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Abstract

Conventional seismic reprocessing and new unconventional methods, the Non Local Means algorithm and

Sparse Spiked Deconvolution are applied to a real 2D Seismic Dataset. The aim is to get better images on the

Rotliegend and Dinantian formations which are the target of Geothermal Exploration in the Netherlands.

Conventional seismic reprocessing gives improvement over the seismic data, particularly due to the superior

Pre-Stack Kirchhoff Time Migration used. Non Local Means Algorithm proven to increase signal to noise

ratio of the seismic data while preserving fault edges. We propose different NLM workflow with different

parameters for different processing target. Sparse Spike deconvolution with combined `1 norm and `2 norm

regularization for maximum sparsity and smoothness constraints is found to increase vertical resolution and

preserves reflection amplitudes and structures, reveals new reflection packages and small geological features

emerge from the data. Although NLM and Sparse Spike deconvolution are found to improve the signal to

noise ratio and vertical resolution in the mid depth section of Rotliegend reservoir, the offset limitation factor

still hampers the imaging of deep section of Dinantian reservoir. We suggest for new seismic acquisition to

use larger offset to get the maximum results on the Dinantian reservoir imaging



1 Introduction

The geothermal potential of ultra-deep reservoir formations in the Netherlands has been investigated in

the recent years as a result of push for development of sustainable and unconventional energy resources in

Europe, with in The Netherlands particular interest in ultra-deep lower Carboniferous Dinantian carbonate

reservoir systems. As one of the major hydrocarbon provinces in western Europe, The Netherlands has good

seismic coverage on-shore and off-shore as well as more than 5000 oil and gas wells. There has been much

detailed study of the first two to three kilometers of the Dutch subsurface (T. E. Wong, Batjes, and Jager

2007), however only few studies were done below the Permian Upper Rotliegend (Van Hulten 2012).

Dinantian age formations in the Netherlands are generally found below 3500 m, and they are rarely considered

a hydrocarbon exploration target. Figure 1.1 shows the interpreted top of Dinantian in seismic two way time

(ms). There are only few wells drilled penetrating the Dinantian, and seismic imaging did not have a focus

on deep reservoirs due to the strong emphasis on shallower Permian Rotliegend gas play. It was common

practice to cut off the lower parts of commercial seismic line because of very low signal to noise ratio (Van

Hulten 2012).

Also for more conventional depths (∼2000 m) the development of the geothermal sector in the province of

Utrecht is hampered by the poor quality of seismic data. The little available seismic data allows mapping

of the top of the Rotliegend reservoir, however is of too low quality to map its thickness. The thickness

uncertainty (which scales linearly to geothermal power) may be in the order of up to 50%(TNO). Based

on this fact, it is important to get seismic sections with better quality for geothermal exploration in the

Netherlands targeting Rotliegend and deep Dinantian formations.

1.1 Seismic Reflection Challenges for Geothermal Prospecting

Seismic reflection imaging is the geophysical method with the highest accuracy for acquiring subsurface

information at great depth, therefore it has been used extensively for oil and gas exploration. For geothermal

exploration, it has only been sparingly used due to some limitations. In the magmatic environment for

example, active seismic surveying is not suitable due to terrain acquisition difficulties and strong signal

attenuation due to volcanic rocks and magma chambers. In this environment, passive seismic method is

more commonly used.

In the enhanced geothermal setting such as in the Netherlands, seismic reflection imaging does not have such

problems, although it has other challenges. Ultra deep Enhanced geothermal systems (EGS) need ultra-high

depth (greater than ∼3000 m) to reach sufficient temperatures, and are usually are located in the crystalline

basement rock or carbonates with low permeability. The key challenges of seismic reflection imaging in

this type of environment are (1) weak reflection amplitudes which leads to low signal to noise ratio, (2)

complex morphology, lithology, and deformation which leads to often small, steeply dipping, and laterally

discontinuous reflectors, (3) resolution loss in the crystalline basement due to relatively longer wavelength, (4)

offset limitation to acquire proper migration and velocity models in the deeper structures, and (5) fractures

and layering leading to complex wave propagation and anisotropy (Schmelzbach et al. 2016). Milkrereit and
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Figure 1.1: Depth in two way time (ms) map of top of the Dinantian in the Netherlands (Jaarsma et al.
2013). Location of Marine Line GNL19-112 and Land Line MZ85-18 used in this research are shown.

Eaton (Milkereit and Eaton 1998) discuss in detail the challenges of seismic imaging in crystalline basement

compared to sedimentary basins.

In this research, conventional seismic reprocessing of the pre-stack data combined with new unconventional

processing techniques are done to improve the seismic image of an off-shore line and an on-shore line in the

Netherlands. The unconventional processing techniques used are the Non Local Means Filter (Buades, Coll,

and Morel 2005) and Seismic Sparse Spike Deconvolution (Chapman and Barrodale 1983). The Non-Local

Means filter aims to enhance the signal to noise ratio, especially in the deep Dinantian reflector where low

signal to noise ratio has been the major problem of depth interpretation. The major advantage of Non-

Local Means filtering over the commonly used coherency filtering such as FX Deconvolution (Galbraith et

al. 1991) is that NLM has strong edge preservation properties which is important in enhanced geothermal

system where faults and fractures are important features needed to be preserved. Sparse spike deconvolution

using `1 norm regularization aims to increase the vertical resolution of the seismic image and thus enhance
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the limited seismic bandwidth, which will improve the accuracy of seismic interpretation for geothermal

exploration.

The conventional seismic pre-processing itself is expected to bring significant improvement over the old

seismic data due to technological advancement in the seismic processing algorithm throughout the years.

The additional unconventional techniques are expected to bring more improvements to get better image of

the subsurface, especially Rotliegend and Dinantian structures.

