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Abstract

Square-free values are of significant interest to number theorists, partly
due to their close connection to the Möbius function. However, little is
known about square-free values of polynomials with integer coefficient
when the degree of the polynomial is greater than 3. For instance, it
has yet to be proved that the polynomial f(x) = x4 + 2 takes infinitely
many square-free values, let alone that an asymptotic density of square-
free values is known.

The main purpose of this thesis is to show how to prove the density of
square-free values for polynomials of degree 1 and 2, after which the focus
shifts to polynomials in one variable over the field Fq. We show that,
when considering the latter, a certain asymptotic density can be proved
for square-free polynomials of any degree. Furthermore, we compare this
proof to the strategy used to prove the asymptotic density of polynomials
with integer coefficients. Finally, we investigate the density of square-free
values of polynomials with large varying coefficients, making use of Brun’s
sieve, and again find similar densities.
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1 Introduction.

1.1 Introduction.

Number theory is a perplexing branch of mathematics. Few other fields ponder
questions that seem eminently simple and find that they turn out to be so
difficult to answer. When looking at the almost trivial definition of the positive
integer, a beautiful simplicity is found. On the other hand, when attempting to
isolate the fundamental building blocks of these integers, the prime numbers,
and their distribution, we find a complexity that bewilders mathematicians
even nowadays. It is well know that prime numbers form the basis for the
multiplicative structure of Z and because of that, prime numbers play a central
role in many of the questions which arise in classical number theory. For
example, the importance of primes in multiplication is undeniable, but what in
addition? The famous Goldbach Conjecture ponders this question. Is it true
that every even positive integer greater than 2 can be written as the sum of
two primes? A prime example of an easy question to ask and nevertheless
it remains unsolved to this day. For another example, two primes are called
twins if they are two apart (e.g., 3 and 5, 11 and 13, etc). Here we might
ask: Are there infinitely many such pairs? The answer to this ”Twin Primes
Question” remained unknown for a long time but has recently been solved,
putting a boundary on the distance between two consecutive prime pairs [25].
Now we know that Z is a unique factorization domain (which is defined later),
but it turns out that there are many others which are interesting in their own
right. The one that we focus on in this paper is the class of polynomials in one
variable x with coefficients in a field K, denote K[x], and observe that it is in
fact a unique factorization domain[16].

As we shall see, integers are not the only ring that have baffled mankind
over the years. Can we now answer the same number theoretic problems for
Fq[x] as for Z? For instance, can we state some analogue to the Goldbach
Conjecture in this new setting, and can we answer it? A first try might
be: ”Can every even monic polynomial be written as a sum of two monic
irreducible polynomials?” Though we have not yet defined the meaning of this
conjecture (i.e. what are even polynomials?), it does seem to make some sense.
If, however, we try the Twin Prime Conjecture, it is definitely not clear what
”twin irreducible polynomials” might be. If we take for example the size of a
prime |f |, f ∈ Fq[x], we note that there are several f ∈ Fq[x] which have the
same size. How then would we characterize the distance between these primes?
An interesting discussion on the subject in given by Lior Bary-Soroker.[4]

If we want to answer questions like the two presented above about
polynomials, we need to know something about the irreducible elements within
the setting. The basic idea would be: If irreducibles are more dense among
the polynomials than primes are among the integers, then questions like the
Goldbach Conjecture should be easier to answer in the polynomial case; if
irreducibles are less dense than primes, the answers might be more difficult to
find; and if the densities are similar, then the questions may be comparably
hard to answer. But the nature and density of irreducible polynomials depends
completely on the field K, so we need to consider some specific fields.

The fundamental Theorem of Algebra gives us some insight on irreducible
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polynomials in C[x]. Since every polynomial of degree n over C has n roots in C,
we see that every polynomial over C factors completely into linear polynomials.
Continuing this reasoning, we see that the only irreducible elements over C are
the linear polynomials. By using a similar reasoning, over R, f(x) factors into
a product of linear and/or quadratic polynomials; that is, the irreducibles over
R are either linear or quadratic. Thus we see that, in some sense, irreducibles
in C[x] and R[x] are relatively scarce, and thus it is quite difficult to solve an
analogue to the Goldbach Conjecture.

In this thesis, we contrast and compare the ring of integers and the ring
of polynomials in a single variable over a finite field. Mainly, the focus lies on
square-free values and we try to answer analogous versions of problems in both
rings.

Definition 1.1. (Square-free integer). We define an integer n ∈ N to be square-
free if, for any integer a ∈ N, a > 1, n is not divisible by the square of a.

For the relevance of square-free integers in number theory we look at the
Möbius function µ(n), Definition 2.10, a function which is closely related to
square-free values since µ2(n) is the indicator function for square-free values.
Now µ(n) turns out to be a very well-connected function in number theory
and also finds many applications in combinatorics[24]. It shows up in the
Möbius inversion formula and encodes one of the most important mysteries in
mathematics, the Riemann hypothesis. On the other hand, square-free values
also are related to another mystery, a mystery connected to the distribution of
prime factors as well, the ABC conjecture. Most these concepts are explained
later in this thesis. But in short, from an interest in number theory, inevitably
an interest in the Möbius function rises, and an interest in the Möbius function
results in an interest in square-free values.

Another reason why people study the Möbius function is due to the fact
that its behavior is directly linked to the Prime Number Theorem, stating
that, when taking the limit x → ∞, the number π(x) of primes below x is
asymptotically equal to x

log x . It turns out that the Prime Number Theorem is

”equivalent” to the fact that µ(n) has average value (”mean value”) zero, i.e.,
limx→∞

1
x

∑
n≤x µ(n) = 0.[2, Chapter 3.9] We can interpret this final statement

as follows: If we randomly pick a square-free integer n, then, since µ(n) = ±1
depending only on an even or odd number of factors, it is equally likely to have
an even and an odd number of prime factors.

However, in the end a substantial part of the interest in square-free values,
as with prime numbers, is probably from an aesthetical and metaphysical
viewpoint. Nearly everybody shares the feeling that numbers are important,
and the integers in particular. Prime numbers are a crucial part of the integers:
they tell you how you can break numbers down and build them up. To anyone
studying mathematics, investigating integers feels like discovering the atoms
of the universe. And analyzing their behaviour and connection is like putting
together the skeleton of the universe. Now often, it turns out to be quite
difficult to study prime numbers. Therefore the focus sometimes shifts to a
related subject, in this case, square-free values. We hope that a profound
understanding of square-free values helps us to better grasp the behaviour of
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prime numbers as well.

As mentioned earlier, the nature and density of irreducible polynomials
depends completely on the field over which we speak. This thesis focuses
mainly on the field Fq (which is defined later in 3.1). The polynomial ring Fq[x]
and the ring of integers Z has several common characteristics. For instance,
both have a Euclidean algorithm, hence are unique factorization domains.
Also, there are some quantitative aspects for which we find similarities in
both rings: Units of the ring of integers are ±1, and every nonzero integer
can be multiplicatively built up by a unit and a positive integer. Analogously,
the units of Fq[x] are the nonzero scalars F×q , and every nonzero polynomial
can be multiplicatively built up by a unit and monic polynomial. The
counterpart of a prime in Z is a monic irreducible polynomial. Analyzing
arithmetic properties of integers is done by sampling these integers uniformly
in the interval [A, 2A] in the limit A → ∞; Analogously, analyzing arithmetic
properties of polynomials is done by sampling these polynomials uniformly
from the monic polynomials Mn of degree n in the limit #Mn = qn → ∞.
The Prime Number Theorem tells us that the number of primes p ≤ x is
π(x) ∼ x

log x in the limit x→∞. If the Riemann Hypothesis if true, this would

tell us that π(x) =
∫ x
2

dx
log x + O

(
x1/2+o(1)

)
. The Prime Polynomial Theorem,

analogously, tells us that the number of monic irreducible polynomials of degree

n is πq(n) = qn

n +O
(
qn/2

n

)
. This corresponds to Prime Number Theorem (and

to Riemann Hypothesis) if we map x ↔ qn, recalling that x is the number of
positive integers up to x and qn is the number of monic polynomials of degree
n. In many situations, it seems to make sense to compare number theoretic
questions in these two fields, as we do in this paper.

Our main focus lies on the issue of representing square-free integers by
polynomials with integer coefficients. This thesis has the following structure:
In Section 2, we investigate square-free values of integer polynomials of degree
1 and discuss the density (as defined is the aforementioned section) of these
values. Thereafter we examine the same density for polynomials of degree 2. In
Section 3, having addressed the problems in the ring of integers Z, we shift our
focus to function fields, specifically the finite field Fq. In this chapter, a basis
for ring theory is displayed, after which the analogue for square-free values of
polynomials of degree 2 is laid out. Throughout this chapter, a comparison
between Z and Fq[x] is drawn. After establishing the analogue and, thus having
a basis in finite fields, we analyse the article by Dan Carmon ’On Square-Free
Values of Large Polynomials over the Rational Function Field’[6].
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2 Square-free values of Integer Polynomials.

When we talk about how ”often” square-free values occur within the range of a
polynomial, a useful definition is that of a density :

Definition 2.1 (Density of square-free values of a polynomial). First we define,
for a polynomial f ∈ Z[x],

Nf (n) := {k ∈ Z, 1 ≤ k ≤ n : f(k) square-free}.

We define the density cf of square-free values of the polynomial f to be the
proportion of values n in an interval A = [0, b] ⊂ Z, where f(n) is square-free:

cf := lim
n→∞

#Nf (n)

n

Definition 2.2 (Density of square-free values in the positive integers). Suppose
Cn = {k ∈ Z : 1 ≤ k ≤ n, k is square-free}. If the limit

D = lim
n→∞

|Cn|
n

exists, we define this limit to be the density D of square-free values in the
positive integers. N

Remark. Combining Definition 2.1 and 2.2, we see that D = cx.

Definition 2.3 (Square-free polynomial). For a polynomial f ∈ Z[x], this
polynomial is square-free if:

For every prime p ∈ Z, there exists an x, depending on p, such that p2 - f(x).

Remark. We make two assumptions, as to make sure our quest for finding
square-free values of polynomials doesn’t end before we start.

i) f(x) is not divisible by the square of some non-constant polynomial g ∈
Z[x]. Since, if f(x) is divisible by g(x), then f(a) can be only square-free
if g(a) = ±1. Since we stated that g is non-constant, this g(k) = ±1 for a
finite number of k ∈ Z. For example, if

f(x) = (2x+ 1)2(x2 − 9x+ 6),

we see that there are no square free values for x ∈ Z\{0}.

ii) f(x) cannot be written as f(x) = p2g(x), where g(x) ∈ Z[x] and p ∈
Z\{1,−1, 0}. Since, if f(x) can be written as f(x) = p2g(x), then we see
that for every k ∈ Z, f(k) is not square-free.

However, not all functions that meet above assumptions are square-free polyno-
mials. For example, f(x) = x(x+ 1)(x+ 2)(x+ 3), meets the requirements, but
we see that 22 | f(x),∀x ∈ Z\{0}, and thus f is not a square-free polynomial.

Given these definitions an interesting question would be:

Question 1. Let f(x) ∈ Z[x] be a polynomial of degree n. Are there infinitely
many positive integers k such that f(k) is square-free? If so, can we find the
density cf of square-free values of a given function f?

Remark. If one of the aforementioned assumptions is not met, the density cf →
0. These situations are therefore not discussed any further.
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Since we’re interested in calculating the density of square-free values, we
define a function ρf (d) that counts the number of values a ∈ {0, . . . , d− 1} for
which d | f(a):

Definition 2.4.

ρf (d) := #{a ∈ Z
dZ

: f(a) ≡ 0 mod d}.

Then, for small primes p, the probability that f(a) is not divisible by some p2

is
(

1− ρf (p
2)

p2

)
. If we assume that the probability of a function evaluated at

a being divisible by p2 is independent for every different p ∈ P (P being all
primes ∈ N), we have the following conjecture:

Conjecture 2.1. Let f ∈ Z[x] be a square-free polynomial of degree n. Then
there are infinitely many square-free values taken by f(k). The density of square-
free values of a polynomial f is

cf :=
∏
p∈P

(
1− ρf (p2)

p2

)
.

Remark. Note that, if we can write f(x) = p2g(x) where p ∈ N as mentioned
above, we find ρf (p2) = p2 and thus we now see that cf = 0.

In Section 2.1 and 2.2, we focus mainly on the density of square-free values of
polynomials with non-varying coefficients, and solve Conjecture 2.1 for a number
of cases. But an interesting question might be: How will varying coefficient
change the density of square free values, considering that the coefficients might
be tending to infinity faster than the arguments?

Question 2. Assume N ∈ Z to be ”sufficiently” large, can N be written as
a sum of a positive k-th power and a positive square-free: N = xk + r? How
many values of x can we find, asymptotically?

We can translate this problem to finding #{x ∈ N : f(x) =
N − xk is square-free, xk ≤ N}. Looking at Conjecture 2.1, using the
logic as displayed before, we could state that the number of values x is
cfN

1/k ≥ 0. Considering that in this situation both cf and f depend on N ,
an answer to Question 2 is not obvious from Conjecture 2.1. Yet it has been
solved in a similar fashion by Estermann in [14] for k = 2, and a case was
stated by Hooley in [19, §4.6, Theorem 4] for k = 3. This proof is unfortunately
unsuccessful in determining the number of representations of Question 2, nor
can it be used when x3 is replaced with a general polynomial of degree 3. In
this day and age, the case for k ≥ 4 is still unsolved.

We now investigate Conjecture 2.1 for a number of different types of
polynomials.

2.1 Polynomials of degree 1 [26].

For polynomials of degree 1, we show that the density of Conjecture 2.1 equals
the regular density of square-free values in Z. Therefore we focus on the density
D first. Before this density is be calculated, some basic definitions are stated:
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Definition 2.5 (Dirichlet series). Given an arithmetic function a : N→ C and
suppose there is an s ∈ C for which the infinite series

Da(s) =

∞∑
n=1

a(n)

ns

converges, then this series is called the Dirichlet series of a.

Definition 2.6 (Riemann Zeta function). The Riemann Zeta function ζ(s) is
defined for complex arguments s with Re(s) > 1 as

ζ(s) =

∞∑
n=1

1

ns
.

Theorem 2.1 (Regular density of square-free values). The probability that a
large random integer is square-free — that is, the density D— is 1

ζ(2) .

To prove Theorem 2.1, Lemma 2.1 is used.

Lemma 2.1. Given two random positive integers j, k ∈ {1, . . . , n}. The
asymptotic probability that j and k are relatively prime as n → ∞ — that
is, their greatest common factor is 1 — is 6

π2 .

We use the asymptotic density of square-free numbers D, as defined in
Definition 2.2. Say we have any two distinct numbers j, k ∈ Z where j < k < n.
The set of all the possible combinations we call Bn and is therefore defined as:

Bn =
{

(j, k) ∈ Z2 : 1 ≤ j < k ≤ n
}
.

Then

|Bn| =
n!

2!(n− 2)!
=
n(n− 1)

2
.

Now we define An to be the pairs which are relatively prime:

An =
{

(j, k) ∈ Z2 : 1 ≤ j < k ≤ n, gcd(j, k) = 1
}
.

Dividing An and Bn defines the probability pn that two selected integers are
relatively prime:

pn =
|An|
|Bn|

=
2|An|

n(n− 1)
. (1)

To calculate this probability pn, several arithmetic functions are used.

2.1.1 Arithmetic functions and Dirichlet products.

In this section, we introduce some mathematical background on arithmetic
functions, Dirichlet series and Dirichlet products. These basics are then used in
the proof of Lemma 2.1.

Definition 2.7 (Arithmetic function). Any real- or complex valued function
function a is called an arithmetic function if it is defined on the set N of positive
integers.
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Definition 2.8 (”Big Oh” estimate). ”f(x) = O(g(x))” means that there exist
constants x0 and c such that |f(x)| ≤ c|g(x)| for all x ≥ x0.

Definition 2.9 (”Small Oh” estimate). ”f(x) = o(g(x))” means that for

sufficiently large x, g(x) 6= 0 and limx→∞
f(x)
g(x) = 0.

Definition 2.10 (Möbius function µ). The Möbius function µ is the arithmetic
function defined by

µ(n) =


1, if n = 1;

(−1)m, if n =
∏m
j=1 pj , where {pj}mj=1 are distinct primes;

0, otherwise.

In other words, the function is 0 if the argument is not a square-free value and
(−1)k if the argument is composed of k distinct prime factors.

