

MASTER THESIS

Requirements Refinement Using Domain knowledge

Author:

Ayman Younso

5997119

Supervisors:

Dr. Fabiano Dalpiaz

Dr. Sergio España Cubillo

A Master thesis document submitted regarding the requirements

for the degree of Master of Science

in

Business Informatics

Department of Information and Computing Science

November 7, 2018

II | P a g e

Utrecht University

Abstract

Requirements Refinement Using Domain knowledge

By Ayman Younso

Getting clear and accurate requirements specifications is still a challenging task for

requirements analysts for two main reasons: i) Despite the fact that analysts are experts in

software technology, their knowledge in the domain area where the system is developed is

often limited, thereby limiting the effectiveness of requirements elicitation; ii) Most of the

requirements in agile development methods are captured using natural language, which is

vulnerable to different interpretations and understanding leading to inaccurate requirements

specifications. Although there are some methods that support the analyst in producing high-

quality requirement specifications, a small number of researchers focus on agile requirements

engineering with user stories. However, their approaches are either manual or do not use any

kind of domain knowledge as a reference to support the analysts in refining the requirements.

This thesis has been performed to identify the potential use of domain knowledge in order to

help the analyst to deliver high-quality requirement specifications. We developed the Story

Suggestor Tool, which uses business process models as source of domain knowledge that can

be utilized to suggest new requirements to the analyst. The development of the artifact has

been guided by design science methodology. To validate our approach, an experiment has

been conducted to check whether or not our developed artifact, the Story Suggestor Tool,

helps the analyst in delivering higher-quality requirements. Based on the evaluation of the

experiment results, we concluded that the tool helps the analyst in producing relatively more

complete and correct requirements.

Keywords: Agile methods, requirements engineering, domain knowledge, BPMN in requirements engineering

III | P a g e

Acknowledgment

This journey would not have been possible without the support of my family, professors and

friends. I am especially grateful to my family for their continued support and encouragement.

I would like to give special thanks to my thesis advisor Dr. Fabiano Dalpiaz for offering his

help on my thesis. His office was always open whenever I had a question about my research

or writing. He consistently allowed this paper to be my own work but steered me in the right

the direction whenever he thought I needed it. I am also grateful to my second supervisor Dr.

Sergio España Cubillo for his valuable feedback.

I would also like to thank the students who were involved in the validation experiment for

this research project. Without their passionate participation and input, the experiment could

not have been successfully conducted.

IV | P a g e

Contents
Acknowledgment .. III

Chapter 1: Introduction .. 1

Chapter 2: Goal, Research Questions and Hypothesis ... 7

Chapter 3: Research Method: ... 9

3.1 Problem Investigation ... 10

3.2 Treatment Design ... 10

3.3 Treatment Validation .. 11

Chapter 4: Literature Review ... 12

4.1 Background on RE ... 12

4.2 Representing Knowledge.. 17

4.3 Use of Domain Knowledge in RE: ... 26

4.4 Summary on How the Current Literature Informed Our Research 28

Chapter 5 .. 29

5. Using Domain Ontology to Refine User Stories. ... 29

5.1 Scenario for Using Domain Ontology to Refine User Stories: .. 31

Chapter 6 .. 35

6.1 Using BPMN to Refine User Stories .. 35

6.2 Scenario: ... 37

Chapter 7 .. 42

7. Validation and Experiment Design .. 42

7.1 Goal .. 42

7.2 Experimental Subjects .. 42

7.3 Response Variables and Metrics .. 42

7.4 Experimental Questions ... 43

7.5 Experimental Design .. 45

7.6 Context ... 45

7.7 Instrumentation ... 45

7.8 Experimental Procedure ... 46

7.9 Sampling ... 47

7.10 Preparation.. 47

7.11 Experiment Execution and Data Collection ... 47

Chapter 8 .. 50

8.1 Results and Discussion ... 50

8.2 Validity Threats and Limitations .. 53

V | P a g e

8.2.1 External Validity: .. 53

8.2.2 Internal Validity .. 53

8.2.3 Limitations... 54

8.2.4 Future Research ... 54

Bibliography ... 56

Appendix A: ... 65

Appendix B: ... 67

Appendix C: ... 73

1 | P a g e

Chapter 1: Introduction

Having clear and accurate requirements is one of the key success factors for software

projects. According to Pohl [3], in order to get an optimal collection of requirements, the

three dimensions of specification, representation and agreement need to be satisfied as

shown in Figure 1.

Figure 1. The three dimensions of requirement engineering by Pohl [3]

The goal of the specification dimension is to have full specifications with high quality that

cover all the operational needs. Hence, clearly addressing what the system should actually

do is the essence of requirements specifications.

The representation dimension focuses on the way stakeholders express their needs. Different

stakeholders express their requirements in different ways like using informal language,

sounds or pictures. The goal is to get a more formal representation than the initial one.

The agreement dimension reflects the level of accordance among stakeholders on the

requirements specifications, as different stakeholders have different interpretations for the

same specification. The goal is to move from personal view into common view [3].

In this thesis, we focus on the specification dimension that concerns requirements

understanding. As stated by Pohl [3], the specifications dimension represents the baseline

for the other two dimensions: representation and agreement.

2 | P a g e

Obtaining a complete specification is necessary to produce a high-quality requirements

specification document that leads to clear expectations about the functionality and the

characteristics of the system. Having poor and low-quality requirements specifications will

compromise the whole RE process and may lead to serious implications on the system

developing process, possibly leading to a system that does not meet its objectives.

