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Abstract

Type IIB string theory turns out to be SL(2,Z) invariant. This allows us to translate

setups in string theory containing 7-branes to geometric objects called elliptic fibrations.

This program is called F-theory. However, we cannot translate anti-branes into this type

of geometry. We present an alternative for elliptic fibrations called achiral Lefschetz

fibrations. We show that these allow for the description of anti-branes in a very natural

way and also allow for the basic properties that we want these anti-branes to have.
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Chapter 1

Introduction

This thesis will concern the part of string theory that is called F-theory. It is a geometric

translation of setups in type IIB string theory that uses elliptic fibrations. It allows us to

access situations that perturbation theory cannot, often in cases that include 7-branes.

However, not every object that occurs in type IIB has a translation to F-theory. Anti-

branes cannot be incorporated in the elliptic fibrations that are used in F-theory. Elliptic

fibrations have too much structure, i.e. there are too many assumptions made in using

them, to allow for anti-branes. We will try to find what assumptions in F-theory are

made out of convenience rather than absolute necessity.

The type of fibrations that we conjecture to be appropriate to use and able to incorpo-

rate anti-branes, are called achiral Lefschetz fibrations. Lefschetz fibrations are structures

that first arose in algebraic geometry but have got attention from the differential geome-

try community when a deep link between them and symplectic structures was discovered

by Gompf and Donaldson [Don98],[GS99].

Trying to drop assumptions is often a good way to clear up the underlying structure of

the problem. But in the process of dropping assumptions, we have to maintain a balance.

On the one hand, we need to make sure that we drop enough to clear the problem up

and on the other hand not drop so much that we erase vital information. This balance

is a tricky thing if not handled carefully, so it is wise to formulate clear goals and checks

to make sure that we retain our balance. For this project, these are:

1. Achiral Lefschetz fibrations should be able to describe all possbile types of 7-branes

(including anti-branes) that occur in type IIB string theory.

1
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2. Achiral Lefschetz fibrations should be able to distinguish between all the different

types of 7-branes.

3. Achiral Lefschetz fibrations should be able to allow for the process of pair creation

and annihilation that comes with branes and anti-branes.

4. There should be a symmetry between branes and anti-branes: it is an arbitrary

choice which of the two is ‘anti’. Achiral Lefschetz fibrations should reflect this

symmetry.

5. The mutual appearance of a brane and its anti-brane should break supersymmetry

completely.

Organization of the thesis

Since F-theory is a branch of string theory, we start by introducing string theory in

Chapter 2. Chapter 3 is then concerned with the introduction of F-theory. At the end

of the chapter, we already propose a slight abstraction in the mathematical direction

in how we think about F-theory. This then is the bridge to the mathematical part of

the thesis, being Chapters 4 and 5. In Chapter 4 we introduce our main mathematical

object of study, namely (achiral) Lefschetz fibrations. We discuss their basic properties,

show how their monodromy looks and prove that they admit (log-)symplectic structures.

In Chapter 5 we develop a lot of mathematical formalism for treating 4-manifolds. This

gives us greater flexibility in treating 4-dimensional manifolds, which helps us at certain

points and may be very useful in future research. In particular, it gives us a way in purely

mathematical terms of creating and annihilating pairs of singularities, so it shows that

achiral Lefschetz fibrations can incorporate brane-anti-brane creation and annihilation.

In Chapter 6, we summarize the new view of F-theory that we have built. In Chapter

7, we list ideas for further research and put our work in perspective.

We have tried to keep the mathematics out of the chapters that introduce the physics

(2 and 3) and have tried to keep the physics out of the chapters that introduce the

mathematics (4 and 5). In Chapter 6, we freely use both to give the most complete

summary.



Chapter 1: Introduction 3

A word for the physicists

We propose a new (and more mathematical) view on F-theory. In order to do so, we

have to introduce a lot of mathematics. However, if one is not interested in learning the

mathematics, already knows F-theory and wants to just understand the new point of

view and possible implications, one can read only Chapters 4 (skipping the proofs) and

6.

If one is however interested in going through the mathematics, one will be rewarded not

just with some mathematical facts, but with a new toolkit for low-dimensional geometry.

In order to go through the mathematics, knowledge of differential geometry (manifolds,

differential forms, fiber bundles) is assumed. Mathematical subjects that are critical for

understanding the thesis or cannot generally be assumed to be part of the knowledge of

a theoretical physicist, are briefly treated in Appendix A.

A word for the mathematicians

String theory is a very involved field, hence it is nearly impossible to know all the

details. Since in this thesis the physical details are not very important, we have tried

to keep their treatment to an absolute minimum. We hope that in this way the overall

picture will become clearer, which is infinitely more important for understanding this

work than knowing the details. Having a bachelor or big interest in physics and a solid

mathematical background should be enough to be able to grasp the overall picture.

There is no new mathematics developed in this thesis. As a mathematical document, it

is best used as an introduction to Lefschetz fibrations, Kirby diagrams and surgery that

is hopefully easier to read than [GS99].





Chapter 2

An overview of string theory

We will introduce string theory in a very brief manner, introducing the necessary vo-

cabulary and concepts, but taking huge leaps and skipping details, ultimately selling

it short as the beautiful theory that it is. For a far more elaborate treatment, see for

example [GGSW88], [Ton09], [BBS06], [BLT12].

2.1 The step towards string theory

String theory seeks to resolve the gigantic gap between the two theories of nature that we

have. On the one hand, we have quantum field theory, describing the electromagnetic,

weak and strong force as a sea of interactions between matter and ‘force carrier particles’,

often called gauge bosons. And on the other hand we have Einstein’s theory of general

relativity, which states that the force of gravity is not merely some particles interacting:

it stems from the curved nature of spacetime itself.

If we want to find a unifying theory of nature – and we do – then we have to find an

overarching framework explaining both theories in the appropriate limit. One way to

go about this, is to say that while Einsteins description is elegant, nothing is keeping us

from discarding the interpretation and only keeping the equations coming from it.

Maybe it is the case that gravity is also merely some gauge bosons, called gravitons,

transmitting the force, so we can write down a quantum field theory for it. This concep-

tual leap is not trivial, yet it is still the easy part. Because when trying to do the math,

we run into a technical and very dubious property of quantum field theory: it gives a lot

5



6 2.2. Supersymmetry

of divergent integrals that can only be regularized perturbatively; that is order by order,

where the order is the amount of interactions in the process we are trying to calculate.

But the properties of the Einstein equation, specifically the fact that its relevant field,

the spacetime metric gµν , is a 2-tensor (as can be seen by the fact that it carries two

indices) makes it problematic. We do not know how we can tame the infinities that this

gives rise to. We do not even know whether it can be done.

String theory proposes a new model of matter: instead of looking at point particles, as

we do in QFT, we look at strings. Where particles have a worldline (the path through

spacetime that they sweep out by going forward in time), strings have a worldsheet.

String theories in general contain both open and closed strings, which will have funda-

mentally different properties. We parametrize a string with a timelike coordinate τ and

a spatial coordinate σ (with periodic boundary conditions for the closed string). These

parametrize the worldsheet W . One then proposes an action for the string, called the

Polyakov action.

S =
−1

4πα′

∫
W
d2σ
√
−ggαβ∂αXµ∂βX

nuηµν

Here α′ is the Regge slope, related to the tension of the string, g is the metric on the

worldsheet and the fields X, that are scalar fields from the worldsheet point of view,

can be interpreted as the coordinates of the embedding of the string in spacetime. This

action can be quantized to give us a quantum description of the string.

We now skip a lot of work and just point out the consequences of this. The only way

to get a consistent theory is if the dimension of spacetime is 26, instead of our usual 4

dimensions. And even then, there is a particle, the tachyon, with negative mass, making

the theory unstable. This is where we make the step to the theories that string theorists

now work on: superstring theories. To be able to discuss them, we first introduce

supersymmetry.

2.2 Supersymmetry

Supersymmetry, often abbreviated to SUSY, is a fundamental concept in the high-energy

physics of today. One could write a book about the theory in itself, but we will restrict

ourselves to a very short overview. A good reference for such a book and extensive

treatment on any claim made in this section is [FVP12].



Chapter 2: An overview of string theory 7

2.2.1 Global supersymmetry

Supersymmetry is an idea born from theory. Physicists knew that the Poincaré group

(Lorentz transformations plus translations) was a global symmetry of nature. There

could also be local symmetries, called gauge symmetries. The question arose whether

there could possibly be more symmetries other than the trivial product of the Poincaré

group and the gauge symmetries. The Coleman-Mandula theorem says that it is not

possible, but the Haag-Lopuszanski-Sohnius theorem exploits the only possible loophole

in it: by also allowing anti-commuting symmetry generators, the Poincaré group could

be extended. These generators form supersymmetry and apart from gauge symmetries,

it is the only possible other symmetry that nature can have.

Let us start by being brutally honest: supersymmetry has yet to be observed. There is

no proof that it exists in nature and hence is nothing more than a convenient assumption

for theoretical physics. But if it exists, it would answer a lot of questions that we still

have, like the Hierarchy problem (see [Mar10]).

Because the generators of supersymmetry anti-commute, they change the spin of the

fields on which they act. Therefore, supersymmetry is a symmetry between bosons and

fermions. We can choose how much supersymmetry generators we want in our theory.

The most elementary form is N = 1, where the generators are Qα, where α is a spinor

index. For extended supersymmetry, we have N ≥ 2, often allowing only powers of 2,

so N = 2, 4, 8. Here, the generators are Qαi where i = 1, . . . ,N . A supersymmetry

generator acting on a field changes the spin of the field by 1
2 . Hence in N = 1, spin-

0 fields (scalar fields) are related to spin-1
2 fields (Dirac fields). For N = 2, they are

both also related to spin-1 fields (vector fields), etc. This is also why N > 8 is not

considered, because it would necessarily lead to particles of spin larger than 2, for which

no interacting field theory is known.

2.2.2 Supergravity

Supergravity (sometimes abbreviated to SUGRA) is the theory obtained from adding

supersymmetry and gravity together. Making this combination necessarily turns super-

symmetry into a local symmetry.

Arguably the most important supergravity theory is 11-dimensional N = 1 supergravity.

For a while, this was seen as a candidate for the theory of everything. After a while, a

few problems were discovered, but today it is relevant for M-theory. We will come back
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to this in Section 2.4. The bosonic part of the 11D supergravity action is given by

SM =
1

2κ2
11

∫
R ? 1− 1

2
G4 ∧ ?G4 −

1

6
C3 ∧G4 ∧G4. (2.1)

Here R is the scalar curvature, ? is the Hodge star, G4 = dC3 is the field strength asso-

ciated to the 3-form gauge field C3 and κ11 is the 11-dimensional gravitational coupling

constant. The important thing to note is that the bosonic part only contains gravity

and a 3-form field. This action is unique: no other 11-dimensional supergravity theory

exists.

In 10 dimensions, there exist various supergravity theories. Also, in 10 dimensions,

we have chiral supersymmetry. Since a spinor in even dimensions can be split up into

two Weyl spinors using the chiral projections, and charge conjugation in this number

of dimensions leaves chirality invariant, we have to specify how many supercharges of

each chirality we want to have. So instead of speaking of the value of N , we speak of

(NL,NR) and we have N = NL+NR.1 There are two N = 2 supergravity theories in 10

dimensions: type IIA and type IIB. They are, respectively the (1, 1) and (2, 0) theories.

We give the action for the type IIB theory, since this will be the relevant theory for us.

This theory contains the dilaton φ, the metric g and the Kalb-Ramond field B2 in the

so called NSNS sector. The RR sector consists of the fields C0, C2 and C4. The field

strengths that we will use in the action are defined as follows:

H3 = dB2, F1 = dC0, F3 = dC2 − C0dB2, F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2.

The bosonic part of the type IIB supergravity action is then given by

SIIB =
1

2κ2
10

∫
e−2φ

(
R ? 1− 1

2
H3 ∧ ?H3 + 4dφ ∧ ?dφ

)
− 1

4κ2
10

∫
F1 ∧ ?F1 + F3 ∧ ?F3 +

1

2
F5 ∧ ?F5 + C4 ∧H3 ∧ F3. (2.2)

This action has a problem however. We need a self-duality constraint to get the right

number of degrees of freedom,

F5 = ?F5. (2.3)

This constraint can however only be implemented after varying the action, since other-

wise the term F5 ∧ ?F5 would vanish.

1This is also the case in 2 and 6 dimensions.



Chapter 2: An overview of string theory 9

But we do not have all the fields that people talk about in type IIB. By dualizing

dCp = ?dC8−p, we can also get C6 and C8. But since these are related to the fields we

already had, they do not present new degrees of freedom in the theory.

2.3 Superstring theories

The string theory from Section 2.1 is not what we are after. First of all, there is a tachyon

in the spectrum. Secondly, it does not contain fermions. Certainly, if we wanted a theory

of everything, we would want fermions in our theory. The tool we use to get them is to

introduce supersymmetry on the world sheet.

This changes the situation in a big way: the dimension of spacetime required for a

consistent theory is no longer 26, it is now 10. Also, the spectrum we get when performing

this in full generality is inconsistent with itself and therefore we need to drop some of it.

This can be done using the GSO-projection. The big upshot is that in this procedure the

tachyon also vanishes. So this takes away some of the concern. But it comes at a price:

the GSO-projection automatically gives us a spacetime supersymmetric spectrum, which

means that having supersymmetry in nature is a requirement for superstring theories to

work. But supersymmetry has yet to be observed. And that is not all: while the GSO-

projection is consistent, we do have to make a choice. This gives rise to five different

superstring theories: type I, type IIA, type IIB and two types of heterotic string theories:

E8 × E8 and SO(32).

It is not a coincidence that there is a type IIA/B superstring theory and a type IIA/B

supergravity theory. The supergravity theories are the low-energy limit of the superstring

theories. This means that when considering an energy scale so small that the massive

modes of the string cannot arise, we are only left with the massless modes and these

behave according to the supergravity theory. In particular, the massless field content of

type IIB string theory and the field content of type IIB supergravity are the same. This

way supergravity can give us a lot of information about the behaviour of the superstring

theory.

2.3.1 Dualities

At this point, we have five possible theories of everything. This poses a problem: we

cannot have five theories of everything. The one theory that is the right one, should
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describe the physics we know in the appropriate limit. But we have yet to succeed in

this. Luckily for us, we might not have to make a choice. The different theories are not

completely unrelated. There is a network of operations, called dualities, that link the

theories to one another.

A mathematician would say that a duality is an isomorphism between theories. And the

mathematician would be right, because a duality means that our description changes,

but the physical results of the theory are all exactly the same. A simple, non-stringy

example would be this: describe our whole universe in terms of anti-matter, i.e. take

the complex conjugate of every field. It would lead to exactly the same predictions for

every experiment; it is just another description of the same nature.

Superstring theories are connected via a web of dualities, so it is possible that they are

all different limits of the same theory. We will see in Section 2.4 that this may indeed

be the case. But first we have to describe the two most important dualities.

T-Duality

Suppose we take one of the nine spatial dimensions in our ten dimensional theory, and

make it a circle of radius R (this is a specific form of compactification, which we will

come back to in Section 2.3.2). Assuming the string is closed, the momentum of the

string is only allowed to take discretized values, proportional to n/R for n ∈ Z. The

contribution of this to the energy of the string will therefore be proportional to (n/R)2.

The string can also wind around this circle m times, which adds energy proportional to

(mR)2.

If we now consider the same situation, but replace R with 1/R, and interchange the

winding number m and momentum number n, we get back the same. So compactifying

on a large circle leads to the same observables as compactifying on a small circle. If

we would not have been so hand-wavy about this, we would see that we however did

change something, so here is the more precise formulation: type IIA on a small circle

is the same as type IIB on a large circle, and vice versa. T-duality also relates the two

heterotic types in the same way.

Definition 2.3.1. Two theories are T-dual to one another when they lead to the

same physics if one is compactified on a circle of radius R and the other on a circle

of radius 1
R .
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S-Duality

Since strings are to describe particles, and particles interact, strings should also interact.

And just like when particles interact, a factor called the coupling constant makes an

appearance. Quantum field theories are nearly always treated by perturbation theory

in their coupling constant: the more interactions are considered, the higher the power

of the coupling constant that appears. This only gives reasonable results if the coupling

constant is small enough.

The coupling constant gs in string theory is not a constant: it depends on the value of

the massless string mode φ via gs = eφ. So changing the dilaton to minus itself, swaps

a small coupling constant for a large one.

Definition 2.3.2. Two theories are S-dual to one another when they lead to the

same physics if one has coupling gs and the other has coupling 1
gs

.

If two theories are related by S-duality, this gives us a range of new possibilities: some-

thing we could not compute perturbatively in the strongly coupled theory, can easily

be computed in its weakly coupled equivalent. This duality relates one of the heterotic

strings to type I and relates type IIB to itself. The latter will be further explored and

generalized in Section 2.7.

2.3.2 Compactification

String theory owes us an explanation: if we believe it to be the theory of everything, then

where are the six extra dimensions it proposes? One of the most prominent possibilities

is that these dimensions are compact and extremely tiny, often called the internal space

or internal manifold.

For example, if one of the spatial dimensions were a circle with a radius far smaller

than our experiments can currently measure, we would only see the effective theory in

our daily lives; the extra effects that arise thanks to this hidden dimension only become

relevant on a much smaller scale. This type of compactification often goes by the name

of Kaluza-Klein compactification.

But we do not need to hide one dimension; we need to hide six. This gives us a range of

possibilities for the internal manifold. A priori, it seems we can pick any six-dimensional

compact manifold we like. This is not the case if we want some properties of the string
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to survive. String theory in 10-dimensional flat space has Weyl invariance: its metric

can be rescaled by some positive function without changing the theory. If we want

this to survive for a general 10-dimensional metric Gµν , the beta function for this field,

which describes how the strength of the coupling changes with the relevant energy scale,

should be zero. This amounts to asking the metric to be Ricci-flat, i.e. the Ricci scalar

is identical to zero.

Often one also has a preference for how many supersymmetry should ‘survive’ the com-

pactification. Most people want N = 1 supersymmetry in four dimensions, which means

that the compact manifold should have SU(3) structure. This leads to the famous choice

of Calabi-Yau manifolds as compact spaces.2

The properties of this internal space hugely influence our four-dimensional world. For

example, the size determines the mass of a lot of fields.

The compactification procedure

To say that six dimensions are very tiny means that at every point of our 4-dimensional

spacetimeM , there sits the internal spaceX. The easiest case is when our 10-dimensional

spacetimeM takes the formM = X×M . Now consider a general theory, i.e. the general

action

S =

∫
M
L.

Here L is the Lagrangian of the theory. If M = X ×M , the action can be written as

S =

∫
M

∫
X
L.

Performing the intergral over X, we get a 4-dimensional theory. This is easier said than

done. The 10-dimensional fields occurring in the original action have to be expanded

into the directions of X in order to be able to do this. This however requires extremely

detailed knowledge of the internal space. Often at this point, we make a compactification

ansatz : a choice of fields on X that we use to expand our 10-dimensional fields in. This

choice de facto amounts to a choice of which part of the field content of the compactified

theory we want to find. The most popular choice of compactification ansatz is to only

look at massless fields. For this we need relatively little knowledge about X and it still

2For more the definition and basic properties of Calabi-Yau manifolds and why we need them, see
chapter 14 in [BLT12].
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gives us a very useful low-energy effective theory. However, other choices are possible

and sometimes necessary depending on what one wants to study.

There is a caveat here: we cannot just pick any compactification ansatz. In order to

obtain useful results, it should be made sure that the fields that are dropped cannot

influence the fields that are maintained. We want what is called a consistent truncation.

Several criteria can be formulated for this. See [KPMT13].

2.4 M-theory

In 1995, Edward Witten coined the idea that there may be a theory underlying these five

superstring theories. When looking in type IIA, one can interpret the value of the dilaton

as representing the size of some eleventh dimension that is curled up into a circle. This

11-dimensional theory was dubbed M-theory, the meaning of the M being left ambiguous

on purpose. It can be interpreted as Mother, Matrix, Mystery or Membrane.

M-theory is a theory of which we know very little. It is no longer a theory of strings,

as we have derived that string theories should be 10-dimensional, and M-theory is 11-

dimensional. We only know its massless part: just as the massless part of a superstring

theory gives us 10-dimensional supergravity, the massless part of the M-theory action is

11-dimensional supergravity.

Since we don’t know the full quantum description of M-theory, nearly all the information

about it has been obtained via the dualities to superstring theories. So to learn more

about M-theory, it is important to still do work in the superstring theories.

Figure 2.1: The relations between different theories. The yellow arrows denote S-duality,
the blue arrows T-duality.

As mentioned above, M-theory compactified on a circle leads to type IIA, as was shown

in [DHIS87]. The dilaton in type IIA is then related to the size of the circle. This means

that the stronger the coupling in type IIA, the bigger the circle in M-theory. Therefore,

weak type IIA and M-theory are related by S-duality.3

3It is often said that if gIIA → 0, the circle on the M-theory side of the duality “decompactifies”.
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Since type IIA on a circle is the same as type IIB on a dual circle via T-duality, we have

a duality between M-theory on a torus and type IIB on a circle. If the radius of the circle

in type IIB becomes very large, the area of the torus in M-theory diminishes. Therefore,

“uncompactified” type IIB corresponds to M-theory on a torus with vanishing area.

2.5 More details on type IIB superstring theory

Because our main subject will be F-theory and this concerns type IIB superstring the-

ory, we need some more knowledge of this specific theory. We already know the mass-

less spectrum, i.e. contents of the type IIB supergravity. This consists of the fields:

φ,G,B,C0, C2, C4. The φ and C0 are real scalars, called the dilaton and the axion,

respectively. These will be combined into the central object of F-theory, the axio-dilaton

τ = C0 + ie−φ, a complex scalar, the value of which defines the values of both scalar

fields.

Remember that S-duality linked type IIB to itself. This is not a coincidence, as we will

now see that there actually are a lot more transformations that leave type IIB invariant:

the whole group SL(2,Z).4 It is often called the S-duality group, where the meaning of

S-duality is slightly generalized with respect to how it was introduced.

Actually, the supergravity action for type IIB is invariant under SL(2,R), where an

element
(
a b
c d

)
acts as

τ ′ =
aτ + b

cτ + d
,

(
C ′2
B′

)
=

(
a b

c d

)(
C2

B

)
(2.4)

and leaves the other fields untouched. However, due to quantum effects, we cannot have

SL(2,R) as symmetry group. Notice how it interchanges B and C2 with arbitrary real

coefficients. This is a problem, since it violates the Dirac charge quantization condition

(see section 18.3 in [BLT12]). Therefore, only the subgroup SL(2,Z) can possibly survive.

Now we can see what this symmetry-group does to the axion and dilaton. We note that

That is, it becomes so large that it easily becomes part of the external spacetime rather than the internal
space.

4SL(n,K) is the group of n× n matrices with coefficients in K and determinant 1.
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SL(2,Z) is generated by the matrices(
1 1

0 1

)
,

(
0 1

−1 0

)

The first matrix sends τ → τ + 1, i.e. C0 → C0 + 1. So a discrete shift in C0 without

touching φ leaves type IIB invariant. The second matrix sends τ → − 1
τ . This does not

look like S-duality as was introduced in Section 2.3.1, but it is when C0 = 0. Because

then e−φ → eφ and hence it interchanges strong and weak coupling. These kind of

SL(2,Z)-transformations will play a central role in F-theory.

There is an important remark to be made here: these transformations relate strongly

coupled to weakly coupled theories. But since we cannot calculate much in strongly

coupled theories, we cannot prove that this duality holds. Instead, it holds for the low-

energy part of the theory, the supergravity action, and a few special states that we have

control over in strong coupling, and is conjectured to hold for the whole theory. We will

go into the physical interpretation of this symmetry in Section 2.7.

Conjecture 2.5.1. Type IIB string theory is invariant under the SL(2,Z) action

given in equation (2.4).

This conjecture is widely accepted in string theory and one of the fundamentals of F-

theory.

From now on, we consider type IIB string theory, unless stated otherwise.