By enhancing the overall quality of seismic sections using conventional reprocessing, non-local means filter,

and seismic bandwidth enhancement, a better depth model of Rotliegend and Dinantian formation in the

Netherlands can be obtained, thus reducing uncertainties in the key geothermal reservoir parameters which

are important in successful geothermal exploration.The conventional and new techniques mentioned above

and their application will be investigated, to see how far they improve the quality of Rotliegend and deep

Dinantian formations.
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2 Methodology

The Methodology used in this research is the application of Non Local Means Algorithm and Sparse spike

deconvolution following a seismic reprocessing of real 2D seismic datasets. In this research seismic processing

of seismic data are done using conventional methods commonly used in the industry (Yilmaz 2001). The

datasets used are a 2D offshore (GNL19-112) line located north of the Zeeland province of the Netherlands

and a 2D onshore line (HZ85-15) located south of Utrecht University campus of De Uithof, the Netherlands

(Figure 2.1). The datasets have been processed before in 1980s and both pre-stack and post-stack seismic

data are publicly available (nlog.nl). The MZ81-15 land line in the Utrecht area is located on one of the

focus areas for Rotliegend & Dinantian exploration in the Netherlands. The GNL91-112 line was chosen to

show the effectiveness of the method to resolve deep structures in marine seismic, as the Dinantian reflectors

in this area are located quite deep, around 3000 ms (Figure 1.1).

The conventional seismic processing up to Migration are done in Globe Claritas and Non Local means filter

and Sparse spike deconvolution are done in Matlab. The results and method are evaluated by seismic-

well tie using Schlumberger Petrel and the previous interpreted depth model of Dinantian and Rotliegend

Netherlands formation (TNO).

Figure 2.1: Map showing location of Marine Line GNL19-112 and Land Line MZ85-18 used in this research.
Source : http://nlog.nl
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Figure 2.2: Seismic processing workflow using conventional method (Yilmaz) of the marine data (left) and
land data (right). Post Stack Time Migration and Pre Stack Time Migration are done on the land data due
to poor imaging of deep section of PSTM. Limited offset and short line length induces strong artifacts of the
deep section. From shallow to mid depth section PSTM results are superior on both marine and land lines.

2.1 Seismic Processing

The pre-stack seismic processing is done using conventional workflow (Yilmaz 2001) commonly used in the

oil and gas industry. The goal of seismic processing is to get the most accurate image of the earth subsurface

from the recorded field seismic data. By doing seismic processing, we compensate for the acquisition effects,

increase the signal to noise ratio, minimize the signal distortion, and concentrate the recorded wave field

data. Marine seismic data and land seismic data have different characteristics and needs different processing

strategy. Marine seismic data typically has a more regular geometry, higher folds, and stronger coherent

noise (Yilmaz 2001). Common coherent noises found in marine data are swell noise, which is the results of

hydrostatic pressure changes in the seismic streamer and multiples. Multiple is a recorded wave which has

undergone more than one reflection in its travel path, and its attenuation is one of the major challenges in

marine seismic data processing. In land data, the main characteristics are irregular geometry and elevation,

low signal to noise ratio, strong incoherent (random) noise, and the presence of strong ground roll noise

(surface waves). Due to irregular terrain and the presence of low velocity layer near the surface in land data

acquisition, statics corrections are needed.
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Figure 2.2 shows the full workflow of the conventional processing for the offshore and onshore line. In the

case of marine line (GNL9-112) the radon demultiple step to eliminate multiple reflections is applied before

migration, and for the onshore line (HZ85-15) refraction and residual statics and ground roll attenuations

are done. The final product of conventional processing workflow is a time migrated seismic section which is

an approximation of the real subsurface structures in two-way time domain. Hence the result can be directly

compared to the old processed post-stack migrated sections. The most important steps which affects the

reprocessing result, will be explained in detail in this chapter, while the other routines and results comparison

of the conventional processing can be found in Appendix 1

2.1.1 Preprocessing

Preprocessing is the earliest step in seismic processing after SEG-Y file input. This starts by resampling the

input data to 4ms (based on the previous processing report and frequency content of the data) and then

merging geometry information with the data. Geometry application assigns source and receiver coordinates

into the trace headers as well as source receiver relations or spread information. This allows us to make

CDP and offset calculation for stacking and other processing steps. Geometry is one of the most important

step of processing, as many problems in processing arise due to incorrect geometry (Yilmaz 2001). For the

land data, elevation statics are also applied. One of the important steps in preprocessing is gain correction

to recover the amplitude loss by spherical wave front divergence.

Figure 2.3: a) Before and b) after deconvolution using operator length 150 ms and gap length 16 ms on the
marine line GNL19-112 shot gather. The orange circles shows reverberations and short period multiples are
attenuated after deconvolution.
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Figure 2.4: a) Before and b) after Radon demultiple on the marine line GNL19-112 cdp gather. The
orange arrow shows suppressed long period multiple and blue arrow shows enhanced primary reflector after
demultiple

2.1.2 Statics Correction

There are two statics correction method which are usually applied in land seismic processing, refraction

statics and residual statics. Refraction statics require the near surface model knowledge which consist of a

low velocity weathering layer, although in other cases such as glacial tills and sand dunes it may consist of

more than one low velocity layer (Yilmaz 2001). The first arrivals on the shot gather can be assumed as the

refracted energy from the base of the weathering layer. Hence to do refraction statics we need these first

arrivals information, which is acquired by a processing step known as first break picking. In this research first

break picking is done automatically using Globe Claritas automatic picking tools and few manual corrections.

For large 3D land datasets, a superior auto picking algorithm will really help as first break picking is one

of the most time consuming steps. This is especially true for data with poor quality and has lots of first

arrivals uncertainties.

2.1.3 Deconvolution

Deconvolution aims to increase the temporal resolution and compresses the wavelet. It also attenuates

reverberations and short period multiples, which is our main objective in this step. The deconvolution in

the conventional workflow differs to the later unconventional sparse spike deconvolution method using `1
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norm regularization. The deconvolution here is Wiener deconvolution in which it uses the commonly used

l`2 norm regularization or least squares inversion method which is less computationally demanding. The

details about the deconvolution process will be explained in the section about Sparse Spike deconvolution.

The predictive Wiener deconvolution used in this step requires the selection of appropriate operator and

gap lengths to get the desired wavelet and to prevent artifacts. In the land data MZ85-15, deconvolution

introduces low frequency noise which is a common deconvolution problem. This is removed by band pass-

filtering. Figure 2.3 shows the deconvolution results using filter length 150 ms and gap length 8 ms on the

marine shot gather.