Capturing system requirements specifications is a challenging task. In fact, getting vague

and ambiguous requirements specifications is common at the beginning of the requirements

engineering process for two reasons:

1. Requirements specifications are mainly captured using Natural Language (NL) and

expressed in, e.g., English, Dutch or Japanese. Although techniques for natural

language processing (NLP) are increasingly advanced [11], processing the

requirements documents sufficiently well through computer programs is still a

challenging task [1]. Moreover, natural language is more vulnerable to different

understandings and interpretations that lead to opaque requirements specifications

and may result in undesired system behavior [5].

2. Despite the fact that requirement analysts are experts in software technology, their

knowledge of the problem domain where the system will be used is often limited.

This lack of domain knowledge leads the analysts to perform poor requirements

elicitation and, as a result, to produce low-quality requirements specifications [2].

To overcome the previous challenges, several studies have been conducted using different

techniques. Harmain et al. [9] developed a computer-aided software engineering (CASE)

tool that supports the analyst in refining the requirements by using an initial UML generated

from a semantic network. The UML model represents object classes and the relations

between them. Then the UML used as an input for the graphical CASE tool which allows

the analyst to refine the requirements manually. By editing the UML model class diagram

using the CASE tool the the analyst can add new classes attributes and edit the current

relations. Next, for evaluation comparing each class model from the CASE output to

reference standard model as the following: correct if it matches an element in the standard

model; incorrect if it does not match an element in the standard model; extra if it is valid

information from the text but is not in the standard model.

In the context of agile requirements engineering Lucassen et al. [13] extract a conceptual

model from a collection of user story requirements using the automated tool VN ñVisual

Narratorò. The tool and its output can be used to detect dependencies, redundancies, and
inconsistencies between requirements. For example, suppose that we have the following

user story as an input for the Visual Narrator:

3 | P a g e

As a student, I want to upload my academic paper to the system, so that I can hand it into

my supervisor

After processing the previous user story via VN the conceptual model of the output shown

in Table 1.

Subject Predicate object

Student Upload Paper

Table 1. Conceptual model as an output of Visual Narrator tool.

Although important results have been achieved by Harmain et al. [9] and Lucassen et al.

[13], their approaches are either manual as Harmain et al. [9], or do not use any kind of

domain knowledge as a reference to support the analysts in refining the requirements.

The main concern in requirements elicitation is to detect and reveal information from

different knowledge sources to clearly identify the system requirements [63]. Nowadays,

domain knowledge documentation is considered one of the main sources of valuable

information used by companies [64]. Such information is usually captured as written text

and as graphical models [65]. Often, graphical representations of the work being conducted,

such as business process models, and domain ontologies, are used for communicative

purposes between various stakeholders as it helps them in understanding how work is being

performed and where improvements can be made.

In this thesis we evaluate the use of domain knowledge in order to refine the requirements

engineering user stories, and when we refer to domain knowledge in the context of this

thesis, we focus mainly on the use the following domain knowledge:

1. Domain ontology.

2. Business process which represented by BPMN (Business Process Management

Notation).

We made this choice because the aforementioned domain knowledge types are the most

widely used in information technology field.

Some researchers have investigated the use of domain ontologies as domain knowledge for

requirements elicitation, and their studies show promising results. Reubenstein et al. [8]

mainly focus on bridging the gap between formal and informal specifications. Particularly,

the authors focus on the representation dimension and not the specification one of Pohlôs

cube [3]. For that they used reusable templates called Cliché to assist a requirements analyst

in creating and modifying the requirements. The Cliché provided common forms of

requirements specification in a specific domain.

Each cliché comprises of set of roles and constraints between them. Following the example

in Figure 2, the first argument of the notation is the name of the cliché. Next, is a list of the

4 | P a g e

parents, the third argument defines the roles of the cliché. The main body of a ñdef-clichéò

defines the constraints on the cliché, it could be for instance: Preconditions, Consequents.

Although the authors addressed some key challenges in requirements acquisition, still their

tools do not interact directly with the end-user or the domain expert.

Figure 2 example cliché frame types, extracted from The Requirements Apprentice: Automated Assistance

for Requirements Acquisition, Reubenstein et al. [8].

The work by Breitman and Leite [6] concerns the ontology construction and development

process using LEL (Language Extended Lexicon), a kind of electronic version of dictionary

that can be used as domain knowledge in requirements elicitation processes. LEL is an

approach that derives from the semantic web community [10]. However, their work neither

develops a tool nor a method for requirement engineering that directly helps the analyst to

get more accurate requirements. Saeki et al. [2] propose a method for requirements

elicitation that uses ontologies. They use a semantic function with quality metrics to indicate

the relationships between two concepts and to evaluate the requirements specifications

quality. Moreover, they use inference rules on domain ontology to allow the analyst to refine

low-quality specifications. However, their approach is manual and therefore does not scale

up to large specifications.

The limitations of previous works, which either do not use an ontology or use it in a manual

fashion, evidence the existence of a gap for semi-automated approaches to get refined

requirement specification based on domain ontologies.

As explained by Deemer et al. [56], the current scenario for refining requirements using the

Scrum agile development method is that the product owner together with the development

team have to work cooperatively to refine and understand the ambiguous requirements in

process called Product Backlog Refinement, where the product backlog represents the

system requirements in from of User stories, use cases or any other useful requirements

approaches. Often the Product Backlog Refinement process is far from being trivial and it

require detailed analysis for the requirements, breaking down a large user story into smaller

stories and the involvement of other stakeholders that better understand the requirements in

the applied domain, the flowchart of the product backlog refinement is shown in Figure 3.

