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1 Introduction

Since the Hellenistic period, prime numbers and their properties have been a
fundamental object of interest in mathematics [MB11]. The defining property
of such a number is that it is only divisible by 1 and itself. Their counterparts
are the composite numbers. These are numbers defined as being divisible by
at least one number other than 1 or themselves. One of the earliest results
obtained from research into these numbers is now known as the fundamental
theorem of arithmetic.

Fundamental theorem of arithmetic. Every natural number > 1 is either
prime or can be written, up to the order of factors, as a unique product of
primes.

Proof. We will give a proof by induction. First, note that 2 and 3 are prime.
Now assume the theorem to be true for all numbers between 1 and n + 1 for
some n ∈ N, so each number in between can be written as a unique product of
primes. Either n + 1 is prime, in which case the proof is finished or n + 1 is
composite. In that case n+ 1 can be written as ab, where 1 < a ≤ b < n+ 1, so

the theorem is true for the numbers a and b. Let
∏k
i=1 p

ci
i and

∏l
j=1 q

dj
j be the

prime representations of a and b, respectively. Then n+1 =
∏k
i=1 p

ci
i ∗
∏l
j=1 q

dj
j ,

proving that n + 1 has a prime representation as well. Thus, it follows by
induction that every natural number is either prime or can be written as a
product of primes.

It remains to show that this representation is unique. Suppose an inte-
ger m has the prime representations

∏k
i=1 pi and

∏l
j=1 qj where pi and qj are

not neccesarily unique for every i and j. Using the properties of divisibility,
p1|
∏l
j=1 qj and therefore p1|qj for some j. The prime representations can be

ordered such that p1|q1. Note that q1 is prime and therefore p1 = q1. Divid-

ing both prime representations by p1 gives
∏k
i=2 pi and

∏l
j=2 qj . Repeating this

process until both representations are exhausted reveals they are made up of the
same primes. If one of the representations is exhausted before the other, then
that representation is smaller than the other, which would imply that m 6= m.
Therefore the representations must be equal and, hence, a prime representation
is unique up to the order of the factors.

The fundamental theorem of arithmetic can be used to define the greatest
common divisor (gcd) and the least common multiple (lcm).

Definition 1.1 (Greatest common divisor and least common multiple). Let
a, b ∈ Z with prime representations

∏n
i=1 p

ki
i and

∏n
i=1 p

li
i , where the pi are

unique primes and where ki, li ≥ 0 for every i. Then gcd(a, b) :=
∏n
i=1 p

min(ki,li)
i

and lcm(a, b) :=
∏n
i=1 p

max(ki,li)
i .

One of the first questions that arose from the research on prime numbers,
was on the cardinality of the set of these numbers, which led to the following
theorem.
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The infinitude of primes. There are infinitely many prime numbers.

The proof given below is the oldest surviving proof of this theorem, found
in Euclid’s Elements [Beu15].

Proof. Assume there is a finite number of primes. Then we can define a set
P = {p1, p2, ..., pn}, where n is the number of primes, containing every prime
number. Let pn+1 =

∏n
i=1 pi + 1, then gcd(pn+1, pi)|1 for every 1 ≤ i ≤ n and

therefore gcd(pn+1, pi) = 1. This implies that none of the elements of P is a
part of the prime representation of pn+1. Thus pn+1 is prime itself or it has
a prime representation containing numbers outside of P . This contradicts our
assumption that P was the set of all prime numbers, which proves the infinitude
of primes.

This is however not the only known proof of the infinitude of primes. In fact,
mathematicians have come up with a large number of proofs of this theorem
using many different techniques. A few well known proofs are Goldbach’s proof
[AZ10], Erdős’s proof [AZ10] and Furstenberg’s proof [Fu55]. These are shown
in the subsections below.

Chapter 2 will provide some background for Chapter 3 and Chapter 4. In
Chapter 3, a number of results obtained by Andrew Granville [Gr17] will be pre-
sented. These results provide methods for finding infinite sequences of coprimes
using dynamical systems and polynomials with integer coefficients. When the
sequence of integers, obtained by repeatedly applying such a polynomial to 0,
contains an infinite number of distinct elements, Granville’s method fails. How-
ever, with his last result, he shows that in these cases, the existence of infinite
sequences of distinct coprimes can still be proven. This last result depends on
the validity of the abc-conjecture.

In Chapter 4 we will expand upon this last result, giving a proof using
weaker assumptions. Moreover, a minimal assumption regarding the weak abc-
conjecture will be determined and interpreted. The strongest bound proven at
the time of writing, related to the abc-conjecture, will be applied in order to
determine whether it is sufficient for proving the result as well. We shall see that
this bound is sufficiently strong for proving the result for certain polynomials.

1.1 Goldbach’s proof

In 1730, Christian Goldbach gave a proof of the infinitude of primes in a letter
written to Leonhard Euler. He used the properties of the Fermat numbers in a
fashion slightly similar to Euclid’s proof. These numbers are defined as follows.

Fn := 22
n

+ 1,

Where n is a non-negative integer. We can use this definition to derive two
properties of the Fermat numbers. First, note that

Fn+1 = 22
n+1

+ 1 = (22
n

)2 + 1 = (Fn − 1)2 + 1. (1)
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We can use this identity to show that Fn = F0 · · ·Fn−1 + 2 with a proof by
induction. Note that F1 = F0 + 2 = 5. Now, assume that Fn = F0 · · ·Fn−1 + 2
holds for some n ≥ 1. Then, using equation 1, Fn+1 = (Fn − 1)2 + 1. Applying
our assumption yields

Fn+1 = (F0 · · ·Fn−1 + 1)2 + 1

= (F0 · · ·Fn−1)2 + 2F0 · · ·Fn−1 + 2

= F0 · · ·Fn−1(F0 · · ·Fn−1 + 2) + 2

= F0 · · ·Fn + 2,

which proves the property. This is the important property which Goldbach used
in his proof of the infinitude of primes as shown below.

Goldbach’s proof. Note that the Fermat numbers form an infinite sequence of
distinct integers. It follows from the identity Fn = F0 · · ·Fn−1 + 2 that
gcd(Fn, Fm) ≤ 2 for every 0 ≤ m < n. Furthermore, the definition of the Fermat
numbers implies that they are all odd and, therefore, gcd(Fn, Fm) = 1. From
the definition of the greatest common divisor as given above, it follows that the
prime representations of the Fermat numbers never share a prime factor. This
in combination with the fact that the Fermat numbers are an infinite sequence
of distinct integers and with the fundamental theorem of arithmetic proves that
there are infinitely many prime numbers.

1.2 Erdős’ proof

Before giving Erdős’ proof, the following definitions and a simple lemma should
be introduced. The function π(N) is defined as the cardinality of the set of
prime numbers smaller than or equal to N ∈ N.

Definition 1.2 (Square-free number). Let r ∈ Z with prime representation∏n
i=1 p

ki
i , where ki ≥ 1. If ki = 1 for every i ∈ {1, . . . , n}, then r is called

square-free.

Lemma 1.3. Every integer n can be written as a product rs2, where r is a
square-free number and s is an integer.

Proof. Given an integer n, let s be the largest integer, such that s2 is contained
in the prime representation of n. If r = n/s2 is not square-free and if the prime

representation of r is
∏k
i=1 p

ai
i , then there is at least one j ∈ {1, . . . , k} such

that aj is greater than 1. However, in that case (spj)
2 is also contained in n,

contradicting our assumption that s is the largest integer such that its square
is contained in n. Therefore, r has to be square-free, proving the lemma.

Erdős’ proof. Suppose N is an integer greater than 1. Using Lemma 1.3, we
can represent the set of integers from 1 to N as {r1s21, . . . , rNs2N} where ri is a
square-free number for every i. In this representation, ri could be any square-
free number smaller than or equal to N . Using the definition of square-free
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numbers, we can determine an upper-bound for the number of possible square-
free numbers smaller than N . Any such number must be a product of primes
smaller than N . The number of possible products of such primes is given by
2π(N). Any square s2i contained in the set above, must be smaller than N as
well, therefore 1 ≤ si ≤ b

√
Nc. Now the total amount of possible combinations

ri and si, such that ris
2
i ≤ N , is

2π(N)b
√
Nc ≥ |{r1s21, . . . , rNs2N}|= N,

where |.| is the number of elements in the set. By noting that
√
N ≥ b

√
Nc and

dividing by
√
N , we get

2π(N) ≥
√
N.

Taking the logarithm yields

π(N) ≥ log(N)

log 4
.

The right hand side of this inequality goes to infinity as N tends to infinity.
Therefore the number of primes must be infinite as well.

What is remarkable about this proof, besides being an elegant proof of the
infinitude of primes, is that it provides a lower bound for the function π(N),
namely log(N)/log(4). Therefore, it reveals something about the density of
the primes within the collection of positive integers up to some positive inte-
ger N . However, the prime number theorem, proven independently by Jacques
Hadamard [Ha96] and Charles Jean de la Vallée Poussin [Va96] in 1896, shows
that the asymptotic distribution of π(N) is N/log(N). This term grows consid-
erably faster than the aforementioned lower bound. Therefore, for large N , this
lower bound will generally be very weak.

1.3 Furstenberg’s proof

Furstenberg gave a topological proof of the infinitude of primes. In order to
present this proof, some topological definitions and notation should be intro-
duced.

Definition 1.4 (Arithmetic progression). A collection S(a, b) = {an+b |n ∈ Z}
where a, b ∈ Z and a 6= 0 is called an arithmetic progression.

Definition 1.5 (Union and intersection). Given two sets V , W , their union is
defined as

V ∪W := {x |x ∈ V ∨ x ∈W},

and their intersection as

V ∩W := {x |x ∈ V ∧ x ∈W}.
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Definition 1.6 (Complement). Given a set X and a set U ⊂ X, the comple-
ment of U in X is defined as

X\U := {x ∈ X |x /∈ U}.