2.1.4 Radon Demultiple

Multiple attenuation is one of the major challenge in Marine Seismic Processing. At any given time, multiples

tend to have more moveout than primaries. Based on this fact, NMO correction and stack based on primary

velocities should eliminate multiples. However, many multiples in marine data are too strong and sometimes

the moveout differences are not large enough such as that simple stacking does not properly attenuate them.

Radon demultiple operates on this moveout differences and transforms the NMO corrected CDP gather from

time domain to the parabolic radon domain. In this domain, we can model the signal and multiple noise

based on the user defined primary and multiple moveout ranges. Figure 2.4 shows the demultiple result on

cdp gather.

2.1.5 Kirchoff Time Migration

Migration is a process used to move dipping reflectors to their correct subsurface positions (Yilmaz 2001). It

also collapses diffractions and increases spatial resolution of seismic data. The result of migration can be seen

as a true approximation of the earth subsurface image, which makes it one of the most important process in

seismic processing. The migration method used in this work is Kirchoff Time Migration, which is based on

diffraction summation or summation of amplitudes along hyperbolic paths and incorporates wavelet shaping

factors, spherical spreading, and obliquity (Yilmaz 2001). The range of amplitude summation in the Kirchoff

Time Migration is called the migration aperture, whose value increases with depth. In theory, the larger

aperture of migration, the better results it gives, although with limited acquisition offset, large aperture value

can induce dipping artifacts especially at deep section. Pre-stack Kirchoff Time Migration has the advantage

that it can handle conflicting dips with different stacking velocities better than post-stack migration (Yilmaz

2001). It also gives better velocity estimation from the migrated gathers. Such advantages makes Pre-Stack

Kirchoff Time Migration widely used in the industry as it gives robust and accurate solution. Our results

before and after migration shows much better imaging on small faults and structures after migration.

2.2 Non Local Means Filter

Non Local Means (NLM) filter is a next-generation signal denoising algorithm which is originally proposed

for image processing (Buades, Coll, and Morel 2005) and has been used in medical imaging (Wiest-Daesslé

et al. 2007) and seismic processing (Bonar and M. Sacchi 2012). The NLM filter takes the advantage of high

redundancy in most natural images, which assumes for every small window in an image there are many other

windows in the same image with similar structures. It takes the similarity between a neighborhood window
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Figure 2.5: Non Local Means Filter of zoomed deep marine section using filter strength h of 0.01 (top) and
0.001 (bottom), and using a search window and neighborhood window 50 and 3 samples. (a) is input data.
(b) the NLM result, and (c) the difference.

of a main pixel with other neighborhood windows within the same image to calculate the averaged value of

the main pixel. It is non local because the whole image contributes to the value of the denoised pixel in

consideration, not just the neighborhood of the pixel. In practice, using the entire image for search window

can became very computationally demanding and thus the process is restricted within a determined search

window.

A Seismic reflection image is the prime example of natural image with high redundancy, as there are lots of

periodic structures and reflection packages within a seismic image. NLM filter demonstrates the ability to

strongly enhance signal-to-noise ratio with high edge preservation ability (Buades, Coll, and Morel 2005) ,

which is suitable for denoising a seismic image. The common methods for post-stack seismic random noise

attenuation such as f-x deconvolution (Canales et al. 1984), Cadzow filter (Trickett et al. 2008), and other

coherency based filtering use a linearity assumption of seismic events and usually results in smearing of

edges and small features, and sometimes do not handle steep reflections very well. Therefore, NLM filter is

a suitable alternative for seismic denoising method, especially for imaging geothermal reservoir where faults

and fractures are important features.

The implementation of NLM algorithm in this research is based on the original concept by Buades (Buades,

Coll, and Morel 2005), it implementation on seismic image (Bonar and M. Sacchi 2012), and program

developed in TNO (Carpentier and Steeghs 2016).

Let the discrete imaged be defined as u(i,j), the main pixel in which we are trying to find its new denoised

value have coordinate (i,j) and the comparative pixels in the search window have coordinate (k,l). If we take

a radius L of the search window, the NLM output or the new value of the main pixel is the weighted average

sum of all pixels within the search window which is given by the equation 2.1
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Figure 2.6: Non Local Means Filter of zoomed land section using filter strength h of 0.001 (top) and 0.00003
(bottom), and using search window and neighborhood window 50 and 3 samples. (a) is input data. (b) the
NLM result, and (c) the difference. Note that it has worse performance using a similar window of 0.001
compared to the marine data. A Filter strength of 0.00003 is found to be the optimum parameter for good
filtering performance without destroying much signals.

NLu(i, j) =

i+L,j+L∑
k=1−L,i=j−L

w(k, l)u(k, l) (2.1)

Where the weight 0 <= w(k, l) <= 1 of the comparative pixel in the search window is calculated based

on the similarity measurement between the neighborhood of main pixel (i,j) and comparative pixel (k,l),

in which the similarity is computed by its Gaussian Euclidian distance (‖v(Ni) − v(Nj)‖22). It gives the

sample closer to the main pixel inside the neighborhood window to have more significance in the similarity

measurement. Z(i) is normalization factor to make sure the value of Σw(k, l) = 1 The weight calculation is

given in the equation 2.2.

w(i, j) =
1

Z(i)
e−(‖v(Ni)−v(Nj)‖22)/(h2) (2.2)

The decay of the exponential function as a function of the Euclidean distance is controlled by the parameter

h or the user defined filter strength (equation 2.2). Large value of h will assign similar weights to all j pixels

in the image and small value will assigned larger weights to only a select few of j pixels in the image. If

all j pixels have similar weights, the NLM algorithm become less selective which results in strong but worse

performing filter. Compared to search window and neighborhood window, h is the most data dependent

parameter as it performance depends on the noise level and the amplitude variance of the data. The basic

rule regarding h parameter (Bonar and M. Sacchi 2012) is that the value has to be at least 0.1 times the
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Figure 2.7: Results comparison using NLM of a) input marine data and results with 3 different neighborhood
window size b) 1, c) 9, d) 19 and the difference between input data and results using results different
neighborhood window size e) 1, f) 9, g) 19. The difference comparison shows using small window size of 1
filtered lots of reflective signal. Using larger than 9 shows no significant improvement

maximum amplitude in the data. Careful choice regarding the h parameter needs to be taken, especially in

land data with lower signal to noise ratio as a large h value can introduce artifacts. We found that in general

we need different h values between marine and land seismic data.

