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Abstract

In this work we study ray traversal of scenes that do not fit in system memory. More precisely,
we continue with the work of [PKGH97] on batched ray traversal. We propose to store a simplified
representation of the scene’s geometry to quickly cull rays that do not hit anything. This reduces the
number of disk accesses and our results show that it can more than double rendering performance.

Figure 1: The Island scene by Walt Disney Animation Studios requires a lot of memory to render.

1. Introduction
Rendering large scenes is an ongoing challenge in
the computer graphics industry. Real-time visual-
ization of complex meshes and photo realistic ren-
dering of large scenes on machines without suf-
ficient system memory remains an open problem.
The movie industry is among the most prominent
industries in need of rendering large scenes with
accurate global illumination.

This is caused by recent advances in com-
pute power having set in motion a revolution in
the movie industry, replacing rasterization (Reyes)
based renderers [CCC87] with path traced render-
ers [Pha18]. While rasterization based production
renderers have supported out-of-core rendering for
a long time, this is not the case for the newly devel-
oped path traced renderers.

The recent availability of high performance ray
tracing hardware on graphics cards (Nvidia RTX)
amplifies the need for efficient out-of-core ray
tracing. Compute based GPU ray tracing has been
competitive with CPUs in terms of performance for
some time now, but the movie industry has mostly
shunned away from GPU rendering because of the
limited device-local memory available on graphics

cards [Pha18]. Graphics card memory is designed
to be high bandwidth, requiring that memory
chips are physically close to the GPU. This limita-
tion means that graphics card memory capacity
will always be limited compared to system memory.

The biggest challenge in out-of-core production
rendering is that path tracing results in incoherent
(random) memory-access patterns which result in
high cache miss rates. This can have a big impact
on performance because of the large bandwidth
and latency disparity between system memory and
(solid-state) disk storage.

In this paper we will discuss and improve
batched ray traversal which was first introduced
in [PKGH97] by reducing wasteful work through
the introduction of “occlusion culling“. Batched ray
traversal is a technique that can be used in both in-
core, out-of-core and distributed rendering to im-
prove the memory coherence of ray tracing. In
this paper we add occlusion culling to batched ray
traversal and examine it’s effects on out-of-core
rendering.
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2. Related Work
Large scenes may be visualized by replacing
distant geometry by proxies as to reduce geo-
metric complexity. Walt et al. [WDS05] present a
distributed ray tracing system that renders proxy
geometry on cache misses. A similar concept
is used by Crassin et al. [CNLE09] to render
volumetric data sets on the GPU. Proxy geometry
can also be used in a static level-of-detail system
to make the scene fit into memory, as is shown
by Pantaleoni et al. [PFHA10]. Similarly, Yoon et
al. [YLM06] replace geometry by oriented planes
when this satisfies a screen-space error function.

When visualization of the full scene complexity is
desired this requires either distributed and/or out-
of-core rendering. A common approach is to ab-
stract away where data resides in a paging mem-
ory layer. Cox and Ellsworth [CE97] show that
application-controlled paging can improve perfor-
mance over equivalent operating system function-
ality for out-of-core volume rendering. DeMarle et
al. [DGP04] create a shared memory layer that dis-
tributes the scene over the available render nodes,
hiding the complexity of data movement.

Compared to these generalized approaches,
application controlled data movement may provide
more room for domain specific optimizations.
Christensen et al. [CLF+03] use application
controlled caching of surface tessellation to aid
out-of-core traversal performance. Wald et al.
[WSB01] utilize a two-level acceleration structure
hierarchy to manage data movement resulting in
almost linear performance scaling in distributed
rendering.

A common limitation with these works is that
none of them tackle the issue of incoherent rays.
Monte-Carlo solutions to global illumination, such
as path tracing, lead to highly incoherent mem-
ory access patterns. While these previously men-
tioned systems work well for coherent ray distribu-
tions, disk bandwidth will form a bottleneck for ran-
dom ray distributions.

To combat ray divergence, breadth-first traver-
sal, ray stream traversal and ray reordering
schemes have been proposed. In breadth-first
traversal [WGBK07, GR08, Tsa09, RGD09] a col-
lection of rays is traversed breadth-first through
the acceleration (tree) structure. This ensures that
each node in the hierarchy is loaded at most one
time, at the cost of using the same traversal or-
der for all rays. Ray stream traversal techniques
[BAM14, FLPE15] allow for (approximate) front-to-
back traversal by potentially visiting nodes twice.
Ray reordering schemes [ENSB13, MBK+10] aim
to sort the rays such that they are more coherent.

Unlike specialized traversal algorithms they are de-
coupled from the acceleration structure.

2.1. Batched Ray Traversal
Batched ray traversal as proposed by Pharr et al.
[PKGH97], which forms the basis of this paper,
presents yet another way to extract coherence
from an arbitrary distribution of rays. In order to
improve coherence rays are “batched” (stored) at
batching points inside the acceleration structure.
When a batching point accumulates enough
rays the underlying geometry and acceleration
structure subtree are loaded and the rays are
traversed. Unlike the previously mentioned tech-
niques, batched ray traversal is able to extract
coherence from rays passing through the same
region of space even if their origins lie far apart or
their directions are incoherent.

Budge et al. [BBS+09] found that this traver-
sal architecture also lends itself well to distributed
rendering. They present a path tracing renderer
that uses batched ray traversal to render com-
plex scenes on a heterogeneous set of compute
devices. Son and Yoon [SY17] suggest that the
scheduler may be improved by utilizing a device
connectivity graph.

Navratil et al. [NFLM07] show that ray batch-
ing can also be applied to improve coherence one
level up the memory hierarchy. They use batched
ray traversal to reduce the number of CPU cache
misses during traversal of the acceleration struc-
ture which improves performance. In the same
vein, Bikker [Bik12] and Gasparian [Gas16] imple-
ment batched ray traversal for in-core path tracing
using different acceleration structures.

2.2. Occlusion Culling
Occlusion culling is commonly used to improve
performance in rasterized renderers. Techniques
such as hierarchical z-buffers [GKM93], hierarchi-
cal occlusion maps [ZMHHI97] and incremental oc-
clusion maps [Ail00] all utilize a conservatively es-
timate of the depth buffer to prevent fully occluded
geometry from being rendered. Here, conserva-
tive means that the estimated depth values may
never be smaller than their actual values. A com-
mon way to estimate the depth buffer is to render a
strongly simplified version of the occluder geome-
try [e.g. Val11, SSLL14, Wih16]

Our novel idea is to apply a similar concept to
ray tracing. In regular batched ray traversal, a ray
is batched when traversal reaches (intersects the
bounding volume of) a batching point. This entails
that a ray might get batched even though it does
not hit any geometry associated with that batching
point. We can reduce the likelihood of this occur-
ring by storing a simplified representation of the ge-
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Figure 2: The two level acceleration structure hierarchy used
by (out-of-core) batched ray traversal. In our system the ray
batches are always stored in memory.

ometry at each batching point and intersecting rays
against that representation before batching, akin to
occlusion culling.

3. Overview
In this section we will give a more detailed overview
of the techniques and data structures used in this
research.

3.1. Batched Ray Traversal
Pharr et al. [PKGH97] use two levels of regular
grids for batched ray traversal. The top grid is
always in memory and its cells form batching
points for the rays. For all geometry in a cell a
second grid is created which is used to accelerate
ray traversal. These “acceleration grids” are stored
in a cache and may be loaded from disk when a
cell (of the top level grid) needs to be traversed
(Figure 2). Ray batches are also stored on disk
(with a cache) to prevent them from occupying too
much memory.

In later works the regular grids have been re-
placed by a combination of octrees [Bik12], kd-
trees [NFLM07, BBS+09] and bounding volume hi-
erarchies [Bik12, Gas16]. Different scheduling al-
gorithms have also been introduced as to improve
performance on distributed systems [BBS+09,
SY17] or to limit the exponential growth in the num-
ber of rays [NFLM07] as is present in the original
work by Pharr et al.

3.2. Occlusion culling
The occlusion culling methods for rasterization
mentioned in the related work section require a
conservative depth estimate to ensure correct op-
eration. When using simplified geometry as oc-
cluders this entails that the simplification must be
“inner conservative“: it must be completely en-
closed by the original geometry.

For our purposes this requirement is inverted.
Any ray that hits the actual geometry must also
hit the simplified representation. This means that
the simplification must fully enclose the actual ge-
ometry. This can be attained by either creating a
conservative geometric simplification or by storing

a volume that fully contains the geometry.

Figure 3: Thin- (left) and conservative (right) voxelization of a
circle in 2D.

We have chosen for the latter by creating a
voxelization of the geometry at each batching point
as a means of simplification. Note that for correct
operation the voxelization should be fully conser-
vative (26-separating); that is: any cell touched by
a triangle should be marked as part of the volume.
This is a stricter requirement than thin voxelization
(also referred to as 6-separating) which is often
used in the space of computer graphics. Thin
voxelization ensures that the resulting model is
watertight but it does not make the guarantee that
the resulting volume fully contains the geometry‘s
surface. Figure 3 shows the difference between
thin- and conservative voxelization in 2D although
the same principles apply to 3D.
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Figure 4: A sparse voxel octree saves memory by not storing
homogeneous parts of the voxel grid. The illustration shows a
sparse voxel quadtree for simplicity.

A voxel grid can be stored efficiently through a
sparse voxel octree (SVO). Sparse voxel octrees
are essentially just octrees where nodes storing
uniform regions of space are not refined (Figure 4).

Although sparse voxel octrees are efficient
they store redundant information, as was first
discovered by Webber and Dillencourt [WD89].
Quadtrees and octrees often contain duplicate
subtrees which is a waste of space. The authors
suggest replacing duplicate subtrees by a single
instance. In their specific case this reduced mem-
ory usage by an order of magnitude. Replacing
duplicate subtrees by a single instance results in
nodes with multiple parents (Figure 5). Since this
breaks one of the fundamental properties of a tree
(nodes always having a single parent) so we will re-
fer to the results as Sparse Voxel Directed Acyclic
Graphs (SVDAGs).
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(a) (b) (c)
Figure 5: Compressing a sparse voxel octree into a sparse voxel directed acyclic graph, illustrated using a binary tree for clarity.
Duplicate nodes are repeatedly replaced by a single instance starting from the bottom up.

An efficient way of reducing a quadtree or
(sparse voxel) octree into a graph is by us-
ing bottom-up construction as was presented in
[KSA13]. During a recursive traversal we can
replace duplicate nodes from the bottom up by
keeping a hash map of previously visited (unique)
nodes. A similar process can also be applied di-
rectly to a voxel grid as is shown in [PU03]. By
sharing the hash map between different SVOs we
can achieve an additional memory savings over
compressing each of them individually.

4. Implementation
The renderer that we use for this research was
build from the ground up because, to our knowl-
edge, there does not exist an open source batched
ray traversal renderer. Although the renderer
does support different material models we will only
use matte Lambert shading (except for the Island
scene where a transparent shader is used for the
water such that the the seabed is visible). This was
done to make shading as cheap as possible since
we are only interested in ray traversal performance.

4.1. Batched Ray Traversal
As mentioned in the previous section, batched
ray traversal accepts a plethora of different (com-
binations of) acceleration structures. The only
requirement is that traversal of the top level struc-
ture needs to be able to store the traversal state
efficiently (so that rays can be batched). For this
work we have chosen to use a bounding volume hi-
erarchy for both levels of the acceleration structure.