Definition 1.7 (Topology). Given an arbitrary set X, a topology τ is a collec-
tion of subsets of X satisfying the following axioms.

1. The set containing no elements, called the empty set ∅, and the entire set
X are elements of τ .

2. Any finite or infinite union of elements in τ belongs to τ as well.

3. The intersection of any finite number of elements of τ belongs to τ as well.

Definition 1.8 (Topological space). A space X endowed with a topology τ is
called a topological space (X, τ).

Definition 1.9 (Open and closed sets). Given a topological space (X, τ), a
subset U ⊂ X is called an open set if U ∈ τ . The complement of an open set in
X is called closed.

Besides these definitions, Furstenberg used a well known lemma regarding
the union of closed sets.

Lemma 1.10. Given a topological space (X, τ), the union of finitely many
closed sets of (X, τ) is closed as well.

Proof. Let
⋃n
i=1 Ui be a union of n ∈ N>0 closed sets in a topological space

(X, τ). Let x be an arbitrary element of the complement of this union, then
x /∈ Ui for every Ui. This implies x ∈ X\Ui for every Ui and thus that x ∈⋂n
i=1(X\Ui). On the other hand, if x is an arbitrary element of

⋂n
i=1(X\Ui),

then x ∈ X\Ui for every Ui. Therefore x /∈ Ui for every Ui from which it follows
that x /∈

⋃n
i=1 Ui and thus x ∈ X\

⋃n
i=1 Ui. So X\

⋃n
i=1 Ui =

⋂n
i=1(X\Ui).

Since every Ui is closed, X\Ui is open, so the right hand side of this equation
is a finite intersection of open sets, which is itself open because of property 3 of
topologies as defined above. Therefore the complement of

⋃n
i=1 Ui is an open

set, which implies that
⋃n
i=1 Ui is closed.

Furstenberg’s proof. Let τ be the collection of the empty set ∅ and unions of
arithmetic progressions. We can show that τ defines a topology on Z.

First note that S(1, 0) = Z and thus that ∅,Z ∈ τ . So τ satisfies the first
property of topologies. Next, take a union of, not necessarily finitely many,
elements U of τ . If x is an element of this union, then there exists an arithmetic
progression S(a, x) ⊂ U for some a and for some U . Therefore S(a, x) ⊂⋃
U , which shows that any element of the union is contained in an arithmetic

progression contained in the union as well. This proofs that this union is an
element of τ and thus that τ satisfies the second property of topologies. Lastly,
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take an intersection of two sets U, V ∈ τ . If x is an element of this intersection,
then there exist aU and aV such that S(aU , x) ∈ U and S(aV , x) ∈ V . Note that
for every n ∈ Z, n lcm(aU , aV ) + x = nbaU + x = ncaV + x for some b, c ∈ Z.
Therefore S(lcm(aU , aV ), x) is contained in the intersection. This proves that for
every x in the intersection, there exists an arithmetic progression, containing x,
which is itself contained in the intersection. So τ also satisfies the third property
of topologies and (Z, τ) is a topological space.

The following two properties of this topological space can be used to prove
the infinitude of primes.

1. Any non-empty finite subset of Z cannot be open, because arithmetic
progressions are infinite. Therefore the complement of a finite set cannot
be closed.

2. Arithmetic progressions are open and closed sets, because the complement

of an arithmetic progression is
a−1⋃
i=1

S(a, b+ i), which is an open set.

The fundamental theorem of arithmetic tells us that any number greater
than 1 or smaller than −1 can be written as a product of primes. Therefore,
the union

⋃
p prime

S(p, 0) contains every number except for the numbers −1 and

1, so we can write

Z\{−1, 1} =
⋃

p prime

S(p, 0).

Note that the left-hand side of this equation is the complement of a finite set.
Property one of this topological space implies that this set cannot be closed.
Because of property two, the right-hand side is a union of closed sets. If this
were a finite union, than it would be closed as a result of Lemma 1.10, which
would contradict property one. Therefore the number of primes must be infinite.

2 Theoretical background

This chapter will provide the theory required for proving the results provided
in Chapters 3 and 4. The theory consists of number theory, dynamical systems
theory and some additional theorems from various research areas.

2.1 Number theory

Besides the definitions provided in the previous chapter, some additional def-
initions and results from the field of number theory will be used in the next
chapters. These definitions and results will be provided here. The first impor-
tant definition is that of coprime integers.

Definition 2.1 (Coprime integers). Two integers a, b ∈ Z are coprime if
gcd(a, b) = 1.
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Note that this implies that two integers are coprime exactly when their
prime representations share no prime factors. When sequences of integers are
not pairwise coprime, we can use the following two definitions to recognize some
important differences in their prime representations.

Definition 2.2 (Private prime factors). Given a sequence of integers a0, a1, . . .,
a prime factor pi of ai is called a private prime factor of ai if pi - aj whenever
i 6= j.

Definition 2.3 (Primitive prime factors). Given a sequence of integers a0, a1, . . .,
a prime factor pn of an is called a primitive prime factor of an if pn - am for
all 0 ≤ m ≤ n− 1

Given an infinite sequence of integers, where every element contains a private
or primitive prime factor. The sequence of these prime factors forms an infinite
sequence of distinct primes. Therefore, these definitions can be used to construct
infinite sequences of distinct primes as shown in the following lemma regarding
coprime sequences presented by Granville [Gr17].

Lemma 2.4. Suppose that a0, a1, . . . is an infinite sequence of distinct, pairwise
coprime integers. Let p0, p1, . . . be an infinite sequence such that pi is a prime
divisor of ai for every i, then this sequence is an infinite sequence of distinct
primes.

Proof. Let a0, a1, . . . be an infinite sequence of distinct, pairwise coprime in-
tegers. Then the greatest common divisor between any two elements of this
sequence is 1. Suppose we take a sequence p0, p1, . . . where pi is a prime factor
of ai for every i. Then if pi|aj for i 6= j, then pi|gcd(ai, aj) = 1 and thus pi = 1,
contradicting our assumption that pi is prime. Therefore pi - aj whenever i 6= j,
which implies that pi is a private prime factor of ai for every i. So p0, p1, . . . is
an infinite sequence of distinct primes.

The following lemma is provided by Granville, but without a proof [Gr17].
It will be used extensively in Chapter 3 and Chapter 4.

Lemma 2.5. Let f(x) be a polynomial with integer coefficients a0, ..., ak ∈ Z,
such that f(x) = akx

k + ...+ a0. For any b, c ∈ Z, b− c divides f(b)− f(c) and
if b ≡ c (mod m) for an integer m, then f(b) ≡ f(c) (mod m).

Proof. In order to proof that (b− c)|(f(b)− f(c)), we have to show that f(b)−
f(c) = d(b− c) for some integer d. Note that

f(b)− f(c) =

k∑
i=1

ai(b
i − ci).

We can write

bn − cn = (b− c)
n∑
i=1

bn−ici−1
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thereby showing that (b − c)|(bn − cn) for every n ≥ 1. Let di be the integer
such that di(b− c) = bi − ci, then

f(b)− f(c) =

k∑
i=1

aidi(b− c) = (b− c)
k∑
i=1

aidi,

which proves that (b− c)|(f(b)− f(c)).
Now suppose that b ≡ c (mod m) for some integer m. Then we can write b =

dm+c for some integer d. Substituting this into f(b) gives ak(dm+c)k+ ...+a0.
The only term in (dm+ c)k not explicitly containing m is ck, so

f(b) ≡ akck + ...+ a0 (mod m)

which proves that f(b) ≡ f(c) (mod m).

The next definition will be used in one of the most famous conjectures of
number theory.

Definition 2.6 (Radical of an integer). Let a be an integer with prime repre-
sentation

∏n
i=1 p

ki
i where ki ≥ 1 for every i and pi 6= pj when i 6= j. The radical

of a is defined as the product of each distinct prime in the prime representation
of a, i.e.

Rad(a) =

n∏
i=1

pi.

Note that the radical of an integer is always the largest square-free number
contained in that integer. The next conjecture was proposed by David Masser
and Joseph Oesterlé [Oe88] in 1985 and in 1988, respectively, and has not yet
been proven.

The abc-conjecture. For every ε > 0, there exists a constant kε, such that
for every pair of positive coprime integers a and b with a+ b = c,

c ≤ kε Rad(abc)1+ε.

A related conjecture, which requires a weaker assumption is the weak abc-
conjecture.

The weak abc-conjecture. There exists γ > 0 such that, for every pair of
positive coprime integers a and b with a+ b = c, the following inequality holds:

c < Rad(abc)1+γ .

Neither the abc-conjecture, nor the weak abc-conjecture has been proven.
However, an exponential version of the abc-conjecture has been proven by Stew-
art and Yu in 2001 [SY01].

Theorem 2.7 (Stewart, Yu, 2001). There exists an effectively computable pos-
itive number k, such that, for all positive integers a, b, and c with a+ b = c and
gcd(a, b, c) = 1,

c < exp(kRad(abc)
1
3 log(Rad(abc))3).
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2.2 Dynamical systems

This subsection will provide two definitions from dynamical systems theory.
These will be used in Chapter 3 for the simplification of the theorems and
proofs presented there.

Definition 2.8 (orbit). Given a map f(x) ∈ Z[x] and an integer x0. The
sequence (xn)n≥0, where xn+1 = f(xn) is called to orbit of x0 under the map f .

Consider the Fermat numbers for instance. If we let f(x) = (x−1)2+1, then
equation (1) from Subsection 1.1 can be written as Fn+1 = f(Fn). Let x0 =
F1 = 3, then the orbit of x0 under f is exactly the sequence of Fermat numbers.
This example shows how orbits can be used to give a clear representation of
integer sequences.