Figure 2.5 shows that using a larger h value of 0.01 on the GNL19-112 marine data results in stronger and

less selective filtering compares to h value of 0.001. For MZ81-15 land data (Figure 2.6) we chose h parameter

smaller than on the marine data in the order up to 10−2 to prevent over smoothing and artifacts.

In this research, the search window size for NLM application on both lines are chosen to be rectangular 50

x 50 samples. A larger search window will provide better results due to more information to acquire from
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an image in the expense of increase in computational time. For 2D dataset, choosing a larger window than

50 x 50 is computationally expensive and does not provide significant result improvements.

Neighborhood or similarity window size needs to be chosen such it large enough to recognize structures which

we want to be preserved. In seismic data, this means we have to use neighborhood window larger than the

largest wavelength length in time domain (Bonar and M. Sacchi 2012). We found the optimum parameter

for neighborhood window 3 to 9 for both land and marine data, and results comparison between the two n

window is shown in Figure 2.7. Our testing found that after certain length, an increase in search window

does not improved filtering performance, and then at certain length it starts to decrease the performance

and became less selective. 2.7. shows the results comparison using different neighborhood window of 1,9,

and 19

2.3 Sparse Spike Deconvolution

In mathematics, deconvolution is a process used to reverse the effects of convolution and widely used in signal

and image processing. In signal processing, deconvolution refers to the problem of estimating the unknown

input to an LTI (Linear Time Invariant) system when the output signal and system response are known.

In theory, deconvolution is a straightforward process which involves designing inverse filter and gives exact

answers. In practice, many systems such as seismic reflection are non-invertible or nearly non-invertible (ill-

posed). The use of simple and straight exact inverse filters in the ill-posed inverse problem is very unstable

and will greatly amplify the noise.

In reflection seismology, deconvolution is one of the important steps in digital seismic processing. Besides

compressing the basic wavelet in seismogram, deconvolution is also used to eliminate reverberations and

short period multiples (Yilmaz 2001). Based on the convolution model of reflection seismology, a seismo-

gram is the sum of the convolution of source wavelet with the reflectivity coefficients and additional noise.

Mathematically, it is given by:

y(t) = w(t) ∗ r(t) + n(t) (2.3)

where y(t) is the recorded seismogram, w(t) is the source wavelet, r(t) is the earths subsurface reflectivity

coefficients, n(t) is noise, and ∗ denotes a convolution process. The convolution model assumes that the

earth subsurface can be represented by a set of planar layers with constant acoustic impedance. In this

research, the wavelet is assumed to be known, which will be acquired by estimation from seismogram.

The main purpose of deconvolution in seismic data processing is to acquire the accurate representation

earths reflectivity coefficient (r(t)) to get a realistic and accurate image of the earths subsurface. From the

equation 2.3 we can see that the presence of noise make the deconvolution of seismic data non-unique. Also

due the fact that a seismic source wavelet and the data are always band limited, seismic deconvolution is an

ill-posed inversed problem which produces limited band-width results.

To solve the non-uniqueness problem of seismic deconvolution, the approach is to pick a solution that (1)

fits the data and (2) satisfies a given set of constraints (Velis 2007). The approach for (1) is to minimize the

data error and (2) to add prior information about the data to discard implausible models by a method called

regularization (Tarantola 2005). The conventional method of predictive Wiener deconvolution in seismic
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data processing uses `2 norm regularization (Tikhonov 1963) in the inversion to suppress noise disturbance,

which results in frequency band-limited reflectivity coefficient approximation.

In sparse spike deconvolution, the prior information is the assumption of earth reflectivity as a sparse sequence

of spikes. This assumption is due to the fact that the bigger reflectivity coefficients are the main contributors

of acoustic impedance, which can be seen as spatially spaced geological boundaries. By adding a sparsity

constraint as prior information about reflectivity in the inversion, an approximation of the correct amplitude

and location of the sparse reflectivity series can be obtained, and significant increase in bandwidth content

can be achieved from band-limited seismic observations.

There are several methods for adding sparse constraint in inversions, the common method use is the opti-

mization of a norm that forces sparse solution (Chapman and Barrodale 1983; Debeye and Van Riel 1990;

M. D. Sacchi, Velis, and Cominguez 1994). In this research, this is done by non quadratic optimization

of `1 norm regularized inversion (Taylor, Banks, and McCoy 1979) of seismic data and estimated source

wavelet (Chapman and Barrodale 1983), with the half quadratic approach to solve the minimization prob-

lem of `1 norm, based on method done on SAR imaging (Mujdat Cetin, Karl, and Castanón 2003) and

image processing (He et al. 2014). To preserve reflection amplitudes and impose lateral continuity of seismic

data, we added `2 norm smoothness derivative constraints in the cost function. At last, to fix the common

problem of high frequency noises of `1 norm regularized deconvolution, we applied the Non Local Means

Algorithm(Buades, Coll, and Morel 2005) before deconvolution to increase the signal to noise ratio while

preserving fault edges.

2.3.1 Theory

To illustrate how we approach this problem, lets take a look at a discretized or matrix version of the seismic

convolution model in the equation 2.3 as

y = Wr + n (2.4)

where y is a sampled seismic data, r is the earth reflectivity coefficient, W is the estimated source wavelet

matrix, and n is noise. A solution to the problem of estimating the earth true reflectivity coefficient can be

obtained through a generalized least squares solution:

rLS = argmin‖y −Wr‖22 (2.5)

and cost function or data error function is given by

J(r) = ‖y −Wr‖22 (2.6)

where ‖.‖22 denotes the `2 norm. The generalized least square solution aims to find the r value (rLS) which

will minimize the squared error or `2 norm error of the actual observations (y - Wr). As we discussed

before about the ill-posed inverse problem, the generalized least squares solution is unstable due to noise

perturbation. To overcome this problem, a regularization can be done by allowing the inclusion of prior

information to get a stable solution in the presence of noise in the data.



