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Abstract 

Earthquakes are an integral and catastrophic part of the seismic cycle. Due to their disruptive impact on 

society, there is a public as well as a scientific interest in accurate modeling of this cycle. Part of this, is 

constraining the maximum strength of the crust in the transition region between brittle and ductile 

rheologies. This maximum strength of long-lived faults is important in geodynamic models governing e.g. 

mountain building and collapse and volcano activity. In seismic models the strength of faults controls the 

strain build up before it’s released in a seismic event. Ductile behavior is incorporated in such models via 

flow laws.  

Phyllosilicates are abundant in faults and fault gouges. Incorporating their ductile behavior is necessary 

to accurately describe the behavior in long-lived faults. To date there are multiple flow laws for 

phyllosilicate creep, giving significantly different results in terms of stress and strain rate upon 

extrapolation from the laboratorial conditions under which they were established to nature. There are 

two groups of flow laws, one group with a power law relation between strain rate and stress (휀̇  ∝  𝜎𝑛) 

based on geometrical relations. The other group has an exponential relation between strain rate and 

stress (휀̇  ∝  𝑒𝛼𝜎) and finds its origin in the elementary atomic jump theory.  

To distinguish between these two flow laws, sheets of single crystals of muscovite were submitted to 

three point bending tests under constant stress and elevated temperatures conditions. TGA 

measurements were performed to establish the maximum experimental temperature of 600ᵒC to avoid 

dehydroxylation. The stresses employed varied between 0.1-0.4 MPa and temperatures between 500ᵒC 

and 600ᵒC. Strain and strain rates were calculated. Results were compared with previous work and both 

flow law approaches were fit to the data. After retrieval of the samples, they were examined with a Leica 

optical microscope and a scanning electron microscope. Microstructural observations displayed an array 

of different features that do not influence the deformation behavior, but are most likely shrinking features 

that form upon cooling.  

The maximum of strain reached ranges between 0.6 – 1.0 %. After an initial period of thermal cooling due 

to the set-up, the initial strain rates are 10-6 s-1, but decrease with time to 10-8 to 10-10 s-1 (=strain 

hardening). When a power law relation was fitted to the data, our results gave a stress exponent (n) of 1, 

corresponding with Harper-Dorn creep which assumes a constant dislocation density. This linear relation 

between stress and strain rate is previously found in combination with strain rates slower than 10-5 s-1. At 

higher strain rates this value increased to ~18. When an exponential relation was fitted to the data, our 

results gave an exponential factor (α) of 4. Previous work found lower values of around 0.5.  

There is too little data to conclusively distinguish between the two flow laws. However, from the 

Geometrically Necessary Dislocations (GND) theory it follows that in a bending geometry, dislocations of 

one sign need to accumulate in the crystal to accommodate the bend which conflicts with the assumption 

of a constant dislocation density. In addition, we also observed strain hardening, Harper-Dorn creep is 

therefore regarded unlikely. This leaves glide due to thermal vibration, as expressed by the exponential 

flow law, as the most likely operating mechanism. 

This has implications for models that use a flow law with power law relation between stress and strain 

rate to incorporate phyllosilicate behavior. As the exponential relationship predicts higher strain rates for 

lower stresses, and therefore a weaker crust. This means that the strain will most likely be released 

aseismically before stresses necessary to initiate brittle behavior can build up.  
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1. Introduction 

Earthquakes are counted among nature’s most potentially destructive phenomena. Owing to their 

massive impact on society, earthquake hazard assessments are made with the aim of reducing damages 

by providing guidelines for the construction of buildings and infrastructures. Efforts are made in 

earthquake seismology and geophysics to estimate the probability of an earthquake of a given magnitude 

to occur within a certain time interval in a specific region (Satake & Atwater, 2007).  

To do this, an understanding of the nature and the processes at play during the seismic cycle is essential. 

The macroscopic behavior of such large-scale phenomena is controlled by nano- and microscopic- (e.g. 

atomic and grain scale) or mesoscopic-scale physical and/or chemical processes. With the advent of 

(super)computers, (numerical) models have become increasingly 

important in aiding our study and understanding of both large-scale 

phenomena and the underlying small-scale processes. However, the 

accuracy of model predictions heavily depends on the quality of the 

input parameter values. A lot of research, especially in the discipline 

of rheology, is therefore aimed at uncovering the fundamental 

components and processes at work and their relationship to the 

macroscopic behavior. Material responds to stresses in roughly one 

of three ways: elastic, i.e. the deformation achieved is fully 

reversible, brittle, i.e. deformation is permanent and the integrity of 

the material is lost (e.g. fracturing), or ductile, i.e. deformation is 

permanent, but the integrity of the material remains intact (e.g. 

creep). The prevailing view is that earthquakes are the results of 

instantaneous elastic strain release by brittle friction processes 

occurring on preexisting faults, which are relatively weak compared 

to the fault wall rocks (Zhang & He, 2016). The conditions, e.g. stress 

(σ), temperature (T), pressure (P), that cause the materials response 

to switch from brittle behavior to ductile behavior or vice versa are 

therefore of interest.  

In modeling of fault behavior, crustal strength profiles are constructed to predict the strength of the crust 

with depth, and the transition from brittle to ductile behavior. Such profiles, and the mechanical behavior 

response they describe, are helpful for understanding the seismic cycle (Bos & Spiers, 2002). “Classic” 

models use Byerlee’s rule and produce two-mechanism profiles (see Fig. 1). The upper parts of the crust 

are modeled using a brittle-frictional faulting rheology, whereas the lower parts are described using power 

law creep equations describing crystal plastic flow of quartz or feldspar. Flow laws are constructed by 

considering the response of materials in terms of ductile deformation (rate), i.e. “the flow”, during (quasi-

)steady state deformation under various conditions (σ, T, P, etc.). These flow laws allow for extrapolation 

from laboratory to geologic and seismic cycle timescales (Bos & Spiers, 2002; Niemeijer & Spiers, 2005). 

However, field findings are not always consistent with the strengths these “classic” models predict (e.g. 

Imber et al., 2008). These findings underline that there is an oversimplicity in the “classic” approach. This 

Figure 1 "Classic" crustal strength profile (based on 
Byerlee's rule) in solid black, and the possible crustal 
strength profile, taking into account complicating 
factors and weakening mechanisms represented by the 
grey dashed line. Figure after Bos & Spiers, 2002 
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oversimplicity is most likely to overestimate the maximum strength of the crust in the transition region 

between brittle and ductile rheologies (see Fig. 1). This maximum strength of long-lived faults is important 

in geodynamic models governing e.g. mountain building and collapse and volcano activity. In seismic 

models the strength of faults controls the strain build up before it’s released in a seismic event. 

Oversimplicity is partially due to the use of monomineralic flow laws for low strains. Furthermore 

weakening mechanisms such as pressure solution, the formation of reaction rate products, like 

phyllosilicates, and the development of an extensive foliation are postulated to explain the deviation. In 

the last decades, attempts to incorporate complicating factors as well as some of the weakening 

mechanisms in the crustal strength models are made (Bos & Spiers, 2002; Niemeijer & Spiers, 2005). These 

incorporations lead to an area where multiple mechanisms operate, called frictional-viscous flow, 

truncating the strength maximum at the transition, i.e. the steady state stresses at which crustal fault 

rocks deform could be lower than previously predicted. This means that both frictional and viscous 

processes, such as crystal plasticity/creep, are active under the same conditions. This produces shear 

deformation behavior in which the shear stress shows a significant dependence on both normal stress 

and strain rate (Bos & Spiers, 2002).   

As phyllosilicates are major constituents of these fault rock and gouges (Wintsch et al., 1995; Imber et al., 

2001) and they are relatively weak and thought to contribute significantly to the localization of strain in 

the Earth’s crust (Moore and Lockner, 2004; Shea and Kronenberg, 1992; Niemeijer and Spiers, 2005; 

Imber et al., 2008), incorporating their ductile rheology into models could significantly improve their 

accuracy. The model of Niemeijer and Spiers (2005) allowed for phyllosilicate creep to influence the 

crustal strength profile. The laboratory flow law for single crystal biotite by Kronenberg et al. (1990) (see 

Fig. 2a) with a power law fit was used as input. However, it is unknown under which conditions which 

mechanism is controlling phyllosilicate creep. There are multiple mechanisms with corresponding flow 

laws that can be fit to data obtained in laboratorial experiments. Most used are flow laws with either a 

power law or an exponential relation between strain rate and stress. These flow laws describing these 

mechanisms can predict different results when extrapolated (see Fig. 2 and e.g. Fagereng et al., 2014). 

More research towards the mechanical behavior of these minerals is needed to improve our 

understanding of the mechanisms involved and to enable researchers to select the one most accurate for 

their work.  

 

   

 
Figure 2a Kronenberg et al. (1990) fitted flow laws with a power law (n=18) as 
well as an exponential law (α=0.4) relation to their data of single crystal 
biotite. They obtained the data in the area with a well agreement between 
both models, but extrapolating it shows already a large deviation. The values 
between brackets are the temperatures in Kelvin. 
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Figure 2b Mariani et al. (2006) fitted a flow law with a power law relation 
(n=1) to data of muscovite powder and Mares & Kronenberg (1993) fitted one 
with an exponential law relation (α=0.5) to data of single crystal muscovite. 
The values between brackets are the temperatures in Kelvin. 
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In this thesis I have investigated the deformation behavior of muscovite, a phyllosilicate common to fault 

gouges and shear zones at deeper levels in the Earth’s crust (Mariani et al, 2006), as affected by stress. To 

this end, constant stress experiments on single crystals were conducted in a three-point bending set up. 

The results, and specifically the observed stress dependence, were compared with existing laboratory 

flow laws, against a theoretical background. The theoretical background consists of a description of the 

muscovite structure, a review of crystal defects and associated theoretical rheological models, and a 

review of the physical basis of the present flow laws. The aim is to gain more insight in the parameter 

constraints of the existing flow laws and gain a better understanding of the active physical mechanisms. 

This should give flow laws that are better constrained, thereby improving the accuracy of the 

extrapolations needed for modeling.  

1.1 Structural description of muscovite  

Muscovite belongs to the silicate group and its crystallography is well described by 

e.g.  Putnis (2003). Silicates are a mineral group whose structures is dominated by 

the [SiO4] tetrahedron (see Fig. 3a & b). Classifications are made in terms of the way 

in which these tetrahedra are arranged. Tetrahedra can be isolated from each other 

or connected by corner-sharing. Within micas the tetrahedra are connected by 

sharing three corners, forming sheets with a hexagonal symmetry by doing so (see 

Fig. 3c).  

Muscovite consists of two basic building blocks: two sheets of [SiO4] tetrahedra 

sandwiching a sheet of edge sharing octahedra (making them 2:1 layer silicates). 

The unbound apices of the tetrahedra sheets all point towards the octrahedra sheet 

in the middle, sharing their apical oxygen atoms with the octahedra (see Fig. 4). A 

feature of muscovite, but also of mica in general, is the substitution of Al3+ for Si4+ 

in the tetrahedron. The [AlO4] tetrahedron is slightly larger than the [SiO4] 

tetrahedron. Al-tetrahedrons are in general not found next to each other, since this 

is energetically unfavorable. These substitutions results in an overall negative 

charge on these layers, which is compensated by large, positively charged interlayer 

cations, mostly K+, Na+ or Ca+ (see Fig. 4a). The smallest repeatable block of this 

structure is called the unit cell and is repeated periodically in three dimensions and 

this forms the crystal lattice.  

When a trivalent ion such as Al3+ or Fe3+ occupies the tetrahedra, charge balance is 

achieved when two thirds of the octahedral sites are occupied. In this case, each hexagonal ring of 

tetrahedra contains two octahedra and the sheet is termed dioctahedral, as is the case for muscovite. 

When a divalent ion such as Mg2+ or Fe2+ is contained in the octahedra all sites are occupied. Each 

hexagonal ring of tetrahedra contains three octahedra and the sheet is called trioctahedral, as is the case 

for biotite.  The dioctahedral sheet is more distorted than the trioctahedral sheet, since the vacant sites 

are larger than the occupied sites around it (see Fig. 5).  

This structure leads to the polytypism observed in mica’s. In the tet-oct-tet sandwich, the two opposing 

tetrahedral sheets are not directly opposite one another (see Fig. 4a). There is an offset, the so called 

‘stagger factor’, which is necessary to produce the octahedral co-ordination in the octahedral sheet. To 

Fig 3 a & b) the sicilia tetrahedron, c) 

silica tetrahedra sharing 3 corners 

(figures from Putnis, 2003) 

a 

b 

c 
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Figure 7 The hexagonal symmetry of muscovite viewed along the a-
axis,the b-axis and the c-axis. Showing the 90˚ angle between the a- 
and b-axis, and the b- and c-axis. Viewed along the c-axis you look down 
on the (001) plane, also known as the basal plane.   

 

add to this, the hexagonal symmetry in the tetrahedral sheet means that this offset can be in any of the 

six directions. For a given direction of the offset in one layer, the important point is how the offsets in 

consecutive layers are related to one another. There are six possible interlayer stacking angles (see  

Fig. 6). The most common muscovite polytype in nature is a 2M polytype with a 20 angstrom (Å) (001) 

layer spacing. The M stands for monoclinic, which means that the axes of the crystals have different 

lengths (a ≠ b ≠ c) and the angle between a and b, called γ, and b and c, called α, is identical but different 

than the angle between a and c, called β (see Fig. 7). Viewed along the c-axis, you look down on the (001) 

plane, also known as the basal plane. For 2M muscovite unit cell a = 5.19 Å, b = 9.04 

Å, c = 20.08 Å and α = γ = 90˚, and β = 95.5˚. A single layer of muscovite is ~10 Å, so 

the 2M polytype has a unit cell containing two layers. In a 0.1 mm thick sample of 

muscovite, there are 100 000 individual layers. 

 

   

Fig 6 The stagger factor and the 6 

possible ways to stack mica 

layers. 2M is the most common 

polytype of muscovite (figure 

from Putnis, 2003) 

 

Fig 4 a & b) structure of muscovite  

c) the way tetrahedra sheet are 

configurated on top of an octahedra 

sheet (figures from Putnis, 2003) 

a b 

c 

b) In biotite, all three octahedron sites 

are occupied (top figure after Meike, 

1989, bottom figure from Putnis, 

2003) 

Fig 5 a) In muscovite (1M), two out 

of three octahedron sites are 

occupied, giving rise to a distortion 

(top figure after Meike, 1989, 

bottom figure from Putnis, 2003) 
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1.2 Review of deformation by crystal defects 

In the early 1900s the atomistic and periodic nature of crystalline substances was fully established and 

attempts were made to relate the macroscopic behavior of minerals to their crystal lattice. One of the 

topics of interest was the plastic strength of materials, i.e. the shear stress needed to produce permanent 

plastic deformation. The theoretical shear strength was estimated by assuming all bonds within a plane 

of a lattice needed to be broken simultaneously. However, these estimates were several orders of 

magnitude higher than the strengths measured during experiments. To explain this discrepancy, it was 

postulated that defects are present in the crystal. The presence of defects distorts the lattice in such a 

way that the bonds neighboring a defect are weaker than the bonds in a perfect lattice. Therefore, 

introducing defects allows for consecutive breaking of the surrounding bonds at lower stresses than 

otherwise needed for breaking perfect bonds. Thereby aiding the ease of deformation and lowering the 

plastic strength.   