Definition 2.9 (periodicity of orbits). The orbit of x0 under the map f is called
periodic if there exists n ≥ 1 such that fn(x0) = x0, preperiodic if there exists
m ≥ 0 such that xm is periodic under f and strictly preperiodic if m ≥ 1. The
n and m are called the period and the preperiod of x0, respectively. If an orbit
is not preperiodic, then it is wandering.

Note that only wandering orbits are infinite sequences of distinct elements.
Therefore, only wandering orbits can be used for the construction of infinite
sequences of primes, as will be shown in Chapter 3.

2.3 Additional theory

This subsection contains a number of definitions, lemma’s and theorems from
multiple fields, often connected to algebraic geometry and number theory. They
lead to a consequence of the abc-conjecture and a somewhat equivalent conse-
quence of the weak abc-conjecture. These consequences will be used in Chapters
3 and 4. The first theorem is the Riemann-Hurwitz formula, presented without
a proof. The definition of multp(F ) can be found in [Ba07].

The Riemann-Hurwitz formula. Let F : X → Y be a nonconstant holo-
morphic map between compact Riemann surfaces. Then

2g(X)− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

[multp(F )− 1],

where g is the genus of the surface.

A proof of this theorem is provided in the original article by Hurwitz [Hu92]
(for an English variant, see [Mi95] for instance). As an example, consider φ(z) ∈
C[z] with φ(z) = z2 over the set C ∪ {∞}. This function is ramified only at 0
and ∞, with mult0(φ) = mult∞(φ) = 2 and the function has degree 2. This
set is the Riemann sphere, which has genus zero. Suppose we did not know the
genus of this set, then we could apply the Riemann-Hurwitz formula as follows:

2g(C ∪ {∞})− 2 = 2(2g(C ∪ {∞})− 2) + (2− 1) + (2− 1).
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Through solving this equation, we obtain

g(C ∪ {∞}) = 0.

The following lemma is a special case of the Riemann-Hurwitz formula.
When dealing with the complex projective space P1(C), we will think of it
as the Riemann sphere C ∪ {∞} instead, as these sets are homeomorphic.

Lemma 2.10. Let ϕ ∈ C(z) be a rational function, then

2deg(ϕ)− 2 =
∑

z0∈P1(C)

(multz0(ϕ)− 1).

Proof. If ϕ : C → C, then we can define ϕ over the complex projective space
P1(C) as well, such that ϕ : P1(C)→ P1(C). For a complete definition of this ϕ,
see [Ba07] page 7. The genus of P1(C) is zero. Applying the Riemann-Hurwitz
formula gives the desired result.

Let Q denote the algebraic closure of Q in C. The following theorem was
postulated and proved by Bely̆ı in 1979. For a proof see [Bel79].

Bely̆ı’s theorem. For any finite subset S of P1(Q), there exists a rational
function φ(x) ∈ Q(x), only ramified over {0, 1,∞}, such that φ(S) ⊂ {0, 1,∞}.

The Riemann-Hurwitz formula and Bely̆ı’s theorem lead to the following
lemma, presented by Granville [Gr98].

Lemma 2.11. Given any homogeneous polynomial f(x, y) ∈ Q[x, y]. We can
determine homogeneous polynomials a(x, y), b(x, y), c(x, y) ∈ Z[x, y] all of de-
gree D ≥ 1, without common factors, where a(x, y)b(x, y)c(x, y) has exactly
D + 2 non-proportional linear factors, including the factors of f(x, y), and
a(x, y) + b(x, y) = c(x, y).

Proof. Let φ : P1 → P1 be the rational function from Bely̆ı’s theorem such
that φ({(α, β) ∈ P1 : f(α, β) = 0}) ⊂ {0, 1,∞}, which is only ramified over
{0, 1,∞}. Let D be the degree of φ. We can write φ(x/y) = a(x, y)/c(x, y),
where a(x, y), c(x, y) ∈ Z[x, y] are homogeneous polynomials, with degree D.
Let b(x, y) = c(x, y)− a(x, y). Note that

φ(x/y) = 0⇐⇒ a(x, y) = 0,

φ(x/y) = 1⇐⇒ b(x, y) = 0,

φ(x/y) =∞⇐⇒ c(x, y) = 0.

Therefore, whenever f(x, y) = 0, either a(x, y) = 0, b(x, y) = 0 or c(x, y) = 0
and thus all the linear factors of f(x, y) are contained in a(x, y)b(x, y)c(x, y). Let
#φ−1(u) = |{t ∈ P1(Q) : φ(t) = u}|, where |.| denotes the cardinality of the set.
Then, because of the three relations above, #φ−1(0), #φ−1(1) and #φ−1(∞) are
the number of distinct linear factors of a(x, y), b(x, y) and c(x, y), respectively.
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Because these polynomials share no common factors, #φ−1(0) + #φ−1(1) +
#φ−1(∞) is the number of distinct linear factors in a(x, y)b(x, y)c(x, y).

We can apply Lemma 2.10 to φ, as it is a rational function and since it is
only ramified over {0, 1,∞}.

2D − 2 =
∑

u∈φ−1({0,1,∞})

(multu(φ)− 1).

The right-hand side of this equation can be written as∑
v∈{0,1,∞}

∑
u∈φ−1(v)

(multu(φ)− 1)

=
∑

u∈a−1(0)

(multu(a)− 1) +
∑

u∈b−1(0)

(multu(b)− 1) +
∑

u∈c−1(0)

(multu(c)− 1)

= deg(a)−#a−1(0) + deg(b)−#b−1(0) + deg(c)−#c−1(0)

= 3D −#φ−1(0)−#φ−1(1)−#φ−1(∞).

Therefore, #φ−1(0)+#φ−1(1)+#φ−1(∞) = D+2 which proves the lemma.

Before presenting and proving the consequences of the abc-conjecture, a few
more definitions and lemma’s regarding the resultant of polynomials, presented
by Barry, must be introduced [Ba07].

Definition 2.12 (Resultant). The resultant of two non-zero polynomials

f(x) = b

s∏
i=1

(x− βi), g(x) = c

r∏
j=1

(x− γj) ∈ Q[x]

is defined by

R(f, g) = brcs
s∏
i=1

r∏
j=1

(βi − γj).

For example, the resultant of f(x) = 2(x−2)(x+3) and g(x) = (x+1)(x−1)
is R(f, g) = 2(2 + 1)(2 − 1)(−3 + 1)(−3 − 1) = 48. The following lemma is a
property of the resultant. For a proof see [La02].

Lemma 2.13. Given polynomials f(x), g(x) ∈ Z[x], there exist polynomials
a(x), b(x) ∈ Z[x] with deg(a) ≤ deg(g) − 1 and deg(b) ≤ deg(f) − 1 such that
a(x)f(x) + b(x)g(x) = R(f, g).

Definition 2.14 (Resultant of homogeneous forms). Let

F (x, y) =

s∑
i=0

aix
s−iyi, G(x, y) =

r∑
j=1

bjx
r−jyj ,

be two binary homogeneous polynomials in Z[x, y] such that a0 6= 0, b0 6= 0.
Then the resultant of f and g is R(F,G) = R(f, g), where f(x) = F (x, 1) and
g(x) = G(x, 1).
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For example, the resultant of F (x, y) = (x − 2y)(x + 5y) and G(x, y) =
(x+ y)(x− 3y) is R(F,G) = (2 + 1)(2− 3)(−5 + 1)(−5− 3) = −96

Lemma 2.15. Let F,G ∈ Z[x, y] be two homogeneous polynomials without com-
mon factors, written as in definition 2.14. Let m,n ∈ Z with gcd(m,n) = 1,
then

gcd(F (m,n), G(m,n))|R(F,G).

Proof. Let F (x, y) = ysf(xy ) and G(x, y) = yrg(xy ), such that F (x, 1) = f(x)

and G(x, 1) = g(x). Let a(x), b(x) ∈ Z[x] be the polynomials from Lemma
2.13, such that a(x)f(x) + b(x)g(x) = R(f, g). Now let A(x, y) = yr−1a(xy ) and

B(x, y) = ys−1b(xy ). Then

A(x, y)F (x, y) +B(x, y)G(x, y) = yr+s−1(a(x, y)f(x, y) + b(x, y)f(x, y))

= yr+s−1R(f, g) = yr+s−1R(F,G).

Therefore,
gcd(F (m,n), G(m,n))|nr+s−1R(F,G).

F and G are both homogeneous polynomials which means that the m and n
can be interchanged. This yields

gcd(F (m,n), G(m,n))|mr+s−1R(F,G).

Since gcd(m,n) = 1, this implies that

gcd(F (m,n), G(m,n))|R(F,G).

The following theorem, with a proof by Granville [Gr98], is the key result in
this subsection. From this point onward, a�A b denotes a ≤ kAb, where kA is
a constant dependent on the variables in the collection A (i.e. a�ε,f b denotes
a ≤ kε,fb, where kε,f is a constant dependent on ε and f).

Theorem 2.16. Assume the abc-conjecture. Let f(x, y) ∈ Z[x, y] be a homo-
geneous polynomial of degree d ≥ 3, without any repeated linear factors. Fix
ε > 0. Then, for any coprime integers m and n,

max{|m|, |n|}d−2−ε �ε,f Rad(f(m,n)).

Proof. Let a(x, y), b(x, y), c(x, y) ∈ Z[x, y] be the homogeneous polynomials of
degree D obtained by applying Lemma 2.11 to f(x, y). Then the product of
the distinct irreducible factors of a(m,n)b(m,n)c(m,n) yields a polynomial
f(x, y)g(x, y) of degree D + 2.