2.6 Branes

2.6.1 D-branes

In the first section, we claimed that it is relevant to look at both closed strings and open

strings. This is indeed the case, but the boundary conditions for the open string deserve

some extra attention, because they will draw our attention to completely new objects:

D-branes.

Let us look at the Polyakov action for open strings. If we want to find the equations of

motion for this, we should vary the action. Doing so, explicitly from some worldsheet



16 2.6. Branes

coordinate τi to τf , we find

δS =
1

2πα′

(∫
Σ
d2σ(∂α∂αX) · δX +

[∫ π

0
dσ∂τX · δX

]τ=τf

τ=τi

−
[∫ τf

τi

dτ∂σX · δX
]σ=π

σ=0

)

The first term gives the equation of motion. The second term is zero, since we always

assume variations to be zero at the starting and ending configuration. The third term is

something new, and for it to vanish, we need to impose one of two boundary conditions

for each spacetime direction µ separately:

• Neumann boundary conditions, given by ∂σX
µ = 0 at σ = 0, π. This implies that

the endpoints of the string move at the speed of light.

• Dirichlet boundary conditions, given by δXµ = 0 at σ = 0, π. This implies that

the endpoints are restricted to some subspace of spacetime.

Suppose we have Neumann boundary conditions in the first p directions and Dirichlet

boundary conditions in the other directions. So, for a spacetime of dimension D, we

have

∂σX
a = 0 for a = 0, . . . , p

XI = cI for I = p+ 1, . . . , D − 1

This defines some p+1-dimensional subspace on which the string has to end. It is called

a Dp-brane, or D-brane when we do not specify the dimension.

Definition 2.6.1. A Dp-brane is a p+ 1 dimensional object in spacetime on which

open strings can end.

The Dirichlet boundary conditions seem weird, and they were not taken seriously for

some time. They can however be physically justified. By considering the D-brane not as

a solid, immovable object, the strings ending on the D-brane get a natural interpretation.

2.6.2 The D is for dynamical

These D-branes are not just a quirk of the boundary conditions: they are fundamental

objects of string theory. One could even say that string theory is a misnomer, as it is

just as much a theory of higher-dimensional objects such as the D-branes. But by the

time people realized this, string theory had already gotten its name.
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The way to see this is as follows: we know that supergravity is the low-energy limit of

string theory. The type IIB supergravity action admits not only a vacuum as solution

to its equations of motion, but also branes. These are actually the solitons of the

supergravity theory. When one compares the brane-solutions of supergravity with the

D-branes that we just introduced, they turn out to coincide. Where the vacuum without

D-branes is invariant under N = 2 supersymmetry, the state including the brane is

only invariant under N = 1 supersymmetry. This is why D-branes are often called

BPS-states5. So D-branes are dynamical objects. But how do we see this in string

theory?

The picture which we just used to introduce D-branes, as objects on which strings can

end, is actually just a weakly coupled perturbation around the non-perturbative state

containing only the D-brane. The open strings ending on a Dp-brane have 9−p massless,

real scalars in their spectrum: the Xi in the Polyakov action where i is an index that

does not lie along the D-brane. These can be interpreted as fluctuations of the D-

brane, indeed making it into a dynamic object. Actually, these massless scalars are the

Goldstone bosons of the translational symmetry that is broken by the appearance of the

D-brane.

Another way to see that D-branes have a dynamical effect on their surroundings, is by

looking at ‘disk diagrams’. Here, a D-brane emits a closed string. Since closed strings

carry graviton modes (see [Ton09]), we see that D-branes have tension, i.e. energy and

interact with their surroundings via gravity.

How did we forget these objects of fundamental importance at the start of developing

string theory? This is just because our initial approach to string theory was perturbative,

i.e. gs � 1. In this limit, all these objects are so heavy that they never arise without

us putting them in by hand. One can calculate the tension (which is energy density and

therefore mass) of a Dp-brane to be [Joh06]

τp =

√
π

16κ
(4π2α′)(11−p)/2 (2.5)

where κ = κ0gs with κ0 a constant related to Newton’s gravitational constant in the

theory. The important thing is that the tension goes as 1/gs, which means that indeed,

in the limit gs → 0 where perturbative string theory is valid, these objects will never

spontaneously occur. We will come back to what happens in the non-perturbative case

5A BPS-state satisfies a precise relationship between its mass and its charge, called the BPS-bound.
If this relation is not satisfied, all the supersymmetry generators are broken.
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in Section 2.7.

It has to be noted that D-branes are not the most general branes. It is possible to also

have solutions of the supergravity action that contain p+ 1-dimensional objects that do

not allow strings to end on it. Examples of these are NS5-branes and the F1, which is

just the usual string.

2.6.3 Charge of D-branes

In electromagnetism, the Maxwell equations can be written as

dF = ?Jm, (2.6)

d ? F = ?Je. (2.7)

where Jm and Je are 1-forms describing the current and charge density.6 If we let A

denote the potential of F , i.e. locally F = dA, the language used for this is that the

object on which Je/Jm lives is electrically/magnetically charged under the field A, is an

electric/magnetic source for A, or we say that there is a electric/magnetic coupling of

the currents to the field A. The fact that a particle electrically couples to the field A

can be seen from the action of the particle, in which the following term will appear:

Sint = e

∫
A. (2.8)

Here, the integral is over the worldline of the particle. This makes sense, since A is a

1-form.

Note that if we want the magnetic and electric fields to change places, we have to send

F → ?F . This is the electromagnetic duality. Under this transformation, an object that

was previously coupled electrically to A, is now coupled magnetically.

Polchinki discovered that D-branes are charged under RR-fields, so C0, C2 and C4 [Pol95].

The field under which it is charged depends on the dimension of the brane. Just as A is

a 1-form being integrated over the worldline, we need to integrate the p-form Cp+1 over

a p+ 1-dimensional worldvolume. Indeed, in the action of a Dp-brane (which has a p+ 1

6Note that we here also allow magnetic monopoles to exist. But we can set Jm = 0 if we do not want
them.
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dimensional world volume) there appears the term

Sint = µp

∫
Cp+1 (2.9)

We are going to say that a Dp-brane has Cp+1 charge 1. This is of course a normalization,

but the charge of a D-brane is uniquely defined since it has to satisfy the BPS-bound,

so there is no assumption hidden here.

By the same reasoning as the electromagnetic duality and by the way we introduced

C6 and C8 in section 2.2.2, we see that a Dp-brane hence is a magnetic source of C7−p.

So for example a D7-brane couples electrically to C8 and magnetically to C0. We will

make it a convention to talk about electric and magnetic coupling in such a way that we

always consider the field Cp with p ≤ 4. Since type IIB supergravity only has Cp for p

even, we see that the theory can only contain stable7 Dp-branes for p odd. Conversely,

type IIA only has Cp for p odd and hence contains only stable Dp-branes for p even.

To summarize:

Theorem 2.6.2. A Dp-brane is electrically charged under Cp+1 and magnetically

under C7−p. Type IIB superstring theory only contains stable Dp-branes for p odd.

The string is electrically charged under the NSNS 2-form B. This can also be dualized

and we find that there is an object with a 6-dimensional world volume that is magneti-

cally charged under the B-field. This is the NS5-brane that we mentioned earlier.

2.6.4 (p, q)-strings and branes

The SL(2,Z) symmetry of type IIB leads to more types of objects, as can be seen as

follows. Suppose we have a string. This is charged under the B-field, but not under the

C2-field. Since an SL(2,Z)-transformation interchanges these charges, we can get (p, q)-

strings for any two relatively prime integers p, q that have charge p under the B-field and

charge q under the C2-field. In this language, the usual string hence is a (1, 0)-string.

What is the physical interpretation of these (p, q)-strings? Intuitively speaking, it should

again be a one-dimensional object that is made up of p things with charge 1 under the

7Branes can be unstable and decay into lower dimensional branes. The BPS-property prohibits this
from happening, but a Dp-brane for p even cannot be charged under any of the RR-fields that we have
in type IIB, so it cannot satisfy the BPS-property and hence is unstable.
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B-field and q things with charge 1 under the C2 field. The fundamental string and the D1-

brane satisfy these properties, respectively. And indeed, (p, q)-strings can be described

as ‘bound states’ of the fundamental string and the D1-brane, as follows: Suppose we

put a fundamental string and a D1-brane (sometimes called an F-string and D-string)

parallel to each other. To minimize the energy of this system, the string will break with

its two new end-points now lying on the D-string. These endpoints are charged under

RR-field C2, so there is a flux between these endpoints on the D-string. When they move

off to infinity, we only see the flux left on the D-string. This is precisely a (1,1)-string: a

bound state of an F-string with a D-string such that it has a unit charge for both the B

and the C2 field. It is important to note that this state is supersymmetric, just like the

F-string and the D-string themselves. For more details and the construction for general

p and q, see [Wit96].

Since we can think of D-branes (which in our case will always be D7-branes) as branes

on which our usual strings, i.e. (1, 0) strings, can end, we make the definition that a

(p, q)-brane is a brane on which (p, q)-strings can end. This is sensible, since this can be

transformed by an SL(2,Z)-transformation back into our usual configuration of strings

ending on a D-brane. But as we will see in Chapter 3, one has to consider these objects,

since it generally is impossible to choose an SL(2,Z)-transformation that transforms all

the branes in a setup into D-branes at once.

2.6.5 Anti-D-branes

Just like we have antimatter in QFT, there are anti-branes in String theory. We consider

these objects because of the same reason we consider anti-matter: you cannot create one

without the other [MD02]. Also, they are useful objects, since they can be used e.g. to

break supersymmetry, as we will see. We denote an anti-Dp-brane by Dp-brane.

Since branes and anti-branes can annihilate and leave behind a stable vacuum, we see

that they should have opposite charges. This is of course a known feature of ordinary

antimatter. As we saw in Section 2.6.3, the RR-charge of a Dp-brane is determined by

the integral of Cp+1 over its worldvolume. An opposite charge therefore implies that

the orientation on the worldvolume of the Dp-brane is opposite to that of the Dp-brane.

The point-particles one is used to working with are actually no different. The same logic

applies and this is why we draw anti-matter in Feynman diagrams with the arrows going

back in time: the orientation on their worldline is opposite to the orientation of ordinary

matter.
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For a one dimensional worldvolume, the only option for orientation reversal is an opposite

parametrization of the time direction. But for a higher dimensional worldvolume, we

could equally well flip the parametrization of a spatial coordinate. So a Dp-brane for

p ≥ 1 is just a Dp-brane that is rotated by π.

We can actually get evidence for the system’s urge to annihilate the case of p = 1. We

can calculate the lowest mass state of a string stretching between the two branes. This

turns out to be [Has12]

m2 = − 1

2l2s
. (2.10)

This gives us a tachyonic mode in the system. Remember that a tachyon signals an

instability in the system; the system will tend to go to a true vacuum. We can interpret

this as the urge of the D1-brane and the D1-brane to annihilate, getting us back to a

stable vacuum.

Because D-branes are just like ordinary D-branes, they also break half of the super-

symmetry and are BPS states. But a more careful analysis (as done in Chapter 13 in

[BLT12]) shows that D-branes preserve precisely the other half of the supersymmetry.

So putting a D-brane and a D-brane parallel to each other results in a complete breaking

of supersymmetry.

Important to note is that being an anti-brane is a relative property: two branes can be

each others anti-brane, but which one is the ‘anti’ one is a matter of choice. It is in fact

just a matter of choosing an orientation.

One might be tempted to think that anti-branes are among the possible (p, q)-branes.

After all, −id ∈ SL(2,Z) so this would invert all the charges and hence maybe give

an anti-brane. This does hold in the case of the D1-brane, since its charge under C2

gets send to minus itself. But a 7-brane is charged magnetically under C0, and nothing

changes about C0 with this transformation. Hence the image of this transformation, a

(−1, 0)-7-brane is not the anti-brane of the D7-brane. We will see in Remark 3.2.2 an

explicit computation which proves that the D7-brane is not among the (p, q)-7-branes.

Of course, there are also anti-(p, q)-branes, since an SL(2,Z) transformation must send

a pair consisting of a D-brane and a D-brane to a (p, q)-brane and its anti-brane.
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2.7 Interpretation of SL(2,Z)-invariance

As noted above, ‘string theory’ is a misnomer, since D-branes are just as fundamental

as strings. And since (p, q)-strings and branes are just transformed fundamental strings

and D-branes, they also have a fundamental role to play. This gives us an interpretation

for the SL(2,Z) invariance of type IIB.

How can a theory that we build perturbatively look the same for every SL(2,Z) trans-

formation that we apply to it? To see this, we first consider the simplest case gs → 1/gs,

i.e. S-duality. Remember that this coincides with the element
(

0 1
−1 0

)
in the case C0 = 0.

The easiest way to describe this, is to make sure that the metric does not depend on the

dilaton. We do this by going to Einstein frame, which is nothing more than to introduce

g
(E)
µν = e−φ/2gµν . We now look at the D1-brane, an object that has the same dimension

as the string. In this case, the tensions of the fundamental string and the D1-brane are

g
1
2
s /2πα′ and g

− 1
2

s /2πα′ respectively. This is already suggestive and indeed the following

is the case: when looking at the limit gs →∞, the D1-brane becomes the lightest object

in the theory and takes the role of the string. And in turn, the fundamental string

becomes heavy and will not naturally occur in the perturbative theory of D1-strings. So

we can do everything like we did in the development of perturbative string theory but

with the roles reversed. This is the reason that S-duality relates type IIB to itself.

We can also see why the RR 2-form C2 and the NSNS 2-form B should be interchanged,

as is indeed done by
(

0 1
−1 0

)
∈ SL(2,Z). The fundamental string is charged under B,

while the D1-string is charged under C2. Since the role of the fundamental string and

the D1-string is reversed after the transformation, so should their charges.

Remark 2.7.1. This can also be used to see why type IIA does not relate to itself

via S-duality. This theory only contains Dp-branes for p even, and hence there is no

object that can take the role of the fundamental string.

More generally, we can look at the aforementioned (p, q)-strings. For every relatively

prime combination of p and q, there is a value of gs in which case the (p, q)-string becomes

the lightest mode of the theory. This means that we could have started developing type

IIB string theory from every one of these perspectives and they all would have led to

the same conclusion. It is somehow beautiful that strings do not have a more privileged

position in the theory than the other objects: it is just a matter of perspective.

We can also give this symmetry a geometric interpretation via M-theory. Remember
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that M-theory on a torus is dual to type IIB on a circle. When one keeps track of the

dualities, it can be seen that the symmetry group of the complex structure parameter of

this M-theory torus (which is SL(2,Z)) is the same as the SL(2,Z) symmetry of type IIB

[Sch95]. The shaky thing about this equivalence however, is that the area of the torus

has to go to zero to get type IIB without the circle. Of course, the complex structure

parameter of a torus that does not have an area sounds ill-defined, but it works since

the limit of the area going to zero is applied only after all the equivalences have been

gone through.





Chapter 3

F-theory: a more geometric

approach

We now turn to F-theory. The F supposedly stands for father, a whimsical reference to

M-theory. Although it was not the point of view when it was introduced, we now look

at it as a powerful, geometric reformulation of type IIB string theory.

The theory cleverly exploits the SL(2,Z) symmetry of type IIB to construct a description

of type IIB in which we can solve much more general configurations than the perturbative

description allows us to do, using geometric tools. For example, it can incorporate 7-

branes, which cannot be described perturbatively since their presence has a big influence

on the space.

3.1 Describing 7-branes

Let us first see why 7-branes are problematic. Recall from Section 2.6.3 that a D7-brane

is charged magnetically under C0. Suppose we have a D7-brane, then there are two

spatial dimensions it does not fill. Those we describe with the complex coordinate u. In

this plane, the D7-brane functions as a magnetic source for C0. Schematically:

dF1 = δD7

where F1 is the field strength associated to C0. We will now see that the presence of a

7-brane will make sure that C0 cannot be globally defined: Integrating over a disk, we

25
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get ∫
D2

dF1 =

∫
D2

δD7 = 1.

If we insist on F1 = dC0 globally, we will have to let go of the notion of C0 having a

single, well-defined value at each point. Then we get

1 =

∫
D2

dF1 =

∮
S1

F1 =

∫
∂S1

C0 = C0(x)− C0(x).

So C0 can now only be defined up to shifts by integer values. Mathematically, this is

all just a consequence of the Greens function for the Laplacian in 2 dimensions being a

logarithm and hence forcing a branch cut. Since C0 is contained in the axio-dilaton τ ,

this will also no longer be single-valued. Instead, we will have

τ → τ + 1

whenever we walk around the D7-brane. We call this kind of behaviour monodromy,

a concept that we will introduce in more generality in Section 4.2. We can relate this

to the SL(2,Z) transformations encountered in Section 2.5, namely the action of the

element ( 1 1
0 1 ) on τ . This monodromy suggests that near the location of the brane, call

it u0, we have

τ ∼ 1

2πi
log(u− u0). (3.1)

Notice that when we approach the D-brane, we have τ → i∞. Referring back to the

physical meaning of τ , we see that this corresponds to gs → 0. So near the 7-brane, we

have weak coupling.

But that is just the friendly part of this setup. We can see that (3.1) can only hold

for |u| � 1 since otherwise we would get a negative value for gs = eφ. Also, we have

seen that, due to the monodromy, τ is not even single-valued, so it is getting hard to

write down a global solution for the τ profile. What we however can do, is write down

a solution for τ up to SL(2,Z) transformations. This is most easily done by giving a

solution for j(τ) where j is some function with the property

j(τ1) = j(τ2) ⇐⇒ τ1 = T (τ2) for some T ∈ SL(2,Z) (3.2)

Such a function exists and is called the j-invariant
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Figure 3.1: The grey area is a possible choice of fundamental region for the j-invariant.
Image taken from Wikipedia [Hul18].

Remark 3.1.1 (the j-invariant). The function j is defined on the upper half com-

plex plane and maps to the Riemann sphere (the complex plane including ∞, i.e.

CP1). Its primary characteristic is that it is invariant under SL(2,Z). That is, if

T ∈ SL(2,Z), then j(Tτ) = j(τ), where T acts on τ as described in equation (2.4). It

is surjective, but of course not injective. However, it is injective when we restrict to

the fundamental region: a connected subset of the upper half plane such that none

of the points in it are related via SL(2,Z) and any other point outside of it is related

to one of the points in it. Another way of saying this, is that it is a connected subset

of the upper half complex plane containing precisely one point from every orbit. A

picture of it can be found in Figure 3.1.

In terms of q = e2πiτ , we can write

j(q) =
1

q
+ 744 +O(q) (3.3)

The simplest solution that has the form (3.1) near the brane is given by

j(τ(u)) =
1

u− u0
. (3.4)

The property of the j-invariant function that j(1
2(1 + i

√
3)) = 0 can be used to conclude

that in this solution, we have gs = 2√
3
≈ 1.15 for large distances from the brane. So

far away, there is strong coupling. This is another reason that configurations containing

7-branes are hard to treat perturbatively.

And that is not all the big influence that this D-brane will have. Since, in the u-plane,

it will introduce a deficit angle: from the point of view of the u-plane, it is a point mass.
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And as derived in [GSVY90], this gives a metric that is flat, but only so in terms of

the coordinate ũ = u1−θ for some θ. This means that in this new coordinate, a circle

is only 2π(1− θ) radians, hence the name deficit angle. It is clear that this is of global

influence on our space. This is what is often called the backreaction of 7-branes on the

space. Again, we see that we encounter this phenomenon with 7-branes because we have

a small number of codimensions.

3.2 The idea of F-theory

F-theory will make use of a geometrical interpretation of SL(2,Z). This is the follow-

ing: one can define a complex structure on a torus T 2 by identifying the torus with

C/L(ω1, ω2). Here L(ω1, ω2) is the lattice defined by ω1, ω2 ∈ C by

L(ω1, ω2) = {nω1 +mω2 | n,m ∈ Z}.

If we choose ω2 = 1, which we can always do via a holomorphic transformation – which

leaves the complex structure invariant – then the structure is fully defined by ω1 ∈ C.

The following proposition holds:

Proposition 3.2.1. Let a complex structure on the torus be given by ω ∈ C.

Then any complex structure on the torus given by T (ω) for some T ∈ SL(2,Z) is

equivalent. Here T acts on ω by (2.4).

Proof. The complex structure is fully defined by the lattice L(ω1, ω2). A matrix ( p rq s ) ∈
SL(2,Z) then has the following property: define(

ω′1
ω′2

)
=

(
p r

q s

)(
ω1

ω2

)
.

Then L(ω′1, ω
′
2) = L(ω1, ω2), as can be easily checked. Although the numbers are differ-

ent, the lattice is exactly the same, hence also the complex structure that it will define

on the torus. Now if we want to characterize a complex structure with a single complex

number, we have to have ω2 = 1. Then ω′1 = pω1 + r and ω′2 = qω1 + s. If we again

have to translate this complex structure into a single complex number, we have to set

ω′2 = 1, which can be done by dividing by ω′2 = qω1 + s. So after the transformation,

the complex structure is now characterized by the number ω = pω1+r
qω1+s . But it is still the
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same complex structure. This proves the proposition.

Now we apply this geometric interpretation to string theory: we look at the axio-dilaton

τ = C0+ie−φ not as a field having a value at every point in spacetime, but as the complex

structure of a torus at that point. So instead of considering a 10-dimensional spacetime,

we attach a torus to every point in spacetime, i.e. we consider a 12-dimensional space

which fibers1 over the spacetime in such a way that at every point the fiber is a torus.

The complex structure of this torus over point x is τ(x). Note that by the previous

proposition, this τ is only defined up to an SL(2,Z) transformation. But this is not at

all a problem, and maybe even good, since type IIB string theory is invariant under these

transformations. The torus is often called the auxiliary torus, since it is a bookkeeping

device and not a physical part of the spacetime.

Determining the profile of τ given some setup is now a problem of determining the

geometry of the 12-dimensional space. This opens the door to a whole new set of tools

to tackle problems with. It should be noted that the existence of a complex structure

on the torus is a big assumption from a mathematical perspective.

One could ask what constraints τ has to satisfy. From supersymmetry we can derive

that τ has to be a holomorphic function.

3.2.1 Monodromy around branes

We can use the results from 3.1 to see how the appearance of 7-branes influences the

geometry of our 12-dimensional space. To do this, we temporarily forget about the 8

dimensions that the 7-branes lie in, and consider only the 2 other spacetime dimensions

and the torus over every point, so a 4-dimensional space.

Around a D7-brane, we have seen that τ transforms according to the element ( 1 1
0 1 ) ∈

SL(2,Z). For a general (p, q)-brane, we can transform it to a D7-brane via the trans-

formation ( p sq r )−1, where r, s ∈ Z are such that pr − qs = 1. We then know how the

monodromy around it looks and have to transform it back afterwards. So the monodromy

around a (p, q)-brane is given by

M(p,q) =

(
p s

q r

)(
1 1

0 1

)(
p s

q r

)−1

=

(
1− pq p2

−q2 1 + pq

)
. (3.5)

1A fibration of a space X over a space M can be thought of as a projection π : X →M that can twist
and turn. A fiber over a point p is π−1(p), i.e. the set of all points in X that get mapped to p by π.
More treatment follows in Section 3.5 and Chapter 4.
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If we walk around in the reverse direction, we get the inverse of this matrix. If we walk

around a (p, q)-brane and then a (p′, q′)-brane, we get the monodromy M(p,q)M(p′,q′).

Remark 3.2.2. Because branes and anti-branes can annihilate, the monodromy

around them should be zero. This can be used to see that an anti-brane is not a

(p, q)-brane for any p, q ∈ Z. Note that

M−1
(p,q) =

(
1 + pq −p2

q2 1− pq

)
.

Suppose that this is equal to M(p′,q′) for some p′, q′ ∈ Z, then that would imply that

p′2 = −p2 and q′2 = −q2, which is impossible for (p, q) 6= (0, 0). So anti-branes are

not (p, q)-branes.

At the location of the brane, τ does not have a value. This is also reflected geometrically,

as at the location of the branes the torus over them ‘pinches’, so the fiber is not even a

torus.2

Turning the logic upside down: if we know the profile of τ , we can pinpoint where

precisely what kind of branes are. This is the subject of the next example.

