the lattice the Hamiltonian derived in appendix B
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reads

H = −t
∑
σ,σ′

∑
i

Ψ†i,σΨi+1,σ′ δσ,σ′ −
iαr
2

∑
σ,σ′

∑
i

Ψ†i,στ
y

σ,σ′

[
(cos θi + cos θi+1)

2

]
Ψi+1,σ′

+Ψ†i,στ
x
σ,σ′

[
(sin θi + sin θi+1)

2

]
Ψi+1,σ′ + h.c.

(3.40)

where θi is the periodic function of the curvature in the discrete space de�ned as
θi = −A

λ 2π cos
(

2πi
λ

)
. Note that, the terms (cos θi + cos θi+1) /2 and (sin θi + sin θi+1) /2 imply

that the strength of the curvature induced Rashba SOC is encoded on the bonds between nearest
neighbouring sites.

The locally varying spin orbit interaction due to the curvature of the wire, breaks translation
symmetry on the lattice (as it does in continuum space), as the SOC term on the bond between
the �rst and the second atomic site is di�erent between the SOC on the bond between the second
and the third site and so on. However, given its periodic nature, leaves the system invariant if
translated of a full period. On the lattice, we can de�ne a unit cell with the same periodicity
of the function θ so we recover translation invariance between the cells. The lattice spacing
between atomic sites a is taken to be one, thus the lattice constant of the new unit cell is simply
given by the number q of atomic sites included in it. Since the period of the function θ depends
on the parameter λ, in order for the periodicity of the new unit cells and the periodicity of θ to
coincide, we just need to take the new lattice constant q = λ. Furthermore, in order to account
for a possible phase arising between the function θ and the arrangement of the atomic sites in
the new unit cells (e.g when the origin of the periodic function θ does not coincide with the
�rst atomic position of the lattice unit cell), we introduce a displacement phase φ and de�ne the

atomic positions within the new unit cell as xn = n
λ =

(
n
q + φ

2π

)
. In terms of the positions xn,

the function θ reads θ(xn) = −2πAλ cos (2πxn).
The lattice formed by these unit cells with enhanced lattice constant is called superlattice and
the corresponding unit cells, superlattice unit cells.
With the superlattice structure constructed as above, we want to re-write the fermionic �eld
operators Ψi and Ψ†i in terms of creation and annihilation operators c†n,i, cn,i on superlattice
sites. In the latter operators, the index n = 1, 2, ..., q runs over the di�erent atomic sites within
the unit cell, while the index i = 1, 2, ..., N/q runs over the superlattice cells. With this notation,
we can write the Hamiltonian 3.40 as

H =
∑
σ,σ′

q−1∑
n=1

N/q∑
i=1

c†n,i,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xn)) + cos (θ(xn+1))

2

)]
cn+1,i,σ′ (3.41)

+c†n,i,σ

[
+
iαr
2
τx
σ,σ′

(
sin (θ(xn)) + sin (θ(xn+1))

2

)]
cn+1,i,σ′ (3.42)

+c†q,i,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xq)) + cos (θ(x1))

2

)]
c1,i+1,σ′ (3.43)

+c†q,i,σ

[
iαr
2
τx
σ,σ′

(
sin (θ(xq)) + sin (θ(x1))

2

)]
c1,i+1,σ′ (3.44)

where θ(xn) is de�ned as above, yielding therefore θ(xq) = −A
λ cos

[
2π
(

1 + φ
2π

)]
and

θ(x1) = −A
λ cos

[
2π
(

1
q + φ

2π

)]
.
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3.2.1 Momentum Space

In order to write the tight binding Hamiltonian in momentum space, we transform the
operators c†n,i and cn,i as

c†n,i =
1√
2π

k=N/q∑
k

e−i(k·i)c†n,k

and

cn,i =
1√
2π

k=N/q∑
k=1

ei(k·i)cn,k

. Notice that, since in real lattice space we have de�ned a superlattice with unit cell with
enlarged lattice constant q, in reciprocal space (momentum space), the �rst Brillouin Zone is

reduced to the momenta
[
−π
q ,

π
q

]
.The reduced Brillouin zone is referred to as Mini Brillouin

zone, or mBZ. As a consequence, electronic level corresponding to momenta k of the initial
Brillouin zone outside mBZ, are mapped inside the reduced Brillouin zone and yield to the band
folding of the energy spectrum.
The Hamiltonian in k-space reads

H =
∑
σ,σ′

q−1∑
n=1

N/q∑
k=1

c†n,k,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xn)) + cos (θ(xn+1))

2

)]
cn+1,k,σ′

+c†n,k,σ

[
+
iαr
2
τx
σ,σ′

(
sin (θ(xn)) + sin (θ(xn+1))

2

)]
cn+1,k,σ′

+c†q,k,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xq)) + cos (θ(x1))

2

)]
]eikc1,k+1,σ′

+ c†q,k,σ

[
iαr
2
τx
σ,σ′

(
sin (θ(xq)) + sin (θ(x1))

2

)]
eikc1,k+1,σ′ .

(3.45)

In order to derive the band structure of the Hamiltonian above, one de�nes the spinor

Ck =
(
cn1,k,↑, cn1,k,↓, cn2,k,↑, ......, cnq ,k,↓

)T
(3.46)

which allows to write the Hamiltonian in k space in matrix form H =
∑

kCkHkCk, and �nd
the dispersion relation εk diagonalizing Hk.
Explicit form of Hk for q = 3 and q = 4 is given in appendix C.
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Chapter 4

A Toy Model for Topological

Superconductivity in Rashba

Superlattice

In order to study the in�uence of the curved geometry of the semiconducting wire on the
topological superconducting phase, we begin by introducing a simpli�ed toy model in which we
consider the conventional wire hosting Majorana modes presented in chapter 1 with an additional
modulated Rashba SOC orthogonal to the constant SOC.
We start by analysing the bulk band structure of the semiconducting wire alone, in order to
enlighten the in�uence of the locally-varying Rashba SOC, and we proceed by �rst introducing
a Zeeman splitting in the bulk band structure and then adding the proximity induced s-wave
superconductivity, in order to study the full system designed to host Majorana modes.

4.1 Toy Model Hamiltonian

We introduce here the e�ective k · p Hamiltonian for the semiconducting wire with a locally
varying term depending on a periodic function of the coordinates set along the z-direction and
constant Rashba SOI set along the y direction. The Hamiltonian reads

HSOC =
∑
σ,σ′

∫
dxΨ†σ(x)

[
− ∂2

x

2m
+
iαm

2
{κ(x), ∂x}τ zσ,σ′ + αrτ

y

σ,σ′
∂x

]
Ψσ′ (x) (4.1)

Where we have set ~ = 1. The term iαm{κ(x), ∂x}τ zσ,σ′/2 is the one-dimensional Rashba SOC

that results from an e�ective electric �eld along the ŷ direction, whereas the term αrτ
y

σ,σ′
∂x is

the Rashba SOC resulting from an e�ective electric �eld along the ẑ direction. The τy
σ,σ′

and

τ z
σ,σ′

are, respectively, the second and the third Pauli matrices acting on spin space, and αm and

αr are the strength of the SOC �elds in the corresponding directions.
The anticommutator {κ(x), ∂x} between κ(x) and the operator ∂x is the local term that accounts
for the modulation of the Rashba �eld along the ẑ direction: κ(x) is in fact a periodic function
and, for simplicity, we assume κ(x) = cos

(
2π
λ x
)
.

Tight Binding Model

In order to write the tight binding model for the system constituted by the preceding Hamil-
tonian for the semiconducting wire, we �rst discretize (4.1) on a one-dimensional lattice using
the procedure that makes use of the �nite di�erences method already showed for the previous
section (details can be found in appendix B). As a consequence, for the terms in 4.1 contain-

ing derivatives, we will get nearest neighbours hopping terms of the form Ψ†i,σΨj,σ + h.c where
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j = i+a, where a is the lattice spacing, which we set to one for simplicity. The term containing
the anticommutator in the Hamiltonian (4.1), can be discretized using the product rule for �nite
di�erences as showed in appendix B. With this procedure we �nd

Ψ†i,σ
[κi + κj ]

2
τ z
σ,σ′

Ψj,σ′ + h.c

where ki and kj denote the periodic function on site i and j. This implies that the Rashba spin
orbit strength is acting on the bond between nearest neighbours, yielding a modulated nearest
neighbours hopping.
The latter, as analogous to the model introduced in chapter 3, breaks translation invariance
between neighbouring sites on the lattice. Nevertheless, we can recover translation invariance
between adjacent cells rede�ning a unit lattice cell with the same periodicity of the modulation
of the SOC, in the exact same fashion of the previous chapter. The superlattice period is
therefore q = λ and, including the displacement phase φ the atomic positions in the superlatice

cell are given by n
λ =

(
n
q + φ

2π

)
. In the latter superlattice structure, we introduce the fermionic

creation and annihilation operators c†n,i,σ and cn,i,σ where, sticking with the notation introduced
previously, the index n = 1, 2, ...q runs over the atomic sites within the unit cell, while the index
i = 1, 2, ...N/q runs over the number of superlattice cells and the index σ is the spin index. In
term of these operators, the tight binding Hamiltonian is given by

Htb
SOC =

∑
σ,σ′

q∑
n=1

N/q∑
i=1

c†n,i,σ

[
−tδσ,σ′ + αrτ

y

σ,σ′
+ αmτ

z
σ,σ′

(
κn + κn+1

2

)]
cn+1,i,σ′

+c†q,i,σ

[
−tδσ,σ′ + αrτ

y

σ,σ′
+ αmτ

z
σ,σ′

(
κq + κ1

2

)]
c1,i+1,σ′ + h.c

(4.2)

where κn, κq, κ1 are respectively given by κn = cos
[
2π
(
n
q + φ

2π

)]
,κq = cos

[
2π
(

1 + φ
2π

)]
and

κ1 = cos
[
2π
(

1
q + φ

2π

)]
. Here, φ is the phase that accounts for di�erent con�gurations of the

superlattice unit cells as previously explained.

Momentum Space

In order to write the Hamiltonian in momentum space we �rst de�ne the Fourier Transform

c†n,i =
1√
2π

k=N/q∑
k=1

e−i(k·i)c†n,k

and

cn,i =
1√
2π

k=N/q∑
k=1

ei(k·i)cn,k.

In terms of the latter, the Hamiltonian in momentum space reads

HSOC =
∑
σ,σ′

q∑
n=1

N/q∑
k=1

c†n,k,σ

[
−tδσ,σ′ + αrτ

y

σ,σ′
+ αmτ

z
σ,σ′

(
κn + κn+1

2

)]
cn+1,k,σ′

+c†q,k,σ

[
−tδσ,σ′ + αrτ

y

σ,σ′
+ αmτ

z
σ,σ′

(
κq + κ1

2

)]
ek·ic1,k,σ′ + h.c

(4.3)

We de�ne the spinor Ck =
(
cn1,k,↑, cn1,k,↓, cn2,k,↑, ...., cnq ,k,↓

)T
that allows us to write the Hamil-

tonian in matrix form C†kHkCk and diagonalizeHk in order to �nd the dispersion relation and
therefore, the bulk band structure. Explicit form of Hk are given in appendix C.
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4.2 Normal Phase Bulk Bands

In the following, we consider the energy spectrum for di�erent periodicities of the superlattice
unit cell and how the band structure of the semiconducting wire is modi�ed.
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(a) Band Structure q = 3. In here, only the
constant Rashba SOC along y is turned on,
leading to the typical momentum-dependent
spin splitting of the energy bands. The
strength of the Rasha SOI is set at αr/t = 0.2
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(b) Band structure for q = 3. Both component
of the Rashba SOC are present, and we ob-
serve insulating gap opening at unpinned point
the �rst mBZ for all integer �lling fractions
ν = 1/3, ν = 2/3. The strength of the con-
stant Rasha SOC is set at αr/t = 0.2 while the
strength of the moduleated Rashba SOC along
z is set to αm/t = 0.8.
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(c) Band Structure q = 5. In here, only the
constant Rashba SOC along y is turned on,
leading to the typical momentum-dependent
spin splitting of the energy bands. The
strength of the Rasha SOI is set at αr/t = 0.2
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(d) Band structure for q = 5. Both component
of the Rashba SOC are present, and we ob-
serve insulating gap opening at unpinned point
the �rst mBZ for all integer �lling fractions
ν = 1/5, ν = 2/5,ν = 3/5 and ν = 4/5. The
gap at ν = 1/5 and ν = 3/5 cannot be ap-
preciated in this �gure, and the red circles in-
dicate that a zoom on those bands crossings
is required. The latter will be provided in the
next �gure. The strength of the constant Rasha
SOC is set at αr/t = 0.2 while the strength of
the moduleated Rashba SOC along z is set to
αm/t = 0.8.