Definition 2.11 (Multiplicativity). An arithmetic function a is called multi-
plicative if a 6≡ 0 and a(nm) = a(n)a(m) whenever gcd(n,m) = 1.

From this definition, we see that for a multiplicative function a 6≡ 0, then
a(1) = a(1 · 1) = a(1)a(1) = 1. For the same a, it holds that its value depends

only on its values on the prime powers; if n =
∏m
j=1 p

kj
j is the factorization of n

into a product of distinct prime powers, then a(n) = a(
∏m
j=1 p

kj
j ) =

∏m
j=1 a(p

kj
j ).

Lemma 2.2. The arithmetic function µ is multiplicative.

Proof. We look at three possibilities

i) We note that µ(1) = 1. So for any n, we see that µ(n·1) = µ(n) = 1·µ(n) =
µ(1) · µ(n).

ii) µ(n) = 0 or µ(m) = 0. Then either m or n has a factor pki with k ≥ 2.
Then also µ(nm) = 0 = µ(n)µ(m).

iii) m = p1p2 . . . pr and n = q1q2 . . . qs. Since we look at m and n being
relative prime, this translates to qi 6= pj for all (i, j) ∈ Z2. Then µ(mn) =
(−1)r+s = (−1)r(−1)s = µ(n)µ(m).

This then completes the proof that µ is multiplicative.

Three more arithmetic functions need to be introduced:

Definition 2.12.

1(n) = 1, for all n; e(n) =

{
1, if n = 1;

0, otherwise.
, i(n) = n, for all n;

Definition 2.13 (Dirichlet convolution). For two arithmetic functions a and b,
the Dirichlet convolution of a and b, denoted by a ∗ b is the arithmetic function
defined by

(a ∗ b)(n) =
∑
d|n

a(d)b
(n
d

)
, n ∈ N.

The convolution arises naturally in the following context:
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Lemma 2.3. Given the (absolutely convergent) Dirichlet series

Da(s) =

∞∑
n=1

a(n)

ns
, (2)

and

Db(s) =

∞∑
n=1

b(n)

ns
, (3)

their product is as follows:

Da(s)Db(s) =

∞∑
n=1

(a ∗ b)(n)

ns
.

Proof.

Da(s)Db(s) =

( ∞∑
d=1

a(d)

ds

)( ∞∑
k=1

b(k)

ks

)
=

∞∑
d,k=1

a(d)b(k)

(d k)s

=

∞∑
n=1

1

ns

∑
d,k: d·k=n

a(d)b(k) =

∞∑
n=1

1

ns

∑
d|n

a(d)b(
n

d
)

=

∞∑
n=1

(a ∗ b)(n)

ns
. (4)

One argument for defining the equation (4) in that way is due to the fact
many arithmetic functions are defined by a Dirichlet product. Also many
identities among arithmetic functions can be written as identities involving
Dirichlet products. Proofs are given later, but some examples are:

i) De(s) =
∑∞
n=1

e(n)
ns = 1.

ii) Dµ(s)D1(s) =
∑∞
n=1

(µ∗1)(n)
ns =

∑∞
n=1

e(n)
ns = 1, where the second equality

is true since
∑
d|n µ(d) = e(n).

iii)
∑
d|n µ(d)nd = φ(n), so µ ∗ i = φ.

Another argument for defining the Dirichlet product in the the form of equation
(4) is that the product has useful algebraic properties. For following theorems,
see [2, Chapter 2].

Theorem 2.2 (Properties of Dirichlet convolution).

i) The function e acts as a unit element for ∗, i.e., a ∗ e = e ∗ a = a for all
arithmetic functions a.

ii) The Dirichlet product is commutative, i.e., a ∗ b = b ∗ a for all arithmetic
functions a and b.

iii) The Dirichlet product is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
arithmetic functions a, b and c.
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iv) If a(1) 6= 0, then a has a unique Dirichlet inverse, i.e., there is a unique
function b such that a ∗ b = e.

Theorem 2.3 (Products and quotients of multiplicative functions). Assume
a and b are multiplicative functions. Then:

i) The (pointwise) product of a and b defined by (a · b)(n) = a(n)b(n) is
multiplicative.

ii) If b is non-zero, then the quotient a/b is multiplicative.

Proof. The proof follows directly from the definition of multiplicativity.

Theorem 2.4 (Dirichlet product and multiplicative functions).

i) If a and b are multiplicative, then so is a ∗ b.

ii) If a is multiplicative, then so is the Dirichlet inverse a−1.

iii) If a ∗ b = c and if a and c are multiplicative, then so is b.

iv) If a is multiplicative, then a(b ∗ c) = (a b) ∗ (a c) for any functions b and c.

Remark. Note that the set of multiplicative arithmetic functions form a ring for
which the operation of addition is the Dirichlet convolution and the operation
of multiplication corresponds to point-wise multiplication. In other words, the
statements of Theorems 2.2 - 2.4 are essentially some ring axioms. [12]

Also, we can now see that for D being the set of all formal Dirichlet series
and F being the set of all arithmetic functions, (D; +; ·) is a commutative ring
with identity. Furthermore we see that there is a ring homomorphism from
arithmetic functions (F ; +; ∗) to Dirichlet series (D; +; ·) as f 7→ Df which
satisfies Df ·Dg = Df∗g.

A key result we need is the Möbius inversion formula.

Proposition 2.5. Let a be an arithmetic function. Define b = a ∗ 1. Then
a = b ∗ µ.

Remark. The result of this proposition is essentially stating that if

b(n) :=
∑
d|n

a(d),

then a(n) =
∑
d|n b(d)µ(nd ).

Proof. A proof for the proposition, requires merely proving

1 ∗ µ = e, (5)

which we have already done. Indeed, using (5) and remembering that the
convolution is associative, we end up with

b ∗ µ = (a ∗ 1) ∗ µ = a ∗ (1 ∗ µ) = a ∗ e = a.

Since both µ and 1 are multiplicative, their convolution must also be multiplica-
tive. We know that e is a multiplicative function and per definition e(1) = 1
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and e(pk) = 0, p being prime and k ∈ N. Therefore,
∑
d|1 µ(d) = µ(1) = 1. And

since a nonzero, multiplicative, arithmetic function depends only on the value
of its prime powers, We need only to prove that

∑
d|pk µ(d) = 0, to complete

the proof that 1 ∗ µ = e. We write
∑
d|pk µ(d) =

∑k
j=0 µ(pj) = µ(1) + µ(p) =

1− 1 = 0, and see that the proof is complete.

Lemma 2.4. The arithmetic function
∑
d|n µ(d) is multiplicative.

Remark. This follows directly from Proposition 2.5, since µ ∗ 1 = e. An
alternative proof is given below.

Proof. Let n and m be positive integers such that gcd(m,n) = 1. We have∑
d1|n

µ(d1)
∑
d2|m

µ(d2) =
∑

d1|n,d2|m

µ(d1)µ(d2) =
∑

d1|n,d2|m

µ(d1d2) =
∑
d|n·m

µ(d).

The second equality follows from the fact that µ is multiplicative and the fact
that if gcd(n,m) = 1, d1 | n and d2 | m, then gcd(d1, d2) = 1, while the final
equality follows from the fact that if gcd(n,m) = 1 and d | n ·m, then d can be
written as d = d1d2 for a unique pair d1, d2 satisfying d1 | n and d2 | m.

Remark. Since (a ∗ 1)(n) =
∑
d|n a(d)1(nd ) =

∑
d|n a(d).

To finalize the proof of Lemma 2.1, we need another arithmetic function:

Definition 2.14 (Euler φ function).

φ(n) = # {k : 1 ≤ k ≤ n, gcd(k, n) = 1} .

That is, φ(n) counts the number of positive integers less than of equal to
n which are relatively prime to n. For our calculation of limn→∞ pn, we use a
result that is a corollary of the following proposition.

Proposition 2.6. φ ∗ 1 = i; In other words,∑
d|n

φ(d) = n.

Proof of proposition 2.6. Suppose F (n) = φ(n1) +φ(n2) + . . .+φ(nr), where ni
is a divisor of n. We have

F (pk) = φ(1) + φ(p) + φ(p2) + . . .+ φ(pk)

= 1 + (p− 1) + (p2 − p) + . . .+ pk − pk−1

= pk.

Since we can prime factor any number n, these terms are relative prime and the
function F is multiplicative, we find

F (n) = F (pk11 ) · F (pk22 ) · · ·F (pkss )

= pk11 · · · pkss
= n.

13



Proposition 2.6 and the Proposition 2.5, we derive the following corollary:

Corollary 2.6.1. µ ∗ i = φ; that is,

φ(n) =
∑
d|n

µ(d)
n

d
.

Remark. Ultimately, the proof of Theorem 2.1 and Lemma 2.1 makes use
Corollary of 2.6.1 only, not Proposition 2.6.

Many arithmetic functions display disorganized behaviour when their values
are plotted as functions of their arguments, and trying to find an ”asymptotic
formula” seems to be that straightforward a task. The Möbius function also falls
into this category. Nevertheless, the functions do ”behave” well when analyzing
their arithmetic means Ma(x) = ( 1

x )
∑
n≤x a(n). [2, Chapter 3] This gives us

enough background to prove Lemma 2.1.

2.1.2 Proof of Lemma 2.1.

Proof of Lemma 2.1. Recall that φ(k) counts the amount of numbers relative
prime to k. Therefore, for each k ≥ 2, there are φ(k) integers j satisfying
1 ≤ j < k and gcd(j, k) = 1. Rewriting this in the form of Equation (1),

|An| = #
{

(j, k) ∈ Z2 : 1 ≤ j < k ≤ n, gcd(j, k) = 1
}

=

n∑
k=2

φ(k).

From (1), we find

pn =
2
∑n
k=2 φ(k)

n(n− 1)
. (6)

We only need to analyze
∑n
k=1 φ(k) for large n to ultimately calculate

lim
n→∞

pn = lim
n→∞

2
∑n
k=2 φ(k)

n(n− 1)
. (7)

Remark. We can also write the function φ in the quite familiar form:

φ(n) = n
∏
p|n

(1− 1

p
), n ≥ 2, p prime (8)

However, for analyzing
∑n
k=1 φ(k), we may not directly use (8).

To analyze
∑n
k=1 φ(k), we make use of Corollary 2.6.1. Recall that from

Corollary 2.6.1, we can state

n∑
k=1

φ(k) =

n∑
k=1

(µ ∗ i)(k) =

n∑
k=1

∑
d|k

µ(d)
k

d

=

n∑
k=1

∑
d·d′=k

d′µ(d) =

n∑
d=1

µ(d)
∑
d′≤nd

d′.

14



Since
∑n
j=1 j = 1

2n(n+ 1), we have

n∑
k=1

φ(k) =

n∑
d=1

µ(d)
∑
d′≤nd

d′ =
1

2

n∑
d=1

µ(d)[
n

d
]([
n

d
] + 1), (9)

where [a] indicates the greatest integer ≤ a, i.e. the floor function. We know[n
d

]
(
[n
d

]
+ 1) ≤ n

d
(
n

d
+ 1) = (

n

d
)2 +

n

d
;[n

d

]
(
[n
d

]
+ 1) ≥ (

n

d
− 1)

n

d
= (

n

d
)2 − n

d
.

This combines into,

(
n

d
)2 − n

d
≤
[n
d

]
(
[n
d

]
+ 1) ≤ (

n

d
)2 +

n

d
. (10)

Substituting (10) in (9) gives us

n2

2

n∑
d=1

µ(d)

d2
− n

2

n∑
d=1

µ(d)

d
≤

n∑
k=1

φ(k) ≤ n2

2

n∑
d=1

µ(d)

d2
+
n

2

n∑
d=1

µ(d)

d
. (11)

Recall that |µ(d)| ≤ 1. We can say that
∑n
d=2

1
d is a lower Riemann sum for∫ n

1
1
xdx. This gives us

|
n∑
d=1

µ(d)

d
| ≤

n∑
d=1

1

d
= 1 +

n∑
d=2

1

d
≤ 1 + log n. (12)

Using (11) and (12), and taking the term Bn = n(n − 1) into account, we end
up with

lim
n→∞

∑n
k=2 φ(k)

n(n− 1)
=

1

2

∞∑
d=1

µ(d)

d2
. (13)

We now need to find an expression for
∑∞
d=1

µ(d)
d2 . Initially, looking at the defi-

nition of µ, it would seem very difficult to evaluate this explicitly. Fortunately,
a solution is provided by the Möbius inversion. Substituting a = 1, b = µ and
x = 2 into Equations (2) - (4), we find that the right hand side of (2) and (3) is
absolutely convergent. Recalling equation (5), we then find 1 ∗ µ = e; In other
words, a ∗ b = e. Therefore, we end up with( ∞∑

d=1

1

d2

)( ∞∑
d=1

µ(d)

d2

)
= 1. (14)

Equation (14) can be solved as follows. Recall:

sinx

x
= 1− x2

3!
+
x4

5!
− · · ·

= (1− x

π
)(1 +

x

π
)(1− x

2π
)(1 +

x

2π
) · · ·

= (1− x2

π2
)(1− x2

4π2
) · · ·
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Multiplying these terms out, we end up with

− 1

π2

∞∑
n=1

1

n2
,

for the coefficients of x2. The original Taylor expansion of sin x
x tells us that the

coefficient of x2 = − 1
3! = − 1

6 , which gives us the following equality:

− 1

6
= − 1

π2

∞∑
n=1

1

n2
. (15)

Using (15), we end up with:
∞∑
n=1

1

n2
=
π2

6
. (16)

From (14) and (16), we obtain

∞∑
d=1

µ(d)

d2
=

6

π2
. (17)

Combining (17) with (13) and (7) gives

lim
n→∞

pn =
6

π2
,

completing the proof of lemma.

We are now in a position to prove Theorem 2.1

2.1.3 Proof of Theorem 2.1.

Proof of Theorem 2.1. As stated earlier, the Möbius function acts as the indi-
cator function for square free values, we write

µ2(n) =

{
1, if n is square-free;

0, otherwise.
(18)

We recall that

Cn = {k ∈ Z : 1 ≤ k ≤ n, k is square-free} .

Since a value of ±1 for the Möbius function gives us a square-free, we have

|Cn| =
n∑
j=1

µ2(j). (19)

To prove Theorem 2.1, we should find that

D = lim
n→∞

|Cn|
n

=
6

π2
. (20)

Before we can go about finding that, we prove the following lemma.
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Lemma 2.5. The indicator function of square-free values is 1SF (n), where

1SF (n) = µ2(n) =
∑
k2|n

µ(k).

Proof. If n is a square-free value, then only integer k of which the square divides
n, i.e. k2 | n, is the integer k = 1 (per definition of square-free values). Since
µ(1) = 1, we end up with µ2(n) = 1. Now suppose n is not a square-free
value. Since n can then be written in the form n = d2l, where d > 1 and l is a
square-free value. Then k2 | m2l if and only if k | d. We write

µ2(n) =
∑
k2|n

µ(k) =
∑
k2|d2l

µ(k) =
∑
k|d

µ(k) = (µ ∗ 1)(d) = 0.

In the last equality we use Equation (5) and the fact that we stated that d > 1.
The lemma now follows from (18).

Lemma 2.5 then gives us,

n∑
j=1

µ2(j) =

n∑
j=1

∑
k2|j

µ(k). (21)

Before we go any further, we recall the Inclusion-exclusion principle.

Definition 2.15 (Inclusion-exclusion principle). For finite sets A1, A2, . . . , An,
one has the identity

n⋃
i=1

Ai =

n∑
k=1

(−1)k+1

 ∑
1≤i1≤···≤ik≤n

|Ai1 ∩ . . . ∩Aik |

 . (22)

Remark. The Inclusion-exclusion principle in this example essentially states that
if we want the number of values Na2,...,an with ai meaning i2 - f(n), this equals
N −

∑n
i=2Na′i +

∑n
2≤i<j≤nNa′i,a′j − . . . We define a′i being not ai.