5 | P a g e

Figure 3. Product Backlog Refinement explained. Retrieved from

https://www.scrum.org/resources/blog/product-backlog-refinement-explained-33 S. Rooden [71].

The thesis proposes two approaches for the semi-automated refinement of user stories, we

try to avoid the aforementioned traditional method (Product Backlog Refinement). We

mainly depend on systematically analyzing the user stories requirements and transforming

it from natural language into structured data. The necessity to extract information from

natural language documents motivated a lot of research on application of text analysis in

requirements engineering [7] and then to store the structured data into domain ontology.

The underlying idea for the first approach, is to disassemble each requirement into a number

of typed entities. Our domain ontology system will consist of predefined entities, types and

relationships between them for a specific application domain. Also, a new set of entity, type

and relation can be added to the ontology incrementally. According to Breitman et al. [6],

having a rich and high-quality domain ontology will help the analyst get more insight of the

system application domain; indeed, ontologies help both people and machines to

communicate concisely, supporting the exchange of semantics and not only syntax [4].

Hence, the domain ontology works as a knowledge base for both domain experts and
requirement analyst, and the domain ontology itself is a valuable requirement engineering

product, as stated by Breitman et al. [6].

https://www.scrum.org/resources/blog/product-backlog-refinement-explained-33

6 | P a g e

On the other hand, business process models, and in particular models following the Business

Process Model and Notation (BPMN) language, are widely used in RE as it has been

designed to assist the needs of domain experts and business analysts.

Having a complete Business process is essential to get better insight about the business

domain where a new system need to be developed. Business process models are considered

one of the most commonly used type of conceptual models, it depicts the business workflow

and the business added value that created by different stakeholders [57].

A standard notation for modeling business processes is the Business Process Model and

Notation (BPMN) [58]. BPMN is a graphical notation, maintained by the Object

Management Group - (OMG), created for the representation of business processes and based

on workflows [59], with great advantage as it easy to understand and interpret by all the

stakeholders in an organization.

The rest of the paper is structured as follows. Chapter 2 introduces our goal, hypothesis and

research questions. Chapter 3 presents our research methodology. Chapter 4 literature

review. Chapter 5 presents the potential use of domain ontology to refine user stories.

Chapter 6 introduces our main approach in using BPMN to refine user stories. Chapter 7

describes the experimental framework used to validate our developed artifact Story

Suggestor Tool. Chapter 8 presents our conclusion and future research.

7 | P a g e

Chapter 2: Goal, Research Questions and Hypothesis

Our goal is to define a semi-automated requirements refinement process for Agile

requirements engineering with user stories, so that we can get high-quality requirements

specifications. Through this research, we would like to address the following hypothesis and

knowledge questions which are related to the objective of this thesis:

MRQ : Does the use of the semi-automated process for supporting requirements refinement

lead to higher quality requirements compared to the traditional product backlog refinement?

Based on our main research question three sub-questions have been formulated as the

following:

RQ1.1: What lessons learned can be gained from the existing literature on the use of domain

knowledge in RE?

RQ1.2: Do analysts who use domain knowledge deliver more complete requirements than

analysts who use the traditional backlog refinement?

RQ1.3: Do analysts who use domain knowledge deliver more correct requirements than

analysts who use the traditional product backlog refinement?

The research questions above have been translated into the following hypothesis:

H01: Using domain knowledge as refinement for requirements engineer increases the

requirements quality.

According to IEEE 830 standard [12] and Kaiya et al. [1], there are four main characteristics

that define the quality of the requirements specifications [12]:

¶ Correctness: A system requirements specification (SRS) is considered correct, if

and only if it meet the system objective and for that each system requirement

specification should be mapped to another applicable standard to make certain that

it is meet each otherôs. Alternatively, the stakeholders can determine if the SRS

correctly reflects the actual needs.)

An example of an SRS which is not correct, if a one requirement stated that the

product owner can rank his own product, whereas the objective of the developed

system is to get the end user ranking for the products.

¶ Completeness: SRS is considered complete if it comprises all important

requirements in terms of functionality, performance, design constraints, attributes,

or external interfaces. Furthermore, adding definition of the responses of the system

8 | P a g e

to all possible input values and also adding definition of all terms and units of

measure.

For example: a requirement considered not complete when a system need to be

developed for ticketing system and there are no requirements for issuing tickets.

¶ Consistency: SRS consistency focus on internal consistency in which no

contradiction between the sub requirements is occurred.

For example, the following user story violates the internal consistency: One

requirement may state that ñAs a student, I want to have a view access to my grade

listò while another may state that ñAs a student, I want to have a full access to my

gradeò. There is inconsistency between the two user stories.

¶ Unambiguity: Unambiguity for an SRS means that there is only one interpretation

for each requirement specifications. In cases where a term used in a particular

context for describing requirement specification have multiple meanings, the term

should be included in a glossary where its meaning is made more specific.

An example of ambiguous user story is a user story that uses ambiguous terms such

as: ñAs a student, I want to be able to edit the content that I uploaded to my personal

pageò, without giving a clear definition to what ñcontentò exactly mean, since

ñcontentò is broad term and it might refers to a wide range of different things.