Figure 4.1: Energy bands for q = 3 and q = 5 atomic sites in a superlattice unit cell. Both the superlattice
periodicity show the same behaviour when introducing the modulated component of the SOC orthogonal
to the constant one.

Figure 4.1 shows the band structure when we consider a superlattice unit cell containing an
odd number q of atomic sites. More precisely, in the 4.1, we have plotted the energy bands for
q = 3 and q = 5. The band structure in 4.1 demonstrates that the system, in presence of the
locally varying SOC, undergoes a metal-insulator phase transition at unpinned points in the �rst
mBZ. In fact, the energy spectra in 4.1(b) and 4.1(d) display the band insulating gap opening
at integer �lling fractions ν = n/q, with n = 1, ..., q, at unpinned points. Note that the lowest
energy bands at ν = 1/5 and the highest at ν = 4/5 in 4.1(d) indeed do not cross as it is showed
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in 4.2 where we zoom on the �lling fractions ν = 1/5 and ν = 4/5.
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(a) Zoom on the lowest energy bands for q = 5,
where we can appreciate the gap opening at
ν = 1/5. The strength of the constant Rasha
SOC is set at αr/t = 0.2 while the strength of
the moduleated Rashba SOC along z is set to
αm/t = 0.8.
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(b) Zoom on the highest energy bands for q =
5, where we can appreciate the gap opnening
at �lling ν = 4/5. The strength of the constant
Rasha SOC is set at αr/t = 0.2.

Figure 4.2

Figure 4.3 shows instead the bulk band structure when an even periodicity of the superlattice
cell is chosen.
Looking at 4.3(a) and 4.3(b), we observe that, as we introduced the modulated component of
the Rashba SOC along z-direction, when q = 4, there is no insulating gap opening at any �ling
fraction. On the other hand, if we consider the 4.3(d) showing the band structure for q = 6, we
see insulating gap opening at unpinned points in the �rst mBZ for the �lling fractions ν = 2/6
and ν = 4/6, while, no gap opening occurs at ν = 1/6 and ν = 5/6: the zoom provided in �gure
4.4 is meant to convince the reader that indeed in the case of q = 6 the lowest and the highest
energy bands cross even in presence of the modulated SOC. The �lling fractions ν = 2/6 and
ν = 4/6 indeed correspond to the �lling fractions ν = 1/3 and ν = 2/3 in the case analysed
previously for q = 3 where the insulating gap are open, meaning that he band structure in 4.3(d)
for q = 6 shows consistency both with the case of superlattice periodicities q = 3 and q = 4.
We have therefore observed that the introduction of a modulated SOC induces metal-insulator
transitions at integer �lling fractions ν = n/q with n and q co-primes and q odd.

We want now to understand if the absence of insulating gap opening at any �lling fraction
for q even is due to the speci�c periodic shape of the superlattice coinciding with the periodic
modulation of the SOC. Thus, we analyse the band structure for the preceding cases q = 4 and
q = 6 when the displacement phase φ has a non trivial value.
We start by considering the case q = 4, where the band structure plotted in 4.5 displays a gap
at half �lling which was closed in the previous plot obtained for φ = 0, implying that, as one
allows for di�erent displacements of the atomic sites in the superlattice structure, the locally
varying SOC induces metal-insulator phase transitions in the system at half �lling.

Having found that the bulk spectrum of the system acquires a gap at zero energy as one varies
the parameter φ, we further analyse the potential occurrence of a topological phase transition
corresponding to a closing and a subsequent reopening of the insulating gap as sweeping the
displacement phase φ. Figure 4.6 displays the band structure for an open, �nite, chain with
q = 4 atomic sites per unit superlattice cell as φ is swept from 0 to 1. Here, we observe that the
energy spectrum, gapless at φ = 0, acquires an insulating gap for small values of φ, which closes
and opens again as one continues sweeping φ along a full period. After the �rst gap closing, we
notice the appearance of zero energy states localised at the end of the chain, leading the chain
in the topological insulating phase.
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(a) Band Structure q = 4. In here, only the
constant Rashba SOC along y is turned on,
leading to the typical momentum-dependent
spin splitting of the energy bands. The
strength of the Rasha SOI is set at αr/t = 0.4
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(b) Band structure for q = 4. Both component
of the Rashba SOC are present, and we observe
no insulating gap opening in the �rst mBZ for
any �lling fraction. The strength of the con-
stant Rasha SOC is set at αr/t = 0.4 while the
strength of the moduleated Rashba SOC along
z is set to αm/t = 0.8.
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(c) Band Structure q = 6. In here, only the
constant Rashba SOC along y is turned on,
leading to the typical momentum-dependent
spin splitting of the energy bands. The
strength of the Rasha SOC is set at αr/t = 0.4
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(d) Band structure for q = 6. Both component
of the Rashba SOC are present, and we observe
insulating gap opening at unpinned points the
�rst mBZ for the �lling fractions ν = 1/3 and
ν = 2/3. We have evidentiated the band cross-
ings at �lling ν = 1/6 and ν = 5/6 zince we
zoom on them in the next �gure and we show
that, as opposite of what happens in the case
q = 5 there is no gap opening for these �lling
fractions. The strength of the constant Rasha
SOC is set at αr/t = 0.4 while the strength of
the moduleated Rashba SOC along z is set to
αm/t = 0.8.

Figure 4.3: Energy bands for q = 4 and q = 6 atomic sites in a superlattice unit cell. Here we see no
insulating gap opening when q = 4 whereas, for q = 6, the insulating gaps open only at �lling fractions
ν = 1/3 and ν = 2/3.

We have therefore showed that the locally varying SOC promotes the generation of a topo-
logical insulating phase which hosts conducting states at the edge.
In order to classify the topological phase, we need to look at the symmetries possessed by the
system. The e�ective Hamiltonian we are studying, includes the electron kinetic energy and two
spin orbit coupling terms. Those terms alone, do not break Time reversal symmetry, meaning
that the system is symmetric under THkT

−1 = H−k with T which squares to −1 for spin 1/2
particles. Furthermore, as the sites in the unit superlattice cell are assumed to be occupied
by atoms of the same kind, the system possess also the unitary sublattice symmetry (chiral
symmetry), meaning that if one takes the mid point of the unit cell and reverses the sites, the
system remains unchanged. Finally, it is evident that the system possesses also the anti-unitary
Particle-Hole symmetry, which squares to −1 for spinful electrons.
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(a) Zoom on the lowest energy bands for q = 6,
where we can appreciate the gap opening at
ν = 1/5.The strength of the constant Rasha
SOC is set at αr/t = 0.4 while the strength of
the moduleated Rashba SOC along z is set to
αm/t = 0.8.
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(b) Zoom on the highest energy bands for q =
6, where we can appreciate the gap opnening
at �lling ν = 4/5. The strength of the constant
Rasha SOC is set at αr/t = 0.4.

Figure 4.4

Under these considerations, we can conclude that the system is in the chiral symplectic class CII
of the Altland-Zirnbauer periodic table. In one dimension, the topological invariant associated
to this symmetry class is an integer (Z) number.

The analysis for the case q = 6 underlines a di�erent behaviour of the system. In fact, as
showed in 4.7, no metal-insulator transition is induced at half �lling, since the system remains
gapless as one sweeps φ in the whole interval from 0 to 1, implying that the energy level crossing
at zero energy with this superlattice periodicity, is protected by an additional symmetry.
The study of the band structure for q = 4 and q = 6 with non zero displacement phase has
revealed also that the band crossing at �lling fractions ν = 1/q and ν = (q − 1)/q remain un-
a�ected by the presence of the SOC, implying that this crossings are robust against the local
perturbation and they are protected by and additional hidden symmetry of the system.

The preceding analysis has therefore pointed out that, for superlattices with periodicity cor-
responding to 4n, with n positive integer, the modulation of the SOC induces a metal- insulator
transition at half �lling for non trivial values of φ, and the resulting insulating phase is driven
into a topological phase hosting zero energy edge states by sweeping the parameter φ.

The previous results are limited to speci�c superlattice con�guration, therefore someone can
regard them as rather irrelevant for withdrawing general physical conclusions on the system.
However, we wish to point out that the preceding analysis has been done in the spirit of par-
tially reproduce already known results from [31] in the case of a conventional semiconducting
wire where the superlattice structure is induced by the externally modulated SOC rather than
the curved geometry of the wire. The results we have found are indeed in agreement with the
results in [49], thus enforcing our initial motivation for considering this system as a simpli�ed
model for studying the e�ects of the Rashba superlattice on the topology of the semiconductor-
superconductor heterostructure discussed in chapter three.
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Figure 4.5: Plot of the band structure for q = 4 atomic sites in the unit superlattice cell. The displacement
phase φ equals 2π/5, and we observe the appearance of an insulating gap at half �lling. The strength of
the constant Rashba SOC is αr/t = 0.4 while the strength of the modulated SOC is αm/t = 0.8.
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Figure 4.6: Band structure for the system with q = 4 atomic sites in a unit cell, obtained by diagonalizing
an open chain containing N = 600 atoms. The strength of the constant SOC is αr/t = 0.4, whereas the
strength of the modulated SOC is αm/t = 1.
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Figure 4.7: Plot of the band structure for q = 6 atomic sites in the unit superlattice cell. The displacement
phase φ equals 2π/5, the strength of the constant Rashba SOC is αr/t = 0.4 while the strength of the
modulated SOC is αm/t = 0.8. In here for the �lling fractions ν = 1/6, ν = 1/2 and ν = 5/6 there is no
insulating gap opening.

4.2.1 Bulk Band analysis with the additional Magnetic Field

Here, we add the magnetic �eld along the x-direction, orthogonal to the SOC. At tight
binding, the Zeeman term reads

Htb
Z =

∑
σ,σ′

q∑
n=1

N/q∑
i=1

c†n,i,σBτ
x
σ,σ′

cn,i,σ′ (4.4)
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where the operators c†n,i,σ and cn,i,σ are the fermionic creation and annihilation operator in the
notation already introduced previously, and B is the strength of the e�ective magnetic �eld.
Fourier transforming in momentum space, using the same convention for the Fourier operators
introduced in chapter two: c†n,i = 1√

2π

∑
k e
−i(k·i)c†n,k and cn,i = 1√

2π

∑
k e

i(k·i)cn,k we get

HZ =
∑
σ,σ′

q∑
n=1

N/q∑
k=1

c†n,k,σBτ
x
σ,σ′

cn,k,σ′ (4.5)

The tight binding, momentum space Hamiltonian we are considering here is therefore given by
H = HSOC + HZ . The energy eigenvalues are obtained diagonalising the matrix Hk obtained
when putting H in matrix form C†kHkCk, using the same de�nition of C as before. In what
follows, we analyse the band structure for di�erent superlattice periodicities.
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(a) Band structure q = 3, B = 0.3. The mag-
netic �eld lifts the Kramer degeneracy in k = 0
and k = ±π. In �gure, we observe the �eld
induced gap at k = 0 between the two lowest
energy bands (�lling fractions ν < 1/3), and at
k = π at the edge of the mBZ between the two
highest energy bands. The strength of the con-
stant Rasha SOC is set at αr/t = 0.2 while the
strength of the modulated Rashba SOC along
z is set to αm/t = 0.8.