3.3 The K3 example

F-theory uses elliptic fibrations. We will explicitly define this notion in Section 3.5. It

is a special kind of torus fibration. This amount of structure makes working with it and

determining the τ profile much easier. We will now work out the example of F-theory

on a K3-surface. This is an especially friendly elliptically fibered space of 4 dimensions.

Since it is good to have seen, but not extremely relevant for our purposes, we will make

some claims. For more details, see [Den08].

The K3 can be described as lying in the space

{(u, v, x, y, z) ∈ C5 | (u, v) 6= 0, (x, y, z) 6= (0, 0, 0)}/ ∼

2When we introduced F-theory, we attached a fiber to every point. But this was incorrect, since we
indeed add pinched fibers over the locations of the branes. The simply reason is that it is impossible to
have a regular torus over the location of the fiber and also have a monodromy around it.
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where the equivalence relation is given by

(u, v, x, y, z) ∼ (λu, λv, λ4x, λ6y, z)

∼ (u, v, µ2x, µ3y, µz)

for λ, µ ∈ C− {0}. The equation defining the K3 is then

y2 = x3 + f(u, v)xz4 + g(u, v)z6.

Where f, g are polynomials. Note that this is a well-defined equation only when f

and g are polynomials in u, v of degrees 8 and 12, respectively. The object defined

by such a formula is Calabi-Yau if the weighed degree of the defining polynomial (the

power of e.g. λ that appears when we insert the point (λu, λv, λ4x, λ6y, z)) equals the

sum of the weights of all the coordinates, for each equivalence separately. In this case

1 + 1 + 4 + 6 = 12 and 0 + 0 + 2 + 3 + 1 = 6, so this works out. A complex 2-dimensional

Calabi-Yau is always a K3.

To see that this is indeed a fibration with tori as fibers, we define π : K3→ CP1 by

π : (u, v, x, y, z) 7→ (u : v).

This is well-defined and the fiber is a torus, since it is a complex 1-dimensional Calabi-

Yau – of which the torus is the only one – as can be checked by the same rule.

We need to deduce an explicit form of τ from this abstract description in terms of

polynomials. For this we use the holomorphic coordinate on T 2, namely z = x+ τy and

define the form Ω1 = dz. We choose a basis of 1-cycles, (A,B) on the T 2 and then τ is

given by

τ =

∮
B Ω1∮
A Ω1

What happens if we choose another basis? Suppose we take (A+B,B) as basis. Then

we would get

τ =

∮
B Ω1∮
A Ω1

+ 1.

This is fine: every other choice of basis will give us another answer, but all of them will

be related to each other by SL(2,Z)-transformations. This is actually to be expected,

since they all describe the same complex structure.
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One can do the computation for τ in this case, which results in

j(τ) =
4(24f)3

∆
, ∆ = 27g2 + 4f3.

We call ∆ the discriminant of the elliptic curve. When the discriminant is zero, the ellip-

tic curve becomes singular, generically by a 1-cycle collapsing to zero size (i.e. pinching).

In this case, we can determine how many 7-branes there are in our setup: ∆ is a ho-

mogeneous polynomial of degree 24, and generically will have 24 distinct zeroes. Notice

that near a generic zero u0 that is not (u : v) = (1 : 0), we can set v = 1 and write

j(τ) ∼ 1
u−u0 . This is solved by

τ(u) ∼ 1

2πi
log(u− u0), (3.6)

up to an SL(2,Z) transformation, which is the same as we found in equation (3.1).

Therefore, we have a monodromy τ → τ + 1 around u0 and this signals the presence of

a D7-brane at u0.

Does this mean there are 24 D7-branes in our setup? No. However, it does mean that

there are 24 7-branes in our setup. Let us see why they are not all D-branes. The reason

is actually pretty simple, and we can see it both from a mathematical and physical

perspective. Physically, a D7-brane is a (0, 1)-brane and hence carries charge. If all the

branes are D-branes and they all carry the same charge, the net charge is not zero and

we have field lines that cannot end anywhere. This is problematic on a compact manifold

such as CP1, because they also cannot go out to infinity. This will lead to tadpoles and

is not a stable state of the system.

Mathematically, a path around all the branes, i.e. singular fibers, on CP1 ∼= S2 is also

a path around none of the branes. Therefore the total monodromy has to be zero. But

we know the monodromy corresponding to going around N D7-branes,
(

1 N
0 1

)
, which

certainly is not the identity. Hence only having D-branes leads to a contradiction.

The other branes are the more general (p, q)-branes, introduced in Section 2.5. They

come from when we naively claimed the form of τ around a brane, but only did so up

to an SL(2,Z) transformation. Locally, we can always forget about the other branes

in our setup, apply an SL(2,Z) transformation and then consider a D-brane. But it is

impossible to choose an SL(2,Z) transformation such that all the branes are D-branes.

Making the one a D-brane will ruin the “D-ness” of another.
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3.4 The M-theory/F-theory duality

In Section 2.4, we found that M-theory on a torus is dual to type IIB on a circle. To

make things more explicit, we consider M-theory on a 9-dimensional base space B9 times

the torus T 2. We consider type IIB on B9 × S1. If we follow the dualities carefully, we

can see that the complex structure τ of the torus on the M-theory side is determined by

τ = C0 + ie−φ, i.e. the value of the axio-dilaton on the type IIB side.

F-theory is concerned with a varying axio-dilaton profile. It is not immediately clear

that in this case the duality still holds, but following an adiabatic argument we can

assume that it does [VW96].

Suppose that we have a varying axio-dilaton profile. Then the complex structure of the

torus on the M-theory side also varies. To treat this case in general, we no longer talk

about the space B9 × T 2, but turn to the more general notion of an elliptic fibration

X11 → B9 (c.f. Defintion 3.5.1). We now reason the following:

Theorem 3.4.1. M-theory on an elliptic fibration X11 → B9 is dual to F-theory

on X11×S1 → B9×S1, where the fiber lives in the auxiliary dimensions of F-theory

and the radius of S1 is inversely related to the area of the fiber on the M-theory side.

Proof. The complex structure τ(z) of the torus fiber is now a function of the base space.

Since it coincides with the axio-dilaton, we see that the complex structure of the torus

fiber in the auxiliary dimensions of F-theory should also be τ . But in F-theory, the torus

lies over the full 10-dimensional space of type IIB, which is B9 × S1. So the relevant

elliptic fibration for the F-theory side is X11 × S1 → B9 × S1.

As described in Section 2.4, the S1 on the type IIB side comes from one of the circles

of the torus on the M-theory side. Between these two theories, a T-duality has to be

applied to the circle. This makes it so that the larger the S1 on the type IIB side, the

smaller one of the components of the M-theory’s torus. So the area of the torus fiber is

inversely proportional to the radius of the S1.

When people consider so called F-theory compactifications, it may at first not be clear

what is meant, since F-theory is not a theory in that it describes a new type of physics.

M-theory however, can be compactified as described in Section 2.3.2. So when F-theory

is compactified, this physically makes sense as a compactification of M-theory that this

duality identifies it with.
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3.5 The mathematical side of F-theory: elliptic fibrations

F-theory makes use of the mathematics of elliptic fibrations. We will explicitly define

this notion, since it shows what is generally assumed as mathematical structure when

working with F-theory.

Definition 3.5.1. Let Y and B be complex manifolds. An elliptic fibration is a

surjective, holomorphic map π : Y → B such that the fiber π−1(b) for generic b ∈ B
is topologically a torus.

In this definition, “generic” means that this property holds except for a finite or countable

number of points.

There are a few remarks to be made about this definition. First, note that this definition

needs a complex structure on both Y and B. Second, it is often assumed that there is

a (meromorphic) section. F-theory without sections has already been studied to some

extend, see [AGEGK14].

In the K3-example, we used that π was holomorphic quite extensively, as it allowed us to

write a polynomial equation for the fibers, immediately detecting that the singular fibers

were located at the point where the discriminant was zero. This indicates the usefulness

of such a structure when one wants to get concrete results. But it has a severe drawback.

The mathematician Kodaira classified all the possible singular fibers that can occur on

an elliptic surface (a complex surface admitting an elliptic fibration). None of these

possibilities has the monodromy of an anti-(p, q)-brane. So it is impossible to find a

singular fiber describing an anti-brane in the framework of elliptic surfaces. For the role

that these other singularities play in F-theory, see [Wei18]. We already acknowledge here,

and do so again in Chapter 7, that we will forget about these more involved singularities

that can occur in elliptic fibrations. They cannot be treated within Lefschetz fibrations.

3.6 Dropping the complex structure

Since the aim of this thesis is to describe anti-branes, we now already see that we must

drop some of the structure from the elliptic fibrations. We show that we can drop the

assumption of a complex structure on the torus, but still have the group SL(2,Z) arise

in a natural way from the it.
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We can look at the space of all diffeomorphisms from the torus to itself. This is huge

and infinite dimensional, but we declare a lot of them equivalent, namely if they can be

smoothly deformed into one another. More formally:

Definition 3.6.1. An isotopy between two embeddings ϕ0, ϕ1 : Y → X is a smooth

map Φ: I × Y → X such that each Φ(t,−) = ϕt : Y → X is an embedding. If an

isotopy between two maps exists, we call them isotopic.

So a map from the torus to itself that just wobbles and stretches it a little bit, but does

not really introduce a twist, is just isotopic to the identity. We call a diffeomorphism a

large diffeomorphism if it is not isotopic to the identity.

Definition 3.6.2. The mapping class group of a space X, denoted byM(X), is the

group of isotopy classes of diffeomorphisms from X to itself. The group structure is

given by composition of maps. If X is a surface of genus g, we denoteMg =M(X).

The mapping class group of the torus can be rigorously proved to be M1
∼= SL(2,Z)

[FM11]. But here we will just give the idea: suppose we have a diffeomorphism of the

torus. Since the torus is just S1 × S1, this diffeomorphism will be an embedding of

{x}×S1 and S1×{y} for each x, y ∈ S1. So these circles have to get mapped to circles.

Since we are working up to isotopy, we do not care about where they land precisely. We

do care how often these circles wind around the torus, since different winding numbers

cannot be deformed into one another. So say that our diffeomorphism would send the

circle {x}×S1 to a circle that winds around the first component of the torus p times, and

around the other q times. We claim that this map is then isotopic to the diffeomorphism

ψ : T 2 → T 2 given by ψ(θ, ϕ) = (θ + pϕ, qϕ). If p and q are not relatively prime, this is

not injective and hence not a diffeomorphism. So the elements ofM1 can be represented

by pairs of relatively prime integers (p, q). For every such pair, there exist unique integers

r, s ∈ Z such that pr − sq = 1. So the matrix ( p sq r ) has determinant 1 and hence lies in

SL(2,Z). Every element of SL(2,Z) arises in this way.

If we also look at what composing two of these diffeomorphisms does to the winding

numbers, we see that this respects the same group structure as the matrix multiplication

of SL(2,Z). So we conclude that the mapping class group M1
∼= SL(2,Z).

Not having a complex structure robs us of the opportunity to talk about the value of τ

at a certain point. But as argued above, it was necessary to drop something and we will

see later see that this looks like a logical first step.
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Figure 3.2: An example of a path winding around both components of the torus once.
This would be the image of a map that is isotopic to ψ(θ0, ϕ) = (θ0 + ϕ,ϕ) for some
given θ0.



Chapter 4

Introduction to Lefschetz

fibrations

Now we arrive at the more mathematical part of this thesis. In the previous chapter,

we noted that elliptic fibrations are powerful but restrictive. In this chapter, we develop

the theory of Lefschetz fibrations. These are a related, but much less restrictive type

of fibrations. They originated in algebraic geometry, but Gompf and Donaldson have

proven their usefulness in differential geometry as well [Don98], [GS99].

We largely follow the approach of [GS99] in this and the following section.

4.1 Definition and basic properties

We define Lefschetz fibrations for all manifolds of even dimension, but will soon restrict

to manifolds of dimension 4, which are relevant for our purposes.

Definition 4.1.1. Let X2n and Σ2 be compact, connected, oriented, smooth mani-

folds. A Lefschetz fibration on X is a map π : X → Σ, such that for any critical point

and its value, there are orientation preserving, complex coordinate charts centered

at them, such that π takes the form π(z1, . . . , zn) = z2
1 + · · ·+ z2

n.

Remark 4.1.2. Some terminology: we call the space π−1(p) ⊆ X the fiber over

p ∈ Σ. For an overview of the words regular/critical point/value, see Appendix A.

37
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Remark 4.1.3. Some authors include in their definition of a Lefschetz fibration

the condition that π is injective on its critical points, i.e. each critical point has its

own corresponding critical value. This is just another way of saying that there is at

most one critical point per fiber. This can always be achieved by slightly perturbing

the map π.

We will now treat some basic properties of Lefschetz fibrations. First of all, there are

finitely many critical points of π. To see this, we denote the set of critical points of π by

K. By the demanded local form of π around critical points, we see that in particular,

we have an open neighbourhood Ux around each x ∈ K, such that K ∩ Ux = {x}, i.e.

K forms a discrete subset of a compact set. To see that this leads to the conclusion of

K being finite, we can add the complement of X −K to the collection of opens Ux to

obtain an open covering of X. By compactness of X, we can choose a finite subcover,

which in particular must contain all Ux for all x ∈ K. Therefore, there are only finitely

many critical points of π.

Secondly, we can prove that apart from this finite number of fibers over the critical

values, π is a fiber bundle.

Lemma 4.1.4. Let π : X → Σ be a Lefschetz fibration. Let Σ∗ be the set of

regular values of π and let Γ = π−1(Σ − Σ∗) be the set of singular fibers. Then

π
∣∣
X−Γ

: X − Γ→ Σ∗ is a fiber bundle with connected base space.

Proof. By Ehresmann’s fibration theorem, π
∣∣
X−Γ

defines a fiber bundle if it is a proper1

surjective submersion. The properness follows from π being continuous and X being

compact. It is a submersion because we deleted the points on which π is not, namely

the critical points. Surjectiveness can be reasoned as follows: Since there are finitely

many critical values, Σ∗ is connected. Also, submersions send open sets to open sets,

so π(X − Γ) ⊆ Σ∗ is open. Since X is compact, π(X) ⊆ Σ is also compact and hence

closed. That means that π(X−Γ) = π(X)−π(Γ) ⊆ Σ∗ is also closed. So π(X−Γ) ⊆ Σ∗

is a connected component. Therefore, π
∣∣
X−Γ

is surjective.

This lemma in particular implies that all the fibers over regular values are diffeomorphic

and are of dimension 2n− 2. As a result, we say that a Lefschetz fibration has F as its

fiber when its regular fiber is diffeomorphic to F . The fibers over the critical values are

of a different form and hence are called singular fibers.

1A map is proper if the inverse image of any compact subspace is compact.
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We see that each fiber F is compact and canonically oriented. The compactness follows

from F being a closed subspace of a compact space. The orientation follows by virtue of

π being a submersion at every point except its critical points (where the fibers are also

no longer manifolds, so we cannot talk about orientations there) as follows: at a point

x ∈ F , pick 2 vectors v1, v2 ∈ TxX that get mapped by dπ to a positive basis of Tπ(x)Σ.

A basis {w1, . . . , w2n−2} of TxF = ker dπ will give us a basis {v1, v2, w1, . . . w2n−2} of

TxX. Since X is oriented, we can say whether this is a positive or negative basis and call

the basis {w1, w2n−2} for TxF positive (negative) whenever the basis for TxX is positive

(negative).

The following proposition is a direct analogue of a famous result for fibrations. See

Appendix A for a definition of πn.

Proposition 4.1.5. Let π : X → Σ be a Lefschetz fibration with fiber F . The

maps F ↪→ X → Σ induce an exact sequence

π1(F )→ π1(X)→ π1(Σ)→ π0(F )→ 0.

Here exactness of the map π1(Σ) → π0(F ) is defined as exactness between pointed

sets.

Proof. This sequence is derived in the same way as the exact sequence for fiber bundles:

the first two maps are the maps induced by inclusion and π. The map π1(Σ)→ π0(F ),

which we will call δ, is defined using the homotopy lifting property (HLP). Every fiber

bundle has this property, so we first restrict to the case of the fiber bundle π
∣∣
X−Γ

: X −
Γ → Σ∗. Given any path γ : I → Σ∗, the HLP implies that we can lift this to a path

γ̃ : I → X − Γ such that π ◦ γ̃ = γ. We can choose the starting point of γ̃, as long as

it sits in π−1(γ(0)). We choose a preferred connected component of F , such that π0(F )

becomes a pointed set, and let γ̃(0) lie in this component. We then define δ([γ]) = [γ̃(1)].

In words: it sends a loop γ to the connected component in which the lift of γ ends. The

fact that this is well-defined can also be proved using the HLP. Exactness is reasoned as

follows:

• At π1(X): A loop that lies in the fiber will always be projected to the constant

path. Conversely, if a loop γ is sent to a contractible loop on Σ, then the HLP

tells us that we can lift the contraction to X and homotope γ to a loop that lies

in a single fiber.

• At π1(Σ): Given a loop in X that we call γ, its projection π ◦ γ has naturally γ
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as its lift. Since γ is a closed path, its begin and end point are the same and thus

lie in the same connected component of the fiber. Conversely, if the lift of a path

in Σ has its starting and ending point in the same component of the fiber, we can

close it up to be a loop. Hence the path in Σ was given by the projection of its

lift.

• At π0(F ): Since X is connected, there is a path γ in X connecting any given

connected components of F . Projecting this path to Σ, it becomes a loop with γ

as its lift. So δ([γ]) is the required connected component.

This proof works for the case where γ does not go through critical values. If γ does go

through a critical value, we can homotope it a little bit such that it no longer does so.

Since it is only the homotopy class of γ that is relevant, this is not a problem. However,

we have to check that the different ways of homotoping γ away from the critical value,

leave δ([γ]) invariant. However, in Section 4.1.1 we will see how the singular fibers look

and from that we can conclude that singular fibers have the same number of connected

components and hence going through a singular fiber will not change the connected

component that our path lies in. So this is indeed well defined. Nothing changed in the

reasoning about exactness, so this proves the proposition.

From this proposition, we deduce that we can always assume the fibers of Lefschetz

fibrations to be connected. Because F is compact, π0(F ) is always a finite set and we

call its number of elements n. Hence if n 6= 1, then π1(X) gets mapped to a subgroup G

of π1(Σ) of index n. By replacing Σ with its n-sheeted covering space Σ′ corresponding

to G, we obtain a new Lefschetz fibration with connected fibers.2 Geometrically, we

replace Σ by a space that contains each small piece of Σ n times and we place each

component of the fiber π−1(x) over a different copy of x.

From now on, we will work with Lefschetz fibrations of 4-dimensional mani-

folds. Also we will assume the fiber to be connected.

Since in this case a regular fiber F is an oriented surface, we know it will always be a

surface of some genus g. This genus of the regular fibers cannot vary, since by Lemma

4.1.4, π is a fiber bundle except for finitely many points.

2This new Lefschetz fibration exists because of the property that a map f : X → Σ can be lifted to
a map X → Σ′ if f∗(π1(X)) ⊆ p∗(π1(Σ′)). Here p : Σ′ → Σ is the covering map and this condition is
satisfied by definition of Σ′ being the covering space corresponding to G.
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Definition 4.1.6. Let π : X4 → Σ2 be a Lefschetz fibration with a surface of genus

g as its regular fiber. We call π a genus-g Lefschetz fibration.

4.1.1 Vanishing cycles

A Lefschetz fibration distinguishes itself from a usual fiber bundle by the appearance

of critical points of π. Because of our allowance for these critical points, there can be

finitely many fibers that do not look like the others. We will find a description for these

singular fibers in this section.

Our demanded local form around a critical point can be transformed to π(z1, z2) = z1z2,

as it gives back the demanded form after a linear transformation (z1, z2)→ (z1−iz2, z1 +

iz2). Given a value t ∈ C, t 6= 0 that is small enough, we can write π−1(t) = {(z1,
t
z1

)} ⊆
C2. In particular, this submanifold has a unique non-contractible circle embedded in it,

which collapses to a point as t goes to zero. In this parametrization, it is given by points

of the form (
√
teiθ,
√
te−iθ). When we finally reach the point t = 0, we no longer have

a smooth submanifold, but a transverse intersection of two planes in the origin, where

the radius of our circle has become zero3.

Because of the four dimensional nature, it is hard to imagine what is happening. But

one can get an intuitive picture by taking every parameter to be real and reading ‘circle’

and ‘plane’ as S0 and ‘line’ respectively. See Figure 4.1 for this point of view.

Figure 4.1: A drawing of the “side view” of π−1(t) for four different values of t. The
coloured points are copies of S0: they begin to lie closer to each other as t → 0, so the
cycle starts to vanish.

This circle is called the vanishing cycle. If the generic fiber is a torus, the singular fiber

3This gives us slightly more, namely that the singular fiber has a positive transverse self-intersection.
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can be for example a pinched torus or it can be a torus with a sphere attached to one

point. See Figure 4.2 for a drawing of these two cases.

Figure 4.2: Two examples of vanishing cycles and their resulting singular fiber. The
second case is an example of a separating cycle.

The case of a torus with a sphere attached is a special case of what happens when the

vanishing cycle is a null-homotopic. In this case, the resulting singular fiber will be the

image of an immersion of a disconnected surface: one diffeomorphic to the regular fiber

and the other to a sphere. If none of the vanishing cycles are null-homotopic, we call

the Lefschetz fibration relatively minimal. For our purposes, only relatively minimal

Lefschetz fibrations will be relevant.4

4.2 Monodromy

Before properly introducing the concept of monodromy, we first turn to the example of a

helicoid, see Figure 4.3. This helicoid is a fiber bundle over C−{0} where the projection

π is simply projecting down to the plane. The fiber F over some point x is isomorphic

to Z. Now suppose we have a path γ in C−{0} that starts and ends at x. Although the

path in C−{0} is a loop, a lift of it to the helicoid need not be. In this case, it is a loop

4By performing a blow-up or blow-down, one can always create/annihilate nullhomotopic vanishing
cycles in the fibration at the cost of changing the topology of X in a controlled way.
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Figure 4.3: A helicoid with a lift of the path that goes around 0 once.

if γ does not encircle 0, but is no longer a loop if γ does. A way to describe this, is to

associate a map to γ that goes from the fiber to itself. We call this Ψ(γ) and it is given

by sending y ∈ π−1(x) to η(1) ∈ π−1(x) where η is a lift of γ such that η(0) = y. Hence

if Ψ(γ) is not the identity, we know that lifts of γ cannot be loops. This map Ψ(γ) is

the monodromy associated to the path γ.

We can do the same for any fiber bundle, so the general notion of monodromy is as

follows. Let π : E → B be a given fiber bundle with fiber F . Recall from Section 3.6

that we denote the mapping class group of F byM(F ). Choose a base point x0 in B and

let ϕ be the identification of F with the fiber over x0. Then we define the monodromy

representation Ψ: π1(B) → M(F ) as follows: For each loop γ : I → B, the pull-back

bundle πγ : γ∗(E)→ I is trivial (since its base space is contractible) and hence induces a

diffeomorphism π−1
γ (0)→ π−1

γ (1) that is well-defined up to isotopy.5 We use ϕ to identify

both fibers with F and hence obtain an element Ψ(γ) ∈ M(F ). This is a well-defined

anti-homomorphism from π1(B) to M(F ), reversing the order of products instead of

preserving them. But the only reason for this is that we denote concatenation of paths

from left to right and concatenation of functions from right to left. This therefore has

its origin in poorly compatible definitions and does not say anything significant about

5By varying the path, we might get a different diffeomorphism. But the varying of the path will lead
to an isotopy between the two diffeomorphisms.
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the underlying mathematical structure.

Definition 4.2.1. Let π : E → B be a fiber bundle with fiber F . The monodromy

representation of the fiber bundle is the homomorphism π1(B)→M(F ) as described

above. We call the image of a class of paths [γ] ∈ π1(B) under this homomorphism

the monodromy associated to γ.

For a Lefschetz fibration π : X → Σ, we define the monodromy representation as the

monodromy representation of the fiber bundle over Σ∗, the regular values of π. Remem-

ber that this is indeed a fiber bundle by Lemma 4.1.4.