Now let m,n ∈ Z be two coprime integers and let r = gcd(a(m,n), b(m,n)).
It follows from Lemma 2.15 that r divides the resultant R(a, b), which is a non-
zero integer. Therefore, r is bounded. We can apply the abc-conjecture to the

equation a(m,n)
r + b(m,n)

r + c(m,n)
r , which results in

max{|a(m,n)|, |b(m,n)|} �ε,f Rad(abc)1+ε/D,
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which implies

max{|a(m,n)|, |b(m,n)|}1−ε/D �ε,f Rad(abc)1−(ε/D)2 �ε,f Rad(abc)

= Rad(fg) ≤ g(m,n) Rad(f(m,n)).

We proceed by finding a lower bound for the left-hand side and an upper bound
for the right-hand side of this equation. Let H = max{|m|, |n|}. Note that we

can write g(x, y) =
∑D+2−d
i=0 gix

iyD+2−d−i as the degree of f(x, y) is d and the
degree of f(x, y)g(x, y) is D + 2. Therefore, we can write

|g(m,n)|=
∣∣∣D+2−d∑

i=0

gim
inD+2−d−i

∣∣∣ ≤ HD+2−d
D+2−d∑
i=0

|gi|�f H
D+2−d,

which provides an upper bound for the right-hand side.
Fix α, β ∈ R such that α 6= β. Note that

|α− β|H = max{|m− αn− (m− βn)|, |α(m− βn)− β(m− αn)|}

≤ max{2, |α|+|β|}max{|m− αn|, |m− βn|},

hence we can write

H ≤ max{2, |α|+|β|}
|α− β|

max{|m− αn|, |m− βn|}.

We can use this inequality to find the aforementioned lower bound. Note
that we can write a(x, y) = ka

∏D
i=0(x − αiy) and b(x, y) = kb

∏D
j=0(x − βjy)

with αi 6= βj for any i and j, such that they are written as a product of their
factors. This is a result of the fact that a(x, y) and b(x, y) share no factors. Now
we can write

max{|a(m,n)|, |b(m,n)|} = max{
∣∣∣ka D∏

i=0

(m− αin)
∣∣∣, ∣∣∣kb D∏

j=0

(m− βjn)
∣∣∣}.

By noting that ka and kb depend on f , we can reduce this to

max{|a(m,n)|, |b(m,n)|} �f max{
∣∣∣ D∏
i=0

(m− αin)
∣∣∣, ∣∣∣ D∏

i=0

(m− βin)
∣∣∣}.

Let (α, β) be the pair of αi and βj which minimizes

max{2, |αi|+|βj |}
|αi − βj |

,

then

max{|a(m,n)|, |b(m,n)|} �f

(max{2, |α|+|β|}
|α− β|

)D
HD �f H

D,
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since this α and β depend on the linear factors of a and b which depend on f
and because αi 6= βj for all i and j.

Applying the lower and upper bound yields

max{|m|, |n|}D−ε �ε,f g(m,n) Rad(f) ≤ max{|m|, |n|}D+2−d Rad(f)

and thus
max{|m|, |n|}d−2−ε �ε,f Rad(f(m,n)),

which proves the theorem.

Corollary 2.16.1. Assume the abc-conjecture. Suppose f(x) ∈ Z[x] has no
repeated roots. Fix ε > 0. Then

|x|deg(f)−1−ε�ε,f Rad(f(x)).

Proof. Let F (x, y) = ydeg(f)+1f(x/y). Then F (x, 1) = f(x) and deg(F ) =
deg(f) + 1. Applying Theorem 2.16 gives

Rad(f(m))�ε,f max{|m|, |1|}deg(F )−2−ε = |m|deg(f)−1−ε,

since Rad(F (m, 1)) = Rad(f(m)).

Theorem 2.16 can be proven as well by assuming the weak abc-conjecture
instead of the abc-conjecture, as will be shown below.

Theorem 2.17. Assume the weak abc-conjecture. Let f(x, y) ∈ Z[x, y] be a
homogeneous polynomial of degree d ≥ 3, without any repeated linear factor such
that f(m,n) ∈ Z for all m,n ∈ Z. Let γ > 0 such that the weak abc-conjecture
holds. Then, for any coprime integers m and n,

max(|m|, |n|)d−2−γ∗ �f Rad(f(m,n)),

where γ∗ = Dγ and D is the degree of the polynomials from Lemma 2.11.

Proof. The proof of this theorem is essentially the same as the proof of Theorem
2.16, except for the application of the abc-conjecture. In the proof of Theorem
2.16, the abc-conjecture is applied using ε

D , where D is the degree of the poly-
nomials derived from Lemma 2.11. This is possible because the abc-conjecture
holds for any ε > 0. If the weak abc-conjecture is true for γ then it is not
necessarily true for γ

D . However, if the weak abc-conjecture is true for γ, then
it is also true for Dγ > γ. Therefore, we can use γ∗ = Dγ in the same way as ε
in the previous proof to obtain the desired result.

Corollary 2.17.1. Assume the weak abc-conjecture. Let γ > 0 such that the
weak abc-conjecture holds. For any f(x) ∈ Z[x] with no repeated roots

|x|deg(f)−1−γ∗�f Rad(f(x)),

where γ∗ = Dγ and D is the degree of the polynomials from Lemma 2.11 applied
to the polynomial F (x, y) = ydeg(f)+1f(x/y).
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Proof. This proof is essentially the same as the proof of Corollary 2.16.1.

The following theorem is similar to Theorems 2.16 and 2.17, but requires the
bound found by Stewart and Yu, presented in Theorem 2.7. As this bound has
been proven, the following theorem and its corollary hold without any further
assumptions.

Theorem 2.18. Let f(x, y) ∈ Z[x, y] be a homogeneous polynomial of degree
d ≥ 3, without any repeated linear factor such that f(m,n) ∈ Z for all m,n ∈ Z.
Then, for any coprime integers m and n,

H �f exp
( k
D
H

D+2−d
3 Rad(f(m,n))

1
3 log(HD+2−d Rad(f(m,n)))3

)
,

where H = max{|m|, |n|}, D is the degree of the polynomials obtained by apply-
ing Lemma 2.11 to f(x, y) and k is the constant from Theorem 2.7.

Proof. The desired result is obtained by applying Lemma 2.11 to f(x, y) and ap-
plying Theorem 2.7 in the same fashion as the abc-conjecture was applied in the
proof of Theorem 2.16. By using the lower bound for max{|a(m,n)|, |b(m,n)|}
and the upper bound for Rad(abc), we find the inequality presented in the the-
orem.

Corollary 2.18.1. For any f(x) ∈ Z[x] with no repeated roots

|x|�f exp
( k
D
|x|

D+1−deg(f)
3 Rad(f(x))

1
3 log(|x|D+1−deg(f)Rad(f(x)))3

)
,

where D is the degree of the polynomials obtained by applying Lemma 2.11 to
F (x, y) = ydeg(f)+1f(x/y) and k is the constant from Theorem 2.7.

Proof. The desired result is obtained by applying Theorem 2.18 on F (x, y) and
by realizing that deg(F ) = deg(f) + 1.

3 Constructing infinitely many primes

Since sequences of distinct, pairwise coprime integers such as those described in
section 1 are clearly defined by a recurrence relation, they can be simplified using
a recursive formula. The recurrence relation, which defines the sequence used
in Euclid’s proof for instance, can be described by the map xn+1 = f(xn) =
(xn − 1)xn + 1 by noting that any element in the sequence is equal to the
product of all previous elements, minus 1. Similarly, the recurrence relation of
the Fermat numbers can be described by the map xn+1 = g(xn) = (xn−2)xn+2
as noted previously in Subsection 2.2.

In order to prove the infinitude of primes through Euclid’s proof, one has
to show that the greatest common divisor between any two elements in the
aforementioned sequence is 1. To show that the sequence of Fermat numbers
is an infinite sequence of distinct, pairwise coprime integers, one has to show
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that the greatest common divisor between any two Fermat numbers is at most
2, as can be seen in Subsection 1.1. Using the recurrence relations introduced
above, this corresponds to proving xn ≡ 1 (mod xm) and xn ≡ 2 (mod xm)
for the sequence from Euclid’s proof and for the Fermat numbers, respectively.
This can be achieved by noting that xn+1 = f(xn) = fn(x0) and by applying
Lemma 2.5 and the notation introduced in Subsection 2.2.

It follows from Lemma 2.5 that xn = fn−m(xm) ≡ fn−m(0) (mod xm)
for any polynomial with integer coefficients and 0 < m < n. The orbit of 0
under f(x) = (x − 1)x + 1 is 0 → 1 → 1 → . . ., and the orbit of 0 under
g(x) = (x − 2)x + 2 is 0 → 2 → 2 → . . .. Therefore, xn ≡ 1 (mod xm) for the
map f and xn ≡ 2 (mod xm) for the map g, which shows that the sequences
introduced above are indeed infinite, distinct and pairwise coprime. In these
examples, the orbits of 0 under their respective maps could be used to simplify
the problem, as they are both preperiodic. The cases where the orbit of 0 is
wandering are slightly more complicated as will be shown at the end of this
section.

If a different orbit under the map g(x) = (x− 2)x+ 2 were to be taken, say
the orbit of x0 = 4, then the resulting sequence would be 4 → 10 → 82 → ...
which is obviously not a sequence of coprime integers. This is the case since the
equivalency shown above holds for this orbit as well, so xn ≡ 2 (mod xm) for
all 0 < m < n and all the elements of the orbit are even. A way to turn this
sequence into an infinite sequence of distinct, pairwise coprime integers would
be to divide every element by 2, giving the equivalency xn ≡ 1 (mod xm). This
example shows that the orbit of 0 being preperiodic under a map does not
always imply that wandering orbits under the same map are infinite sequences
of distinct, pairwise coprime integers, but that they could perhaps be modified
to find such sequences. The possible equivalencies between any two elements of
an orbit depend on the distinct elements in the orbit of 0. When the number of
distinct elements in the orbit of 0 is finite, then we can remove the finitely many
distinct factors in the orbit of 0 from a wandering orbit to obtain an infinite
sequence of distinct coprime integers. However, when the orbit of 0 contains
infinitely many factors, the construction becomes more complicated.