The top-level heirarch is a 4-wide BVH based on
the work of Gasparian [Gas16]. By using a 4-wide
BVH, ray/bounding box intersections can be per-
formed in parallel using SSE (SIMD) instructions.
Regular (depth-first) BVH traversal requires main-
taining a stack of ancestors of the currently visited
node. Storing the traversal stack along with each
ray would require too much memory. So instead,
the author suggests to store pointers to all ancestor
(up to the root node) inside the BVH nodes them-
selves, trading traversal stack size for BVH node

size. The traversal stack then only has to store 4
bits for each node to indicate which children have
not been traversed yet.

We take a slightly different approach by only
storing a single parent pointer in each node in-
stead of the full list of ancestors. For a stack with
a maximum depth of 8 this saves 32 bytes per
BVH node (assuming 32 bit pointers and 16 byte
alignment). This change means that backtrack-
ing requires multiple jumps through memory but in
our testing this did not impact performance signif-
icantly. Although for out-of-core traversal this isn’t
as important (because of the relatively low cost of
top-level traversal), we think it might be interesting
to experiment with storing ancestor pointers with
logarithmic steps: 1 up (parent), 2 up, 4 up, 8 up,
16 up. This might provide the best of both worlds
in terms of memory usage (BVH nodes fit exactly
in 2 cache lines) and the number of traversal steps
required for back tracking (O(log(N))).

Using a BVH as the top-level acceleration struc-
ture also introduces a complication that previous
works on batched ray traversal for out-of-core
rendering did not have to deal with. In bounding
volume hierarchies, leaf nodes may overlap which
means that the first intersection found during
front-to-back traversal might not be the closest
intersection. Our solution is to pin geometry in
memory when a ray intersects and only make
the geometry evictable when all rays referring
to it have been shaded or have found a closer
intersection.

For the bottom-level acceleration structure we
use an 8-wide BVH which is traversed using an
AVX2 implementation of the wide vector single ray
traversal algorithm presented in [FLP+17]. With
this algorithm the stack not only stores all ances-
tors of the current node but also the entry distance
to their axis-aligned bounding box. Each time a leaf
is intersected the stack is compressed by removing
nodes whose entry distance is further than the leaf
intersection distance. This compression can be im-
plemented with a single AVX512 instruction. How-
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ever, our hardware only supports up to AVX2, so
we use a look-up table to implement compression.

Traversal order is approximated by only sorting
children based on the signs of a ray‘s direction
vector components. The traversal orders for each
of the 8 directions are precomputed and stored in
the BVH nodes. During traversal this information,
combined with a ray‘s direction vector signs, is
used to sort the children into the desired order.

Supporting instancing in batched ray traversal
is not something that any of the previous works
mention. Of course, instancing could be supported
by duplicating geometry but this would greatly
increase the scene size. We first experimented
with a similar idea by only storing instanced ge-
ometry once per batching point. However, this still
resulted in prohibitively large data files (too large
for our test system). The current implementation
stores all unique geometry in a batching point (and
the accompanying BVH) to a single file. Instanced
geometry is stored in separate files (along with
their BVHs), batching together many meshes
as to not overload the file system with many
small files. The cache system has been updated
accordingly to store both batching point data and
instanced geometry in a single LRU cache. To
ensure parallelism the cache system loads data
asynchronously using separate loading threads.

Creating batching points is also complicated by
the inclusion of instanced geometry. We con-
sidered picking batching points such that either
they have roughly equal amounts of instanced
primitives or equal amounts of unique primitives.
The former will result in roughly equal traversal
times between batching points although batching
points may vary heavily in terms of their size on
disk. Alternatively, clustering based on the num-
ber of unique primitives results in batching points of
roughly the same file size but with potentially large
differences in traversal time when batching points
contain many instanced objects. In our implemen-
tation we have chosen for the former because the
latter would stress our fix to overlapping BVH leaf
nodes (mentioned above).

To select the batching points we rely on the user
to provide the scene as a collection of objects
such that no out-of-core processing is necessary.
Batching points are created by clustering objects
such that they minimize the surface area heuristic.
Clustering is implemented by constructing and
flattening a binary BVH. To prevent large objects
from causing unbalance they are split into smaller
pieces using the same technique as we use for
clustering (constructing and flattening a BVH over
the primitives in the object).

originx

64 bytes

originy originz tnear 

directionx directiony directionz tfar 

hit object hit primitive hit u hit v 

BVH stack BVH node path state

Figure 6: The data layout of a batched ray.

Ray batches are represented as a collection of
fixed size block of rays (and other associated data).
Batching points store a (intrusive) linked list of full
blocks in addition to a single non-full block for
each worker thread. Full blocks are kept sepa-
rate because they are immutable which ensures
that processing them is thread-safe. This design
means that worker threads only have to communi-
cate when their thread-local block gets full.

Picking a block size is a trade-off between per-
formance and memory over-allocation. Batching a
ray requires at least 56 bytes plus any additional
integrator state (Figure 6). In our renderer we need
168 bytes to batch a ray so we use a relatively
small block size of 8.

The scheduling algorithm we developed is in-
spired by the work of Bikker [Bik12] in which batch-
ing points are sorted based on the number of
batched rays and then processed in descending
order. The idea behind sorting is that processing
starts at batching points with many rays and that
missed rays will get forwarded to batching points
with fewer rays. This approach has a lower over-
head than a blocking scheduler such as used in
[BBS+09]. Another advantage is that it provides a
synchronization point which can be used to forward
thread-local ray blocks to the list of full (immutable)
blocks. Without this forwarding, rays could get
stuck at thread-local blocks if those block would
never fill up. This issue could be ignored which al-
lows for scheduling without synchronization points
but at a loss of determinism.

We found that processing all batching points
each iteration does not give the system time to
collect enough rays at rarely visited batching
points. Therefor we only process a select number
of batching points (the top 25% in terms of ray
count) each iteration. A general issue with batched
ray traversal is that rays can get stuck at hardly
visited batching points until the end of the render
when only few rays are left. Traversing these rays
(and any new rays spawned by shading) will be
very expensive because there are not enough

5



n⃗
 

Figure 7: Voxelization: the 3 critical points with respect to the
triangle’s edges. In this image all critical points lie on the correct
side of their respective edges.

rays in the system to hide disk latency. We try
to address this by processing a small number of
randomly picked batching points each iteration
(10% of the batching points with at least one ray).

In our system ray batches are stored in system
memory. So to limit memory usage we process at
most 16 million paths at a time. New camera rays
are generated by exhausting all samples of a pixel
before moving to the next. The pixels are visited
along a z-curve (Morton code order) to improve the
coherence of primary rays.

4.2. Occlusion Culling
Like mentioned in section 3.2, our occlusion culling
system is based on the traversal of SVDAGs. All
geometry associated with a batching point is vox-
elized using the conservative voxelization algo-
rithm presented in [SS10].

For each triangle we loop over all voxels in
its bounding box and test whether they intersect
the triangle. A triangle intersects when the plane
on which it lies intersects with the voxel and the
projections of the triangle and the voxel on the
XY-, XZ- and YZ-planes overlap. The latter can be
evaluated efficiently by testing for each (2D) edge
function of the triangle whether the respective
critical point of the (projected) voxel lies on the
correct side of the edge. The critical point is the
point in the projected voxel which has the highest
value according to the edge-function (Figure 7).
More intuitively, this is the point (corner) that lies
furthest along the edge’s normal vector (pointing
inside the triangle).

The voxel grids are converted to sparse voxel oc-
trees using the octree construction algorithm pre-
sented in the same paper. An octree is build from
the bottom-up, creating parents for the previous
level’s nodes. We start by creating a list of “filled“
voxels, ignoring empty ones. We take care to en-
sure that the voxels in the list appear in Morton
order, which groups nodes belonging to the same
parent. We then loop over the list, creating parent
nodes which are also stored in a Morton ordered

list. Nodes that span a completely filled region of
space (all children are leafs) are inserted into the
output list as new leafs, which ensures that fully
filled regions are not refined. This process is re-
peated until the root of the octree is reached.

Octree nodes are stored using a “descriptor“
bitmask which indicates the type of the children
(empty, leaf or octree node), plus a list of child
pointers (stored as 32 bit offsets into an array).
This list is of variable length such that a node does
not waste space on unused pointers.

Our SVDAG compression code is based on
[PU03] and consists of a recursive traversal during
which a separate SVDAG is created. The pseudo
code for the SVDAG construction algorithm is
shown in Algorithm 1. The FIND NODE function
uses a hash map to find matching nodes that have
already been encountered. By sharing this hash
map between SVOs we can eliminate duplicate
subtrees across them.

ALGORITHM 1
Sparse Voxel Octree DAG compression

procedure COMPRESS TREE(n)
r ← Node()
for 1 ≤ i ≤ 8 do

if IS INNER NODE(i) then
c← n.children[i]
r.children[i]← COMPRESS TREE(c)

end if
end for
return FIND NODE(r)

end procedure

SVDAGs can be traversed using any existing
SVO traversal algorithm. We use the same depth-
first algorithm as [KSA13], which is a simplified ver-
sion of the algorithm presented in [LK11] (Listing 3
in the appendices). Like most tree traversal algo-
rithms, a stack is used to keep track of the current
voxel’s ancestors.

The path taken to reach a voxel is encoded into
its 3D position. Incoming rays are transformed
such that the octree spans the space of

[
1 1 1

]ᵀ
to

[
2 2 2

]ᵀ. Keeping the dimensions between 1
and 2 allows the mantissa’s of the (IEEE 754) float-
ing point position vector components to be reinter-
preted as integers which encode the child index of
each ancestor with respect to its parent.

The next child to traverse is found by intersect-
ing the ray with the axis-aligned planes passing
through the current voxel’s center. During traver-
sal we keep track of the distance that the ray has
traveled. By comparing this against the distances
to the 3 planes we can determine which child node
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Figure 8: The scenes that were used for testing rendered with our path tracer. From left to right: crown, landscape and Island.

to visit next. The ray/plane intersection tests as
well as the required comparisons are implemented
using SSE instructions, utilizing 3 out of the 4 avail-
able lanes.

5. Results & discussion
In this section we measure and discuss the perfor-
mance impact of occlusion culling in our renderer.

5.1. Hardware & testing methodology
Our experiments were conducted on a system
equipped with dual socket Intel Xeon 2667v4
CPUs, a SATA SSD and sufficient DDR4 memory.
All timings were performed using the functionality
provided by the chrono header file in the C++
standard template library. Direct-IO was used to
prevent the operating system from caching files in
system memory.

The scenes used for testing (Figure 8) are the
Austrian imperial crown PBRTv3 model by Martin
Lubich, the PBRTv3 landscape scene by Laubw-
erk and the Moana Island Scene by Walt Disney
Animation Studios. Because the crown has a low
triangle count compared to the other two scenes
it was subdivided 3 times to artificially raise its tri-
angle count by a factor of 27 (Table 1). Although
the Landscape scene can be rendered on a mid-
or high-end graphics card, the Island scene proves
a challenge for even high-end systems. Note that
our renderer only supports triangles and thus other
geometry types (such as curves) were removed
from the Island scene. The crown, landscape
and Island scenes were rendered at resolutions of
1000x1400, 1024x576 and 1024x429 respectively
using 128 samples per pixel for all tests.