Nowadays the existence of crystal defects is well established, although new types of crystal/lattice defects 

are still being discovered (Griggs et al., 2017; Kushima et al., 2015). In the following a short overview of 

the different, well established, defect groups will be presented. Recently discovered defects that might 

be relevant for this work, will be discussed in Section 4.2.  

1.2.1 Point defects 

1. A vacancy (see Fig. 8a) exists when an atom is missing from its regular 

arrangement in the lattice. Vacancies are responsible for deformation by 

diffusive transport of matter. For entropic reasons, there is an equilibrium 

concentration of vacancies present in all crystals, dependent on the 

temperature (Putnis, 2003).  Stress modifies the equilibrium vacancy 

concentration in crystals. Their migration obeys diffusion equations equivalent 

to those governing the diffusion of heat. Vacancies can help line defects 

overcome obstacles. 

2. An impurity defect (see Fig. 8b) exists when an regular atom is swapped for 

another atom, but still keeps its regular place in the arrangement. 

3. An interstitial defect (see Fig. 8c) exists when a regular atom is found in a 

different site than what could be expected form the regular arrangement of the 

lattice.  

Impurities and interstitials do not directly contribute to deformation, but they 

can form obstacles for dislocations impeding their motion. 

1.2.2 Line defects (dislocations) 

1. Edge dislocations (see Fig. 9) consist of an extra half plane of atoms in the 

crystal. They move, parallel to the direction of the burgers vector, through the 

crystal by successively breaking the bonds between atoms. If edge dislocations 

move out of their current glide plane, it is called climb.  

Figure 8 Examples of point defects in a 
crystal lattice. a) a vacancy, b) an impurity, 
c) an interstitial (figure a from Putnis, 
2003), b & c are modified after Putnis, 
2003 

c 

b 

a 
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2. Screw dislocations (see Fig. 10) consist of an extra half plane of atoms in the crystal. They move, 

perpendicular to the direction of the burgers vector, through the crystal by successively breaking the 

bonds between atoms. If screw dislocations move out of their current glide plane, it is called cross-slip. 

Dislocations are responsible for deformation by moving through the crystal lattice. Dislocations create an 

internal strain field and stress field, whose strength decreases as the inverse of the distance to the 

dislocation (Poirier, 1985). Their motion is impeded by the energy barrier separating two equilibrium 

positions in the lattice and by obstacles. The product of individual movements of dislocations results in 

slip. It is common for the dislocation line to not move as a straight line. As some parts of the dislocation 

line encounter obstacles and become pinned for a certain amount of time, or permanent, depending on 

the (size of) the obstacle. This causes some part of the dislocation line to climb/cross slip to different glide 

planes, and parts of the dislocation line will advance a little more than the pinned parts. This creates an 

irregular dislocation line, with so called jogs  

 

 

 

 

  

1.2.4 Dislocation arrays 

Dislocations do not always run entirely through a crystal and produce 

macroscopic slip. They can get stuck, pile up, tangle and organize themselves 

in walls, kinkbands, and networks in order to achieve the lowest possible 

energy configuration. This raises the dislocation density of the crystal, which 

increases dislocation interactions and it decreases the overall deformation 

rate, a process called work hardening (Hull & Bacon, 2011). Rearrangement 

and detangling of dislocations under suitable circumstances (e.g. high enough 

thermal energy to assist climb), can cause softening and an increase in overall 

deformation rate, a process known as recovery. When line defect organize 

themselves in three dimensional structures, e.g. dislocations walls, these 

features are called planar defects. On longer timescales, planar defects can 

offset the internal structure of the grains enough to form new grains. 

Dislocations can either be homogeneously distributed throughout the crystal, 

or tangles of dislocations can arrange themselves in regions with high 

dislocation density, such as walls, and regions almost free of dislocations. The 

configuration and orientation of the dislocations in these high density regions is along certain 

crystallographic directions (Hull & Bacon, 2011). Therefore, distribution and organization of dislocations 

are characteristic of the structure of the material being deformed, but also of deformation temperature, 

strain and strain rate (Hull & Bacon, 2011).  

Fig 10 A screw dislocation and 

the way it moves through the 

crystal resulting in strain (figure 

from Putnis, 2003) b stands for 

the orientation of the burgers 

vector, d stand for the direction 

of the dislocation glide. 

Fig 9 A edge dislocation and the way it moves through the crystal resulting in strain 

(figure from Putnis, 2003). b stands for the orientation of the burgers vector, d stand for 

the direction of the dislocation glide. 

b d 

b 

d 
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Dislocation configurations can be made visible with a transmission electron microscope using thin films 

(Meike, 1989) or with SEM using decorating techniques, like etching (Karato, 1987). 

1.3 Theoretical models describing deformation through lattice defects  

Glide controlled slip: This type of deformation occurs when dislocations movement is restricted to their 

current crystallographic plane. Obstacles are thermally overcome, i.e. the activation energy for flow  

(J mol-1) depends on σ. Movement of the dislocation is parallel to the direction of the burgers vector.  

Climb & Cross slip: These types of deformation occurs when respectively edge or screw dislocations aided 

by vacancies move out of their current glide plane to overcome, for example, obstacles. It is only indirectly 

thermally activated via the migration of vacancies. Movement of the dislocation, during this out of plane 

movement, is perpendicular to the plane of the burgers vector.   

Vacancy diffusion: This is a diffusive transport mechanism aiding the operation of cross slip and climb, 

enabling dislocation movement where they would otherwise be stuck in their glide plane due to obstacles. 

The rate of vacancy diffusion and stress are linearly related (휀̇  ∝  σ1 ). 

1.4 Introducing the general flow laws and their physical basis 

Flow laws are constitutive equations with underlying creep models giving 

the physical basis for the empirical relations. Phenomenological analysis of 

deformation is best done on quasi-steady state, constant-stress creep-test 

results, since they provide time-independent empirical equations of state 

of the form 휀̇ = 𝑓(𝜎, 𝑇, 𝑃), where 휀̇ is the (shear) strain rate (s-1), σ the 

(shear) stress (MPa), T is the temperature (K), and P the pressure (MPa).  

1.4.1 Temperature relations 

At constant stress, the creep rate usually increases exponentially with 

temperature, and it is therefore convenient to describe the creep rate by 

an Arrhenius-type relation: 

휀̇ ∝ exp(−
𝛥𝑄

𝑅𝑇
)        (1) 

where R is the gas constant (8.3145 J mol-1 K-1).  

If the strain-rate is controlled by a unique, thermally activated process, the Arrhenius plot (ln휀̇  𝑣𝑠 1/𝑇) is 

a straight line over the whole temperature range investigated and the apparent activation energy of creep 

(ΔQ) is equal to the activation energy of the controlling process. However, it is often the case that several 

potential rate-controlling processes exist, with different activation energies. As a result the Arrhenius plot 

is curved in the temperature range where the activity of two or more mechanisms is comparable (see Fig. 

11, Poirier, 1985).  

  

Figure 11, Arrhenius plots for two rate-
controlling processes (black) and the 
overall rate (red). a) parallel processes, 
the faster process controls the overall 
rate, b) series processes, the slower 
process controls the overall rate (figure 
after Poirier, 1985) 

a 

b 
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1.4.2 Stress relations  

Stress can be related to strain rate using two fundamentally different approaches. It is commonly 

observed that at small stress intervals, the strain rate as a function of stress on a double-logarithmic scale 

plot shows a straight line. One general procedure is to fit a power law of the form 휀̇  ∝  𝜎𝑛  to the data 

and obtain a stress exponent. However, since the curve of strain rate as a function of stress on a double-

logarithmic scale plot seldom fits a straight line over a wide range of applies stresses and at high stresses 

increases exponentially, the other approach is to fit an exponential function to the data. Both approaches 

have their physical foundations and benefits, which will be discussed below.  

1.4.2.1 Power law 

From theoretical considerations we know that a linear dependence exists between stress and strain rate 

(휀̇  ∝  𝜎1 ) if vacancy diffusion is rate-controlling, to aid climb and cross slip of the dislocations. 

Furthermore, the stress field around dislocations decays as the inverse of the distance to the dislocation. 

As such, any dislocation configuration in equilibrium will have a characteristic length: 𝑙 ∝  𝜎𝑖
−1 where σi 

is the internal stress field. It follows that dislocation density ∝  𝜎𝑖
2 (Poirier, 1985). This gives recovery 

controlled creep, such as cross slip and climb, a stress exponent of 3.  

The flow laws following the power law relationship between (differential) stress and strain rate are 

generally of the form: 

휀̇ = 𝐴 𝜎𝑛exp (
−𝛥𝑄

𝑅𝑇
)       (2) 

A and n are material parameters, σ is the shear stress (MPa), (e.g. Mariani et al., 2006; Mares & 

Kronenberg, 1993).  

These power law relations are only valid for a small domain of stress (Poirier, 1985). Over a wide range of 

stresses, the plot of experimentally obtained data is usually no longer a straight line. One way to solve this 

problem, is to fit several models, each corresponding to a power law with a unique n-value, presumably 

corresponding to physically meaningful parallel-concurrent processes. For high stresses the creep-rate is 

observed to increase exponentially with stress and the power law approach render invalid.  

1.4.2.2 Power law creep models 

Weertman creep: is a climb (and/or cross slip) controlled recovery creep. It states that edge (and/or 

screw) dislocations are generated in different planes, and dislocations of opposite sign migrate towards 

each other (climbing out of their “birth” plane), to annihilate. It has a theoretical stress exponent of 3, 

although it is in practice observed in the range 3-5.  

Harper – Dorn creep: is a specific type of dislocation creep, where at small stresses the dislocation 

density is quite low and independent of stress. The creep arises from the climb of edge dislocations under 

saturated conditions, i.e. the concentration of jogs is high enough for climb to be controlled by vacancy 

diffusion to and from the dislocations, as is assumed in most climb-controlled models. The strain rate is 

related to stress only by the vacancy diffusion, giving rise to a stress exponent of 1. At higher stresses the 

exponent “returns” to a normal value of 3-5.  
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1.4.2.3 Exponential law 

The exponential flow law finds its origin in elementary (atomic scale) jump theory. An atom thermally 

vibrates around an equilibrium position. Every now and then, the atom acquires enough energy to jump 

over the energy barrier separating it from the next equilibrium position. Lattices are made of periodically 

repeating units in 3 dimensions and equilibrium positions for each atom are also repeated periodically in 

3 dimensions. With no other forces/stresses present, this jump is equally likely to be backward as forward. 

One can determine forward jump frequency (i.e. the amount of successful jumps forward) and vice versa 

the backward jump frequency. It is a thermally activated process, and is described by an Arrhenius type 

of equation. Applied shear stresses can influence the favored jump direction.  

Applied stresses, such as normal stress (σn) and shear stress (τ) can raise this barrier, i.e. impeding 

successful jumps, or lower it, i.e. promoting successful jumps, which is described by (Chen & Spiers, 2016):   

𝑣𝑛 = 𝐴 exp(
−ΔF + Ωσ 𝑛

𝑘𝑇
)sinh (

𝛺𝜏

𝑘𝑇
)      (3) 

Where vn is net jump frequency, ΔF is the maximum energy barrier at zero normal or shear stress, A 

comprises the lattice vibration frequency and the burgers vector, and Ω include geometric parameters 

associated with the barrier. If the reverse jump frequency can be approximated by zero, due to high 

stresses compared with kT, the equation can be reduced to the form: 

𝑣𝑛 = 𝐴 exp (
−ΔF + Ωσ 𝑛

𝑘𝑇
) exp (

𝛺𝜏

𝑘𝑇
) = 𝐴 exp(

−∆𝑄

𝑘𝑡
) exp(𝛼𝜏)   (4)  

Where A and α are material parameters (Kronenberg et al., 1990; Shea and Kronenberg, 1992; Mares and 

Kronenberg, 1993). ΔQ is, as defined earlier, the apparent activation energy and contains (ΔF – Ωσn), α is 

a material parameter containing
𝛺

𝑘𝑇
.  

The (shear) strain rate is given by Orowan’s equation as stated by Cottrell (1953): 

휀̇ =  𝜌𝑣𝑔𝑏         (5) 

Where ρ is the density of mobile dislocations, and vg is the average dislocation glide velocity. This approach 

assumes dislocation glide controlled by dispersed obstacles (Manonukul et al., 2002). Obstacles obstruct 

the glide of dislocations, a process called pinning of dislocations. Following Dunne et al. (2007), this 

average dislocation glide velocity is defined as length of the thermal event (d) times the rate of escape of 

pinned dislocations (RFE): 

𝑣𝑔 = 𝑑 ∙  𝑅𝐹𝐸 = 𝑑 ∙  
𝑏

2𝑙
 𝑣𝑛 = 𝐴′ exp (

−ΔQ

𝑘𝑇
) exp(𝛼𝜏)   (6) 

Where A’ constitutes A times d
𝑏

2𝑙
.  Taking equation (6) with equation (5) together gives: 

휀̇ =  𝜌𝑏 ∙  𝐴′ exp (
−ΔQ

𝑘𝑇
) exp(𝛼𝜏)  = 𝐴′′ exp(𝛼𝜏) exp (

−ΔQ 

𝑘𝑇
)  (7) 

Experiments were used to determine the values for A’’, α and ΔQ. When the creep rate is determined by 

the average velocity of glide dislocations, it is determined by the nature of the obstacles that pin the 

dislocations, and the thermal activation events that are necessary to enable dislocation climb (Manonukul 
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et al., 2002). More detailed assessments of the parameters Ω, A and α are made for different materials 

(e.g. Manonukul et al. (2002) for nickel-base super alloy C263; Dunne et al. (2007) for hcp near-alpha Ti-6 

Al alloy), and although the parameters represent the mechanism(s) at work, to go into their details would 

be beyond the scope of this thesis.   

1.4.2.4 Differences in approach between power law and exponential law  

Power law creep incorporates in plane glide and out of plane climb of dislocations. Strain rate to stress 

relations are based on geometrical relations, following a power law type of equation.   