Subsections 3.1 and 3.2 will provide general methods for constructing such
sequences when the orbit of 0 is stricly preperiodic or periodic. In Subsection 3.3,
maps under which the orbit of 0 is wandering will be considered, concluding with
a proof to show that the orbits of those maps contain infinitely many primitive
prime factors.

3.1 A general method when 0 is strictly periodic

Before giving a general method for performing a modification similar to the
one used in the previous section, we should prove the following lemma’s. The
first lemma is presented by Granville with a complete proof and the second is
presented with a sketch of a proof [Gr17].

Lemma 3.1. Let f(x) ∈ Z[x]. If the orbit of x0 is periodic, then its exact period
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length is either one or two.

Proof. Suppose the exact period length is n ≥ 3. Then xn = x0 and xn − x0 =∑n
i=1(xi − xi−1) = 0. It follows from Lemma 2.5 that

(xi − xi−1)|(f(xi)− f(xi−1)) = xi+1 − xi

for every i ≥ 1, but this implies that

|x1 − x0|≤ |x2 − x1|≤ ... ≤ |xn+1 − xn|= |x1 − x0|

and thus that all of these are in fact equal. If none of these differences differ
in sign, then xn − x0 6= 0, so there must be some j ≥ 1 for which xj+1 − xj =
−(xj − xj−1) and thus for which xj+1 = xj−1. However, this implies

x2 = xn+2 = fn+1−j(xj+1) = fn+1−j(xj−1) = fn(x0) = xn.

This is a contradiction, since we assumed the exact period length to be at least
three, which proves that the exact period length has to be either one or two.

Lemma 3.2. Let f(x) ∈ Z[x]. If the orbit of 0 is strictly preperiodic under f ,
then the exact length of the preperiod is either one or two.

Proof. As a consequence of Lemma 3.1, we can split this proof into two cases:
(i) The period length is one. (ii) The period length is two.

(i) In this case, the orbit of 0 is given by

0→ x1 → ...→ xm → xm → ...

It follows from Lemma 2.5 that

(x1 − 0)|(f(x1)− f(0)) = (x2 − x1)

which implies that x1|x2. By combining this with the fact that x2|(x3 − x1),
we see that x1|x3. Now assume x1|xk for all k ≥ 1, then x1|xk+1, because
xk|(xk+1 − x1). It remains to show that xm|x1, which can be shown by noting
that

xm|(f(xm)− f(0)) = xm − x1.

Now we know that x1|x2, x2|x3, ..., xm|x1 and thus that |x1|= |x2|= ... = |xm|.
Therefore either x1 = x2 in which case x1 is periodic or x1 = −x2 = −x3 in
which case x2 is periodic If x1 = −x2 = x3, then x1 is periodic with period
length 2, which contradicts our assumptions, so this cannot be the case.

(ii) In this case, the orbit of 0 is given by

0→ x1 → ...→ xm → xm+1 → xm → ...

This case can be split again into two more cases. One where the preperiod m
is even and one where m is odd. We will only deal with the first case, since the
second case follows a similar proof.

18



Assume m is even. It follows from Lemma 2.5 and the fact that the period
length is 2 that

xm|(xm+1 − x1)|(xm − x2)| ... |(xm − xm−2),

so xm divides every element in the sequence with an even index number. Now
take the sequence of even indices {2, 4, ...,m}. Let i be an arbitrary element
of this sequence. It follows from Lemma 2.5 that xi|(x2i − xi) if 2i < m and
xi|(xm−xi) if 2i > m, so either xi|x2i or xi|xm. Note that if 2i < m, then 2i is
again an element of the sequence of even indices. Therefore x2i|x4i or x2i|xm.
Since m is finite, we can continue this process to show that xi|xm for every
i ∈ {2, 4, ...,m}. Therefore x2|x4|...|xm|x2, from which it follows that

|x2|= |x4|= ... = |xm|

. We assumed m > 2 to be even, but m < 6, otherwise x2 6= x4 6= x6, which
is impossible if their absolute values are identical. Therefore m must be 4 and
x2 = −x4.

Because we know that x1 divides all the other elements in the sequence and
because x2 = −x4, we can rewrite the elements as

x2 = ax1, x3 = bx1, x4 = −ax1.

It follows from Lemma 2.5 that x2|(x3 − x1) and thus that a|(b − 1). We can
use this to write x3 = (ac + 1)x1 for some c ∈ Z. Using the same reasoning,
(x2−x1)|(x3−x2) implies that c = d(a−1), which we can use to write x3 = (a(a−
1)d+ 1)x1. We can now use Lemma 2.5 again to arrive at an inequality which
we can use to prove that m cannot be 4. Namely, it follows from x3|(x4 − x1)
that

|a(a− 1)d+ 1|≤ |a+ 1|.
Note that a = 0 would imply that 0 itself is periodic and a = ±1 would

imply that x1 is periodic, so |a|≥ 2. If d = 0, then x1 is periodic, so |d|≥ 1.
We first consider the cases where both a and d are positive, so where a ≥ 2 and
d ≥ 1. The inequality given above reduces to

(a− 1)d ≤ 1.

Note that this equality only holds if d = 1 and a = 2, but from Lemma 2.5, as
shown above, we know that x3|xm = x4, which would imply that 3x1|2x1. This
can only be true if x1 = 0, which we have assumed not to be true.

Now we consider the case where a ≤ −2 and d ≤ −1. Using these restric-
tions, we can reduce the inequality to

(a− 1)d ≤ 1,

which has no solutions for a ≤ −2.
The next restrictions we consider are a ≥ 2 and d ≤ −1. This reduces the

inequality to
a2|d|−a(|d|+1)− 2 ≤ 0,
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from which it follows that

|d|+1−
√
|d|2+10|d|+1

2|d|
≤ a ≤

|d|+1 +
√
|d|2+10|d|+1

2|d|
.

The left-hand side is always a negative number and we assumed a to be greater
than or equal to 2, so only the right-hand side gives us a new restriction. Since
a has to be greater than or equal to 2, we can use the right-hand side to find
a restriction for d. Equating it to 2 gives us |d|= 2 and thus d = −2. For
all d smaller than −2, a < 2, which contradicts our assumptions, so d has to
be −1 or −2. If d = −1, then 1 −

√
3 ≤ a ≤ 1 +

√
3 < 2, which contradicts

our assumptions. So d 6= −1. If d = −2, then − 1
2 ≤ a ≤ 2, so a has to be

2. Therefore x3 has to be −3x1 which implies −3x1|2x1, which is not possible,
since x1 6= 0.

Lastly, we consider the restriction a ≤ −2 and d ≥ 1. This reduces the
inequality to

a2d+ a(1− d) + 2 ≤ 0,

which in turn gives the following restriction on d:

d ≤ −a− 2

a(a− 1)
.

The right-hand side of this inequality has a maximum for negative a, which is
5− 2

√
6 < 1, which implies that d < 1, which contradicts our assumption that

d ≥ 1. Therefore, there are no solutions to the inequality.
This proves that if 0 is preperiodic with an even preperiod length m, than

m can not be greater than 2, and therefore has to be exactly 2. A similar proof
can be given when m is odd.

Now we can give a method for creating infinite sequences of pairwise coprime
integers, presented with the same proof by Granville [Gr17].

Theorem 3.3. Suppose that f(x) ∈ Z[x] and that 0 is strictly preperiodic under
f . Let `(f) = lcm(f(0), f2(0)). For any wandering orbit (xn)n≥0, the sequence
(an)n≥0, where

an =
xn

gcd(xn, `(f))
,

is an infinite sequence of pairwise coprime integers. If n ≥ 3, then an has a
private prime factor.

Proof. Suppose k = n−m > 0. Then, using Lemma 2.5, we can write

xn = fk(xm) ≡ fk(0) (mod xm),

from which it follows that xn = axm + fk(0) for some a ∈ Z. We can also
write xn = k(xm, xn) and xm = l(xm, xn) for some k, l ∈ Z. Combining these
equalities yields (xm, xn)(k − al) = fk(0) and therefore (xm, xn)|fk(0).
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Now let
L(f) := lcm[fk(0)|k ≥ 1],

then (xm, xn)|L(f) and therefore (xm, xn)|(xm, L(f)) and (xm, xn)|(xn, L(f)).
Let (An)n≥0 be a sequence where

An =
xn

gcd(xn, L(f))
,

then An|(xn/(xm, xn)) and Am|(xm/(xm, xn)), but(
xm

(xm, xn)
,

xn
(xm, xn)

)
= 1,

so (Am, An) = 1. It remains to show that L(f) = `(f).
If the preperiod is 1, then f2(0) = f(0) or f3(0) = f(0), so the unique

elements in the orbit of 0 are {0, f(0)} or {0, f(0), f2(0)} and thus L(f) = `(f).
If the preperiod is 2 and the period is 1, then the unique elements in the orbit
of 0 are {0, f(0), f2(0)}. If the preperiod is 2 and the period is 1, then it follows
from Lemma 2.5 that x3|(x3−x1) and thus x3|x1. This means that x3|`(f) and
therefore L(f) = `(f).

With this theorem, we can create infinite sequences of pairwise coprime in-
tegers using maps under which the orbit of 0 is strictly preperiodic. An example
of such a polynomial map is f(x) = x2 − 4x+ 4. Note that the orbit of 0 under
this map is 0 → 4 → 4 → . . ., so this orbit is indeed preperiodic. If we apply
Theorem 3.3 to the orbit of x0 = 6, then we obtain the coprime sequence

3→ 4→ 49→ 9409→ 354079489→ 501489136705686529→ . . .