Crown Landscape Island
Unique 95,585,778 25,947,395 134,552,386
Instanced 95,585,778 4,330,133,089 31,443,289,446

Table 1: Triangle counts (discarding other primitives) of the
tested scenes. In the first row triangles that are instanced mul-
tiple times are only counted once; the second row counts each
individual instance.

Selecting the appropriate batching point size (in
terms of the number of primitives) is not trivial. In
previous works this might not have had a big im-

pact on performance. In our work however it im-
pacts both the computational overhead and the ef-
fectiveness of occlusion culling. We have arbitrar-
ily chosen batching point sizes of at least 1000000,
5000000 and 10000000 primitives for the crown,
landscape and Island scenes, which results in 74,
653 and 2355 batching points respectively.

5.2. Results
The goal of occlusion culling is to provide an
early-out opportunity for ray batching, resulting
in less bandwidth usage. Culling might also
reduce the computational cost of rendering
since it prevents rays from traversing bottom-level
BVHs for which they do not intersect any primitives.
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Figure 9: The effect of occlusion culling on the disk bandwidth
used for rendering (including tail).

The resolution of the voxel grids from which the
SVDAGs are generated impacts both the memory
usage, computational overhead and effectiveness
of the culling system. Figure 10a shows the total
memory usage of the SVDAGs used for culling. As
expected, memory usage of the SVDAGs scales
cubically with the underlying voxel grid resolution.
The compression ratio of the SVDAGs varies wildly
for the landscape and Island scenes while for the
crown scene the SVDAG compression seems to
work better at higher resolutions. Note that the
large discrepancies in SVDAG memory usage be-
tween the scenes can be attributed to the different
number of SVDAGs per scene (which equals the
number of batching points).

Increasing the resolution quickly has a dimin-
ishing effect on the number of rays that are culled
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Figure 10: Memory usage (a), compression ratio vs SVO (b) and culling effectiveness (c) of the SVDAGs.

(Figure 10c). As expected, scenes with many
primitives per batching points (like the Island
scene) require a higher resolution for optimal
culling effectiveness.

To test the effect of our occlusion culling sys-
tem on out-of-core rendering, the scenes were ren-
dered with different geometry memory limits with
both occlusion culling enabled and disabled. In all
tests a SVDAG resolution of 1283 was used since
it strikes a good balance between culling effective-
ness and memory overhead. The reference mem-
ory limits were found by rendering the scenes with-
out constraints and measuring the total amount of
geometry data that was loaded. In the tests with
culling enabled the memory used by the SVDAGs
was subtracted from the geometry memory budget.

The results are shown in Figure 9 and 12a. The
batched traversal scheme is effective at hiding disk
latency when bandwidth is not a bottleneck, as is
evident from the Island scene. Occlusion culling
is able to reduce disk bandwidth by up to 45%
and render time by up to 55%. Interestingly, oc-
clusion culling improved performance even in sit-
uations where disk bandwidth was not the limit-
ing factor. Even without a memory limit (just lazy
loading), occlusion culling is able to improve per-
formance by preventing unnecessary traversal of
the large bottom-level BVHs.

5.3. Handling the tail
A potential problem with batched ray traversal is
handling the tail of the computation. The tail is
when almost all rays have been processed and the
system is left with only few rays that are scattered
over the batching points; Batched ray traversal is
then not able to properly hide latency because disk
bandwidth heavily outweighs BVH traversal cost.

Despite our efforts to reduce the problem by
tweaking the scheduler, a lot of time is spent on
processing this ”tail“ (Figure 11). The problem is
especially bad in the Island scene where over 80%
of the time is spent processing the final 16 million
rays (out of a total of 56 million paths).

The easiest solution to this problem is to sim-

ply stop rendering when the number of rays in the
system starts to drop. In our case this makes
the system non-deterministic because the order in
which rays are processed is arbitrary. Depending
on run-time variables a ray might get processed,
forwarded (if it missed) and processed again in the
same iteration. If the system would not allow the
forwarded rays to be processed in the same itera-
tion then determinism could be attained.
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Figure 11: Most time is spent processing the final few rays
when latency hiding is not possible.

To get an idea of what happens when we do not
process the tail, we consider the render times as
if the final 12 million rays were discarded (Figure
12b). Ignoring the tail has a big impact on the over-
all performance of the renderer. When there are
enough rays to process the system is successful at
hiding disk latency. Even when not processing the
tail, occlusion culling is still able to improve perfor-
mance in all scenarios. And when disk bandwidth
does become a bottleneck, occlusion culling more
than doubles performance.

5.4. Discussion
Our testing confirms that batched ray traversal can
be an effective technique to hide disk latency in
out-of-core rendering. Occlusion culling was able
to improve performance of batched ray traversal
in all tested scenarios. Our belief is that occlu-
sion culling works so consistently well because it
prevents expensive BVH traversal and helps rays
progress faster. By allowing rays to skip batching
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Figure 12: The impact of occlusion culling on the total render time at different memory limits. (a) shows the results when all rays
are processed. (b) shows the results when the renderer would not process the tail (by discarding the last 12 million rays).

points less batching operations are required to find
the closest intersections.

Instancing geometry is commonly used in the
movie industry to such an extent that duplicating
geometry is unfeasible. We have shown that it
is possible to support instancing in out-of-core
batched ray traversal and also that it performs well.
Instancing does present a new challenge in picking
the optimal batching points. We believe that this
topic is something that could be researched.

Our implementation of batched ray traversal with
occlusion culling has some shortcomings. Right
now culling is only used to determine whether a
ray potentially hits geometry. The distance (along
the ray) to the closest hit voxel can be used to cull
rays based on their search interval. With this in-
formation approximate hit points can be computed,
which may be used to sort batched rays to improve
coherence [MBK+10].

Our renderer also only supports very rudimen-
tary shading. In production rendering, shading and
out-of-core texture accesses are costly operations
[ENSB13, LGXT17]. When shading and traversal
run in parallel this may help the batched traversal
scheme to hide disk latency with compute. How-
ever, if traversal has to share bandwidth with a
texture cache then this might degrade traversal
performance because a bandwidth bottleneck will
be reached faster.

Finally, the scheduling algorithm that we used
does not seem optimal. [PKGH97] for example re-
lies on more detailed information like ray “weights”
to select batching points to process. This however
requires a lot of communication between worker
threads, which is something that we tried to reduce.

We do believe however that letting the scheduler
select multiple batching points at once and pro-
cessing them in parallel is preferable over invoking
the scheduler each time a thread runs out of work.
Processing in iterations makes it easier to attain
deterministic results, even when discarding rays to

prevent a bottleneck at the tail. It also makes it eas-
ier to take snapshots of the current state, which
could be used to make back-ups or to show the
user an intermediate image.

6. Conclusion
We have discussed batched ray traversal as a
means to improve memory coherency for ray
traced global illumination. Our novel idea is to
cull rays against conservative proxy geometry
before batching them. To support our theory we
have build an out-of-core renderer that implements
batched ray traversal. Occlusion culling was added
by voxelizing geometry and storing it in a Sparse
Voxel Directed Acyclic Graph.

Our results confirm that batched ray traversal
is effective at hiding disk latency and that ren-
der times do not change much as long as disk
bandwidth is not a bottleneck. Enabling occlusion
culling saw an improvement in render time across
all tested scenarios. By reducing wasted work
performance was improved even when no memory
limit was set. Occlusion culling also reduces disk
bandwidth which strongly improves render times in
scenarios where the storage drive is a bottleneck.

From our testing we conclude that occlusion
culling would have improved performance even if
all geometry was loaded into memory ahead of
time. Previous works have already shown that
batched ray traversal can also be used to improve
in-core traversal performance. Future work may in-
vestigate whether occlusion culling can also ben-
efit in-core rendering. Although we tested culling
in combination with batched ray traversal, the tech-
nique may also be applied to regular BVH traversal.
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7. Appendices

1 int depth = intLog2(m_resolution);

2
3 struct NodeInfoN1 {

4 uint32_t mortonCode; // Morton code (in level N-1).

5 bool isLeaf;

6 NodeOffset descriptorOffset;

7 };

8 std::vector<NodeInfoN1> previousLevelNodes;

9 std::vector<NodeInfoN1> currentLevelNodes;

10
11 // Creates and inserts leaf nodes.

12 uint32_t finalMortonCode = m_resolution * m_resolution * m_resolution;

13 for (uint32_t mortonCode = 0; mortonCode < finalMortonCode; mortonCode++) {

14 if (grid.getMorton(mortonCode)) {

15 currentLevelNodes.push_back({ mortonCode, true, 0 });

16 }

17 }

18
19 auto createAndStoreDescriptor = [&](

20 uint8_t validMask,

21 uint8_t leafMask,

22 const gsl::span<NodeOffset> childrenOffsets) {

23 Descriptor d;

24 d.validMask = validMask;

25 d.leafMask = leafMask;

26
27 NodeOffset descriptorOffset = static_cast<NodeOffset>(m_innerNodes.size());

28 m_innerNodes.push_back(static_cast<NodeOffset>(d));

29
30 // Store child offsets directly after the descriptor itself.

31 m_innerNodes.insert(

32 std::end(m_innerNodes),

33 std::begin(childrenOffsets),

34 std::end(childrenOffsets));

35
36 return descriptorOffset;

37 };

38
39 // Work in a separate vector so m_innerNodes data doesnt change while

40 // inserting new descriptors.

41 NodeOffset rootNodeOffset = 0;

42 for (int N = 0; N < depth; N++) {

43 std::swap(previousLevelNodes, currentLevelNodes);

44 currentLevelNodes.clear();

45
46 uint8_t validMask = 0x00;

47 uint8_t leafMask = 0x00;

48 eastl::fixed_vector<NodeOffset, 8> childrenOffsets;

49
50 uint32_t prevMortonCode = previousLevelNodes[0].mortonCode >> 3;

51 // Loop over all the cubes of the previous (more refined level)

52 for (const auto& childNodeInfo : previousLevelNodes) {

53 auto mortonCodeN1 = childNodeInfo.mortonCode;

54 // Morton code of the node in the current level (stripping last 3 bits)

55 auto mortonCodeN = mortonCodeN1 >> 3;

56 if (prevMortonCode != mortonCodeN) {

57 if ((validMask & leafMask) == 0xFF) {

58 // Special case: all children are completely filled (1's):

59 // propagate this up the tree

60 currentLevelNodes.push_back({ prevMortonCode, true, 0 });

61 } else {

62 // Different morton code (at the current level): we are finished

63 // with the previous node => store it.

64 auto descriptorOffset = createAndStoreDescriptor(

65 validMask, leafMask, childrenOffsets);

66 currentLevelNodes.push_back(

67 { prevMortonCode, false, descriptorOffset });

68 }

69 validMask = 0;

70 leafMask = 0;

71 childrenOffsets.clear();

72 prevMortonCode = mortonCodeN;

73 }

74
75 auto idx = mortonCodeN1 & ((1 << 3) - 1); // Right most 3 bits.

76 validMask |= 1 << idx;

77 if (childNodeInfo.isLeaf) {

78 leafMask |= 1 << idx;

79 } else {

80 childrenOffsets.push_back(childNodeInfo.descriptorOffset);

81 }

82 }

83
84 // Store final descriptor

85 if ((validMask & leafMask) == 0xFF && N != depth - 1) {

86 // Special case: all children are completely filled (1's): propagate

87 // this up the tree (except if this node is the root node).