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

k/π

E
/t

(b) Band structure q = 5, B = 0.3. The mag-
netic �eld lifts the Kramer degeneracy in k = 0
and k = ±π. In �gure, we observe the �eld
induced gap at k = 0 between the two lowest
energy bands (�lling fractions ν < 1/5), and
at k = π at the edge of the mBZ between the
two highest energy bands. The strength of the
constant Rasha SOC is set at αr/t = 0.2.

Figure 4.8: The �gures show band structure for the semiconducting wire with the introduction of an
external magnetic �eld for odd superlattice period.

Figure 4.8 shows the band structure for odd superlattice periodicity, q = 3 and q = 5 atoms
in the unit cell, in presence of the magnetic �eld. The latter breaks Time Reversal symmetry in
the system, lifting the Kramer degeneracy at the Kramer invariant points k = 0 and k = ±π.
Looking at the lowest energy bands in both 4.8(a) and 4.8(b) we observe that, when the Fermi
level resides within the gap at k = 0 induced by the Zeeman splitting, one encounters only one
pair of Fermi points and the system appears e�ectively spinless.
In presence of the magnetic �eld, the band structures for odd superlattice periodicity with exter-
nally modulated SOC present metal-insulator phase transitions at unpinned points in the �rst
mBZ at all integer �lling fractions ν = n/q as we saw in the previous analysis.

Figure 4.9 shows the band structure of the system with broken Time Reversal symmetry for
even periodicity of the superlattice unit cell, in particular, we consider (as before), q = 4 and
q = 6, atomic sites in the unit cell. As observed for odd superlattice periodicity, the magnetic
�eld lifts the Kramer degeneracy at the Kramer invariant points k = 0 and k = ±π. Notice
that, for an even number of atomic sites in the unit cell, the edges of the �rst Brillouin Zone
are folded at the Γ point in the �rst mini-Brillouin Zone in the reciprocal superlattice space,
thus the splitting of the Kramer invariant points occurs at k = 0 in the �rst mBZ for both the
lowest energy bands (originally degenerate in k = 0) and the highest energy bands (originally
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(a) Band structure q = 4 , B = 0.3. In �g-
ure, we observe the �eld induced gap at k = 0
between the two lowest energy bands (�lling
fractions ν < 1/4). When the superlattice unit
cell contains an even number of atomic sites,
the energy eigenvalues at ±π are folded in zero,
thus also for he two highest energy bands, the
�eld induced gap is at k = 0. The strength of
the constant Rasha SOC is set at αr/t = 0.4
while the strength of the modulated Rashba
SOC along z is set to αm/t = 0.8.
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(b) Band structure q = 6, B = 0.3. In �gure,
we observe the �eld induced gap at k = 0 be-
tween the two lowest energy bands (�lling frac-
tions ν < 1/6). When the superlattice unit cell
contains an even number of atomic sites, the en-
ergy eigenvalues at ±π are folded in zero, thus
also for he two highest energy bands, the �eld
induced gap is at k = 0. The strength of the
constant Rasha SOC is set at αr/t = 0.4 while
the strength of the modulated SOC along z is
set to αm/t = 0.8.

Figure 4.9: The �gures show band structure for the semiconducting wire with the introduction of an
external magnetic �eld for even superlattice period.

degenerated at ±π).
The band structures for q = 4 and q = 6 show that the breaking of the Time Reversal symmetry
allows for insulating gap openings at �lling fractions ν = 1/q and ν = (q−1)/q, which are never
possible in absence of the magnetic �eld as we saw in the previous section.
However, even with broken Time Reversal, the band crossings at half �lling in both the 4.9(a)
and 4.9(b) remain untouched. Since the band spectra plotted so far were obtained by setting the
displacement phase φ = 0, in �gure 4.10(a) and 4.10(b) we display the band structure for q = 4
and q = 6 respectively, with φ = 2π/5. Analogously to what we have observed in the previous
section, �gure 4.10(a) shows insulating gap opening at half �lling for q = 4, meaning that the
SOC induces metal-insulator transitions at half �lling as a function of the phase φ.

The band structure for q = 6 in �gure 4.10(b) shows instead that the energy spectrum at
half �lling still remains gapless for q = 6. Therefore, in the case where q is even and q 6= 4N , the
band crossings at half �lling remain symmetry protected even in presence of external magnetic
�eld.

4.3 Superconducting phase

Here we analyse the system including the proximity induced s-wave superconducting pairing
term, which at tight binding, in terms of the operators c†i,n,σ and ci,n,σ reads

HSC = ∆

q∑
n=1

N/q∑
i=1

c†n,i,↑c
†
n,i,↓ + h.c+ µ

∑
σ,σ′

q∑
n=1

N/q∑
i=1

c†n,i,σδσ,σ′ cn,i,σ′ (4.6)

where we have included the term accounting for the on site chemical potential.
We begin by considering the bulk energy spectrum for the full Hamiltonian given by H =
HSOI +HZ +HSC , where, in terms of the operators c†n,k,σ and cn,k,σ, we Fourier transform the
HSC as

HSC = ∆

q∑
n=1

N/q∑
k=1

c†n,k,↑c
†
n,k,↓ + h.c+ µ

∑
σ,σ′

q∑
n=1

N/q∑
k=1

c†n,k,σδσ,σ′ cn,k,σ′ . (4.7)
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(a) Band structure q = 4, B = 0.3 and φ =
2π/5. Here we observe insulating gap open-
ing at half �lling. The strength of the con-
stant Rasha SOC is set at αr/t = 0.4 while the
strength of the modulated Rashba SOC along
z is set to αm/t = 0.8.
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(b) Band structure q = 6, B = 0.3 and φ =
2π/5. In here we see that, even with a non
trivial value of φ the spectrum remains gap-
less at half �lling. The strength of the con-
stant Rasha SOC is set at αr/t = 0.4 while the
strength of the modulated SOC along z is set
to αm/t = 0.8.

Figure 4.10: Band structure for q = 4 and q = 6 atomic sites in one superlattice cell including a non
trivial displacement phase.

In order to �nd the energy dispersion relation of the full Hamiltonian including the super-
conducting term, we re-write the Hamiltonian in BdG matrix form C†kHkCk, where the spinor
Ck is now the 4q dimensional Nambu spinor de�ned as

Ck =
(
c1,k,↑, c1,k,↓, c

†
1,−k,↑, c

†
1,−k,↓, c2,k,↑, ..., c

†
q,−k,↓

)T
. (4.8)

Our goal in this section is to verify if the additional (modulated) Rashba SOC that we have
introduced in our model, plays a role in modifying the occurrence of the transition between the
trivial superconducting phase of the system and the topological phase, thus leading to a di�erent
phase diagram respect to the phase diagram for a nanowire with constant Rashba SOC.
In the latter case it has in fact been established that the superconducting band gap closes for
B =

√
(µ+ 2t)2 + ∆2 leading to the topological superconducting phase at its re-opening.

From this topological criterion, we see that the phase transition occurs at B = ∆ if µ = −2t,
which, for the wire without modulation on SOC, corresponds to setting the value of µ at the
energy value of the Kramer invariant point in Γ. As seen in the previous chapter, this represents
an optimal condition for the occurrence of the topological phase transition. Moreover, since the
presence of the magnetic �eld lifts the Kramer degeneracy in k = 0 inducing a gap between the
two bands at the Γ point, setting the chemical potential at this energy value ensures that the
system is in the spinless regime created at low energy by arbitrarily small external magnetic
�elds. Therefore, in the analysis that follows where we include the externally modulated Rashba
SOC, we will be concerned with setting the chemical potential at the energy value of the Kramer
invariant point in k = 0.

In �gure 4.11, where we plot the energy bands of the BdG Hamiltonian with magnetic �eld
B ad superconducting pairing ∆ set to zero, we show that, with the addition of the modulated
Rashba SOC, the Kramer invariant point is no longer situated at µ = −2t (µ = −2 in �gure since
the energy bands are plotted in t-units). In fact, the introduction of the externally modulated
SOC changes the bandwidth, thus, since t gets renormalised to t̄, the Kramer invariant point is
now at µ = −2t̄, which as showed by the black line in �gure 4.11(b) , is given by µ = −2t+ ε.

Clearly, the renormalization of t resulting in a change in the energy value of the Kramer
invariant point, depends on the strength of the externally modulated Rashba SOC. Therefore,
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(a) Band structure q = 4, B = 0.3 and ∆ =
0.The Kramer invarian point at k = 0 is sit-
uated at µ/t = −2 The strength of the con-
stant Rasha SOC is set at αr/t = 0.4 while the
strength of the modulated Rashba SOC along
z is set to αm/t = 0.

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

k/π

E
/t

(b) Band structure q = 4, B = 0.0 and ∆ = 0.
We observe the e�ect shift in the Kramer point,
individuated in the graph by the dashed black
line representing the chemical potential µ/t =
−2.13371. The strength of the constant Rasha
SOC is set at αr/t = 0.4 while the strength of
the modulated SOC along z is set to αm/t =
0.7.

Figure 4.11: The �gures show the band structure for q = 4. The dashed black line individuate the
Kramer invariant point when the modulated Rashba SOC is turned o� (left) and on (right).

in the following analysis, we will be careful in re-setting the chemical potential µ at the energy
value corresponding to the Kramer invariant point each time we modify the parameter αm con-
trolling the strength of the modulated SOC.

4.3.1 E�ect of the Modulated Rashba SOC

Let us �rst consider the system where the only component of the SOC is given by the mod-
ulated Rashba coupling along the z-direction.

As a �rst remark, we observe that, in absence of a constant spin orbit coupling canting the
spins away from the polarization induced by the magnetic �eld, the interband p-wave pairing is
not possible. In fact, in this set up where the electron spin in the energy bands is fully polarized,
the band crossings at zero energy occur between bans with the same spin and the superconduct-
ing pairing ∆ is not able to form Cooper pairs between parallel spin electrons. However, when
the pairing ∆ is 'larger' than the Zeeman splitting, the s-wave pairing occurs, and the system is
a trivial superconductor, as showed in �gure 4.12.

In the conventional wire, in absence of the SOC interaction, the transition between gapped
s-wave superconducting and gapless spectrum occurs when B = ∆ (provided that one sets the
chemical potential at µ = −2t), as in fact, this criterion is independent of the strength of the
constant Rashba �eld.

Therefore, we start by verifying that the introduction of the modulated SOC already modi�es
the phase transition between metallic and superconducting phases.

In �gure 4.13, we plot the line separating the two phases �xing a value of the magnetic �eld
and tuning the strength of the modulated SOC. Lines of di�erent colours have been obtained
for di�erent values of the magnetic �eld (which we indicate as ∆c in the legend). The 4.13(a)
and the 4.13(b) are plotted for di�erent superlattice periods (q = 4 and q = 5 respectively).
The dashed lines separate the ∆ < B (left side of the dashed lines) and the ∆ > B (right side)
sections and they correspond to the closing of the superconducting gap when αm = 0. The
coloured lines in both the �gures in 4.13 show that the occurrence of the phase transition is
modi�ed when a local SOC is introduced, and the modi�ed critical line is a monotonic function
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(a) Band structure q = 4, B = 0.3 and ∆ =
0.1, the value of the chemical potential is µ/t =
−2.11896. The strength of the constant Rashba
SOC αr/t is set to zero while αm/t = 0.7. We
observe here the gapless spectrum for B > ∆.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

k/π

E
/t

(b) Band structure q = 4, B = 0.3 and ∆ =
0.1, the value of the chemical potential is µ/t =
−2.11896. The strength of the constant Rashba
SOC αr/t is set to zero while αm/t = 0.7. In
here we have the gapped spctrum of the s-wave
superconducting phase occurring for B < ∆.