It is a fact (see [Mat96]) that for π a relatively minimal Lefschetz fibration that is injective

on its critical points, the monodromy representation Ψ: π1(Σ∗)→Mg determines π up

to isomorphism, except in the cases of sphere and torus fiber bundles over closed surfaces.

Examples that show that there is more than one possibility in these cases are given by

S2 × S2 → S2 and CP2#CP
2 → S2 for the sphere bundles and S2 × T 2 → S2 and

S3 × S1 → S2 for the torus bundles. We will encounter this last example again in

Section 6.3.1.

We can characterize which monodromy representations can be realized by Lefschetz

fibrations. Given a relatively minimal Lefschetz fibration π : X → Σ and a disk D ⊆ Σ,

we can consider the monodromy of the bundle π
∣∣
π−1(∂D)

, provided that this oriented

circle avoids the critical values of π. If D does not contain any critical values, then the

path ∂D is nullhomotopic in Σ∗, hence the monodromy over it is zero. If D however

contains a single critical value p, the monodromy is non-trivial.67 In this case, the

monodromy representation of π
∣∣
π−1(∂D)

is fully defined by the monodromy of the path

going around ∂D once in the counter clockwise direction. We will call this path σp. To

describe what we get in these situations, we define Dehn twists.

Definition 4.2.2. A right-handed Dehn twist ψ : F → F on a circle γ in an oriented

surface F is a diffeomorphism obtained by identifying a tubular neighbourhood νγ

of γ with S1×I, setting ψ(θ, t) = (θ+2πt, t) on νγ and gluing smoothly into idF−νγ .

Intuitively, this can be seen as cutting the surface F along γ, twisting 360◦ to the

right and regluing. See Figure 4.4. The monodromy in a Lefschetz fibration around a

6Since the critical values form a discrete subset of Σ, it is always possible to pick D in such a way
that it only contains one critical value.

7In a Lefschetz fibration that is not relatively minimal, the monodromy can still be trivial. Since it is
the monodromy that is relevant for F-theory and hence our purposes, Lefschetz fibrations that are not
relatively minimal are not relevant for us.
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Figure 4.4: An illustration of a Dehn twist over the cycle γ.

vanishing cycle C, is the Dehn twist along C.

Theorem 4.2.3. Let π : X → Σ be a Lefschetz fibration with regular fiber F and

let p ∈ Σ be a critical value of π with vanishing cycle C ⊆ F . Then the monodromy

over the path σp is given by a right-handed Dehn twist along C.

Figure 4.5: Illustration of
the fiber F with A in it.
The solid torus can be
imagined on the inside of
A.

The proof of this theorem will be based on the theory that

is developed in the next chapter. One can skip it at first

reading and always come back if interested.

Proof. We look at the disk D enclosed by σp in Σ. Over

this disk, the Lefschetz fibration π̃ : π−1(D) → D has only

a single singularity. The boundary of π−1(D) is what is

important: this is the torus bundle over S1 that can be

described as
T 2 × [0, 1]

(x, 0) ∼ (ψ(x), 1)
, where ψ is the monodromy.

We can assume without loss of generality that the Kirby

diagram of π−1(D) looks like Figure 5.24. The influence on

the boundary of adding a handle is described by surgery on

the attaching region of that handle. So we have to prove

that surgery on S1 × T 2 on a −1-framed circle C that lies

in a single copy of T 2, called F , gives us a Dehn twist as

monodromy. Surgery in this case means the removal of a

tubular neighbourhood of C, i.e. removing νC ∼= S1 ×D2,

and gluing a solid torus back in via a diffeomorphism ϕ of

the boundary torus. The −1-framing specifies this diffeo-

morphism.

Only the isotopy class of this diffeomorphism matters. We know that M1 = SL(2,Z).

Now we have to find the element that corresponds to this −1-framing. Figuring out the
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map, we find that it is the element ( 1 1
0 1 ). Since we can isotope the solid torus without

changing the diffeomorphism type of the result, we can make it so that it intersects F

in a neighbourhood A ∼= C × (−ε, ε). The diffeomorphism ϕ can be chosen to be the

identity on the boundary torus except at A. On A it is a Dehn twist (as can be seen by

looking at its effect on homology). Therefore, we have introduced a Dehn twist on the

fiber that contains C.

The reason we only have right-handed Dehn twists is the condition of orientation preser-

vation in the definition of a Lefschetz fibration.

4.2.1 Possible monodromies

We can calculate the possible monodromies around a singularity in a genus-1 Lefschetz

fibration. The result will be the first strong indication of Lefschetz fibrations being useful

in F-theory: it will achieve goal 2 from Chapter 1 for us.

The torus T 2 has two basis elements for its first homology class, which we will call a

and b. Since, as noted in Section 3.6, the result of the monodromy associated to some

path γ on a and b fully describes the element of M1 = SL(2,Z) that is associated γ, it

is enough to see what Dehn twists do to these basis elements.

To get a picture: let α,C be given 1-cycles in the torus. We consider the effect on α of

the Dehn twist along C. If α intersects C once, the Dehn twist will add the winding of

C to α. If α did not intersect C, it would be left invariant. However, if α intersected C

twice, the winding of C would also be added to α twice.

We can turn this reasoning into a formula and obtain the Lefschetz-Picard formula. It

states that the Dehn twist ψ over the circle C sends an element [α] ∈ H1(T 2) to

ψ∗([α]) = [α]− (α · C)[C]. (4.1)

Here [C] means the homology class of C and α ·C is the intersection number of the cycles

C and α. The only thing that is important to know about the intersection number for

this computation is that in this case a · b = 1 and b · a = −1.8 We now use this formula

on the most general vanishing cycle possible: [C] = pa+ qb for some p, q ∈ Z relatively

prime. We show the effect of the Dehn twist on a. The computation for b is completely

8In general the intersection number is graded commutative, so it is anti-commutative for 1-cycles,
commutative for 2-cycles, etc.
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analogous.

ψ∗(a) = a− (a · (pa+ qb))[pa+ qb]

= a− qpa− q2b

= (1− pq)a− q2b.

The result is that the monodromy around a singularity with vanishing cycle C = pa+ qb

is given by (
1− pq p2

−q2 1 + pq

)
= M(p,q) (4.2)

This is precisely the monodromy around a (p, q)-brane as obtained in (3.5). So in physical

terms: for any (p, q)-brane, there is precisely one vanishing cycle (up to homotopy) such

that a singularity with that vanishing cycle has the monodromy of a (p, q)-brane. So

Lefschetz fibrations can distinguish between (p, q)-branes for different values of p and q.

4.3 Achiral Lefschetz fibrations

In the definition of a Lefschetz fibration, we assumed X and Σ to be orientable. In

achiral Lefschetz fibrations, we drop this assumption.

Definition 4.3.1. Let X2n,Σ2 be compact manifolds. An achiral Lefschetz fibra-

tion on X is a smooth map π : X → Σ such that for any critical point x and its value

y, there are complex coordinate charts on X and Σ centered at x and y in which π

takes the form

π(z1, . . . , zn) = z2
1 + · · ·+ z2

n.

Note that even when X and Σ are oriented, this definition is broader than the definition

of a Lefschetz fibration, since the singularities do not have to respect the orientation.

We will see the consequences of this for the topology of X in Section 5.3.3.

Note that while a singularity is fully determined by its vanishing cycle in the ordinary

Lefschetz case, we can now have two different singularities corresponding to the same

vanishing cycle, depending on the orientation of the complex coordinate charts chosen

around it. We say that these singularities are of opposite chirality.

We will now prove the following:
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Proposition 4.3.2. Let an achiral Lefschetz fibration be given. The monodromy

around two singularities with the same vanishing cycle but of opposite chirality is

the identity.

Proof. In the case of ordinary Lefschetz fibrations, the monodromy around a Lefschetz

singularity is a right-handed Dehn twist on the vanishing cycle. However, looking at the

proof of that statement (c.f. Theorem 4.2.3), we see that the right-handed Dehn twist

arose because of the −1-framing on the added 2-handle. For a singularity of opposite

chirality, the framing is +1. Therefore, an achiral Lefschetz fibration can also have a left-

handed Dehn twist on the vanishing cycle. Saying that two singularities are of opposite

chirality is equivalent to saying that the monodromy of one of the two singularities is

a right-handed Dehn twist and the other a left-handed Dehn twist. Since these are

performed on the same vanishing cycle, we conclude that the total monodromy is the

identity map.

Just for general interest, we include the following theorem:

Theorem 4.3.3 (Theorem 8.4.10 [GS99]). Let π : X → S2 be a genus-1 achiral

Lefschetz fibration. Suppose that X is simply connected and π has critical points

of both orientations. Then X is diffeomorphic (possibly reversing orientation) to a

connected sum of copies of either CP2 and CP
2

or a K3 and S2 × S2.

Remark 4.3.4. The surface E(2) is a K3 surface.

Remark 4.3.5. The requirement that X is simply connected sounds very strict,

but in practice it will not be. Suppose a Lefschetz fibration contains two singularities;

both with a basis element of π1(T 2) = Z ⊕ Z as their vanishing cycle, but not the

same. Then a direct application of Van Kampen’s theorem shows that the space

X will be simply connected. Another way of seeing this is by using the techniques

developed in the next chapter: the two 2-handles corresponding to the singularities

can both cancel a 1-handle, hence leaving no 1-handles. Since 1-handles are the

generators of π1(X), this means that X is simply connected.
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4.4 Log-symplectic structures and b-manifolds

Log-symplectic structures are symplectic structures9 with a certain degeneracy; they are

symplectic, except on a codimension 1 submanifold. The orientation induced by this

log-symplectic form in some sense ‘switches’ when passing through its degenerate locus.

We first give the definition and the local form. After that, we will set up a beautiful

framework, which we will refer to as the ‘b-language’, to describe these structures in a

more natural way.

We introduce these structures because there exists a link between achiral Lefschetz

fibrations and log-symplectic structures that is similar to the link between Lefschetz

fibrations and symplectic structures. We will treat this link in Section 4.5.

4.4.1 Log-symplectic structures

Log-symplectic structures are defined using Poisson structures, so we define them first.

Definition 4.4.1. A Poisson structure on a manifold M is a bivector π ∈ X2(M) =

Γ(∧2TM) such that

[π, π] = 0, (4.3)

where [·, ·] is the Schouten-Nijenhuis bracket.

The Schouten-Nijenhuis bracket is an extension of the traditional Lie bracket to multi-

vectorsfields: [·, ·] : Xp(M)× Xq(M)→ Xp+q−1(M).

When m = 2n, a generic bivector at a point p gives an isomorphism π : T ∗pM → TpM .

This is the case if and only if πn = π ∧ . . . ∧ π 6= 0. If a Poisson structure is everywhere

invertible (that is, it is an isomorphism between T ∗pM → TpM), its inverse gives us a

symplectic structure. The closedness condition for symplectic structures is equivalent to

equation (4.3). For more details, see [FM15].

The log-symplectic case is a slight generalization of the symplectic case, allowing for a

degeneracy in the structure.

Definition 4.4.2. A log-symplectic structure on M2n is a Poisson structure π for

which the zeroes of πn are non-degenerate.

9For the definition of a symplectic manifold, see Appendix A.
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The definition implies that the zeroes of πn define a codimension 1 submanifold, which

we denote by Zπ. This is called its zero locus. On the complement of the zero locus, the

Poisson structure is invertible and therefore M −Zπ admits a symplectic structure. The

complement of the zero locus is therefore sometimes called the symplectic locus. We say

that a pair (M,Z), i.e. a manifold M with a codimension 1 submanifold Z ⊆M , admits

a log-symplectic structure when there is such a structure on M such that Zπ = Z.

We will give a simple, but important example.

Example 4.4.3 (Standard log-symplectic structure). As our manifold, we pick

M = R2n and we define the Poisson structure

π = x1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂x4 + · · ·+ ∂x2n−1 ∧ ∂x2n . (4.4)

The zeroes of πn are given by Zπ = {x1 = 0}. Indeed they are non-degenerate and

we can therefore speak of a log-symplectic structure. We can invert this away from

the zero locus, to get a symplectic form there, given by

ω = d log |x1| ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n. (4.5)

Here, we used that d log |x1| = dx1
x1

. We now see why it is called a log-symplectic

structure. Note that ω is not defined on the singular locus, as should be the case

since π is not invertible there. We can also see that the zero locus is not a sym-

plectic submanifold, but it has ‘symplectic leaves’: for every value of λ, the set

{(0, λ, x3, . . . , x2n)} ∼= R2n−2 is a symplectic submanifold.

In everything that follows, one can always pick this example to see what is going on in

practice. In fact, for the local picture, this covers all the cases.

Theorem 4.4.4. Let (M,π) be a log-symplectic manifold and let x ∈ Zπ. Then for

an appropriate coordinate chart around x, the log-symplectic structure has the form

π = x1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂x4 + · · ·+ ∂x2n−1 ∧ ∂x2n .

This is a consequence of the Weinstein splitting theorem [Wei83]. It is for log-symplectic

structures what the Darboux theorem is for symplectic structures. Of course, away from

the zero locus, we can still use Darboux to obtain a local image of π. Since we now know

the local structure of a log-symplectic manifold, we see that it is always the case that

the zero locus has codimension 1 subspaces that are its symplectic leaves.



Chapter 4: Introduction to Lefschetz fibrations 51

It is important to note that a log-symplectic structure does not induce an orientation,

contrary to a symplectic structure.

4.4.2 b-manifolds

In this section, we will introduce more language to talk about log-symplectic structures

and achiral Lefschetz fibrations. In this way, we can make more precise what kind of

orientation a log-symplectic structure gives, since it cannot be an ordinary one. This

framework also helps to develop an intuition for these structures. Our treatment follows

[CK16].

The idea will be that we ‘formalize’ the part of our Poisson structure that degenerates.

So in Example 4.4.3, instead of seeing the vector x1∂x1 as zero on the locus {x1 = 0},
we will consider it as being a vector like any other in something called the b-tangent

bundle. We can then regard log-symplectic structures as ordinary symplectic structures

on this modified tangent bundle.

The modified tangent bundle will be an object known as a Lie algebroid, so we will start

by defining that.

Definition 4.4.5. Let M be a manifold. A Lie algebroid is a vector bundle L→M

together with a bracket [·, ·] : Γ(L)×Γ(L)→ Γ(L) on the space of sections such that

Γ(L) is a Lie algebra, and an anchor map ρM : L→ TM that satisfies the following

Leibniz rule for v, w ∈ L and f ∈ C∞(M),

[v, fw] = f [v, w] + (ρM (v)f)w.

Two examples of Lie algebroids are Lie algebra’s, where M is the one-point space, and

the tangent bundle, where L = TM and ρM = id.

Given a pair (M2n, Z) with M connected, we define Vb(M) ⊆ Γ(TM) as the vector fields

on M that are tangent to Z. We note that Vb(M) is a Lie subalgebra, since the Lie

bracket of two vectors that are tangent to Z is again tangent to Z10. The Serre-Swan

theorem now states that Vb(M) can be described as the sections of a vector bundle over

M called bTM . If Z = {x1 = 0}, bTM would be spanned by 〈x1∂x1 , ∂x2 , . . . , ∂x2n〉.

10This can be shown by applying the vector to the function of which Z is a level set: if the vector
applied to it is 0, the vector is tangent.
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Definition 4.4.6. Let (M,Z) be a pair. The b-tangent bundle bTM → M is the

vector bundle over M such that Vb(M) = Γ(bTM). A b-manifold is a pair (M,Z)

with the bundle bTM .

It may not be immediately clear, but when we spoke of ‘formalizing’ a certain vector

at the start of this subsection, this was the step we referred to. Away from Z, bTM

is isomorphic to TM , so it is a vector bundle of rank 2n. Over Z, it is spanned by

all vectors that are tangent to Z, of which there are 2n − 1, plus an extra vector. If

Z = {x1 = 0}, we will denote this formal vector by x1∂x1
11. It should however be kept

in mind that in bTM , this is just a name for a basis vector and hence never zero, not

even over Z.

This b-tangent bundle bTM is a Lie algebroid over M , with the anchor map ρM : bTM →
TM being the natural inclusion. This is an isomorphism away from Z, but on Z, it

‘realizes’ that this formal vector cannot possibly be tangent to Z and sends it to zero.

Note that we did not use log-symplectic structures to introduce this concept: a sub-

manifold Z was all that we needed. But the connection with log-symplectic struc-

tures can already be seen: in this new tangent bundle, the log-symplectic structure

π = x1∂x1 ∧∂x2 + · · · (c.f. equation (4.4)) now is invertible over Zπ, since its first term is

not zero in
∧2 bTM . Therefore it will give us a symplectic form on the b-tangent bundle,

allowing us to use symplectic techniques to study what actually is only a log-symplectic

structure. We make this more precise in Proposition 4.4.12, but first need to give some

extra definitions.

Definition 4.4.7. A b-map between two b-manifolds (M,ZM ) and (N,ZN ) is a

map f : M → N such that f−1(ZN ) = ZM and such that f is transverse to ZN .

That is, for y ∈ ZN and x ∈ f−1(y), we have dfx(TxM)⊕ TyZN = TyN .

Definition 4.4.8. A b-orientation on (M,Z) is an orientation for the bundle bTM ,

i.e. a smooth choice of ordered basis.

Note that, away from Z, we get an orientation from such a b-orientation via the anchor

map ρM . But on Z, one of the vectors in the basis of bTM gets projected to zero by

ρM . Also, the formal vector gets a minus sign when crossing Z. So a choice of ordering

11More generally, we could write σ(x)∂x1 for some smooth function σ that vanishes only on Z. But
in order for this to be an element of the basis of bTM , we should be able to build the vector field x1∂x1
from it. This forces σ to be transversal to Z or, equivalently, have a zero of first order at Z. Therefore,
we may as well just write σ(x) = x1.
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for the basis (x1∂x1 , ∂x2 , . . . , ∂x2n) is after applying ρM never the same as an ordinary

orientation. See Figure 4.6.

Figure 4.6: An image of a b-orientation after ρM has been applied to it. The line in the
middle is the zero locus.

This leads to the fact that some manifolds that do not admit orientations, do admit

b-orientations (see Example 4.4.9). But also the other way around: given (M,Z), even

with M orientable this may not be b-orientable.

Example 4.4.9 (b-orientation on the Moebius strip). We construct a b-orientation

on perhaps the most famous of the unorientable surfaces: the Moebius strip. We

parametrize the circle lying in the strip by θ. As the zero locus Z, we take a line

perpendicular to the circle that lies within the strip, so over the full width of the

strip. Around this zero locus, we trivialize the Moebius strip and obtain a coordinate

t that parametrizes the width on the strip and θ parametrizing a piece of the circle,

such that Z = {θ = 0}. Picking an orientation on one side of Z, the problem with

orienting the Moebius strip is that when we go around, it comes back with the t-vector

upside down. But when we pick the b-orientation that is given in local coordinates

by (θ∂θ, ∂t), we see that also the θ-vector gets turned around when passing through

Z (as in Figure 4.6), effectively giving us the same b-orientation. The clash at Z

between orientations that we chose and orientations that went around the strip once,

is no longer there. Therefore, the Moebius strip does admit a b-orientation.

Now that we have some intuition for the workings of b-manifolds, we can introduce more

objects on them that are the b-counterparts of things we know from ordinary manifolds,

starting with b-forms.
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Definition 4.4.10. A b-k-form on a b-manifold (M,Z) is a section of the k-th

exterior power of the b-cotangent bundle. That is, bΩk(M) = Γ(∧k(bTM)∗).

It is possible to define an exterior derivative bd on these forms, since everything we need

for that is a Lie bracket and a notion of applying vectors to functions, which is given

by the anchor ρM . And now that we have that, we can speak of closed b-forms and

introduce one of the key objects of this part.

Definition 4.4.11. A b-symplectic form is a closed, non-degenerate b-two-form.

A b-symplectic form is the b-counterpart of a symplectic structure and carries the same

information as a log-symplectic structure. We will make this more precise, but first

go back to our elementary case, Example 4.4.3. In the b-tangent bundle, we have the

formal element x1∂x1 . In the dual of this bundle, the b-cotangent bundle, we have a

dual element to this, which we for the moment call ξ. Then ξ(x1∂x1) = 1. Over the zero

locus ξ will be a formal element, but away from the zero locus, it gets identified with the

actual dual vector to x1∂x1 , which is dx1
x1

. Therefore, we will write ξ as dx1
x1

= d log |x1|.
Again, we keep in the back of our heads that over Z, this should be not be considered

as the actual expression for the covector.

Having the basis (d log |x1|, dx2, . . . , dx2n) for (bTM)∗, it is easy to write down a b-

symplectic form: ω = d log |x1| ∧ dx2 + dx3 ∧ dx4 + . . . dx2n−1 ∧ dx2n. This is precisely

the inverse of the Poisson structure π on the b-tangent bundle.

This is no coincidence, as the following construction shows. Given a log-symplectic

structure π on M , it gives a Poisson structure of maximal rank on bTM . This means

that it is invertible, and inverting it gives us a b-symplectic form.

Conversely, suppose we are given a b-symplectic form ω on (M,Z). Then we invert it to

get a Poisson structure bπ = ω−1 on bTM . Note that then bπ ∈ Γ(∧2(bTM)). Therefore,

πω := ρM (bπ) ∈ Γ(∧2TM). This is a Poisson structure that vanishes linearly over Z,

hence a log-symplectic structure on M . We obtain the following proposition. For more

details, see [GMP14].

Proposition 4.4.12. A b-two-form on a b-manifold (M,Z) is b-symplectic if and

only if its dual vector πω (constructed above) is log-symplectic with Zπω = Z.
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Corollary 4.4.13. A manifold M has a log-symplectic structure with zero locus Z

if and only if (M,Z) has a b-symplectic structure.

b-Lefschetz fibrations

We can also introduce the “b-analogue” of Lefschetz fibrations. We will temporarily use

p instead of π to avoid confusion with the Poisson structure.

Definition 4.4.14. A b-Lefschetz fibration is a b-map p : (X2n, ZX) → (Σ2, ZΣ)

between compact connected b-oriented manifolds so that for each critical point x,

there exist complex coordinate charts compatible with orientations induced by the

b-orientations centered at x and p(x) in which p takes the form p(z1, . . . , zn) =

z2
1 + · · ·+ z2

n.

The following proposition shows that an achiral Lefschetz fibration (c.f. Definition 4.3.1)

gives rise to a b-Lefschetz fibration.

Proposition 4.4.15. Let p : X2n → Σ2 be an achiral Lefschetz fibration between

compact connected manifolds which is injective on its critical points. Assume that

the generic fiber F is orientable and [F ] 6= 0 ∈ H2n−2(X;R). Then there exists a

hypersurface ZΣ ⊆ Σ so that p : (X2n, ZX) → (Σ2, ZΣ) is a b-Lefschetz fibration.

Here ZX = p−1(ZΣ).

Remark 4.4.16. Suppose we have an achiral Lefschetz fibration with a pair of

singularities of opposite chirality x1, x2. If we apply this proposition to it and obtain

a b-Lefschetz fibration, then x1, x2 must be in different connected components of

Σ − ZΣ. Because if they were not, the b-orientation on both these points would

induce the same orientation and hence they are not of opposite chirality.

4.5 Symplectic structures

From the perspective of differential geometry, Lefschetz fibrations suddenly became in-

teresting when it turned out that they were likely to give a topological classification of

symplectic manifolds. Donaldson proved that every symplectic manifold admits a Lef-

schetz pencil, a structure which after a finite number of blow-ups is a Lefschetz fibration.
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Gompf then proved the following a year later.

Theorem 4.5.1 (Theorem 10.2.8 [GS99]). Let X be a closed 4-manifold that admits

a Lefschetz fibration π : X → Σ, and let [F ] denote the homology class of the fiber.

Then X admits a symplectic structure with symplectic fibers iff [F ] 6= 0 ∈ H2(X;R).

Further, if e1, . . . en, n ≥ 1, is a finite set of sections of the Lefschetz fibration, then

[F ] 6= 0 holds and the symplectic form ω can be chosen in such a way that all these

sections are symplectic.