88 currentLevelNodes.push_back({ prevMortonCode, true, 0 });

89 } else {

90 auto descriptorOffset = createAndStoreDescriptor(

91 validMask, leafMask, childrenOffsets);

92 auto lastNodeMortonCode = (previousLevelNodes.back().mortonCode >> 3);

93 currentLevelNodes.push_back(

94 { prevMortonCode, false, descriptorOffset });

95 // Keep track of the offset to the root node.

96 rootNodeOffset = descriptorOffset;

97 }

98 }

99
100 // --> return rootNodeOffset;

Listing 1: C++ code to generate a SVO from a
voxel grid

1 int depth = intLog2(m_resolution);

2
3 struct NodeInfoN1 {

4 uint32_t mortonCode; // Morton code (in level N-1).

5 bool isLeaf;

6 NodeOffset descriptorOffset;

7 };

8 std::vector<NodeInfoN1> previousLevelNodes;

9 std::vector<NodeInfoN1> currentLevelNodes;

10
11 // Creates and inserts leaf nodes.

12 uint32_t finalMortonCode = m_resolution * m_resolution * m_resolution;

13 for (uint32_t mortonCode = 0; mortonCode < finalMortonCode; mortonCode++) {

14 if (grid.getMorton(mortonCode)) {

15 currentLevelNodes.push_back({ mortonCode, true, 0 });

16 }

17 }

18
19 auto createAndStoreDescriptor = [&](

20 uint8_t validMask,

21 uint8_t leafMask,

22 const gsl::span<NodeOffset> childrenOffsets) {

23 Descriptor d;

24 d.validMask = validMask;

25 d.leafMask = leafMask;

26
27 NodeOffset descriptorOffset = static_cast<NodeOffset>(m_innerNodes.size());

28 m_innerNodes.push_back(static_cast<NodeOffset>(d));

29
30 // Store child offsets directly after the descriptor itself.

31 m_innerNodes.insert(

32 std::end(m_innerNodes),

33 std::begin(childrenOffsets),

34 std::end(childrenOffsets));

35
36 return descriptorOffset;

37 };

38
39 // Work in a separate vector so m_innerNodes data doesnt change while

40 // inserting new descriptors.

41 NodeOffset rootNodeOffset = 0;

42 for (int N = 0; N < depth; N++) {

43 std::swap(previousLevelNodes, currentLevelNodes);

44 currentLevelNodes.clear();

45
46 uint8_t validMask = 0x00;

47 uint8_t leafMask = 0x00;

48 eastl::fixed_vector<NodeOffset, 8> childrenOffsets;

49
50 uint32_t prevMortonCode = previousLevelNodes[0].mortonCode >> 3;

51 // Loop over all the cubes of the previous (more refined level)

52 for (const auto& childNodeInfo : previousLevelNodes) {

53 auto mortonCodeN1 = childNodeInfo.mortonCode;

54 // Morton code of the node in the current level (stripping last 3 bits)

55 auto mortonCodeN = mortonCodeN1 >> 3;

56 if (prevMortonCode != mortonCodeN) {

57 if ((validMask & leafMask) == 0xFF) {

58 // Special case: all children are completely filled (1's):

59 // propagate this up the tree

60 currentLevelNodes.push_back({ prevMortonCode, true, 0 });

61 } else {

62 // Different morton code (at the current level): we are finished

63 // with the previous node => store it.

64 auto descriptorOffset = createAndStoreDescriptor(

65 validMask, leafMask, childrenOffsets);

66 currentLevelNodes.push_back(

67 { prevMortonCode, false, descriptorOffset });

68 }

69 validMask = 0;

70 leafMask = 0;

71 childrenOffsets.clear();

72 prevMortonCode = mortonCodeN;

73 }

74
75 auto idx = mortonCodeN1 & ((1 << 3) - 1); // Right most 3 bits.

76 validMask |= 1 << idx;

77 if (childNodeInfo.isLeaf) {

78 leafMask |= 1 << idx;

79 } else {

80 childrenOffsets.push_back(childNodeInfo.descriptorOffset);

81 }

82 }

83
84 // Store final descriptor

85 if ((validMask & leafMask) == 0xFF && N != depth - 1) {

86 // Special case: all children are completely filled (1's): propagate

87 // this up the tree (except if this node is the root node).

88 currentLevelNodes.push_back({ prevMortonCode, true, 0 });

89 } else {

90 auto descriptorOffset = createAndStoreDescriptor(

91 validMask, leafMask, childrenOffsets);

92 auto lastNodeMortonCode = (previousLevelNodes.back().mortonCode >> 3);

93 currentLevelNodes.push_back(

94 { prevMortonCode, false, descriptorOffset });

95 // Keep track of the offset to the root node.

96 rootNodeOffset = descriptorOffset;

97 }

98 }

99
100 // --> return rootNodeOffset;

Listing 2: SVDAG compression code (C++)

1 constexpr int CAST_STACK_DEPTH = 23;// First bit of the exponent.

2
3 // Get rid of small ray direction components to avoid division by zero.

4 constexpr float epsilon = 1.1920928955078125e-07f;

5 if (abs(ray.direction.x) < epsilon)

6 ray.direction.x = copysign(epsilon, ray.direction.x);

7 if (abs(ray.direction.y) < epsilon)

8 ray.direction.y = copysign(epsilon, ray.direction.y);
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9 if (abs(ray.direction.z) < epsilon)

10 ray.direction.z = copysign(epsilon, ray.direction.z);

11
12 // Precompute the coefficients of tx(x), ty(y) and tz(z).

13 // The octree is assumed to reside at coordinates [1, 2].

14 vec3_f32 tCoef = vec3_f32(1.0f) / -abs(ray.direction);

15 vec3_f32 tBias = tCoef * ray.origin;

16
17 // Select octant mask to mirror the coordinate system so that ray direction is

18 // negative along each axis.

19 mask3 octantMask = ray.direction > 0.0f;

20 int octantMaskBits = 7 ^ octantMask.bits(); // Mask out channel 4

21 tBias = select(tBias, vec3_f32(3.0f) * tCoef - tBias, octantMask);

22
23 // Initialize the current voxel to the first child of the root.

24 const Descriptor* parent = rootNode;

25 vec3_f32 pos = vec3_f32(1.0f);

26 int scale = CAST_STACK_DEPTH - 1;

27 float scaleExp2 = 0.5f;// exp2f(scale - CAST_STACK_DEPTH)

28
29 // Initialize the active span of t-values

30 const float tMin = max(0.0f, horizontalMax(vec3_f32(2.0f) * tCoef - tBias));

31 const float tMax = horizontalMin(tCoef - tBias);

32
33 if (tMin >= tMax)

34 return {};

35
36 // Store as vector to reduce scalar/vector conversions.

37 vec3_f32 tMinVec(tMin);

38
39 // Intersection of ray with the center planes of the root node.

40 mask3 idxMask = (vec3_f32(1.5f) * tCoef - tBias) > tMin;

41 int idx = idxMask.bitMask();

42 pos = select(pos, vec3_f32(1.5f), idxMask);

43
44 // Traverse voxels along the ray until we exit the octree.

45 array<const Descriptor*, CAST_STACK_DEPTH + 1> stack;

46 while (scale < CAST_STACK_DEPTH) {

47 // === INTERSECT ===

48 // Determine the maximum t-value of the cube by evaluating tx(), ty() and

49 // tz() at its corner.

50 vec3_f32 tCorner = pos * tCoef - tBias;

51
52 // Process voxel if the corresponding bit in the parents valid mask is set.

53 int childIndex = 7 - ((idx & 0b111) ^ octantMaskBits);

54 if (parent->isValid(childIndex)) {

55 float half = scaleExp2 * 0.5f;

56 vec3_f32 tCenter = half * tCoef + tCorner;

57
58 // === PUSH ===

59 stack[scale] = parent;

60
61 if (parent->isLeaf(childIndex)) {

62 break;

63 }

64
65 // Find child descriptor corresponding to the current voxel.

66 parent = getChild(parent, childIndex);

67
68 // Select the child voxel that the ray enters first.

69 scale--;

70 scaleExp2 = half;

71
72 idx = (tCenter > tMinVec).bitMask();

73 pos = select(pos, pos + half, idxMask);

74 } else {

75 // === ADVANCE ===

76 const float scaleExp2 = scaleExp2LUT[scale];

77 vec3_f32 tcMax = horizontalMin(tCorner); // Slightly faster

78
79 // Step along the ray.

80 mask3 stepMask = tCorner <= tcMax;

81 int stepMaskBits = stepMask.bitMask();

82 pos = select(pos, pos - scaleExp2, stepMask);

83
84 // Update active t-span and flip bits of the child slot index.

85 tMinVec = tcMax;

86 idx = stepMaskBits;

87
88 // Proceed with pop if the bit flip disagree with the ray direction.

89 if ((idx & stepMaskBits) != 0) {

90 // === POP ===

91 // Find the highest differing bit between the two positions.

92 vec3_u32 differingBitsVec = select(

93 0u,

94 floatBitsToInt(pos) ^ floatBitsToInt(pos + scaleExp2),

95 stepMask);

96 unsigned differingBits =

97 differingBitsVec[0] |

98 differingBitsVec[1] |

99 differingBitsVec[2];

100
101 // When the ray exists the octree, at least of one the components

102 // of pos will lie between 0.5 and 1.0. In the floating point

103 // representation this means that the first bit of the exponent

104 // changes. This results in the scale being set to 23, breaking the

105 // traversal loop.

106 scale = reverseBitScan(differingBitsVec); // Left-most set bit

107 scaleExp2 = scaleExp2LUT[scale]; // exp2f(scale - s_max)

108
109 // Restore parent voxel from the stack.

110 parent = stack[scale];

111 }

112
113 // Round cube position and extract child slot index.

114 vec3_u32 sh = floatBitsToInt(pos) >> scale;

115 pos = intBitsToFloat(sh << scale);

116 const vec3_u32 shMask1 = sh & 0x1;

117 const vec3_u32 shMask2 = sh & 0x2;

118 const vec3_u32 shMask1Shifted = shMask1 << vec3_u32(0, 1, 2);

119 const vec3_u32 shMask2Shifted = shMask2 << vec3_u32(2, 3, 4);

120 const vec3_u32 partialIdx = shMask1Shifted | shMask2Shifted;

121 idx = partialIdx[0] | partialIdx[1] | partialIdx[2];

122 } // Push / pop

123 } // While

124
125 // Indicate miss if we are outside the octree.

126 if (scale >= CAST_STACK_DEPTH) {

127 return {};

128 } else {

129 // Output result.

130 return tMinVec[0];

131 }

Listing 3: SVO / SVDAG traversal code (C++)

1 void intersect(const Ray& ray)

2 {

3 SIMDRay simdRay;

4 simdRay.originX = vec8_f32(ray.origin.x);

5 simdRay.originY = vec8_f32(ray.origin.y);

6 simdRay.originZ = vec8_f32(ray.origin.z);

7 simdRay.invDirectionX = vec8_f32(1.0f / ray.direction.x);

8 simdRay.invDirectionY = vec8_f32(1.0f / ray.direction.y);

9 simdRay.invDirectionZ = vec8_f32(1.0f / ray.direction.z);

10 simdRay.tnear = vec8_f32(ray.tnear);

11 simdRay.tfar = vec8_f32(ray.tfar);

12 // Store the offset into the child order LUT so we only have to compute it

13 // once.