Exponential creep finds its physical basis in the elementary (atomic) scale jump theory and describes in 

plane glide limited by the energy barrier generated by obstacles. This is a thermally activated process 

which is aided by stress. Therefore, strain rate is related to stress via an Arrhenius type of equation. 

1.5 Previous work and measured parameter values of micas 

Previous studies reported that mica’s can respond 

to stress in roughly three ways. Kink bands (KBs) 

are observed to accommodate deformation when 

samples are loaded parallel to their basal planes 

(Griggs et al., 2017; Kronenberg et al., 1990). 

Samples loaded perpendicular to their basal planes 

usually deform by fracturing at high stresses 

(Kronenberg et al., 1990). Samples loaded under an 

angle to their basal planes show indications of 

creep behavior. Deformed samples have broad 

deformation bands, with undulose/undulatory 

extinctions, approximating simple shear 

(Kronenberg et al., 1990). In this work, the aim was 

to activate the last response. 

Although extensive research has been done on mathematically describing deformation/creep behavior in 

general (e.g. Manonukul et al, 2002; Dunne et al, 2007) and on phyllosilicate minerals specifically (e.g. 

Moore & Lockner, 2004) the work discussed in this section will concentrate on earlier studies on creep 

behavior of mica’s. Explicitly or implicitly the microscale mechanism responsible for deformation of 

muscovite at high temperatures in the reviewed literature is glide of dislocations in the basal plane (BDs). 

Non-basal dislocations are not observed as they would require very high burgers vectors due to the large 

c/a ratio (see Section 1.1; for 2M muscovite c/a = ~4), which renders their existence nearly impossible 

(Griggs et al., 2017; Gruber et al., 2016; Hull & Bacon, 2011). In earlier work the power law relationship as 

well as the exponential are discussed and/or fitted to the data. The findings are summarized in Table 2. 

Mariani et al. (2006) performed saw cut shear experiments in a triaxial set up on a muscovite powder with 

a grainsize of ~12 µm. The experimental temperature varied between 300˚C and 700˚C and they achieved 

strains up to 2%. For the highest temperatures pore water pressures up to 103 MPa were used to inhibit 

the dehydroxylation of the muscovite aggregates. Shear strain rates varied between 1 x 10-3s-1 and 1x 10-

7s-1 and the shear stresses reported varied between 14 MPa and 160 MPa. A total of 28 experiments were 

performed whereof 17 stress relaxation tests. These relaxation tests were used to determine the stress 

Figure 12 Figures from Kronenberg et al. (1990) (their Figure 1) depicting 
the three basic modes of deformation in muscovite single crystals. Left: 
samples loaded parallel to their basal plane, resulting in kinkbands. 
Middle: samples loaded at an angle to their basal plane, resulting in broad 
deformation bands approximating simple shear. Right: samples loaded 
perpendicular to their basal plane, resulting in failure by fracturing at high 
stresses.   
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dependence in a power law relation. They found a stress exponent of 1.13±0.12 for strain rates slower 

than 1 x 10-5s-1 and a stress exponent of ~19 was found for strain rates faster than 1 x 10-5s-1. They could 

not obtain a well constrained value for the apparent thermal activation energy, so instead they calculated 

a minimum value for ΔQ to be 270 kJ mol-1. Kronenberg et al. (1990) performed triaxial compression 

experiments, shortening single crystals of biotite with dimensions 5.5 x 5.5 x 15 mm. The experimental 

temperature varied between 20˚C and 400˚C and strains of ~15% were achieved. Strain rates varied 

between 4.6 x 10-4 s-1 and 2.0 x 10-7 s-1, differential stresses required to achieve this varied between 16 

MPa and 460 MPa at 5% strain. A total of 19 experiments were performed, whereof 2 strain rate stepping 

experiments. When loaded at 45˚ to the basal plane (001), they found a stress exponent of 18±4 and an 

apparent activation energy of 51±9 kJ mol-1.  

Mares & Kronenberg (1993) performed 23 triaxial compression experiments, whereof 4 temperature 

stepping and 3 strain rate stepping experiments, on single crystals of muscovite with dimensions 15 x 6 x 

6 mm. Experimental temperatures varied between 20˚C and 400˚C and strains of ~12% were achieved. 

Strain rates varied between 2.3 x 10-4 s-1 and 2.5 x 10-7 s-1, differential stresses required to achieve this 

varied between 0.5 MPa and 75 MPa at 3% strain. When loaded at 45˚ to the basal plane (001), they found 

an α-value of 0.5±0.2 for a fit using an exponential relation and an apparent activation energy of  

47±19 kJ mol-1. Kronenberg et al. (1990) also fitted an exponential relation to their data for single crystal 

biotie(for description: see previous paragraph). They found an α-value of 0.41±0.8 and an apparent 

activation energy of 81±13 kJ mol-1.   

Figure 2 displays the results of the two different approaches. In Figure 2a Kronenberg et al. (1990) fitted 

a power law relation as well as an exponential relation to their data for single crystals of biotite. The data 

was obtained in the region with the best fit between both approaches. As soon as the stresses start to 

deviate from the experimental conditions, the two approaches predict vastly different strain rates. In 

Figure 2b the data of Mariani et al. (2006) for muscovite powder is fitted to a power law relation, and the 

data of Mares & Kronenberg (1993) for single crystals of muscovite is fitted to an exponential relation. 

Maraini et al. (2006) explicitly state that their flow law is determined for a temperature of 700˚C (973 

Kelvin), and temperature has a larger effect on the predicted strain rates than in the flow law of Mares & 

Kronenberg (1993).  

From Figure 2a it follows that applying an exponential relationship between strain rate and stress lowers 

the strength of the crust. This means that the strain will most likely be released aseismically before 

stresses necessary to initiate brittle behavior can build up.
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 sample method conditions n Q [kJmol-1] α Mechanism 

Mariani et 
al., 2006 

Fine 
grained 
muscovite 
 
 

Triaxial shearing  
 
Constant displacement (28) 
Whereof: 
Stress relaxation (17) 

T between 300 and 700˚C 
 
Pc of 206 MPa  
 
휀̇ between 10-3 and 10-7 s-1 

 

ε up to 2 

1.13 ± 0.12 
(휀̇ < 1.4*10-5) 

 
19 
(휀̇ > 1.4*10-5) 

270 - Kinking --> 
glide on 
(001) 

Mariani et 
al., 2006 

   n(7): 
ε = 0.5 – 1.9% 
휀̇ = 10-3 - 10-6 s-1 

T = 700˚C 
Pc = 206 MPa 

 Estimated based on the 
absence of the transition to 
linear viscous flow in 
experiments done at 600˚C 
(compared to those of 
700˚C)  

-  

Mares & 
Kronen-
berg, 
1993 

Single 
crystals 
muscovite 

Triaxial compression 
 
Constant strain rate (23) 
Whereof: 
T stepping (4) 
휀̇ stepping (3) 

T from 20˚C to 400˚C 
 
Pc from 10 to 400 MPa 
 
휀̇ from 2.5 x 10-7 to 2.3 x 10-4 s-1 
 
σ from 0.5 to 75 MPa (= σ1 – σ3) at 
3% (varies to keep 휀̇ constant) 

- 47 ± 19 0.5 ± 0.2 
(they “missed” a 
data point 
redone the 
calculation: 
0.27) 
 

Assumed: 
glide 
(equation) 
 
 

Mares & 
Kronen-
berg, 
1993 

 Determine basal shear strength as a 
function of (Pc, T, �̇�, shear direction) 
 
Differential stress is taken as a 
measure of shear strength. Higher 
diff. stress = stronger 
 
Directions: [110], [100], [310], [010] 
 
[100],[110] the weakest 
 
No reported influence of ε 

T: strength increases as T decreases. 
Same in all 4 directions 
 
휀̇ : small changes in strength with 
big changes in 휀̇ (only in 2 directions 
[110], [010]) iffy if they are equal 
 
Pc: strengths are independent of Pc 
above 100 MPa (only in 2 directions 
[110], [310]) low Pc gives way to 
frictional sliding 
 

- Q (3): determined at 
Pc= 200 
휀̇ = 2*10-5 
ε = 5% 
T (30, 100, 200, 400) 
All directions 
 
1/T vs stress, slope of Q/αR 

Α (4): 
determined at 
Pc= 200  

T =  400 
ε = 5% 
휀̇ = 2*10-4, 10-5, 
10-6, 10-7 

[110][010] 
 
Stress vs ln휀̇, 

slope of α 

 

 

  

Table 1 Previous work 
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Kronen-
berg et 
al., 1990 

Single 
crystals 
biotite 

Triaxial compression 
 
Constant strain rate (19) 
Whereof: 
휀̇ stepping (2) 

T between 20˚C and 700˚C 
 
Pc up to 600 MPa 
 
휀̇ 2.0 x 10-7 to 4.6 x 10-4 s-1 

 
 
18±4 

82 ± 13 
 
51 ± 9 

0.41 ± 0.08 Slip on (001) 
& glide 

Kronen-
berg et 
al., 1990 

   n (7 constant 휀̇, 

2 휀̇ stepping): 
 
determined at P 
= 200-499 MPa 
T = 400 ˚C 
휀̇ = 10-5-10-7 
 
ε = 5%? 
 
Ln(휀̇) vs ln(stress) 
Slope 1/n 

Q (12): determined at  
P = 200-499 MPa 
휀̇ = 2.4*10-5 s-1 
ε = 5% 

T (20, 200, 400) 
All directions 
 
1/T vs stress, slope Q/αR 
 
1/T vs ln(stress), slope Q/nR 

α (7 constant 
휀̇, 2 휀̇ stepping): 
 
determined at  
P = 200-499 
MPa 
T = 400 ˚C 
휀̇ = 10-5-10-7 

 
ε = 5%? 
 
Ln(휀̇) vs stress 
Slope 1/α 

 

Shea & 
Kronen-
berg, 
1992 

Mica schist 
(70% 
biotite) 

Triaxial compression 
 
Constant strain rate (74) 
Whereof: 
T stepping (12) 
휀̇ stepping (5)  
P stepping (1) 

T from 25˚C to 400˚C  
 
Pc to 500 MPa 
 
constant 휀̇ from 1.7*10-5 

 
ε varying up to 12% 

 
 
 
31 ± 1 (ss) 
171 ± 6 (ws) 

(depends on 
history, see α) 

89 
 
 
98 ± 9 

0.15 ± 0.01 (ss) 
0.55 ± 0.04 (ws) 

(depends on 
history: 
ss: fast to slow 
ws: slow to fast) 

 

Shea & 
Kronen-
berg, 
1992 
 

   n (5): 
휀̇ = 10-4-10-7 

 
Assumption of 
constant Q 
History tested 

 
Ln(휀̇) vs ln(stress) 
Slope 1/n 
 
(ss) just on one 
(BS-Z14) 
(ws)  

Q(10, T stepping): 
determined at  
P = 200-300 MPa 
휀̇ = 1.7*10-5 s-1 
ε = 2%  

T (25/35, 100, 200, 400) 
History tested as well 
 
1/T vs stress, slope Q/αR 
 
1/T vs ln(stress), slope Q/nR 

α (5): 
 
Assumption of 
constant Q 
History tested 
 
Ln(휀̇) vs stress 
Slope 1/α 
 
(ss) just on one 
(BS-Z14) 
(ws)  

 

  
Table 1 (continued) Previous work 
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1.6 Aims of this thesis 

The power law relation and the exponential law relation, although both fitting to data equally well within 

small ranges, predict significant differences in stress or strain rate when extrapolated from the conditions 

under which they were established(see Fig. 2). It is therefore useful to further investigate rheological 

behavior of minerals, and micas in particular, and try to relate the data to actual physical processes 

operating.   

Data describing the inelastic single-crystal mechanical properties and deformation mechanisms of 

muscovite are currently all from constant strain rate triaxial compression experiments and some (strain 

rate, temperature, pressure) stepping experiments. In this research a three point bending set up was used 

instead of the triaxial compression set up, allowing constant stress experiments to be performed. The aim 

was to achieve quasi-steady state creep with an attempt to activate basal dislocation glide. The acquired 

data and results will be compared with previous work and against a theoretical background.  

The aim is to gain more insight in the processes at work during the deformation, and establish better 

constrained parameter values for the flow laws. 
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2. Materials and Methods 

2.1 Materials 

One particular member of the phyllosilicate group, called muscovite, will be studied in this work. 

Muscovite was chosen because of its abundant presence in fault gouges at deeper levels in the crust. It is 

easy to buy in specific shapes and with standardized quality, so called grades, therefore ensuring as little 

sample to sample variations as possible.  

Muscovite with 4V grade was used (with 25% air content 

according to the supplier (SPI supplies)). It was ordered 

in squares of 25 x 25 mm and with a thickness of 0.26 

mm. The squares were cut in halve to a size of  

12 x 25 mm with a slow circle saw. This gave a first set of 

samples with two different orientations of the 

crystallographic a- and b-axes. Samples with the long 

axis at a small angle to [010], and samples with long axis 

at a large angle to [010]. The orientations of the 

crystallographic axes were determined from 

interference figures using the Bertrand lens on a Leica 

optical microscope. Another set of samples were cut to 

8 x 22 mm, so that the a- and b-axes are aligned parallel 

to, respectively, the short and long edges of the sample 

(see Table 2). The long sides were cut similar to the other 

set with a slow saw. The slow saw caused significantly 

more damage to the short edges, and therefore these 

were cut with a “cutter”.  Various sample thicknesses 

were used in both sets (0.047 mm up to 0.26 mm). The 

original thickness (0.26 mm) was reduced with a 

razorblade separating the mica sheets from one 

another. Final thicknesses were measured with a 

Mitutoyo outside micrometer (0.001mm instrumental 

precision). Samples were macroscopically inspected for 

tears and other surface damages before use.   

A small amount of muscovite powder (used for TGA 

measurements) was made by cutting a part of a sheet 

with a razorblade to smaller pieces and sieved with a  

50 µm sieve.  

  

Figure 13  Apparatus set up. 1. (orange) is the sample. 2. (blue) are 
the thermocouples controlling the temperature of the ovenchamber. 
3.  (green) are the two semi-cylindrical rods onto which the sample is 
place, and semi-cylindrical rod which transmits the load of the 
deadweight, 4. is a kanthal wire, 5. (seagreen) steel plate guiding the 
kanthal wire, 6. (dark grey)  dead-weight providing the load, 7. 
(purple) LVDT measuring the displacement of the samples centre (aka 
the bending), 8. (brown) frame that holds the sample, 9. (light grey) 
is the frame onto which the ovenchamber is placed, 10 (dark grey) 
the ovenchamber (the chamber encloses the entire sample set up). 
Figure is not to scale, the height of the entire set-up is ±70cm. 