This sparked research into relations between variations on both structures. The following

is the case for achiral Lefschetz fibrations:

Theorem 4.5.2. Let X4 and Σ2 be compact connected manifolds and π : X → Σ

be an achiral Lefschetz fibration with generic fiber F . If F is orientable and [F ] 6=
0 ∈ H2(M ;R), then X has a log-symplectic structure whose singular locus has one

connected component and for which the fibers are symplectic submanifolds of the

symplectic leaves of the Poisson structure.

Remark 4.5.3. The only case when the condition [F ] 6= 0 can possibly fail to hold,

is in the case of a genus-1 Lefschetz fibration. This has the following origin: ker(dπ)

defines a vector bundle over X without its critical points, which extends to X and

can be made into a complex line bundle using the Hodge star as complex structure.

The first Chern class of this bundle, coincides with the Euler class of the fiber when

we restrict c1 to this fiber. But the Euler class, when evaluated on the fundamental

homology class of the fiber [F ], should give us the Euler characteristic of the fiber.

Since the Euler characteristic of a genus g surface is 2 − 2g, the only case in which

this is zero, is g = 1.

We will prove Theorem 4.5.1. After that, there are a few comments about the proof of

Theorem 4.5.2.

Before we start, we will give an idea of the proof: To construct a symplectic form on

X, we want to construct a form η that is symplectic along all the fibers, and has some

controlled form around the critical points. We can then also pick a symplectic form

ωΣ on Σ, and pull that back and add them to make sure it is non-degenerate in every

direction: ω := π∗ωΣ + tη. For some small t > 0, this will be symplectic.
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To construct η, we create a form ζ that is already symplectic along the fibers. We

modify it with some exact form (so we don’t change its cohomology class) in a way so

we can control it around the critical points, giving us η. The modification is obtained

by forming a symplectic structure ωy on each fiber Fy separately, then extending them

to a neighbourhood around the fiber, taking a finite subcover of these opens and gluing

everything together with a partition of unity subordinate to the finite subcover.

We also note that [F ] 6= 0 is necessary, since if we have some symplectic structure ω

that restricts to a symplectic structure on F , we have 〈[ω], [F ]〉 > 0, which cannot be

the case for [F ] = 012.

To see that the requirement [F ] 6= 0 is also sufficient is the hard part. We assume that

the fibers are connected and we perturb π slightly if necessary to make sure that it

becomes injective on its set of critical points, i.e. contains no two critical points in the

same fiber.

Lemma 4.5.4. There exists a closed 2-form ζ on X such that if F0 is a closed

surface contained in a fiber, then
∫
F0
ζ > 0.

Proof. Let F be an arbitrary fiber. If it is regular, we see that it is an oriented surface

that we have assumed to be connected. Therefore, the only closed surface contained in

it, is F itself. Since [F ] 6= 0, there exists an a ∈ H2
dR(X) such that 〈a, [F ]〉 > 013.

Turning to the case that F is singular, we still have that it only contains itself as a

closed surface, except for when we have a separating vanishing cycle. In this case, F is

the wedge sum of two closed, oriented surfaces F0 and F1 (i.e. they kiss each other at

one point). Again, we have s = 〈a, [F ]〉 > 0. If 〈a, [F0]〉 =: r ≤ 0, we can redefine a to

a′ = a+ (−r + 1
2s)PD[F1], where PD stands for the Poincaré dual.

Claim: We have 〈a′, [Fi]〉 > 0 for i = 0, 1 and 〈a′, [G]〉 = 〈a, [G]〉 for G any other closed

surface contained in a fiber.

12here 〈·, ·〉 is the pairing between homology and cohomology, in this case given by integrating:
∫
F
ω.

13note that the assumption [F ] 6= 0 is in H2
dR(X) and therefore forms in a are not only defined on the

fiber, but on the whole of X
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Proof. We denote α ∈ PD[F1], β ∈ PD[F0] and ι0 : F0 ↪→ X. Then

〈a′, [F0]〉 = 〈a, [F0]〉+ (−r +
1

2
s)〈PD[F1], [F0]〉

= r + (−r +
1

2
s)〈PD[F1], [F0]〉

= r + (−r +
1

2
s)[F0] · [F1]

=
1

2
s > 0

That [F0]·[F1] = 1 follows from the analysis of singular fibers above. To analyse 〈a′, [F1]〉,
which will contain the self-intersection of [F1], we start by noting the following: any fiber

(singular or not) can be moved around to not intersect itself, so [G]2 = 0 (the square

denotes the intersection product with itself) for all fibers G. So in this case

0 = [F ]2 = ([F0] + [F1])2 = [F0]2 + 2[F0] · [F1] + [F1]2 = [F0]2 + [F1]2 + 2

We have studied the vanishing cycle and seen that the local form of π around these

critical points is symmetric and it does not care about which part is [F0] and which

[F1]. Therefore, the self-intersections of these two have to be the same, and we conclude

[F1]2 = −1.

By the transversal intersection of [F0] and [F1], we have 〈a, [F ]〉 = 〈a, [F0] + [F1]〉 and

the same for a′. Therefore 〈a, [F1]〉 = s− r and we can write

〈a′, [F1]〉 = 〈a, [F1]〉+ (−r +
1

2
)[F1]2 = s− r − 1

2
s+ r =

1

2
s

By adding the two, we see that 〈a′, [F ]〉 = s, so it is unaffected. We also see why (closed

surfaces in) other fibers are not effected, since they do not intersect with [F1]. This

proves the claim.

We see that we only have to modify a for singular fibers, of which there are only finitely

many. Therefore, after a finite number of modifications, we have a class a ∈ H2
dR(X)

such that 〈a, [F0]〉 for each closed surface F0 contained in a fiber. Picking some ζ ∈ a
proves the lemma.

Proof of Theorem 4.5.1. We denote Fy := π−1(y) the fiber over y ∈ Σ. We construct a

2-form ωy on Fy. We do this by choosing disjoint open balls Uj in X around the critical

points, such that on each Uj the projection π is given as π(z1, z2) = z2
1 + z2

2 , which can
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be done by definition of a Lefschetz fibration. Now define ωUj = dx1 ∧ dy1 + dx2 ∧ dy2

on Uj , where zi = xi + iyi for i = 1, 2. Since Fy ∩ Uj is given by π
∣∣−1

Uj
(z) for some

z ∈ C, it is a holomorphic curve and therefore ωUj
∣∣
Uj∩Fy

is a symplectic form. Since

Fy is a 2-dimensional manifold and has an orientation, we can extend this form to a

volume form (i.e. symplectic form). So we now have symplectic forms ωy on Fy for all

y ∈ π(
⋃
j Uj). We define ωy on the remaining y ∈ Σ such that ωy is symplectic along Fy.

By rescaling ωy away from
⋃
j Uj , we can assume that [ωy] = [ζ

∣∣
Fy

] holds on H2
dR(Fy) for

each y ∈ Σ. This can be done since [ζ
∣∣
Fy

] is defined by its action on homology classes,

but the Uj do not contain whole 2-cycles.

We will now extend all the ωy to closed 2-forms ηy on neighbourhoods of Fy. Take a

neighbourhood Wy ⊆ Σ of y containing no critical values except (possibly) y. Lifting

this gives the neighbourhoods of the fibers Fy ⊇ W̃y = π−1(Wy). When we make sure

that the Wy are deformation retractable to y, we can deformation retract W̃y to Fy when

y is not critical, and to Fy ∪ cl(Uj) when y is critical. We call this deformation retract

r. We can define the ηy as the pull-back r∗(ωy) when y not critical and as r∗(ωy or ωUj )

when y is critical. This weird notation in the last expression must be interpreted as

follows: the form ωy was chosen to extend ωUj to Fy, so it is the pull-back of a form that

we defined in parts.

Now we choose a finite subcover of {Wy} of Σ, which we denote byWi for i = 1, . . . , n. We

fix a partition of unity {ρi} subordinate to this finite cover {Wi}. As we have remarked

before, by rescaling we can obtain that ηi and ζ
∣∣
W̃i

represent the same cohomology

class on Fi. And since H2
dR(W̃i) = H2

dR(Fi) because they are related by a deformation

retraction, we have that [ηi − ζ
∣∣
W̃i

] = 0 ∈ H2
dR(W̃i). Therefore, ηi − ζ

∣∣
W̃i

= dθi for some

θi ∈ Ω1(W̃i).

We are now ready to define the global 2-form η by patching everything together: η =

ζ + d(
∑

i(ρi ◦ π)θi). Then dη = dζ = 0, so it is closed. Also

η
∣∣
Fy

= ζ
∣∣
Fy

+
∑
i

ρi(y)dθi
∣∣
Fy

= ζ
∣∣
Fy

+
∑
i

ρi(y)(ηi
∣∣
Fy
− ζ
∣∣
Fy

) =
∑
i

ρi(y)ηi
∣∣
Fy

for every y ∈ Σ. Since all the ηi are compatibly14 oriented area forms on Fy, they are

symplectic along the fiber. Summarizing: η is a closed 2-form on X which is symplectic

along the fibers.

14all fibers got a canonical orientation from the Lefschetz fibration, and every ηi was defined with
respect to this orientation
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We now introduce the symplectic form ωΣ on Σ. Since Σ is orientable, we can pick such

a symplectic form. It can even be made compatible with the complex structures at π(Uj)

for all j.15 That is, ωΣ(iv, iw) = ωΣ(v, w) and ωΣ(v, iv) > 0.

We can now define ω = tη + π∗ωΣ, which we can prove is symplectic on the whole of X

for t small enough. To start things off, it is obviously closed. So we only have to worry

about non-degeneracy. We start checking the case x ∈ X −
⋃
j Uj . Here x is certainly

regular. Denote the fiber that it lies in by Fy. We split

TxX = TxFy ⊕ (TxFy)
⊥η

where (TxFy)
⊥η denotes the symplectic complement.16 This splitting is allowed since

η is symplectic along the fibers and hence this indeed spans the whole space. Because

TxFy ∩ (TxFy)
⊥η = {0}, we have that π∗ωΣ is non-degenerate on (TxFy)

⊥η , since ωΣ is

non-degenerate and ker dπ = TxFy. We now let v + w, v′ + w′ ∈ TxFy ⊕ (TxFy)
⊥η be

given. Then

ωt(v + w, v′ + w′) = tη(v, v′) + tη(w,w′) + π∗ωΣ(w,w′),

since η(v, w′) = η(w, v′) = 0 and dπ(v) = dπ(v′) = 0. Because of the non-degeneracy

of η on TxFy and that of ωΣ on (TxFy)
⊥η , we can pick v′, w′ such that η(v, v′) > 0 and

π∗ωΣ(w,w′) > 0. Therefore, for t > 0 small enough, we have

ωt(v + w, v′ + w′) = tη(v, v′) + tη(w,w′) + π∗ωΣ(w,w′) > 0.

And hence ωt is non-degenerate on TxFy. Since X −
⋃
j Uj is compact and ωt varies

smoothly over X, we can choose a t such that this holds for every x ∈ X −
⋃
j Uj .

Now we treat the case that x ∈ Uj for some j. On Uj , we constructed η in such a way

that η
∣∣
Uj

= ωUj = dx1∧dy1 +dx2∧dy2. Also π has its standard form π(z1, z2) = z2
1 +z2

2 .

15It is a general fact that for any almost-complex structure, there is a compatible symplectic form.
The fact that we can make it compatible with the structure on π(Uj) for each j can be proven by picking
a partition of unity.

16The symplectic complement V ⊥ω of V ⊆ W is defined as V ⊥ω = {w ∈ W | ω(v, w) = 0 for all v ∈
V }.
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Then for any vector v = (vx1 , vy1 , vx2 , vy2) ∈ TxX, we have

ωt(v, iv) = tη(v, iv) + π∗ωΣ(v, iv)

= t (vx1vx1 − (−vy1vy1) + vx2vx2 − (−vy2vy2)) + ωΣ(dπ(v), idπ(v))

= t‖v‖2 + ωΣ(dπ(v), idπ(v)) > 0

Here we used that dπ(iv) = idπ(v) because π is a holomorphic map. The fact that

ωΣ(dπ(v), idπ(v)) > 0 comes from the compatibility of ωΣ with the complex structure.

This proves that ωt is non-degenerate on
⋃
j Uj .

To prove the second statement, we note that sections are transverse to the fibers, so

[F ] 6= 0 because if it were zero, the intersection number of the section and the fiber

would be zero, which contradicts transverseness. We then note that π∗ωΣ is symplectic

along the sections and that hence we can choose t even smaller to make sure that this

term dominates in ωt. This proves the theorem.

The proof of Theorem 4.5.2 can be done analogous to the proof of Theorem 4.5.1, as

done in [Cav13]. There is also another way, pursued in [CK16]. Here it is shown that

b-Lefschetz fibrations give rise to b-symplectic structures, which are equivalent to log-

symplectic structures by Proposition 4.4.12. By Proposition 4.4.15, an achiral Lefschetz

fibration gives us a b-Lefschetz fibration. Ergo an achiral Lefschetz fibration gives a

log-symplectic structure.

There is of course some logic behind the correspondence found in Theorem 4.5.2: log-

symplectic structures and achiral Lefschetz fibrations both do not induce orientations.

And, when taking a step to the b-language, they both induce a codimension 1 space

Z ⊆ X that is a zero locus.





Chapter 5

Introduction to 4-manifold theory

In the previous chapter we introduced Lefschetz fibrations: a certain type of maps

π : X2n → Σ2. As we will argue in Chapter 6, these are viable candidates to replace

elliptic fibrations in F-theory, but we will need to work with n = 2. This means we will

have to deal with 4-dimensional manifolds.

We will first develop a geometric way to handle 4-manifolds by translating the 4-

dimensional manifold into a schematic drawing. These are called Kirby diagrams. Op-

erations on a 4-manifold translate into modifications of this diagram. This gives us

greater insight in what influence the existence of singularities in the fibration has on the

topology of X.

The second goal of this chapter is the introduction of surgery. This operation creates

a new manifold out of a given manifold. This will allow us to create new singularities

in a given Lefschetz fibration. Kirby diagrams can then be used to figure out what the

newly obtained manifold is.

A much more complete guide to this subject is [GS99]. We will treat parts of chapter

4, 5 and 8 here, introducing the preliminaries only if they are strictly needed. We will

skip most of the proofs and focus on developing the machinery and intuition. However,

because it is hard to judge what might become relevant in further research, we do aim

to build an understanding and not just a list of results.

The theory we will develop in this chapter is not needed if the reader is willing to accept

the results that follow from it that are used in Chapter 6. It will not severely impair

one’s understanding of what is written there.

63
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5.1 Handles and handlebodies

5.1.1 Basic definitions and classifying framings

The idea of handles is to build a smooth manifold in a step by step manner, starting

from a (possible empty) manifold. The readers that are familiar with CW-complexes

will quickly see the analogy.1 We start by introducing handles. Note that Dn is the

n-dimensional disk with boundary.

Definition 5.1.1. An n-dimensional k-handle h is a copy of Dk×Dn−k, attached to

the boundary of a manifold X along ∂Dk×Dn−k by an embedding ϕ : ∂Dk×Dn−k →
∂X.

Figure 5.1: A kettlebell: where other people think about lifting weights when seeing
this, a geometer would think of handles.

Technically, a manifold with a handle added to it is not smooth, since it has a corner.

However, there is a canonical way to smooth this and we will therefore not care about

that fact.

There is some terminology regarding handles that we should introduce: The number k

is called the index of the handle. The set Dk × {0} is called the core of the handle,

{0} × Dn−k the cocore, ϕ the attaching map, the set ∂Dk × Dn−k (or often its image

under ϕ) the attaching region. This is the thickened version of the attaching sphere

∂Dk × {0}. Lastly, the sphere {0} × ∂Dn−k is called the belt sphere.

1The biggest differences between CW-cells and handles come from the fact that all the cells are
“thickened” to all be of the same dimension and the fact that attaching new handles requires a little
more information.
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Example 5.1.2. A simple example of 3-dimensional handles is the kettlebell, see

Figure 5.1 (note: we think of it as filled, hence 3-dimensional). A 0-handle has

attaching region ∂D0×Dn = ∅, and hence adding a 0-handle is just taking a disjoint

union with Dn. So for building the kettlebell, we start with the empty set and add a

0-handle. A 1-handle has attaching sphere S0 = {±1}, so it can be attached at two

disks on the sphere. The core of this 1-handle is the handle without its thickness like

if we would have attached a piece of string instead of metal/plastic. The cocore is

the slice in the exact middle of the handle. The belt sphere is the boundary of this

slice, say where you would pick it up using only your thumb and index finger.

We will generally be interested in the diffeomorphism type of X ∪ϕ h, hence it suffices

to specify ϕ up to isotopy (c.f. Definition 3.6.1): by the isotopy extension theorem

(Theorem 5.8 in [Mil15]), an isotopy between ϕ and ϕ′ induces a diffeomorphism between

X∪ϕh and X∪ϕ′h. Also, by the tubular neighbourhood theorem, ϕ : ∂Dk×Dn−k → ∂X

can be determined up to isotopy from an embedding ϕ0 : ∂Dk × {0} → ∂X together

with an identification f of the normal bundle of Imϕ0 with ∂Dk × Rn−k. So X ∪ϕ h is

determined by:

1. An embedding ϕ0 : Sk−1 → ∂X with trivial normal bundle.

2. A framing f of ϕ0(Sk−1) that identifies the normal bundle of ϕ0(Sk−1) with Sk−1×
Rn−k.

and the diffeomorphism type of X ∪ϕ h is determined by the isotopy class of (ϕ0, f).2

The part of this that is hardest to imagine is the framing. We can classify these framings

via homotopy groups: pick a certain framing f0 and let another framing f be given. By

comparing f to f0, we get an element of GL(n− k) at each point in Sk−1: the element

that would transform f0 to f at that point. By composing with a self-diffeomorphism of

Dn−k, we can make sure that this element of GL(n−k) is the identity at a certain point

p ∈ Sk−1. Note that this is the same as a map Sk−1 → GL(n − k) that is the identity

at p. Therefore it represents an element in πk−1(GL(n− k)) = πk−1(O(n− k)).3 If two

of these maps are homotopic, we can get an isotopy of the framing. Conversely, if two

framings are isotopic, they will induce homotopic maps. Hence we have a well-defined

2This pair is isotopic to another pair (ϕ′0, f
′) if there exist isotopies between ϕ0 and ϕ′0 and between

f and f ′ such that at every point along the way they are a combination of an embedding and a normal
framing of that embedding.

3πk−1(GL(n − k)) denotes the (k − 1) homotopy group of the space GL(n − k). Since this space is
homotopy equivalent to O(n− k) via the Gram-Schmidt procedure, these groups are isomorphic. For a
small treatment of these groups, see A.4, although one can easily continue by accepting the claims we
make as facts.
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injective map from isotopy classes of framings of Sk−1 to πk−1(O(n− k)). To see that it

is also surjective, note that we can pick a representing element of a homotopy class and

obtain a framing f by applying this representing element to f0. It is important to note

that although we have a bijection, it depends on our choice of reference frame f0. But

we at least know what possible framings we can have. We use this to treat the cases

that will be relevant later on:

• A 1-handle is attached via two disjoint disks. So for ∂X connected, compact and

non-empty, there is a unique isotopy class of embeddings ϕ : S0 × {0} → ∂X. We

have π0(O(n − 1)) = Z2 for n ≥ 2 and so there are two possible framings. If X

were orientable, then the possible framings are distinguished by whether X ∪ϕ h is

orientable or not. In particular, a 0-handle is orientable (since it is just Dn) and

in n = 2, we would have that adding a 1-handle to a 0-handle is either an annulus

or a Moebius strip.

• In the case of 2-handles, we have π1(O(n−2)) = Z2 for n > 4 and π1(O(n−2)) = Z
for n = 4. We will encounter this ‘framing number’ in the 4-dimensional case often

and one can visualize it as how many times the 2-handle twists around its attaching

circle S1. We will see this in Section 5.2.2.

• For (n − 1)-handles with n 6= 2, there is a unique framing since πn−2(O(1)) = 0

except for π0(O(1)) = Z2.

• For n-handles, the same reasoning holds and hence there is also a unique framing.

There is another important thing to mention about this case: an n-handle can only

be attached to a manifold X with a boundary component diffeomorphic to Sn−1.

For n ≤ 4, it is known that any self-diffeomorphism of Sn−1 is isotopic to either

the identity or a reflection. Therefore, there is a unique way to attach an n-handle

to an Sn−1 boundary component.

Note that we now indeed have treated all the relevant cases for 4-manifolds: 0, 1, 2, 3

and 4-handles.

5.1.2 Handle decompositions

We can not only build new manifolds using these techniques, but also analyse given ones

by looking whether they can be build using handles.
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Definition 5.1.3 (Definition 4.2.1 [GS99]). Let X be a compact n-manifold with

boundary ∂X decomposed as a disjoint union ∂+X t ∂−X of two compact sub-

manifolds (either of which may be empty). If X is oriented, orient ∂±X such that

∂X = ∂+X t ∂−X in the boundary orientation. A handle decomposition of X (rel-

ative to ∂−X) is an identification of X with a manifold obtained from I × ∂−X by

attaching handles, such that ∂−X corresponds to {0} × ∂−X in the obvious way. X

is called a relative handlebody built on ∂−X, or a handlebody if ∂−X = ∅. If X is a

handlebody, we denote by Xm the handlebody where only the k-handles for k ≤ m

have been attached.

Example 5.1.4. The sphere Sn is a handlebody. Starting with a 0-handle Dn,

we add the n-handle via the obvious attaching circle Sn−1 ⊆ Dn. This effectively

builds the sphere by gluing the northern hemisphere on the southern (or the other

way around).

Example 5.1.5. The torus is a handlebody obtained from starting with a single

0-handle, attaching two 1-handles and then a 2-handle (in the same way as the CW-

structure of the torus). We can draw it in the square with sides identified. See Figure

5.2.

Figure 5.2: A handle decomposition of the torus.

The following proposition shows that we can always add handles without paying much

attention to the order in which we do it.

Proposition 5.1.6 (Proposition 4.2.7 [GS99]). Any handle decomposition of a com-

pact pair (X, ∂−X) can be modified (by isotoping attaching maps) so that the handles

are attached in order of increasing index. Handles of the same index can be attached
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in any order or simultaneously.

We can also dualize the handle decomposition of (X, ∂−X) as follows: instead of starting

with I × ∂−X, we start with I × ∂+X. We glue 1-handles on this by reversing the roles

of the core and the cocore (so using Dk ×Dn−k = Dn−k ×Dk) of what were previously

n − 1-handles. Continuing this process gives us the same manifold X, but with a dual

description of its handlebody decomposition.

5.1.3 Handle moves

Handle moves are operations we can perform on a handlebody decomposition that do

not change the diffeomorphism type of the result. There are two moves: cancellation

and sliding.

We have seen in Example 5.1.4 that the sphere can be build using two handles. However,

we could also build S2 for example by starting with a 0-handle and attaching a 1-handle.

This gives us S1× I. We can glue two 2-handles on this: one on top, one on the bottom.

This gives us the same sphere. So somewhere there are unnecessary handles. How can

we see which ones we can ignore?

A cancelling pair of handles is a pair consisting of a k − 1 and a k-handle in a certain

configuration. Intuitively, it happens when the k-handle is attached to the manifold and

the k−1-handle in such a way that they together form a blob on the manifold such that

the result is just diffeomorphic to the original manifold, see Figure 5.3. Easy to visualize

examples are k = 1 and k = 2. When k = 1, we have a 0-handle (a disjoint ball) and a

1-handle that connects the manifold to the disjoint ball. This gives us a weird spike on

the manifold, but nothing that a diffeomorphism cannot bring back to the manifold we

started with.

For k = 2 we have a 1-handle like on the kettlebell in Example 5.1.2 and add to it a

2-handle with the attaching circle running once over the 1-handle. This means we fill

up the hole that we would usually put our fingers through. It is again just a ball, which

is the same as the 0-handle without 1 or 2-handles attached.

The following proposition makes precise when we can cancel handles. The reader should

try to see why this holds for the k = 1, 2 cases.
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Proposition 5.1.7 (Proposition 4.2.9 [GS99]). A (k − 1)-handle hk−1 and a k-

handle hk can be cancelled, provided that the attaching sphere of hk intersects the

belt sphere of hk−1 transversely in a single point.