Using prime factorization, we can extract a sequence of distinct primes from
this sequence.

3→ 2→ 7→ 97→ 31→ 708158977→ . . .

Prime factorization with our current techniques is quite slow and the growth
of the an is at least quadratic (larger for higher order polynomials) for large n.
Therefore, it becomes difficult to extract actual prime factors from (an)n≥0 for
large n. In this thesis, examples of prime factors were found using Pollard’s rho
method for factorization, described in [Po75]. The complexity of this algorithm
is O(

√
p) ≤ O(N1/4), where p is the smallest prime factor contained in the

integer N , which we try to factor.

3.2 General methods when 0 is periodic

Theorem 3.3 gives a method for finding infinite sequences of pairwise coprime
integers which is valid when 0 is strictly preperiodic. In this section, appropriate
methods for when 0 is periodic will be explored. It follows directly from Lemma
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3.1 that, when 0 is periodic under a certain map, the period length is either 1
or 2.

If we assume the period length of 0 under the map f(x) ∈ Z[x] to be 1,
then f(0) = 0. Since f is a polynomial with integer coefficients, it can be
written as f(x) = akx

k + ... + a0 and therefore f(0) = a0 = 0. It follows that
f can be written as the product of an arbitrary polynomial g(x) ∈ Z[x] and a
polynomial of the form h(x) = xp, with p ≥ 1 chosen such that g(0) 6= 0, so
f(x) = h(x)g(x) = xpg(x). Note that if g(x) = c with c ∈ Z for all x, then all
the elements of any orbit of x0 under f are products of powers of c and powers
of x0, so we can not create an infinite sequence of distinct, pairwise coprime
integers from such orbits. Therefore, we will assume the order of g to be at
least 1. The following theorem and its proof are found by Granville [Gr17].

Theorem 3.4. Suppose that f(x) = xpg(x) for some g(x) ∈ Z[x], with deg(g) ≥
1, and where p ≥ 1 is chosen such that g(0) 6= 0. For any given wandering orbit
(xn)n≥0 under the map f, the sequence (an)n≥1, where

an+1 :=
g(xn)

gcd(g(xn), g(0))
,

is an infinite sequence of distinct, pairwise coprime integers and, once n is
sufficiently large, each an has a private prime factor.

Proof. Assume that m < n. Given a wandering orbit of x0 under the map f ,
xn+1 = xpng(xn). Therefore, xm|xn for all m. Note that

an+1x
p
n(g(xn), g(0)) = xn+1,

so an+1|xn+1. Furthermore,

(g(xm), g(xn))|(xm+1, g(xn)),

because g(xm)|xm+1. We have seen above that xm|xn for every m, but since
m < n, m+ 1 ≤ n and therefore xm+1|xn as well. Therefore,

(xm+1, g(xn))|(xn, g(xn)).

We can write g(xn) = axn+g(0) for some a ∈ Z and use the Euclidean algorithm
to show that

(xn, g(xn)) = (xn, g(0)),

which implies that
(g(xm), g(xn))|(g(xn), g(0)),

(g(xm), g(xn))|(g(xm), g(0)).

This shows that
am+1

∣∣∣ xm
(g(xm), g(xn))

,

an+1

∣∣∣ xn
(g(xm), g(xn))

.
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Therefore, we deduce that (an+1, am+1) = 1.
It remains to prove that each an has a private prime factor for large enough

n. Note that this is the case if |an|> 1. If an+1 = 0, then g(xn) = 0, which
contradicts our assumptions. If |an+1|= 1, then g(xn) = (g(xn), g(0)), which
implies that g(xn) is a divisor of g(0). Since g(0) is finite, it has only a finite
number of divisors and because x0 is wandering and g(x) is non-constant, there
is a finite number of n such that g(xn) is a divisor of g(0). Therefore, if n is
large enough |an|> 1 as desired.

An example of a polynomial to which we can apply this theorem, is f(x) =
4x + 5x2 = x(4 + 5x) = xg(x). Note that the orbit of 0 under this map is
0 → 0 → . . ., so this orbit is indeed periodic with period length 1. If we apply
Theorem 3.4 to the orbit of x0 = 6, then we obtain

17→ 256→ 261121→ 272735662081→ 297538965481954742353921→ . . . ,

from which we can extract the prime factors

17→ 2→ 7→ 367→ 97→ . . .

The other polynomial maps, for which zero is periodic, are the maps where
f2(0) = f(x1) = 0, where x1 6= 0. In order to obtain infinite sequences of
distinct integers, polynomial maps must have some wandering orbits. As the
map f(x) = a− x, where a ∈ Z is an arbitrary constant, is always periodic, we
will not consider such maps. The following theorem and its proof can be found
in [Gr17].

Theorem 3.5. Suppose f(x) ∈ Z[x] with f(x) + x nonconstant, such that 0 is
periodic under the map x→ f(x), with period length 2. Write f2(x) = xrG(x)
with G(0) 6= 0 and r ≥ 1. For any given wandering orbit (xn)n≥0 with x0 ∈ Z,
define

an+2 :=
G(xn)

gcd(G(xn), G(0)f(0))
for all n ≥ 0.

The (an)n≥2 are an infinite sequence of pairwise coprime integers and, once n
is sufficiently large, each an has a private prime factor.

Proof. Firstly, we show that G(x) is not some constant c ∈ Z. If G(x) = c,
then f2(x) = cxr, which implies that f2(x) has exactly one distinct root, which
is 0. We can show that f2(x) has at least as many roots as f(x). For every
root r of f(x) there exists q ∈ C such that f(q) = r. Therefore, there are at
least as many distinct q’s as distinct r’s. Note that f2(q) = f(r) = 0, so each q
is a root of f2(x). Therefore, f2(x) has at least as many roots as f(x). Since
f2(x) = f(f(x)) = 0 for some x and as the number of distinct roots of f(x)
is at most one, f(x) has exactly one distinct root. Let a 6= 0 be this root.
Then we can write f(x) = c(x − a)d and f2(x) = c(c(x − a)d − a)d, which is
0 when c(x − a)d = a. This has distinct solutions if d > 1, while f2(x) has
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only one distinct root. Therefore, d = 1 and f2(x) = c2x− c2a− ca. Since the
root of f2(x) is 0, c2a = −ca and thus c = −1. Inserting this into f(x) yields
f(x) = a−x, which means f(x) +x is constant, contradicting our assumptions.
Thus, G(x) is not a constant.

We know that an+2|G(xn)|xn+2 for every n ≥ 0. Let n > m ≥ 0. If n −m
is even, then

(G(xm), G(xn))|(xm+2, G(xn))|. . . |(xn, G(xn)) = (xn, G(0))|G(0).

Therefore,

(G(xm), G(xn))|(G(xm), G(0)f(0)) and (G(xm), G(xn))|(G(xn), G(0)f(0)).

This implies that

G(xm)

(G(xm), G(0)f(0))

∣∣∣ G(xm)

(G(xm), G(xn))
and

G(xn)

(G(xn), G(0)f(0))

∣∣∣ G(xn)

(G(xm), G(xn))
.

The left-hand sides are am+2 and an+2 and the right-hand sides of these equa-
tions are clearly coprime, so gcd(am+2, an+2) = 1.

If n−m is odd, then

G(xm)|xm+2|. . . |xn−1|xn+1,

and
G(xn)|xn+2 = f(xn+1).

Therefore,

(G(xm), G(xn))|(xn+1, f(xn+1)) = (xn+1, f(0))|f(0).

This implies that

(G(xm), G(xn))|(G(xm), G(0)f(0)) and (G(xm), G(xn))|(G(xn), G(0)f(0)),

from which it follows that

G(xm)

(G(xm), G(0)f(0))

∣∣∣∣ G(xm)

(G(xm), G(xn))
and

G(xn)

(G(xn), G(0)f(0))

∣∣∣∣ G(xn)

(G(xm), G(xn))
.

So in this case, (am+2, an+2) = 1 as well.
This shows that the (an)n≥2 are an infinite sequence of pairwise coprime

integers. The proof for showing that the an contain a private prime factor for
sufficiently large n is equivalent to that of the proof below Theorem 3.4.

An example of a polynomial map to which we can apply this theorem is
f(x) = x2 − 6x + 5. Note that f2(x) = x(x3 − 12x2 + 40x − 24) = xG(x) and
the orbit of 0 is 0 → 5 → 0 → . . ., which is indeed periodic with period length
2. Applying Theorem 3.5 to the orbit of x0 = 8 yields

1→ 319→ 3943997→ 338166506260267→ . . . ,
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from which we can extract the prime factors

11→ 157→ 19→ . . .

As noted by Granville, Theorems 3.3, 3.4 and 3.5 together result in the
following corollary [Gr17].

Corollary 3.5.1. Suppose f(x) ∈ Z[x] is not of the form cxd or a− x for any
a, c ∈ Z, and that 0 is preperiodic under the map x → f(x). Then, for any
given wandering orbit (xn)n≥0 with x0 ∈ Z, each xn has a private prime factor
for all sufficiently large n.

3.3 The case where 0 has a wandering orbit

In this subsection, we will consider a method for finding infinite sequences of
primes when the orbit of 0 under a polynomial map is wandering. We shall
see that, while such sequences can certainly be constructed in these cases, the
construction relies on prime factorization algorithms. Currently, these algo-
rithms are incredibly computationally expensive. Therefore, such constructions
are currently quite difficult.

Before being able to prove that the aforementioned constructions are possi-
ble, the following lemma and its corollary must be introduced. Granville pro-
vides the lemma with a sketch of a proof and the corollary with a complete
proof [Gr17]. The proof of the lemma provided here is derived from Granville’s
sketch of a proof.