14 auto shiftAmount = signShiftAmount(

15 ray.direction.x > 0,

16 ray.direction.y > 0,

17 ray.direction.z > 0);

18 simdRay.raySignShiftAmount = vec8_u32(shiftAmount);

19
20 // Initialize the stack.

21 alignas(32) std::array<uint32_t, 48> stackCompressedNodeHandles;

22 alignas(32) std::array<float, 48> stackDistances;

23 size_t stackPtr = 0;

24
25 // Push root node onto the stack

26 stackCompressedNodeHandles[stackPtr] = m_compressedRootHandle;

27 stackDistances[stackPtr] = 0.0f;

28 stackPtr++;

29
30 // While the stack is not empty

31 while (stackPtr > 0) {

32 // Pop item from the stack

33 stackPtr--;

34 uint32_t compressedNodeHandle = stackCompressedNodeHandles[stackPtr];

35 float distance = stackDistances[stackPtr];

36
37 // The handle uses 1 bit to encode whether child is a leaf or an inner

38 // node.

39 uint32_t handle = decompressNodeHandle(compressedNodeHandle);

40 if (isInnerNode(compressedNodeHandle)) {

41 const auto* node = m_innerNodes.get(handle);

42
43 // Intersect ray with the 8 children, return compressed result

44 vec8_u32 childrenSIMD;

45 vec8_f32 distancesSIMD;

46 uint32_t numChildren = intersectInnerNode(

47 node,

48 simdRay,

49 childrenSIMD,

50 distancesSIMD);

51
52 // Push children that intersect onto the stack

53 if (numChildren > 0) {

54 childrenSIMD.store(

55 stackCompressedNodeHandles.data() + stackPtr);

56 distancesSIMD.store(stackDistances.data() + stackPtr);

57
58 stackPtr += numChildren;

59 }

60 } else {

61 const auto* leaf = m_leafs.get(handle);

62 // Encode primitive count with 2 bits (leafs may store 1 to 5

63 // primitives).

64 uint32_t primitiveCount = leafNodePrimitiveCount(

65 compressedNodeHandle);

66 if (intersectLeaf(leaf, primitiveCount, ray)) {

67 // Ray intersects at least one primitive

68 simdRay.tfar.broadcast(ray.tfar);

69
70 // Compress stack by removing items whose closest distance is

71 // further than the new found distance to the closest primitive.

72 size_t outStackPtr = 0;

73 for (size_t i = 0; i < stackPtr; i += 8) {

74 vec8_u32 nodesSIMD;

75 vec8_f32 distancesSIMD;

76 distancesSIMD.loadAligned(stackDistances.data() + i);

77 nodesSIMD.loadAligned(

78 stackCompressedNodeHandles.data() + i);

79
80 // AVX2 compression using a look-up table to compute the

81 // permutation indices.

82 mask8 distMask = distancesSIMD < simdRay.tfar;

83 vec8_u32 compressPermuteIndices =

84 distMask.computeCompressPermutation();

85 distancesSIMD =

86 distancesSIMD.permute(compressPermuteIndices);

87 nodesSIMD = nodesSIMD.permute(compressPermuteIndices);

88
89 distancesSIMD.store(stackDistances.data() + outStackPtr);

90 nodesSIMD.store(

91 stackCompressedNodeHandles.data() + outStackPtr);

92
93 size_t numItems = std::min((size_t)8, stackPtr - i);

94 unsigned validMask = (1 << numItems) - 1;

95 outStackPtr += popCount(distMask.moveMask() & validMask);

96 }

97 stackPtr = outStackPtr;

98 }

99 }
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100 }

101 }

102
103
104
105 uint32_t intersectInnerNode(

106 const BVHNode* n,

107 const SIMDRay& ray,

108 vec8_u32& outChildren,

109 vec8_f32& outDistances)

110 {

111 // Find the entry / exit distances of each child

112 vec8_f32 tx1 = (n->minX - ray.originX) * ray.invDirectionX;

113 vec8_f32 tx2 = (n->maxX - ray.originX) * ray.invDirectionX;

114 vec8_f32 ty1 = (n->minY - ray.originY) * ray.invDirectionY;

115 vec8_f32 ty2 = (n->maxY - ray.originY) * ray.invDirectionY;

116 vec8_f32 tz1 = (n->minZ - ray.originZ) * ray.invDirectionZ;

117 vec8_f32 tz2 = (n->maxZ - ray.originZ) * ray.invDirectionZ;

118 vec8_f32 txMin = simd::min(tx1, tx2);

119 vec8_f32 tyMin = simd::min(ty1, ty2);

120 vec8_f32 tzMin = simd::min(tz1, tz2);

121 vec8_f32 txMax = simd::max(tx1, tx2);

122 vec8_f32 tyMax = simd::max(ty1, ty2);

123 vec8_f32 tzMax = simd::max(tz1, tz2);

124 vec8_f32 tmin = simd::max(ray.tnear,

125 simd::max(txMin, simd::max(tyMin, tzMin)));

126 vec8_f32 tmax = simd::min(ray.tfar,

127 simd::min(txMax, simd::min(tyMax, tzMax)));

128
129 // Get the (approximate) front-to-back ordering from the look-up table

130 // stored inside the BVH nodes using the ray signs as indices. Note that

131 // permutationOffsets is of type vec8_u32.

132 const vec8_u32 indexMask = 0b111;

133 const vec8_u32 simd24 = 24;

134 vec8_u32 index =

135 (n->permutationOffsets >> ray.raySignShiftAmount) & indexMask;

136
137 // Permute tmin / tmax such that the children are ordered front-to-back.

138 tmin = tmin.permute(index);

139 tmax = tmax.permute(index);

140
141 // Sort and compress the hit children and their entry distances.

142 mask8 mask = tmin <= tmax;

143 vec8_u32 compressPermuteIndices = mask.computeCompressPermutation();

144 outChildren = n->children.permute(index).permute(compressPermuteIndices);

145 outDistances = tmin.permute(compressPermuteIndices);

146 return mask.count();

147 }

148
149 constexpr std::array<uint64_t, 256> genCompressLUT8()

150 {

151 std::array<uint64_t, 256> result = {};

152 for (uint64_t mask = 0; mask < 256; mask++) {

153 uint64_t indices = 0; // Permutation indices

154 uint64_t k = 0;

155 for (uint64_t bit = 0; bit < 8; bit++) {

156 if ((mask & (1ull << bit)) != 0) { // If bit is set

157 indices |= bit << k; // Add to permutation indices

158 k += 8; // One byte

159 }

160 }

161 result[mask] = indices;

162 }

163 return result;

164 }

165 constexpr std::array<uint64_t, 256> s_avxIndicesLUT = genCompressLUT8();

166
167 // Implementation using a large look-up table. Alternatively the look-up table

168 // could also be stored using only 3 bits per lane (3*8 = 24 bits per item), but

169 // this requires more computations to unpack.

170 __m256i computeCompressPermutationLUT()

171 {

172 uint64_t wantedIndices = s_avxIndicesLUT[m_bitMask];

173
174 __m128i byteVec = _mm_cvtsi64_si128(wantedIndices);

175 return _mm256_cvtepu8_epi32(byteVec);

176 }

177
178 // Alternative implementation that does not rely on a look-up table.

179 __m256i computeCopmressPermutationAlternative()

180 {

181 // https://stackoverflow.com/questions/36932240/avx2-what-is-the-most-

182 // efficient-way-to-pack-left-based-on-a-mask/36951611

183
184 // Unpack each bit to a byte

185 uint64_t expandedMask = _pdep_u64(mask.m_bitMask, 0x0101010101010101);

186 expandedMask *= 0xFF; // mask |= mask<<1 | mask<<2 | ... | mask<<7;

187 // ABC... -> AAAAAAAABBBBBBBB...: replicate each bit to fill its byte

188
189 // The identity shuffle for vpermps, packed to one index per byte

190 const uint64_t identityIndices = 0x0706050403020100;

191 uint64_t wantedIndices = _pext_u64(identityIndices, expandedMask);

192
193 __m128i byteVec = _mm_cvtsi64_si128(wantedIndices);

194 return _mm256_cvtepu8_epi32(byteVec);

195 }

Listing 4: C++ AVX2 implementation of [FLP+17]
for traversal of the bottom-level BVHs.

1 struct InsertInfo

2 {

3 uint32_t nodeHandle;

4 uint64_t stack;

5 };

6
7 // Results:

8 // - empty: traversal was paused (and ray batched)

9 // - true: closest hit was found

10 // - false: no hit was found

11 std::optional<bool> intersect(Ray& ray, const InsertInfo& insertInfo)

12 {

13 SIMDRay simdRay;

14 simdRay.originX = vec4_f32(ray.origin.x);

15 simdRay.originY = vec4_f32(ray.origin.y);

16 simdRay.originZ = vec4_f32(ray.origin.z);

17 simdRay.invDirectionX = vec4_f32(1.0f / ray.direction.x);

18 simdRay.invDirectionY = vec4_f32(1.0f / ray.direction.y);

19 simdRay.invDirectionZ = vec4_f32(1.0f / ray.direction.z);

20 simdRay.tnear = vec4_f32(ray.tnear);

21 simdRay.tfar = vec4_f32(ray.tfar);

22
23 bool hit = false;

24 auto [nodeHandle, stack] = insertInfo;

25 const BVHNode* node = m_innerNodes.get(nodeHandle);

26 while (true) {

27 // Get the bit mask indicating which children we have not traversed yet.

28 int bitPos = 4 * node->depth;

29 uint64_t interestBitMask = (stack >> bitPos) & 0b1111;

30 if (interestBitMask != 0) {

31 // Convert to SSE (integer) mask.

32 mask4 interestMask(

33 interestBitMask & 0x1,

34 interestBitMask & 0x2,

35 interestBitMask & 0x4,

36 interestBitMask & 0x8);

37
38 // Compute the entry / exit distances of each child.

39 vec4_f32 tx1 = (node->minX - simdRay.originX) * simdRay.invDirectionX;

40 vec4_f32 tx2 = (node->maxX - simdRay.originX) * simdRay.invDirectionX;

41 vec4_f32 ty1 = (node->minY - simdRay.originY) * simdRay.invDirectionY;

42 vec4_f32 ty2 = (node->maxY - simdRay.originY) * simdRay.invDirectionY;

43 vec4_f32 tz1 = (node->minZ - simdRay.originZ) * simdRay.invDirectionZ;

44 vec4_f32 tz2 = (node->maxZ - simdRay.originZ) * simdRay.invDirectionZ;

45 vec4_f32 txMin = min(tx1, tx2);

46 vec4_f32 tyMin = min(ty1, ty2);

47 vec4_f32 tzMin = min(tz1, tz2);

48 vec4_f32 txMax = max(tx1, tx2);

49 vec4_f32 tyMax = max(ty1, ty2);

50 vec4_f32 tzMax = max(tz1, tz2);

51 vec4_f32 tmin = max(simdRay.tnear, max(txMin, max(tyMin, tzMin)));

52 vec4_f32 tmax = min(simdRay.tfar, min(txMax, min(tyMax, tzMax)));

53 mask4 hitMask = tmin <= tmax;

54
55 mask4 toVisitMask = hitMask && interestMask;

56 if (toVisitMask.any()) {

57 // Find closest unvisited child.