We now attempt to evaluate (21). If k2 > n, then in (21) there is no value
of k such that k2 | j. If k2 ≤ n, then there are d nk2 e values of k such that k2 | j,
times, namely, when j = k2, 2k2, . . . , d nk2 ek

2. We can then rewrite (21):

n∑
j=1

µ2(j) =

n∑
j=1

∑
k2|j

µ(k) =
∑
k2≤n

d n
k2
eµ(k) =

∑
k≤dn

1
2 e

d n
k2
eµ(k)

= n
∑

k≤dn
1
2 e

µ(k)

k2
+

∑
k≤dn

1
2 e

(
d n
k2
e − n

k2

)
µ(k). (23)

Since both |
(
d nk2 e −

n
k2

)
| and |µ(k)| in the right hand side of (23) are bounded

by 1, we find

|
∑

k≤dn
1
2 e

(
d n
k2
e − n

k2

)
µ(k)| ≤ n 1

2 . (24)
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Combining equations (19), (23) and (24), we end up with

D = lim
n→∞

|Cn|
n

=

∞∑
k=1

µ(k)

k2
.

Using this with (17) gives (20) and completes the theorem.

Remark. When proving the number of square-free values of any function
f ∈ Z[x] with degree 1 (and not just f(x) = x), we follow a similar route,
interchanging j and aj + b. We would then solve:

k∑
j=0

µ2(aj + b) =

n∑
j=0

∑
k2|aj+b

µ(k).

An interesting discussion on the matter can be found in the article by Hooley
[18]. This states that if S(x; a, k) is the number of square-free integers below x
that are congruent to a mod k, then

S(x; a, k) ∼ 6x

p2k

∏
p|k

(
1− 1

p2

)−1
(x→∞),

only if gcd(a, k) = 1 and k ≤ x2/3−ε.

2.2 Polynomials of degree 2[34].

We now focus on polynomials of degree 2. Let’s assume that f ∈ Z[x] is a
square-free polynomial, as defined in Definition 2.3.

Question 3. Can we again say something about the density cf of square-free
values in these polynomials?

Theorem 2.7 (Chinese Remainder Theorem). Let m and n be relative prime
positive integers. For any integers a and b, the pair of congruences

x ≡ a mod m, x ≡ b mod n,

has a solution, and this solution is uniquely determined modulo mn.

In the following argumentation, we use the fact that d 7→ ρ(d) (Definition 2.4)
is a multiplicative function, this is due to the Chinese Remainder Theorem[10].

For quadratic equations, the problem (which is essentially proving
Conjecture 2.1) becomes more difficult. It was Erdös who established that if f
is a square-free polynomial that has a degree ≤ 3, then there are infinitely many
integers n for which f(n) is square-free [13]. Estermann focused specifically on
polynomials of the form f(x) = x2 + k and found an expression for the positive
density of these polynomials [14]. However, beyond that astonishingly little is
known unequivocally for irreducible f . For example, for polynomials of the
form a4 + 2 the infinitude of square free values, let alone the actual density, is
still an open problem. A problem to which a solution has been found is how

18



often the value of an irreducible polynomial f ∈ Z[x] of degree n is free of
(n − 1)−th powers, either when evaluated at integers or at primes, see [29].
Also, the general quadratic case was solved by Ricci [31]. We first take a look
at some examples of local densities of the quadratic case, after which we discuss
the general case.

2.2.1 Example 1.

Lemma 2.6. For f ∈ Z[x], f(x) = x(x+ 1), we have that for all primes p, and
k ≥ 1, ρf (pk) = 2.

Proof. Recall ρ(pk) is defined as the amount of values a for which pk | a(a+ 1).
Say p is prime and note that gcd(a, a + 1) = 1. Then for pk | a(a + 1), since a
and a + 1 are coprime, it must mean that pk | a or pk | a + 1. Both of which
contribute a solution. We end up with ρf (pk) = 2.

This result then gives us the density of square-free values for f(x),

cf =
∏
p

(
1− ρf (p2)

p2

)
=
∏
p

(
1− 2

p2

)
.

2.2.2 Example 2.

Lemma 2.7. For f ∈ Z[x], f(x) = x2 + 1, we differentiate between three
situations:

i) For p 6= 2, we have ρf (pk) = ρf (p) for all k ≥ 1.

ii) For p 6= 2, there are two options:

ρf (p) =

{
2, p = 1 mod 4,

0, p = 3 mod 4.

iii) For pk = 4, we have ρf (4) = 0.

Proof. Part (i) is a result from Hensel’s Lemma. Part (ii) is a result from
Fermat, that states every prime p > 2 can be written as p = x2 + y2, (x, y) ∈ Z2

if and only if p ≡ 1 mod 4[7]. Here we than try to answer the question when
x2 ≡ −1 mod p. Part (iii) is a result that follows from a direct computation.

This result then gives us the density of square-free values for f(x),

cf =
∏
p

(
1− ρf (p2)

p2

)
=
∏
p 6=2

1−
1−

(
−1
p

)
p2

 = 0.894 . . .

2.2.3 General quadratic case.

In this section, we discuss the general quadratic polynomials. We do so by
treating the easier cases also found in examples above and generalizing in the
end of this section. For n ∈ N, we recall

Nf (n) := {k ∈ N, k ≤ n : f(n) square-free}.
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Theorem 2.8. Suppose f(x) = x(x+ 1) or f(x) = x2 + 1. Then

#Nf (n) = cfn+O(n2/3 log(n)), as n→∞,

with cx(x+1) =
∏
p

(
1− 2

p2

)
and cx2+1 =

∏
p 6=2

(
1− 1+−1

p

p2

)
= 0.894 . . ..

Remark. Note that for f(x) = x(x+1), we find cx(x+1) =
∏
p

(
1− 2

p2

)
. Further-

more, we know that since n and n+1 are coprime, our function f(n) = n(n+1)
is square-free if and only if both n and n + 1 are square-free. Interestingly, we
end up with a value that is smaller than the product of independently finding

n and n + 1 being square-free (see Theorem 2.1): 1
ζ(2)2 =

∏
p

(
1− 2

p2 + 1
p4

)
.

We can therefore conclude that for f(x) = x(x + 1), the density of square-free
values of n and n+ 1 cannot be considered as independent events.

2.2.4 General outline of the proof.

In this section, we describe in general terms what strategy is used to prove the
Theorem. We make use of the sieve of Eratosthenes and Legendre. Recall,
according to Lemma 2.5, that the indicator function of the square-free values is
1SF (n) =

∑
k2|n µ(k). Hence,

#Nf (n) =
∑
a≤n

1SF (f(a)) =
∑
a≤n

∑
k2|f(a)

µ(k) =
∑
k≤n

µ(k)#{a ≤ n : k2 | f(a)}.

(25)

Remark. Equation (25) is in effect the inclusion-exclusion principle. For k = 1,
we have µ(1) = 1 all thus all n integers are added to the sum. We then subtract
all values of a for which f(a) can be divided by a prime, then add all values of a
for which f(a) can be divided by the distinct product of two primes, and so on.
Note that we can constrain k � n because k2 divides the quadratic polynomial
f(a), which is � n2 if a ≤ n.

We introduce a value u (which ultimately is set to be n1/3) and split the
sum into two parts. The first part is the sum #N ′f (n) which covers the ”small”
divisors k ≤ u. The second part is the sum #N ′′f (n) which covers the ”large”
divisors u < k ≤ n:

#Nf (n) = #N ′f (n) + #N ′′f (n),

#N ′f (n) =
∑
k≤u

µ(k)#{a ≤ n : k2 | f(a)},

#N ′′f (n) =
∑

u<k≤n

µ(k)#{a ≤ n : k2 | f(a)}.

Remark. We assume a ∈ N. In the following, a is always a positive integer.

Our goal is to find a bound for #N (n). To do so, we first find a bound for
#N ′(n), specifically

#N ′f (n) = cfn+O
(n
u

log u+ u log u
)
. (26)
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We then find a bound for #N ′′(n), specifically

#N ′′f (n)� n2

u2
. (27)

Substituting, as mentioned before, u = n1/3, we end up with the correct result
from Theorem 2.8:

#Nf (n) = cfn+O(n2/3 log n),

2.2.5 Bound for #N ′(n), the small divisors.

We find a bound for #N ′f (n) (the main term) by using inclusion-exclusion.
Recall

#N ′f (n) =
∑
k≤u

µ(k)#{a ≤ n : k2 | f(a)}.

To find a solution to the sum above, we again split the terms on the right hand
side, and first find a different expression for #{a ≤ n : k | f(a)}.

Lemma 2.8.

#{a ≤ n : k | f(a)} =
nρf (k)

k
+O (ρf (k)) .

Proof. We rewrite

#{a ≤ n : k | f(a)} =
∑

c mod k:
k|f(c)

#{a ≤ n : a = c mod k}.

However, we know that

#{a ≤ n : a = c mod k} =
n

k
+O(1).

This then gives us

#{a ≤ n : k | f(a)} =
∑

c mod k:
k|f(c)

n

k
+O(1)

=
nρf (k)

k
+O (ρf (k)) . (28)

Substituting Equation (28) back into our starting term gives us

N ′f (n) =
∑
k≤u

µ(k)

(
nρf (k2)

k2
+O(ρf (k2))

)

= n
∑
k≤u

µ(k)ρf (k2)

k2
+O

∑
k≤u

|µ(k)|ρf (k2)

 . (29)

We again decompose the sum

∑
k≤u

µ(k)ρf (k2)

k2
=

∞∑
k=1

µ(k)ρf (k2)

k2
+O

(∑
k>u

µ(k)ρf (k2)

k2

)
.
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For the final step, we use that fact that both ρf and of µ are multiplicative
(Lemma 2.2):

∞∑
k=1

µ(k)ρf (k2)

k2
=
∏
p

(
1− ρf (p2)

p2

)
= cf .

We now need to find a bound for the error term. Recall that in Lemma’s 2.6
and 2.7, we stated that ρf (p2) ≤ 2, for p prime, and thus for k square-free

ρf (k2) =
∏
p|k

ρf (p2) ≤
∏
p|k

2 = σ(k).

Note that σ in the above expression is the divisor function. We can now bound
the error term by ∑

k>u

|µ(k)|ρf (k2)

k2
≤
∑
k>u

σ(k)

k2
� log u

u
.

Furthermore, for the error term in (29), we can find a bound by saying∑
k≤u

|µ(k)|ρf (k2) ≤
∑
k≤u

σ(k) ∼ u log u.

Since
∑
a≤x σ(a) = x(log x+ C) +O(x1/2), we have

∑
a>u

σ(a)

a2
=

log u+ C + 2

u
+O

(
1

u3/2

)
[35].

Combining the bounds, we end up with

#N ′f (n) = cfn+O
(n
u

log u
)

+O(u log u),

which is exactly our term in Equation 26.

2.2.6 Bound for #N ′′f (n), the large divisors.

Suppose we rewrite k2 | f(a) as stating f(a) = k2m for some integer m ≥ 1.
Then

#N ′′f (n) =
∑
a≤n

∑
k2|f(a),
k>u

µ(k) ≤
∑
k>u

#{a ≤ n : f(a) = k2m}.

Instead of summing over values where k > u, we now sum over values m. If
k > u then m = f(a)/k2 ≤ n2/u2. If we neglect the bound on the size of k and
the assumption that k is square-free, we have:

#N ′′f (n) ≤
∑

1≤m≤n2/u2

n2

u2
#{(r, t) ∈ Z2 and r, t ≤ n : f(r) = t2m}.

Remark. Note that we find a bound for #N ′′f (n) by switching the roles of k
and m, such that, again, we have a bounded sum

∑
1≤m≤n2/u2 instead of an

unbounded one
∑
k>u.
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Suppose we look at the irreducible polynomial f(x) = x2 + 1. Then the
equation f(r) = Dt2 becomes

r2 −Dt2 = −1.

This equation is also know as a (generalized, or negative) Pellian equation.

To find a bound to the amount of different solutions to this equation,
given the limitations on the values r, t, we define the following:

Sm(n) := #{(r, t) ∈ Z2 r, t ≤ n : r2 −mt2 = −1}.

Proposition 2.9. Suppose 1 < m < n is not a square of some other integer.
Then

Sm(n)� log n

logm
.

For the case that m is a square, there are no solutions of r2 − mt2 = −1 if
m > 1. On the other hand, for the case that m = 1 there are two solutions.

Proof. Let m > 1 be no square of some other integer. Using the fact that
we consider a Pell’s equation, we know that if the equation r2 − mt2 = −1
can be solved by integers (r, t), all these solutions are of the form r +

√
mt =

±ε2a+1
m , a ∈ Z. The solution of this equation is εm = r1+t1

√
m, with r1, t1 ≥ 1.

We can therefore say that if 1 ≤ r, t ≤ n then r + t
√
m = ε2a+1

m for some a ≥ 0.
Rewriting this yields

0 ≤ a ≤ log r +
√
mt

2 log εm
=

log r +
√
r2 + 1

2 log εm
≤ log n

log εm
.

Because εm = r1 + t1
√
m ≥

√
m, we find a bound

Sm(n)� log n

logm
.

If m = C2 is a square, the equation r2−Ct2 = −1 is rewritten into r2− (Ct)2 =
−1 or (Ct−r)(Ct+r) = 1. The solutions to this equation are Ct−r = Ct+r =
±1, which leaves us with r = 0. Finally, C2t2 = 1 is solvable only for C = 1 in
which case there are two solutions.

Inserting Proposition 2.9 into the bound of #N ′′f gives

#N ′′f �
∑

1≤m<n2/u2

Sm(n)� 1 +
∑

1<m<n2/u2

log n

logm
� n2

u2
,

as claimed, on using ∑
1<m<y

1

logm
�
∫ y

2

1

log x
dx ∼ y

log y
.
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2.2.7 General case of quadratic polynomials.

For general quadratic polynomials of the form f(x) = a1x
2 + a2x + a3 ∈ Z[x],

for instance our example f(x) = x(x+ 1). The only alteration that needs doing
is to rewrite the equation f(r) = mt2. Say we multiply the equation by 4a1 and
factor a different term squared, we have

4a1mt
2 = (2a1r + a2)2 −∆f ,

Note that ∆f = a22 − 4a1a3 is the discriminant of f , which is nonzero if and
only if f has repeated roots. Equation f(r) = mt2 is then rewritten into

(2a1r + a2)2 − a1m(2t)2 = ∆f .

This leaves us with bounding the amount of solutions of

R2 − (a1m)T 2 = ∆f ,

with R, T � n.

Remark. In the example f(x) = x(x + 1) we get ∆ = +1 and the equation
becomes R2 −mT 2 = 1, to which we apply a version of Proposition 2.9.

For polynomials of degree ≥ 3, this strategy of using the Sieve of Eratos-
thenes does not work as efficient. This is due to ”large” primes p with p2 dividing
f(n). In the quadratic case when p2 divides f(n), then p can be at most O(n).
However, in the cubic case, p can be considerably larger. This is where the
strategy fails. Note that for polynomials of degree 3, a solution to this problem
can be found without using the ABC Conjecture, but for polynomials of degree
≥ 4, this conjecture is necessary.

2.2.8 The ABC Conjecture.

Definition 2.16 (The ABC-Conjecture). Granville proved that assuming the
ABC Conjecture is correct, provides a closing proof for Conjecture 2.1. An
interesting discussion on the matter is set out in his article [17]. Firstly, we
introduce the radical of an integer N being the product of the primes dividing
that integer: rad(N) :=

∏
p|N p. Now, the ABC Conjecture states that for every

ε > 0, there exists a finite amount of coprime triples (a, b, c) ∈ N3, with a+b = c,
such that

c > rad(abc)1+ε.

In other words, for every ε > 0, there exists a constant Kε such that for all
coprime triples (a, b, c) ∈ Z3 with a+ b = c we have

c < Kε · rad(abc)1+ε.

However, the ABC-conjecture has yet to be proven. Recently, some claims
were made that such a proof had been found by the Japanese mathematician
Shinichi Mochizuki. However, this theory makes use of an entirely new field
of Mathematics which is not yet fully understood. Therefore, at this time the
proof can neither be confirmed nor disproved [3].
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2.2.9 Square-free integers in short intervals.

This density problem can also be translated to finding the density of square-
free integers in short intervals, i.e. sets of the form I(n,H) = {a ∈ Z : n ≤
a < n + H} where H is much smaller that n. When averaging over all n, we
expect the density to be the same as that over all integers — in the case of the
polynomial f(x) = x, where cf = 1

ζ(2) . We would like to know how small we

can take H(n) such that the density is precise (up to smaller order deviations)
for all n, and not just on average or almost all n. One motivation for this is that
this might provide more insight in the finer distribution of square-free values.

Conjecture 2.2. Let ε > 0 be fixed, let n be large, and let H � nε. Then

#{a ∈ I(n,H) : a is square-free} =
H

ζ(2)
+ o

(
H

ζ(2)

)
.