As such, a specification R2 is more refined or is of higher quality than specification R1 if

and only if:

Correctness R2 > Correctness R1

Or

Completeness R2 > Completeness R1

Or

Consistency R2 > Consistency R1

Or

Unambiguity R2 > Unambiguity R1.

However, in our research we focus solely on improving correctness and completeness as the

two quality characteristics, without compromising the other two characteristics consistency

and unambiguity.

9 | P a g e

Chapter 3: Research Method:

We explain the research method that will be used in order to investigate the research

questions. We need to iterate over two activities:

¶ Designing a tool that refines a collection of requirements.

¶ Empirically investigating the performance of this tool.

Therefore, the design science methodology [14] seems to be the best fit for the research. A

design science project is an iterative process between solving design problems and

answering the knowledge questions. Designing the problem (design cycle) comprises three

main phases: problem investigation, treatment design, and treatment validation. We will

repeat the cycle iteratively two times and check whether the treatment satisfy the

stakeholders needs as it shown in Table 2. Implementing the treatment and evaluating the

result will complete the so called the engineering cycle is out of the scope of this paper.

Therefore, this thesis will focus solely on the design cycle [14]. As it shown in Figure 4 and

Figure 5.

Figure 4 design cycle first iteration

10 | P a g e

3.1 Problem Investigation

In order to have a get better understanding about the problem that we investigate, for the

first iteration, a literature review has been done as presented in Chapter 4 focusing mainly

on the use of user stories requirements engineering in Agile methods, different approaches

for requirements modeling, in addition to the use of Domain knowledge in RE and the

diverse techniques for using domain knowledge sources in RE. For the second iteration we

did further investigation about the problem of refining the RE adding to that the expert

opinion from the first iteration.

Figure 5 design cycle second iteration

3.2 Treatment Design

We design a semi-automated mockup as a proof of concept as illustrated in Chapter 5 and

Chapter 6. We use a set of user stories from the education domain for facilitating the

construction of our tool and for testing purposes, for the first iteration we proposed our first

approach by using domain ontology as a domain knowledge, for that we developed ontology

using the Protege tool, also the we used of Visual narrator tool and ontology matching tool.

The aim of the first iteration was to find out whether the proposed concept is helping the

requirements analyst to get more precise and high-quality requirements. In the second

iteration, we proposed another domain knowledge source, BPMN and for that we will

develop a full working prototype.

11 | P a g e

3.3 Treatment Validation

In order to find whether our artifact solved the aforementioned problem or not. In the first

iteration we considered the expert opinion in the RE domain, about the mockup design and

the efficiency of the output and we found out in chapter 7 that using DO as domain

knowledge is not a feasible solution at least from the companiesô point of view, since just a

few companies used a DO. The experts were a business analyst or professor who involved

in RE projects. Based on the feedback from the expert, more refinement to our solution was

made in a sense of using another domain knowledge ïbusiness process- to refine the user

stories. For the second iteration, we conduct experiment in which it involves a control group

and treatment group, then we compare and analyze the results to find whether our proposed

solution meet the objective in helping the analyst in refining the requirements.

Phase First iteration Second iteration

Problem

investigation

Prepare for the design of a refining RE

using domain ontologies by

learning more about the RE, modeling RE

techniques, ontologies building and

matching.

And the current available RE refining

methods and techniques.

Complete problem investigation, adding

to that the expert opinion from the first

iteration. Further investigation about

using BPMN as domain knowledge to

refine RE

Treatment

design

Mockup/proof of concept/ preliminary

design for the tool

Working prototype

Treatment

validation

Expert opinion Experiment

Table 2. The three phases of Wieringaôs design cycle during the two iterations.

12 | P a g e

Chapter 4: Literature Review

To get a better understanding of the domain area of requirements engineering and the

domain knowledge, a literature review was performed to address the following question:

RQ1.1: What lessons learned can be gained from the existing literature on the use of domain

knowledge in RE?

The literature review helped us to get better insight about Agile requirements engineering

with user stories, explore the use of the natural language processing in RE, requirements

modeling, building and ontology learning approaches and using BPMN in RE.

4.1 Background on RE

4.1.1 Agile RE User Stories

A user story is a description of a feature that provides business value for both developers

and products owner. It is a cooperative working way between product owners and the

system developers in order to get a clear insight about the system behavior.

 Although many different templates for writing user story exist, in this thesis we use the

Connextra template (Lucassen et al. [40]):

Template: ñAs a <type of user>, I want <goal>, so that <some reason>ò

There are many benefits for using user stories [38]. User stories are, to some extent,

understandable by both users and developers, thereby empowering users as actual team

members and making it possible for them to actively participate in design the system that

they are going to use. User stories are an efficient way to transfer the implicit knowledge

between the users and the developers, since they foster the informal exchange of ideas

between the team members. They also help the developers to manage and prioritize the

stories based on their significant. In addition, user stories motivate the opportunistic

development approach in which the developers can swap easily between the requirement on

different level of detail [38].

User stories support deferring detail, in terms of writing a more general or epic user stories

in the first phase and then go into more details later on. Moreover, user stories match well

the fast-paced, iterative development method like Scrum and other agile development
methods. It is no surprise that user stories are the predominant method to capture

13 | P a g e

requirements in agile software development [39]. Also, many agile methods recommend

gathering requirements using user stories [41].

4.1.2 Linguistic Analysis / NLP

Requirements define what the stakeholders need and what the system must include to satisfy

the stakeholdersô needs, and for that the use of natural language is widely common it

considers as the most important medium for requirements documents. According to Mich et

al. [42], almost 80% of all requirements documents are written in common natural language.