58 vec4_f32 inf4(std::numeric_limits<float>::max());

59 vec4_f32 maskedDistances = blend(inf4, tmin, toVisitMask);

60 unsigned childIndex = horizontalMinIndex(maskedDistances);

61
62 uint64_t toVisitBitMask = toVisitMask.bitMask();

63 // Set the bit of the child we are visiting to 0.

64 toVisitBitMask ^= (1llu << childIndex);

65 // Set the bits in the stack corresponding to the current node to 0.

66 stack = stack ^ (interestBitMask << bitPos);

67 // And replace them by the new mask.

68 stack = stack | (toVisitBitMask << bitPos);

69
70 if (node->isInnerNode(childIndex)) {

71 nodeHandle = node->getInnerChildHandle(childIndex);

72 node = m_innerNodes.get(nodeHandle);

73 } else {

74 auto handle = node->getLeafChildHandle(childIndex);

75 const auto& leaf = leafs.get(handle);

76 auto optResult = leaf.intersect(ray, hitInfo, userState, { nodeHandle, stack });

77 if (!optResult)

78 return {}; // Ray was paused.

79
80 if (*optResult) {

81 hit = true;

82 simdRay.tfar = vec4_f32(ray.tfar);

83 }

84 }

85
86 continue;

87 }

88 }

89
90 // No children left to visit; find the first ancestor that has work left.

91
92 // Set all bits after bitPos to 1.

93 uint64_t oldStack = stack;

94 stack = stack | (0xFFFFFFFFFFFFFFFF << bitPos);

95 if (stack == 0xFFFFFFFFFFFFFFFF)

96 break; // Stop traversal if stack is empty.

97
98 int prevDepth = node->depth;

99 nodeHandle = node->parentHandle;

100 node = m_innerNodes.get(nodeHandle);

101 }

102 }

103
104 unsigned horizontalMinIndex(__m128 vec)

105 {

106 // min2: channels [0,1] = min(0,1), channels [2,3] = min(2,3)

107 __m128 min1 = _mm_shuffle_ps(vec, vec, _MM_SHUFFLE(1, 0, 3, 2));

108 __m128 min2 = _mm_min_ps(vec, min1);

109
110 // min3: channels [0,1] = min(2,3), channels[2,3] = min(0,1)

111 // min4: channels [0-3] = min(min(0,1), min(2,3))

112 __m128 min3 = _mm_shuffle_ps(min2, min2, _MM_SHUFFLE(2, 3, 0, 1));

113 __m128 min4 = _mm_min_ps(min2, min3);

114
115 __m128 mask = _mm_cmpeq_ps(vec, min4);

116
117 int bitMask = _mm_movemask_ps(mask);

118 return bitScan32(static_cast<uint32_t>(bitMask));

119 }

Listing 5: C++ SSE implementation of [Gas16] for
traversal of the top-level BVH
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1 INTRODUCTION

In 1987, still in the early days of computer graphics, Cook, Carpenter and Catmull presented

the "Render Everything You Ever Saw" Reyes Image Rendering Architecture (Cook et al.

[1987]). At that time it had already been used in production at Lucas Films and it would

later also be used to render the first computer animated feature film "Toy Story". The Pixar

Renderman renderer, which implements Reyes and was co-developed by the same authors,

has become a staple in the movie industry for generating images of both live action- and

computer animated movies.

In the years after the introduction of Reyes, many additions were made to increase

the visual fidelity of Renderman. Most notably, rendering methods were developed that

incorporated ray tracing into the Reyes architecture. In 2006 for example, ray tracing was

added to provide high quality reflections for the movie “Cars“ (Christensen et al. [2006]).

In 1986, during the development of Reyes/Renderman, Kajiya presented the rendering

equation Kajiya [1986]; which is an integral equation describing the amount of light emitted

from a point on a surface in a give direction. The paper also describes a Monte Carlo solution

to the equation which requires finding intersections between rays and geometry. This method

of solving the rendering equation is referred to as path tracing. Although generating physically

accurate images, path tracing was too computationally expensive for computers at the time.

It took over 10 years of computer chip development before the first short film rendering

using path tracing, “Bunny“ from Blue Sky Studios, was released. This award winning short

proved that path tracing was capable of rendering physically based effects such as global illu-

mination and depth of field at a production quality level (Christensen et al. [2016]). “Bunny“

also inspired the development of the Arnold renderer at Solid Angle Angle. Arnold was used

for a couple of shorts; before being used to render the first feature length path traced movie:

“Monster House“.

Recently path-tracing has gained a lot of traction in the (animated) movie industry. Exam-

ples of this are Disney Animation developing Hyperion (Eisenacher et al. [2013]), DreamWorks

Animation developing MoonRay (Lee et al. [2017]) and Pixar turning Renderman into a path

tracer (Fascione et al. [2017]). This industry movement has been caused by the need for

simpler control and has been fueled by the increased (parallel) processing power that has

become available with the continuous improvements of computer hardware.

By design, path tracing is capable of supporting practically unlimited parallelism. How-

ever, like in Reyes, texture accesses from disk can become a bottleneck during shading. Both

Hyperion and MoonRay sort shading request to improve the coherence of texture accesses
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resulting in less time being spend on disk I/O. Hyperion creates very large batches of work

and groups nearby hit points, thereby improving coherence. In MoonRay ray traversal and

shading are performed in parallel by utilizing work queues. The work inside the queues is

sorted in a similar manner to Hyperion.

Sorted deferred shading improves coherence, allowing for out-of-core texture accesses

with minimal performance loss. Most production renderers (such as Hyperion, MoonRay and

Renderman) do not support out-of-core geometry however. This means that scenes must

fully fit in the computers memory (while leaving enough space for other parts the renderer).

Industry specialists have indicated that these memory limitations are already a problem in

production (Fascione et al. [2017]).

2 MOTIVATION

During my internship at Walt Disney Animation Studios I implemented out-of-core ray

traversal, loosely based on the work of Pharr et al. [1997], in the Hyperion renderer. The

implementation used Intel’s Embree library since evaluating Embree was also part of my

project. Because of limitations in Hyperion and Embree, and because of a lack of time; the

resulting implementation did perform as desired.

With this master thesis project I hope to redeem this failed experiment by extending the

algorithm and creating a more efficient implementation. Conceptually, this project will com-

bine occlusion culling with memory-coherent ray tracing (Pharr et al. [1997]). Compression

will ensure that the occlusion culling will not require an abundant amount of memory.
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3 PREVIOUS WORK

In this section I will go over some of the previous- and related work with respect to the topics

covered in this project. First, related work on out-of-core ray tracing is discussed, followed by

the research on memory-coherent ray tracing. Finally, I will give an overview of occlusion

culling and the compression techniques that will be used in this project.

3.1 Out-Of-Core Ray Tracing

In 2001 Ingo Wald presented his work on a distributed ray tracer (Wald et al. [2001a]) that

could render complex scenes at interactive frame rates. This paper was a continuation of his

earlier work on packet traversal (Wald et al. [2001b]). By allowing packet traversal to run on a

cluster of workstations he showed that it was possible to achieve performance that, at the

time, was only possible on shared-memory supercomputers.

The paper’s approach to distributed rendering is to treat each rendering node as a separate

instance performing out-of-core computations. The display node acts as the master node:

distributing rays over the available render nodes.

The scene is divided into voxels by building a coarse (with many primitives in the leaf

nodes) BSP-tree (Binary Space Partitioning) over all geometry in the scene. For each voxel

(leaf node) an additional BSP-tree is build, which is stored along with the geometry and

shading data in a single file. These files are stored on a central server since duplicating the

scene on each render node was deemed too expensive. When the traversal kernel encounters

a missing voxel, the ray is suspended and an asynchronous loading thread is notified to load

that voxel. A LRU (Least Recently Used) cache is used to determine which voxels should be

evicted when memory runs low. During the asynchronous loading ray tracing continues with

non-suspended rays.

DeMarle et al. [2004] takes a significantly different approach to distributed rendering.

Load balancing is achieved using a work stealing scheme that removes the need for a central

server. The scene is distributed over the system memory of all participating render nodes

instead of storing it on a central server.

A page-based distributed shared memory layer makes memory distribution opaque to the

rest of the system. Nodes are assigned ownership of different stripes of the shared memory

space. Each node also has a cache which stores the most recently accessed pages of which

they are not the owner. This shared memory layer removes the need for disk I/O; however,

it limits the total scenes size to the sum of the available system memory on all the render
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Figure 1: Pantaray’s acceleration structure; (a). Buckets are coalesced and split into chunks (b) of up
to 64KB. A BVH inside and among chunks (c) is broken into bricks (d) each brick is contiguous on disk.
Source: Pantaleoni et al. [2010]

nodes.

Traversal of the acceleration structure is similar to that of Wald et al. [2001a]; When a page

fault is triggered, the traversal thread is paused and the communication thread is requested

to retrieve the page from the node that owns it.

Pantaleoni et al. [2010] describes the work on the PantaRay system that was used for

rendering the movie Avatar. Unlike the other works mentioned here, PantaRay was only used

for precomputing sparse directional occlusion caches; tessellation and final frame rendering

were performed by Pixar Renderman with Reyes (Cook et al. [1987]).

Construction of the acceleration structure in PantaRay complex. The authors found that

out-of-core construction of a BVH or k-d tree would easily be bottlenecked by I/O speed as it

requires objects to be accessed multiple times in random order; so they introduced a new

way of constructing an out-of-core acceleration structure.

In the first step of constructing the acceleration structure (figure 1), microgrids (small

patches of geometry generated by Renderman) are divided over a regular 3D grid of buckets.

A microgrid is assigned to all buckets in which it (spatially) resides. The resulting bucket-

microgrid pairs are stored on disk. This bucketing pass creates manageable units of work that

can fit into system memory.

The uniform grid is very coarse and often imbalanced. A k-d tree is build over all micro-

grids (contained in the buckets) to create a more balanced structure. By coalescing nearby

empty buckets as well as splitting large buckets this process creates roughly equally sized

(64KB) leaf nodes called “chunks“.

These chunks are used to build a two-level bounding volume hierarchy (BVH): a BVH

over the microgrids within each chunk and a BVH over all chunks. Finally, the resulting BVH

is split into “brick“ treelets which are each stored contiguously on disk. For the purpose of

level-of-detail, each brick stores the mean of the vertex data contained in the leaf nodes of
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the tree below.

PantaRay is capable of leveraging the power of massively parallel GPU architectures and

was designed with the help of Nvidia. In addition, it also contains a CPU back-end that was

used for simple reflection occlusion and area light shaders only.

The CPU back-end loads bricks as they are needed. Recently accessed bricks are stored

in a LRU cache. Similar to CPU caches, each thread has its own cache in conjunction to a

shared cache between all the threads.

This caching system does not scale well to thousands of threads, as is required for an

efficient GPU implementation. Instead, the authors solve the memory problem by means

level-of-detail. Rays with similar origin positions (spherical sampling creates many rays with

the same origin) are processed in batches. The system will only load as many bricks as GPU

memory allows. Distant bricks that do not fit into GPU memory are represented as partially

transparent bounding boxes (based on the vertex data propagated from the leaf nodes).

PantaRay proved to work well in production, although the level-of-detail solution may

impact image quality. Furthermore, the LOD technique is not directly applicable to path

tracing.