This Conjecture follows from the ABC Conjecture by Granville’s method [6,
Appendix]. Granville [17] showed that asumming the ABC Conjecture is correct
is essentially stating that for some fixed ε > 0, there must be square-free integers
in the interval I(n, nε) for all large n. The most accurate result so far was found

by Tolev [36], who proved the asymptotic for any H(n) such that H(n)
n1/5 logn

→∞.

Now, this question can also be translated to square-free values of polynomials
instead of integers.

Question 4. Let f ∈ Z[x] be a square-free polynomial with cf > 0. How small
may we take H(n) such that the asymptotic

#{a ∈ I(n,H) : f(a) is square-free} ∼ cfH,

holds for all n?

3 Square-free values of Polynomials over Func-
tion Fields.

Our goal in this section is to analyze some of the ideas of the sieve of Eratos-
thenes and Legendre in the context of the ring Fq[t] of polynomials over a finite
field Fq. Again we focus specifically on the questions on square-free values of
polynomials and try to make a comparison with the ring of integers.

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
Note that some of the notation used here is defined later. We choose to cover
some basic concepts here anyway since it does provide some intuition on the
similarities. First, the most obvious analogies are the following:

i) The size of an integer (or the log of the size of the integer) compares to the
degree of a polynomial. For instance, for a, b ∈ Z\{0} we have

log(|ab|) = log(|a|) + log(|b|),

and for any two polynomials f, g in Fq[t], we have

deg(fg) = deg(f) + deg(g).
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ii) Now in Fq[x], we would also like a way to measure the ”size” of a monic
polynomial of degree r. A natural such measure would be the following:

Definition 3.1. The norm or absolute value of a polynomial f of degree n
in Fq[x] is defined as:

|f | := #
Fq[t]
(f)

= qdeg f = qn,

the number of residue classes modulo f and depends only on the degree of
f .

So the Euclidean domain analogy is as follows:

|a| := #
Z

(a)
= #

Z
aZ

, for a 6= 0.

Note that whereas only one positive integer n has absolute value n, there
are qn monic polynomials of degree n over Fq with absolute value qn.

iii) The Euclidean Algorithm also holds for polynomials. Suppose a(x), b(x) ∈
Fq[x] and a(x), b(x) 6= 0, then there are q(x), r(x) ∈ Fq[x] such that

a(x) = b(x)q(x) + r(x)

. Here it must hold that r(x) is either 0 (in which case b(x) | a(x) or
deg r(x) < deg b(x). Note that while the gcd of both polynomials and
integers determine an element up to a unit of, respectively, R[x] (=non
zero element of deg 0) and Z, this means that the gcd of polynomials 2 and
4 is 1, whereas the gcd of integers 2 and 4 is 2.

3.1 The polynomial ring over a finite field.

Definition 3.2 (Ring). A ring is a set R with two binary operations + and ·
such that

i) (R,+) is a commutative group;

ii) The operation · is associative, and there exists an element 1R such that
a · 1R = a = 1R · a, for all a ∈ R;

iii) the distributive law holds for both operations. That is, for any two elements
a, b ∈ R, a(b+ c) = ab+ ac.

Remark. Not every ring R has to be commutative under the operation ·. If this
is the case, we call R a commutative ring. If R has the multiplicative identity,
we call R a ring identity.

Definition 3.3 (Zero-divisors). If a, b are two ring elements with a, b 6= 0 but
ab = 0 then a and b are called zero-divisors.

Remark. We see that the ring of all integers Z has no zero divisors, whereas
a random integer ring Zn (note that in this thesis, by Zn we mean Z/nZ) or
polynomial ring can have zero divisors. And example is the numbers 2 and 3 in
the ring Z6. We have 2 · 3 ≡ 0 mod 6 and thus 2 and 3 are zero-divisors. More
generally, the instead of every ring Zn contains zero-divisors if and only if n is
not prime.[23, Chapter 3]
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Definition 3.4 (Integral domain). An integral domain is a commutative ring
with an identity with no zero-divisors.

Definition 3.5 (Field). A field is a set F with two composition laws + and ·
such that

i) All elements of F form an commutative group with operation + and identity
0;

ii) All elements of F\{0} form a commutative group with operation × and
identity 1;

iii) The distributive law holds.

Remark. Note that a field is therefore a commutative ring with identity in which
every non-zero element has a multiplicative inverse. Every field is an integral
domain but some integral domains are not fields. The example Z is not a field,
since it does not have a multiplicative inverse. E.g. for an element a ∈ Z, there
need not be an element a−1 ∈ Z such that a · a−1 = 1. However, every finite
integral domain is a field. [5]

Definition 3.6 (Ideal). An (two-sided) ideal I is a special kind of subset I ⊂ R
such that:

∀b, a ∈ I, r ∈ R : a− b, ar, ra ∈ I.

Remark. A few remarks can be made about ideals

i) If R is a commutative ring and S ⊂ R, then the ideal generated by S is
defined as follows:

〈S〉 = {r1s1 + r2s2 + . . .+ rksk ∈ R|ri ∈ R, si ∈ S, i ∈ {1, . . . k} ⊂ N}.

ii) If S has only one element s, this is called the principal ideal generated by
s. For example, the ideal 2Z(= {0, 2, 4, . . .}) of Z is the principal ideal 〈2〉.

iii) Every ideal of Z is principal (the proof makes use of the Euclidean Algo-
rithm). Making the comparison between Z and Fq[t], we have

I = (a)↔ I = ((f(x)),

where a 6= 0, |a| minimum and f 6= 0, |f | = qdeg f minimum, so deg f
minimum.

iv) A commutative ring R is called a principal ideal domain (PID) if

• I ⊂ R is any ideal, then I = (x) for some x ∈ R. (Let (x1, . . . , xn) ⊂ R
denote the ideal generated by x1, . . . , xn, explicitly a1x1 + · · ·+ anxn
for all ai ∈ R.

• The only zero divisor in R is 0.

• The word domain means there are no non-zero zero divisors. Some-
times you’ll hear the term integral domain, which means a commuta-
tive ring with no non-zero zero divisors. The “principal ideal” part of
the term means that every ideal is “principal”— i.e., generated by one
element.
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Remark. Therefore, also for R[x] it holds that every ideal is principal. In general,
if F is a field, then any ideal I ⊂ F [t] is generated by a single element.[5]

Definition 3.7 (Quotient-ring of ideal). If I is an ideal of ring R, the set R/I
is a ring under operations

i) (a+ I) + (b+ I) = (a+ b) + I;

ii) (a+ I) · (b+ I) = ab+ I.

Remark. In words; R/I is the ring R in which all elements in the ideal I have
been made 0. Take for example the ring

Z5[x]

〈x2 + 1〉
.

This ring has 25 elements of the form ax+b where a, b ∈ {0, 1, . . . , 4}. However,
it is not a field since x2 + 1 can be factored in a product of lower degree
polynomials in Z5[x]. Therefore x2+1 ≡ (x+3)(x+2) mod x2+1 ≡ 0 mod x2+1
and we see that it has zero-divisors.

Lemma 3.1 (Unique factorization for principal ideal domains). Let R be a
PID. Then for any non-zero element x ∈ R, there exists a finite collection of
distinct prime elements p1, . . . , pk so that x = pn1

1 . . . pnkk , ni ≥ 1 and so that
no pi is a unit multiple of pj for i 6= j. Then the ni are unique and the pi are
unique up to multiplication by units and reordering.[23]

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
The basic idea in any unique factorization domain is that there are certain (non-
unit) elements, called irreducible elements, or in the case of Z, primes, which
form the ”multiplicative building blocks” for the ring. So the Fundamental
Theorem of Arithmetic holds for both rings:

• For Z recall that a prime element of R is simply a prime number or a
negative of a prime number. Thus the theorem is saying that any integer
x ∈ Z can be written as a product of powers of primes. The choice of pi
is only unique up to multiplying by units.

• For Fq[t] this is saying that every polynomial can be written as a product
of a unit and irreducible polynomials pi. We recall that the units of a field
Fq are the non-zero elements of Fq, i.e. the non-zero constant polynomials.

We consider two types of finite (Galois) fields Fpm . Suppose p prime, then either
m = 1 (prime fields) or m > 1 (extension fields).

i) Prime Fields (m = 1). The elements of Fp are integers {0, 1, . . . , p− 1}. A
different notation of this field is Z

pZ . Addition, subtraction and multiplica-
tion is all dealt with using modular reduction prime p. Inversion of a ∈ Fp1 ,
denoted a−1 must satisfy a · a−1 = 1 mod p, and can be computed using
the Extended Euclidean Algorithm.

ii) Extension Fields (m > 1). To construct Fpm , we take an irreducible poly-

nomial P (x) of degm with coefficient in Z
pZ and then define: Fpm :=

Z
pZ [X]

〈P (X)〉 .

We can also define it as the field generated by the roots of Xpm − 1
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inside the algebraic closure of Z
pZ . The elements (residue classes) of Fpm

are polynomials am−1x
m−1 + · · · + a1x + a0 = A(x), where ai ∈ Fp.

Addition and subtraction of two elements A(x), B(x) ∈ Fpm is done in the
regular way, making sure the coefficients are again in Fp. For multiplication,
we use regular multiplication with modular reduction with an irreducible
polynomial P (x) ∈ Fpm — that is, a polynomial that cannot be factored
into the product of two non-constant polynomials.

Lemma 3.2. Let p be a prime and f(x) an irreducible polynomial of degree k

in Zp[x]. Then
Zp[x]
〈f(x)〉 is a field with pk elements. [11]

Remark. Note that some polynomials are irreducible in R[x] while they are
reducible in Zp[x]. For example x2 + 1 in Z5[x]. More generally, x2 + 1 is
irreducible in Zp if and only if p = 4k + 3, k ∈ Z (see also part (ii) of the proof
in Section 2.2.2.)

3.2 Basics for Function Field analogue of Conjecture 2.1.

When analyzing the proof for the function field analogue of Conjecture 2.1, we
use the following notation. Suppose Fq is a finite field of q elements, and Fq[t]
the ring of polynomials with coefficients in Fq where:

i) The units of Fq[t] are the scalars F×q (being the multiplicative group of
a field (Fq\{0}, ·)). Recall Lemma 3.1: Any nonzero polynomial may be
uniquely written as the product of a unit and an element f(t) = tn +
an−1t

n−1 + · · ·+ a0 — a monic polynomial.

ii) In further calculations, by Mn we mean the set of monic polynomials of
degree n. We recall that every ai must be an element in Fq and that Fq
has q elements. Therefore, the cardinality of Mn is

#Mn = qn.

iii) The ring Fq[t] is a Euclidean ring, so the Euclidean Algorithm holds (see
the beginning of Section 3)

Similar to considering integers over Z, if an irreducible A ∈ Fq[t] divides, for
B,C ∈ Fq[t], two other elements A | BC, then either A | B or A | C.

Suppose we want to determine the amount of monic polynomials in an
arithmetic progression. Recall that over the integers, this would be done by
counting the number of integers a ∈ N, a ≤ n such that a = c mod k. As seen
in Section 2.1, the answer is dnk e = n

|k| + O(1). So we’re looking at integers

which are equivalent mod d. The analogues statement for Fq[t], where we are
looking at the number of monic polynomials which are equivalent mod K, is

Lemma 3.3. Suppose we have a monic polynomial K 6= 0,K ∈ Fq[t], and
C ∈ Fq[t]. Then

#{A ∈Mn : A = C mod K} =

{
qn/|K|, degK ≤ n,
O(1), otherwise.
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Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
We have the following comparison:

{a ∈ Z, a ≤ n : a = c mod k} ↔ {A ∈Mn : A = C mod K}.

Note that the error term for Fq[t] when degK ≤ n is zero whereas the corre-
sponding error term for Z was O(1). When used in further calculations for Z,
the error term ultimately becomes O (ρf (k)) . That is one of the reasons why we
can explain the behaviour of square-free values of polynomials over Fq better
than over Z.

Proof. We differentiate between two situations, n being smaller or greater than
the degree of K. Suppose for one that n ≥ degD. Using the Euclidean
Algorithm, we know that C = 0 or degC < degK. We now claim the following
bijection:

Mn−degK ↔ {A ∈Mn : A = C mod K},
B 7→ C +BK.

Suppose that A ∈Mn, A = C mod K, then recall that we can write A = C+BK
for some C ∈ Fq[t]. We know that A is monic and thus we need to check that
B is monic, of degree n − degK. Now because degC < degK, it must be the
case that

n = degA = deg (C +BK) = degBK = degB + degK.

We see that degB = n − degK. Since both A and K are monic and degC <
degK, we must have B monic. Note that we used the fact that since degC <
degBK, we have degC +BK = degBK. We end up with

#{A ∈Mn : A = C mod K} = #Mn−degK = qn−degK =
qn

qdegK
=

qn

|K|
,

which agrees with the result stated in Lemma 3.3. On the other hand, suppose
now that degK > n, then the arithmetic progression A ≡ C mod K has at
most 1 A ∈ Mn in the progression A = C mod K. Take, for example, two
elements A and A′ of the progression. These two elements have to differ by
a multiple of D : A − A′ = BK. If the degree of both are n < degK then
deg(A−A′) ≤ n < degK, this results in B = 0 and thus A = A′.

3.2.1 The Prime Polynomial Theorem[15].

Recall that in Section 1.1, we introduced π(n), being the number of prime
integers a ∈ N, a ≤ n. Now we introduce πq(n), being the number of monic
irreducibles of degree n. The Prime Polynomial Theorem states that

πq(n) =
qn

n
+Oq

(
qn/2

n

)
.

Note that the implied constant here depends only on q. We see that the error
term here is very strong. In fact, we only need the upper bound, corresponding
to Chebyshev’s Theorem

πq(n) ≤ qn

n
,
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(that we can achieve a constant of 1 here requires an additional argument).
Now let us turn to the the field Fq. Once again, the ring Fq[x] is a unique
factorization domain. Recall that the number of monic polynomials of degree
n is qn. Can we again say something about how many of these polynomials are
irreducibles? The answer turns out to be

Nq(n) =
1

n

∑
d|n

µ(d)qn/d [22,Theorem 3.25].

The largest term in this sum, which we can denote by the order, is qn. We
can therefore state that the order of the amount of monic irreducibles of degree
n over Fq is simply qn/n. In effect, we see that one out of every n monic
polynomials of degree n over Fq is irreducible. Note that an interesting similarity
is observed when making the comparison with the density of primes in Z? As
stated before, the Prime Number Theorem tells us that the number of primes
p less than a positive integer n is of order n/ log n. In fact, we can analyze the
amount of primes p ≤ n by the so-called logarithmic integral (Li(n) :=

∫ n
2

dt
log t =

n
logn +O

(
n

(logn)2

)
.

π(n) = Li(n) +O
(
n exp (−c

√
log)

)
=

n

log n
+O

(
n

(log n)2

)
.

Above expression essentially states that ”close” to an integer a, the density of
primes is of order 1/ log a [30].

Remark. Note that when we look at polynomials of degree 1, the error term of

πq(n) becomes O
(
q1/2

1

)
while assuming that the Riemann Hypothesis is correct

yields an error term for π(x) of O
(
x1/2+o(1)

)
. We see that they are equivalent.

Interestingly, we see that, since n = logq(q
n), in both Z and Fq[x], the

density of irreducible elements ”close” to an element is of order 1 over the log
of the absolute value of that element. The difference between the two situations
is that when looking at Z, we use the natural log, while when looking at Fq[x],
we use the log of base q. What does this mean for number theoretic problems?
Well, it turns out that if we look at the factorization problem, for Z this remains
notoriously hard, while for Fq[x] this is simpler, especially if q is small, i.e., less
than n[15] (assuming that the Riemann Hypothesis is valid).

3.2.2 Separability.

Definition 3.8 (Separable polynomial). A polynomial f ∈ Fq[t] is separable
if it has no repeated roots of positive degree, i.e. if it is square-free in Fq[t].
Equivalently, if it has no double roots in an algebraic closure of Fq. The term
“separable” comes from distinctness of the roots: they are separate in the sense
that there are no multiple roots.

We define separability here since, in further function field analogues, we assume
polynomials f to be separable. We need f to be separable in order to make sure
that it does not have double roots in any extension of Fq, since if it had, we
end up with cf = 0. Take for example the function f(x) = x2 + x + 4 ∈ F5[x],
this function is not separable since it can be written as f(x) = (x+ 3)(x+ 3) =
x2 + 6x+ 9 ≡ x2 + x+ 4 ∈ F5[x] and thus is never square-free, i.e., cf = 0. The
density if positive if and only if f is square-free (i.e.,separable).[6, Theorem 2.1]

31



Remark. Note that even a primitive (i.e., the gcd of the coefficients of f ∈
Fq[t][x] is 1), separable f can have no square-free values. For example

f(x) =
∏

a1,a2∈Fq

(x− a1t− a2) = xq
2

+ · · · .