Many natural language processing (NLP) tools and approaches have been developed to

support the processing of NL requirements documents. According to Berry et al. [43], the

NL supporting tools fall into four categories with full or semi-automation processing and

based on the precision and recall the authors define the tool strength, the four categories are

as the following:

1. Requirements quality analysis: tools that helps to detect deviations and defects from

best practices NL requirements documents. e.g., ARM and QUARS, by Fabbrini et

al. [46] and to highlight ambiguous requirement statements, e.g., SREE and

Chantreeôs nocuous ambiguity finder [72].

2. Requirements model generation: tools to generate models from NL descriptions, it

detects classes, variables, and associations form requirement documents and then

transform it into abstract model for example the work by Popescu et al. [45].

3. Abstraction identification: tools to identify the key abstractions from NL documents,

a tool that help the analyst in get better understanding of an unfamiliar domain. The

abstraction comprise the main terms and concepts and it could be represented as

domain ontology that helps the analyst to gain knowledge about the domain where

he needs to develop the system. The work by Goldin et al. [44] is an example for

this category.

4. Links discovery: tools to discover trace links among NL requirements statements or

between NL requirements statements and other artifacts of the development process

e.g. Poirot tool developed by Lin et al. [47]

14 | P a g e

4.1.3 Requirement Modeling

Software systems consist of complex processes and the correspondent textual requirements

are often difficult to understand. Moreover, following the interaction between different

elements based on textual requirements is not an easy task. Therefore, the need to reduce

the textual requirements extensivity and complexity become a necessity. Requirement

modeling simplifies the process and shows the system behavior in a clear and a more

understandable way. Furthermore, the interaction between diverse elements are explicitly

illustrated in the modeled requirements. The benefits of modeling requirements are depicted

in Figure 6. The left-hand side shows four textual requirements, while the right-hand side

shows the model diagram of the corresponding requirements.

Figure 6. Example of textual requirements vs. modeled requirements extracted from ñHandbook of

Requirements Modeling IREB Standardò Weyer et al.[48].

From the previous example, we notice that modeling requirements is easier to understand

and it provides a clear view of the main activities and the system functionality, while in the

textual requirements this information is often presented implicitly [48].

4.1.3.1 Applications for Modeling Requirements

According to Requirements Modeling IREB Standard by Weyer et al. [48], there are three

main applications for modeling requirements in requirements engineering:

15 | P a g e

¶ Modeling Requirements as a Means of Specification:

In this case, in order to define the system requirements, requirements diagrams are

used as a medium for identifying the system requirements. It is also possible to

support the requirements diagrams with textual explanations, especially when a text

is more evident than diagrams.

¶ Modeling Textual Requirements for The Purpose of Testing:

A requirements diagram is created to examine the comprehensibility and

inconsistencies of textual requirements. Hence, using the requirements diagram

helps in fixing all the deficiencies within the textual requirements.

¶ Modeling Textual Requirements for Clarity:

In order to clarify a complex textual relationship that represent the system behavior,

a modeled requirement is used to simplify and to explain the extensive textual

requirements.

16 | P a g e

4.1.3.2 Views in Requirements Modeling

As stated by Pohl et al. [49], three main basic views for functional requirements consider

the building block for other different views are as it illustrated in Figure 7: (1) the static-

structural view, (2) the behavioral view, and (3) the functional view.

Figure 7: Views in requirements modeling in the IREB advanced level module "Requirements Modeling",

extracted from ñHandbook of Requirements Modeling IREB Standardò Weyer et al.[48].

¶ Context view: aims at representing how the system interacts with external entities

and what their responsibilities are. This viewpoint is also vital to understand who

are the main stakeholders and what are their interests concerning the system.

¶ Information structure view: Describes the way that the architecture stores,

manipulates, manages, and distributes information and the way that information

moves around the system and where the data accessed and modified.

¶ Dynamic view: the main concern of this view is the dynamic aspects of the system

functionality, an example of models under the dynamic view are activity diagrams,

state machine diagrams and data flow diagrams.

¶ Quality view: focus on the quality aspects of the requirements that affect different

system elements for instance performance, reliability and robustness can be modeled

by adding a note of explanation to the requirements quality diagram.

17 | P a g e

¶ Constraints view: mainly focus on a limitation or restriction for requirements for

example organizational regulations or technological constraints. Such constraints

could be modeled using class diagram.

4.1.3.3 Goal-Oriented Requirements Engineering

Goal-Oriented Requirements Engineering (GORE) has grown into an important area of

research in the past decades [51]. (GORE) is defined by Van Lamsweerde [50], is it the

desired target that the system should achieve or software-to-be through cooperation of

various stakeholders, devices and 3rd party system within the organization.

GORE brings several benefits to RE practice, such as: it supports a wider system

engineering perspective compared to the traditional RE methods, focus more on the

reasoning behind the requirements and on top of that, GORE gives grounds for each

requirement existence. Besides, it provides precise criteria for sufficient completeness of a

requirement specification and it could also be used to detect and manage conflict between

requirements.

Although many goal modeling languages emerged to support the RE process, KAOS and i*

frameworks are the most dominate tools for goal-oriented modeling as stated systematic

mapping study that has been done by Horkoff et al. [51].