14

A commonly used regularization is Tikhonov regularization (Tikhonov 1963), in which the inclusion of prior

information is done by adding the additional regularization term in the cost function as follows:

J(tik) = ‖y −Wr‖22 + λ2‖Pr‖22 (2.7)

where λ is regularization parameter and its value controls the trade off between the first and second term

of the equation. The first term is the data fidelity term and the second term is the regularization term

which includes the prior information. The common choice to use for P is an identity matrix, which then acts

to penalize large values of the solution and reduce noise amplification or Derivative matrix which impose

smoothness to the solution (Mujdat Cetin, Karl, and Castanón 2003). The linear equation for the Tikhonov

analytical solution can be written as:

(WTW + λ2PTP ) rTIK = WT y (2.8)

Which gives a quadratic solution of r (rTIK). The advantage of quadratic regularization or `2 norm regular-

ization is that it results in linear solutions which are computationally easy to solve. The disadvantage is that

it results in a smoothed image and blurred sharp boundaries. To impose a sparsity constraint or sparse prior

information in the inversion, we use an `1 norm regularization instead of `2 regularization, which sometimes

is called Total Variation Regularization (Rudin, Osher, and Fatemi 1992). The usage of `1 norm regulariza-

tion to obtain a sparse solution and edge preserved images has been demonstrated in many applications such

as astronomy (Geman and Yang 1995), medical imaging (Y. Wang and Zhou 2006), SAR imaging (M Cetin

n.d.) and seismic deconvolution (Chapman and Barrodale 1983). The `1 norm regularization cost function

is given by equation 2.9

J(TV ) = ‖y −Wr‖22 + λ2‖Pr‖1 (2.9)

The cost function of `1 norm in the equation 2.9 is non-differentiable which leads to challenging nonlinear

optimization problem (Bovik 2010). To solve the non-differentiable property of `k norm when k ≤ 1, one of

the approaches is to use a smooth approximation of the solution (Acar and Vogel 1994) given by:

‖r‖kk =

N∑
i=1

((ri)
2 + e)

k
2 or when k = 1 , ‖r‖1 =

N∑
i=1

√
(ri)2 + ε (2.10)

where ε > 0 is a small constant, N = length of vector, and i denote r at its i th element. If we take a diagonal

matrix Λ(r) which depends on r and ε as given by:

Λ(r) =
1

2
diag

1√
(ri)2 + ε

(2.11)

The solution of the equation 2.9 (Bovik 2010) becomes:

(WT W + λ2 PT Λ(r)P ) rTV = WT y (2.12)
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Which gives the analytical solution of r (rTV ). Note the equation 2.12 is equal to equation 2.8 when Λ(r) = 1.

Although the equation 2.12 is still nonlinear due to diagonal matrix dependency on r, it is found it can be

solved by simple fixed point iteration (Bovik 2010) of a linear equation for r given by the equation:

(WT W + λ2 PT Λ(r(n) P ) rTV
(n+1) = WT y n = 0, 1, ... (2.13)

Which can be solved by quasi-Newton method:

rTV
(n+1) = rTV

(n) − [H(rn)]
−1 5 (rn) (2.14)

where H(rn) is the Hessian or second derivative matrix of r and 5(rn) is the first derivative matrix of r.

The problem with this approach as stated by Vogel et al (Vogel and Oman 1998) for `1 norm minimization

is that standard non linear method such as Newton’s method or quasi-Newton’s tend to perform poorly

for `1 norm regularization. One of the approach to solve this is by half-quadratic regularization (Geman

and Yang 1995; Vogel and Oman 1998). In this research, we will use half-quadratic regularization method

developed by M Cetin et al (M Cetin n.d.) which proven to give more efficient and robust solution of `1

norm minimization.

2.3.2 Smoothness constraints and Half Quadratic Optimization

We use Half-quadratic regularization (M Cetin n.d.) and impose smoothness constraint in the cost function

of equation 2.16 in the form of discrete derivative operator matrix D, which is given by:

D =


−1 1

. . .
. . .

. . .
. . .

−1 1

 (2.15)

The additional regularization term aims to preserve reflection structures and amplitude, which is important

for seismic interpretation. The resulting cost function with added smoothing constraint is given by:

J(r) = ‖y −Wr‖22 + λ12‖r‖k1
k1 + λ22‖Dr‖k2

k2 (2.16)

One of the approach is to use the same value of k for both terms with k1 = k2 = 1 (M Cetin n.d.). We found

that using k1 = 1 and k2 = 2 gives best results for maximum resolution and smoothness of seismic data.

The parameters λ1 and λ2 control the trade-off between data error minimization, sparsity constraints, and

smoothness constraints. By using the same smoothness approximation of the solution as in the equation 2.10,

the equation 2.16 can be written as:

J(r) = ‖y −Wr‖22 + λ12
N∑
i=1

((ri)
2 + e)

k1
2 +

N∑
i=1

((Dri)
2 + e)

k2
2 (2.17)

The first derivative or gradient of the equation 2.17 is given by:
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5J(r) = 2WT Wr + k1λ2
1Q1 rΛ1(r) + k2λ2

2D
T Λ2(r)D (2.18)

The compact gradient form of equation 2.17 can be written as:

5J(r) = H(r)− 2WHy (2.19)

where the Hessian matrix approximation is given by:

H(r) =∆ 2WT W + k1λ2
1Λ1(r) + k2λ2

2D
T Λ2(r)D (2.20)

and we take the same diagonal matrix as in equation 2.11 times two for both regularization terms:

Λ1(r) =∆ diag

[
1

((ri)2 + ε)1− k1
2

]
(2.21)

Λ2(r) =∆ diag

[
1

((D ri)2 + ε)1− k2
2

]
(2.22)

Because we will use k2 = 2 for smoothing constraint, the diagonal matrix Λ2(r) will be equal to 1.