Figure 4.12: The �gures show the band structure for q = 4. The dashed black line individuate the
Kramer invariant point when the modulated Rashba SOC is turned o� (left) and on (right).
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Figure 4.13: Figure shows how the closing of the superconducting gap separating the s-wave and gapless
phase is modi�ed by the modulated Rashba SOC. The dashed lines indicate the value ∆ = B, (or ∆c

as in the graph labels) at which the gap closes when the modulated SOC is turned o�. Therefore each
coloured line is the critical line obtained varying αm and ∆ having �xed a di�erent value for the magnetic
�eld (indicated in the legend as ∆c). For each value of αm, the chemical potential µ is set at the Kramer
point energy value in Γ.

of αm.
These diagrams therefore show that the occurrence of the phase transition depends on the
parameter αm, which controls the strength of the modulated SOC. This already denotes an
outstanding di�erence compared to the conventional wire, where no dependency on the strength
of the Rashba SOC was found.
Furthermore, observing the diagrams, we can conclude that the introduction of a the local SOC
leads to an enhancement of the superconducting phase as the lines separating the two phases
are shifted more and more to the left as αm increases, thus allowing the pairing ∆ to open a
gap also when ∆ < B . The enhancing of the superconducting phase becomes more evident for
higher magnetic �elds.

The same feature is observed in 4.14 where the phase diagram is plotted in the plane B/∆.
In 4.14, the x-axis represents the line B = ∆, so the whole portion of plane displayed in the
diagram represents the gapless phase of the system in the case of the conventional wire. However,
as one introduces the modulated SOC, we see that the portion of the diagram delimited by the
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coloured lines is now in the superconducting phase. Moreover, in agreement with the previous
diagrams, the enhancing of the superconducting phase is proportional to αm.
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Figure 4.14: In �gure the enhancing on the s-wave superconducting phase due to αm is shown for q = 4
(left) and q = 5 (right). The x-axis represents the line B = ∆ and the portion of plane displayed in the
�gure is the plane B > ∆, where the system is in its gapless phase when αm = 0. For αm 6= 0 the system
is in the s-wave phase in the part of the plane delimited by the coloured lines, for each value of αm.

We therefore conclude that the local SOC promotes superconductivity over the gapless phase,
allowing for the superconducting gap to remain open even for values of the pairing ∆ smaller
than the magnetic �eld.

4.3.2 Topological Phase Transition analysed in Bulk

Now we consider the full system in presence of constant Rashba splitting. Here, the s-wave
gap in the bulk band spectrum closes in a speci�c point in parameter space, then it opens again
and the system is found in the topological phase.
We hereby look at the changes in the phase diagram due to the introduction of the modulation
on the Rashba �eld.

We proceed as in the previous section and in �gure 4.15 we display the phase diagram in the
plane αm/∆, obtained by �xing a value for the magnetic �eld and tuning the strength of the
local SOC. The di�erent coloured lines have been obtained for di�erent values of the strength
of the constant SOC αr. Analogously to what we observed in the case αr = 0, all the curves in
4.15 indicate an enhancing of the trivial superconducting phase in the diagram.
Moreover, we can appreciate another interesting feature: when in the system both the Rashba
spin orbit coupling components are present (the constant one in the y-direction, controlled by
the tuning parameter αr and the modulated SOC along z direction with corresponding strength
αm), their combined e�ect is such that the enhancing of the trivial superconducting phase gets
even more ampli�ed as the value of is αr increased.

The same features are con�rmed by looking at the phase diagrams in the B/∆ plane of
�gure 4.16. Here, we have chosen a speci�c value of the strength of the modulated SOC and the
diagrams show an enlarging of the trivial phase proportional to the strength of the magnetic
�eld and of the constant Rashba SOC strength αr.

We consider appropriate to pause for a moment and make two comments on the study con-
ducted so far.
As a �rst remark, we wish to remind that previous analysis, was made choosing a speci�c value
of the chemical potential, which coincides with the energy value at the Kramer degeneracy in Γ
(in presence of time reversal symmetry).
In fact, at the beginning of this section, we have recalled that the condition µ = −2t in the con-
ventional wire represents the optimal condition for driving the system in the topological phase.
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Figure 4.15: In �gure, B/t = 0.4. The lines obtained for various αr mark the phase transition between
topological phase for the cases αr 6= 0, or gapless phase (black line, αr = 0) and trivial phase (right side
of the lines). On the left q = 4, on the right, q=5. In the diagrams, the vertical line at ∆ = B = 0.4
separates the two phases in the case of conventional wire. The trivial superconducting phase (right side
of the curves) is therefore enhanced by the introduction of the modulated SOC.
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Figure 4.16: In �gure, the x-axis represents the B = ∆ line, at which the phase transition would occur if
αm = 0. In here, αm/t is set to 0.6, and the lines plotted for di�erent αr show how the occurrence of the
phase transition deviates from the x-axis. The coloured lines for di�erent αr mark the border between
trivial superconducting phase (lower part of the diagram) and topological phase (upper part), showing
the enhancement of the s-wave phase. On the left, q = 4, on the right q = 5.

We have furthermore argued that with the addition of the modulated SOC there is a renormal-
ization on t, that leads to a shift of the Kramer invariant point at t̄ = t ± ε, where t̄ changes
in function of the modulated SOC, thus, we set µ = −2t̄ during the whole previous analysis.
In �gure 4.17 we show indeed that, setting the chemical potential at µ = −2t̄ represents the
optimal condition for the occurrence of the phase transition, even in presence of the externally
modulated SOC. In fact, as we can appreciate in 4.17 the critical line for the phase transition
obtained when µ is set at the energy value of the Kramer invariant point, is the minimum of the
set of curves obtained when the chemical potential is set to di�erent values within the e�ectively
spinless range created by the external magnetic �eld at low energy.

As a second remark, we would like to underline that, in the spirit of running a tight binding
analysis in the low energy regime, we decided to restrict ourselves to study the system when the
chemical potential is in the 'e�ectively spinless' regime induced between the two lowest energy
bands, which means that this analysis has been restricted to �lling fractions ν < 1/2q.

From the phase diagrams obtained in both cases αr = 0 and αr 6= 0 we learned that the
presence of the modulated SOC indeed interferes with the occurrence of the topological phase
transition as it seems to modify the condition in parameter space under which the bulk energy
spectrum becomes gapless. The results showed by the diagrams are quite impressive. First of
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The black line represents the phase transition
line when µ is set at the Kramer invariant
point. The strength of the constant SOC is
αr/t = 0.2 and the strength of the modulated
SOC αm/t = 0.6”.
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The black line represents the phase transition
line when µ is set at the Kramer invariant
point. The strength of the constant SOC is
αr/t = 0.2 and the strength of the modulated
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Figure 4.17: The sets of curves obtained for two di�erent superlattice periods (one even and one odd),
show the critical line which separates the trivial and the topological superconducting phases. We observe
that the critical line obtained when µ = −2t̄ is the minimum of the set of curves plotted for both
superlattice periods.

all because they are suggesting that the topology of the ground state manifold (which is a global
property of the system) is a�ected by the locally varying SOC, and secondly, because both the
4.15 and 4.16 show that the occurrence of the phase transition is modi�ed as one changes the
strengths of the Rashba SOC αr and αm, suggesting that the latter should enter somehow the
criterion for the bulk gap closing. This is in contrast to the result for the conventional wire, as
the criterion for the topological phase transition derived in chapter two is not in�uenced by the
strength of the constant Rashba �eld αr.

Therefore, in order to attempt a derivation for the criterion of the phase transition in the
system with additional modulated SOC , we start by looking at the Hamiltonian for the normal
phase in real space H = HSOC +HZ :

HSOC =
∑
σ,σ′

∫
dxΨ†σ(x)

[
− ∂2

x

2m
+
iαm

2
{k(x), ∂x}τ zσ,σ′ + αrτ

y

σ,σ′
∂x

]
Ψσ′ (x)

Hz =
∑
σ,σ′

∫
dxΨ†σ(x)[Bτx

σ,σ′
]Ψσ

′ (x).

(4.9)

Since we have observed that the phase diagram is modi�ed by the introduction of the mod-
ulation on the SOC, in the following, we consider that the main contribution on the modi�ed
band structure (and consequently on the new phase diagram) comes from the modulated SOC.
We thus write the normal phase Hamiltonian as H = H0 +H1. The unperturbed Hamiltonian
H0 = Hkin+Hαm , is given by the kinetic energy term and the modulated Rashba term, whereas
the Hamiltonian H1 which we will consider as a small perturbation is given by H1 = Hαr +Hz.
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We therefore write H0 as

H0 =
∑
σ,σ′

∫
dxΨ†σ(x)

[
− ∂2

x

2m
+
iαm

2
{k(x), ∂x}τ zσ,σ′

]
Ψσ′ (x)

=
∑
σ,σ′

∫
dxΨ†σ(x)

[
1

2m

(
−i∂x −mαm cos

(
2π

λ
x

)
τ z
σ,σ′

)2

− mα2
m

2
cos2

(
2π

λ
x

)]
Ψσ′ (x)

=
∑
σ,σ′

∫
dxΨ†σ(x)Ĥ0Ψσ′ (x).

(4.10)

Where we have used the fact that every Hamiltonian including a linear SOC term can be put in
this quadratic form by simply 'completing the square'. Note that the Ĥ0 in the preceding can
be written as

Ĥ0 =
Π2

2m
− V (x)

where

Π =

(
−i∂x −mαm cos

(
2π

λ
x

)
τ z
σ,σ′

)
is obtained via minimal substitution, and the potential V (x) just reads

V (x) = −mα
2
m

2
cos2

(
2π

λ
x

)
.

Having H0 in this form, we thus recognize that, we can apply a Gauge transformation in order
to bring H0 in the form of a free particle Hamiltonian.
This is a procedure that can always be done in presence of a linear SOC term [56, 57, 58],
and it is justi�ed by the fact that the the SOC vector can be re-interpreted as a Gauge vector
in the same fashion as the vector potential A that appears in the minimal substitution of the
momentum in QED [59].

In our speci�c case, the unitary transformation needed to bring H0 in the desired form is
given by

Û = exp

(
imαm

∫ x

dx
′
cos

(
2π

λ
x
′
)
τ z
)

(4.11)

to the �eld Ψ(x) such that Ψ
′
(x) = ÛΨ(x) and Ĥ

′
0 = Û †Ĥ0Û .

Computing the derivatives and then commuting Ĥ0 and Û , we get

Ĥ
′
0 = − ∂2

x

2m
− mα2

m

2
cos2

(
2π

λ
x

)
. (4.12)

Having obtained a more easily solvable form for H0, we want now to include the perturbation
H1 in our analysis. We apply the same unitary transformation to ĤZ and Ĥαr . In here, we have
to work with matrix multiplication since the unitary transformation contains the Pauli matrix
τ z whereas the Zeeman term is along τx and the constant Rashba SOC along τy.
For the Zeeman term we thus have

Ĥ
′
Z = Û †BτxÛ =

(
−A 0
0 A

)(
0 1
1 0

)(
A 0
0 −A

)
(4.13)

where we have set for brevity A = exp
(
imαm

∫ x
dx
′
cos
(
Qx

′
))

, with Q =
(

2π
λ

)
. Computing

the matrix multiplication and re-writing A in its extended form one �nds
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Ĥ
′
Z =

 0 exp
(
−2imαm

∫ x
dx
′
cos (Qx

′
)τ z
)

exp
(

2imαm
∫ x

dx
′
cos (Qx

′
)τ z
)

0


= cos

(
2mαm
Q

sin (Qx)

)
τx + sin

(
2mαm
Q

sin (Qx)

)
τy

(4.14)

where in the second equality we have used the Euler formulas and we have computed the integral∫ x
cosQx

′
dx
′
. Similar procedure can be applied to the constant Rashba term yielding

Ĥ
′
SOC = Ĥ

′
0 + iαr cos

(
2mαm
Q

sin (Qx)

)
τy + iαr sin

(
2mαm
Q

sinQx)

)
τx (4.15)

Now, if we assume that the term Ĥ
′
0 is the dominant term in determining the band structure,

we can treat the constant Rashba SOC with strength αr and the Zeeman term as perturbation
and compute the �rst order in perturbation theory.