Figure 5.3: An illustration of cancelling 1- and 2-handles in the 2-dimensional case.
Notice how the attachment circle of the 2-handle intersects the belt sphere of the 1-
handle in exactly one point.

Another important move is the following:

Definition 5.1.8 (Definition 4.2.10 [GS99]). Given two k-handles h1 and h2 (0 <

k < n) attached to ∂X, a handle slide of h1 over h2 is performed by isotoping the

attaching sphere A of h1 in ∂X ∪ h2, pushing it through the belt sphere B of h2.

Note that by Proposition 5.1.6 these two manifolds should not be different. After all, we

could have attached the handles simultaneously, robbing us of the possibility of sliding

one handle over the other. This may seem nearly trivial, but using only one handle slide

is enough to prove that the Klein bottle is diffeomorphic to RP2#RP2.

One can prove that handle cancellation and handle sliding form a complete set of moves:

Theorem 5.1.9 (Theorem 4.2.12 [GS99]). Given any two handle decompositions

for a compact manifold X, it is possible to get from one to the other by a sequence of

handle slides, creating/annihilating handle pairs and isotopies within the same level.

Figure 5.4: A picture of a 1-handle sliding over another 1-handle.
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Proposition 5.1.10 (Proposition 4.2.13 [GS99]). If Xn is a compact and connected

manifold, then (X, ∂−X) admits a handle decomposition with exactly one 0-handle

(if ∂−X = ∅) or no 0-handles (if ∂−X 6= ∅). We can also assume that there is exactly

one n-handle (if ∂+X = ∅) or no n-handles (if ∂+X 6= ∅).

5.2 Diagrams

5.2.1 Heegaard diagrams

We will develop the machinery of Heegaard diagrams. Not that we will ever use it, but

it is a simple introduction into the logic of Kirby diagrams, that we will develop in the

next section and use later on.

Heegaard diagrams are a way of drawing 3-dimensional handlebodies. We start by

assuming compactness and ∂−X = ∅, so we have a unique 0-handle. This handle is a D3

and we can attach other handles to its boundary S2. When we consider S2 as R2∪{∞},
we can make a drawing of the attaching regions of the other handles.

We start with the 1-handles: these are attached via pairs of disks. We have to choose

whether or not we attach them in a way such that the resulting manifold is orientable.

We choose to make it orientable (we will not go into the non-orientable case, but one can

easily develop the same kind of drawing for that case). The two disks hence have to be

identified in an orientable way, which we can pick to be the reflection (x, y) 7→ (−x, y)

without loss of generality. So the attachment of a 1-handle to D3 (which is again the

kettlebell of Example 5.1.2) is drawn in Figure 5.5

Figure 5.5: Heegaard diagram of the kettlebell: a 0-handle with a 1-handle attached to
it.

The 2-handles have attaching circle S1. We have seen that in this case (they are (n−1)-

handles) there is a unique framing, hence we know precisely how to attach the 2-handle

when we know the attaching sphere. Therefore we can draw the attachment circles in

the diagram to signal the attachment of a 2-handle. But 2-handles can also be attached

over a 1-handle, so the attachment circles will not necessarily be circles in the diagram:

they are arcs with endpoints on the boundaries of the attaching regions of the 1-handles.
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When we identify the two boundaries via the reflection, the arcs will become circles.

Hence the attachment of two 2-handles to a kettlebell could look like Figure 5.6.

Figure 5.6: Heegaard diagram of the kettlebell with two 2-handles attached. Both run
over the 1-handle.

If ∂+X = ∅, we should also add a 3-handle. However, as noted before, there is a unique

way to do this, so often we do not bother drawing the 3-handle. If we want to add a

3-handle, we write “+ 3-handle” next to the diagram.

When there is more than one 1-handle, it should be clear from the diagram which disks

together form a 1-handle. They are not necessarily all mirrored in the same axis. We

could for example also have the diagram in Figure 5.7.

These diagrams are useful to indicate the diffeomorphism type of our manifold. Since for

the diffeomorphism type it is irrelevant where the 1 and 2-handles are precisely located,

we can always freely move the disks and lines. As long as we do so in a continuous way,

the result will be a diffeomorphic manifold.

Handle moves

It is also good to see what cancelling handles and handle slides look like in Heegaard

diagrams. In a Heegaard diagram we already assume that there is only one 0-handle,

hence cancelling 0 and 1-handles will not occur. We can however have cancelling 1 and

2-handles. We already noted in Section 5.1.3 how a 2-handle should be added to a

kettlebell to again make it into a D3, and otherwise we could also use Proposition 5.1.7.

The Heegaard diagram can be found in Figure 5.8

If there are other 2-handles running over the cancelling 1-handle, we simply connect the

lines going in and out. This corresponds to a handle slide, which we will treat in a

moment. Using handle slides, we can always make the cancelling handle pair isolated

from the rest of the diagram, as in Figure 5.8. This makes sense, since the attaching

circles of these other 2-handles are actually running over the 1-handle, but together with

the 2-handle, this is merely a pimple on our manifold. So the lines actually just run over

S2. For an example, see Figure 5.9
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Figure 5.7: Heegaard diagram of T 2 × D1. The top and bottom disk form a 1-handle
and the left and right disk form a 1-handle. The attachment circle of the 2-handle runs
as follows: starting from the top right piece and going clockwise, we stop on the disk on
the right, go over the 1-handle to the left, come out of the top of the left disk. Then
we go to the left of the top disk, over the other 1-handle and come out of the left of the
bottom disk. We then go to the bottom of the left disk, again over the first 1-handle,
come out of the bottom of the right disk, walk to the right of the bottom disk and again
go over the other 1-handle. Then we are back where we started. Compare this to Figure
5.2.

Figure 5.8: Heegaard diagram of a pair of cancelling 1 and 2-handles. Note that since
the attachment circle of the 2-handle only goes over the 1-handle once, it intersects the
belt sphere of the 1-handle in precisely one point.

We can also have cancelling 2 and 3-handles. This happens when we have an isolated

circle in our diagram and have actually added a 3-handle to the diagram. One can prove

that, using the other operations, the situation of cancelling 2 and 3-handles can always

be brought to this case. See Figure 5.10.

To see how 1-handle slides work, we note that it merely changes the attachment circles

of the 2-handles. If they only run over a 1-handle h1 and then we slide h1 over another

1-handle h2, the attachment circle will now run over h1 and h2. In diagram form, we

use the arrow to indicate how we slide which handle over which. See Figure 5.11.

We can also slide 2-handles. Before we do this, we make the following definition.
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Figure 5.9: Heegaard diagram with a cancelling 1 and 2-handle: the 1-handle and arc
from top to bottom. The first equality follows from the cancelling of the handles. The
second equality is gained by just moving the attaching circle of the 2-handle off the
1-handle.

Figure 5.10: Heegaard diagram of a pair of cancelling 2 and 3-handles.

Definition 5.2.1. Let h be a 2-handle. Then its attaching circle is given by the

image of ∂D2×{0}. We define a parallel curve or parallel knot to it as the image of

∂D2 × {x} for some x ∈ Dn−2 − {0}.

The parallel curve is a visual representation of the framing on the 2-handle when n = 3, 4.

Since in 3 dimensions the framing of a 2-handle is unique, it is rather useless. But we

use it to slide 2-handles in our diagrams and already using it will make the extension to

the 4-dimensional case easy.

Suppose we have two 2-handles h1 and h2. To slide h1 over h2 in the diagram, we draw

the parallel curve K ′ to the attaching circle of h2. Now we take the connected sum of

the attaching circle of h1 and K ′.4 Here is why this works: the attaching sphere of a

2-handle is ∂D2 × {0}, i.e. it is the boundary of the core of the handle. Inside h2, we

can pick a disk that is parallel to its core, so D2 × {x} for some x ∈ ∂D1. The parallel

curve K ′ is precisely ∂D2 × {x}. By definition, a handle slide is when we isotope the

4If the reader is not familiar with the connected sum: in this case it is just removing a small piece
from both curves and connecting the leftovers in the simplest way.
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Figure 5.11: Heegaard diagram of before and after performing a 1-handle slide. Just as
the arrows indicate, the upper 1-handle is slid from left to right over the lower 1-handle.

attaching sphere of h1 through the belt sphere of h2. So we isotope the attaching sphere

of h1 over the disk bound by the parallel curve and let it land on the 0-handle again.

The result is precisely the described connected sum.

Figure 5.12: Heegaard diagram of the 2-handle slide. On the left hand side, we have
drawn the parallel curve K ′ with the thin line. On the right hand side, we have actually
performed the 2-handle slide.

Example 5.2.2. To make a Heegaard diagram of D3 is of course easy: it is the

empty diagram. But we can see in Figure 5.13 also a diagram for the ball. There are

two pairs of cancelling handles in the diagram. Note that both the attaching circles

of both 2-handles intersect the belt-sphere of the 1-handle in one point, allowing

one of them to cancel against the 1-handle. This leaves us with one 2-handle, which

together with the 0-handle makes a thickened S2, and a 3-handle that can only be

added by filling up this sphere. This again satisfies the conditions of Proposition

5.1.7 and hence the 2- and 3-handle cancel.

Figure 5.13: Heegaard diagram of D3, the 1-handle cancels agains one of the 2-handles,
which leaves a 2-handle and a 3-handle that also cancel.
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5.2.2 Kirby diagrams

Now we are ready to repeat the same trick, only for 4-dimensional handlebodies. Again

we assume compactness and ∂−X = ∅ such that there is a unique 0-handle. This time,

the 0-handle is D4 and hence its boundary is S3 = R3 ∪ {∞}. So we draw the attaching

regions of the remaining handles in R3. The attaching region of a 1-handle is D3 tD3,

so this time we draw it as two balls and mirror it in a plane. See Figure 5.14.

Figure 5.14: Kirby diagram of a 1-handle added to the 0-handle D4.

As before, the 2-handle is attached via a circle. Again, these are arcs that can end on

the balls of 1-handles. But this time, the arcs are in R3 and hence can be knotted and

linked. Also, we have to deal with framings. As we have said before, the framings for

2-handles in the 4-dimensional case are classified by π1(O(2)) = Z.

To get a sense of framings over a knot5 K, we will visualize them using the parallel knot

from Definition 5.2.1. We can then see that it indeed makes sense that the framings are

categorized by Z: what framing represents the 0-element is not clear and we have to

choose. But after that, we can add twists around the attaching circle as many times as

we want. We adopt the convention that a right-handed twist corresponds to a positive

element and a left-handed twist to a negative element.

(a) The trefoil knot with the
blackboard framing.

(b) The trefoil knot with the
blackboard framing plus 2.

Figure 5.15: Two different framings for the trefoil knot, indicated by a parallel knot.

5We will use the term knot to describe any attaching circle of a 2-handle in Kirby diagrams.
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We can make more canonical choices regarding the framing for 2-handles. But for that

we need the linking number.

Definition 5.2.3 (Proposition 4.5.2 [GS99]). For K1 and K2 two knots in S3, we

define their linking number `k(K1,K2) as the signed number of times that K2 crosses

underneath K1.

We have to explain what “signed” means in this definition. Also, we have to take care of

the different ways to draw an equivalent knot. To do so, we first introduce the concept

of a link. A link is a collection of m disjoint knots in some 3-manifold M for some m.

A link diagram of a link L ⊆ R3 is a generic projection of L into R2. This gives us

an immersion of
∐m
i=1 S

1 which is bijective except at transverse double points (knots

crossing under or over one another) together with information which specifies which

knot crosses underneath. Such a diagram determines L up to isotopy. Some diagrams

represent the same link however, but if and only if they are related by the Reidemeister

moves. These are presented in Figure 5.16.

Figure 5.16: The Reidemeister moves.

By picking an orientation on the link, we can assign a sign to each crossing. We choose

the conventions depicted in Figure 5.17. Now we have the tools to determine the linking

number of two knots. One could check as an exercise that `k(K1,K2) = `k(K2,K1), i.e.

the linking number is symmetric. It is easy to see that the Reidemeister moves leave the

linking number invariant.

Figure 5.17: The signs of crossings in a link diagram.
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Definition 5.2.4 (Definition 4.5.7 [GS99]). For a framed knot K in the boundary

of a 0-handle, we define the framing coefficient to be the integer `k(K,K ′) where K ′

is a parallel copy of K determined by the framing and the orientations of K and K ′

are chosen to be parallel.

This gives us the possibility to speak of an n-framed knot and, in particular, a 0-framed

knot. The 0-framing may not always be the most intuitive framing in a drawing. For

example: the trefoil knot in Figure 5.15a has framing coefficient 3.

We denote the framing coefficient next to an attaching circle in a Kirby diagram, as in

Figure 5.18. Note that this definition does not hold for attaching circles that run over

1-handles. The general case is more involved and we will develop a way to deal with it

in Section 5.4.

Figure 5.18: Examples of 2-handles with framing coefficients and the parallel knots
corresponding to these framings.

One more important framing to introduce is the blackboard framing : this is the framing

where the parallel knot K ′ lies in the plane of the paper or blackboard on which we are

drawing. An example of this framing is Figure 5.15a. In this way the framing cannot

twist around the knot, but beware that it depends on the way we are drawing the knot.

See for example Figure 5.19.

Figure 5.19: The blackboard framing depends on how we draw the knot.

Luckily for us, when we have dealt with the 2-handles, we are pretty much done. To see

this, first consider the case ∂+X = ∅. Then there is a unique 4-handle by Proposition

5.1.10. Considering the dual handle decomposition, we see that this 4-handle together
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with the 3-handles, must have boundary #mS1 × S2 for some m. So ∂X2 = #mS1 ×
S2. It is a fact that any self-diffeomorphism of #mS1 × S2 can be extended to a self-

diffeomorphism of \mS1 ×D3.6 So in whatever way we decide to attach the 3-handles,

they will all be equivalent. Therefore we do not need to keep track of the 3-handles

and 4-handles and just have to mention how many of them we attach. If ∂+X 6= ∅, we

know that there is no 4-handle. If ∂+X is connected and X is simply connected, then

an argument by Trace [Tra82] proves that in this case X is completely defined by X2

and the number of 3-handles. So also in this case it is often enough to solely know the

number of 3-handles. We will again denote it next to the diagram whether and how

many 3-handles and 4-handles we attach.

Handle moves

Handle moves for Kirby diagrams are very much like the ones in Heegaard diagrams.

Slides of 1-handles work exactly the same. See Figure 5.20.

Figure 5.20: An example of a 1-handle slide in a Kirby diagram.

Sliding 2-handles is slightly more involved, but again the same principle as in the Hee-

gaard case applies. Let us consider the 2-handles h1 and h2, with attaching circles K1

and K2 respectively, and the framing indicated by parallel knots K ′1 and K ′2. By the

same reasoning as in the Heegaard case, we have to take the connected sum of K ′2 and

K1. This time, if the knots are oriented, the parallel knot K ′2 can be oriented either

parallel to K2 or opposite to it. This corresponds to handle addition or subtraction.7 We

also have to determine the new framing of h1. The most elementary and general way to

do this is by drawing the parallel knot of h1 too, to indicate the framing. This will also

be slid over a disk bounded by a parallel knot K ′′2 : the parallel knot of K ′2. One could

take K ′′2 = K2 for example. When carefully drawn, one can see the new framing.

This method always works, but we can do it faster if the knots lie in S3, i.e. they

6This is the boundary connected sum. For a definition, see Appendix A
7Note that we could not do the subtraction in the Heegaard diagrams, since we would not have been

able to connect K′2 to K1 while preserving the orientations given to both.
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Figure 5.21: An example of a handle addition.

don’t go over 1-handles. The derivation requires more prior knowledge, but the formula

can be used by everyone: In this case, we can apply homology. Readers familiar with

CW-complexes (which are homotopy equivalent to our handlebodies) might know that

the 2-handles will form a basis of H2(X), say α1, . . . , αm. A handle slide of h1 over h2

is then a change of basis: we get α′1, α2, . . . , αm where α′1 = α1 ± α2, where + is for

addition and − for subtraction. The intersection form on H2(X) is equal to the matrix

(`k(Ki,Kj))i,j and hence the self-intersection (which is the framing coefficient) of α′1 is

given by

α′21 = (α1 ± α2)2 = α2
1 + α2

2 ± 2α1 · α2 = n1 + n2 ± 2`k(K1,K2). (5.1)

Here n1 and n2 are the framing coefficients of h1 and h2. This will tackle most cases.

A cancelling 1-handle and 2-handle still look the same. But when cancelling a 1-handle

that has other 2-handles on it, we need to be careful to take into account the framing.

This can be seen by first sliding these extra 2-handles over the 2-handle we want to

cancel; they pick up the framing of the about-to-be-cancelled 2-handle (but we have not

properly defined this framing yet). Then we have an isolated instance of a 1-handle with

a 2-handle running over it once: they can be cancelled and forgotten about.

Figure 5.22: The cancellation of a 1-handle and a 2-handle. We use the blackboard
framing on the cancelling 1-handle. If we would have added twists to the framing, the
remaining 2-handles would be twisted in the same way because of the handle slides.
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And for cancelling 2 and 3-handles the same reasoning holds: it can only happen if the

2-handle is attached via an isolated circle. Only this time we also need the isolated circle

to have the 0-framing. Cancelling 3 and 4-handles do not occur, since we know whether

we should have none or one 4-handle.

5.3 Application to Lefschetz fibrations

Now we come to our main application of all the theory we have built in this chapter:

analysing Lefschetz fibrations using Kirby diagrams. As shown in Chapter 4, we may

assume that our fibers are connected and that every fiber contains at most one singularity.

5.3.1 Critical points and 2-handles

Before we can draw the Kirby diagram of X, we have to know its handle decomposition.

Every critical point of a Lefschetz fibration π : X4 → Σ2 corresponds to a 2-handle in

the handle decomposition of X, as can be seen as follows: near a critical point, we have

complex coordinate charts such that it looks as π(z1, z2) = z2
1 + z2

2 . For a certain t that

we pick to be real, we have the fiber Ft = π−1(t). The critical value lies at zero, so

the singular fiber is denoted by F0 = π−1(0). The vanishing cycle, as defined in Section

4.1.1, can be obtained by intersecting Ft with R2, that is

Ft ∩ R2 = {(x1, x2) ∈ R2 | x2
1 + x2

2 = t}.

This bounds a disk Dt ⊆ X. By definition of the vanishing cycle, F0 can be obtained

from Ft by shrinking ∂Dt (i.e. the vanishing cycle) to zero size. A regular neighbourhood

νF0 of F0 (think of it as F0 but slightly thickened at each point) is then obtained from

a regular neighbourhood νFt of Ft by adding a regular neighbourhood of Dt. But this

is the same as attaching a 2-handle to νFt. To visualize the attachment, the attaching

circle for the 2-handle is ∂Ds for some s if we choose νFt in such a way that Fs ⊆ ∂νFt,
which we can always do. The core of the handle is then Ds.

So a singular fiber indeed corresponds to a 2-handle in X. But we still have to figure

out its framing. This time, instead of a parallel knot that indicates the framing, we

will use a vector. The principle is the same: the vector is the difference between the

parallel knot and the knot itself. So at each point on the knot, it points to where the

parallel knot sits. The other way around, given a such a vector at every point of our
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knot, we can obtain a parallel knot by transporting our knot along the vector at each

point. Therefore, the two notions are equivalent.

The easiest way to figure out the framing in this case, is by comparing it to an-

other framing that we already have: the framing on ∂Ds determined by Fs. That

is, the framing given by a nowhere zero normal vector field on ∂Ds in Fs. At a

point (
√
s cos θ,

√
s sin θ) ∈ ∂Ds ⊆ R2, the vector (− sin θ, cos θ) is tangent to ∂Ds.

Since Fs is holomorphic in the local coordinates that we have, the vector field v(θ) =

(−i sin θ, i cos θ) is still tangent to Fs, but no longer to ∂Ds. This is our reference fram-

ing, but it is not the framing by which the 2-handle is attached. The framing used for

the attachment is the product framing: the framing on ∂Ds that one gets by simply

embedding Ds into R2 and that into R2× iR2. When we look at how the vanishing cycle

shrinks when approaching the singular fiber, we see that this is the framing that is used

to attach the 2-handle.

We compare the product framing to our reference framing. Since the reference framing

map v : ∂Ds → iR2 − {0} has degree 1 (that is, goes around 0 once when we do a full

round over its domain), this has one right twist relative to the product framing. That

is the same as saying that the product framing has framing −1 relative to the reference

framing.

There is one slight caveat that we still need to address: the orientation we gave to the

handle in the product framing using R2 × iR2 is reversed from the orientation on C2.

However, to get from the boundary of the handle to ∂νFt, the orientation again has to

be reversed. So everything works out.

5.3.2 Drawing the Kirby diagrams

Let π : X4 → D2 be a Lefschetz fibration. As proclaimed in the previous chapter, we

focus on the case where the fiber has genus 1.

We start with the case where there is no singular fiber. In this case, the Lefschetz

fibration is simply the trivial fibration D2 × T 2 → D2. So we have to draw the Kirby

diagram for this. This we can do in a simple way: while T 2×D2 may be 4-dimensional,

but it is merely the thickened version of T 2. Therefore, we can use the handle structure

of the torus to see the Kirby diagram. It is the Kirby version of Figure 5.7. Strictly

speaking we do not know how to treat the framing when the attaching circle runs over

1-handles. But we let 0 indicate the blackboard framing, which in this case is the correct
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choice.8 So we have Figure 5.23 as result.

Figure 5.23: The Kirby diagram of the fibration D2 × T 2 → D2.

When we have a single singular fiber, we can use the previous section to see what we

have to do: attach a 2-handle along the vanishing cycle. Hence we have to locate the

vanishing cycle in the diagram. This will be something that does not cross itself (since

the cycle has to be able to shrink to zero size) but in general running over the 1-handles.

The framing for this is −1 relative to the framing induced by the fiber T 2. The framing

induced by the fiber is given by a parallel knot that lies in the same fiber, next to the

vanishing cycle. In the Kirby diagram, this is represented by the blackboard framing.

So the framing we need is −1 relative to the blackboard framing. The result can be, for

example, Figure 5.24.

When there are multiple critical points, say n, we assume that they all lie in different

fibers. We can already guess that we will probably have to add n 2-handles. The question

is: along what vanishing cycles?

We call the critical values t1, . . . , tn and the singular fibers F1 = π−1(t1), . . . , Fn =

π−1(tn). We choose a regular fiber F0 = π−1(t0) so that we have something to compare

the singular ones with. We define Vi to be a neighbourhood of ti. We let ai be an

embedded path connecting t0 to ti for each i. A small neighbourhood of these paths is

denoted by Ai. Now that we have n paths leaving t0 ∈ D2, we can assume without loss

of generality that they are ordered in such a way that the numbering increases when

going counter-clockwise.

8This requires too much introduction to argue properly. So in short: the framing coefficient relative
to the blackboard framing equals, in this case, the euler number e(X). For a trivial fibration, this is 0.
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Figure 5.24: The Kirby diagram of a possible Lefschetz fibration with one singularity
over D2.

Just as with the definition of monodromy in Section 4.2, π−1(ai) gives us a trivial fiber

bundle over the interval. This way, we can carry the identification of F0 with the torus to

a regular fiber in Vi, giving us the possibility of talking about ‘the’ vanishing cycle γi of

that singular fiber. Together with the used identification, this completely characterizes

the singular fiber. If we now define

V = V0 ∪
n⋃
i=1

(Ai ∪ Vi) ⊆ D2,

we see that π−1(V ) is diffeomorphic to X, since V is just a very deformed disk and

X − π−1(V ) only contains regular fibers. Hence we can describe X as

X = D2 × T 2 ∪
n⋃
i=1

Hi.

Here Hi is a 2-handle attached along the vanishing cycle γi. This has to respect the same

framing condition as derived in the case of only one singular fiber. Since the singular

fibers all lie in different neighbourhoods and are not intertwined, we can add them to

the Kirby diagram in separate ‘layers’ with index increasing towards the reader. See

Figure 5.25.

The precise diagram that we get by this method depends on the choice of paths ai.