We use quasi-Newton iteration to solve r from the Hessian H(r) approximation based on the method by M

Cetin et al (M Cetin n.d.) given by:

rn+1 = rn − γ
[
H(rn]−1 5 J(rn) (2.23)

where γ is step size. Substituting the equation 2.19 to equation 2.23 gives the iterative algorithm:

H
(
rn
)
rn+1 = (1− γ)H

(
rn
)
rn + γ2WHy (2.24)

This equation results in the coefficient matrix of H(r(n)) which is sparse, Hermitian, and positive semi

definite (M Cetin n.d.), which can be solved iteratively by Conjugate Gradient method to find the find

(r(n+1). If we take:

v = (1− γ)H
(
rn
)
rn + γ2WHy (2.25)

The conjugate gradient scheme can be written as:

H
(
rn
)
rn+1 = v (2.26)

And the iteration is run until ‖r(n+1) − r(n)‖22 / ‖r(n)‖22 < δ where δ > 0 is a small constant, which in this

research the chosen value of δ is 1∗10−7. The iterative algorithm scheme (Mujdat Cetin, Karl, and Castanón

2003) is shown in figure 2.8.
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Figure 2.8: Quasi Newton based iterative algorithm scheme (Mujdat Cetin, Karl, and Castanón 2003)

2.3.3 Wavelet Estimation

To solve the inverse problem of seismic deconvolution in the equation 3, seismogram r and source wavelet

W are needed. The source wavelet of seismic reflection is mostly not known, but it can be estimated from

seismic data. The main idea behind seismic wavelet estimation is based on the fact that the smoothed

amplitude spectra of source wavelet has similar shape, in fact is almost indistinguishable from the source

wavelet amplitude spectra (Yilmaz 2001).

In this research, a multi traced windowed approached is done to estimate the source wavelet. Using the

selected time window, for every trace the amplitude spectra of traces around the main trace are smoothed

and averaged. The sum of those smoothed spectra are inverted back to time using inverse Fourier transform

to get the estimated source wavelet. Using this method, we obtained a smoothed spatially varying and depth

targeted source wavelet to prevent noise amplification which results from non smooth wavelet.

Due to the fact that most of seismic data frequency bandwidth are depth dependent, selecting different time

window means different source wavelet which will give different inversion results in terms of noise level. We

found that using `2(r) norm smoothing constraint and/or Non Local Means Algorithm before deconvolution

helps reduce such effect.

2.3.4 Sparsity and Smoothness Regularization Parameters

Figure 2.9 shows the result of a single trace sparse spike deconvolution with λ2(r) = 0 or without any

smoothing constraints to test the effect of different λ1(r) parameter. We found that using small value of

λ1(r) = 0.5 already produces a sparse solution. We found that using higher value of λ1(r) = 0.9 and

λ1(r) = 5 does not effect the amplitude and position of the sparse solution significantly.

Figure 2.10 shows the result of sparse spike deconvolution with added smoothness derivative constraint.

Our test shows that using k=2 for derivative smoothness constraint or `2(r) norm produces better results

in terms of sparsity and smoothness compared to `1(r) norm derivative constraint. It still shows multiple

reflection packages emerges while the added smoothness constraints preserves reflection packages amplitudes

and structures. The results on multiple traces real data will be shown in the next chapter.
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Figure 2.9: Comparison of using different λ1 value for sparsity constraints of a) input data and b) λ1 = 0.5
c) λ1 = 0.9, and d) λ1 = 5. The orange arrow shows two reflection packages emerge from single reflection
package after sparse deconvolution

2.3.5 Non Local Means Algorithm to prevent noise artifacts in deconvolution

If the sparse spike deconvolution is exactly regularized and weighted, the artifacts effect caused by random

noise is diminished (Velis 2007). Moreover, artifacts due to instability due to noise disturbance remains a

challenge in sparse inversion. Some solutions of this problem include a spatial smoothness constraint in the

inversion (J. Wang, X. Wang, Perz, et al. 2006), frequency-space (FX) weighted -filtering applied to the

inverse matrix in multi-channel sparse deconvolution (J. Wang and M. Sacchi 2008), random noise filtering

(FX) applied before deconvolution (Karslı, Güney, and Senkaya 2017). In this research, an approach similar

to the third approach is used; more precisely by applying Non Local Means (NLM) filter before sparse spike

deconvolution.

The usage of adaptive Non Local Means filtering for random noise attenuation with strong edge preservation

properties are expected to bring improvement over the commonly used random noise filtering method like

FX filtering, and thus reduce the artifacts caused by noise disturbance but maintaining edge preservation

for further fault and fracture interpretation. The results of sparse deconvolution after NLM will be shown

in the next chapter.
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Figure 2.10: Comparison of using different k vale for smoothness contsraints of a) input data = b) k = 2 , c)
k = 1 . Orange boxes shows particular area where we can see better results on k = 2 smoothing constraint
compared to the k = 2 results
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3 Results

To illustrate the conventional seismic processing, Non Local Means Algorithm and Sparse Spike deconvolution

performance on a real data set, the results are shown in this chapter. The real data set used are marine

line GNL91-112 and land line MZ85-15, with the position shown in Figure 2.1. In the end, the results and

especially the sparse spike deconvolution performance are evaluated using well seismic tie from surrounding

wells.

Figure 3.1: The comparison between zoomed section of offshore dataset GNL19-112 old section (top) and
after reprocessed (bottom). The old section is post-stack time migrated and the reprocessed section is pre-
stack time migrated. Note the improvement on the reflectors continuity and fault delineation on the yellow
circle. The red circle shows the superior demultiple results by the lack of multiple reflections on the red
circle.
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Figure 3.2: The comparison between zoomed section of onshore dataset MZ85-15 old section (top) and
reprocessed (bottom). The old section is post-stack time migrated and the reprocessed section is pre-stack
time migrated. Note improvements on the reflectors continuity and coherence as well as fault delineation on
the yellow circle. The statics are also better shows by flatter reflectors on the shallow section.

3.1 Conventional Processing

The seismic reprocessing results using conventional workflow (Yilmaz 2001) produced improvements of the

old seismic data, especially on the shallow to mid-depth reflectors, up to depth of 3000 ms as can be seen from

the figure 3.1 and figure 3.3. The results are expected considering the improvement over seismic reflection

processing algorithm used through the years since the processing of the old data at 1980s, especially due to

the Pre-Stack Kirchoff Time Migration algorithm, demultiple on marine line and statics algorithm for the off

shore line. The improvement of deep Dinantian reflectors are however, insignificant due to offset limitation

caused by the acquisition offset 3500 m (Figure 3.3). With limited offset, Pre-Stack Time Migration does

not have enough aperture to properly image deep reflectors. These deep reflectors improvement will be

thoroughly investigated by the Non Local Means Algorithm method. These new improved reprocessed line

act as a good base for testing and applying Non Local Means algorithm and Sparse Spike Deconvolution to
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Figure 3.3: The comparison between zoomed section of offshore dataset GNL19-112 on the deep sections
before reprocessed and after reprocessed. Both are time migrated sections. There are improvements on the
reflectors continuity and fault delineation on the yellow circle, however its minimal.

further get better images of the geothermal reservoirs.