When one computes 〈H ′Z〉, the term with the sin
(

2mαm
Q sin (Qx)

)
vanishes since it is an odd

function of x and the integral over the whole space gives zero, whereas the term with

cos
(

2mαm
Q sin (Qx)

)
integrated gives 2π

Q J0

(
|2mαm

Q |
)
with J0 �rst Bessel function. Therefore, at

�rst order correction, the Zeeman term is renormalized by a factor proportional to the J0 as a
function of the strength of the modulated Rashba αm. The same happens for the strength of
the constant SOC term αr which also gets renormalised as ᾱr(αm) αm.
Combining the preceding, we have that the e�ective Hamiltonian for the normal phase reads

Ĥ
′

= − ∂2
x

2m
− mα2

m

2
cos2Qx+ iαrτ

yJ0

(
2mαm
Q

)
+BτxJ0

(
2mαm
Q

)
(4.16)

where J0 is the �rst Bessel function, which is a decreasing function, smaller than one, in the
interval [0, 1].
We can therefore conclude that, at low energy and for very small values of αr and B, both
the Zeeman energy and the constant Rashba �eld experienced from a fermion moving in the
nanowire where a locally varying Rashba SOC is added, are decreased by e�ect of the latter. In
particular, they decrease following the J0, which is plotted in �gure 4.18 and shows the same
trend as the line marking the phase transition showed in the previous section for αm small.
To be more rigorous, we must underline that the Zeeman energy that we have indicated with
the label B so far, is indeed given by Ez(= B) = 1

2gµBh where muB is the Bohr magneton, h is
the value of the external magnetic �eld applied to the system, and g is the Landé g factor. The
latter, is the one that gets indeed renormalized by the presence of the modulation on the SOC.
As a consequence of the renormalization of the g factor, the Zeeman splitting e�ectively acting
on the particles is lower, thus a lower superconducting pairing ∆ is necessary in order to create
the transition to the trivial superconducting phase. In other words, the s-wave interband pairing
in the 2.49 occurs for a smaller ∆.
Thus, the criterion for the gap closing B >

√
(2t+ µ)2 + ∆2 appears modi�ed as

B̄(αm) >
√

(2t+ µ)2 + ∆2 where B̄(αm) < B.

4.3.3 Topological phase transition analysed with the open chain

Finally, we analyse the system at tight binding with open boundary conditions, in order to
verify the validity of the criterion found imposing periodic boundary condition. According to
bulk-edge correspondence, we in fact expect to �nd zero energy eigenvalues localised at the end
of the nano-wire when the system is predicted to be in the topological phase. Figure 4.19 shows
the eigenvalues for the open chain with superlattice period q = 4. As indicated in the caption,
the plot of the gapped spectrum on the left hand side is obtained for ∆ < B,(i.e where we expect
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Figure 4.18: Plot of the �rst Bessel J0(x) function in the interval x ∈ (0, 0.4)

to �nd Majorana modes in the case of the conventional wire where αm = 0) showing us once more
the e�ect of the modulated Rashba SOC, which diminishes the value of the average magnetic
�eld perceived by the particle, allowing for s-wave pairing at higher B. As a consequence of
that, the gap closing does not happen at ∆ = B but at ∆ = B̄(αm) with B̄(αm) < B.
The left side of the �gure shows indeed that, for values of ∆ < B̄(αm) the system is still gapped
but there are two zero energy modes, ensuring us that indeed the phase transition occurs and,
after the gap closing, the system is in the topological phase.
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Figure 4.19: The �gure is obtained diagonalizing an Hamiltonian of 200 sites with superlattice unit cell
containing q = 4 atomic sites. On the left, we see the s-wave gapped spectrum obtained for ∆/t = 0.3
and B/t = 0.4: we have trivial superconductivity for B > ∆, due to the modulated SOC. On the right
we see instead the zero energy modes appearing in the eigenvalues spectrum once the gap has closed
bringing the system in the topological phase. On the left site we have set ∆/t = 0.3 and B/t = 0.9.
In both the plots, αr/t = 0.4, αm/t = 0.6 and the chemical potential is at the Kramer invariant point
(µ/t = −2.59389 for this set of parameters.)
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Chapter 5

Geometry Induced Topological Phase

Transitions

In the third chapter of this thesis, we introduced the e�ective k · p Hamiltonian for a pla-
nary curved semiconducting wire. We have seen that the e�ect of the curved geometry can be
incorporated in a locally varying spin orbit coupling term in the one dimensional e�ective Hamil-
tonian describing the motion of the electron along the curve. In this chapter we consider the
semiconductor-superconductor heterostructure hosting Majorana modes, with the semiconduct-
ing nanowire being the serpentine-shaped wire discussed previously. We start by analysing the
bulk band structure of the semiconducting wire alone, in order to enlighten the in�uence of the
curvature induced locally-varying Rashba SOC, and we proceed by �rst introducing a Zeeman
splitting in the bulk band structure and then adding the proximity induced s-wave superconduc-
tivity, in order to study the full system designed to host Majorana modes in its topological phase.

5.1 Normal Phase Bulk Bands

The e�ective tight binding Hamiltonian in momentum space for the serpentine-shaped nanowire
introduced in chapter three reads

HSOC =
∑
σ,σ
′

q−1∑
n=1

N/q∑
k=1

c†n,k,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xn)) + cos (θ(xn+1))

2

)]
cn+1,k,σ′

+c†n,k,σ

[
+
iαr
2
τxσ,σ′

(
sin (θ(xn)) + sin (θ(xn+1))

2

)]
cn+1,k,σ′

+c†q,k,σ

[
−tδσ,σ′ +

iαr
2
τy
σ,σ′

(
cos (θ(xq)) + cos (θ(x1))

2

)]
eikc1,k+1,σ′

+ c†q,k,σ

[
iαr
2
τx
σ,σ′

(
sin (θ(xq)) + sin (θ(x1))

2

)]
eikc1,k+1,σ′

. (5.1)

whereθ(xn) = −A
λ cos

[
2π
(
n
q + φ

2π

)]
, θ(xq) = −A

λ cos
[
2π
(

1 + φ
2π

)]
and θ(x1) = −A

λ cos
[
2π
(

1
q + φ

2π

)]
and q indicates the number of atomic sites included in the superlattice unit cell and φ is the
displacement phase.
In order to be able to �nd the energy eigenvalues, we write the preceding in matrix form as
C†kHkCk, where we recall

Ck =
(
cn1,k,↑, cn1,k,↓, cn2,k,↑, ......, cnq ,k,↓

)T
de�ned in chapter three. In the following, we study the bulk band structure for di�erent super-
lattice periodicities obtained diagonalizing the matrix Hk.

52



-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

k/π

E
/t

(a) Band Structure q = 3. In here, A/λ is set
to zero. In this case, the only component of the
SOC active in the system is a constant compo-
nent along the y direction (due to the particular
form of the SOC in 5.1),leading to the typical
momentum-dependent spin splitting of the en-
ergy bands. The strength of the Rasha SOC is
set at αr/t = 0.2
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(b) Band structure for q = 3. Here A/λ =
0.8, thus the SOC term is locally varying in the
x/y plane. We observe insulating gap opening
at unpinned point the �rst mBZ for all integer
�lling fractions ν = 1/3, ν = 2/3. The strength
of the Rasha SOC is set at αr/t = 0.2.
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(c) Band Structure q = 5. In here, A/λ is set
to zero. In this case, the only component of the
SOC active in the system is a constant compo-
nent along the y direction (due to the particular
form of the SOC in 5.1), leading to the typical
momentum-dependent spin splitting of the en-
ergy bands. The strength of the Rasha SOC is
set at αr/t = 0.2
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(d) Band structure for q = 5. Here A/λ =
0.8, thus the SOC term is locally varying in the
x/y plane. We observe insulating gap opening
at unpinned point the �rst mBZ for all integer
�lling fractions ν = 1/5, ν = 2/5,ν = 3/5 and
ν = 4/5. The strength of the Rashba SOC is
set at αr/t = 0.2.

Figure 5.1: Energy bands for q = 3 and q = 5 atomic sites in a superlattice unit cell. Both the superlattice
periodicity show the same behaviour when the curvature induced locally varying spin orbit coupling is
acting on the system.

We consider at �rst a superlattice unit cell with odd periodicity. In Figure 5.1 we plot the
band structure for q = 3 and q = 4 atomic sites in the unit cell. In 5.1(a) and 5.1(c) we have set
A/λ to zero, which implies that all the θ(xn) in 5.1 are zero. When the curvature is zero the local
canting of the spin is no longer present, and the motion of the electron in the semiconductor in
presence of SOC is described by the Pauli-Schrödinger Hamiltonian in the one dimensional �at
space. In the tight biding Hamiltonian 5.1 one can verify that when all the θ(xn) are zero, only
the constant components along y of the SOC survive. Therefore, the plots in 5.1(a) and 5.1(c)
show the band structure for a conventional straight wire where the momentum-dependent band
splitting is given by the uniform Rashba SOC applied, and it displays Kramer degeneracy at
the Kramer invariant points: k = 0 and k = ±π. Note that the band folding in the mBZ is the
result of an 'arti�cial' superlattice structure in real space: in fact, in this case, the invariance
for translation is not broken as no local term is introduced. We nevertheless chose to show the
band folding in the �rst mBZ in order to compare it with the band structure where the e�ects
of the curvature are present.
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The band structure for non trivial values of A/λ is plotted in �gures 5.1(b) and 5.1(d). In
here, we appreciate the e�ect of the locally varying SOC, which induces metal-insulator tran-
sitions at all integers �lling fractions ν = n/q (with n integer), at unpinned points in the �rst
mBZ, thus showing the same features we have already encountered analysing the previous model
with externally modulated SOC.

In �gure 5.2, we plot the band structure for an even periodicity of the superlattice, in
particular for q = 4 and q = 6 atomic sites in the unit cell.
As for the above, �gures 5.2(a) and 5.2(c) show the band structure of a system with only constant
SOC along the y-direction, since A/λ is set to zero. When we allow for non trivial values of A/λ
we obtain the band structure displayed in 5.2(b) and 5.2(d). In the former, the band structure is
plotted for q = 4 atomic sites in the unit superlattice cell and we see no insulating gap opening
occurring in the bulk spectrum. The latter shows the band structure when q = 6 atomic sites
are placed in the unit cell, and we observe metal- insulator transitions only at �lling fractions
ν = 2/6 and ν = 4/6. However, the previous band structures are plotted when the displacement
phase φ is set to zero. Therefore, in order to verify the possible occurrence of metal-insulator
phase transitions if a phase is introduced between the periodicity of the superlattice array of
unit cells and the periodic canting of spins induced by the SOC, we plot the band structure for
q = 4 and q = 6 for non trivial values of φ.

In �gure 5.3, we show the band structure for q = 4 when the displacement phase φ = 2π/5,
and we observe insulating gap opening at half �lling fractions. Since the bulk band structure
appears gapless at half �lling when φ = 0 and it acquires a gap when including a non trivial
value of the phase φ, we analyse the energy spectrum sweeping the parameter φ for a whole
period, in order to individuate the possible topological phase transitions between insulating
phases. Figure 5.4 displays the band structure obtained diagonalizing the Hamiltonian for an
open chain, showing the appearance of zero energy end modes after a �rst gap closing of the
bulk band spectrum, signalling the presence of a phase transition in the system between a trivial
and a topological insulating phase.

Analysing the symmetries of the system, for any value of φ we have Time Reversal sym-
metry THkT

−1 = H−k, where T
2 = −1 for a system of spin 1/2 particles; a unitary Chiral

symmetry (sub-lattice symmetry), which reads CHkC
−1 = −Hk and a Particle-Hole symmetry

PHkP
−1 = −H−k where P 2 = −1. Therefore, the symmetry class of the system is the chiral

symplectic class CII in the the Altland-Zirnbauer periodic table, which yields a Z topological
invariant.