Then for every a ∈ Fq[t], our function f evaluated in that a is divisible by(∏
a3∈Fq (t− a3)

)2
= (tq− t)2. This is true since a ∈ Fq[t] is congruent mod (t−

a3)2 to some a1t+ a2. Therefore, f(a) ≡ f(a1t+ a2) = 0 mod (t− a3)2, which
is not square-free. [32]

Definition 3.9 (Characteristic of a ring R). The characteristic of ring R,
denoted char(R), is the smallest number of times one must use the ring’s
multiplicative identity in a sum to get the additive identity, if this sum eventually
attains 0. We can also say that for every element x ∈ R, char(R) · x = 0 in R,
char(R) being the smallest value for which this holds.

Definition 3.10. We define the derivative of a polynomial f =
∑
i≥0 ait

i ∈
Fq[t] is

a′(t) :=
∑
i≥1

iait
i−1.

Suppose that the characteristic of Fq, denoted char(Fq) is p. We then have
(tp)′ = ptp−1 = 0. In general, the following lemma holds:

Lemma 3.4. For p prime, suppose q = pk and p = char(Fq). If for some
polynomial a ∈ Fq[t], we have a′ = 0, this is equivalent to saying there is a
function b(tp) for which a(t) = b(tp).[23, Chapter 7]

Lemma 3.5. f ∈ Fq[t] is separable if and only if gcd(f, f ′) = 1.[8]

Remark. Suppose we write some polynomial p as p(x) =
∏n
i=1(x− ai)ni where

ni = 1 for all i, and take the derivative of p with respect to x. This results
in p(x)′ = (x − a2) · · · (x − an) + (x − a1)(x − a3)(x − a4) · · · (x − an) + . . ..
We see that none of the terms in p(x)′ has a common factor, thus resulting in
gcd(p, p′) = 1.

3.3 Function Field analogue of Conjecture 2.1 [33].

Similar to when discussing polynomials over Z, we now aim to prove a function
field version of the conjecture stating that a square-free polynomial takes on
infinitely many square-free values.

Remark. The separability here is the function field equivalent of saying a poly-
nomial cannot be written as a square of a function.

Definition 3.11 (Square-free polynomial in Fq[t]). We call a polynomial
f ∈ Fq[t] square-free, if it is not divisible by the square of any non-constant
polynomial g ∈ Fq[t].

Suppose f ∈ Fq[t] is separable with deg f > 0. Let P be the set of primes in
Fq[t] (i.e. monic irreducible polynomials). Similar to the definition before, by
Nf (n) we mean the set of monic polynomials a(t) ∈Mn such that f(a(t)) ∈ Fq[t]
is square-free. Again, we define for a polynomial K ∈ Fq[t], the function ρ:

ρf (K) = #{a ∈Mn, a mod K : f(a) ≡ 0 mod K}.
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Remark. Note that a mod K means the natural projection of a ∈ Fq[t] to the

quotient ring
Fq [t]
〈K〉 .

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
This again is a function field equivalent to the analysis seen in Lemma 2.8, where
we were looking at:

ρf (k) := #{a ∈ Z
kZ

: f(a) ≡ 0 mod k}.

With this function we can again look at the amount of irreducibles mod K such
that P 2 | f(a), which then gives finally gives us a density function.

Theorem 3.1. Suppose f ∈ Fq[x] is separable. Then

#Nf (n) = cfq
n +Of,q

(
qn

n

)
, as n→∞, (30)

where, for irreducible elements P ∈ P :

cf =
∏
P∈P

(
1− ρf (P 2)

|P |2

)
.

The density cf is positive if and only if there is some a ∈ Fq[t] such that f(a)
is square-free.

We prove in the following sections, using the same sieve strategy as in the
number field case, that Theorem 3.1 is in fact correct. Only when considering
the contribution of large primes, we introduce a new lemma paramount to the
proof (cf Lemma 3.8). Note that this lemma is unavailable in our proof for the
number field case. For Granville [17], the ABC Conjecture takes a similar role.

Remark. In Theorem 3.1, the case of large degree (i.e., limit n → ∞) is
discussed. This is analogous in nature to the number field problem. However,
the case of a large finite field (i.e., limit q → ∞, n fixed) is not easily solved
using sieve theory. Rudnick found a solution to that case using algebrogeometric
methods [32].

3.3.1 Proof that the density cf is nonzero.

In this section, we use a version of Hensel’s Lemma[9] to prove an equivalence
relation of a positive density cf .

Lemma 3.6. Suppose a polynomial f ∈ Fq[x] is separable. Denote by P ∈ Fq[t]
an irreducible element. Now each a1 ∈ Fq[t]/(P ) such that f(a1) = 0 mod P
has a unique a2 ∈ Fq[t] such that a1 = a2 mod P and f(a2) = 0 mod P 2.

Proof. Suppose a2 = a1 + Py. If we expand f around a1, this gives us:

f(a2) = f(a1) + f ′(a1)Py + P 2y2g(a1, y),

for some function g. We write

f(a2) = f(a1) + f ′(a1)Py mod P 2.
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Note that higher order terms fall out because of the mod P 2, therefore the
function g is of little interest to us and need not be defined any further. Then,
saying f(a2) = 0 mod P 2 is equivalent to

f(a1) + f ′(a1)Py = 0 mod P 2.

We stated originally that P | f(a1), and thus above equation can be rewritten
as

f ′(a1) · y = −f(a1)

P
mod P.

Now, proving that f ′(a1) 6= 0 mod P means we found a unique y mod P and
thus proves the Lemma.

Recall that we assumed f ∈ Fq[x] to be a separable polynomial. Therefore
it has no double roots in any extension of Fq. Here we consider Fq[t]/(P ),
which is an extension of degree equal to degP . We know that a1 is a root of
f(x) mod P . Therefore, it cannot be a root of f ′(x) mod P . This gives us the
necessary conclusion that f ′(a1) 6= 0 mod P .

Remark. A different, but also quite straightforward proof, makes use the fact
that for separable f , it must hold that gcd(f, f ′) = 1. Then we have r, t ∈ Fq[x]
with rf + tf ′ = 1, more specifically, r(a1)f(a1)+ t(a1)f ′(a1) = 1 mod P . Recall
that f(a1) = 0 mod P , which gives us v(a1)f ′(a1) = 1 mod P . This in turn
means f ′(a1) 6= 0 mod P .

Recall
ρf (K) = #{a ∈Mn, a mod K : f(a) = 0 mod K}.

As a consequence of Lemma 3.6, we have the following corollary:

Corollary 3.1.1. Let f ∈ Fq[x] be a separable polynomial. For any prime
P ∈ Fq[t]

ρf (P 2) = ρf (P ).

Recall that the density cf was defined as follows:

cf :=
∏
P

(
1− ρf (P 2)

|P |2

)
.

We know that ρf (P ) ≤ deg f , i.e. the amount of solutions to f(a) ≡ 0 mod P
equal the amount solutions of a polynomial equation over the field Fq[t]/〈P 〉.
Considering Corollary 3.1.1, we can then state that cf is absolutely convergent.
We now prove that cf 6= 0:

Proposition 3.2. Let f ∈ Fq[t] be a separable polynomial. Then the following
are equivalent:

1. There is some a ∈ Fq[t] such that f(a) is square-free.

2. The density cf is positive.

3. For all primes P , with degP ≤ 1
2 logq(deg f), there is some aP mod P 2

for which f(aP ) 6= 0 mod P 2.
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Proof. Using Hensel’s Lemma, we know that ρf (P 2) = ρf (P ) ≤ deg f. Again
we differentiate between two cases. If |P |2 > deg f , then the every factor 1 −
ρf (P

2)
|P |2 > 0 is nonzero. Now we need to analyze the primes for which qdegP

2

=

q2 degP ≤ deg f . Considering these irreducibles P , we can check that a factor
equals zero if ρ(P 2) = P 2. Note that is the case if and only if f(a) = 0 mod P 2

for all a ∈ Fq[t]. This means that the sequence f(a) has a fixed square factor,
which cannot be the case.

3.4 General outline of the proof.

Suppose f ∈ Fq[t] is a separable polynomial. We recall that we defined Nf (n)
to be the set of all monic polynomials a(t) ∈ Mn, such that f(a(t)) ∈ Fq[t] is
square-free. We introduce the integer ζ > 0, which purpose is to split the primes
into two sets with degree greater or smaller than ζ. Ultimately, we choose ζ to
be

ζ = logq
n

4
. (31)

Suppose

N ′f (n) = {a ∈Mn : P 2 - f(a), ∀P prime with degP ≤ ζ},

and

N ′′f (n) = {a ∈Mn : ∃P prime,degP > ζ, such that P 2 | f(a)}.

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
Note that in Section 2.2.4 we split Nf = N ′f +N ′′f using the size of the primes
p ∈ Z for which we checked if their square divided the function f , whereas now
we split using the size of the prime p ∈Mn (which is equivalent to the degree).

Then
Nf (n) ⊆ N ′f (n) ⊆ Nf (n) ∪N ′′f (n).

Remark. In words: Nf (n) is the set of all a ∈Mn for which f(a) is square-free,
which is contained in N ′f (n) (the set containing all a ∈ Mn for which f(a) is
square-free when looking only at primes with degP ≤ ζ). Also Nf (n) ∪ N ′′f (n)
is the union of the set of all a ∈Mn such that f(a) is square-free for all primes
and the set of all a ∈ Mn for which f(a) is not square-free for primes with
degP > ζ, which contains N ′f (n).

This results in
#N ′f (n)−#N ′′f ≤ #Nf (n) ≤ #N ′f (n).

Finding an upper bound for #N depending only on #N ′ allows us to give an
asymptotic that term (the ”main term”), which is easy if ζ is small. Since the
lower bound depends on #N ′f (n) and #N ′′f (n) (where we found an asymptotic
for the former), we need only to find an upper bound for #N ′′f (n). We show
that for ζ ≤ logq

n
4 ,

#N ′f (n) = cfq
n +O

(
qn

qζ

)
. (32)

And

N ′′f � qn/p +
qn

ζqζ
+
qn

n
. (33)

Choosing ζ = logq
n
4 in (32) and (33), we eventually end up with Theorem 3.1.
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3.5 Bound for #N ′(n), the small primes.

First, we introduce some notation. Suppose we define A<k = {a ∈ A : deg a <
k} for any set of polynomials A and any degree k. We define A>k and A=k in a
similar way. To estimate N ′(n) (the main term), one uses inclusion-exclusion,
observing that if we put Pζ :=

∏
P∈P≤ζ P then for a ∈Mn,

∑
k|Pζ ,
k2|f(a)

µ(k) =

{
1, a ∈ N ′f (n),

0, otherwise.

Remark. Note that this is the function field equivalence of the indicator function
seen in Section 2.1.3, which was defined as

1SF (n) = µ2(n) =
∑
k2|n

µ(k).

This gives us

#N ′(n) =
∑
k|Pζ

µ(k)#{a ∈Mn : k2 | f(a)}.

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
Note that this is equivalent to the Z case where we stated

#N ′(n) =
∑
k≤u

µ(k)#{a ≤ n, a ∈ Z : k2 | f(a)}.

Lemma 3.7. For K 6= 0,K ∈ Fq[t],

#{a ∈Mn : f(a) ≡ 0 mod K} =

{
qnρf (K)
|K|, degK ≤ n,

O (ρf (K)) , otherwise.

Dictionary between the polynomial ring Fq[x] and the ring of integers Z.
This lemma also is equivalent, interchanging n by qn (the total number of monic
polynomials with degree n).

Proof. We break the term down

#{a ∈Mn : f(a) ≡ 0 mod K} =
∑

C mod K
K|f(C)

#{a ∈Mn : a = C mod K}.

Note that we have proved already in Lemma 3.3:

#{a ∈Mn : a = C mod K} =

{
qn

|K| , degK ≤ n,
O(1), otherwise.

Furthermore, we know there are ρf (K) solutions C mod K of f(C) = 0 mod K.
Multiplying this term to the term from Lemma 3.3 proves the lemma.

Now we find a bound for degPζ . By our choice of (31):

degPζ =
∑

P∈P≤ζ
degP =

ζ∑
j=1

j
qj

j
≤ qζ − 1

1− 1
q

≤ 2qζ ≤ n

2
.
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Remark. The second equality essentially looks at every degree j, and adds a term
consisting of the number of primes with that degree times the degree itself.

Since degPζ ≤ n
2 ≤ n, the error term O(1) does not play a role and end up

with

#{a ∈Mn : k2 | f(a)} =
qnρf (k2)

|k|2
, ∀k | Pζ ,

Which, equivalent to the Z[x] case, translates using multiplicativity of ρf to

#N ′(n) = qn
∑
d|Pζ

µ(d)ρf (d2)

|d|2
= qn

∏
P∈P≤ζ

(
1− ρf (P 2)

|P |2

)
.

Recall again that by Hensel’s Lemma (Corollary 3.1.1), we find that ρf (P 2) =

ρf (P ) ≤ deg f = O(1). If we now take cf =
∏
P

(
1− ρf (P

2)
|P |2

)
, this gives us

∏
P∈P≤ζ

(
1− ρf (P 2)

|P |2

)
= cf

∏
P∈P>ζ

(
1− ρf (P 2)

|P |2

)−1
= cf expO

 ∑
P∈P>ζ

1

|P |2

.
Now we need to find a bound for the final term∑

P∈P>ζ

1

|P |2
≤

∑
F monic
|F |>qζ

1

|F |2
� 1

qζ
,

which then results in∏
P∈P≤ζ

(
1− ρf (P 2)

|P |2

)
= cf (1 +O(

1

qζ
)).

Thus giving us the required result

#N ′(n) = cfq
n +O

(
qn

qζ

)
= cfq

n +O

(
qn

qlogq n/4

)
,

proving (32).

Remark. In effect, we see that the derivation of the main term is exactly the
same for Fq as it is for Z. We recall the latter showed a main term of

#N ′(n) = cfn+O
(n
u

log u+ u log u
)
.

3.6 Bound for #N ′′(n), the large primes.

Now, the essential difference between the number field case and Fq[t], is the
following lemma:

Lemma 3.8. Suppose f ∈ Fq[t] is a separable polynomial. For a ∈ Mn such
that its derivative a′ 6= 0 and k2 | f(a) for monic k ∈ Fq[t], then k | a′ and hence
deg k ≤ deg a′ = n− 1.
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Proof. For f is a separable polynomial, it must hold that gcd(f, f ′) = 1 in Fq[t]
(Lemma 3.5). This means that there are r, t ∈ Fq[t] with rf+tf ′ = 1. If we now
use a ∈ Mn, as the argument, we have u(a)f(a) + v(a)f ′(a) = 1. This means
that f(a) and f ′(a) are coprime in Fq[t]. Suppose k2|f(a). Then also k | f(a)
but gcd(f, f ′) = 1, this means that k is coprime to f ′(a). If we now differentiate,
we end up with k | ddt (f(a)) = f ′(a)a′. As stated above, k is coprime to f ′(a)
and now we see k | f ′(a)a′, this means that k | a′. Since we assume that a′ 6= 0,
we obtain deg k ≤ deg a′ ≤ n− 1.

Suppose that for any polynomial K,

NK,f (n) = {a ∈Mn : f(a) ≡ 0 mod K}.

We can now find a bound for N ′′f (n)

N ′′f (n) ⊆ {a ∈Mn : a′ = 0}
⋃ ⋃

P∈P≥ζ∩P≤n−1

NP 2,f (d). (34)

Remark. In words: The set of all a ∈ Mn for which f(a) is not square-free for
primes with degP > ζ is contained in the union of the set of all a ∈ Mn such
that exists a prime P with ζ < degP ≤ n− 1 for which f(a) is not square-free
and all non separable a ∈Mn. The right term above is due to Lemma 3.8.

This just leaves us with finding bounds for the terms in (34). Suppose that
q = pe, saying a′ = 0 is then equivalent to the existence of a new function b(tp)
for which a(t) = b(tp). (which forces p | n). We know that a ∈ Mn and thus
b ∈Mn/p. Now we know the number of elements in Mn/p equals qn/p. Therefore

#{a ∈Mn : a′ = 0} = #Mn/p = qn/p.