3.2 Memory-Coherent Ray Tracing

Pharr et al. [1997] presented a novel way of improving the performance of out-of-core ray

tracing. Note that this paper was released a couple of years before any of the previously

mentioned work. Hence, uniform grids were used as acceleration structure.

The first step in building the acceleration hierarchy is to divide the primitives in each

mesh over a coarse uniform grid called the geometry grid. Voxels in the geometry grid may

contain a couple thousand triangles which are stored contiguously on disk (with a cache

to keep recently accessed voxels in system memory). The geometry grid thus helps group

primitives in memory based on their spatial locality. For each non-empty voxel another

uniform grid is constructed that acts as acceleration grid. Finally, another uniform grid is

constructed over the whole scene, storing pointers to geometry grid voxels in the voxels. By

pointing directly to geometry voxels this conceptually creates a two-level hierarchy.

Novel about this paper is how the top level grid is used as a scheduling grid. Each voxel

of the scheduling grid has a queue of rays waiting to be intersected against the geometry

inside that voxel. Newly spawned rays are added to the queue of the voxel in which their

origin resides. A scheduler constantly selects a scheduling grid voxel, intersects all queued

rays (using the acceleration grids), and performs any required shading calculations. Rays that
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did not hit any geometry are pushed onto the queue of the next voxel along the ray. Newly

spawned rays as a result of shading are re-added to the same voxels queue.

The system tries to minimize the number of times that a geometry voxel is loaded by

guaranteeing that it will be used by many rays. To keep the memory usage down, ray queues

may be stored on disk.

Scheduling of the voxels is based on a cost-benefit heuristic. The cost function estimates

how expensive it will be to process the rays in a scheduling voxel (how much data should be

loaded from disk). The benefit function estimates how much progress will be made towards

the completion of the computation if a voxel were to be processed. In the paper, the benefit

function is based on the amount of queued rays and the average weights of the rays (rays

with high weights are more likely to spawn continuation rays).

In the paper the authors mention a failed experiment where they tried to cluster rays

based on their origin. Rays in a cluster were sorted according to their direction, after which

they were traced through the entire scene until an intersection was found. The authors

dismiss the technique as it would be too reliable on rays having similar origins and because

no coherence could be exploited for rays with significantly different origins passing through

the same part of space. It is interesting that they mention this because it is very similar to the

approach taken in Disney Animation’s Hyperion renderer (Eisenacher et al. [2013]).

Navratil et al. [2007] takes inspiration from Pharr et al. [1997] and applies the queuing

technique to an in-core ray tracer. The idea is to take the existing technique and apply it to a

higher level of the memory hierarchy. The paper focuses on minimizing cache misses rather

than disk accesses. The authors also present a scheduling scheme that bounds the maximum

number of active rays at any time; which is something that Pharr et al. [1997] do not do.

A k-d tree is used as an acceleration structure instead of the uniform grid used in Pharr

et al. [1997]. Compared to a grid, a k-d tree provides a better balance in the number of

primitives per leaf. Pausing rays and resuming traversal in a k-d tree is slightly harder though.

The paper does not mention how this is implemented; but there exist numerous stackless

traversal algorithms that could be used.

Queue points in the tree are selected such that the sub-tree underneath fits inside the

processors cache, while leaving some room for other data. The geometry and sub-trees are

lazy-loaded into the cache during traversal; unlike previous work where they are loaded from

disk ahead of time. This is possible because of the hardware differences between disk based

storage and Random Access Memory (RAM). RAM memory can efficiently fetch memory

pages in a random order while disk based storage would be bottlenecked by the movement of
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the disk head.

Unlike Pharr et al. [1997], storing excess rays on disk is not an option (from a performance

standpoint). Instead, the scheduling scheme is adjusted to minimize the number of active

rays in the system at any time. Traversal now proceeds in batches of rays. First, all primary

rays are inserted into the queue of the top level leaf node in which their origin resides. Then,

the scheduler selects and processes queues by intersecting the rays (forwarding rays to the

next node if they miss); this continues until all queues are empty. Shading is deferred until

after traversal is finished. Newly spawned shadow- and continuation rays are traversed in

separate batches to prevent exponential growth in the number of rays to be traversed.

The memory-coherent ray tracing architecture can also be applied to distributed (out-of-

core) path tracing, as is shown by Budge et al. [2009]. The renderer proposed in the paper

supports hybrid resources, meaning that it can run on a heterogeneous set of devices (e.g.

both CPUs and GPUs).

The paper describes a hybrid data-management system which was designed as a layer of

abstraction for generic distributed out-of-core applications. The abstraction layer consists of

three key concepts: kernels that encapsulate the processing logic to complete a task, static

data that provides access to constant application data and transient data that describes the

actively manipulated workload. It is the abstraction layers responsibility to ensure that the

static- and transient data are accessible to the kernel being executed. This means that it is

responsible for copying data to device local memory, such as GPU memory .

Execution of the program is guided by a centralized work pool. Idle worker threads pop

and execute the task from the pool with the highest priority. This priority is local to each

worker thread and is based on the availability of the required data, processor preference, and

the size of the workload.

The path tracer build on top of this system is similar to that of Navratil et al. [2007];

utilizing a two level k-d tree as acceleration structure. However like Pharr et al. [1997], it

does not split traversal and shading into separate steps, allowing for unbounded grow in the

number of rays. The paper does not mention this potential issue nor does it provide any data

on the memory overhead of queuing rays.

Bikker [2012], like Navratil et al. [2007], uses the queuing traversal technique to improve

the performance of in-core ray tracing by reducing cache misses. The difference is that an

octree is used as the top level and a 4-wide BVH is used as the bottom level of the acceleration

structure.
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The octree supports pausing and resuming of ray traversal through a stackless traversal

scheme utilizing neighbour links stored in the octree nodes (based on Havran et al. [1998]).

The bottom level BVH is traversed using stream traversal Tsakok [2009] which utilizes the

coherence of queued rays for extra performance. Like Pharr et al. [1997], new rays generated

by shading are re-added to the traversal queues immediately.

Another novelty of this paper is how top level leaf nodes may have multiple ray queues

associated with them. Ray queues have a maximum capacity; if a new ray would overflow the

current ray queue then a new queue will be allocated. By bounding the size of the queues,

run time memory allocations can be avoided and the number of partially filled queues being

processed is reduced. By processing full ray queues first, partially filled queues have a chance

of being filled by rays coming from neighboring octree leaf nodes. Processing full queues not

only ensures that the main memory accesses can be amortized over many rays but it also

improves the performance of the stream traversal.

Gasparian [2016] is a follow-up to the work of Bikker by one of his master students. In

this work the top level octree is replaced by a 4-wide BVH. The implication of using a BVH as

the top level acceleration structure is that implementing a stackless traversal scheme is much

harder than with an octree or k-d tree.

The paper introduces a novel, ordered, stackless traversal scheme for 4-wide BVHs in-

spired by Áfra and Szirmay-Kalos [2014]. During traversal the ray stores a 64-bit bitstack

containing, for all ancestors, the children that should be visited (4 bits per node). When a

child is visited its corresponding bit is set to 0.

To resume traversal from a leaf node, the bitstack is used to find the lowest level ancestor

with a child node that should be traversed. To efficiently move up the tree, each BVH node

stores pointers to all of its ancestors. This makes moving up the tree a constant time operation

at the cost of significantly increased memory requirements (in addition to the 8 bytes per ray

for the bitstack). Traversal order is guaranteed by intersecting the ray with a nodes children

(each time that node is visited) and selecting the closest child that needs to be traversed.

3.3 Occlusion culling

Occlusion culling is the act of determining which object are hidden behind other objects, and

as such, do not have to be rendered. Traditionally, this has mostly been used in rasterized

images. The reason for including it in this literature study is that is considered related work.

Occlusion culling techniques can be classified in to categories: offline and online.
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3.3.1 Offline

Offline occlusion culling techniques compute the Potentially Visible Set (PVS) for regions of

space (usually called cells) as a preprocess. In other words, these techniques try to find all

objects that may be visible from any point inside a cell. This information is then used during

run time to determine which objects might be visible (those in the PVS of the cell in which

the camera resides). Usually this is combined with frustum culling to ensure that objects

lying outside of the cameras field-of-view are not rendered.

There are a couple of downsides to this technique. First, storing the PVS of each cell may

take an abundant amount of memory. This is especially true for open areas where a large part

of the world may be visible. Second of all, computing the PVS of each cell in 3D (i.e. Coorg

and Teller [1997]) is computationally expensive.

Therefore, a lot of research only considers occlusion culling of “2.5D“ scenes, in which

occlusion culling is performed in 2D by looking at the scene from the top down. Koltun et al.

[2000] for example uses the top-down view of a scene to determine the PVS of a convex region

of 2D space. It incrementally constructs a “virtual occluder“ which represents the aggregate

umbra of multiple occluders using a single line segment. The applicability of this type of

algorithm is limited, as most scenes do not exhibit a “2.5D“ structure.

3.3.2 Online

In contrast, online algorithms calculate the PVS during run time. Objects in the scene are

stored in an acceleration structure such as a k-d tree or BVH. Potentially visible objects

are selected by traversing the tree; child nodes are traversed if their bounding volume is

determined to be potentially visible.

Determining the potential visibility of BVH nodes by culling them against the whole scene

would be very inefficient. Instead, online algorithms usually select a subset of objects in

the scene which are used as occluders. Occluder selection is heuristic guided and is usually

based on factors such as: the view frustum, occluder size (as seen from the camera), visibility

in last frame, and the occlusion factor in last frame.

Online testing of potential visibility is performed using fast image-space techniques. The

hierarchical z-buffer (Greene et al. [1993]) was the first of such techniques and is still used in

many modern games (Haar and Aaltonen [2015], Wihlidal [2016]). The hierarchical z-buffer

is an image pyramid build over the original z-buffer where each sample contains the farthest

z value of the corresponding four samples of the previous level.
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Visibility of an axis-aligned bounding rectangle (representing an occludee) is tested recur-

sively. If the z values of the covered samples are all larger than the maximum depth of the

occludee then the occludee is considered visible; otherwise, we recursively continue to the

next finer level of the hierarchy where the test is repeated.

Zhang et al. [1997] proposes to split occlusion testing from depth testing. A Hierarchical

Occlusion Map (HOM) is build as an image pyramid, similar to the hierarchical z-buffer.

But instead of storing depth, the hierarchy stores the occlusion factor. Pixels containing an

occluder store a value of 1.0 and unoccluded pixels store 0.0.; occlusion values are combined

using averaging.

Axis-aligned bounding rectangles are tested by selecting the level in the hierarchy where

a sample and the bounding rectangle are roughly equally sized. If the overlapping samples

are not completely opaque (value 1.0) then the recursion descends into the finer levels of the

hierarchy. An object is potentially occluded if all overlapping pixels in the occlusion map are

opaque (value 1.0). The algorithm also allows for culling of geometry that is hardly visible by

slightly reducing this threshold.

Potentially occluded bounding rectangles are then tested against the depth estimation

buffer, which is a low resolution z-buffer storing the farthest z value of the corresponding

samples in the original z-buffer. A bounding rectangle is culled when its nearest z value is

farther than the z values of all the samples it covers in the depth estimation buffer.