Figure 5.5 shows the band structure for q = 6 atomic sites in the unit cell where φ = 2π/5.
As opposed to what happens for the case q = 4, in here, no metal-insulator transition occurs
at half �lling including a displacement phase. Meaning that the band crossings at ν = 1/2 are
protected by an inner symmetry. The same holds for the energy level crossings at �lling fractions
ν = 1/q and ν = (q − 1)/q with q even.

With the analysis above, we have showed that, in the normal phase, the two models we
are considering, show the same features, and both show consistency with the more general and
exhaustive study presented in [31].

5.1.1 Bulk Band analysis with the additional Magnetic Field

We now add a magnetic �eld to the system, orthogonal to the plane of the spin orbit inter-
action. The magnetic �eld breaks Time Reversal symmetry, changing the symmetry class of the
Hamiltonian, thus we are going to analyse the band structure of the system with the additional
magnetic �eld, verifying the in�uence of the curvature-induced local canting of the spins on the
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(a) Band Structure q = 4. In here, A/λ is set
to zero. In this case, the only component of the
SOC active in the system is a constant compo-
nent along the y direction, leading to the typi-
cal momentum-dependent spin splitting of the
energy bands. The strength of the Rasha SOC
is set at αr/t = 0.4
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(b) Band structure for q = 4. Here A/λ = 0.8,
thus the SOC term is locally varying in the x/y
plane. We observe no insulating gap opening in
the �rst mBZ. The strength of the Rasha SOC
is set at αr/t = 0.4.
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(c) Band Structure q = 6. In here, A/λ is set
to zero. In this case, the only component of the
SOC active in the system is a constant compo-
nent along the y direction (due to the particular
form of the SOC in 5.1), leading to the typical
momentum-dependent spin splitting of the en-
ergy bands.The strength of the Rasha SOC is
set at αr/t = 0.3
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(d) Band structure for q = 6. Here A/λ = 0.8,
thus the SOC term is locally varying in the
x/y plane. We observe insulating gap opening
at unpinned point the �rst mBZ for the �lling
fractions ν = 1/3 and ν = 2/3, but no insulat-
ing gap opens for the �lling fractions ν = 1/6,
ν = 1/2 and ν = 5/6. The strength of the
Rasha SOC is set at αr/t = 0.3.

Figure 5.2: Energy bands for q = 4 and q = 6 atomic sites in a superlattice unit cell. When the locally
varying SOC is present in the system, we observe no insulating gap opening in the �rst mBZ at �lling
fractions ν = n/q where n and q co-primes and q even.
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Figure 5.3: Band structure q = 4. The displacement phase is φ = 2π/5, and the energy spectrum show
an insulating gap opening at half �lling. The strength of Rashba SOC is αr/t = 0.4 and A7λ = 0.8.

topology of the new system.
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Figure 5.4: Band structure for the system with q = 4 atomic sites in a unit cell, obtained by diagonalizing
an open chain containing N = 600 atoms. The strength of the SOC is αr/t = 0.3 and A/λ = 0.4.
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Figure 5.5: Band structure for q = 6.The displacement phase is φ = 2π/5, the energy spectrum shows,
as in the case where φ = 0 insulating gap opening only at �lling fractions ν = 1/3 and ν = 2/3. The
strength of the SOC is αr/t = 0.3 and A/λ = 0.8.

The Hamiltonian is given by H = HSOC +HZ , where,

HZ =
∑
σ,σ′

q∑
n=1

N/q∑
i=1

c†n,i,σBτ
z
σ,σ′

cn,i,σ′ (5.2)

is the tight binding Hamiltonian for the magnetic �eld along the z-direction in real lattice space.
Recalling that the operators c†n,i and cn,i are transformed as c†n,i = 1√

2π

∑
k e
−i(k·i)c†n,k and

cn,i = 1√
2π

∑
k e

i(k·i)cn,k,we can write HZ in momentum space as

HZ =
∑
σ,σ′

q∑
n=1

N/q∑
k=1

c†n,k,σ[Bτ z
σ,σ′

+ µδσ,σ′ ]cn,k,σ′ . (5.3)

In order to �nd the dispersion relation ε(k), we write the Hamiltonian in matrix form as

H = ( c†1,k,↑ c†1,k,↓ c†2,k,↑ .... c†q,k,↓ )Hk



c1,k,↑
c1,k,↓
.
.
.

cq,k,↓

 (5.4)

In the following we analyse the band structure resulting from the diagonalization of Hk for
di�erent superlattice unit cells.

Figure 5.6 displays the bulk band structure when the superlattice unit cell includes an odd
number of atomic sites. The magnetic �eld removes the Kramer degeneracy at k = 0 creating
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(a) Band structure q=3. B=0.2, αr = 0.4,
A/λ = 1, φ = 0.
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(b) Band structure q=5. B = 0.2, αr =
0.7,A/λ = 1, φ = 0.

Figure 5.6: The �gure shows the bulk bands for odd superlattice period. The bands are plotted in the
�rst mBZ and they show insulating gap opening at unpinned points in the spectrum for all integer �lling
fractions ν = m/q, m = 1, ..., q.

an e�ectively spinless regime at low energy, at �lling fractions ν < 1/q.
For odd periodicity of the superlattice cell, the curvature induced modulation of the Rashba
SOC in the semiconductor, realizes metal-insulator transitions at unpinned points in the �rst
mBZ at all integer �lling fractions ν = m/q, where m = 1, .., q is an integer number.

Figure 5.7 shows the bulk bands for superlattice unit cells with even number of atomic sites.
As expected, the introduction of the Time Reversal breaking term, lifting the degeneracy in
k = 0, realizes a spinless regime in the low energy bands when −2t−B < µ < −2t+B.
However, as opposite to what happens for superlattice unit cells with odd atomic sites, the
competition between the magnetic �eld along z and the curvature induced modulation on the
SOC in�uences the insulating gap openings in the �rst mBZ. In fact, the results of the previous
section showed that, for an even superlattice period, no gap opening was ever possible at the
�lling fractions ν = 1/q, 1/2 and (q− 1)/q, whereas, here, the introduction of the magnetic �eld
leads to insulating gap opening in the spectrum at the �lling fractions ν = 1/q and (q − 1)/q.
However, still no gap opening occurs for ν = 1/2.
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(a) Band structure q = 4. B = 0.3, αr = 0.4,
A/λ = 0.8, φ = 0.
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(b) Band structure q=6. B = 0.3, αr =
0.4,A/λ = 0.8, φ = 0.

Figure 5.7: The �gure shows the bulk bands for even superlattice period. The bands are plotted in the
�rst mBZ and they show insulating gap opening at unpinned points in the spectrum for all integer �lling
fractions ν = m/q, m = 1, ..., q, except for half-�lling.

In �gure 5.8 we plot the energy bands in the �rst mBZ with the same superlattice unit
cell as the one used to plot the bands in �gure 5.7, with the same values of the parameters as
before, but where we change the displacement phase, from zero to φ = 2π/5. What we observe
is that adding a displacement phase does not change the situation for q = 6, as there is still no
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insulating gap opening at half �lling, meaning that those states are protected by an additional
internal symmetry. On the other hand, for q = 4, we do observe the insulating gap opening at
ν = 1/2, leading us to consider the possibility that the system can be driven in a topological
insulating phase by changing the parameter φ.
In �gure 5.9 we have thus plotted the energy eigenvalues for the real lattice space BdG Hamil-
tonian of a �nite chain with open boundary conditions, as a function of φ indicating the dis-
placement phase of the atomic sites in the superlattice unit cell. As the �gure shows, we obtain
low-energy chiral fermionic end states after a �rst closing of the half �lling gap at φ = π/2,
connecting the valence and the conduction bands.
With the breaking of Time Reversal, the symmetry class here drops to the to AIII complex class
of Altland-Zirnbauer classi�cation, and the topological invariant is still a Z number.
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(a) Band structure q = 4. B = 0.3, αr = 0.4,
A/λ = 0.8, φ = 2π/5.
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(b) Band structure q=6. B = 0.3, αr =
0.4,A/λ = 0.8, φ = 2π/5.

Figure 5.8: The �gure shows the bulk bands for even superlattice period. The bands are plotted in the
�rst mBZ and they show insulating gap opening at unpinned points in the spectrum for all integer �lling
fractions ν = m/q, m = 1, ..., q, except for half-�lling.

5.2 Superconducting Phase

In this section, we �nally analyse the full system, introducing the superconducting term in
the Hamiltonian

HSC = ∆

q∑
n=1

N/q∑
i=1

c†n,i,↑c
†
n,i,↓ + h.c+ µ

∑
σ,σ′

q∑
n=1

N/q∑
i=1

c†n,i,σδσ,σ′ cn,i,σ′ (5.5)
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Figure 5.9: Energy eigenvalues obtained diagonalising the BdG Hamiltonian of an open, �nite chain of
N=600 atoms, with superlattice period λ=4a. B=0.2, αr=0.3, A/λ=0.2.
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where we have also included the chemical potential µ. The total Hamiltonian for the system is
now given by H = HSOC +HZ +HSC .
As usual, we start by analysing the bulk band structure in momentum space. From the previous
section we already know HSOC and HZ after Fourier transforming. HSC in momentum space
reads

HSC = ∆

q∑
n=1

N/q∑
k=1

c†n,k,↑c
†
n,k,↓ + h.c.+ µ

∑
σ,σ′

q∑
n=1

N/q∑
k=1

c†n,k,σδσ,σ′ cn,k,σ′ (5.6)

At this point, we want to write the Hamiltonian in BdG matrix form H = C†kHkCk where Ck

is the 4q-dimensional Nambu spinor de�ned as

Ck =
(
c1,k,↑, c1,k,↓c

†
1,−k,↑, c

†
1,−k,↓, c2,k,↑, ..., c

†
q,−k,↓

)T
.

In order to �nd the bulk bands, we then diagonalize Hk.
Having found the dispersion relation, we are interested in understanding in which point in the
parameter space the bulk gap closes, signalling the presence of a topological phase transition.
In the following, we analyse the phase diagram, plotting the critical line separating the trivial
and the topological superconducting phases.
From the theoretical model introduced in chapter two of this thesis, we know that the gap closing
happens at k = 0 (Γ), both at continuum and in the tight binding limit, due to Particle-Hole
symmetry of the Hamiltonian. Since the modulation on SOC introduced via curvature does
not a�ect Particle-Hole symmetry, we expect the gap closing to still occur at the Γ point in
our system. We have furthermore observed that, in the low energy limit close to Γ, the two
theories at continuum and at tight binding lead to the same results. This is in fact not the
case for higher energies where the e�ects of the bandwidth in the tight binding approximation
become more evident. We are therefore restricting ourselves to the lowest energy bands, more
precisely, we choose the Fermi energy to always lie within the two lowest energy bands, i.e
−2t − B < µ < −2t + B, such that the �lling fraction we consider is always ν < 1/2q . This
restriction is furthermore justi�ed from the analysis of the band structure in the normal phase
conducted above, where we have shown that, for both even and odd superlattice periodicity, for
values of the Fermi energy within this interval, one obtains the e�ectively spinless regime, with
only one pair of Fermi points, creating the condition for having topological superconductivity in
the system (�gures 5.6, 5.7 and 5.8).

Furthermore, in the analysis that follows, we choose to set µ = −2t since it is the optimal
point for observing the topological phase of the system, and since the criterion for the conven-
tional wire in this particular point has the simple form B = ∆.
We hereby mention that, as analogous to what we have observed in the previous model, a mod-
ulation on the Rashba SOC induces a renormalization of the bandwidth, and t→ t̄. Therefore,
in the following, we will be careful to set µ = −2t̄ as the modulation of the SOC changes.