Thus
N ′′f (n) ≤ qn/p +

∑
P∈P≥ζ∩P≤n−1

#NP 2(n).

Luckily, finding a bound for the remaining terms is something we already did
(Lemma 3.7):

#NK,f (n) =

{
qn

ρf (K)
|K| , degK ≤ n,

O(ρK(n)), otherwise.

Recalling that the terms we are interested in only account for primes with degree
≤ n− 1, this gives us

N ′′f (n) ≤ qn/p +
∑

P∈P≥ζ∩P≤n−1

#NP 2,f (n)

= qn/p +
∑

P∈P≥ζ∩P≤n/2

qn

|P |2
ρf (P 2) +

∑
P∈P>n/2∩P≤n−1

O(ρf (P 2)).

Remark. The sum is again decomposed since we divide by |P |2, which takes the
place of |D|. We therefore must make sure that degP 2 ≤ n, which is done by
letting the degree of P go as far as n

2 .
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By Lemma 3.6, ρ(P 2) = ρ(P ) ≤ deg f and hence

N ′′f (n)�deg f q
n/p + qn

∑
P∈P≥ζ∩P≤n/2

1

|P |2
+

∑
P∈P>n/2∩P≤n−1

1

� qn/p + qn
∑

ζ<m≤n/2

1

q2m
qm

m
+

∑
n/2<m≤n−1

qm

m

� qn/p + qn
1

ζqζ
+
qn

n
.

This then proves (33). In the number field setting, Lemma 3.8 is not available,
which renders the above argument useless once deg f > 2.

Remark. Ramsay [28] proved Theorem 3.1 for polynomials f ∈ Fq[x], i.e.
polynomials with constant coefficients. Poonen [27] proved the Theorem for
all Fq[t, x], and generalized it to multivariate polynomials in Fq[t, x1, . . . , xn].

4 New Results by Dan Carmon.

In this section, we discuss the new results of the paper by Dan Carmon, which
aims to extend above results to polynomials f with large coefficients, giving
quantitative answers to questions analogous to those presented in Section
2. This is done by the use of the methods presented in the papers of both
Poonen’s and Lando’s [21] and a new element, the Brun sieve. Brun’s sieve
essential sieves out all small prime elements, leaving behind prime and almost
prime elements with only large divisors. In then states that these almost
prime elements are included between two sums with a relative small number
of summands, which may be estimated from above and below, thus finding a
bound on the error term. More about this sieve is found in Section 4.1.3.

Note that this section largely follows the proof and structure of the article by
Carmon, simplifying some steps and adding remarks whenever necessary.

Theorem 4.1. Suppose q = pe is a prime power, k > 0 is an integer, and
m,n > 0 are integers with m � logq n logq logq n and m → ∞. Suppose f ∈
Fq[t, x] is a square-free polynomial with degx f ≤ k,degt f ≤ n. Let cf be defined
as before. Then

#{a ∈ Fq[t] : deg a < m, f(a) is square-free} = cfq
m + o(cfq

m)).

Remark. Note that, as opposed to Section 3, now we look at the possibility
that the coefficients vary. If n is bounded, we do find the Theorem discussed
before (Theorem 4.1 reduces to Poonen’s Theorem). As such, the interesting
part is when n→∞. From m� logq n logq logq n, it then follows that m→∞.
Note that since the error term depends on cf , this provides us a more accurate
estimate.

An example that we can look at when discussing Theorem 4.1 is for instance
f(t, x) = tx + 1, with q = 2, k = 1, n = 1 and m = 5. We see that m = 5 �
log2 1 log2 log2 1 = 0. In the end we have to let m → ∞. Furthermore, we see
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that degx f = 1 = k and degt f = 1 = n. So the assumptions there are met. We
define cf as usual. The theorem says that

#{a ∈ F2[t] : deg a < 5, f(a) is square free} = cf25 + o(cf25).

We know there are qn − qn−1 square-free monic polynomials a ∈ F2[t] of degree
n. This allows us to calculate the number explicitly. Looking at Theorem 4.1,
we are now in a position to state an analogue of Question 2:

Corollary 4.1.1. Suppose q = pe is a prime power, and k > 0 is an integer.
Suppose thatN ∈ Fq[t] is of ”sufficiently” large degree n. Furthermore, let either
k be coprime to p, or N not be a p-th power. Then the number of representations
for N = xk + r N where x, r ∈ Fq[t], such that r is square-free and deg x < n

k ,

is cN,k qdn/ke + o
(
cN,k q

dn/ke). Note that cN,k =
∏
P∈P

(
1− ρN,k(P

2)
P 2

)
and

ρN,k(D) = #{a mod D : ak ≡ N mod D}.

Remark. Since, if N were a p-th power, and p | k, this would mean that f(x) is
also a p-th power. Then f(x) is not square-free. Otherwise, f is square-free. We
can check this by analyzing its derivatives in x and t. These derivatives must
be coprime to f , whenever they are nonzero.

Now cN,k is the density of values which are not ≡ N mod P 2, for some P
prime. This gives the number of square-free values of f(x) = N − xk, which is
square-free itself and has degx f = k, degt f = n. Here x can be any polynomial
in Fq[t] with deg x < m = dnk e. Note that this agrees with the notion on m
in Theorem 4.1. Now we look at the analogue to the short interval conjecture,
Conjecture 2.2. We take interval length H = qm, which consists of polynomials
of size qn. Using Theorem 4.1, we can see that we need m� logq n logq logq n,

or equivalently, for H ≥ (logq q
n)C logq logq logq X = nC logq logq n for a certain

constant C and all sufficiently large qn, to get the correct result. In truth, we
can let the interval be even smaller.

Theorem 4.2. Suppose q = pe be a prime power, and f ∈ Fq[t, x] is a square-
free polynomial with degx f = k. Suppose n,m are large positive integers such
that m− p(logq n− logq logq n)→∞, and N(t) ∈ Fq[t] is of degree n. Take the
interval of size H = qm around N ,

I(N,m) = {N + a : a ∈ Fq[t],deg a < m}.

Then
#{a ∈ I(N,m) : f(a) is square-free} = cfq

m + o (cfq
m) .

We see that m − p(logp n − logq logq n) → ∞) essentially means that H ≥
C
(

logq q
n

logq logq q
n

)p
for any constant C > 0 and all sufficiently large qn, i.e. a

polylogarithmic relation. The fact that we see the characteristic of the field
appear as the power of the term dependent on qn, and thus taking such a
prominent place in the allowed size of the interval, is rather odd. Moreover,

note that there are intervals with H � logq X

logq logq X
that contain no square-free

polynomials at all, by a straight forward application of the Chinese Remainder
Theorem.

As with the proofs in Section 3, we see an analogues strategy for proving
Theorem 4.1 and 4.2. However, we see that the differences in the context of
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both proofs result in different leading error terms. This is the reason by both
theorems have different lower bouds on m. Moreover, the two contributions are
in fact mostly disjoint. Therefore we can unify the results into one theorem:

Theorem 4.3. Suppose q = pe is a prime power, k > 0 is an integer, and
m,n1, n2 > 0 are varying integers such that m � logq n1 logq logq n1 and m −
p(logq n2 logq logq n2 + 2k logq logq n1) → ∞. Suppose f ∈ Fq[t, x] is a square-
free polynomial with degx f ≤ k, degt f ≤ n1. If N(t) ∈ Fq[t] is of degree n2,
and I(N,m) is the interval of size qm around N . We have

#{a ∈ I(N,m) : f(a) square-free } = cfq
m + o (cfq

m) .

4.1 Proof of Theorem 4.1.

First we introduce some notation. Let, for any set of polynomials A and any
degree d, A<d = {a ∈ A : deg a < d}, and let us define A>d and A=d is a similar
way. Furthermore, we write Nf (m) = {a ∈ Fq[t]<m : f(a) is square-free}. As
with the proof of Theorem 2.8, we split #Nf into a number of terms related to
the contribution of certain primes and try to find bounds to find an appropriate
estimate for Nf . For constants m0 and m1, we let m1 = dm/2e and define m0

later.

N ′ = {a ∈ Fq[t]<m : ∀P ∈ P<m0 , P 2 - f(a)} (35)

N ′′ = {a ∈ Fq[t]<m : ∃P ∈ P≥m0 ∩ P<m1 , P 2 | f(a)} (36)

N ′′′ = {a ∈ Fq[t]<m : ∃P ∈ P≥m1 , P 2 | f(a)} (37)

Since N ⊆ N ′ ⊆ N ∪N ′′ ∪N ′′′, it follows that #N ′ −#N ′′ −#N ′′′ ≤ #N ≤
#N ′.
Remark. In words: The set of all a ∈ Fq[t]<m for which f(a) is square-free
for all primes P is contained in the set of values a ∈ Fq[t]<m for which f(a)
is square-free for primes P with degP < m0, which itself is contained in the
union of the set of a ∈ Fq[t] for which f(a) square-free for all primes, with the
set of all a ∈ Fq[t]<m for which there exists a prime P with degP ≥ m0 for
which f(a) is not square-free. We see that this is the same strategy as before.
However, note that this last set is now split into one set looking only at primes
with m0 ≤ degP < m1 and the other set looking at the remaining primes,
which differs from the approach in Section 3.4.

This gives us some boundary on #N . Our goal would then be to find the
bounds #N ′ = cfq

m + o(cfq
m) and #N ′′,#N ′′′ = o(cfq

m). However, in order
to do so, we have to determine some additional bounds relevant to our function
f .

4.1.1 Preliminary bounds.

In this section, we derive three bounds which we need for calculating the bounds
on N ′,N ′′, and N ′′′.

Definition 4.1 (Singular sum). The singular sum of a polynomial f is

S =
∑
P∈P

ρ(P 2)

|P |2
.
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Remark. Note that the fact that the singular sum converges follows from the
proof of Lemma 4.1.

We define the tail (or remainder) S(m0) of this sum to be S(m0) =∑
P∈P≥m0

ρ(P 2)
|P |2 . We attempt to find a bound for these sums, which in turn

is used in the proof of Theorem 4.1.

Lemma 4.1. Suppose q is a prime power, k > 0 is an integer and n,m0 > 0
are varying integers with n → ∞. Suppose that f ∈ Fq[t, x] is a square-free
polynomial with degx f ≤ k and degt f ≤ n. Then the following bounds are
correct

S ≤ k ln logq n+O(1) = O(ln lnn) (38)

S(m0) = O

(
n

m0qm0

)
(39)

cf � (logq n)−2k (40)

Remark. Note that, in effect, Equation (39) tells us about the speed of conver-
gence of S. Furthermore, we need the lower bound on cf in Equation 40 since
we eventually want to prove that #N ′′ = o (cfq

m). The lower bound helps us
to eventually find requirements on m0.

We split the function f(t, x) into two factors fi(t, x) and fs(t, x) such that
f(t, x) = fi(t, x)fs(t, x). Here fi(t, x) ∈ Fq[t, xp] denotes the product of all
irreducible factors of f(t, x) that are inseparable in x. That leaves fs(t, x) to
have no x-inseparable factors. As stated, f(t, x) is a square-free polynomial.
Therefore, we know that fi, fs must be coprime (and square-free). Also fi is
coprime to ∂fi

∂t and fs is coprime to ∂fs
∂x (see Lemma 3.5). Suppose that P (t, x)

is an irreducible common divisor of fs and ∂fs
∂x . This leaves tho options. For one,

P 2 | fs. However, this disproves the fact that fs is square-free. For another,
P | ∂P∂x . However, this suggests that P is inseparable in x, which disproves fs
having no inseparable factors. We apply the same logic to fi. Suppose that
P (t, x) is an irreducible common divisor of fi and ∂fi

t . This again leaves two
options. For one, P 2 | fi,. This disproves fi being square-free. For another, P
is inseparable in t. Since both fi,

∂fi
∂t are in Fq[t, xp], either P p is also a common

divisor, disproving the fact that they are square free, or P is also in Fq[t, xp].
Now, we already stated that P is inseparable in t, so P ∈ Fq[tp, xp]. This results
P being a p-th power, contradicting its irreducibility. Therefore there exists no
such irreducible common divisor.

Definition 4.2 (Resultant). For the definition of the resultant, I advise to
follow the discussion in the book by Gelfand [20].

Remark. In other words, the resultant of k+1 polynomials in k variables can be
represented as an irreducible polynomial in the coefficients of f0, . . . , fk. This
polynomial vanishes if the k + 1 polynomials have a common root.

Suppose R(t) = Resx(fi,
∂f
∂t )Resx(fs,

∂f
∂x ) ∈ Fq[t]. To check that this func-

tion is non vanishing, we check that the functions fi,
∂f
∂t are coprime, as well

as fs,
∂f
∂x . For the first term, we write ∂f

∂t = fs
∂fi
∂t + fi

∂fs
∂t . We see that this is

coprime to fi by the argument above. Also, we write ∂f
∂x = fi

∂fs
∂x + fs

∂fi
∂x . We

see that this is coprime to fs by the argument above. Then, we see that R(t) is
nonzero.

42



Remark. Recall that the x- and t-degrees of the polynomials fi, fs and their
derivatives are all at most k and n, respectively. We can hen write the two terms
of R(t) as polynomials of degree ≤ 2k in the Fq[t]-coefficients of their arguments,
each of which is of degree at most n. Therefore, degR ≤ 4kn = O(n). Then the
number of prime factors of R with degree ≥ m0 is at most 4kn

m0
.

We now again apply a version of Hensel’s Lemma. Suppose we have a prime
P ∈ P such that P - R. We want to show that for every residue a1 mod P ∈
ρ(P ), there is at most one lifting modulo P 2 which is in ρ(P 2). Since for every
P such that P | f , also P | R. This, in turn, helps us to bound the contribution

of rho(P 2). Then the residue of f ≡ c mod P ∈ Fq [t]
〈P 〉 [x] is non-trivial. Then c

also has degree ≤ k. As we saw before, this suggests that ρ(P ) ≤ k. Suppose
a1 ∈ Fq[t] is some residue class in ρ(P ), i.e. a1 is such that f(a1) ≡ 0 mod P .

Suppose ∂f
∂x (a1) 6≡ 0 mod P . Now we have every ingredient to apply Hensel’s

Lemma. This states that there is a unique lifting of a1 to a residue a2 mod P 2

such that a2 ≡ a1 mod P and f(a2) ≡ 0 mod P 2.
To the contrary, suppose ∂f

∂x (a1) ≡ 0 mod P . Now if P | fs(a1), then a is a

root of both fs and ∂f
∂x mod P . Therefore P would also divide Resx(fs,

∂f
∂x . We

know this cannot be the case since we assumed P - R. So P - fs(a1). Because
P divides f(a1), this means that P divides fs(a1)fi(a1). Since we just stated
that P - fs, it must mean that P | fi. Using a similar reasoning as before, this
results in ∂f

∂t (a1) 6≡ 0 mod P . Therefore

df(t, a1(t))

dt
=
∂f

∂t
(a1) +

∂f

∂x
(a1)

da

dt
≡ ∂f

∂t
(a1) 6≡ 0 mod P.

We see that since P - df(t,a1(t))
dt , also P (t)2 - f(t, a1(t)), for any such a1.

Concluding, there is no residue a2 mod P 2 where a2 = a1 mod P such that
f(a2) = 0 mod P 2.
Thus our proof concludes that for all residues a1 mod P ∈ ρ(P ), we have at most
one lifting modulo P 2, which is in ρ(P 2). This gives us a similar result as for
the number field setting, i.e., primes P where P - R, we have ρ(P 2) ≤ ρ(P ) ≤ k.

Proof of Equation (39). Now using this knowledge, we attempt to find a bound

for S(m0). Recalling S(m0) =
∑
P∈P≥m0

ρ(P 2)
|P |2 , we can split the primes over

which we sum into those P such that P | R and those P such that P - R. For
primes P such that P - R, we have

∑
P∈P≥m0 :P -R

ρ(P 2)

|P |2
≤ k

∞∑
d=m0

1

dqd
= O

(
1

m0qm0

)
.

Remark. The equalities hold since we know that |P | = qdegP = qd and the

number of primes P , with degP = d, is qd

d (see Section 3.2.1).