3.2 Non Local Means Filter

3.2.1 Off-shore Line (GNL91-112)

Figure 3.4 shows the results comparison of Non Local Means filter using different neighborhood window 3 &

9 applied on the marine line. As shown in the Methodology section in Figure 2.5, the neighborhood window

size needs to be chosen larger than the seismic structures we want to be preserved (seismic wavelength length

in time). As with most seismic data, the frequency of seismic data is depth dependent. We found that using

a search window of 9 gives better results to resolve deep structures (figure 3.4) while for shallow structures

search window of 3 is sufficient (Figure 3.5). The overall results of NLM shown highly enhanced signal

to noise ratio with edges and steeply dipping reflectors preserved. However, we found that the short offset

factor limiting the migration aperture still prevents us to get clear reflection of deep Dinantian formations.
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Figure 3.4: The comparison between zoomed section of offshore dataset GNL19-112 on the deep sections a)
migrated section b) after NLM with sw = 50, nw = 3, h = 0.001 c) after NLM with sw = 50, nw = 9,
h = 0.001. Yellow arrows point to possible Dinantian reflectors
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Figure 3.5: The comparison between zoomed section of offshore dataset GNL19-112 on the mid-depth sections
a) migrated section b) after NLM with sw = 50, nw = 3, h = 0.001 c) after NLM with sw = 50, nw = 9,
h = 0.001. Yellow arrows point preserved faults after NLM
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Figure 3.6: The comparison between zoomed section of onshore dataset MZ85-15 on the deep sections a) old
section b) migrated section, and c) after NLM with sw = 50, nw = 9, h = 0.0003. Yellow arrows point to
possible Dinantian reflectors
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3.3 Sparse Spike Deconvolution

Sparse spike deconvolution is applied to the datasets with and without NLM filter applied to compare the

effect of random noise attenuation effect on the regularized inversion. The source wavelet is estimated using

a smoothed frequency spectrum of multiple traces within a chosen time window. The chosen time window

is 2000 to 3500 ms to capture the source wavelet within the mid to deep reflectors. The regularization

parameter λ1 and λ1 are tested to give optimum results. We chose λ1 = 0.9 as it gives satisfying results in

the sparse presentation of reflectivity. Figure 2.9 shown that using smaller or larger value of λ1 does not

produce a significant change in the reflection position and amplitude.

Figure 3.7 shows that the sparse spike deconvolution without smoothing constraints in the regularization

produces sparse reflectivity spikes; however, such result is difficult to interpret as it is difficult to distinguish

layers and structures. To preserve amplitude and structures, we impose smoothness constraint using `2

norm of derivative constraint in the regularization. For this method, we chose λ2 = 9. The results shows the

vertical resolution of the data is enhanced after sparse spike deconvolution. Moreover, with the smoothing

constraint in the regularization, the structures and reflection amplitudes are preserved.

Figure 3.7: a) Zoomed migrated marine data b)after Sparse deconvolution with added `2 smoothing con-
straints and λ2=9 c) after Sparse deconvolution with λ2=0 or without any smoothing constraint.Yellow
circle shows the enhanced resolution makes small structures and reflection packages emerges from the data.
Orange arrow shows reflection packages emerges from noisy data

This smoothing method used is compared to the so called ”post-processing” method, which can be done by

either simple band-pass filter to omit high frequency spectrum or re-sampling the data from 2ms to 4ms

and applying anti-aliasing filter to impose smoothness. The comparison is shown in Figure 3.8, and it shows

that our method of using `2 norm derivative smoothing constraint produces results with better reflection

continuity than the post-processing method. Figure 3.9 shows the result of sparse spike deconvolution after
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Figure 3.8: a) Zoomed migrated marine data b)after Sparse deconvolution with added `2 smoothing con-
straints and λ2 = 9 c) after Sparse deconvolution with λ2 = 0 or without any smoothing constraint and
bandpass filtering applied. Orange arrows shows areas with better reflection continuity on b)

Figure 3.9: a) Zoomed migrated marine data b) after Sparse deconvolution c) after Sparse deconvolution
with NLM filter applied before deconvolution. Orange arrows shows areas with better reflection continuity
and signal to noise ratio on c)

NLM. It shows that sparse spike deconvolution after NLM produces results with better signal to noise ratio.

The problem with high resolution deconvolution method is that it tends to give high frequency noise artifacts

due to noise perturbation, and some author uses spatial smoothness in the inversion (J. Wang, X. Wang,

Perz, et al. 2006) or random noise filtering (FX) applied before deconvolution (Karslı, Güney, and Senkaya

2017) to tackle the problem. Our method shows that using NLM before sparse spike deconvolution helps to

reduce the noise artifacts. Due to strong edge preservation property of NLM, the fault edges are preserved.
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We evaluate our results and method of the sparse spike deconvolution by doing well-seismic tie and compare

the well correlation of migrated data and enhanced bandwidth data after sparse spike deconvolution. We use

the closest wells of P04-01, P10-03, and P10-01 with the GNL91-112 line(Figure 3.10). The well correlation

is done by synthetic seismogram generation of the sonic and density logs. Some time shifts are applied

to match the reflections between seismic data and synthetic seismogram and to compensate for the offset

distance of the wells to the GNL91-112 seismic line.