In �gure 5.10 we have plotted, in the A
λ /∆ plane, the critical line separating the trivial and

the topological superconducting phase. The dashed red line indicates the critical point B = ∆
in which the phase transition occurs where no locally varying SOC is present. Figure 5.10(a)
shows the diagram for q = 4 atomic sites in one unit cell, while �gure 5.10(b) for q = 5. Because
of the periodicity of the superlattice cell, the two diagram show di�erent features.

The diagram in �gure 5.10(a) is symmetric with respect to the horizontal line, at A/λ = 1/2,
which, as one can see in 5.10(a) , is a peculiar line. In fact, when choosing to place four atomic
sites in a unit cell, due to the form of θ(xn) and the SOC terms, acting on the bond between
nearest neighbours in the Hamiltonian 5.1 , we have that when A/λ = 1/2, the terms above
are zero, leading to a total zero SOC on the system. As we can see in the diagram, the gap
closing along this line occurs at B = ∆ (it is on the dashed vertical line). However, because of
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(a) Phase diagram for q = 4 atomic sites in
a unit superlattice cell. The strength of the
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(b) Phase diagram for q = 5 atomic sites in
a unit superlattice cell. The strength of the
Rasha SOC is set at αr/t = 0.3

Figure 5.10: The vertical dashed line indicates the value ∆ = B, delimiting the regions where the
system exhibits trivial superconductivity (right side) and topological superconductivity (left side) for the
conventional wire. The blue lines in both graphs show the lines delimiting the two phases when the non
trivial geometry of the semiconducting wire induces a local SOC modifying the phase diagram promoting
trivial superconductivity for some ∆ < B.

the absence of spin orbit interaction, in the regime B > ∆ there cannot be any superconducting
gap opening, therefore the point B = ∆ when A/λ = 1/2 separates the gapless semimetallic
spectrum when B > ∆ and the conventional s-wave gapped spectrum under the the condition
B < ∆.
Furthermore, the symmetry of the phase diagram in �gure 5.10(a) if mirrored with respect to
this line, can be explained if looking at the plots in �gure 5.11 of the x and y components of
the modulated SOC as a function of A/λ. In 5.11(a) we see the SOC x/y components acting
on the bond between the �rst and the second, and the second and the third atomic sites in the
unit cell; while in 5.11(b) we see the SOC component acting on the bonds between third and
fourth, and fourth and �rst (of the neighbouring superlattice cell) atomic sites. Both the plots
are symmetric with respect to A/λ = 1/2, and in fact, the graph in 5.11(b) is indeed the 5.11(a)
mirrored with respect to this point.
Due to the speci�c form of the x and y components in the Hamiltonian 5.1, the SOC component
along y is a modulated function with a constant o�set, whereas the component along x is a
modulated function that mediates to zero (as one can appreciate looking at the blue and red
lines in 5.11). The points A/λ = 1/4 and A/λ = 3/4, where the enhancing of the trivial phase
is higher, the modulated component along x has its maximum, while the component with the
constant o�set along y is rapidly decreasing. This fact seems to suggest that one can reach
similar conclusions to the ones for the previous model: in a �rst approximation, one can say
that the major contribution on the modi�ed phase diagram comes from the modulated part.
Despite this encouraging agreement between the two models, in order to fully understand the
physical contribution of the SOC rotating in the x-y plane, a deeper analysis of the system at
tight binding and continuum limit is required.
In the phase diagram for q = 4 there is another special point: A/λ = 1. In here, as in A/λ = 0
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(a) Plot of the x and y components of the
modulated SOC on the �rst and the second
bonds between atomic sites inthe superlattice
unit cell, as a function of A/λ.
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(b) Plot of the x and y components of the
modulated SOC on the third and fourth bonds
between atomic sites in the superlattice unit
cells,as a function of A/λ.

Figure 5.11: The �gure show the components along x and y on the bond between nearest neighbouring
atomic sites as a function of A/λ. The parameter αr which tunes the amplitude of the modulation on
the SOC, is set at 0.7t.

the only contribution of the SOC is along the y direction and it is constant for all the bonds,
meaning that for these speci�c values of A/λ we recover the phase diagram of the conventional
wire, without any e�ect of the curvature on the spin orbit coupling, and in fact, the bulk gap
closes at the critical point B = ∆.

The diagram for q = 5 atomic sites in the superlattice unit cell shows di�erent features com-
pared to the previous, as there is no value for A/λ in which the modulated SOC on the bonds
between nearest neighbouring sites goes to zero. Thus, for no other point in the diagram except
for A/λ equal zero, the gap closes for B = ∆, and there is no symmetry line in the diagram.
Nevertheless, the enhancing of the trivial phase still has its maximum at A/λ = 1/4.
What remains indeed a common feature of the two diagrams 5.10(a) and 5.10(b) is that the
modulation on the SOC, induced by a curved shape of the semiconducting nanowire, enhances
the region in the phase diagram where the system is in the trivial superconducting phase.

Another common feature between this model for the curved wire and the model analysed
in the previous chapter is displayed in the �gures 5.12(a) and 5.12(b) which show the same
phase diagrams as above but with the di�erent coloured lines indicating the phase transitions
for di�erent values of the Rashba SOC strength αr. As one appreciates from the diagrams,
increasing αr ampli�es the enhancement of the s-wave region.

To further verify that the enhancement of the trivial superconducting phase promoted by
the curvature induced local SOC, we plot the phase diagram in the plane B/∆.
In order to enlighten the widening of the s-wave phase, in �gure 5.13 we have plotted the
di�erence between the line B = ∆ separating the trivial and the topological phase when A/λ = 0
(represented by the x-axis in the �gure i.e the line) and the line separating the two phases when
A/λ has a non trivial value. Here, as before, we appreciate the enhancement of the trivial phase
as all the part of the diagram below the line delimiting the phase transition which was in the
p-wave regime when the SOC did not have local contributions, is now s-wave.
Moreover, looking at 5.13(a) and 5.13(b), we appreciate that, as varying A/λ, the enhancement
of the s-wave region is maximum when A/λ = 1/4 and then it decreases for higher values,
which is consistent with the non monotonic diagram in �gure 5.10. Figures 5.13(c) and 5.13(d),
obtained �xing A/λ = 1/4 and varying the amplitude αr/t, show instead that the enhancing of
s-wave region increases monotonically as once increases the parameter αr/t, in agreement once
again with the trend of the di�erent curves in 5.10.

As a last remark, we consider the curve separating the two phases in the B/∆ plane for
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(a) Phase diagram for q = 4 atomic sites in
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Figure 5.12: The vertical dashed line indicates the value ∆ = B, delimiting the regions where the
system exhibits trivial superconductivity (right side) and topological superconductivity (left side) when
no modulation on the SOC is introduced. The coloured lines in both graphs show the lines delimiting
the two phases when the non trivial geometry of the semiconducting wire induces a local SOC modifying
the phase diagram promoting trivial superconductivity for some ∆ < B.
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(a) Plot of the phase diagram in the plane B/∆
for q=4 atomic sites in the unit cell. Di�er-
ent curves are obtained varying A/λ.The am-
plitude of the modulation is set as αr/t = 0.4
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(b) Plot of the phase diagram in the plane B/∆
for q=5 atomic sites in the unit cell.The ampli-
tude of the modulation is set as αr/t = 0.3
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(c) Plot of the phase diagram in the plane B/∆
for q=4 atomic sites in the unit cell.The am-
plitude of the modulation αr/t is varied, and
A/λ = 1/4.
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(d) Plot of the phase diagram in the plane B/∆
for q=5 atomic sites in the unit cell.The am-
plitude of the modulation αr/t is varied, and
A/λ = 1/4.

Figure 5.13: In �gure, the diagrams showing the enhancement of the trivial phase due to the curvature
induced locally varying Rashba SOC. The x-axis represents the critical line when the contribution on
the SOC is only constant. When the phase transition occurs for B = ∆, the plane represented in �gure
is all in the p-wave phase, while here, the lower part of the coloured curves is in the s-wave phase.
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Figure 5.14: Figure shows the critical line for the topological phase transition in the plane B/∆. The
superlattice periodicity is q = 4 and αr/t = 0.3, A/λ = 0.25.

di�erent values of the Fermi energy within the two lowest energy bands. In �gure 5.14 we
observe that the line separating the two phases obtained when the chemical potential µ is set
at the energy value of the Kramer invariant point (which changes as one introduces a locally
varying SOC as mentioned before), is the minimum of the sets of curves showing the phase
diagrams at di�erent values of the chemical potential. This implies that setting the value of the
Fermi level exactly at the Kramer invariant point, represents an optimal condition for analysing
the phase transition, exactly as we found for the previous model.

5.2.1 Superconducting Phase Analysed in the Open Chain

In this section, we include the plots of the eigenvalues for the open �nite chain, which show
the presence of Majorana zero energy modes at the ends of the chain.
Figure 5.15 is a further proof of the enlarging of the s-wave phase induced by the local canting
of the spins due to the curvature. In fact, the plot obtained for B > ∆ in 5.15(a) shows the
gap at zero energy due to the superconducting pairing, where no zero energy odes are present,
meaning that the system is still in the trivial phase, as the gap in the bulk bands has not closed
yet.
However, �gure 5.15(b) shows that for a higher magnetic �eld, the Majorana bound state local-
ized at zero energy appear, ensuring that the transition to the toploogical phase still occurs, it
just requires higher magentic �eld.
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(a) Plot of the eigenvalues of the open chain.
For this plot, B/t = 0.3 and ∆/t = 0.2. The
�gure shows the gap at zero energy, meaning
that the system is in the s-wave superonducting
phase.
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(b) Plot of the eigenvalues of the open chain.
In this plot, B/t = 0.45 and ∆/t = 0.2. In this
case, we observe the Majorana bound states lo-
calized at zero energy.

Figure 5.15: The �gures were obtained by diagonalizing an open chain with 240 sites, with superlattice
periodicity q = 4.
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Chapter 6

Conclusions

In the introduction we mentioned that the zero energy modes arising at the boundaries of
a topological superconductor are Majorana modes. In one dimensional topological supercon-
ductors, the Majorana zero energy modes are bound states localized at the end of the chain.
The Kitaev model represents a fundamental theoretical toy model for topological p-wave super-
conductivity in a one dimensional chain, and many ways to practically reproduce this model
have been explored. In this thesis, we focused on the set up proposed in [23], constituted by
a semiconductor-superconductor heterostructure in presence of an external magnetic �eld. The
semiconductor is a 1D nanowire with Rashba spin orbit coupling, while the adjacent super-
conductor is a conventional bulk superconductor. In this system, it is possible to practically
realize topological p-wave superconductivity in the interface between the superconductor and
the semiconducting wire. We showed that the superconducting gap closes at the critical point
in parameter space. Consequently, the system is driven in the topological phase, with a degen-
erate ground state and the zero energy modes at the ends. We derived the criterion for the gap
closing, and produced a phase diagram showing the two distinct topological phases separated
by the critical line.

With the purpose of understanding how the latter phase diagram is modi�ed by considering
a wire with a non trival geometric shape, we �rst studied the properties of this curved semicon-
ducting wire, in presence of Rashba SOC. We found that the bent nanowire can be modelled by
an e�ective one dimensional k · p Hamiltonian with locally varying Rashba spin orbit coupling.
Before studying the system with the curvature-induced local spin canting, and in order to �rst
understand the e�ect of a local SOC, we consider a simpli�ed toy model for a straight wire with
the addition of a modulated Rashba SOC along one direction. Indeed, the latter can be practi-
cally realized as the Rashba SOC can be tuned by modifying the layers of material composing
the semiconductor. It is therefore possible, for example via gating, to generate an inhomoge-
neous electric potential, inducing a locally varying spin orbit coupling.
This model has the advantage that one can separate the contributions of the modulated and
the constant Rashba SOC, which are instead di�cult to disentangle when considering the curve-
shaped nanowire, we therefore started by studying this toy model. By looking a the system
where only a local component of the SOC was present, we have found that the s-wave (triv-
ial) area in the phase diagram was enhanced. Indeed, we have showed that, at �rst order in
perturbation theory, the presence of the local SOC renormalizes the g factor in the Zeeman
term, decreasing the e�ective magnetic �eld experienced by the electron travelling through the
semiconductor, which allows s-wave Cooper pairing for smaller values of ∆. Furthermore, the
enhancing of the trivial superconducting phase is ampli�ed as one increases the parameter con-
trolling the strength of the constant Rashba SOC. The latter is an outstanding result since it
implies that, as opposed to the case of the conventional wire, the strength of the SOC in�uences
the occurrence of the phase transition. We conclude that, when the system for the conventional
wire with additional modulated SOC is considered, the topological phase is suppressed by the
presence of the modulated component of the SOC, and this suppression depends also on the
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strength of the constant SOC.