Definition 4.3 (Primitive polynomial). Let q = pm for some prime p. We
define a primitive polynomial to be the minimal polynomial of a primitive
element of the finite extension field Fq. In other words, a polynomial f(x)
with coefficients in Z

pZ is a primitive polynomial if it has a root α in Fq such

that {0, 1, α, α2, . . . , aq−2} is the entire field Fq, and f(x) is the smallest degree
polynomial having α as a root.
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Remark. Note that a primitive polynomial f f(x) must have a non-zero constant
term, otherwise it is divisible by x.

Now, we focus on those primes P for which P | R. Recall f is square-free
and therefore P 2 does not divide f . Therefore, if P divides the content of f ,

then f
P ∈

Fq [t]
〈P 〉 [x] does not leave a residue 0. For these primes P , can therefore

bound ρ(P 2) by

ρ(P 2) = #{a mod P 2 : f(a) ≡ 0 mod P 2}

= #{a mod P 2 :
f(a)

P
≡ 0 mod P}

= #{a mod P :
f(a)

P
≡ 0 mod P} · |P | ≤ k|P |.

On the other hand, for P such that P | R, if we now focus on primes P where
P does divide the content of f , we simply have ρ(P ) ≤ k. Thus we find the
bound ρ(P 2) ≤ |P |ρ(P ) ≤ k|P |. we have ρ(P 2) ≤ k|P |.

We are now in a position to find a bound for the primes P such that P | R∑
P∈P≥m0 ,

P |R

ρ(P 2)

|P |2
≤

∑
P∈P≥m0 ,

P |R

k|P |
|P |2

=
∑

P∈P≥m0 ,
P |R

k

|P |

≤
∑

P∈P≥m0 ,
P |R

k

qm0
≤ 4kn

m0

k

qm0
= O

(
n

m0qm0

)
.

We can conclude our proof of Equation (39)

Proof of Equation (38). Recalling S =
∑
P∈P

ρ(P 2)
|P |2 , we can again split the

primes over which we sum into those P such that P | R and those P such
that P - R. For primes P such that P - R, we have∑

P∈P:P -R

ρ(P 2)

|P 2|
≤
∑
P∈P

k

|P |2
=

∞∑
d=1

∑
P∈P=d

k

q2d

=

∞∑
d=1

k

q2d
qd

d
= k

∞∑
d=1

1

dqd
≤ k

d− 1
= O(1).

On the other hand, for P such that P | R, we again try to find a bound on
their contribution. We write for all d > 0, ud = #{P ∈ P=d : P | R}, and let
xd = dud. We can again bound ud by all the primes of degree d: πq(d), which

results in dud ≤ d q
d

d . Also,
∑∞
d=1 dud ≤ degR ≤ 4kn, since there cannot be

more than degR prime factors that divide R. Theqboundqthenqbecomes∑
P∈P
P |R

ρ(P 2)

|P |2
≤
∑
P∈P
P |R

k

|P |2
= k

∞∑
d=1

ud
qd

= k

∞∑
d=1

xd
dqd

.

Note that 1
dqd

is decreasing. Therefore, anqupperiboundioni
∑∞
d=1

xd

dqd
,

knowingi 0 ≤ xd ≤ qd iandi
∑∞
d=1 xd ≤ 4kn,iisiattained whenixd =

qdiforiallid < n0,iandixn0
= 4kn −

∑n0−1
d=1 xd,iandixd = 0,iforiallid > n0.

Noteithatin0iisithenideterminediuniquelyibyi0 ≤ xn0
≤ qn0 .
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Remark. SuchzvalueszwouldznotznecessarilyzcorrespondztoianyzactualuR,
butzdozserve forzobtainingzan upperzbound.

We end up with qn0−1 ≤ 4kn, and n0 ≤ logq(4kqn) = logq(n) + O(1). We
can now finalize the bound on primes P where P | R:

∑
P∈P
P |R

ρ(P 2)

|P |2
≤ k

∞∑
d=1

xd
dqd
≤ k

n0∑
d=1

1

d
= k(ln(n0) +O(1))

= O(ln lnn).

Remark. Note that for both proofs, we see that the primes P where P | R are
provide the main term in the bound.

Proof of Equation (40). The final bound we need to prove is that of Equation
(40). Recall we need to show the lower bound cf � (logq n)−k−o(1). The reason
we prove this bound last, is that we make use of the bound of Equation (38).
Suppose ε > 0, we now divide the summands of S into two sets. A set with

those x = ρ(P 2)
|P |2 greater than ε and a set with those lesser. Recall that each

term is at most k
|P | . Then this means that only a finite amount of summands

(corresponding to a finite amount of primes P ) x = ρ(P 2)
|P |2 are greater than ε.

Furthermore, these primes are of finite degree and therefore, the amount that

these terms add to the product cf =
∏
P∈P

(
1− ρ(P 2)

|P |2

)
can also be bounded

below by some positive constant Cε = Ck,q,ε > 0. Note that this constant does

not depend on n (assuminginoilocaliobstructionsiexist, so that 1− ρ(P 2)
|P |2 ≤

1
|P |2

for all P ).

If we now focus on the summands x such that x = ρ(P 2)
|P |2 < ε, we can expand this,

which ultimately gives usitheiinequality ln 1− x = −
∫ x
0

1
1−xdx > −

∫ x
0

1
1−εdx =

− x
1−ε . This means that each of these terms 1− ρ(P 2)

|P |2 = 1− x in cf is bounded

below by exp− S
1−ε �k,q (logq n)−k/(1−ε). If now we look at the whole picture,

using both the summands x > ε, and the summands x < ε, we end up with
cf �k,q Cε(logq n)−k+O(ε). Recall that Cε depends only on ε (not n). Therefore,
if we we let ε → 0 sufficientlyislow as n → ∞, we can replace the bound by
cf � (logq n)−k−o(1). Letting ε = 1

2 concludes our proof of Equation (40).

We now attempt to find bounds on N ′,N ′′ and N ′′′, which in turn helps us
to prove Theorem 4.1. We start with the medium primes, N ′′, since this is the
most straightforward.

4.1.2 Bound for #N ′′, the medium primes.

Recall that we chose m1 = dm2 e. This means that for any prime P ∈ P<m1 =

P<dm2 e we have deg(P 2) < m. Using Lemma 3.7, we have #{a ∈ Fq[t]<m : P 2 |
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f(a)} = ρ(P 2)
|P |2 q

m. We now derive the bound for #N ′′ :

#N ′′ = #{a ∈ Fq[t]<m : ∃P ∈ P≥m0 ∩ P<m1 , P 2 | f(a)}

= #
⋃

P∈P≥m0∩P<m1

{a ∈ Fq[t]<m : P 2 | f(a)}

≤
∑

P∈P≥m0∩P<m1

#{a ∈ Fq[t]<m : P 2 | f(a)}

=
∑

P∈P≥m0∩P<m1

ρ(P 2)

|P |2
qm

≤ qm
∑

P∈P≥m0

ρ(P 2)

|P |2
= qmS(m0).

Remark. On the third line, the ≤ sign is due to the fact that there might
elements a ∈ Fq[t]<m for which f(a) is not square-free for multiple primes P .
Thus by summing each set, we overcount. The last equality is true per definition
of S(m0).

Our aim was to prove that #N ′′ = o (cfq
m). We therefore need S(m0) to

be o(cf ). If we consider Lemma 4.1, we see that we need m0 to be such

that m0q
m0

n(logq n)
2k → ∞. This we can rewrite into saying that m0 − logq n −

2k logq logq n→∞. We can, again, rewrite this as m0 � logq n. If n→∞, the
implied constant may be any constant greater than 1, and if n is bounded we
only require m0 →∞.

4.1.3 Bound for #N ′, the small primes.

We recall writing Pm0
=
∏
P∈P<m0 P. Using a sieve similar to the one we used

in Sections 2.2.4 and 3.5, we write

#N ′ =
∑

D|Pm0

µ(D)#{a ∈ Fq[t]<m : D2 | f(a)}.

Suppose we can factorize a square-free polynomial D ∈ Fq[t], into ν(D) distinct
primes. For k ∈ N, we define

nk =
∑

D|Pm0
,

ν(D)=k

#{a ∈ Fq[t]<m : D2 | f(a)}

so that #N ′ =
∑∞
k=0(−1)knk.

Remark. In other words; nk looks at any element dividing Pm0
(which is either

a prime or the product of several primes), and finds the number of elements
a ∈ Fq[t]<m for which the polynomial is not square-free.

Here we start using the concept of Brun’s sieve. In short, Brun’s sieve
makes use of the fact that the partial sum Nr =

∑r
k=0(−1)knk alternates

around the limit of #N ′. That is, for r even, we have #N ′ ≤ Nr, and for r
odd, we have #N ′ ≥ Nr[1, Chapter 6]. Instead of having to find specific upper
and lower bounds for #N ′, we can concentrate on proving that Nr equals some
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term, for sufficiently large r. In our case we want to prove that that term is
cfq

m + o(cfq
m). This then suffices as both upper and lower bounds for #N ′.

The most straightforward calculation can be done by considering those
elements D|Pm0 with ν(D) ≤ r such that deg(D2) ≤ m. For such D,
we can make use of Lemma 3.7. We therefore let m0 and r be such that
2m0r ≤ m. Then, for any D | Pm0

(since every factor of Pm0
has degree < m0),

degD2 = 2 degD < 2m0r ≤ m. Then

#{a ∈ Fq[t]<m : D2 | f(a)} =
ρ(D2)

|D|2
qm = ρ(D2)qm−2 degD.

We can then write for every k ≤ r, that nk =
∑

D|Pm0

ν(D)=k

ρ(D2)qm−2 degD.

To evaluate this, we introduce the function U :

U(x, y) :=
∑
D|Py
ν(D)≤x

µ(D)
ρ(D2)

|D|2
.

This gives us

Nr = qm
∑

D|Pm0

ν(D)≤r

µ(D)
ρ(D2)

|D|2
= qmU(r,m0).

We now wish to estimate U(r,m0). Note that

U(∞,m0) =
∑

D|Pm0

µ(D)
ρ(D2)

|D|2
=

∏
P∈P<m0

(
1− ρ(P 2)

|P |2

)

= cf
∏

P∈P≥m0

(
1− ρ(P 2)

|P |2

)−1
= cf (1 +O(S(m0))) = cf (1 + o(1)).

Note that in finding the bound for #N ′′, we assumed that m0 was chosen such
that S(m0) = o(cf ) = o(1). If now we are able to bound U(∞,m0)− U(r,m0),
we may conclude the proof. We write, for any k ∈ N:

vk =
∑

D|Pm0

ν(D)=k

ρ(D2)

|D|2
.

Remark. Note that vk is the k-th elementary symmetric polynomial of the finite

multiset
{
ρ(P 2)
|P |2 : P ∈ P<m0

}
, whose elements are positive real numbers.

We then have vk ≤ vk1
k! . We can now again use the bound we found for S 38.

Since v1 takes only primes with degree < m0, we have v1 ≤ S. We can therefore
write v1 ≤ λ = k ln logq n+O(1). Let r = αλ for some α > 2. Now we can find
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our bound for U(∞,m0)− U(r,m0):

|U(∞,m0)− U(r,m0)| =

∣∣∣∣∣
∞∑

k=r+1

(−1)kvk

∣∣∣∣∣ ≤
∞∑

k=r+1

vk ≤
∞∑

k=r+1

λk

k!

<

∞∑
k=r+1

λr

r!
αr−k <

λr

r!
<

λr

(r/e)r

=

(
eλ

r

)r
=
( e
α

)αλ
= O

(
(logq n)−α ln (a/e)k

)
.

We need to choose α ln(α/e) such that (i.e., large enough), by (40),

|U(∞,m0)− U(r,m0)| � (logq n)−kα ln(α/e) = o(cf ).

This proves that if we let r be such that r � logq logq n and r → ∞ then
Nr = qmcf (1 + o(1)). Use of Brun’s sieve then concludes our proof that #N ′ =
cfq

m + o(cfq
m).

Remark. Note that we made some assumptions in Section 4.1.2 and 4.1.3 for
the proofs to be correct, we sum them up right here. We need m0 and r to be
such that m0 � logq n and r � logq logq n, where m0, r → ∞ and 2m0r ≤ m.
Combining these assumptions, we arrive at the conclusion that this means that
m � logq n logq logq n and m → ∞. Note that this is one of the conditions in
on m in Theorem 4.1.

4.1.4 Bound for #N ′′′, the large primes.

As we saw in Section 3.6, the bound for the large primes is,
compared to the small and the medium primes, the most diffi-
cult to calculate.iPoonenisolvedithisiproblemiby replacing the tar-
getipolynomialibyianiequivalentimultivariateipolynomialiwithiaisimplerit-
derivative,iandicarefullyiretraceiLando’s bounds on the corresponding
contributions to N ′′′, noting the size of our coefficients.

Suppose we have the polynomial f(x) ∈ Fq[t][x], we then define a new
polynomial F by

F (y0, . . . , yp−1) = f(ypo , ty
p
1 + · · ·+ tp−1ypp−1) ∈ Fq[t][yp0 , y

p
1 , . . . , y

p
p−1].

Recall that degx(f) ≤ k and degt(f) ≤ n, these in turn provide a bound on F ’s
coefficients and degrees: degt(F ) < n+ pk = O(n) and degyi(F ) < pk. We use
two lemma’s from Poonen[27, Lemma 7.2 and Lemma 7.3]:

Lemma 4.2. If f ∈ K[x1, . . . , xn] is square-free, then

F := f(yp0 + typ1 + · · ·+ tp−1ypp−1, x2, x3, . . . , xn) ∈ K[y0, . . . , yp−1, x2, . . . , xn]

is square-free.

Lemma 4.3. Suppose that f ∈ K[xp1, . . . , x
p
n] is square-free as an element of

K[x1, . . . , xn]. Then f and ∂f
∂t are relatively prime as elements of K[x1, . . . , xn].

Therefore, if f is a square-free polynomial, then F also is one. And if F is a
square-free polynomial, this means that F and ∂F

∂t are coprime. Alternatively,
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suppose that y ∈ (Fq[t])p such that P 2|F (y). Recall that the yi-s appear in F

only with exponents divisible by p, and ∂F (y)
∂t . Thus P 2|F (y) is equivalent to

stating that P | F (y) and P | ∂F∂t (y). Furthermore, we note that degt(
∂F
∂t ) ≤

degt(F ) = O(n) and degyi(
∂F
∂t ) ≤ degyi(F ) ≤ pk.

Remark. Note that Lemma 4.3 proves F and ∂F
∂t are coprime in

Fq(t)[y0, . . . , yp−1] only. In our proof, we assume them to be coprime in
Fq[t][y0, . . . , yp−1]. We can however check this is also true. To be coprime,
we need to make sure that they have no common factor P ∈ Fq[t]. If this
P exists, then it must divide the contents of both F (y0, 0, . . . , 0) = f(yp0) and
∂F
∂t (y0, 0, . . . , 0) = ∂f

∂t (yp0). Then we can assume that P 2 divides f , which refutes
the fact that f is square-free.

We are now in a position to find a bound for N ′′′.

Suppose mp = dmp e ≤ dm2 e = m1. Observe that letting the p-tuple

(that is, the sequence of p elements) y range over all (Fq[t]<mp)p, implies
a = yp0 + typ1 + · · · tp−1ypp−1 ranges over all Fq[t]<pmp . Note furthermore that
Fq[t]<m ⊂ Fq[t]<pmp . Therefore

#N ′′′ = #{a ∈ Fq[t]<m : ∃P ∈ P≥m1 , P 2 | f(a)}
≤ #{y ∈ (Fq[t]<mp)p+1 : ∃P ∈ P≥m1 , P 2 | f(yp0 + typ1 + · · · tp−1ypp−1)}
= #{y ∈ (Fq[t]<mp)p+1 : ∃P ∈ P≥m1 , P 2 | F (y))}

= #{y ∈ (Fq[t]<mp)p+1 : ∃P ∈ P≥m1 , P | F (y) and P | ∂F
∂t

(y)}. (41)

We need the following proposition to find a bound for (41), analogous to [21,
Proposition 5]:

Proposition 4.4. Suppose k, l, n,mp,m1 ∈ N such that m1 ≥ mp. Suppose
that f, g ∈ Fq[t][y0, . . . , yl] are coprime polynomials in l + 1 variables with
degyi(f),degyi(g) ≤ k and degt(f),degt(g) ≤ n. If

Nl(f, g) = #{y ∈ (Fq[t]<mp)l+1 : ∃P ∈ P≥m1 , P | f(y) and P | g(y)}.

Then Nl(f, g) = Ol,k

(
n+m1

m1
qlmp

)
.