A choice of paths is always related to the other possible choices by (possibly multiple)

elementary transformations. An elementary transformation is shown in Figure 5.26. By
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Figure 5.25: On the left we have the base space of the Lefschetz fibration D2 with
four singularities lying on it. We characterize the singularities by their vanishing cycle
expressed in basis elements a and b. On the right we have the corresponding Kirby
diagram of the Lefschetz fibration. Notice that all the attaching circles lie in their own
layer. We have left out the framing coefficients.

elementary transformations, we can achieve any permutation of the numbering of the

fibers. But because the paths ai change, so does the identification with the reference fiber

F0 and hence so does the vanishing cycle. This happens according to the monodromy

corresponding to the singular fiber as in Theorem 4.2.3.

Figure 5.26: An example of an elementary transformation.

5.3.3 Achiral Lefschetz fibrations

Since achiral Lefschetz fibrations are our main object of interest, we want to know how

their Kirby diagrams look. We can apply the same reasoning as above to see what the

diagrams of achiral Lefschetz fibrations (as introduced in Definition 4.3.1) look like. Since

the reasoning is so very similar, we skip it and state the result: everything works the

same, but whereas singular fibers corresponded to a 2-handle added with a −1-framing
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in the previous case, they can now have either a +1 or −1-framing.

We saw in Proposition 4.3.2 that the monodromy around two critical points with the

same vanishing cycle and opposite chirality is trivial. So we can try to insert such a pair

of singularities in the achiral Lefschetz fibration. We know that a singularity corresponds

to a 2-handle and that one should have framing +1 and the other −1 if they are to have

opposite chirality. Therefore, let C be a circle embedded in a regular fiber. By adding

two 2-handles along C, one with framing +1 and another with framing −1, we obtain a

new space X ′. Although the space has changed, it still has an achiral Lefschetz fibration

over the same base space but now with an extra pair of singularities.

Figure 5.27: An example of replacing a cycle C by two 2-handles of opposite orientation.

This construction can be made more precise and also formulated without the use of

handles. This we will do in Section 5.4.1. It will allow us to figure out more about

the diffeomorphism type of X ′ in relation to that of X and construct a natural inverse

operation. See for example the following proposition.

Proposition 5.3.1. Let π : X → Σ be an achiral Lefschetz fibration. The insertion

of two singularities as above along a nullhomotopic cycle C changes X to either

X#(S2 × S2) or X#CP2#CP
2
.

Proof. As we will see in Section 5.4.1, the procedure of inserting these pairs of singular-

ities coincides with surgery on C. This proposition is then a consequence of Proposition

5.2.3 in [GS99].

In the next chapter, this insertion of pairs of singularities will allow us to talk about pair

creation and annihilation of branes.

5.4 Surgery

Surgery is an operation that creates a new manifold out of an existing one. It can be

seen as what happens to the n-dimensional boundary of an n+ 1-dimensional manifold
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when a k+1-handle is added to the manifold. We will use it as a way to add or subtract

singularities from achiral Lefschetz fibrations.

Definition 5.4.1 (Definition 5.2.1 [GS99]). Let ϕ : Sk → Mn (−1 ≤ k < n) be

an embedding of a k-sphere in an n-manifold, with a normal framing f on ϕ(Sk).

Then the pair (ϕ, f) determines an embedding ϕ̂ : Sk × Dn−k → M (uniquely up

to isotopy). Surgery on (ϕ, f) is the procedure of removing ϕ̂(Sk × intDn−k) and

replacing it by Dk+1 × Sn−k−1, with gluing map ϕ̂
∣∣
Sk×Sn−k−1 .

Remark 5.4.2. In the above definition, the convention S−1 = ∅ should be used.

As can be seen, the construction relies on the fact that

∂(Sk ×Dn−k) = Sk × Sn−k−1 = ∂(Dk+1 × Sn−k−1)

The diffeomorphism type of the result of the surgery is uniquely determined by the

isotopy class of (ϕ, f).

By definition, there is a canonical embedding of Sn−k−1 × Dk+1 in the manifold after

the surgery. If we would again perform surgery, but now on this sphere together with

this framing, we would obtain the original manifold. This is called reversing the surgery.

The embedding ϕ̂ from the definition defines a framing on Sk. In the case that n = 4,

framings are classified by the groups listed in Table 5.1.

k Group of framings πk(O(4− k))

0 Z2

1 Z2

2 0

3 0

4 0

Table 5.1: The possible framings on embeddings of Sk ↪→M4.

We will primarily be concerned with the cases k = 1, 2. We see that we only have to

worry about the framing on a circle that we will perform surgery on. But even then, it

only matters whether the framing number is odd or even.
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Effect on Kirby diagrams

We can represent certain surgeries on 4-dimensional manifolds by Kirby diagrams. The

interesting cases are k = 1, 2. We start with the simplest case: consider D4 with a

1-handle attached to it. This is diffeomorphic to S1×D3. For the same reason D4 with

a 2-handle attached to it is diffeomorphic to S2 × D2. These two manifolds have the

same boundary and surgery on S1 ⊆ S1 ×D3 gives S2 ×D2 and vice versa. So surgery

on the proper sphere turns a 1-handle into a 2-handle or the other way around.

Figure 5.28: Surgery on the sphere consisting of the core of the 2-handle together with
the disk in S3 bounded by the attaching circle gives a 1-handle. The reverse surgery
would be surgery on the circle that is represented by a vertical line between the balls.

For the more general case of a 4-manifold M and another point of view, we note that

1-handles and 2-handles can cancel. Therefore, adding a 1-handle to M is the same as

removing the corresponding 2-handle. This 2-handle has a cocore D2 whose boundary

S1 lies in ∂M , whose interior lies in int M , has 0 framing and is unknotted. Hence

we can represent it by a circle in the Kirby diagram of M . We denote such a circle by

a circle without framing and with a dot, as in Figure 5.29. Such a circle thus means

that we push the disk that it bounds into the interior of M and then remove a tubular

neighbourhood of that disk. Intuitively speaking, we can add a 1-handle by either gluing

it on our manifold, or by digging a tunnel such that the 1-handle becomes the overpass.

Figure 5.29: Surgery on the cycle C with 0 framing gives a 0-framed 2-handle.

We can now conclude that surgery on a 0-framed 2-handle is the same as replacing the
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Figure 5.30: Inserting a cancelling pair of 1- and 2-handles, we see that the dotted circle
is the boundary of the cocore of the cancelling 2-handle. So deleting the disk inside it is
deleting the 2-handle.

2-handle with a dotted circle, since they both result in a 1-handle. This gives us a new

way to denote 1-handles: instead of drawing pairs of balls where lines enter the one and

exit the other, we draw a dotted circle around these lines, as on the left hand side of

Figure 5.30. This notation has the advantage that all 2-handles are now knots in S3 and

hence framings can be uniquely defined.

5.4.1 Surgery on fibrations

When we have a 4-dimensional manifold admitting an achiral Lefschetz fibration (re-

member that we always take the generic fiber to be a torus), we can ask whether the

result of performing surgery on this manifold still admits such a fibration and what

changed about it. We show that it does, when performed on the proper embeddings of

Sk, and that it gives us a way to add and cancel singularities. More precisely, we get:

Theorem 5.4.3. Given an achiral Lefschetz fibration, surgery on a circle C that

lies in a regular fiber gives us an achiral Lefschetz fibration with two extra singu-

larities of same vanishing cycle and opposite chirality. Conversely, given an achiral

Lefschetz fibration with two singularities of same vanishing cycle and opposite chi-

rality, surgery on the sphere between these singularities gives us an achiral Lefschetz

fibration without these two singularities. In these processes, the base space is never

changed.

Remark 5.4.4. We should explain “the sphere between these singularities”. Sup-

pose we have an achiral Lefschetz fibration π : X → Σ that has two singularities over

y1 and y2 of opposite chirality and with the same vanishing cycle. We pick a path γ

in Σ that goes from y1 to y2 and track the vanishing cycle C along this path. This
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gives us the space C × [0, 1]/C × ({0} ∪ {1}) ∼= S2 ⊆ X.

There are two approaches to this. We first show it by analysing Kirby diagrams, giving

us a short but also slightly magical proof: it is not clear how the surgery precisely

influences the fibers, just that it works. The other approach gives a far more detailed

picture but is also more explicit. It relies on constructing fibration structures on S2×D2

and S1 ×D3.

Proof using Kirby diagrams

Let C be a given cycle in a regular fiber with framing +1 or −1.9 Using our new-found

knowledge on how surgery on C influences the Kirby diagram, we can show that the

result of the surgery again has the Kirby diagram of an achiral Lefschetz fibration.

Figure 5.31: The thin line represents the given cycle C. The arrow denotes surgery
on C. The two external lines of the diagram are indicating that we are only working
locally within the diagram of the given Lefschetz fibration and are there to indicate what
happens to the other handles.

9Since π1(O(3)) = Z/2, it does not matter.
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In the first step of the proof, shown in Figure 5.31, we twist the 1-handle. By turning the

sphere on the right a full 360◦, we can make the framing on C the 0-framing. This move

can be derived from handle cancellation and handle slides, see Figure 5.43 in [GS99].

In this proof we assumed (for the sake of being able to make drawings) that C runs

over only one 1-handle. By an SL(2,Z) transformation, we can always make sure that

this happens. Note that C cannot be knotted, since it has to lie in a single fiber. Also

note that the result obtained in Figure 5.31 is indeed the Kirby diagram of a Lefschetz

fibration, since the one we started with was and the extra 2-handles have the correct

framing (either +1 or −1) and the attaching circles lie in a single fiber, since C did as

well.

The surgery the other way around is given by the same proof, but reading it backwards.

The surgery is now performed on the 0-framed 2-handle in the third line. This proves

Theorem 5.4.3

Explicit construction

We describe fibration structures on S2×D2 and S1×D3 and show that, by gluing these

in with a fiber preserving map, the result of surgery again admits a Lefschetz fibration.

This construction is taken from, and described in more detail in, [Mat85].

The construction will be very explicit. We start by constructing the space N(S0), which

will be equivalent to S2 ×D2. Let 0 < 2ε < δ < 1. We define the spaces

U = {(u1, u2) ∈ C2 | |u1u2| ≤ ε, |u1| < 2, |u2| ≤ δ},

V = {(v1, v2) ∈ C2 | |v1v2| ≤ ε, |v1| < 2, |v2| ≤ δ},

U0 = {(u1, u2) ∈ U | |u1| >
1

2
} ⊆ U,

V0 = {(v1, v2) ∈ V | |v1| >
1

2
} ⊆ V.

The map φ : U0 → V0 given by

φ(u1, u2) =

(
1

u1
, u2|u1|2

)
is an orientation preserving diffeomorphism, which we can use to glue U and V together

by identifying U0 with V0. We call the resulting manifold N(S0). The S0 stands for the
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2-sphere that lies in this space, defined by

S0 = {(u1, u2) ∈ U | u2 = 0} ∪ {(v1, v2) ∈ V | v2 = 0} ' S2.

Lemma 5.4.5. The manifold N(S0) is homeomorphic to S2 ×D2.

Proof. We built N(S0) out of U and V . Note that U and V are both topologically

trivial spaces, so U ∼= V ∼= D4 ∼= D2×D2. We glued them together along U0 and V0. By

restricting the norm of u1 from below, the topology of U0 differs from that of U in that

u1 6= 0. So U0
∼= S1 ×D3. The same holds for V0. We then obtain N(S0) by identifying

U0 and V0. We essentially identify two disks D2 along their boundary, so we get S2, but

everything is slightly thickened to 4 dimensions by a product with D2. This leads to a

D2 bundle over S2, the zero section of which is given by S0. Now we only have to prove

that this bundle is trivializable. We can find two linearly independent, non-vanishing

sections of this bundle by picking s1(u1) = (u1, r) over U for some 0 < r < δ and over

V we write s1(v1) = (v1, ρ(v1)r) such that ρ(v1) > 0 for any v1. The second section is

constructed in the same way, by starting with s2(u1) = (u1, ri). So the bundle is trivial

and hence N(S0) ∼= S2 ×D2.

We will now construct a fibration on it. Let Dε denote the 2-dimensional disk of radius

ε. By defining the maps fU : U → Dε, fV : V → Dε as

fU (u1, u2) = u1u2, fV (v1, v2) = v1v2

and noting that fV ◦ φ = fU , we get a well-defined smooth map f : N(S0)→ Dε.

We claim that f : N(S0) → Dε is a fibration, so we study its fibers. Let 0 6= z ∈ Dε be

given. Then f−1(z) ∼= S1 × [0, 1] is an annulus. This can best be seen by writing the

local expressions of f in polar coordinates. The fiber f−1(0) (see Figure 5.32) is given

by the union of S0 and the two disks

D+ = {(u1, u2) ∈ U | u1 = 0},

D− = {(v1, v2) ∈ V | v1 = 0}.

We see that the singular fiber has two singularities and that by definition there exist

complex coordinate charts around these singularities such that f(u1, u2) = u1u2 for one
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Figure 5.32: A drawing of S0∪D+∪D−. One can imagine it as the shape of a christmas
cracker.

and f(v1, v2) = v1v2 for the other. This shows that f has Lefschetz singularities of

opposite chirality.

We now turn to constructing N(C0), where C0 is a circle. This we simply define as

N(C0) = Dε × C0 × [0, 1].

The trivial projection g : N(C0)→ Dε turns this into a fibration of which every fiber is

the annulus C0 × [0, 1].

Now that we have constructed a fibration on the spaces S1 ×D3 and S2 ×D2 that are

relevant for surgery, we need to construct a map that identifies their boundaries, so that

we know how to glue in S2 × D2 after deleting S1 × D3 or vice versa. We call this

map h : ∂N(S0) → ∂N(C0). The important part of this map is that it exists and that

it is fiber preserving, i.e. g
∣∣
∂N(C0)

◦ h = f
∣∣
∂N(S0)

. The definition of h can be found in

Appendix B.

We are now ready to apply this construction to a Lefschetz fibration π : X → Σ. For

a proof of the identifications made in the following, see Appendix B. Suppose that we

have a small disk D ⊆ Σ such that there are no critical values contained in D. Let 0

denote the origin of D in Σ. Then F0 = f−1(0) is a regular fiber and hence a torus. Let

C be a circle in F0. Then surgery on C with framing induced by the fiber cuts a small

tube out of every fiber (see Figure 5.33). Using our construction, we can describe this

by identifying D with Dε and C ×D3 with N(C). The small tube in every torus is then
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Figure 5.33: The result of surgery on a circle C0 that lies in a regular fiber. The resulting
fiber has two singularities. Going from right to left would illustrate surgery on the sphere.

the annulus that is a fiber of N(C). By surgery on C, we replace N(C) by N(S0) in X.

This is a fibration over the same disk, and also has an annulus as general fiber. But the

fiber over 0 is now S0 ∪D+ ∪D−. This means that in the resulting Lefschetz fibration,

the regular fiber F0 is replaced by the singular fiber F ′0 containing a pair of singularities

of opposite chirality. We can always slightly permute the fibration or the construction

to stop these singularities from being in the same fiber, if we desire so.

Conversely, when we are given a Lefschetz fibration π : X → Σ with a small disk D ⊆ Σ

such that the fiber over 0 is the only singular fiber and contains two singularities of

opposite chirality. Performing surgery on the sphere between these two singularities,

which we identify with S0, cuts S0 ∪D+ ∪D− out of the singular fiber and an annulus

out of the regular fibers. We then have to glue in S1 ×D3 ∼= N(C0), which fibers over

the same disk D, which replaces S0 ∪ D+ ∪ D− with an annulus, turning the singular

fiber into a regular torus. This again proves Theorem 5.4.3.





Chapter 6

Lefschetz fibrations in F-theory

In this chapter we combine our previous work to properly introduce our proposed new

point of view. We then prove some properties of it, using the goals and checks we

formulated in Chapter 1. We will refer back to them when they are treated.

F-theory in the literature almost exclusively uses elliptic fibrations. This works nice,

since a lot of algebraic geometry can be used to immediately derive information about

the τ -profile. Notice, referring back to Section 3.3, how quickly we knew the amount of

branes in our system when we knew the polynomial description of the K3.

But our mission is a different one. It is not finding what is nice to work with, but what

is necessary to work with. By focussing on this, we create as much space in our theory

as we can to allow for an F-theoretic description of anti-branes. Thinking about what

the F-theory picture needs to detect branes, we get two requirements

1. A fibration p : X12 →M10 where X is the total space and M the spacetime.

2. A notion of monodromy on the fibers of this fibration, whose elements lie in

SL(2,Z).

We will show that these things can also be achieved by looking at (achiral) Lefschetz

fibrations. Because Lefschetz fibrations are maps from a 2n-dimensional space to a 2-

dimensional one, while we want 2-dimensional fibers according to requirement 1, we

consider the case of a 4-dimensional space on which we apply these fibrations, forgetting

about the 8-dimensional transverse space (as was also done in the example in Section

3.3). This already satisfies the first requirement. Remember that we always assume

(achiral) Lefschetz fibrations to go from 4 to 2 dimensions and have genus 1.

95
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6.1 Monodromies

Let us start by seeing how achiral Lefschetz fibrations can give us the correct mon-

odromies around singularities. That is, if we consider monodromy on the right object.

There is a subtle but important distinction between the monodromy as it is usually

considered in F-theory and the monodromy as we consider it in this thesis. Usually, one

looks at the τ -profile: the complex number indicating the values of the fields C0 and φ

that is well-defined up to SL(2,Z) transformations. This was also the point of view we

took up to Section 3.6.

We already noted in Section 3.6 that there is another way to think about monodromy.

Lefschetz fibrations do not have a complex structure, hence we cannot speak of the

complex structure parameter of the torus fiber, or a τ -profile. Here, the monodromies

are elements of M1
∼= SL(2,Z), the mapping class group of the torus, as was shown in

Section 4.2.

The τ -profile in elliptic fibrations is actually just extra data on the 12-dimensional space.

The monodromy for elliptic fibrations arises in the same geometric way as the mon-

odromy for Lefschetz fibrations does. This is why in both cases, the relevant group

is SL(2,Z). The monodromy on τ is just a consequence of this underlying, geometric

monodromy as was introduced in Section 4.2. Because τ is often the object of interest

in F-theory, this point of view is often not relevant. But it is for us, since by switching

to Lefschetz fibrations, we no longer have a τ -profile.

So knowing the geometry of a Lefschetz fibration does not give us as much information as

it does in the case of an elliptic fibration; there is no explicit value for the fields contained

in it. But it is also much less restrictive. As proved in Section 4.2.1, the mondromy in

both types of fibrations allow for all the different (p, q)-branes. So Lefschetz fibrations

allow for all the relevant monodromies and can distinguish between them. Another

way of saying this, is that Lefschetz fibrations give the correct underlying differential

geometric framework. This was one of the main checks (number 2) we had given ourselves

in Chapter 1.

2 Achiral Lefschetz fibrations should be able to distinguish between all

possible types of 7-branes.

X
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6.2 Incorporating anti-branes

Of course, the ‘Lefschetz-fibration point of view’ has to give us something extra, other-

wise it is of no use. We claim that it indeed gives us extra freedom and that we can use

that to describe anti-branes.

Conjecture 6.2.1. Achiral Lefschetz fibrations are able to describe both D-branes

and D-branes.

We start by noting an essential difference between achiral Lefschetz fibrations and elliptic

fibrations. Since elliptic fibrations carry a complex structure, they have an orientation.

In contrast, the whole point of achiral Lefschetz fibrations is that we drop the assumption

of orientability on the associated spaces. Let us argue how this gives us the freedom to

talk about anti-branes.

From Proposition 4.4.15 we know that an achiral Lefschetz fibration π : X → Σ induces

a b-orientation on (X,ZX) and (Σ, ZΣ) for some subspaces ZX ⊆ X and ZΣ ⊆ Σ

of codimension 1. Suppose that Σ is orientable (which is to ask that spacetime is

orientable), then a choice of orientation on Σ gives us a way to assign a sign to each

connected component of Σ− ZΣ.

Definition 6.2.2. Let (Σ, ZΣ) be a b-manifold with a b-orientation (c.f. Definitions

4.4.6 and 4.4.8) and assume that we have an orientation on Σ. We call a connected

component of Σ − ZΣ positive if the b-orientation agrees with the given orientation

on this connected component. We call it negative if this is not the case.

Figure 6.1: On the left hand side we have Σ with in blue arrows the induced orientation.
If we pick the ordinary orientation (represented by the black arrows in the top-right
corner), we can assing a sign to each component of Σ− ZΣ. The right hand side would
then be an achiral Lefschetz fibration describing both a brane and its anti-brane.
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In this way, we have a Lefschetz fibration over each connected component of Σ−ZΣ, hence

we can detect what types of branes live there. But globally, whether this component

is positive or negative is just a choice of orientation on Σ. We say that singularities in

positive components correspond to branes, while the singularities in negative components

correspond to anti-branes. Notice the parallel with one of our goals: two branes can be

each others anti-brane, but which one is the ‘anti’ one is a matter of choice.

Remark 6.2.3. We could have chosen a more direct approach in defining positive

and negative singularities. When we assume that X and Σ are orientable, we can

call a singularity positive or negative depending on whether the complex coordinate

charts in which the achiral Lefschetz fibration gets its local form π(z1, z2) = z2
1 + z2

2

are compatible with the orientations. This however requires us to have an orientation

on both X and Σ. In our definition, we do not require an orientation on X and if we

do have it, our definition of positive and negative singularities can also be expressed

using compatibility with the coordinate charts.

Although it is a conjecture and it is not at all proven that this definition allows for all

the properties that we want anti-branes to have, we do see that there is enough freedom

in achiral Lefschetz fibrations to incorporate these extra objects. So we go ahead and

give ourselves these two checkmarks:

1 Achiral Lefschetz fibrations should be able to describe all possbile types

of 7-branes (including anti-branes) that occur in type IIB string theory.

X

4 There should be a symmetry between branes and anti-branes: it is an

arbitrary choice which of the two is ‘anti’. Achiral Lefschetz fibrations

should reflect this symmetry.

X

We still need to gather a lot of evidence for it and describe how known phenomena can

be incorporated. We come back to this important point in Chapter 7. We note that one

of the elementary pieces of evidence would be that the monodromy around a brane and

an anti-brane should be zero. This is precisely the statement of Proposition 4.3.2.

6.2.1 Brane creation and annihilation

One of the key properties of particles and anti-particles, but also branes and anti-branes,

is that pairs of them can be created or annihilated. If we really are to conjecture

that achiral Lefschetz fibrations can describe anti-branes, we should be able to create

and annihilate pairs of singularities of opposite chirality in achiral Lefschetz fibrations,
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without influencing the other singularities.

Mathematically, we have already described in Theorem 5.4.3 how pair creation and

annihilation of singularities works: by surgery on a cycle C in a regular fiber, we obtain

a new space. This has again an achiral Lefschetz fibration, but now there are two extra

singular fibers of opposite chirality and the same vanishing cycle C: a brane and an

anti-brane. Conversely, surgery can also cancel two of such singularities.

By choosing C we can vary the monodromy that we get around these branes. We have

already seen in Section 4.2.1 that it is possible to create any kind of (p, q)-brane and

anti-(p, q)-brane this way.

3 Achiral Lefschetz fibrations should be able to allow for the process of

pair creation and annihilation that comes with branes and anti-branes.

X

6.3 The search for a potential for brane-anti-brane pairs

It is now time for physics to reap the fruits of our labour. Using our conjectured cor-

respondence between achiral Lefschetz fibrations and (anti-)branes, we can construct

spaces X such that F-theory compactified on these spaces corresponds to the compact-

ification of type IIB with branes and anti-branes. If we perform this compactification

with the right compactification ansatz, we will get a potential for brane-anti-brane pairs

in our action.

Alas, we did not succeed in doing so, but have some thoughts on it that we will share

here.

6.3.1 An example: S4

We can construct an achiral Lefschetz fibration S4 → S2 containing two singularities

with the same vanishing cycle of opposite chirality.