4.2 Representing Knowledge

4.2.1 Building Ontologies

Ontology is an explicit formal specification of how to represent the entities that exist in a

given domain of interest and the relationships between them. The nature of requirements

engineering involves capturing knowledge from diverse sources including many

stakeholders with their own interests and points of view. Therefore, there is potential in

using ontologies in requirements engineering. According to Ballejos et al. [73], there are

many benefits of using domain ontology in requirements engineering. The potential uses of

ontologies in RE includes revealing of requirements ambiguity and helping in

refining insufficient and incomplete requirements. Adding to that the ontology helps in

dynamic and changing requirements environment by providing constant requirements

revision.

There are several tools that support the development of ontologies. Some of these tools are

outdated and not supported anymore, while others keep developing and evolving to support

18 | P a g e

wider variety of tasks that facilitate the ontology building process. In this section we will

compare some ontology development tools and briefly discuss some of the state-of-the-art

tools.

The main criterion for comparison of these tools are the implementation language, import

and export format the availability weather the tool is free open source or a license is required.

In addition to versioning capability, the use of ontology libraries and beside the use of

reasoner for evaluation and consistency checking. We mainly depend on Rastogi et al. [19],

Kaur et al. [20] and Slimani et al. [21] for making our ontology tools comparison table. (See

the Appendix A for the full table of tool comparison).

Protégé: a free open source ontology editor created at Stanford University that is very

popular in the field of Semantic Web and in computer science research. Protégé, developed

in Java and its source code is released under a free license (the Mozilla Public License).

Protege is probably the most popular ontology development tool. Protege ontologies can be

imported and exported in a variety of different formats, including RDF/RDFS, OWL and

XML Schema formats. Protege facilitates rapid prototype and application development and

has a very flexible architecture via a plug-and-play environment.

Moreover, variety of plugins have been developed by the researchers (e.g., the

PROMPT/Anchor-PROMPT plug-in for ontology merging [15], plug-ins for versioning

support [16], and plug-ins for collaborative ontology development [17]). Recently, a

lightweight OWL ontology editor for the web (Web-Protege) [18] has been

proposed. Protege Web Browser is a Java-based Web application that allows the user to

share and set permissions for specific project. Also, it provides a full change tracking and

revision history, adding to that it supports multiple formats for upload and download of

ontologies (supported formats: RDF/XML, Turtle, OWL/XML, OBO)

Figure 8, shows a simple example of domain ontology for education system created for

testing purposes, the main classes are Student, Professor, City and Netherland. In the

example ñMikeò is an individual or instance for the class student, while the relationships are

represented in our example by ñStudentinò, IsaCity, hasaCity.

19 | P a g e

Figure 8. WebProtégé example for simple education system

OILEd: OIL Editor is a simple ontology editor and ontology demonstration tool that

supports OIL-based Ontologies construction. The basic design is quite similar to other

ontology tools such as Protégé5 and OntoEdit, It integrates a reasoner (FaCT) and extends

the expressive power of other frame-based tools. OilEd can import and export ontologies in

the RDF, OIL, SHIQ, dotty, DAML + formats.

Ontolingua: a form-based Web interface ontology tool based on the KIF knowledge

interchange format for develop ontologies. Ontolingua, supports Ontology creation and

browsing in distributed and collaborative environment. Using Ontolingua, it is possible to

export or import the following formats: KIF, DAML+OIL, OKBC, Prolog, LOOM.

WebOnto: a tool which provides a web-based visualization, browsing and editing support

to develop and maintain ontologies and knowledge models. An ontology can be viewed as

a model of the conceptual structure of some domain and WebOnto, provides the capability

to represent this graphically. It can export ontology to OCML, GXLRDF and OIL format.

20 | P a g e

Swoop: a tool for creating, editing, and debugging OWL (Web Ontology Language)

Ontologies. SWOOP is a short for Semantic Web Ontology Editor. It provides an

environment with a look-and-feel similar to that of a web browser. Reasoning can be

performed using an attached reasoner (such as Pellet).

Neon: a toolkit for ontology management which provides run-time and design-time

ontology alignment support, it provides storage, reasoning, querying, versioning and

security services. The GUI provides user front-end components, including editors with text-

based, graph-based and form-based interfaces.

4.2.2 Ontology Learning Approaches

Ontology learning is the process of extracting ontological elements (conceptual knowledge)

from input corpus and building ontology from them [22]. Based on the data type from which

the ontology learned, the ontology learning systems can be classified to unstructured, semi-

structured, and structured data learning.

Unstructured data is documents consists of natural language texts such as Word, PDF

documents and books. Semi Structured data is text in HTML, XML files, Wikis and User

Tags dictionaries like WordNet [29] or the Wiktionary [30], while structured date are the

database schemas, existing ontologies and knowledge bases. [22] [23].

Different techniques and technologies have been used for Ontology learning such as

machine learning, knowledge acquisition, natural-language processing, information

retrieval, artificial intelligence, reasoning and database management [23] [24]. However,

using the natural language processing (NLP) is common among all the techniques, and the

following categorization of ontology approaches consider the used technique beside the

(NLP) [25].

4.2.2.1 Learning from Structured Data

4.2.2.1.1 Statistical Approach

Sanchez et.al. [26] developed algorithm that analyses a large number of websites to find

important concepts for a specific domain by studying the initial keyword's neighborhood.

Next, statistical analysis is performed to select the most adequate concepts from a set of

candidates. Finally, the selected classes used to build the ontology. To find new terms and

to build a hierarchy of concepts, the processes repeated iteratively. The output is taxonomy

of terms in which can be used as a base for finding more advanced ontological relations

21 | P a g e

between concepts, or it can be used to guide a search for information or a classification

process from a document corpus.