2c 

1 3 

4 

5 

7 

6 

8 

9 

10 

2a 2b 
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2.2 Apparatus description 

Samples were placed in a three-point-bending apparatus as shown in Figure 13. The apparatus consists of 

two frames (8 and 9) with a removable oven chamber (10). Open spaces between the oven chamber and 

the frame were filled with insulating material. In the top of the frame two thermocouples were placed. 

One is connected to a temperature control box and regulates the overall oven temperature within ± 1˚C 

(2a). The other one (2b) is placed closer to the sample and registers the temperature just above the 

sample. The third one (2c) was placed just below the oven chamber, to register outside temperature 

fluctuations, possibly affecting the measurements. Temperatures were registered with a Type-K 

Thermocouple and Amplifier. In the middle of the chamber two small support beams equipped with semi-

cylindrical rods (3) form the supports on which the sample (1) is placed. The semi-cylindrical rods are 

separated by a gap of 10 mm between them. A dead-weight (6) provided a constant load throughout the 

experiment, transmitted through a semi-cylindrical rod placed on top (3) and in the middle of the sample. 

The beam is connected to a loading disc at the bottom of the frame by a kanthal wire (4). The wire was 

guided through a steel plate (5) to prevent horizontal movement. At the bottom of the frame is the loading 

disc supporting the dead-weight. The disc has a small piston onto which the dead-weight is placed to 

prevent movement. The disc itself is connected to a Linear Variable Differential Transformer (LVDT) (7) 

with a range of 1 mm which corresponds to a range of 20 Volt analogue output. As the sample will bend 

and deform, the loading disc will lower and the connected LVDT measures this movement. Data was 

acquired using a National Instruments 16 bit A/D converter with a frequency of one measurement every 

second. SignalExpress software was used to collect 

the data.  

On a final note, some approachs to data analysis in a 

three point bending set-up make direct use of the 

gap width between the supports and it is argued that 

at large deflections the use of semi-cylindrical 

supports creates a small decrease of this gap (see  

Fig. 14, Ogorkiewicz & Mucci, 1971), but considering 

the small amount of deflection achieved (see Fig. 42), 

the distance loss was regarded insignificant. 

2.3 Testing procedure 

Samples were placed into the apparatus using tweezers. During assembling the loading disc was 

supported to prevent direct application of the load. Before closing the oven chamber the sample was 

briefly loaded to make sure the experiment started with a proper signal of the LVDT to prevent data loss 

by the LVDT being out of range. The LVDT could be moved up and down in the frame to adjust the range 

accordingly. During heating to the experimental temperature the sample was unloaded. The final 

temperature was reached after about two hours by slowly raising the temperature to prevent exposing 

the sample to temperatures far above the designated temperature. After reaching the correct 

temperature the apparatus was equilibrated at this temperature and stay in a ±1˚C range for at least 30 

minutes. When the temperature was stable, the support of the loading disc was carefully removed to 

place the load onto the sample. Note that after loading, the wire is displaced with an amount of 0.4mm 

out of the oven chamber. This means that the wire is not in thermal equilibrium and will shorten a bit at 

the beginning of the experiments due to thermal cooling. Experiments were done with dead-weights of 

Figure 14 The undeflected sample (orange), and the deflected sample 
(green), δ is the maximum amount of deflection, Δs is the distance the 
tangent plane between the sample and the semi-cylindrical rods shifts 
when the sample is deflected, α is the angle between the normal of the 
tangent plane, s is the original distance between the support contact 
points, which is decreased by 2(Δs) when the sample is deflected, d is the 
distance the contact point lowers on the support (figure after Ogorkiewicz 
& Mucci, 1971) 
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15.9 – 31.8 – 62.15 grams, and ran for at least 24h up to several weeks. At the end of the experiment the 

temperature controller was switched off, allowing the apparatus to cool. The load remained applied to 

the sample, to prevent rebounding of the sample at still elevated temperatures (see reversible strain 

hysteretic loops, Basu et al., 2009). After reaching room temperature the set up was disassembled, the 

retrieved samples were placed into sample holders awaiting further analysis.   

2.4 Experimental conditions 

Previous work suggested that at or below 600˚C dehydroxylation does not occur (Mares & Kronenberg, 

1992 (citing Vedder & Wilkens, 1969)).  However, other research states that the dehydroxylation reaction 

starts as early as 400 ˚C and comes to completion between 640˚C and 820 ˚C (Mariani et al., 2006). 

Therefore, thermogravimetric analysis (TGA) was done to determine the highest possible experimental 

temperatures at which dehydroxylation does not occur. Our data did not show significant weight loss up 

to 600˚C, and this became our highest temperature employed.   

The average sample stress, in contrast with the applied force, takes into account the way the force is 

distributed over the sample (stress = force / the area the force is acting on). Therefore, to calculate the 

stress, one must assume a deformation geometry. In these experiments it is assumed that only one slip 

system is activated, which causes the crystal to behave like a ‘deck of cards’ (Ranalli, 1995).  With the 

assumption of this geometry, the sample failed by fracturing when loaded with a stress of 0.56 MPa. 

Therefore, experiments were done with varying stresses under 0.5 MPa. See table 2 for an overview of 

the experiments conducted. 

2.5 Microstructural analysis 

The samples developed macroscopically visible features during the high temperature experiments.  

Microstructural analysis of the starting materials and the deformed specimens were carried out using a 

Leica optical microscope and a table top scanning electron microscope (SEM). For SEM imaging specimens 

were prepared with a platinum coating. Secondary electron images were used to study the surface 

structures. “Live” images of back scattered electron were examined to see if there were any phase 

changes, but none were found. Infrared spectroscopy (IRS) was used to see if there was a measurable 

difference in e.g. OH content, but once again no differences could be found within a deformed sample. 
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2.6 Data processing/analysis 

Before experiments were conducted the size and 

thickness of samples [mm] we measured. During 

experiments direct measurements were made of the 

temperature [˚C] inside the oven, the temperature [˚C] 

outside the oven, and dead-weight displacement [volts]. 

The LVDT has a range of 20 volts, corresponding to 1 mm. 

All displacement data in volts was therefore divided by 

20 to obtain the displacement in mm. Due to the initial 

thermal cooling of the kanthal wire (see Section 2.3) the 

first two minutes of the experiments were examined with 

care. The start of the experiment (i.e. the point of  0.00% 

strain) was chosen to be the part at which the down 

displacement became dominant over the apparent 

upward motion due to the thermal cooling (see Fig. 18) . 

The experiments ran with a constant load [g]. See Table 

2 for an overview of the experiments and their 

conditions.   

Stress, strain and strain rates are calculated with respect to a chosen deformation geometry. For this 

experimental set up a “deck of cards” geometry was assumed. This is basically two juxtaposed blocks 

experiencing simple shear (see Fig. 15). When ϕ is very small, as would be the case for very small 

deflections, y approaches 0 and therefore both legs of the triangle are approximated to have the same 

length. 

Generally speaking, strain is calculated as: 

𝛾 =  
∆𝑥

ℎ
= 𝑡𝑎𝑛𝜑       (5) 

where γ is the strain [-], Δx is the sheared distance [m] and h is the thickness of the sample [m]. ϕ is the 

angle between the original undeflected surface and the deflected surface. δ and l are known, y is 

unknown. ϕ in the small triangle is the same as ϕ in the large triangle, therefore  

𝑡𝑎𝑛𝜑 =  sin−1 2𝛿

𝑙
=  

2𝛿/𝑙

√1−(
2𝛿

𝑙
)2

     (6) 

where δ is the maximum deflection [m] and l is the length of the sample [m]. If you multiply this by l it 

gives:  

𝛾 =  
2𝛿

√𝑙2−(2𝛿)2
       (7) 

However in our experiments 𝑙 ≫ 2𝛿, as a result psi becomes very small, and γ can be approximated by:  

𝛾 = tan 𝜑 =  
𝛿

𝑙
2⁄

=  
2

𝑙
 ∙  𝛿       (8) 

  

Figure 15 Left: deformation geometry, represented as two 

identical blocks experiencing simple shear, l is the length 

of the sample [m], h is the thickness of the sample [m], Δx 

is the sheared distance [m], δ is the maximum deflection 

[m], ϕ is the angle between the deflected surface and the 

original undeflected surface. Right: enlargement of the 

small triangle in the top right  
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Strain rate are successively calculated by taking the time derivative of the strain: 

�̇� =  
𝑑𝛾

𝑑𝑡
=  

2

𝑙
 ∙  

𝑑𝛿

𝑑𝑡
       (9) 

Stresses [Pa] were calculated assuming that during (quasi-)steady-state deformation, the total work put 

into the “system” (i.e. the muscovite crystal) by the dead-weight is dissipated entirely by internal shear 

deformation (i.e. there are no other energy sinks W = D). The work put into the system can be written as 

𝑊 = 𝐹 ∙  𝛿       (10) 

where W is the work put into the system [J], F is the force exerted by the dead-weight (mass [kg] * 

gravitation acceleration [ms-2]) [N] and, and δ is the deflection (i.e. the lowering of the dead weight) [m]. 

The total energy dissipation can be written as: 

𝑑 =  𝜏 ∙  𝛾       (11) 

where d is the energy dissipated per unit volume of crystal [Jm-3] and τ is the shear stress [MPa] This is 

divided over the entire volume of the crystal as: 

𝐷 = 𝑑 ∙ 𝑉 = 𝑑 ∙ 𝑙𝑏ℎ       with 𝑉 = 𝑙𝑏ℎ  (12) 

D is the total energy dissipated in the entire crystal [Jm-3] and V is the crystal volume [m3], with b the width 

of the sample [m]. Combining (11) and (12) gives: 

𝐷 =  𝜏 ∙  𝛾 ∙ 𝑙𝑏ℎ = 𝑊 = 𝐹 ∙  𝛿     (13) 

Rewriting (9) gives the following equation for the shear stresses on our samples: 

𝜏 =  
𝑙 ∙ 𝐹 ∙ 𝛿

2𝑙𝑏ℎ𝛿
=  

𝐹

2𝑏ℎ
       (14) 

Strains were calculated directly from the displacement data. The data showed a significant amount of 

noise, e.g. caused by the small temperature fluctuations and some difficulties were encountered when 

calculation strain rate. One approach was to take the first time a certain amount of strain was reached, 

and taking the derivative of that point. This however did not correspond well with the general curve 

reaching that amount of strain and was therefore discarded. The other approach was to take all the times 

the strain was reached within a certain time frame and calculate a mean, but this gave strains that 

deviated from the designated strain. Ultimately we decided to fit small straight lines to the data  

(see Fig. 23 top) and taking the time derivative of these small segments to calculate the strain rate  

(see Fig. 23 bottom).   
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Sample l * w 
[mm] 

d 
[mm] 

W [g] ˚to b σ [MPa] T [˚C] ε [%] 휀̇i [s-1] 휀̇ss[s-1] Obs Comments 

0 - - - - - room - - -  No experiment done on it 

1 22 *12 0.25 15.9  0.025997 600 0.25 4.6*10-6 1.5*10-8   

4 22 * 12 0.119 31.8 30 0.109229 600 0.50 4.2*10-6 8.8*10-9 SEM  

16 25 * 12 0.096 31.8  0.135398 600 0.15 2.3*10-6 3.3*10-8  Second part (NR), not included 

            

5 22 * 12 0.13 31.8  0.099987 600  0.25 5.0*10-6 3.4*10-8  Second part (NR), not included 

7 22 * 12 0.06 31.8  0.216638 600 0.60 4.3*10-6 9.7*10-9   

8 25 * 12 0.117 62.15 81 0.217127 600 2.1 (1.0) 7.0*10-6 1.2*10-7 SEM Abnormal large amount of strain 

6 22 * 12 0.055 31.8  0.236332 600 0.70 4.3*10-6 1.4*10-8   

9 25 * 12 0.098 62.15  0.259223 600 1.0 4.3*10-6 1.1*10-8  Jump in data, fixed 

11 25 * 12 0.091 62.15 77 0.279163 600 0.60 6.4*10-6 1.5*10-8 SEM  

10 25 * 12 0.09 62.15  0.282265 600 0.6 1.1*10-5 9.9*10-9   

            

21 25 * 12 0.116 62.15 0 0.328498 600 0.3 2.9*10-6 2.2*10-8 LEICA  

19 25 * 12 0.098 62.15 0 0.388834 600 0.9 2.2*10-6 7.5*10-9 LEICA  

            

22 25 * 12 0.07 62.15  0.362912 500 0.50 8.3*10-8 2.6*10-8  NB. first data points after 365s! 

25 25*12 0.09 62.15  0.282265 500  1.4 1.7*10-7 3*10-10   

            

12 25 * 6 0.09 31.8  0.28885 600 0.0040 1.3*10-6 2.8*10-9  No smooth data 

13 25 * 6 0.09 62.15  0.56562 room - - -  Broke after loading 

            

14 25 * 12 0.13 -  - 600 - - - SEM Unsupported 

15 25 * 12 0.079 -  - 600 - - - SEM Supported 

 

 

Table 1 Experimental conditions. l*w is length times width, i.e. the dimensions of the sample, d is the thickness of the sample. w is the added dead weight, ˚to b is the angle the long 
edge of the sample makes with the b axis, σ is the stress on the sample, T is the temperature during the experiment, ε is the total strain accumulated in the sample during the 

experiment (first 100 000s). 휀̇i is the strain rate measured at the start of the experiment, 휀̇ss is the strain rate measured during the approximate steady part of the experiment (after 
100 000s). (NR) means not reliable. Obs is observation method 
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3. Results 

This study had the aim to investigate the deformation of muscovite at elevated temperatures in a three 

point bending set up. The hypothesis was that glide of basal dislocations could be activated to achieve 

permanent deformation/strain. In this section the results of the TGA measurements, the mechanical data 

and the inferred parameter values, and microstructural data from the experiments will be presented.  

3.1 TGA 

The highest experimental temperatures were determined using thermogravimetric analysis (TGA) (Fig. 

17). The TGA curves were used to determine whether and to what extent water loss would occur. The 

green line is the weight loss curve during heating. The blue line represents the reaction rate. The weight 

loss before the start of the dehydroxylation reaction up to a temperature of 150˚C is attributed to 

evaporation of water absorbed to the surface. The weight loss observed from start to completion is 

interpreted to represent solely the dehydroxylation of muscovite (Mariani et al., 2006).  In the 0.274 mm 

thick sheet of muscovite dehydroxylation did not initiate until 693 ˚C, and goes to completion after 900 ˚C 

with a total weight loss of 4.16%. No significant water loss was detected up to 654˚C for the 0.134 mm 

thick sheet of muscovite with completion after 900 ˚C and a total weight loss of 4.257%. The muscovite 

powder of 50 µm starts the dehydroxylation reaction at 450 ˚C, with completion at 900 ˚C and a total 

weight loss of 4.49%. This is in good agreement with the expected total hydroxyl content of muscovite 

(structural formula: KAl2(AlSi3O10)(F,OH)2, with H2O contributing 4.5228% of the weight). It should be 

noted that the curves are not at full completion at 900˚C, since the reaction rate is not returned to zero. 