We start with the Hopf fibration S3 → S2 with fiber S1. Note that there are no singular

fibers in this. From this we can get a fibration S3 × S1 → S2 by first projecting to

the first component and then applying the Hopf fibration, giving us a torus fiber over

every point. We define C = {p} × S1 for some p ∈ S3 and perform surgery on C. This

gives us two singularities with vanishing cycle C and opposite chirality, as described in

Section 5.4.1. Note that it was required that C lies in a fiber, which it does since the S1
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component is always projected to a point. The manifold obtained by the surgery is S4,

as we will now show.

First we find the Kirby diagrams for S3 × S1 and S4. Then we identify C, perform the

surgery on it and conclude that the result is S4.

The Kirby diagram of S4 was already obtained in Example 5.1.4, so it is an empty

diagram with a 4-handle added to it. The diagram for S3 × S1 can be obtained as

follows1: we again decompose S3 and S1 as handlebodies into D3
− ∪D3

+ and D1
− ∪D1

+,

where we interpret D1
− and D3

− as 0-handles, D1
+ as a 1-handle and D3

+ as a 3-handle.

So we can write

S3 × S1 = (D3
− ×D1

−) ∪ (D3
− ×D1

+) ∪ (D3
+ ×D1

−) ∪ (D3
+ ×D1

+).

In this expression, we can interpret the first term as a 4-dimensional 0-handle, the

second as a 1-handle since it is the thickened version of the 1-handle in the handlebody

decomposition of S1 and its attaching region is hence D3 × S0, the third as a 3-handle

for the same reason and also the fourth as a 4-handle. This gives us the diagram in

Figure 6.2.

Figure 6.2: Kirby diagram of S3 × S1.

We now identify C = {p} × S1. This can be rewritten as C = {p} × (D1
− ∪D1

+), which

is to say that C is simply given by a line between the two balls in the Kirby diagram,

running back over the 1-handle. Surgery on it, as in Figure 5.31 then gives two 2-handles

of framing +1 and −1. We then slide the 2-handle with framing −1 over the other 2-

handle, cancel the 1-handle and the 1-framed 2-handle and cancel the 0-framed 2-handle

and the 3-handle. All that is left over is a 0-handle and a 4-handle, so that is S4. See

Figure 6.3.

This gives us an achiral Lefschetz fibration S4 → S2 with two singular fibers of opposite

chirality.

Let us argue why this example may be important. It is always nice to have a not too

complicated example. In this case, we only have two singularities of opposite chirality,

1Again, for the people that know CW-complexes, this is the same procedure as obtaining a CW-
structure for the product of two CW-complexes.
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Figure 6.3: The result of surgery on C is S4. In this step we slide one of the 2-handles
over the other. The diagram on the right is equivalent to the empty diagram together
with a 4-handle (hence S4) because there is a cancelling pair of 1 and 2-handles and
after cancelling them, there is a 0-framed 2-handle that can be cancelled against the
3-handle.

the minimal amount needed to study such a setup. Also, the manifold S4 does not admit

a complex structure, which would have immediately ruled it out as a candidate for an

elliptic fibration. So it really is a new example.

Furthermore, the manifold S4 is of course a manifold that is studied from all different

angles. For example, we know the eigenvalues and multiplicity of the Laplacian acting on

p-forms for any value of p, see [IK79]. We also know its topology, characteristic classes,

etcetera. This information is all relevant for compactifying on it. For example, a lot is

known about M-theory on AdS7 × S4 [Mal99].

But maybe the most important reason is that this example can be made much more con-

crete. There is an explicit map for the Hopf fibration and using the explicit construction

of surgery on fibrations by Matsumoto from Section 5.4.1, we can write down a concrete

map for the fibration S4 → S2. This construction would lead to the singularities both

being in the same fiber, but by permuting the map, we can get both singularities in

different fibers. We did not have time in this project to pursue this line of attack, but

encourage any reader that is feeling brave to do so.

6.3.2 The Lagrangian sphere

In Remark 5.4.4, we constructed a sphere between two singularities with the same van-

ishing cycle (and possibly of opposite chirality, but this is not necessary). One direction

along this sphere lies in the direction of the fiber, the other in the direction of the space

Σ. Looking back at how we obtained our log-symplectic structure ω on X from the achi-

ral Lefschetz fibration, we see that ω
∣∣
L

= 0. Therefore, we call this sphere the Lagragian

sphere. This terminology is taken from symplectic geometry.

Of course, the size2 of this sphere is related to the distance between the branes. We

2This is intuitively speaking. The natural way of measuring this volume would be using the symplectic
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hence feel like the form(s) needed for our compactification ansatz should be related to

this sphere.

6.3.3 Forms on an achiral Lefschetz fibration

On an achiral Lefschetz fibration π : X → Σ, we get a log-symplectic form. But there

are more forms that arise from the achiral Lefschetz fibration. These live on Z.

A cosymplectic structure on Z

According to Theorem 4.5.2, we get a log-symplectic structure ω with zero locus Z

from the achiral Lefschetz fibration. On this codimension 1 zero locus Z, there exists a

cosymplectic structure.

Definition 6.3.1. A cosymplectic structure on a manifold Z2n−1 is a pair of closed

forms θ ∈ Ω1(Z) and σ ∈ Ω2(Z) such that θ ∧ σn−1 6= 0.

The following theorem is taken from [Cav13]. We do not define the notion of a modular

vector field, but such a vector field always exists and hence this theorem tells us that Z

admits a cosymplectic structure.

Theorem 6.3.2. Let (M,π) be a log-symplectic manifold, let Z be a connected

component of the zero locus and ξ a modular vector field of π. Then the pair (π, ξ)

determines the following structure on Z:

1. The normal bundle of Z as a vector bundle

2. A closed 1-form θ ∈ Ω1(Z) such that θ(ξ) = −1

3. A closed 2-form σ ∈ Ω2(Z) such that ιξσ = 0 and (θ, σ) is a cosymplectic

structure on Z.

Further, any log-symplectic structure inducing the data above on Z is equivalent to

a neighbourhood of the zero section of the normal bundle of Z endowed with the

structure

d log |x| ∧ θ + σ

structure. But since it is a Lagrangian subspace, it has zero volume.
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where | · | is the distance to the zero section measured with respect to a fixed fiberwise

linear metric on NZ .

This form of the log-symplectic structure around Z is a more global version of the local

form of a log-symplectic structure on Z given in 4.4.3. For the standard log-symplectic

structure

ω = d log |x1| ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n

we have θ = dx2 and σ = dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n.

Cosymplectic structures are very strong and sometimes described as the odd-dimensional

equivalent of Kähler structures. Although it is not clear what is the role of Z in the

physics and hence it is not clear for what situations this structure is relevant, it is a

strong thing to have and might be useful e.g. in the specific cases where our total space

X is given as X = Z2n−1 ×M1.





Chapter 7

Discussion and further questions

Our mission has been an ambitious one and a lot of questions have been left unanswered.

In this chapter we will try to formulate some questions that further research could focus

on and also take a critical look at our own results

Evidence for Conjecture 6.2.1

In the previous chapter, we made the conjecture that achiral Lefschetz fibrations are

able to describe anti-branes in F-theory, contrary to the often used elliptic fibrations in

F-theory. This is a rather big claim and it is hard to say what is necessary to prove it. In

a way, the role of the fibration in F-theory is bookkeeping. But we want the rules of this

bookkeeping to be compatible with the laws that physics gives us. An example of that

is that branes and anti-branes should be able to annihilate. We have seen that this can

be done in achiral Lefschetz fibrations, so this is reassuring. But it is in no way a proof.

We should be critical of ourselves and test this conjecture against all the properties of

anti-branes that we know of. The breaking of supersymmetry would certainly be one of

those.

Compactification on F-theory including anti-branes

To get information from this new formulation that is relevant for physics, we should be

able to perform F-theory compactifications on configurations that contain anti-branes.
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This could lead to a potential for a brane-anti-brane pair, as we tried to find in Section

6.3. This is hard, because it is not clear what are relevant compactification ansatzes for

this case.

Breaking supersymmetry

One of the goals we formulated in Chapter 1 was that the mutual appearance of a

brane and an anti-brane should break supersymmetry completely. We did not have

time to see how this would manifest itself in our formulation of F-theory. Specifically:

what kind of properties would the achiral Lefschetz fibration π : X → Σ have such that

supersymmetry would break? Is it a property of the space X or of the map π? It cannot

be Σ since that does not change whether we have a brane-anti-brane pair or not. This is

strongly correlated to the problem of finding a compactification ansatz, since breaking

of supersymmetry should also be visible in the action.

More complex singularities

In elliptic fibrations there are also ‘higher order’ singularities that can occur. These

do not occur in Lefschetz fibrations. This is a loss, since these singularities describe

physically interesting settings. It would be an interesting next step, also from a purely

mathematical point of view, to see whether the inclusion of these types of singularities

can be done, while retaining the induced b-orientation from achiral Lefschetz fibrations.

After all, this was what led us to be able to describe anti-branes. Perhaps it is even

possible to obtain an induced b-orientation from a manifold that is complex nearly every-

where – like a stable generalized complex manifold. This would give us elliptic fibrations

over each piece of the base space, just as achiral Lefschetz fibrations gave us Lefschetz

fibrations over each piece of the base space in such a way that the same singularity in dif-

ferent parts would be each others inverse. Hopefully this would give all the singularities

from elliptic fibrations and their anti-version.

The symplectic structure

As we showed in Section 4.5, Lefschetz fibrations and symplectic structures are inter-

twined. It would only seem logical that, if achiral Lefschetz fibrations are the natural
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language for F-theory, the (log-)symplectic structure arising from it should also play a

role. It is not clear whether this structure corresponds to something physical.

In b-Lefschetz fibrations and log-symplectic structures, there is also the zero locus Z.

This separates the branes from the anti-branes. Does Z have a physical meaning? Could

it maybe be interpreted as an O-plane in some cases? Z is in our work pretty much free

to choose without changing anything about the singularities. Hence if Z would have a

physical meaning, it would be after making some restrictions on it (for example requiring

some geometric structures).

It is noteworthy that elliptic fibrations do not necessarily have a symplectic structure.

This will actually allow us to speak of the volume of a fiber in F-theory. The fibers are

normally just bookkeeping devices using only their complex structure, but a physical

meaning of the symplectic structure could also give a physical meaning to the volume of

the fibers.

Hyperfibrations

The setup we have worked with is not general: we have structurally ignored the 8

dimensions that the 7-branes lie in. This means that the 7-branes must all be parallel.

In general this of course does not have to be the case and we will have to find a type of

fibration that is related to achiral Lefschetz fibrations that can go from a 12-dimensional

to a 10-dimensional space. A logical candidate for this would be hyperfibrations.

Specifically, b-hyperfibrations would make the best candidates, as these are the higher

dimensional analogues of b-Lefschetz fibrations. They also give rise to a log-symplectic

structure.

The definition of these structures is rather involved and we will not treat it here. It has

to be said that things do not get more intuitive when considering these structures. More

details on b-hyperfibrations can be found in [CK16].





Appendix A

Mathematical prerequisites

In this appendix we treat a few of the mathematical concepts used in this thesis that

may not be familiar to physicists. Still, the introductions given here are very short and

non-precise, but hopefully enough to understand how we use them in this thesis.

A.1 Regular/Critical points/values

When talking about Lefschetz fibrations, it is inevitable to talk about regular and critical

values and points, so it is good to clear up the language.

Suppose we have two smooth manifolds M,N and a map f : M → N . We can define the

derivative df of this map by picking local coordinates x1, . . . , xm on M and y1, . . . , yn

on N . Then df at the point x ∈M is given by the n×m matrix

dfx =


∂f1

∂x1
(x) · · · ∂f1

∂xm
(x)

...
...

∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 .

We say that x is a regular point of f if dfx is surjective and that it is a critical point if

this is not the case. We call y ∈ N a regular value if all x ∈ f−1(y) are regular points

and we call y a critical value otherwise. Equivalently, we call y a critical value if is the

image of a critical point and call y a regular value if it is not.

Note that in general a “value” lies in the target space and a point lies in the “domain”.
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A.2 Symplectic structures

A symplectic structure is a geometric structure on a manifold. It can be thought of

like a metric: it lives on the manifold and is not intrinsic to it. To recap, a manifold is

a set of points. That set of points is then given a topology so that it is a topological

manifold. That topological manifold is then given a smooth structure, giving us a smooth

manifold. The metric, symplectic structure or complex structure are only then given

to the manifold, e.g. some smooth manifolds admit multiple non-equivalent complex

structures.

Definition A.2.1. A symplectic structure on a manifold M is a 2-form ω such that

1. ω is closed, i.e. dω = 0

2. ω is non-degenerate, i.e. for all x ∈M , if v ∈ TxM is such that ω(v, w) = 0 for

all w ∈ TxM , then v = 0.

Note that, as 2-form, ω is in particular bilinear and anti-symmetric.

Another way of stating non-degeneracy is that the map TxM → T ∗xM given by v 7→
ω(v,−) is a bijection.

A symplectic manifold has to be even dimensional and orientable, since ω ∧ ω ∧ . . . ∧ ω
is a volume form on it. Also e.g. S4 cannot have a symplectic structure, since it has

no 2-forms that are closed but not exact, and exactness of a 2-form leads to a failure in

non-degeneracy on closed manifolds.

A.3 Connected sums

There are two types of connected sums that are used throughout this thesis. We start

with the ordinary connected sum.

Definition A.3.1. Let M1,M2 be manifolds of dimension n. Choose two embed-

dings ιi : D
n →Mi for i = 1, 2. Then we define

M1#M2 = (M1 − ι1(0)) t (M2 − ι2(0))/ ∼

where ι1(tu) ∼ ι2((1− t)u) for all u ∈ Sn−1.
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Figure A.1: An illustration of the connected sum of two manifolds. If we imagine
the manifolds as surfaces, this illustrates the ordinary connected sum. If we image
the manifolds as filled, 3-dimensional objects with the surfaces as their boundary, this
illustrates the boundary connected sum.

Topologically, one cuts a disk from each manifold and glues the boundaries together,

only in this construction the resulting manifold is again smooth. The fact that the

result does not depend on the chosen embeddings is a consequence of the disk theorem.

Then there is the boundary connected sum. This is defined as follows:

Definition A.3.2. Let M1,M2 be manifolds with boundary and let Di ⊆ ∂Mi be

disks embedded in the boundary for i = 1, 2. Let ϕ : D1 → D2 be an orientation

reversing diffeomorphism. Then we define

M1\M2 = M1 tM2/(D1 ∼ϕ D2)

where the equivalence means we identify the two disks via the map ϕ.

See Figure A.1 for an illustration of these definitions.

A.4 Homotopy groups

For a complete treatment, see [Hat02].

Homotopy groups are one of the main objects of study in algebraic geometry. For every

n = 0, 1, 2, . . ., there exists the homotopy group πn(X,x0), where X is some topological

space and x0 ∈ X.
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The general idea is that πn(X,x0) is the group of classes of maps (Sn, s0) → (X,x0).

This notation means that it is a map from Sn to X and maps the point s0 to x0. Two

maps belong to the same class if they can be deformed into each other while keeping

this point fixed.

All maps in this section are assumed to be continuous.

Homotopy

This notion of “deforming maps” can be made more precise as follows.

Definition A.4.1. Two maps ϕ0, ϕ1 : X → Y are homotopic if there exists a map

Φ: X × [0, 1]→ Y such that Φ(0,−) = ϕ0 and Φ(1,−) = ϕ1.

Definition A.4.2. Two maps ϕ0, ϕ1 : (X,x0)→ (Y, y0) are homotopic relative to a

basepoint if they are homotopic through some map Φ: X× [0, 1]→ Y and Φ(x0, t) =

y0 for all t ∈ [0, 1].

Homotopy groups

We are now ready to define homotopy groups

Definition A.4.3. For n ≥ 0, we define the homotopy group πn(X,x0) as the group

of homotopy classes of maps (Sn, s0)→ (X,x0).

The constant map is always there and corresponds to the identity group element. Ho-

motopy groups are thus used to see what “holes” there are in our space: images of Sn

in X that cannot be deformed into the constant map.

The group structure may not be clear. We will not go into the group structure for n ≥ 2

here, since it is not used in this thesis. Also, for n = 0 there is no group structure, so

we will only treat the group structure on n = 1.

One can ask whether it makes a difference to the group if we choose x0 or some other

point x1 as our base point. The answer is that it only makes a difference if there is no

path between the two. Since we mainly concern ourselves with connected spaces and

these are always path connected in the world of manifolds, we can drop the base point

from our notation.
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The case n = 0

The set π0(X,x0) is the only one of the homotopy groups that does not admit a group

structure. It is easy to see what it represents. The sphere S0 ∼= {−1, 1} and we choose

without loss of generality s0 = 1. A homotopy between two maps ϕ0, ϕ1 : (S0, s0) →
(X,x0) is the same as a path between ϕ0(−1) and ϕ1(−1). So there are as many

homotopy classes of maps (S0, s0) → (X,x0) as there are connected components of the

space X. So if π0(X) = {0}, then the manifold X is connected.

The case n = 1: the fundamental group

The case n = 1 is the most famous homotopy group. It is often referred to as the

fundamental group. This group consists of homotopy classes of closed paths that can be

deformed into each other while keeping the endpoints fixed.

Let us give a simple example of a path that is not homotopic to the constant path.

For this we look at R2 − {0} and pick the path γ(t) = (sin(t), cos(t)) ∈ S1, where we

parametrize S1 as [0, 2π] with endpoints identified. This path runs around the origin

once in the counter-clockwise direction. We cannot hope to contract it to the constant

path, since doing so would require us to go through 0 and hence outside our space. So

we already see that π1(R2 − {0}) 6= 0.

Now let us first go into the group structure and then continue this example. The mul-

tiplication in the group is given by concatenation of paths. So the path γ1 · γ2 is the

path we get by first walking through γ1 and then through γ2. The identity element of

this group is the class of the constant path, since this does not change the path it is

concatenated with at all.

Back to our example π1(R2 − {0}). We note that we can also run twice around 0

in counter-clockwise direction. This is not homotopic to running around it once. It

is however the concatenation of the path that runs around around once with itself.

So concatenation of paths that go around in the same direction work as if they are

added: concatenating the paths that run around 4 times and 7 times in counter-clockwise

direction, gives us a path that runs around 11 times in counter-clockwise direction.

What happens if we concatenate the path going around counter-clockwise once with the

path going around once in the clockwise direction? This can be contracted (i.e. there

is a homotopy to the constant path), so it is the identity element again. Concatenating
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Figure A.2: Illustration of two different paths around the origin. On the left there is
the path that goes around once in the counter-clockwise direction. On the right there is
this path concatenated with the path that goes around once in the clockwise direction.
One can see that this is indeed contractible to the constant path.

paths that run in opposite directions hence works as subtraction.

At this point, it may not come as a surprise that we can indeed make the identification

π1(R2 − {0}) ∼= Z. This is the simplest case of a non-trivial fundamental group.

In our chapter on Lefschetz fibrations, we have a 2-dimensional base space Σ of our

Lefschetz fibration. The monodromy representation is then defined as a map π1(Σ∗)→
M(F ) where Σ∗ is obtained from Σ by deleting the critical values. We can now see

that locally around a critical value, Σ∗ looks like a disk with a point removed. We know

that the homotopy classes of paths around this critical point are in correspondence with

Z. It now seems only logical how the monodromy representation preserves the group

structure: if we run around once and have a monodromy given by ψ : F → F , then

running around in the opposite direction gives ψ−1. Hence running around 7 times in

one direction, then 2 times in the opposite direction and 4 times in the first direction,

we get ψ4 ◦ ψ−2 ◦ ψ7 = ψ9.

Definition A.4.4. A topological space X is called simply connected if π1(X) = 0.

If one is busy reading Chapter 5, it is a good exercise to try and see why 1-handles

determine the fundamental group in a handlebody. In particular, if a handlebody has

no 1-handles, it is simply connected.
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Homotopy invariance

There is a notion of two topological spaces being homotopy equivalent. Very intuitively

speaking, this is slightly weaker than spaces that can be deformed into each other as is

often presented in popular science (the donut and coffee mug being the same), which is

called a homeomorphism. For homotopy equivalence, we also allow “contractions”: the

interval is homotopy equivalent to a point, since we can contract it. Hence the cylinder

S1 × [0, 1] is homotopy equivalent to the circle S1. The precise definition is as follows:

Definition A.4.5. Two topological spaces X,Y are homotopy equivalent if there

are maps f : X → Y and g : Y → X such that fg is homotopic to the identity on Y

and gf is homotopic to the identity on X.

This next theorem is our reason for introducing the concept.

Theorem A.4.6. Suppose that two topological spaces X,Y are homotopy equivalent

to each other. Then πn(X) = πn(Y ) for all n.

The space R2 − {0} that we just considered is homotopy equivalent to the space S1.

Hence we now also know that π1(S1) = Z.





Appendix B

Details of surgery on fibers

In this appendix, we fill in the gaps left in the proof of Theorem 5.4.3.

First of all, we define the map h : ∂N(S0)→ ∂N(C0) and prove that it satisfies g
∣∣
∂N(C0)

◦
h = f

∣∣
∂N(S0)

.

We split ∂N(S0) into four regions:

TU = {(u1, u2) ∈ U | |u1u2| ≤ ε, |u2| = δ}

TV = {(v1, v2) ∈ V | |v1v2| ≤ ε, |v2| = δ}

U ′ = {(u1, u2) ∈ U | |u1u2| = ε}

V ′ = {(v1, v2) ∈ V | |v1v2| = ε}.

We then define h separately on each of these components

h(u1, δe
iθ) = (u1δe

iθ, eiθ, 1) ∈ Dε × C0 × {1} for (u1, δe
iθ) ∈ TU ,

h(v1, δe
iθ) = (v1δe

iθ, eiθ, 0) ∈ Dε × C0 × {0} for (v1, δe
iθ) ∈ TV ,

h(u1, u2) =

(
u1u2, ε

−1u2|u1|,
ε−1δ − |u1|
ε−1δ − εδ−1

)
∈ ∂Dε × C0 × [0, 1] for (u1, u2) ∈ U ′,

h(v1, v2) =

(
v1v2, ε

−1v2|v1|,
ε−1δ − |v1|−1

ε−1δ − εδ−1

)
∈ ∂Dε × C0 × [0, 1] for (v1, v2) ∈ V ′.
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To remind ourselves, we repeat the definition of f and g.

f
∣∣
U

(u1, u2) = u1u2,

f
∣∣
V

(v1, v2) = v1v2.

The map g : N(C0) = Dε × C0 × [0, 1]→ Dε is given by projection onto the first factor.

It is now easy to see that we have g
∣∣
∂N(C0)

◦ h = f
∣∣
∂N(S0)

. Hence h is fiber preserving.

We also have to prove that, given an achiral Lefschetz fibration π : X → Σ with a regular

fiber F0 over the point x0 ∈ Σ and a circle C ⊆ F0, we have an orientation preserving,

smooth embedding ϕ : N(C0)→ X such that

(i) ϕ(C0) = C,

(ii) ϕ is fiber preserving, i.e. if we identify Dε with a disk in Σ centered at x0, we have

π ◦ ϕ = g : N(C0)→ Dε.

Because F0 is a regular fiber, we can choose a neighbourhood L ∼= D2 of x0 such that

π−1(L) ∼= F0×L ∼= F0×D2. We can embed C0× [0, 1] into F0 and hence we can embed

N(C0) = C0 × [0, 1]×D2 into π−1(L) in a fiber preserving way.

Conversely, if F0 is a singular fiber with two singularities of opposite chirality, then it is

made up of two spheres, which we call S and R that intersect each other transversely at

two points. We have to find an embedding ψ : N(S0)→ X such that

(i) ψ(S0) = S,

(ii) ψ(D+ ∪D−) = R ∩ ψ(N(S0)),

(iii) ψ is fiber preserving, i.e. if we identify Dε with a disk in Σ centered at x0, we have

π ◦ ψ = f : N(S0)→ Dε.

Note that the first two requirements can easily be fulfilled because of the form of the

singular fiber. Because N(S0) ∼= S2 × D2, the third property is asking for a specific

framing on this embedding of S0. Since π2(O(2)) = 0, there is a unique framing for

an embedding of a 2-sphere. By the tubular neighbourhood theorem, we can always

get an embedding together with a framing. Since the framing is unique, the required

embedding exists.
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