Proposition 4.4 allows us to write the following:

#N ′′′ ≤ Op,pk
(
n+m1

m1
q(p−1)mp

)
= Op,k

(
n+m

mq
m
p −p

qm
)
. (42)

Combining Equations (40) and (42) and assuming m − p(logq n +
2k logq logq n) → ∞ (which we can assume in Theorem 4.1), we have #N ′′′ =
o(cfq

m). Before we prove Proposition 4.4, we first need a simpler bound, slightly
generalizing [21, Proposition 6] and giving exact bounds.

Proposition 4.5. Suppose k, l, n,mp,m1 ∈ N such that m1 ≥ mp. Suppose
that f ∈ Fq[t][y0, . . . , yl] is a polynomial such that degyi(f) ≤ k and degt(f) ≤
n, and f is not identically 0. Then

#{y ∈ (Fq[t]<mp)l+1 : f(y) = 0} ≤ k(l + 1)qlmp .
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Proof. We prove this proposition using induction. First we analyze the instance
l = 0. This gives us the non vanishing polynomial f(y0) of degree at most
k in y0. This polynomial then has at most k roots in Fq[t]. This means that
#{y ∈ (Fq[t]<mp)0+1 : f(y) = 0} ≤ k. We conclude our proof for l = 0.

Assuming the proposition holds for l − 1, we prove it must also hold for
l. Let f be a polynomial in yl, of degree at most k, with coefficients in
Fq[t][y0, . . . , yl−1]. For simplicity, we denote this polynomial as f(y′, yt), where
y′ = (y0, . . . , yl−1). Suppose f0 ∈ Fq[t][y0, . . . , yt−1] is the leading coefficient of
f(y′, yt). Since f0 also satisfies the degree requirements of Proposition 4.5, we
find by induction

#{y′ ∈ (Fq[t]<mp)l+1−1 : f0(y′) = 0} ≤ klq(l−1)mp . (43)

Furthermore, we know that every y′ ∈ (Fq[t]<mp)l+1−1 with f0(y) 6= 0, has at
most degyl(f) ≤ k values of yl in Fq[t] such that f(y′, yl) = 0. Therefore

#{(y′, yl) ∈ (Fq[t]<mp)l+1 : f0(y′) 6= 0, f(y′, yl) = 0} ≤ k#(Fq[t]<mp)l+1−1

(44)

= kqlmp .

Combining (43) with (44), we end up with

#{(y′, yl) ∈ (Fq[t]<mp)l+1 : f(y′, yl) = 0}
≤ #{(y′, yl) ∈ (Fq[t]<mp)l+1 : f0(y′) = 0}
+ #{(y′, yl) ∈ (Fq[t]<mp)l+1 : f0(y′) 6= 0, f(y′, yl) = 0}
= qmp#{y′ ∈ (Fq[t]<mp)l+1−1 : f0(y′) = 0}
+ #{(y′, yl) ∈ (Fq[t]<mp)l+1 : f0(y′) 6= 0, f(y′, yl) = 0}
≤ qmpklq(l−1)mp + kqlmp = k(l + 1)qlmp .

In a similar fashion, we can show that:

Proposition 4.6. Suppose k, l, n,mp,m1 ∈ N such that m1 ≥ mp. Suppose
that f ∈ Fq[t][y0, . . . , yl] is a polynomial such that degyi(f) ≤ k and degt(f) ≤
n. Let P ∈ P≥m1 be a large prime and suppose f is not identically 0 modulo
P . Then

Nl(f, P ) = #{y ∈ (Fq[t]<mp)l+1 : P | f(y)} ≤ k(l + 1)qlmp .

Remark. Observe that the assumption m1 ≥ mp is quite necessary in this
proposition.In other words, each residue class modulo P has at most a single
representative in Fq[t]<mp .

We are now in a position to prove Proposition 4.4.

Proof of Proposition 4.4. We prove this proposition using induction. First we
analyze the instance l = −1, to avoid repetition. Let f, g be polynomials in
Fq[t], and observe that (Fq[t]<mp)−1+1 = {()} is a unit set containing only the
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empty tuple. Since we assumed f and g to be coprime, we know there does not
exist a P ∈ P such that P divides both f and g. Therefore the set

{y ∈ (Fq[t]<mp)−1+1 = {()} : ∃P ∈ P≥m1 , P | f(y) and P | g(y)}

is empty. Therefore Nl(f, g) = 0. Since this also satisfies Ok

(
n+m1

m1
q−mp

)
, we

conclude our proof for l = −1.
Assuming the proposition holds for l−1, we prove it must also hold for l. We

write Al = Fq[t, y0, . . . , yl−1]. Let polynomials f and g be in Al[yt], and suppose
have only one variable, which is in yl, with coefficients in the polynomial ring
Al. Suppose that fC , gC ∈ Al are their respective contents. This allows us
to rewrite f = fCfI and g = gCgI (see Definition ??). Then fI and gI are
primitive polynomials in Al[yl] and indivisible by any non-scalar polynomial in
Al. Since f and g are coprime, we also know that fC and fI are coprime to
gC and gI . Also since we assumed f and g to have degyi(f),degyi(g) ≤ k and
degt(f),degt(g) ≤ n, we know all four polynomials fC , fI , gC and gI also have
degyi ≤ k and degt ≤ n. Note that we can decompose

Nl(f, g) ≤ Nl(fI , gI) +Nl(fI , gC) +Nl(gI , fC) +Nl(fC , gC).

Remark. We can use the ≤ sign here, since there might be y ∈ (Fq[t]<mp)l+1

that occur in more than one of the right hand terms.

This simplifies the process of finding the bound for Nl(fC , gC). Proving that

the individual terms on the right are bounded by Ol,k

(
n+m1

m1
qlmp

)
suffices.

The term Nl(fC , gC). We defined fC and gC to be independent of yl.
Assuming the proposition is correct for l − 1, results in

Nl(fC , gC) = qmpNl−1(fC , gC) = qmpOl−1,k

(
n+m1

m1
q(l−1)mp

)
= Ol,k

(
n+m1

m1
qlmp

)
.

The terms Nl(fC , gI),Nl(fI , gC) and Nl(fI , gI). For the terms
Nl(fC , gI),Nl(fC , gI), we have one polynomial in Al and the another
polynomial indivisible by any polynomial in Al. We wish to bound Nl(fI , gI)
by a term of this form as well.

Suppose R = Resyl(fI , gI) ∈ Al be the resultant of fI , gI . Since fI and
gI are coprime, we know that R is non-zero. Also by definition, if for yi ∈ Fq[t]
and P ∈ P, we have P | fI(y) and P | gI(y), then this implies that P | R(y).
This gives us Nl(fI , gI) ≤ Nl(fI , R). Also, since degyl(fI) and degyl(gI) ≤ k, we
know that R can be written as a polynomial of degree ≤ 2k in the Al coefficients
of fI , gI . This in turn implies that degt(R) ≤ 2kn and degyi(R) ≤ 2k2.

Lemma 4.4. Suppose R ∈ Al and f ∈ Al[yl] such that f is indivisible by all
non-scalar polynomials inAl. Furthermore, let degt f ≤ n,degyi f ≤ k, degtR ≤
2kn and degyi R ≤ 2k2. Let Nl(f, P ) be defined as in Proposition 4.6. We have

Nl(f,R) = Ol,k

(
n+m1

m1
qlmp

)
.
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Remark. Note that we could then use this bound for Nl(fI , gC),Nl(gI , fC) and
Nl(fI , gI).

Proof of Lemma 4.4. Rewrite R =
∏
j∈J Rj . That is, we decompose R into its

irreducible factors Rj . We have Nl(f,R) ≤
∑
j∈J Nl(f,Rj). Again, we have the

≤ sign since some elements may in more than one term. Since all irreducible
factors of R are in Al, we have Rj - f and that f and Rj are coprime for all
j ∈ J . Suppose now we decompose J into J = J1 ∪ J2 ∪ J3, which splits the
indices of the irreducible factors such that

J1 = {j ∈ J : Rj 6∈ Fq[t]}
J2 = {j ∈ J : Rj ∈ Fq[t]≥m1}
J3 = {j ∈ J : Rj ∈ Fq[t]<m1}.

Recall that degtR ≤ 2kn and that degyi(R) ≤ 2k2l. Therefore, the number of

elements in J1 and J2 is #J1 ≤ 2k2l and #J2 ≤ 2kn
m1

.
We focus on J1 first. Suppose f0 ∈ Al is some coefficient of f (as a polynomial

in yl) for whichRj - f0, for every jøJ1. SinceRj - f , we know that this coefficient
exists. Now we turn to J3. Note that every j ∈ J3 and y ∈ (Fq[t]<mp)l+1, we
can write Rj(y) = Rj . This means that there exists no P ∈ P≥m1 such that
P | Rj , i.e., Nl(f,Rj) = 0. If now we turn to J2, we observe that for every
j ∈ J2, we consider only primes P with degP ≥ m1. We therefore comply
with all assumptions from Proposition 4.6 for f and P = Rj . This gives us
Nl(f,Rj) ≤ k(l + 1)qlmp = Ol,k(qlmp). We are now in a position to rewrite
Nl(f,Rj) into terms, using the decomposition of J :

Nl(f,Rj) = #{y ∈ (Fq[t]<mp)l+1 : ∃P ∈ P≥m1 , P | f(y) and P | Rj(y)}
≤ #{y ∈ (Fq[t]<mp)l+1 : Rj(y) = 0}
+ #{y ∈ (Fq[t]<mp)l+1 : ∃P ∈ P≥m1 , P | f0(y) and P | Rj(y)}
+ #{y ∈ (Fq[t]<mp)l+1 : Rj(y) 6= 0,∃P ∈ P≥m1 , P | Rj(y), P | f(y) and P - f0(y)}.

Since degRj ≤ k, we know that #{y ∈ (Fq[t]<mp)l+1 : Rj(y) = 0} ≤
k(l + 1)qlmp = Ol,k(qlmp). The second term equals Nl(f0, Rj). Since we
defined Rj to be irreducible, this means f0, Rj are coprime. In order to be
able to use Proposition 4.4, we need to check that all those assumptions are
met. We have degyi(f0) and degyi(Ri) ≤ 2k2, and degt(f0) and degt(Rj) ≤ 2kn.

Therefore we are allowed to use the proposition, and assuming this was
correct for l − 1, we have

Nl(f0, Rj) = qmpNl−1(f0, Rj) = qmpOl−1,2k2

(
2kn+m1

m1
q(l−1)mp

)
= Ol,k

(
n+m1

m1
qlmp

)
(45)

This leaves only the final summand. Suppose we write y = (y′, yl) ∈
(Fq[t]<mp)l+1−1 × (Fq[t]<mp)0+1 = (Fq[t]<mp)l+1. If for y, we have Rj(y) =
Rj(y

′) 6= 0, this implies that degt(Rj(y
′)) ≤ 2kn = 2k2lmp. Suppose we write
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Py′ = {P ∈ P≥m1 : P | Rj(y′), P - f0(y′)}, then

#Py′ ≤
2kn+ 2k2lmp

m1
= Ol,k

(
n+m1

m1

)
.

However, for each y′ ∈ (Fq[t]<mp)l+1−1 and P ∈ Py′ , we have that f(y′, yl)
is a polynomial of degree ≤ k in yl. We know that this polynomial is non-
vanishing modP . Recalling that degt(P ) ≥ m1 ≥ mp, we then have #{yl ∈
(Fq[t]<mp)0+1 : P | f(y′, yl)} ≤ k. Concluding

#{y ∈ (Fq[t]<mp)l+1 : Rj(y) 6= 0,∃P ∈ P≥m1 , P | Rj(y), P | f(y) and P - f0(y)}

=
∑

y′∈(Fq [t]<mp )l+1−1

Rj(y
′) 6=0

#{yl ∈ B0 : ∃P ∈ P≥m1 , P | Rj(y′), P | f(y′, yl) and P - f0(y′)

≤
∑

y′∈(Fq [t]<mp )l+1−1

Rj(y
′) 6=0

∑
P∈Py′

#{yl ∈ B0 : P | f(y′, yl)} ≤
∑

y′∈(Fq [t]<mp )l+1−1

Rj(y
′)6=0

∑
P∈Py′

k

=
∑

y′∈(Fq [t]<mp )l+1−1

Rj(y
′) 6=0

Ol,k

(
n+m1

m1

)
= Ol,k

(
n+m1

m1
qlmp

)
.

We now see that Nl(f,Rj) = Ol,k

(
n+m1

m1
qlmp

)
for all j ∈ J1.

As mentioned before, this puts us in a position to find the final bound on
Nl(f, g) and thus prove the theorem:

Nl(f, g) ≤
∑
j∈J1

N (f,Rj) +
∑
j∈J2

N (f,Rj) +
∑
j∈J3

N (f,Rj)

∑
j∈J1

Ol,k

(
n+m1

m1
qlmp

)
+
∑
j∈J2

Ol,k
(
qlmp

)
+
∑
j∈J3

0

≤ 2k2l ·Ol,k
(
n+m1+

m1
qlmp

)
+

2kn

m1
·Ol,k

(
qlmp

)
= Ol,k

(
n+m1

m1
qlmp

)
.

Remark. Note that while this error term was the most difficult to calculate, it
actually contributes the smallest error.

4.2 Proof of Theorems 4.2 and 4.3.

Having proved Theorem 4.1 allows to explicitly prove Theorem 4.2 and 4.3.
These proofs follow in this section.

Proof of Theorem 4.2. Introduce a function f(x) = g(t,N(t) + x) ∈ Fq[t][x].
As was one of the assumptions, degx f = k, therefore degx g = k. For another
assumption, degN(t) = n, therefore degt f ≤ degx g · degtN + degt g = kn +
degt g = O(n). Since we get f from g by a fixed Fq[t] translation of the x variable,
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g being square-free implies that f is square-free. Consequently, we have ρf (D) =
ρg(D) = ρ(D) for any polynomial D. Note that since the singular sum S and
its tail S(m0) depend on P 2 and ρ(P 2) only, we see both Sf (m0) = Sg(m0)
and Sf = Sg. Also, since the density is independent of the choice for N(t)
or its degree n, we have for f and g that cf = cg. In order to let Sf (m0) and
Sg(m0) equal o(1) = o(cf ), the only need to let m0 →∞, r →∞. Similar to the
argument used in 4.1.2 and 4.1.3, this in turn results in #N ′ = cfq

m + o(cfq
m)

and #N ′′ = o(cfq
m). The restriction our choice of r,m0, leaves is that we

must have m → ∞. Finally, we need to analyze our bound N ′′′. As cf is now

a constant, (41) implies that #N ′′′ = o(1) = o(cf ) when mqm/p

n → ∞, which
is equivalent to m− p(logq n logq logq n)→∞, as we required in the theorem’s
statement. Note that this is the first time that n plays a role, as it still affects
the relevant degrees.

Proof of Theorem 4.3. We use an analogues approach as the one used in the
proof of Theorem 4.2. Introduce a function f(x) = g(t,N(t) + x) ∈ Fq[t][x].
Again, note that since the singular sum S and its tail S(m0) depend on P 2 and
ρ(P 2) only, we see both Sf (m0) = Sg(m0) and Sf = Sg. Also, since the density
is independent of the choice for N(t) or its degree n, we have for f and g that
cf = cg. Because of the independence of S, Sf (m0) and cf on n, we may replace
this n by any other of our choosing. For the same reason, the arguments used for
finding the bounds on N ′′ and N ′ hold for any choice of n. Our only restraint
is that we have r,m0 →∞ with m0 � logq n1, r � logq logq n1 and 2m0r ≤ m.
Note that this need not be a problem since we assumed m� logq n1 logq logq n1.
Again, the only part that depends on our choice of n is the bound of #N ′′′.
Note that degt f ≤ kn2+n1 (n2 being degtN). Suppose n2 � n1, this results in
degt f ≤ degx g · degtN + degt g � n1 which is quite similar to our situation in
Theorem 4.1. Note that we proved the effect ofN ′′′ on the total bound was quite
slim. Alternatively, suppose n2 � n1. Then, using a similar reasoning, we have
degt f � n2. Then (41) holds with the degree n replaced by n2. Combining

this with (40) where we let n1 take the place of n, we need mqm/p

n2 logq n1)

2k

→ ∞

to end up with #Nm = o(cfq
m). Note that the restriction mqm/p

n2 logq n1)

2k

→∞ is

essentially stating m− p(logq n2 − logq logq n2 + 2k logq logq n1)→∞, as is the
restriction in the theorem.
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