If the lines are extrapolated, the estimated total water loss increases with 0.04% for the muscovite powder 

and with 0.164% for the sheets. Temperatures at which the reaction rate peaked are roughly the same 

for the three samples, around 800˚C. The reaction rates at each peak are, however, different. The powders 

dehydration rate is roughly twice as fast as the rate of the sheets. See Table 3 for an overview of these 

results. Another interseting result of the TGA experiments is the “fanning” of the heated sheet samples 

(see Fig. 16). This fanning was not observed in the sheet samples used in the three point bending 

experiments. 

According to our TGA data, there is no significant water loss in the single crystals up to temperatures of 

600˚C. We therefore employed a maximum temperature of 600 ˚C in the three point bending tests. 

 

 

Sample Initial water 
loss [wt%] 

Water loss before 
start [wt%] 

Start 
[˚C] 

Peak 
[˚C] 

Rate at peak 
[%/min] 

Completion 
[˚C] 

Water loss start - 
completion [wt%] 

50 µm powder 0.31 0.31 + 0.308 450 795 0.32 900 (+10) 3.872 (+0.04) 

0.134 mm 0.138 0.138 + 0.300 654  803 0.191 900 (+25) 3.819 (+0.164) 

0.274 mm 0.073 0.073 + 0.147 693 805 0.183 900 (+25) 3.94   (+0.164) 
Table. 3 TGA data overview 
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 Figure 17. TGA curves obtained for the dry muscovite 
sheet with a thickness of a. 0.134 mm and b. 0.274 mm at 
a heating rate of [10˚C /min]. The thicker sheet has a later 
onset of the dehydroxylation reaction (a: 650˚C versus b: 
693 ˚C).  

c. Muscovite powder of 50 µm at a heating rate of 
[10˚C/min]. Note the different scale in c. The powder has 
a significantly earlier onset of the dehydroxylation 
reaction (460 ˚C) compared to the sheets. The bigger 
water loss at the start could be due to the larger amount 
of absorbed water onto the larger surface area in 
comparison with the sheets. If corrected for this, the total 
weight loss is comparable with the sheets.  
      

 a   
      

 b   
      

 c       

 Figure 16 Muscovite discs before and after being heated to 900˚C during the TGA measurements. The sample is “fanned” out after heating.  
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3.2 Mechanical data  

We will first describe the general time evolution of sample displacement, strain and strain rate using 

experiment 11 as a representative sample. Afterwards we will compare and discuss experiments done 

with different stress and temperature conditions. Before presenting the details of the results, it should be 

noted that the achieved deflection was in the order of 0.1 mm, corresponding to strains smaller than 1%. 

3.2.1 Instantaneous response and thermal cooling 

A close inspection of the first minutes of the experiments revealed that multiple processes operate 

simultaneously, obscuring the measurements of sample deformation (see Fig. 18). When the assembly is 

heated, the semi cylindrical rod transferring the dead weight to the sample is lifted off the sample by 0.4 

mm. After the start of the experiment, the dead weight is lowered onto the sample, instantaneously 

extruding the 0.4 mm of wire out of the oven chamber. This wire cools down from the designated 

temperature to a new equilibrium temperature, and shortens accordingly (i.e. it counteracts the 

displacement generated by deformation). To exclude this effect for as much as possible from our data, 

we choose the lowest point in the displacement data as the point with 0.0% strain. See table 4 for an 

overview of the data for all experiments.  The two or three seconds it takes to reach its peak are 

probably due to the fact that the dead weight is not placed perfectly instantaneous due to the set up. 

The displacement generated reaching the peak is a combination of the actual starting value of the LVDT 

and the instantaneous elastic response of the sample. Unfortunately those two contributions cannot be 

separated.  

3.2.2 Displacement & strain vs time  

Commonly, a strain vs time curve shows 4 different regimes (see Fig. 19a). There is an instantaneous 

elastic response (i.e. where the curve follows the y-axis). This is followed by a primary/transient regime, 

in which the strain rate decreases, until creep will accumulate more steadily and (quasi-) steady state 

creep is reached (Fossen, 2010; Poirier, 1985). Tertiary creep is when microfracturing and/or 

recrystallization causes an increase in strain rate, which ends when a macroscopic fracture develops 

(Fossen, 2010). The displacement data is the direct measurement and a general curve of displacement 

with time is shown in Figure 20a. This data was converted into strains and a typical strain versus time 

curve is shown in Figure 20b.  
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  Experiment Start Peak 1e low Lowest ( = 
“arbitrary” 
start) 

End “arbitrary” 
end 

1 12 15 22 53 183838 71200 

4 10 15 35 65 319728 175000 

5 18 21 - 47 341759 41000 

7 12 14 - 53 422192 164939 

8 11 14 - 47 345237 256000 

6 10 13 31 51 189959 - 

11 8 10 24 38 162565 - 

10 8 10 - 20 156064 - 

21 9 12 - 42 1558058 165000 

19 7 9 36 70 397285 - 

25 6 8 - 25 2146900 - 

12 18 20 40 46 491844 - 

 Figure 17 Thermal cooling examples.  

12x25 mm 

d= 0.06 mm 

σ = 0.217 MPa 

T = 600 ˚C 

12x25 mm 

d= 0.055 mm 

σ = 0.236 MPa 

T = 600 ˚C 

12x25 mm 

d= 0.098 mm 

σ = 0.389 MPa 

T = 600 ˚C 

6x25 mm 

d= 0.09 mm 

σ = 0.289 MPa 

T = 600 ˚C 

 Table 4 Thermal cooling data overview.  
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Figure 19 a) Common strain vs time curve, showing the instantaneous elastic response (red), the transient creep regime (1), the 

(quasi)steady state regime (2) and the tertiary regime (3), b) common strain rate vs strain curve showing the transient regime  

and the (quasi)steady state regime (2). 

Following the division in regimes made in Figure 19a, the curves in Figure 20 can be divided into two parts, 

a transient regime and a quasi-steady state regime. In the transient regime, displacement/strain is 

accumulating fast, but accumulation slows down with time at a decaying pace. As it reaches a quasi-

constant accumulation, the regime goes towards quasi-steady state. Full steady state and the successive 

tertiary creep regime are not achieved in our tests. The (almost) instantaneous response of the material 

is not included in the graphs, as the first seconds of the experiments are excluded from further calculations 

(see Section 3.2.1 on thermal cooling). 

The repeatability of experiments is tested by plotting experiments with roughly the same stress on a strain 

versus time plot and comparing their achieved strains (see Fig. 20 a and b). There is a 0.15% range in the 

strains achieved after 40000s in Figure 21a as well as Figure 21b. It is interesting to notice that when the 

experiments ran longer the range in achieved strains becomes smaller (0.05% in Figure 21b after 160000 

s). It is clear that higher stresses lead to higher strains for a given amount of time. When experiments are 

plotted with increasing stresses (see Fig. 22a), it is evident that higher stresses give rise to higher initial 

strain rates.  
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Figure 20 a. displacement vs time for experiment 11, b. strain vs time for experiment 11  

 

 

 

 

 

 

 

 

Figure 21a strain vs time (low stress experiments), b. strain vs time (high stress experiments)  

 

 

 

 

 

 

 

 

 

 

Figure 22a compare low stress and high stress, b. compare temperatures 

σ = 0.279 MPa 

T = 600 ˚C 

σ = 0.279 MPa 

T = 600 ˚C 

 a   
      

 a   
      

 a   
      

 b   
      

 b   
      

 b   
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Since we only conducted one experiment at a different temperature with a continuous displacement 

curve, only a crude estimate can be made of the influence of temperature on the displacement and strain. 

A lower temperature gives rise to slower initial strain rates, and a lower decay rate (see Fig. 22b). The 

strain accumulated within this time interval is higher for the experiment with the lower temperature and 

lower initial strain rate. 

3.2.3 Strain rate vs time & strain  

Commonly, a strain rate vs strain curve has two regimes as shown in Figure 19b. In the transient regime 

in the strain rate slows down with time, i.e. the sample is accumulating strain at a decaying pace. With 

time the strain rate will no longer decrease with increasing strain and a quasi-steady state regime is 

reached. Following the division in regimes made in Figure 19b, the curves in Figure 23c can be divided into 

two parts, a transient regime and at strains above 1% a quasi-steady state regime. The decision to fit small 

straight lines to the data (see Fig. 23a, the colored segments are fitted to the data curve) to obtain strain 

rates (see Section 2.6), gives the strain rate plots their plateau appearance (see Fig. 23b). Figure 24-27 

shows the curves for other experiments. The creep rates for most experiments start around 8 × 10−6 s-1. 

It should be noted that this starting rate is affected by our choice for a starting point. The lower limit 

attained is around 1 × 10−8 s-1 to 9 × 10−9  s-1 for the experiments with a temperature of 600˚. For the 

experiment done at 500˚C this limit of the strain rate is lower ~3 × 10−10 s-1.  

 

 

 

 

  

 a   
      

 b   
      

Figure 23 Plots for experiment 25 a) strain vs 

time curve with the fitted segments in different 

colors, resulting in straight plateaus in the 

figures where strain rate is plotted. b) strain 

rate vs time curve. c) strain rate vs strain.  

a 

b 

c 
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Figure 24 Stresses below 0.1 MPa a) strain rate vs time, b. strain rate vs strain  

 

 

 

 

 

 

 

 

 

 

 

Figure 25 Stresses between 0.2 and 0.3 MPa a) strain rate vs time, b. strain rate vs strain  

 

 

 

a 
b 

a b 
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Figure 27 Temperatures compared a) strain rate vs time, b) strain rate vs strain  

Figure 26 Low stresses compared with high stresses. a) strain rate vs time, b) strain rate vs strain  

 

 

 

a 
b 

a b 
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The set of experiments performed with low stresses (see Fig. 26a) shows a little more scatter than the 

experiments performed with higher stresses (see Fig. 27b). Experiment 1 and 5 (low stresses) do not 

follow the trends displayed by the other experiments and do not achieve quasi-steady state.  

Within a single experimental run the strain rate is related to the strain by a strain exponent of -2  

(see Fig. 28 & 29)  

 

 

 

Figure 28 Experiments done at 600˚C, strain vs strain rate with a power law fit a) stresses smaller than 0.1 MPa, b) stresses 

between 0.2-0.3 MPa. 
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Figure 29 Experiments 25 done at 500˚C strain vs strain rate with a power law fit  

3.2.4 Effect of ambient temperature on displacement  

The temperature was measured at two different locations during single experiments. One temperature is 

measured close to the sample, and the other just outside the oven chamber (see Fig. 13).  The temperature 

in the oven chamber is fairly constant (see Fig. 30a), while the one outside the chamber seems to display 

a day-and-night fluctuation (see Fig. 30b).  The displacement fluctuates with temperature due to the 

thermal expansion of the kanthal wire (see Section3.2.). At the beginning of the experiments the 

displacement is large enough to obscure this correlation, but later in the experiments, the displacement 

curve shows a very close correlation to the outside temperature (see Fig. 31).  

Since it is a fluctuation of the kanthal wire length, the absolute fluctuation in mm would be roughly the 

same for every experiment. The strain fluctuation would not be exactly the same, but close. The strain 

fluctuates within ±0.01% absolute value (see Fig. 32a). This corresponds to a relative fluctuation of around 

50% of our smallest selected strain of 0.025%, and 2% for a strain of 0.6%. However, the fluctuation is 

negligible if the strain/strain rate is averaged over a time interval of at least a few wavelengths. A 

wavelength of 400s was found (see Fig. 32b).  
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Figure 30 a) The temperature in the oven chamber is fairly constant, b) the one outside the chamber seems to display a day-and-night 

fluctuation  

a b 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 For experiment 11 a) displacement vs time, b) In oven temperature with time, c) out of oven temperature vs time  
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Figure 32 a) strain vs time to determine amplitude of fluctuations, b) strain vs time to determine wavelength of the fluctuations.  
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c 
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3.3 Flow law parameter values 

3.3.1 The stress exponent, n 

Figure 33 shows the plot of strain rate at given values of strain versus applied stress on a logarithmic scale. 

A power law trend line is fitted to the data. The best-fit exponent represents the stress exponent n. The 

plot can be divided into four regimes. For very low strains (0-0.05%) the stress exponent is around 0. For 

low strains (0.08-0.25%) the stress exponent is around 1. For medium strain (0.3-0.6%) the stress exponent 

is around 0.8. For high stresses (0.7-0.8%) the stress exponent becomes 0 once more.   

Fig 34 shows the stress exponents for each strain with their allotted error bars.  

 

Figure 33 Stress exponent determination 

 

 

Figure 34 Error bars for the stress exponent n 
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3.3.2 Exponential factor, α 

Figure 35 shows the plot of the natural logarithm of strain rate versus stress. A linear trend line is fitted 

to the data. The slope of the line represents the stress exponential factor α. The plot can be divided into 

four regimes. For very low strains (0-0.05%) the exponential factor is around 0. For low strains (0.08-

0.25%) the exponential factor is around 6.5. For medium strain (0.3-0.6%) the exponential is around 4. For 

high stresses (0.7-0.8%) the exponential factor becomes 0 once more.  

Fig 36 shows the exponential factor for each strain with their allotted error bars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36  Error bars for the exponential factor α  
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0.05% : Q = 206 

 

0.1%   : Q = 180 

 

0.2%   : Q = 126 

 

0.3%   : Q = 30.5 

 

0.4%   : Q = -30.3 

 

0.6%   : Q = -51.0 

 

3.3.3 Activation energy, ΔQ 

The activation energy can be found by plotting the natural logarithm of the strain rate against the inverse 

of temperature. The slope of this curve represents -ΔQ/R. Where ΔQ is the activation energy and R is the 

universal gas constant. ΔQ is found to be between 206 kJmol-1 and -51 kJmol-1 (see Fig. 37). The activation 

energy decreases with increasing strain. 
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3.4 Optical Results 

3.4.1 Macroscopic observations 

It was expected that the samples would have gained permanent 

deformation during the experiments, and the retrieved samples 

would have a visible curvature. However, upon examination these 

curvatures could not be found. The surface of the samples 

underwent a striking change in appearance. The samples go from a 

simple flat surface (see Fig. 38a and Fig. 40), to a surface full of 

extensive topographic features (see Fig. 38b-d). At 500˚C there are 

no signs of these features, and at 550˚C there are only a few visible. 