Figure 3.10: P04-01, P10-03, and P10-01 locations and GNL91-112 marine line

The well-seismic tie for the three closest wells (Figure 3.10) shows the sparse spike deconvolution stack has

better well seismic-tie than the PSTM only stack (Figure 3.11,3.12,3.13). At some parts (highlighted by the

yellow boxes in figures) the number of reflection packages and its position matches exactly with the synthetic

seismogram.
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Figure 3.11: P04-01 well seismic tie with a)PSTM stack and b) sparse deconvolution stack of the GNL91-112
Marine Line.Yellow boxes shows the area of better well correlation of the sparse deconvolution stack. Time
shift of well 70 ms up is applied

Figure 3.12: P10-03 well seismic tie with a)PSTM stack and b) sparse deconvolution stack of the GNL91-112
Marine Line.Yellow boxes shows the area of better well correlation of the sparse deconvolution stack. Time
shift of well 70 ms up is applied
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Figure 3.13: P10-01 well seismic tie with a)PSTM stack and b) sparse deconvolution stack of the GNL91-112
Marine Line.Yellow boxes shows the area of better well correlation of the sparse deconvolution stack. Time
shift of well 70 ms up is applied
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4 Discussion

4.1 Non Local Means and Sparse Spike Deconvolution approach for seismic
processing

NLM was found to be working flawlessly in a synthetic dataset (Bonar and M. Sacchi 2012).However, the

problem with real seismic data is that it has depth dependent frequency content, amplitude, and noise level.

Our results with applying Non Local Means filter to a real seismic dataset has proven to increase signal to

noise ratio while preserving fault edges, however we found that different parameters were needed for different

processing targets. As we have shown in chapter 4, using a neighborhood window value of 9 resolves the very

deep reflections better, although it results in an ”over-smoothed” appearance of seismic data in the shallower

part. This particularly has to be avoided for NLM filtered data as an input for Sparse Spike Deconvolution,

as using too large of search window and filter strength will smoothed out very small features, which might

contributes to the high frequency content of the data which we want to be recovered after Sparse Spike

Deconvolution.

The long computational time of NLM compared to other random noise filtering method such as f-x decon-

volution and eigen vector filtering also makes it challenging, especially on 3D dataset. We found that using

search window of 50 and neighborhood window of 9 are viable for 2D dataset, while for 3D dataset it can be

very computationally expensive. This problem can be solved by parallelizing the code, which is very feasible

as the algorithms scales very well with multiple computation cores. Several techniques were developed in

the recent years to improve the computational efficiency of NLM, such as windowed application of partial

data (Maraschini and Turton 2013), and uses of specific convolutional kernels and non-square search window

and neighborhood window (De Gaetani et al. 2016), although those are outside the scope of this research.

Sparse Spike deconvolution with combined `1 norm and `2 norm regularization for maximum sparsity and

smoothness constraints were found to increase vertical resolution and preserves reflection amplitudes and

structures. The increased resolutions reveals new reflection packages and small geological features from the

data. Applying Sparse Spike Deconvolution after NLM results in bandwidth enhanced data with better

lateral continuity of the reflection and higher signal to noise ratio. However, due to depth dependency of

time windowed smoothed wavelet extraction, different results can be produced from different choices of time

window. We found that using a quite large time window between 2000 to 3500 ms targeting mid-depth to

deep reflectors gives satisfying deconvolution result for both dataset with few noise artifacts.

4.2 Reprocessing approach for imaging geothermal reservoirs in the Nether-
lands

The reprocessed seismic data with just conventional processing shows to produce quite significant improve-

ment over the old processed data. Our processing shows that Pre-Stack Kirchoff Time Migration algorithm

used in our processing was better at imaging structures and faults than the post stack time migration used

in the old data. The radon demultiple algorithm used also attenuates the multiples better on the marine
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line, and the statics correction on the land line shows to produced more geologically realistic flat reflections

on the shallow part of the land line. Overall, conventional processing with added Non Local Means Filter

and Sparse Spike Deconvolution are proven to give better seismic images compared to the old images. The

higher vertical resolution of Sparse Spike Deconvolution especially makes the previously non-visible small

structures such as small faults, wedges, and channels emerge from seismic data. This is especially important

for geothermal prospecting.

As we discussed in the first chapter, the challenges in seismic reflection for enhanced geothermal prospecting

are weak reflection amplitudes resulting in a low signal to noise ratio and a low resolution in the deep

section (Schmelzbach et al. 2016). Although NLM and Sparse Spike deconvolution were found to improve

the signal to noise ratio and vertical resolution in the mid depth section of Rotliegend reservoir, the offset

limitation factor still hampers their results on the imaging of deep section of Dinantian reservoir. Based

on this fact, we suggest where necessary for new seismic acquisition with larger offset to get the maximum

results on the Dinantian reservoir imaging.

4.3 Further Research and Improvement

Although seismic reflection images have vertically varied structures,amplitude, and noise level, they are more

or less laterally uniform. This suggest that the usage of non-square spatially elongated search window and

neighborhood window on NLM algorithm may improve the results. Also, as have been shown by De Gaetani

et al (De Gaetani et al. 2016), the usage of a non-Gaussian kernel for similarity measurement can improve

the results and performance of NLM. Further research regarding the kernel usage and NLM performance

needs to be done. In Sparse Spike Deconvolution, a blind deconvolution approach (Chan and C.-K. Wong

1998) which solves the reflectivity and wavelet simultaneously during the inversion can prevent the wavelet

uncertainty effects induced by our windowed wavelet estimation.
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5 Conclusion

We have investigated a seismic processing scheme for imaging geothermal reservoirs which include high

resolution sparse spike deconvolution and Non Local Means filtering after conventional seismic reprocessing

work. Non Local Means filtering increases signal to noise ratio while preserving edges and small features like

faults and fractures which are important for enhanced geothermal systems.

Our sparse spike deconvolution method of `1 norm regularization combined with `2 norm regularization

smoothing constraints produced results with superior vertical resolution and enhanced frequency band-width.

Moreover, it preserves reflection amplitudes and structures which is important for seismic interpretation.

Applying Non Local Means Filter before sparse deconvolution provides stronger reflection lateral continuity

and coherency, and overall increasing signal to noise ratio of the bandwidth enhanced seismic data.

Evaluation of new processed seismic data with NLM and Sparse spike deconvolution applied with well data

and previous interpretation gives us better delineation of Rotliegend reservoir Reservoirs while preserving

small features like faults and edges from enhanced resolution higher signal to noise ratio. Limitations of

the acquisition offsets however still remain on the very deep section of Dinantian Geothermal Reservoirs.

To maximize geothermal exploration potential for ultra-deep reservoirs, we suggest where necessary re-

acquisition combined with new unconventional processing techniques to give maximum results.
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