4.2.2.1.2 Natural Language Processing Approach

Ontology learning from text is the process of identifying terms, concepts, relations and

dependencies among a set of words and using them to construct and maintain an ontology.

Many techniques use natural language processing in the development of ontology learning

systems. To find the dependency relation between two words Sabou et al. [27] used a set of

syntactic patterns. Mainly, a specialized form of natural language called syntactic

regularities which are inherent from the sublanguage nature of web service documentations.

The ontology extraction steps are: dependency parsing, syntactic patterns, ontology building

and ontology pruning. After the dependency parsing, they set three syntactic patterns

categories to identify and extract interesting information from a corpus for ontology

building. First pattern is used for identifying domain concepts for that they used the ñNounò,

for the second pattern they used the ñVerbò to identify the functionalities. The last pattern

is used for identifying relations using the prepositional phrases. Next, the ontology building

step collects the results of the previous syntactic pattern-based extraction. The extracted

terms are used for building the domain ontology.

4.2.2.1.3 Integrated Approach

The underlying concept behind the integrated approach is to develop a system with library

of algorithms that allow the users to select appropriate learning algorithms for the kind of

ontology they want to learn. TextToOnto [17] for instance, is a framework that use different

measures to extract terms from the corpus and wide range of algorithms for different

ontology learning techniques.

4.2.2.2 Learning from Semi Structured and Structured Data

Techniques like data mining and web content mining are the most commonly used for this

learning method. Karoui et al. [31] proposed a method that used the structure of Web pages

to extract domain ontology without using a priori knowledge. The approach builds a

contextual hierarchy from the web page structure. Next, define the more relevant terms to

classify using data preprocessing techniques. Based on the term position in the conceptual

hierarchy a weight is added, then the candidate terms are classified automatically, and the

concepts are extracted.

Another work, by Davulcu et al. [32] converts the structure of an HTML Web page into a

hierarchical semantic structure (as XML) in order to mine it for generating a taxonomy.

Web pages are mined to separate important concepts from instances as well as to establish

22 | P a g e

parent-child relationships among the concepts and use that concepts for ontology building

[32].

4.2.3 Ontology Matching

Ontology matching or alignment is the process of solving the mismatch problem that is

caused by having different ontology representations of the same domain. Such a

mismatching may cause unsatisfiable classes, properties and relations for the domain

knowledge. Therefore, ontology matching helps in closing the gap between two or more

mismatched ontologies by providing one single source of truth for the domain knowledge

[53].

The input of the ontology matching process is the targeted ontologies that needs to be

aligned and the output will be set possible mapping and correspondences between related

entities (classes, properties and relations) of those ontologies [54].

Many ontology matching techniques and approaches have been developed in the last decade.

However, choosing from this variety of techniques is far from being a trivial task. According

to Otero-Cerdeira et al. [53], the classification of the matching techniques can be based on

the interpretation of input information top-down or based on the type of the input bottom-

up as it depicted in the Figure 9.

23 | P a g e

Figure 9. Matching techniques classification. Extracted from the book óOntology Matchingô Euzenat et al.

[55]

Starting with the top-down input interpretation, the matching techniques can be classified

in a first level as:

Element-level matchers: This approach tackle the ontologies entities as an independent

element, and not as a part of the whole ontology structure.

Structure-level matchers: for the matching, this technique mainly depends on entities

structure of the ontology.

At the second level, those two techniques It also comprise the following sub techniques:

Syntactic: focus on fixing the mismatching results when two ontologies are modelled by

using different knowledge representation formalisms, for instance, OWL and F-logic.

Semantic: mainly concern resolving the differences between two ontologies that use of

different axioms for defining concepts or due to the use of totally different concepts.

Regarding the bottom-up classification, the first level of the matching techniques can be

classified into the following categories:

24 | P a g e

Content-based: these techniques depend on the content of the matched ontologies. This

technique comprises four sub techniques categories as the following:

¶ Terminological: focus on matching the variations in names when referring to the

same entities in different ontologies. This may be caused by the use of different

natural languages.

¶ Structural: match the ontologies entities (entities (classes, properties and relations)

based on their structure in the ontology.

¶ Extensional: focus on matching the instances of the two compared ontologies.

¶ Semantic: deductive methods, use some semantic interpretation of the input and

usually use a reasoner to deduce the correspondences.

¶ Context-based: these techniques used external sources to find a common ground in

term of context between the two compared ontologies.

4.2.4 Business Process Model and Notation (BPMN)

A business process is a network of connected activities and buffers with well-defined

boundaries and precedence relationships, which utilize resources to transform inputs into

outputs for the purpose of satisfying customer requirements [74].

Through our thesis the business process is represented by a business process model and a

notation (BPMN). Weske et al. [75] defined BPMN as a standard for business process

modeling that provides flowcharting technique tailored for creating graphical models of

business process operations. The BPMN notation consists of four categories of elements:

the workflow objects (Events, Tasks, and Decisions); connection objects (streams and

Sequence Messages and Associations); swim lanes (pools and lanes) and artifacts (Data

objects, Annotations and Groups) [59].

25 | P a g e

Dumas et al. [57] decompose business processes into elements as depicted in Figure 10.

Figure 10. Ingredients of a business process, extracted from Fundamentals of Business Process Management

[57]

¶ Event: represents something that happens and triggers a series of activities.