The structures follow a crystallographic direction. The main 

orientation can be predicted to follow the b-axis as determined by 

optical microscopy.  

The sample in Fig. 38 and 39 is sample 17, which had very noisy 

mechanical data and is therefore not included in that part. In Fig. 

39a it can be seen that the deflection of the sample is very small 

even with an applied stress, and it becomes invisible when the 

sample is unloaded (see Fig. 39b).   

The samples are still a single sheet of muscovite and do not show 

the fanning reported for the TGA samples in Section 3.1.   

Figure 38 sample 17 (25x12 mm) a. before the 
experiment, b. after the experiment, c-d. with the light 
reflecting on the surface 

Figure 39 Set up after the experiment with 
sample 17 (25x12 mm) a. with stress on 
sample, b. without stress on sample, c. 
without stress on sample, top view 

 a   
      

 b   
      

 c   
      

 d   
      

a 

c 

b 
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3.4.2 Microstructural analysis 

Figure 41a shows a very regular pattern as observed with 

the SEM from sample 14 (only heated to 600˚). It consists 

of asymmetric ripples that are cut off by a straight line on 

the left side. The thickness of the lines varies between 

2.4µm and 5µm. The angle between this straight line and 

the main orientation of the ripples is 41˚ (see Fig. 41b). To 

the left of the line, the surface is atomically flat. All ripples 

have their long sides dipping towards the right. The long 

side of the ripple and the main orientation make an angle 

of 15˚ - 18˚.  The wavelength of the ripples lies between 

17µm and 36µm and their amplitude between 4µm and 

10µm. As can been seen in the insets in Fig. 41b, the 

regular structure is not continuous throughout the entire 

image. In A one ripple line simply stops. The distance 

between its neighboring lines is 35µm at the far left side, and 25µm at the far right side. In B and C two 

ripples on the left side stop, and on ripple line continues to the right, originating between the two stopped 

ripple lines. In D the “breakdown” of the regular asymmetric ripple pattern can be seen. The lines 

resemble a boudinage structure and the shape of the individual segments goes toward a starting of dog-

bone like shape.  

Figure 42 shows the same kind of regular pattern observed with the Leica from sample 19 (heated to 

600˚C, stress of 0.389 MPa, long side parallel to the microstructures). An additional advantage of the Leica 

microscope is that it allow for colors to be imaged. The same range of colors seen in Fig. 42 are also 

macroscopically observed (see Fig. 38). The asymmetric ripples are merged into straight lines, as in Fig. 

41, but some continue on both sides of this straight line (see Fig. 42 A) The long side of the ripples in this 

image is not consistent (see Fig. 42 B, and compare C and D). Some of the ripples are symmetric (see Fig. 

42 E). The wavelength and amplitude are not consistent throughout the image. Wavelength varies from 

6µm to 40µm, and amplitude varies from 3µm to 20µm. As in Fig. 41, some ripple lines stop, or go from 

two lines to just one or vice versa (see Fig. 42 F). In Fig. 42 G one ripple line goes to a flat line. In H the 

ripple line ends in the dog-bone shape. The red angles are ~ 18˚, and the top left green angle is 10˚. The 

green angle in the bottom right is part of a cross, where the marked angle is 29˚, and the larger angle is 

151˚. As can be seen just above the cross, there are also a few larger corrugations visible in blue. These 

structures will be discussed further below. 

Figure 43 shows in a few areas the same kind of regular pattern as seen in Fig. 41 and 42 observed with 

the SEM from sample 11 (heated to 600˚C, stress of 0.279 MPa, long side 77˚ to microstructures). The 

image shows more straight lines, and ripple lines on different scales (see Fig. 43 A and B). Smallest 

wavelength is around 8µm, biggest around 85µm. The smallest amplitude is 4µm and the biggest 

amplitude is 28µm. In the right side of the images there are more dog-bone structures (see Fig. 43 C), as 

well as some larger dome like structures (see Fig. 43 D). In E the ripple line to a straight line is highlighted, 

the angle that is make is 167˚.  Following that line to the top, it once again becomes a ripple line.  

Figure 40 Unheated and undeformed surface 
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To summarize the results described above, there are a few distinguishable microstructures visible in the 

samples: straight lines, symmetric ripples, asymmetric ripples, starting dog-bone shapes, dog-bone shapes 

and dome-like structures.   

When the structures come across a broken sheet edge, the structure stops at the edge (see Fig. 44). Lower 

lying sheets do show similar structures and similar orientations. There are no signs of kinking or cracks 

within the sheets of mica.  

The structures seem to be mainly on the near surface, as in scrolling through the sample with the Leica 

microscope just revealed a few layers with microstructures. The difference in microstructural 

development in samples that are only heated to 600˚C, and the samples that are heated to 600˚C and 

stressed, are not identifiable without an in depth quantitative analysis of the microstructure distribution. 

There seems to be no difference in the top or bottom of the sample.  

 

Figure 45 displays some other features observed with the Leica microscope in sample 19. The rainbow 

colors are Newton rings and fringes. It is interesting to notice that the microstructures follow the edge of 

these fringes.  

Figure 44 SEM secondary electron images of microstructures and sheet 
edges. 
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Figure 41 SEM secondary electron  image from sample 14 showing a very regular pattern of asymmetric ripples on a 
µm scale 
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Figure 42 Leica optical microscope image from sample 19 showing an array of colors and microstructures 
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Figure 43 SEM secondary electron image from sample 11 showing an array of microstructures ranging from straight 
lines (E) to dome-like structures (D).  
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Figure 45 Features visible with the Leica optical Microscope. The rainbow color 
indicate Newton rings and fringes 
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4. Discussion 

This study was conducted with the aim to investigate at the deformation of muscovite as affected by 

stress, at high temperatures. The hypothesis was that glide of basal dislocations could be activated to 

achieve deformation/strain. In the previous section the results of the TGA measurements, the three point 

bending experiments, and the microstructural analysis were presented.  

In this section an attempt will be made to distinguish between flow laws describing the deformation 

behavior of muscovite under the conditions of the experiments. The results presented in the previous 

section will be compared to previous work, and underlying mechanism(s) will be proposed and discussed. 

Lastly, the implications of the present results will be discussed. 

4.1 Comparison with previous work 

4.1.1 TGA 

Our TGA data compares reasonably well with those of Mariani et al. (2006). We find a single stage 

dehydroxylation between 650˚C-920˚C for the single crystals, and between 450˚C-910˚C for the powder, 

whereas Mariani et al. (2006) find this stage between 600˚C-820˚C for their powders. The total weight 

loss of 4.43 ± 0.2% as measured by Mariani et al. (2006) compares well with our data. Mariani et al. (2006) 

do not report reaction rate data. In their highest experimental temperature (700˚C), they consider 12% 

water loss, i.e. 0.54% loss of total weight, to be insignificant. Sources of error in the measurements may 

be due to the presence of some interlayer water and volatilization of elements such as K+ (Mariani et al., 

2006). 

The fanning of the heated samples reported in Section 3.1 did not happen with the samples that were 

retrieved from the three point bending experiments. This suggests that the fanning does not occur at 

temperatures below 600˚C or that the rate of heating plays a crucial role in this process.  

The observation that dehydroxylation starts at 450˚C in a powder sample, combined with previous work 

that reported that for powder samples kept at a constant elevated temperature the dehydroxylation 

reaction progresses over time (Mariani et al., 2006; Roy, 1949), it creates the possibility that at 600˚C the 

sheeted samples slowly dehydroxylates with time also.  

4.1.2 General strain achieved 

Results of experiments are graphically represented in Fig. 13 and 14 in strain vs time plots. The average 

strain achieved in the experiments is around 0.9%. These are relatively small strains compared to most 

previous work: 22% Mares & Kronenberg (1993), 21% by Kronenberg et al. (1990), 20% Etheridge et al. 

(1972), 12% Shea & Kronenberg (1992). Our strains compare well with the work of Mariani et al. (2006), 

who achieved 1.9% in stress relaxation tests and 3.3% in constant strain rate tests. Mariani et al. (2006) 

employed shear stresses between 14 – 134 MPa. It should be noted that a significant amount of strain 

may not be included in our analyses due to our choice of the starting point (see Section 3.2.1).  

4.1.3 Influence of strain 

Our experimental data is gathered before steady state is reached, and it is anticipated that strain 

influences the results. For single experiments this means that under the influence of stress the dislocation 

density will increase during the experiment. An increased dislocation density will lead to more dislocation 
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interaction/entanglement, a process commonly termed strain hardening. Therefore, during the 

experiment, the applied stress will be less capable to deform the sample and the strain rate will decrease. 

Ultimately steady state is reached and the dislocation density will no longer increase, and the strain rate 

will become constant. 

Figures 28 and 29 show that within a single experiment the strain rate decreases with increasing strain as 

follows: 

휀̇  ∝  휀𝑚, with m = -2  

The inferred m-values confirm the occurrence of work hardening. This is expected, as the values are 

inferred at strains that lie for the largest part in the transient regime (see Fig.  19a and 20a) and not in the 

steady state regime. This relation holds for experiments with different stresses. Which means that higher 

stresses do not lead to faster strain rate decreases. It should therefore not influence the calculated stress 

exponent. Previous research determines the stress exponent at a certain percentage strain, but does not 

elaborate on strain hardening.  

4.1.4 Influence of crystal orientation 

In our experiments there is no clear distinction for the strain vs time curves as long as the orientation of 

the b-axis makes an angle with the long side of the sample. The few experiments with the b-axis parallel 

to the long side of the sample show slower strain rates at the beginning. From microphysical 

considerations regarding the crystal structure, a weak mechanical anisotropy could be expected (Meike, 

1989; Etheridge et al, 1972). Previous work underlined this, but noted that sample to sample variation 

gives the same magnitude of scatter as can be expected from the orientation variations (Mares & 

Kronenberg, 1993; Shea & Kronenberg, 1992; Kronenberg et al., 1990). Within the reproducibility of the 

experiments, crystal orientation does not seem to affect the results to such extent that separate 

discussion is warrented. 

4.1.5 Influence of stress 

The strain rates achieved in our experiments range between 10-6 s-1 to 10-10 s-1. While this is on the slow 

side compared to previous work, generally in the range of 10-3 s-1 to 10-7 s-1 (Mariani et al., 2006; Mares & 

Kronenberg, 1993; Shea & Kronenberg, 1992; Kronenberg et al., 1990), they overlap by two orders of 

magnitude.  A notable difference is that in our experiments the strain rates 10-6 s-1 to 10-10 s-1 are achieved 

at low strains, while in earlier experiments these low strain rates are associated with high strains. The 

stresses needed to achieve those strain rates in our experiments are low (0.026 – 0.389 MPa) compared 

with previous work (0.5-353 MPa) (Mariani et al., 2006; Mares & Kronenberg, 1993; Shea & Kronenberg, 

1992; Kronenberg et al., 1990).  

One way to relate strain rate to stress is by a power law relation as adopted by e.g. Mariani et al. (2006): 

휀̇  ∝  𝜎𝑛, with 0 < n < 1 

The n-values inferred from our experiments, relating stress and strain rate (see Fig. 25), compare well with 

the low-strain experiments by Mariani et al. (2006; n-values of 1.13 ± 0.12 strains between 0.5% and 1.9% 

at strain rates < 10-5 s-1 ), conducted at 700˚C. However, they found a sharp transition to higher n-values 

(6-65) when the strain rate became faster than 10-5 s-1. In other words, the power law with the proposed 
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linear relationship breaks down at higher strain rates. A similar breakdown is also seen when the power 

law relationship is applied to data from experiments submitted to higher stresses. 

In our experiments low stresses were employed and we expect to achieve slow strain rates, since strain 

rate and stress are linearly related (by approximation). We employed stresses that were ~3 orders of 

magnitude lower than in previous work, and the strain rates we found were ~3 orders of magnitude lower 

as well. In Fig. 46 the expected strain rates are shown when our employed stresses and temperatures are 

used for different flow laws established in previous work. The power law relation found by Kronenberg et 

al. (1990) (see Fig. 46b) predicts strain rates that deviate the most from our results.  
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Figure  46. The expected strain rates for experiments under the conditions used in this work, calculated using different flow laws. a) flow 
law and parameters used as determined by Mariani et al., 2006 for a power law relations between strain rate and stress. b) flow law and 
parameters used as determined by Kronenberg et al., 1990 for a power law relation between strain rate and stress. c) flow law and 
parameters used as determined by Mares & Kronenberg, 1993 for an exponential relation between strain rate and stress. d) flow law 
and parameters used as determined by Kronenberg et al., 1990 for an exoponential relation between strain rate and stress 
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Theoretically, stress exponents of around 1 are expected for creep mechanisms where diffusion is the 

controlling mechanism. This could be solely vacancy diffusion, as is the case for Nabarro – Herring (N-B) 

(diffusion through the crystal lattice) and Coble creep (diffusion trough the grain boundaries). Both 

mechanisms are usually observed in polycrystals. For mechanisms describing dislocation movement 

Harper – Dorn (H-D) creep could yield a stress exponent of 1. For this creep mechanism it is reported that, 

at low stresses and small stress intervals, the dislocation density is independent of stress. Dislocation 

motion is then only related to stress by dislocation climb, which is aided by vacancy diffusion.  As our 

experiments are done on single crystals, N-H and Coble creep are deemed unlikely.  

Other mechanisms unrelated to vacancy diffusion or dislocation motion, which also generates a stress 

exponent of 1 are pressure solution mechanisms. These mechanisms are usually seen in wet polycrystals. 

Pressure solution can be treated mathematically similar to Coble creep. In theory, there could be pressure 

solution at the contact points of the set up with the sample (the semi-cylindrical rods) and it should leave 

a visible imprint in the samples surface. We disregard these processes as potential deformation 

mechanisms, as our samples surfaces are considered dry, due to high experimental temperatures, and 

there are no indications of these processes seen at the samples surface.  

It could be expected that in a 3-point bending set-up, when higher strain rates are achieved, there could 

be a similar breakdown of the power law as seen by Mariani et al. (2006). These higher values of the stress 

exponent are also found in previous studies. Kronenberg et al. (1990) present values of 18 ± 4 for single 

crystals of biotite.  

The other way to relate strain rate to stress is by an exponential relationship as adopted by e.g. Mares & 

Kronenberg (1993): 

휀̇  ∝  𝑒𝛼𝜎 , with 0 < α < 6.8 

Mares & Kronenberg (1993) report an α-value of 0.5 ± 0.2, however reanalysis of their data (their Fig. 11) 

yields an average α value of 0.27 at 5% strain.  Kronenberg et al. (1990) found a value of 0.41 ± 0.08 for 

single crystals of biotite at 5% strain. At first glance, the α-values found in this study vary with strain (see 

Fig. 26), but when the error bars are taken into account, the values average around 4, for our medium 

strains (0.075-0.6%). It is important to note that these values are found for a non-steady state. This makes 

it hard to compare with previous work, where steady state was reached. 