Aila [2000] introduces Incremental Occlusion Maps (IOM) which improves on Hierarchi-

cal Occlusion Maps (HOM). Unlike HOM, which utilizes graphics hardware; IOM implements

a software rasterizer on the CPU. This allows IOM to only update the depth estimation buffer

if the occluder changes the occlusion map, which saves a considerable amount of write

operations. It also removes the need for copying the z-buffer to the CPU, which is a relatively

slow operation. Another advantage of using a software rasterizer is that the pipeline can

now provide valuable feedback with regards to the usefulness of occluders (which can guide

occluder selection).

3.3.3 Occluder simplification

Occluder simplification, as to be used with any of the before mentioned algorithms, requires

that the output mesh completely resides inside the original meshes volume. This is something

that generic mesh simplification algorithms do not guarantee, so specialized simplification

schemes have to be devised. Note that for ray tracing, this property should be reversed. The
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original mesh must be contained inside the simplified version, such that any ray that hits

the original mesh will also hit the simplified mesh. There is no research on this topic so we

will only look at occluder generation for use in combination with the previously mentioned

algorithms.

Law and Tan [1999] is one of the earliest works on occluder generation. It uses existing

geometric simplification schemes to simplify the input mesh and then applies fixes to make

the simplified mesh fit inside the original mesh. The edges of a simplified mesh are shifted

towards the surface of the original mesh. This may result in invalid polygons as the connec-

tivity might change, but this does not affect the visibility results.

(a) source: Brunet et al. [2001] (b) source: Silvennoinen et al. [2014]

Figure 2: Examples of alternative ways of representing occluders. Left: hoops; Right: planar sections.

Germs and Jansen [2001] takes a 3D mesh of a building (without overhanging parts) and

creates facades representing the sides of the building. Thus this work only considers a small

set of “2.5D“ input meshes. A building is split at different z levels and for each level the

top-down footprint is computed. These footprints are then simplified and combined back

into a 3D mesh.

Cell based occlusion culling with convex occluders is simpler than with non-convex

occluders. Brunet et al. [2001] points out that this requirement can be relaxed. Occluders

do not need to be convex as long as their silhouette, as seen from any point in the view cell,

is convex. Based on this knowledge the authors present a novel technique for representing

occluders.
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Occluders are represented by one or more non-planar, non-convex closed polylines called

“hoops“ (figure 2a). The algorithm computes hoops inside an occluder mesh such that their

silhouette, as seen from the view cell, is convex. The algorithm starts by constructing a sparse

voxel octree which stores the volume contained by the input mesh. It then builds the hoops

by incrementally adding the corner vertices of the octree leaf nodes.

The idea of voxelizing a mesh and storing it in a sparse voxel octree for simplification

is also used by Darnell [2011]. Oxel uses the sparse voxel octree to generate a 3D mesh

consisting of a collection of axis aligned cubes.

The program first finds the voxel (inside of the mesh) that is furthest away from any exter-

nal area. It then creates a box centered at that voxel and expands it until it reaches the outside

of the mesh. This process repeated until enough volume is filled or the box count threshold is

reached. The boxes are then filtered based on their contribution to the occlusion factor of the

final occluder (as viewed from a discrete number of locations). Finally, intersecting boxes are

merged into a single mesh to reduce the amount of geometry overdraw.

The last occluder simplification paper to be discussed is Silvennoinen et al. [2014]. This

work generates multiple planar meshes, oriented in different directions, to represent an

occluder (figure 2b).

To simplify the initial mesh, it is voxelized and then triangulated back into a mesh. Using

rasterization, slices of the mesh are created from different angles and at different depths.

To reduce the number of slices they are filtered based on their occlusion properties. At this

point the slices are still stored as bitmaps. These bitmaps are converted to 2D polygon using

edge loop extraction and simplification. For each slice a progressive simplification chain is

build by incrementally removing the edge vertex of which the adjacent triangle has the lowest

surface area. Finally, a greedy algorithm picks the optimal set of simplified slices that fits

within the triangle budget.

3.4 Sparse Voxel Directed Acyclic Graphs

Sparse voxel octrees are a popular representation of volumetric data sets. This section will

focus on reducing the storage requirements of sparse voxel octrees using directed acyclic

graph (DAG) compression. Note that this is in no way an exhaustive list of all the literature in

the field of octree compression.
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Figure 3: Illustration of how a sparse voxel octree (SVO) may represented using DAG and symmetry
aware DAG compression. Source: Villanueva et al. [2016]

Webber and Dillencourt [1989] was the first to recognize that the repetition in a quad

tree could be exploited to reduce its storage requirements. The paper introduces Common

Subtree Merging (CSM). The goal is to find duplicate subtrees and replace them by a single

instance. This creates a structure which is not a tree anymore because multiple nodes may

share the same child. This is why the compression technique is also referred to as directed

acyclic graph (DAG) compression.

The CSM technique can be trivially extended to an octree structure, as was first done in

Parker and Udeshi [2003]. Unlike the original CSM paper, Parker and Udeshi [2003] explain

the algorithm they used to convert a sparse voxel octree into a DAG. The algorithm traverses

the octree depth first and construct a DAG at the same time. Visited nodes are inserted into

the DAG if they unique; duplicate nodes are replaced by pointers to a single instance of those

node. Two nodes are duplicates if all their child pointers are the same.

Kämpe et al. [2013] adds out-of-core construction of the DAG. A sparse voxel octree is

constructed using only a few levels, and for each leaf node a subtree is constructed. For

each subtree the DAG conversion is applied separately using an algorithm similar to that of

Parker and Udeshi [2003]. The same algorithm is then applied to the top level of the tree.

The resulting DAG is the same as if it were constructed in one pass. The authors only store

pointers to non-empty children which saves a lot of space.

Villanueva et al. [2016] recognizes that a sparse voxel octree contains more common

subtrees when considering reflective transformations. Subtrees are matched not only if they

are duplicates, but also if they are the same if one undergoes a reflective transformation

(mirroring along the x, y, and/or z axis).

This requires that nodes store the transformations (3 bits per child) that each child

undergoes. The authors show that despite these extra bits the resulting graph uses less

memory than a regular Sparse Voxel DAG (Kämpe et al. [2013]).
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The authors found that 10% of the nodes that was referenced by nearly 90% of the pointers.

Therefor they introduce a compact memory representation that replaces frequently refer-

enced pointers by 16 bit offsets (and other pointers by 32 bit offsets). With these optimizations

a 2x memory reduction was achieved compared to Kämpe et al. [2013].

3.5 Depth Map for Ray Tracing

Besides compressed sparse voxel octrees, compressed depth maps will also be evaluated

as a way of finding approximate intersections. This section will go over the compression

technique proposed in Scandolo et al. [2016] as well as some of its previous work.

3.5.1 Shadow map compression

In rasterized graphics, both video games and Reyes, shadow maps have been the most popular

way of determining whether a point in space lies in shadow with respect to a light source.

A shadow map is a depth buffer (z-buffer) that is constructed from the lights point of view.

Shadow queries can be answered by transforming the position of a query into “light space“

and comparing it to the value stored in the shadow map.

Common problems with this technique are self-shadowing and self-unshadowing. Self-

shadowing occurs when a surface is shadowed by itself because of numerical inaccuracies or

sample position mismatches between the shadow map and the frame buffer. These same

problems also cause self-unshadowing, which happens at the edge of a silhouette (as seen

from the camera) when points are deemed visible from the light, while in fact they should be

in shadow.

A popular approach to fixing these issues is to add a bias to the values read from the

shadow map (which “moves“ the shadow map closer to the camera). Adding a bias was first

introduced by Reeves et al. [1987]. For each query the shadow map is sampled multiple times

using random jittering and with a bias that is stochastically chosen from an user defined

range. Although this reduces the artifacts caused by adding a bias (“floating“ geometry),

using a fixed bias has become more popular in the gaming industry.

Woo [1992] was the first to take advantage of the fact that shadow maps do not have to

store the exact depth of the first surface. The only guarantee that needs to be made is that the

depth value stored in the shadow map is farther than the closest surface (so that it is in light),

but smaller than the second surface (so that it is in shadow). This is what we will refer to as
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dual shadow mapping.

The paper uses the midpoint between the first and second surface as depth value in the

final shadow map. This greatly reduces self shadowing although there are some edge cases

where this problem may still occur.

Weiskopf and Ertl [2003] shows that the previous midpoint technique can be com-

bined with a fixed bias for better results. The resulting bias is calculated as zbi as(z1, z2) =
mi n( z2−z1

2 , z1 + z f i xed_bi as) where z1 and z2 are the depth of the first and second surface

respectively. The authors also show that instead of using the second surface, which is back

facing (and thus always in shadow), the third surface (which is front facing) could also be

used as maximum depth.

Arvo and Hirvikorpi [2005] was the first to exploit dual shadow mapping for compression

purposes. The idea behind the paper is to represent scan lines using a small number of line

segments.

Construction of this structure requires finding the intersection point between each scan-

line and the edges of the closest and second closest triangles. This results in two polyline

collections: the light- and the shadow frontier. The goal is then to find a polyline between

those two frontiers.

The technique suggested in the paper creates a new polyline equidistant from both fron-

tiers. It then uses a left-to-right sweep over the polyline, removing vertices if doing so would

not cause the polyline to intersect with either frontier. The resulting polyline is stored in a

binary tree for fast lookups.

Ritschel et al. [2007] uses a similar technique to compress a collection of equally sized

shadow maps. Instead of compressing along scanlines, the authors suggest compressing

along the same sample of different shadow maps. The shadow maps should be sorted by

coherence for an optimal result; meaning that samples in adjacent shadow maps should store

roughly the same depth interval.

Another difference from Arvo and Hirvikorpi [2005] is that depth intervals are stored

instead of line segments. Conceptually intervals can be interpreted as axis aligned (fixed

depth) line segments. These intervals are found using a simple O(N ) sweep algorithm.

Scandolo et al. [2016] was the first to utilize dual shadow mapping for compression along

more than a single axis. Both image dimensions are utilized for compression by building
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Figure 4: An illustration of how a dual shadow mapping can be compressed efficiently using a quadtree-
like structure. Source: Scandolo et al. [2016]

a special kind of quadtree over the image domain (figure 4). This structure differs from a

regular quadtree in that inner node may store values. These value transcend down the tree

and indicate the value of missing children.

Both a top-down and a bottom-up construction technique are provided. Top-down

construction may yield slightly better results while the bottom-up construction lends itself

better to parallel execution. Both approaches also support compressing multiple shadow

maps together by stacking them on top of each other, resulting in an octree instead of a

quadtree.

3.5.2 Ray tracing using depth maps

Although depth maps are traditionally only used in rasterization (as shadow maps), they can

also be used for ray tracing. McGuire et al. [2017] introduce light field probes that not only

store radiance but also geometric information that can be used for world-space ray traversal.

Light probes are placed on a regular grid inside the scene’s bounding box. Each probe

maps directions ω to the radial distance to the closest point in that direction, as well as the

normal vector at that point. These distances are stored using octahedral parameterization

maps which are derived from high resolution cube maps. This representation uses less

memory than regular cube maps and preserves the piecewise-linear projection required for

efficient ray marching.

Ray tracing with respect to a light probe is implemented by transforming the 3D ray

into 2D line segments (with endpoints where they intersect octahedron edges). These line

segments are rasterized during ray marching. The depth map samples describe planar

patches oriented towards the normal stored in those samples. Ray marching can thus have
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3 different types of results: hit, miss or unresolvable. The latter occurs when a ray passes

behind a voxel without hitting it. To resolve those ray queries the paper suggests querying

one of the other nearby probes.
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