When studying the model with local SOC arising from the curved geometry of the wire,
we �nd results in agreement with the ones obtained for the previous model. In fact, the phase
diagrams show the same enhancing of the trivial superconducting phase as one increases the
strength of the Rashba SOC. Furthermore, a non monotonic phase diagram as a function of the
curvature amplitude is obtained.

Both the dependence of the phase transition on the strength of the SOC and the non mono-
tonic diagram have not been fully understood yet. As a future goal, we have proposed to
understand such behaviours: in our ideas, the �rst could be understood by taking into account
higher orders in perturbation theory, whereas for the second, the �rst step would be to study
the full Hamiltonian describing the system in the continuum limit (since we have only managed
to study the system at tight binding so far).

Finally, we recall that, after studying the two systems in the bulk, we diagonalized the tight
binding Hamiltonian for the open chain, in order to verify the bulk edge correspondence, and we
indeed �nd that the Majorana zero energy modes are present in the p-wave phase of the system
with two-fold degenerate ground state.

Even though the analysis conducted in this thesis does not seem to suggest bent nanostruc-
tures as possible simpli�ed ways to practically realize Majorana modes in 1D systems, we must
point out that this analysis have been conducted only for speci�c value of the chemical potential
and that the e�ect we observed was explained only perturbatively at low energies. Therefore, in
order to make de�nitive assumptions on the practical implication on the observation of Majorana
modes in curved nanostructures, further analysis are required.
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Appendix A

Diagonalization of the BdG

Hamiltonian

In here we include some details about the diagonalisation of

HBdG = Ψ†kHkΨk. (A.1)

The Bogoliubov operators are de�ned via unitary transformation as(
αk,↑
α†−k,↓

)
=

(
u∗k vk
−v∗k uk

)(
ck,↑
c+
−k,↓

)
where

U−1 =

(
u∗k vk
−v∗k uk

)
.

Applying the unitary transformation to the Matrix form of the Hamiltonian above we have

HBdG = Ψ†kUU
†HkUU

†Ψk

which is equivalent to

HMF =
(
α†k,↑ α−k,↓

)( u∗k vk
−v∗k uk

)(
εk ∆
∆∗ −εk

)(
uk −vk
v∗k u∗k

)(
αk,↑
α+
−k,↓

)
for the unitarity of the transformation.
From linear algebra we thus have the identity

U †kHkUk = D

which in our case reads(
u∗k vk
−v∗k uk

)(
εk ∆
∆∗ −εk

)(
uk −vk
v∗k u∗k

)
=

(
λ1k 0
0 λ2k

)
.

In the previous, the λ1,2k are the eigenvalues of the matrix Hk which can be easily shown to be

the 2.8: λk = ±
√
ε2k + |∆|2.

The λ1,2k give the excitation spectrum of the Hamiltonian in terms of the Bogoliubov quasipar-

ticles operators αk and α†k. Solving for the eigenvectors of the problem, recalling λ1k = −λ2k,
we �nd

uk =
∆

(εk − λk)
v∗k

u∗k = −(εk + λk)

∆
vk

(A.2)

Combining this with the normalization relation |uk|2 + |vk|2 = 1, we obtain the relations 2.7

|uk|2 =
1

2

(
1 +

εk
λk

)
; |vk|2 =

1

2

(
1− εk

λk

)
(A.3)
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Appendix B

Finite Di�erences method to derive the

tight binding Hamiltonian

In here we go through the discretization of the Hamiltonian 3.36 explicitly using the �nite
di�erences formula

∆af(x) =
f(x+ a)− f(x− a)

2a
(B.1)

for each term appearing in the Hamiltonian.
We start with the kinetic term

Hkin =

∫
dsΨ†(s)

∂2
s

2m∗
Ψ(s)}, (B.2)

which contains a second order derivative, thus applying the formula B.1 at second order and
setting the lattice spacing a = 1, the B.2 becomes

Hkin = −t
∑
i

Ψ†iΨi+1 + Ψ†iΨi−1 = −t
∑
i

Ψ†iΨi+1 + h.c (B.3)

where t is the hopping term de�ned as t = ~2
2m∗

Note that in the previous, we have omitted the spin indexes, and since the kinetic energy does
not act on spin space, the term above just comes with a δσ,σ′ .
Let us now consider the spin-orbit coupling term

HSOI = − iαr
2

∑
σ,σ′

∫
dsΨ†(s)σ,σ′ [τN (s)∂s + ∂sτN (s)]Ψ(s)σ,σ′ (B.4)

Recalling N̂(s) = {cos θ(s), sin θ(s), 0} and τ is the vector of the Pauli matrices, we have in the
preceding

HSOI = − iαr
2

∑
σ,σ′

∫
dsΨ†(s)σ,σ′ [τx(cos θ(s)∂s + ∂s cos θ(s))

+τy(sin θ(s)∂s + ∂s sin θ(s))]Ψ(s)σ,σ′ .

(B.5)

In order to discretize the term containing the derivative of a product, we use the product formula
for the �nite di�erence, which reads

∆(f · g) = f∆g + g∆f + ∆f∆g (B.6)

this is the same formula we also use to discretize the product appearing in Hamiltonian 4.1
for the model describing a wire with externally modulated Rashba SOC. the term in τx after
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applying the �nite di�erences formula reads

∑
σ,σ′

∑
i

Ψ†
i,σ,σ′

τx[sin θi
(Ψi+1,σ,σ′ ) + Ψi−1,σ,σ′

2
+

(sin θi+1Ψi+1,σ,σ′ ) + (sin θi−1Ψi−1,σ,σ′ )

2
]

=
∑
σ,σ′

∑
i

Ψ†
i,σ,σ′

τx

[
(sin θi + sin θi+1)

2

]
Ψi+1,σ,σ′ + h.c

(B.7)

the term in τy is obtained in the exact same way and it reads

∑
σ,σ′

∑
i

Ψ†
i,σ,σ′

τy

[
(cos θi + cos θi+1)

2

]
Ψi+1,σ,σ′ + h.c. (B.8)

the terms in between the square brackets in B.7 and τy express the strength and the direction
in the x,y plane of the Rashba SOI on the bond between nearest neighbouring atomic sites.
Now let us recall from 3.38 and 3.39 can determine θ(s) as

θ(s) = −
∫ s

κ(s
′
)ds

′
= A

(
2π

λ

)2 ∫ s

sin
2πs

′

λ
ds
′

= −A
λ

2π cos
2πs

λ
. (B.9)

When discretizing, θ(s) → θi, where the i indicate the atomic positions on the lattice. Thus,
the full SOI term in discrete space reads

HSOI = − iαr
2

∑
σ,σ′

∑
i

Ψ†
i,σ,σ′

τy

[
(cos θi + cos θi+1)

2

]
Ψi+1,σ,σ′

+Ψ†
i,σ,σ′

τx

[
(sin θi + sin θi+1)

2

]
Ψi+1,σ,σ′ + h.c.

(B.10)

With this notation, the tight binding Hamiltonian reads

H = −t
∑
σ,σ
′

∑
i

Ψ†i,σΨi+1,σ′ δσ,σ′ −
iαr
2

∑
σ,σ
′

∑
i

Ψ†
i,σ,σ′

τy

[
(cos θi + cos θi+1)

2

]
Ψi+1,σ,σ′

+Ψ†
i,σ,σ′

τx

[
(sin θi + sin θi+1)

2

]
Ψi+1,σ,σ′ + h.c.

(B.11)
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Appendix C

Matrix Form of the momentum space

tight binding Hamiltonians

In here we write down the explicit matrix form of the matrix Hk for the two models described
in chapter three for superlattice periodicities q = 3 and q = 4, when the total Hamiltonian reads
H =

∑
kCkHkCk and the vector C is de�ned as in the chapter:

Ck =
(
cn1,k,↑, cn1,k,↓, cn2,k,↑, ......, cnq ,k,↓

)T
(C.1)

Starting from the momentum space tight binding Hamiltonian of the serpentine-shaped wire
3.45 and putting it in matrix form as above, the explicit form for q = 3 reads

0 0 −t αrΛ−eikt −eikt −eikαr[Λ∗+β]
0 0 −αrΛ −t eiktαr[Λ

∗+β] −eikt
−t −αrΛ 0 0 −t αr[Λ+β]
αrΛ

∗ −t 0 0 −αr[Λ∗+β] −t
−e−ikt e−ikαr[Λ+β] −t −αr[Λ∗+β] 0 0

−e−ikαr[Λ+β] −e−ikt αr[Λ
∗+β] −t 0 0

 . (C.2)

where Λ = 2(cos (πA) + i sin (πA)) and β = (cos (2πA)− sin (2πA)).
For q = 4 it is instead given by



0 0 −t +αrΛ 0 0 −eikt −αreikΛ
0 0 −αrΛ∗ −t 0 0 −αreikΛ∗ −eikt
−t −αrΛ 0 0 −t αrΛ 0 0
αrΛ

∗ −t 0 0 −αrΛ∗ −t 0 0
0 0 −t −αrΛ 0 0 −t αrΛ

∗

0 0 αrΛ
∗ −t 0 0 −αrΛ∗ −t

−e−ikt e−ikαrΛ
∗ 0 0 −t −αrΛ 0 0

−e−ikαrΛ∗ −e−ikt 0 0 αrΛ −t 0 0


. (C.3)

where we have de�ned Λ = 1 + cos (2πA) + i sin (2πA)
The matrix form for the tight binding Hamiltonian in k-space of the wire with two orthogonal

Rashba SOC, a constant one along the y-direction and the externally modulated one along the
z-direction, is obtained by re-writing the 4.3 in terms of the vector C.1. The explicit form of Hk

for q = 3 is given by

0 0 −t− iαm
2 −αr −eikt− 1

4e
ikαm eikαr

0 0 αr −t+ iαm
2 −eikαr −eikt+ 1

4e
ikαm

−t+ iαm
2 αr 0 0 −t+ iαm

4 −αr
−αr −t− iαm

2 0 0 αr −t− iαm
4

−e−ikt+ 1
4e
−ikαm −e−ikαr −t− iαm

4 αr 0 0

e−ikαr −e−ikt− 1
4e
−ikαm αr −t+ iαm

4 0 0

 .

(C.4)
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For q = 4 is given by

0 0 −t− iαm
2 −αr 0 0 −eikt− i

2e
ikαm eikαr

0 0 αr −t+ iαm
2 0 0 −eikαr −eikt+ i

2e
ikαm

−t+ iαm
2 αr 0 0 −t− iαm

2 −αr 0 0

−αr −t− iαm
2 0 0 αr −t+ iαm

2 0 0

0 0 −t+ iαm
2 αr 0 0 −t+ iαm

2 −αr
0 0 −αr −t− iαm

2 0 0 αr −t− iαm
2

−e−ikt+ i
2e
−ikαm −e−ikαr 0 0 −t− iαm

2 αr 0 0

e−ikαr −e−ikt− i
2e
−ikαm 0 0 −αr −t+ iαm

2 0 0


.

(C.5)

Note that in all the preceding, we have set φ = 0 for simplicity.
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