The physical consideration underlying the exponential relation is the elementary (atomic scale) jump 

frequency (see Section 1.4.2.3). The mechanism represents dislocation glide limited by obstacles/Peierl’s 

stress.  
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4.1.6 Influence of T 

휀̇  ∝  𝑒−
𝛥𝑄

𝑅𝑇   

This Arrhenius type of temperature dependence is assumed for both the power law and the exponential 

law. The activation energy is presumed to be a value independent of temperature, stress and pressure. It 

represents the energy a particle must have to overcome the barrier, i.e. the barrier height relative to the 

equilibrium position, and is defined independent of the parameters that decrease or increase the relative 

barrier height. ΔQ, which is proportional to the slope of ln 휀̇ – 1/T plot (Arrhenius plot), is the apparent 

activation energy of creep (see Section 1.4.1 and Fig. 11). The values I found for ΔQ start with ~206 kJmol-

1 at small strains and decrease with increasing strains (see Fig. 37). At the high strains in my experiments, 

there is no longer an activation energy required within the scatter and uncertainty in the data. This implies 

that the processes are independent of temperature. However, it should be noted that, since my 

calculations are done on very little data, this value is subject to large uncertainties. 

The obtained value falls in line with previous work, although the activation energies reported in literature 

are also poorly constrained. The values range from as low as 47 ± 19 kJmol-1 (single crystals of muscovite; 

Mares & Kronenberg, 1993) to as high as a minimum of 270 kJmol-1 (muscovite gouge; Mariani et al, 2006). 

Kronenberg et al. (1990) calculated the activation energy of single crystals of biotite for both the power 

law and the exponential law, and obtained values of 82 ± 13 kJmol-1 and 51 ± 9 kJmol-1 respectively. Note 

that the same experiments were used for these calculations.   

The authors all inferred/assumed that the mechanism contributing to strain was dislocation slip and glide 

on (001), even though their conditions varied. This has as a consequence that they all assumed the same 

process, dislocation glide (see Table 1), thereby eliminating the possibility to explain their activation 

energy differences by a difference in operating process.  

There is a difference in approach since I did constant stress experiments, and other workers did constant 

strain rate experiments. These differences propagate into the plots used to determine ΔQ. For my work, 

I used the “classic” Arrhenius plot (ln 휀̇ – 1/T plot). For constant strain rate experiments, the σ – 1/T plot 

(for exponential) or ln(σ) – 1/T plot (for power law) is used. Both plots have their α- or n-value as part of 

the slope.  As seen by others (Kronenberg et al, 1990; Shea & Kronenberg, 1992) this results in different 

activation energies for the flow laws.  

Also, the range of temperatures used in the construction of these plots, could be of great influence of the 

found activation energy (see fig. 11). That is, if the assumption that there is one unique thermally activated 

process operating, is incorrect. 

4.2 Macroscopic Observations 

I said a little earlier that the total displacement or strains reached are very small. This corresponds to a 

tenth of a millimeter displacement of the center. We were unable to observe this displacement after the 

set up was dissembled. One could explain this in a few ways, the displacement measured, does not exist 

and is some result of instrumental drift, but I don’t think this is the case.  As I did some dummy runs, and 

although there is some drift measured, those results were clearly different from the actual runs. The 

other option is that the displacement measured is there, but somehow it is reversed upon unloading. I 

don’t think this is the case either, although reversible strains are reported for sheeted minerals, they 

always follow a permanent strain.  
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What this leaves us with, is that the measured displacements are small enough to be undone by the 

technique we used to measure it. This involved sticking the sample on sticky tape to a sample holder, 

and prepping it for SEM measurements. And if the sample had a miniscule curve to it, the sticky tape 

was adhesive enough to counteract this.  

4.3 Microstructures 

In our samples, no indication of kinks or cracks formed during deformation is found, and mechanisms 

involving these microstructures (like low angle kink bands, or dislocation pile ups) are therefore not 

discussed. 

As said at the end of section 3.4.2 the microstructures seem to be superficial and only involve the first 

near surface layers of the muscovite sample. There are no obvious differences in the samples that are only 

heated to 600˚C and the samples heated to 600˚C and stressed. We therefore assume that the formation 

of the microstructures is solely due to the temperature. Combined with the assumption that the features 

are superficial, it follows that the surface microstructures bear no relation with deformation. However, 

their formation could influence the measurements of deformation. To estimate their relevance in our 

analysis of the mechanical data (section 4.1), a few possible mechanisms are brought forward and 

discussed. 

4.3.1 Potential “mechanisms” to create the observed 

microstructures 

Dislocation networks  

Networks form when a dislocation moves through the crystal and 

interact with another (nearby) dislocation. Lothe & Hirth (1982, p. 663) 

state that, in general, if interactions between crossing dislocations 

occur, a dislocation net with hexagonal meshes is produced. If the 

reactions do not occur, the mesh is more logenze-shaped (see Fig. 47). 

Pure twist boundaries are always hexagonal shaped.   

These expressions of dislocation have been found by previous 

workers. Mares & Kronenberg (1993) reported the presence of 

hexagonal meshes (see Fig. 48) observed in TEM micrographs. The 

hexagonal mesh can be observed as a symmetrical “ripple” (see  

Fig. 48 middle). They also observed straight dislocation lines and 

curvilinear dislocation lines. Christoffersen & Kronenberg (1993) 

examined deformed single crystals of biotite and found hexagonal 

meshes (see Fig. 49). It is important to note that these are TEM images, 

and this work only reports secondary electron SEM images. It is 

therefore unlikely that our observations are of similar structures. 

Figure 47 Figures from Lothe & Hirth 
(1968, p.662) depicting two types of 
dislocation networks. Top: a hexagonal 
mesh formed when crossing dislocation 
interact. Bottom:  a logenze-shaped mesh 
formed when the interaction does not 
occur. 
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Figure 48 Figures from Mares & Kronenberg (1993) (their Figure 9). TEM 
micrographes of muscovite deformed at a temperature 400˚C and a strain 
rate 10-5 s-1, at a 45˚ angle to (001), differential stress reported between 
18-22 MPa. Left: a dislocation network. Middle: the same samples as the 
left, only tilted in such a way that one set of dislocations is extinct. Right 
top: a set of straight dislocations. Right bottom: a set of curvilinear 
dislocations. 

Figure 49 Figures from Christoffersen & Kronenberg (1993) (their Figure 6). Left: TEM bright-field image of an extended network with a 
complicated geometry.in single crystal biotite deformed at a temperature of 400˚C, a strain rate of 10-5 s-1 with a shear stress of 21 
MPa, at a 45˚ angle to (001).  Right: enlargement of the red frame in the left image to highlight the “asymmetric ripples”. 
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Helical dislocations 

In crystals that accommodate deformation associated with climb, dislocations can from spiral structures 

as described by Hull & Bacon (2011) (see Figure 50). They form when a dislocation, with a partly edge and 

partly screw character, is pinned between two points. 

Dislocations both glide and climb, where the climb is aided by 

vacancies. Ultimately this can lead to a dislocation with a 

helical appearance, with a Burgers vector along the axis of the 

helix. 

These dislocations are made visible by decorating techniques 

and observed with SEM imaging. This makes it unlikely that our 

microstructures are of similar origin. 

Wrinkles, Ripples 

Other studies describe microstructures observed in graphene 

or other layered solids. Deng & Berry (2015) proposed a few 

possible mechanisms involved in the formation of wrinkles 

(length:height ratio 10:1), ripples (ratio 1:1) and crumbles 

(dense deformations with folds and wrinkles) observed on the 

nanometer scale. Wrinkles are fairly straight features (see Fig. 

51a) but they can develop into wrinklons (Fig. 51 b and c), 

producing straight lines at an angle with each other, and a higher density of microstructures at the edge 

of the sample (Compare Fig. 51 c with Fig. 42 F). It should be noted that these studies are done on 

samples of just a few layers of graphene, and our samples consists of a multitude of muscovite layers. In 

this work we tried to activate basal dislocations in muscovite samples with a thickness of a few tenths of 

mm. Therefore, a mechanism relevant for this work could be defects and/or dislocations inducing 

microstructures.  

Deng & Berry (2015) propose that out of plane deformation (like wrinkles and ripples) is a way to 

significantly reduce the magnitude of in-plane stresses generated by the defects. The ripples wavelength 

and amplitude decrease as the angle between the line-defect and strain-direction increases (Deng & 

Berry, 2015).  

Another potential source for in-plane stresses are not only defects, but also excess material or length 

which can arise if there is a difference in the thermal expansion coefficient between the layers and the 

substrate (Deng & Berry, 2015). In our case, this would be between surface layers and the bulk, as the 

dehydration onset of the muscovite starts with the surface layers, and dehydration influences the crystal 

structure or bond lengths in such a way that during heating the surface gains more length, or during the 

experimental run the surface gradually gains more length or that upon cooling and shrinking the surface 

shrinks less than the bulk. The result is a surface layer with an excess of length with respect to the bulk 

and this could lead to ripple formation. 

  Figure 50 Figure from Hull & Bacon, 2011 (their Figure 
3.21). A dislocation in CaF2 revealed witha SEM using 
the decoration technique (After Bontinck and 
Amelinckx, Phil. Mag. 2, 94, 1957) showing a helical 
spiral.   
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Ripplocations 

Ripplocations have been defined by Kushima et al. (2015) as sharp and localized folds, aligned with well-

defined crystallographic directions, in thin-layered crystals with van der Waals structures. They originate 

from excessive material inserted in one layer compared to another much like edge dislocations (see  

Fig. 52 top). However, ripplocations are energetically different from the conventional dislocation. Striking 

is that ripplocations do not have a burgers vector (Griggs et al, 2017), and that same sign ripplocations 

attract and merge into larger structures (Kushima et al., 2015) (see Fig. 52 bottom). Kushima et al. (2015) 

thought of ripplocations to be near surface structures in 2D van Der Waals solids, but Griggs et al. (2017) 

extended this idea to all layered solids and made a case for ripplocations to occur in the bulk of the crystal 

as well as the near surface (see Fig. 53). Ripplocations were found to come in two types, in sharps lines, 

or as tortuous wrinkles with relatively large wavelengths and asymmetric morphologies, observed on the 

nanometer scale (Kushima et al, 2015). Their energies only depend on the amount of excess material and 

the sharp lines are thought to be quite mobile (Kushima et al., 2015; Griggs et al., 2017), in contrast the 

wrinkles can hardly migrate once formed (Kushima et al., 2015). It takes little external driving force to 

overcome the migration barrier and move the sharp line ripplocation athermally (Kushima et al., 2015). 

Sharp line ripplocations can merge and when large enough can self-fold into large wrinkels, and due to 

the multilayer adhesion between self-folded domains, they become kinetically trapped (Kushima et al., 

2015).  

These ripplocations are only reported to date on the nanometer scale, and are therefore insufficient to 

explaining the deformation and microstructures reported here. However, if there is a way to upscale these 

features, this could be interesting, especially in the light of my proposed microstructure evolution (i.e. the 

merging of ripples, towards dog-bone shapes and ultimately the dome-like structures, see Section 4.2.2) 
 

 

.  

 

Figure 51 Wrinkles and wrinklons as presented in Deng & Berry, 2015 (fig. 7). a) a bilayer suspendend graphene membrane produced 
by thermal manipulation, b) SEM image of suspended grapnhene bilayer (scalebar is 1 µm), and a pattern of folds obtained from a 
rubber curtain (scalebar is 25 cm), c) schematic representation of the morphology of the wrinklon. 

a b c 
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Figure 53 Figure from Gruber et al (2017) (their Figure 1). A schematic illustration of ripplocation formation, depending on excess 
material (n), in a model simulation. Top: (a-d) unconstrained surface showing two forms of n=4 structure. Middle:.( e–h) bulk 
unconstrained. Bottom: (i–l) bulk constrained. Atoms are colored according to their potential energy defined from the 
interatomic potential whose scale is shown on the right. This is a side view of several layers. 

Figure 52 Figure rom Kushima et al. (2015) (their Figure 2).  Top: schematic illustration of 
the formation of a ripplocation by adding extra material in a simulated bilayer model. 
Bottom: schematic illustration of the tendency of ripplocations to merge and form larger 
structure 
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Water evaporation vesicles & air content 

Muscovite is known to dehydrate at elevated temperatures. 

Deng & Berry (2015) propose trapped solvent 

evaporation/removal as a possible mechanism responsible for 

formation of microstructures. Previous work has been done on 

water vapor vesicles during thermal breakdown of muscovite. 

Those vesicles always have a circular bubble shape in the (001) 

plane (Devineau et al., 2007; see Fig. 54) and are seen after 

melting has occurred (Rodriguez-Navarro et al., 2003).  These 

structures are different from the microstructures in our 

samples, and it is therefore not likely that they indicate the 

presence of water vapor vesicles.   

 

Although it is not mentioned in previous work, there is a 25% 

air content in our samples according to the supplier (SPI 

supplies). It could be possible that the air inside the crystal 

expands more during heating than the crystal itself in such a 

way that it can no longer remain inside the samples and alters 

the structure upon leaving. Although I deem it unlikely that this 

causes the microstructures, it might aid or impede the 

dehydroxylation. 

 

4.3.2 Most likely mechanisms operating in the experiments 

The reason we investigated the microstructures is to quantify their influence on the deformation or the 

measurement of deformation. 

A few mechanisms that could cause the microstructures are discussed above. My most logic conclusion 

would be that there is some thermal coefficient difference involved, which triggers a ripplocation kind of 

microstructure formation to reduce in-plane stresses. A necessary assumption in this case is that the 

dehydroxilation reaction leads to a volume change of the top layers with respect to the bulk. The surface 

layer needs an excess of length or volume that is unable to simply extend over the bulk samples edges, to 

cause in-plane stresses. In order to reduce those, out of plane deformation triggers the formation of 

ripples. This deformation could follow crystallographic orientations. Support of this hypothesis is the 

observation that when the samples were heated to 900ᵒC, the microstructures were not found, but the 

samples “fanned” out (see Fig. 16), indicating some kind of volume change. The microstructures are most 

abundant at 600ᵒC, but also occur in the samples heated to 550˚C. The remaining issue that needs to be 

resolved for the interpretation of the mechanical data, is the timing of the microstructure formation, i.e. 

is it (semi-)instantaneous upon heating, does it occur gradually over time during the experimental run, of 

do they form upon cooling. In the first and last case, the formation would not influence the measurement 

of the deformation. If, however, they form gradually during the experimental run, they could influence 

the measurements. 