Lemma 3.6. If f(x) ∈ Z[x] has degree d > 1 and if x0 is an integer whose orbit
is wandering, then there exist real numbers 1 ≥ α > 0 and β, which depend only
on f , for which |xn| is the integer nearest to ατd

n

+ β, when n is sufficiently
large and where τ > 1 is a constant that depends on both f and x0.

Proof. Without loss of generality, suppose f(x) = axd + bxd−1 + . . . with a > 0.
Let (xn)n≥0 be the orbit of x0 under the map f and let yn = α−1(xn − β),

where α = a−
1
d−1 and β = − b

ad . We will show that the polynomial yn+1− ydn is
of degree ≤ d− 2.

yn+1 − ydn = α−1(axdn + bxd−1n + . . .− β)− (α−1(xn − β))d.

If the order of this polynomial is at most d− 2, then the terms involving xdn
and xd−1n must disappear. These terms are

α−1axdn − α−dxdn = (a
d
d−1 − a

d
d−1 )xdn = 0,

and

α−1bxd−1n + α−ddβxd−1n = a
1
d−1 bxd−1n − a

d
d−1 d

b

da
xd−1n = 0,

so the degree of this polynomial is at most d− 2. We can prove that

(yn − ε)d + ε < yn+1 < (yn + ε)d − ε (2)
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for any ε > 0, for sufficiently large n by showing that yn+1 − (yn − ε)d − ε and
yn+1−(yn+ε)d+ε are polynomials of degree d−1 with a positive and a negative
coefficient on their d − 1 exponential terms, respectively. The first polynomial
can be written in terms of xn as

yn+1− (yn− ε)d + ε = α−1(axdn + bxd−1n + . . .)−α−1β− (α−1(xn− β)− ε)d + ε.

Note that the coefficient on the d exponential term is the exact same as in the
yn+1 − ydn polynomial and therefore 0. The d− 1 exponential term is

α−1bxd−1n − α1−dxd−1n d(α−1β + ε) = aεdxd−1n .

a, ε and d are all positive numbers and therefore, the coefficient of this term is
a positive number as well. So this polynomial has degree d − 1 and a positive
coefficient on the d − 1 exponential term. Therefore, as n tends to infinity,
this polynomial will tend to infinity, which proves that (yn − ε)d + ε < yn+1

for sufficiently large n. By applying the same reasoning to the polynomial
yn+1 − (yn + ε)d + ε, we find that it has degree d − 1 as well and that the
coefficient on the d− 1 exponential term is −aεd, which is obviously a negative
number. Therefore, this polynomial tends to negative infinity as n tends to
infinity, which proves that yn+1 < (yn + ε)d − ε for sufficiently large n.

Now let `n = (yn − ε)1/d
n

and un = (yn + ε)1/d
n

. It follows from (2) that

`n = (yn − ε)1/d
n

= ((yn − ε)d)1/d
n+1

< (yn+1 − ε)1/d
n+1

= `n+1,

`n = (yn − ε)1/d
n

< (yn + ε)1/d
n

= un,

un+1 = (yn+1 + ε)1/d
n+1

< ((yn + ε)d)1/d
n+1

= (yn + ε)1/d
n

= un,

for sufficiently large n. Therefore, `n < `n+1 < . . . < un+1 < un which implies
that the `n form an increasing bounded sequence, which must tend to some
limit, which we will denote as τ . Thus,

(yn − ε)1/d
n

< τ < (yn + ε)1/d
n

which implies
τd

n

− ε < yn < τd
n

+ ε.

In terms of xn, this inequality is

ατd
n

− αε+ β < xn < ατd
n

+ αε+ β.

By taking ε = α
2 , this reduces to

ατd
n

+ β − 1

2
< xn < ατd

n

+ β +
1

2
,

which proves the lemma.
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As d ≥ 2 and τ > 1, we can easily see that the elements of these orbits grow
exponentially. This is why factorization of these orbits proves rather difficult in
practice. Moreover, this lemma only holds for large n. We shall see below that
if n is not sufficiently large, we cannot guarantee the factorization to succesfully
find a primitive prime factor. Therefore, this lemma shows that finding actual
primes from these orbits is not feasible with our current factorization techniques.

In the case x0 = 0, we will write τ = τ0. The proof of the following corollary
is provided by Granville [Gr17].

Corollary 3.6.1. If f(x) ∈ Z[x] has degree d > 1, x0 is an integer whose orbit
is wandering and if 0 ≤ m ≤ n− 1, then

gcd(xm, xn) ≤ min{|xm|, fn−m(0)} ≤ 2τd
n/2

∗ ,

if n is sufficiently large and where τ∗ = max{τ, τ0}.

Proof. We have seen before that xn ≡ fn−m(0) (mod xm). Therefore we know
that gcd(xm, xn) divides xm and fn−m(0), and thus

gcd(xm, xn) ≤ min{|xm|, fn−m(0)}. (3)

Furthermore, it follows from Lemma 3.6 that |xm|≤ 2τd
m

if m is sufficiently

large and fn−m(0) ≤ 2τd
n−m

0 if n −m is sufficiently large, because α ≤ 1. We
can take n sufficiently large such that either m or n − m is sufficiently large.
This gives the following inequality:

min{|xm|, fn−m(0)} ≤ min{2τd
m

∗ , 2τd
n−m

∗ } ≤ 2τd
n/2

∗ , (4)

where τ∗ = max{τ0, τ}. Combining (3) and (4) yields the desired result.

Now we can prove that wandering orbits under polynomial maps, for which
the orbit of 0 is wandering, contain infinitely many primitive prime factors. The
key to this proof is showing that the orbits grow too fast to contain finitely many
primitive prime powers. This is where the abc-conjecture and its consequences
are applied. Therefore, the validity of the following depends on the validity of
the abc-conjecture.

The following theorem and a slightly more concise proof are provided by
Granville [Gr17].

Theorem 3.7. Assume the abc-conjecture. Suppose f(x) ∈ Z[x] has no repeated
roots and is of degree d ≥ 2, and 0 and x0 both have wandering orbits under the
map x → f(x). Then xn contains a primitive prime factor for all sufficiently
large n.

Proof. Fix 0 < ε < d− 1. It follows from Corollary 2.16.1 that

|x|�ε,f Rad(f(x))
1

d−1−ε .
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If (xn)n≥0 is an orbit under the map f , then

|xn−1|�ε,f Rad(f(xn−1))
1

d−1−ε = Rad(xn)
1

d−1−ε . (5)

Now assume xn has no primitive prime factor, then, for every distinct prime
factor pi of xn, there exists 0 ≤ m ≤ n− 1 such that pi|gcd(xm, xn). Therefore,

Rad(xn)|
n−1∏
m=0

gcd(xm, xn).

Using Corollary 3.6.1, we get

Rad(xn) ≤
n−1∏
m=0

gcd(xm, xn) ≤ 2nτnd
n/2

∗ . (6)

Finally substituting (6) into (5) gives

|xn−1|�ε,f (2nτnd
n/2

∗ )
1

d−1−ε = 2n/(d−1−ε)τ
ndn/2/(d−1−ε)
∗ . (7)

The following inequality follows directly from Lemma 3.6:

|xn−1|≥ bατd
n−1

+ βc, (8)

where α and β depend only on f , and τ on f and x0. Let δn = 1 + β−1
ατdn−1 such

that for sufficiently large n, δn > 0, then combining (7), (8) and the inequality
τ ≤ τ∗ yields

δnατ
dn−1

< bατd
n−1

+ βc �ε,f 2n/(d−1−ε)τ
ndn/2/(d−1−ε)
∗ .

By taking logarithms we can reduce this to

log(δn)

log(τ)
+

log(α)

log(τ)
+ dn−1 �ε,f

n

d− 1− ε
log(2)

log(τ)
+

ndn/2

d− 1− ε
log(τ∗)

log(τ)
.

This inequality must hold for any sufficiently large n, therefore it must hold as
n tends to infinity. Therefore, the following inequality must hold as well.

lim
n→∞

dn−1 �ε,f lim
n→∞

(
n

d− 1− ε
log(2)

log(τ)
+

ndn/2

d− 1− ε
log(τ∗)

log(τ)
− log(δn)

log(τ)
− log(α)

log(τ)

)
,

and therefore

1�ε,f lim
n→∞

( n
d−1−ε

log(2)
log(τ) + ndn/2

d−1−ε
log(τ∗)
log(τ) −

log(δn)
log(τ) −

log(α)
log(τ)

dn−1

)
. (9)

We can split the right-hand side into four different limits of which the last term
is obviously 0. The term involving δn is 0 as well, since limn→∞ δn = 1. The
other two limits can be determined using L’Hôpital’s rule.

lim
n→∞

( n
d−1−ε

log(2)
log(τ)

dn−1

)
= lim
n→∞

( 1
d−1−ε

log(2)
log(τ)

(n− 1)dn−2

)
= 0,
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lim
n→∞

( ndn/2

d−1−ε
log(τ∗)
log(τ)

dn−1

)
= lim
n→∞

( 1
d−1−ε

log(τ∗)
log(τ)

(n/2− 1)dn/2−2

)
= 0.

This shows that every term on the right-hand side of equation (9) is equal to 0
and therefore, equation (9) does not hold. So our assumption that xn has no
primitive prime factor does not hold for sufficiently large n, which proves the
theorem.

4 New results

The results in this section are based on Theorem 3.7 and its proof. They were
obtained through attempting to prove Theorem 3.7 with the assumption of
weaker versions of the abc-conjecture. Furthermore, we unexpectedly uncover a
relation between the presence of infinitely many primitive prime factors in the
orbits of some polynomial and the number of linear factors in the polynomials
obtained by applying Lemma 2.11 to said polynomial.

4.1 A restriction on the weak abc-conjecture

Theorem 3.7 from the previous subsection can be proven using the weak abc-
conjecture with an additional restriction as shown below.

Theorem 4.1. Suppose f(x) ∈ Z[x] has no repeated roots and is of degree
d ≥ 2, and 0 and x0 both have wandering orbits under the map x → f(x).
Let D be the degree of the polynomials obtained by applying Lemma 2.11 to the
polynomial F (x, y) = yd+1f(x/y). Assume the weak-abc conjecture holds for
some 0 < γ < d−1

D . Then xn has a primitive prime factor for every sufficiently
large n.

Proof. The proof of this theorem is essentially the same as the proof of Theorem
3.7, with γ∗ = Dγ substituted for ε. This results in the following inequality,
similar to (9),

1�f lim
n→∞

( n
d−1−γ∗

log(2)
log(τ) + ndn/2

d−1−γ∗
log(τ∗)
log(τ) −

log(δn)
log(τ) −

log(α)
log(τ)

dn−1

)
.

We can show that this inequality does not hold for large n in the same way as
in the proof of Theorem 3.7, thereby proving the result.

Note that a rather strong constraint on γ is necessary for the theorem to
hold. Namely, it follows from Corollary 2.16.1 that, if γ∗ > d− 1,

|x|�f Rad(f(x))
1

d−1−γ∗ .

For every x ∈ Z\{−1, 0, 1}, the right-hand side is less than or equal to 1, while
the left-hand side is greater than 1 and, as a result, the inequality holds for
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all sufficiently large n. Thus, the assumption that the orbit does not contain
infinitely many primitive prime powers would not lead to a contradiction.

In the case where γ∗ = d− 1, the inequality resulting from Corollary 2.16.1
is

1�f Rad(f(x)).

This is a trivial statement providing no useful information, since Rad(x) ≥ 1 for
every x ∈ Z\{0}. Introducing |xn| into this inequality would imply introducing
it into the left-hand side and into the right-hand side. Therefore, the application
of Lemma 3.6 would no longer result in finding a contradiction. Thus, this
theorem requires the additional constraint, introduced above, on the weak abc-
conjecture.

In Subsection 3.3, it was stated that the key to proving Theorem 3.7 is to
show that the orbits grow too fast to contain finitely many primitive prime
factors. This is what leads to this additional assumption on the weak abc-
conjecture. The magnitude of the powers of the prime factors present in the
orbit must be bound in order for the theorem to hold. The required strength
of the bound is correlated to the rate of growth of the orbit (order of the poly-
nomial when n is large). This bound is obtained through the application of
the weak abc-conjecture. Therefore, the additional restriction on the weak abc-
conjecture is dependent on the order of the polynomial. The larger the order of
the polynomial, the weaker the required assumption becomes.

4.2 Applying the exponential bound

Theorem 3.7 cannot be proven by applying the currently best known bound,
which was introduced in Theorem 2.7. Applying Corollary 2.18.1 in the same
fashion as we applied Corollary 2.16.1 in the proof of Theorem 3.7, yields

|xn−1|�f exp(
k

D
|xn−1|

D+1−deg(f)
3 Rad(xn)

1
3

· log(|xn−1|D+1−deg(f)Rad(xn))3). (10)

Note that in inequality (10),

k

D
Rad(xn)

1
3 log(|xn−1|D+1−deg(f)Rad(xn))3 >

k

D
log(2|xn−1|D+1−deg(f))3 > 0

for large enough n (such that |xn|≥ 2) and this term is monotonically increasing
for increasing |xn|. Moreover D+1−deg(f) ≥ 0. Therefore, (10) can be written
as

|xn−1|�f exp(`n|xn−1|
D+1−deg(f)

3 ),

for some increasing sequence of `n > 0 which depends on f , n and k. This
inequality obviously holds for large n whenever deg(f) < D + 1, as e|xn| grows
much faster than |xn|.
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When deg(f) = D + 1, the inequality becomes

|xn−1|�f exp(kRad(xn)
1
3 log(Rad(xn))3/D). (11)

If the xn contain no primitive prime factors for every n > N ∈ N, then
Rad(xn) ≤ Rad(

∏N
i=1 xi). Therefore, the right-hand side is bounded, while

the left-hand side is not. So, if deg(f) = D + 1, we can prove that the orbits
contain infinitely many primitive prime factors, but not that every element con-
tains a primitive prime factor. Thus we have shown the following result to be
true.

Theorem 4.2. Suppose f(x) ∈ Z[x] has no repeated roots and is of degree
d = D + 1 ≥ 2, where D is the degree of the polynomials obtained by applying
Lemma 2.11 to the polynomial F (x, y) = yd+1f(x/y). Let 0 and x0 both have
wandering orbits under the map x → f(x). The orbit of x0 contains infinitely
many primitive prime factors.

Applying Lemma 3.6 and Corollary 3.6.1 to (11) would not increase the
strength of this theorem, as this would lead to

δnατ
dn−1

�f exp(
k

D
(2nτnd

n/2

∗ )1/3 log(2nτnd
n/2

∗ )3).

The right-hand side of this inequality contains n in a triple exponential, while
the left-hand side only contains a double exponential. Therefore, this inequality
holds for large n.

We can find the intuitive reason for Theorem 4.2 by looking at the proof of
Theorem 2.16. In that proof, we used that

a(m,n)b(m,n)c(m,n) = F (m,n)G(m,n).

However, because deg(abc) = D + 2 = deg(F ), G(m,n) = 1, which means that
Rad(abc) = Rad(F ). Substituting this into the bound from Theorem 2.7 and
applying the lower bound

HD �f max{|a(m,n)|, |b(m,n)|},

where H = max{|m|, |n|}, gives the desired result.
In order to find examples of polynomials f(x) with the properties mentioned

in Theorem 4.2, we can search for homogeneous polynomials
a(x, y), b(x, y), c(x, y) ∈ Z[x, y] with degree D and a total of D+2 distinct linear
factors, one of which must be y. If none of them contain y as a linear factor, then
there does not exist a polynomial f(x) ∈ Z[x] such that F (x, y) = yd+1f(x/y),
where F (x, y) is the product of the distinct linear factors. To see this, note
that in this case, every monomial in yd+1f(x/y) contains y, while F (x, y) would
contain a monomial without y. If we have found an example of polynomials
with these properties, then

a(x, y)b(x, y)c(x, y) = k

(
y

D+1∏
i=1

(x− βiy)

)( n∏
j=1

pj(x, y)

)
,
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where k, βi ∈ Z and where pj are irreducible nonlinear polynomials with∑n
j=1 deg(pj) = 3D −D + 2 = 2D + 2. Now

yd+1f(x/y) = F (x, y) = ky

D+1∏
i=1

(x− βiy),

provides an example of an f to which Theorem 4.2 applies. Note that f can be
multiplied by a scalar to obtain a polynomial with strictly integer coefficients
if necessary. The above implies that we can find a polynomial to which Theo-
rem 4.2 applies whenever we find homogeneous polynomials a(x, y), b(x, y) and
c(x, y) as described above. If there are infinitely many of these triplets, than
there are likely infinitely many polynomials to which Theorem 4.2 applies.

For example, the polynomials a(x, y) = 2y(4x − 5y) and b(x, y) = (3y −
4x)(2x + 3y) both contain two linear factors, but c(x, y) = a(x, y) + b(x, y) =
−8x2 + 2xy − y2 contains no real linear factors. If we take the product of the
distinct linear factors in a, b, c, then we obtain

F (x, y) = −64x3y + 32x2y2 + 132xy3 − 90y4,

and then
f(x) = F (x, 1) = −64x3 + 32x2 + 132x− 90.

Note that deg(a) = deg(b) = deg(c) = 2 = deg(f) − 1 and the orbit of 0 is
wandering, so this is indeed an example of a polynomial to which we can apply
Theorem 4.2. Therefore, a wandering orbit under f(x) contains infinitely many
primitive prime factors.

The method, applied to find this example, involved generating random ho-
mogeneous polynomials a(x, y) and b(x, y) of degree D ≥ 2 and the subsequent
construction of c(x, y) = a(x, y) + b(x, y). Afterwards, a root finding algorithm
was used on the three polynomials to check for the existence of linear factors. If
the number of distinct linear factors is D + 2, then the product of these linear
factors is a polynomial to which Theorem 4.2 applies. If an infinite number
of pairs a(x, y) and b(x, y) exists, such that the product of a(x, y), b(x, y) and
c(x, y) = a(x, y) + b(x, y) contains D + 2 linear factors, then this method can
be used for constructing infitely many examples.

5 Summary

In this thesis, we have examined the orbits of integers under polynomials with in-
teger coefficients. The objective was to obtain an understanding of the methods
for constructing infinite sequences of distinct coprimes, presented by Granville
[Gr17]. It follows from Granville’s results that we know methods for construct-
ing such sequences when the orbit of 0 under a polynomial map is preperiodic.
However, if the orbit of 0 is wandering, we do not yet know for certain whether
the wandering orbits of a polynomial contain infinitely many primitive primes.
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The validity of Granville’s result on such polynomials depends on the validity
of the abc-conjecture.

After obtaining a thorough understanding of Granville’s results, we at-
tempted to expand upon his result regarding polynomials under which 0 is wan-
dering. By applying the weak abc-conjecture, we determined an upper bound
for γ, which is dependent on the order of the polynomial. This upper bound
tells us how strong the bound in the weak abc-conjecture must be for wandering
orbits to contain infinitely many primitive prime factors. Moreover, we applied
the exponential bound, proven by Stewart and Yu [SY01]. This revealed the
existence of polynomials under which 0 has a wandering orbit, for which we can
already prove that the wandering orbits contain infinitely many primitive prime
factors.
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premiers. Ann. Soc. scient. Bruxelles 20, 183-256, 1896.
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