  

Figure 54 Figure from Devineau et al. (2007) 
(their Figure 1c). BSE-SEM image showing 
bubbles (dark areas) in basal sections of 
muscovite psuedomorph after heating at 1,175˚C 
for 40 min  
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To see if the microstructural development could significantly influence the measurement when they 

gradually form during the experiment, we consider the scale of the features. Some ripples have almost 

100 μm long wavelengths, we can assume a 1:1 ratio (ripples), or a 10:1 ratio (wrinkles), giving the largest 

structures height varying between 100 μ and 10 μm. We have displacements of max 100 μm. In a 1:1 ratio, 

this could affect the measurement of strain by 10-100%. Therefore, if the features develop during the 

experiment, the bubbling of the surface, could cause a significant apparent decrease in strain rate.  

The colors in the sample, visible macroscopically and with the Leica microscope, act as an indicator that 

the microstructures are “hollow” structures and not deposits on the surface. They can tell something 

about the distance between the top of the structure and the bottom, i.e. the height of the hollow. 

However, I did not elaborate on this.  

As said earlier, ripplocations tend to merge and form larger structures. There are several microstructures 

presented in Fig. 42-43, straight lines, symmetric ripples, asymmetric ripples, starting dog-bone, dog-bone 

and the dome-like structure. Straight lines are seen to be going towards rippled lines (see Fig. 42 G and 

Fig. 43 E) and the asymmetric rippled lines are seen to be going towards the dog-bone shapes (see Fig. 41 

D and Fig. 42 H), and the dog-bone shapes merge towards more dome-like structures (see Fig. 43 D). 

Following the merging idea, I propose an “evolution” of the microstructure as shown in Fig. 55. As what is 

shown by Fig. 41-43 are only snapshots of the evolution of the microstructures, it is difficult to distinguish 

between a time evolution and/or a spatial distribution.  

 

 

 

  

Figure 55 Schematic illustration of the proposed microstructural ‘evolution’. Microstructures start as straight 
lines, and under influences of in-plane stresses, slowly evolve into symmetric ripples, to asymmetric ripples 
that eventually “break” to form dog-bone shapes, after which the shapes merge into larger dome-like 
structures.  

straight line symmetric ripples asymmetric ripples 

dog bone dome-like  starting dog bones 
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4.4 Underlying mechanism of deformation 

With the assumption that the microstructures are not an expression of deformation or dislocation activity, 

but a result of the sample heating and cooling, the underlying mechanism responsible for deformation 

will be inferred only from the mechanical data. Remember, the micromechanism responsible for creep is 

usually creep of basal dislocations (see Section 1.5).  

4.4.1 Power law 

In Section 4.1.6 we arrive on Harper-Dorn (H-D) creep (see Section 1.4.2.1) operating under low stress, 

high temperatures (Ardell & Lee, 1986), as the most likely model describing the deformation in our 

experiments. In all materials exhibiting this creep, there is a transition to power-law creep when the 

applied stress exceeds a characteristic transition stress (Ardell, 1997). It is suggested that H-D creep 

involves dislocation glide, but is controlled by climb of edge dislocations saturated by vacancies (Langdon 

& Yavari, 1982 (for Al-5% Mg solid solution alloy)). However, it is probable that the controlling factor might 

equally well be cross-slip of screw dislocations, depending on the material under consideration. One view 

regarding H-D creep is that there is nothing special about it, and that it is a manifestation of “normal” 

power-law creep when the applied stress is smaller than the internal stress determined by the steady 

state dislocation density (Ardell, 1997; Ardell & Lee, 1986). The other explanation for the transition stress 

from power-law creep to H-D creep, is that H-D creep prevails when the applied stress is too small to 

activate Frank-Read (F-R) sources. H-D creep is only seen in materials with a low starting dislocation 

density.  

A dislocation density independent of stress means that this density does not in-/decrease with  

in-/decreasing stress. The view in which the stress could be too low to activate F-R sources, seems to imply 

that there are no new dislocations formed under the influence of stress (this is if F-R sources are the only 

dislocation sources). Following this thought, strain hardening due to an increase in dislocation interaction, 

should not be observed in the material if H-D creep is governing the deformation, or only to a very limited 

extent (only existing dislocation can move and interact). The question remains how strain is accumulated 

in this way.  

 

Another way to maintain a constant dislocation density with increasing stresses, is that the dislocation 

disappear as fast as they are formed, i.e. the dislocations need to be able to move very freely, and no 

entanglement or interaction should occur. Entanglement would (temporarily) catch dislocations and 

increase their density if the rate of formation remains constant. Strain hardening could be possible if the 

rate of entanglement somehow regulates and balances the formation rate. 

 

When microstructures are investigated in material exhibiting H-D creep, it can be described as a three-

dimensional network (Ardell & Lee, 1986), i.e. showing evidence of dislocation interaction. Ardell (1997) 

proposed that the plastic strain during H-D creep is generated by constrained dislocation motion during 

coarsening of the dislocation network.  It is a balance between hardening as a consequence of the nearly 

immobile dislocations in the network, and recovery involving the coarsening of the network (Ardell, 1997). 
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4.4.2 Exponential law 

The exponential law concerns glide, by taking the energy needed to overcome obstacles/Peierels valleys 

as the rate-limiting factor (see Section 1.4.2.3). It describes the atomic jump from one equilibrium position 

to the next, including stress assisting this process. α includes geometric parameters associated with the 

energy barrier. Unlike H-D creep is does not explicitly require vacancy diffusion, with its linear dependence 

on stress, for out of plane movement of dislocations. Furthermore it imposes no limitations towards strain 

hardening or strain softening. 

4.4.3 Best fit 

Both explanations/mechanisms fit the data. For the power law, the n-values would correspond to an H-D 

creep model, representing dislocation glide and climb aided by vacancy diffusion. The main feature of H-

D creep is that the dislocation density remains constant over a range of applied stresses. In a bending set-

up there is a geometrically need for an increase in same sign dislocations to accommodate the bending.  

If the dislocation density is to remain constant, dislocations of the opposite sign should be removed from 

the crystal lattice, while the wanted dislocations increase. So, there is no net change in density, but a net 

change in the signs of the dislocations. The exponential law representing the atomic scale jumping 

process, fits the data equally well, and imposes no limitations to dislocation density. This means that the 

geometrically necessary dislocations for bending can be formed, and their density can increase without 

the need to balance this with a process to proportionally remove the dislocations with the opposite sign.    

During our experiments strain hardening is observed (i.e. with increasing strain, the strain rate decreases). 

As strain hardening is usually the result of dislocation interactions, slowing down the average dislocation 

velocity, it seems reasonable that this is accompanied by an increase in dislocation density.  

If the problem is simplified in this manner, Harper – Dorn creep is excluded as a possible mehcanism 

operating in our samples. This makes the exponential creep mechanism the most likely mechanism active 

in our samples.  

4.5 Implications of my work  

There is a knowledge gap in the mechanism/interpretation of deformation in mica’s, involved in modelling 

crustal and fault strengths. This work aimed to find constraints for the stress sensitivity of the deformation 

of muscovite, taking as a representative of the micas. The results were comparable with the results found 

in earlier studies for a power-law relation between stress and strain rate. Within the small stress range 

and high temperature conditions tested, this relationship was linear. The exponential law fit the data 

equally well. From theoretical considerations the dislocation density exponential law creep had the fewest 

theoretical constraints and is therefore the most likely fit. This would have consequences for the models 

using the power law interpretation (see Fig. 2).  
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4.6 Suggestions for methodological improvements 

The three point bending set up employed only allows for constant load experiments. Temperatures could 

be adjusted during the experiments if that was found necessary. The temperature regulator had a 

tendency to largely overshoot the designated temperature and therefore setting up an experiment 

required relatively much attention to prevent temperatures that exceeded the desired temperature. 

When the temperature control is more refined, it could decrease the sample to sample variation for 

temperatures close to the onset of dehydroxylation. 

 It is unfortunately not possible to do constant strain rate tests in the current set up and neither is it 

possible to employ confining pressures or providing a wet environment for the crystal, making direct 

comparison with previous work a little harder.  

Although the relative simple set up of the three point bending apparatus has advantages in the ease to 

use and the operational costs, is also has a few shortcomings. They are mostly related to the way the load 

is transmitted to the sample. The dead weight has a little room to move and is therefore not always 

applied in the exact middle of the sample. The heating and cooling of the machine seems to affect the 

straightness of the kanthal wire. Deviations in the straightness of the kanthal wire effect the smoothness 

of the up and down movement of the load, i.e. it can get stuck in the steel guiding plate. It also affects the 

way the top rod is placed onto the sample, as you remove the support sideways, one side of the loading 

circle lowers earlier than the other side. In a few cases the load remained uncentered, instead of the 

loading evenly across the sample. During the loading of the sample and unloading the sample itself can 

be moved around by the kanthal wire and the top rod, further adding to the problems of loading exactly 

in the middle. Upon loading the kanthal wire is displaced from the oven chamber, giving rise to a “thermal 

cooling” stage, which affect the initial part of the displacement measurements. It follows that there is 

room for improvement of this part of the set-up. An option could be to automate the up and down 

movement of the support, to minimize differences between experiments. 

Experiments are performed with a closed oven chamber, so no visual control is possible once the 

experiment is started. As a consequence, the actual bending at high temperatures cannot be directly 

observed. It could be interesting to be able to compare the (elastic) bending at high temperatures to those 

observed on room temperature. 

4.7 Further research 

 

A lot of things remain enigmatic about the deformation process(es) at work. A few things are mentioned 

throughout the discussion that could shed some light on the matter. Options are explored for further 

research using the same experimental set up employed in this work, but also some suggestions for 

different methods are included.   

 

First of all there are a few notes about the microstructures. As it is now, the hypothesis proposed could 

be tested by investigating the ripplocations dynamics to see if they can be scaled from nm to µm. Absence 

of clarity remains about the microphysics behind the changing length/volume of the upper plate, and 

whether or not this could be due to (partial) dehydration. With TGA measurements the samples can be 

brought to experimental temperatures with a very strong control on heating rate and maximum 

temperatures. Measuring the weight loss for different amounts of time, e.g. 1 min at 600ᵒC, 1 hour and 

24 hours, could correlate the extent of dehydroxylation with the formation of microstructures. More 
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detailed microstructural study could also confirm the proposed hypothesis that the microstructures bear 

no relation with the deformation. Further research on the colors visible in the sample could be used to 

determine if the microstructures are hollow, and say something about the height of the hollow.  

 

As for the creep laws, solely the n and Q values don’t give enough information to pinpoint a mechanism 

(Poirier, 1985). Further investigation of the microstructural state of the samples, e.g. dislocation 

configuration examination by TEM or decoration techniques for the SEM, can be used to distinguish 

between the potential creep process(es). By observing the dislocation density, it can be established 

whether or not it is independent of stress, which is a distinguishing feature for H-D creep. Other 

observations could include the organization of dislocations (to accommodate bending), e.g. by an increase 

of one sign of dislocations versus the opposite sign. This could involve going into more detail with the 

theory behind the geometrical necessary dislocations (GNDs).  

 

Furthermore, it could be interesting to see if experiments with higher applied stresses can be done in the 

three-point bending set up to confirm the theoretical expectation that for power law creep the linear 

relation found between strain rate and stress should break down at higher stresses. In my experience, the 

sample literarily broke when loaded with a stress of 0.5 MPa. However, this involved a very thin sample, 

which could have had pre-existing fractures due to the separating method, causing the failure.  
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5. Conclusions 

In this study I experimentally investigated the ductile deformation behavior of single crystals of muscovite 

at high temperatures against a theoretical background. Based on my results, I conclude the following:  

Theoretical background of intra-crystalline deformation mechanisms yields two different approaches for 

the relation between strain rate and stress. The first approach assumes a power law relation, 휀̇  ∝  𝜎𝑛, 

and it has a geometrical basis. It assumes that deformation is accommodated via glide of dislocations as 

well as climb. In the Weertman model a stress exponent of 3-5 is usually found. A stress exponent of one 

is found for the model of Harper – Dorn creep, which states that dislocation density is independent of 

stress. The second approach assumes an exponential relation, 휀̇  ∝  𝑒𝛼𝜎, and it finds it basis in the 

elementary jump theory. It assumes that deformation is accommodated via glide of dislocations limited 

by dispersed obstacles such as interstitials and impurities. 

The employed stresses ranged between 0.1-0.4 MPa and gave initial strain rates of 10-6 s-1 that decreased 

with time to a value between 10-8 - 10-10 s-1. When a power law relation was fitted to the data, our results 

gave a stress exponent (n) of 1, corresponding with Harper-Dorn creep. When an exponential relation was 

fitted to the data, our results gave an exponential factor (α) of 4. It is important to note that these values 

are inferred before (quasi) steady state is reached, and caution is needed when comparing these results 

directly to previous work. Adding to this caution is the fact that the three point bending set up uses 

constant stresses, which is quite different from the triaxial compression set up with constant strain rates 

used in previous work.  

Our experiments yielded very small strains, maximum strains achieved ranged between 0.6-1.0 % and 

upon retrieval the sample did not show any permanent bending. The method employed to examine for 

any permanent bending is quite possibly too crude to measure any permanent deformation. The 

development of extensive microstructures on the samples surface, ranging from straight lines to dome-

like structures on a scale of 5-250 µm, did not influence the deformation or the measurement of 

deformation, as they are most likely a shrinking feature upon cooling.   

The two flow laws cannot conclusively be distinguished based on the data. However, from the 

Geometrically Necessary Dislocations (GND) theory it follows that in a bending geometry, dislocations of 

one sign need to accumulate in the crystal to accommodate the bend which conflicts with the assumption 

of a constant dislocation density. In addition, we also observed strain hardening, Harper-Dorn creep is 

therefore regarded unlikely. This leaves dislocation glide (exponential creep) as the most likely 

deformation mechanism in our three-point bending tests. This has implications for models that use a flow 

law with power law relation between stress and strain rate to incorporate phyllosilicate behavior. As the 

exponential relationship predicts higher strain rates for lower stresses, and therefore a weaker curst (see 

Fig. 2). A weaker crust means that displacement can occur along a fault at lower stresses. This means that 

the strain will most likely be released aseismically before stresses necessary to initiate brittle behavior can 

build up. 

Experiments with a wider range of stresses and temperatures are needed, to further investigate the found 

fit for both approaches. As long as there is no conclusive answer to which flow law is most accurate in 

which situation, researches need to carefully select a flow law, and make a theoretically assessment 

before selecting one approach or the other.  
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