¶ Activity: represent work completed by a group or organization, some activities are

atomic (a task) while others are not atomic (process and sub-process) since they can

be further decomposed.

¶ Decision point: is a point at which a decision is taken that affects the way the process

is executed.

¶ Actor: is someone or something that performs an ñactivityò or benefits from the

output of a process.

¶ Object: can be it physical or immaterial, is a thing consumed or produced by an

ñactivityò.

¶ A process results in ñoutcomeò which can be desirable (ñpositive outcomeò) or
undesirable (ñnegative outcomeò).

BPMN is rich in modeling constructs for representing various types of control flow and

events. As a result, BPMN has a high degree of expressiveness, but at the same time is

highly complex [62]. Also, BPMN provide a unified notation for both IT and management

stakeholders [59]. For this purpose, BPMN includes a basic set of constructs called the

ñBusiness Process Diagram (BPD) Core Element Setò (Core Set).

26 | P a g e

4.3 Use of Domain Knowledge in RE:

4.3.1 Use of Ontologies in RE

A remarkable systematic literature review based on 67 studies has been done by Dermeval

et al. [52] as shown in Table 3. Such study provides a good understanding about the using

of ontology to support the requirements engineering process and the current application for

ontologies in RE filed.

The main finding of the study looks promising, according to Dermeval et al. [52], the main

phases of the RE process that have been supported by the use of ontologies is Specification

(83.6 %), followed by Analysis and Negotiation (58.2 %), Management (35.8 %), Elicitation

(25.4 %) and Validation (6 %). While the most requirements modeling styles that used in

combination with ontologies are textual requirements followed by UML, Scenario-based

and Goal-oriented.

It is also noteworthy that most of the studies focuses on functional requirements, while little

attention has been paid to non-functional requirements. The dominant approaches of

ontology-driven RE tackle the ambiguity, inconsistency, incompleteness requirements

problem followed by requirements management and evolution problem [52]. According to

the authors classification criteria a study could have met more than one phase of the RE

process, thus the sum of percentages can be greater than 100 %.

RE problem Count Percentage%

 Ambiguity, inconsistency and/or incompleteness 38 56.72

Requirements management/evolution 24 35.82

Domain knowledge representation 18 26.87

 Integration between requirements and architecture 3 4.48

Requirements communication 2 2.99

Requirements models interoperability 2 2.99

Distributed requirements elicitation 2 2.99

Goal decomposition 1 1.49

Selection of elicitation technique 1 1.49

Table 3. Existing contributions in ontology-driven RE, extracted from ñApplications of ontologies in

requirements engineering: a systematic review of the literatureò Dermeval et al. [52]

OWL (Web Ontology Language), is the most popular ontology-related language that have

been used to support RE activities, while few studies used SPARQL, SWRL, UML and

XML.

27 | P a g e

Only 37.3% (N=25) of the studies provide empirical evaluation that positively support the

benefits of using ontologies in requirements engineering [52].

4.3.2 Using BPMN in Requirements Engineering

Requirements engineering (RE) is concerned with eliciting and managing requirements for

the life cycle of software systems products. Business processes can be used to elicit and

understand software system requirements due to the knowledge they contain [60].

Keeping software systems aligned with business processes is fundamental for companies to

remain competitive nowadays. In literature it is noteworthy that, the employment of the

modeling of business processes through the notation BPMN, can support the elicitation of

requirements. By having a business process model, it is possible to map not only the

workflow, but also a series of information related to the activities and identify existing

informational systems or even requirements for the construction of new systems [61].

Cardoso et al. [66] proposed a business process-based model for requirements engineering

and found that modeling business processes is a common practice in the RE field which

helps stakeholders to understand their own business process, facilitates problem

understanding, and reveals how the system will meet the needs of the process.

Mathisen et al. [67] use business modelling as an early stage tool that helps capture changes,

in this way, develop software systems that fit the customerôs organization and business

processes and to ensure that the software is aligned with business strategy.

Also, Mathisen et al. [67] argue that, some of the problems related to missing, incomplete

or vague requirements can be referred to an insufficient understanding of the proposed

software systems from the business point of view. Furthermore, the development of business

process models, prior to, or in early phases of development will reduce the number of high-

impact changes the system must go through during the system development life cycle. And

for that a sufficient transformation of business requirements into a formal system

specification is required and it consider a crucial step in any business-related software

development project. In fact, business process models have proven to be an effective means

of specification.

28 | P a g e

4.4 Summary on How the Current Literature Informed Our Research

The aforementioned literature review provides valuable insights about the related topics

which are concerned with the requirements engineering and aims to outline the potential use

of domain ontologies in requirements refinement.

According to Agile RE, user stories capture the system features from an end-user

perspective and for that it describes the type of users, what they want and why they want it.

Since the user stories are represented in natural language, literature review has been

performed to learn more about the use of (NLP) in requirements engineering.

We gained a better understanding about the significance of Requirement modeling activity

in terms of maintaining consistency and completeness of the requirements. The use of

ontologies in RE is the core concept of our approach. Because of that, we evaluated the

current state of the literature reviewed and we identified the gaps in existing knowledge.

The gaps stemmed from focusing on dimensions other than specification dimension like

representation dimension, from tools that have lack of interaction with the stakeholders or

from manual approaches. Our first approach however aims to develop interactive semi-

automated tool for requirements refinement.

Literature about building and learning ontologies approaches helped us in finding the best

tool to build an ontology and the learning techniques that fit our approach. Applications of

ontology matching approaches demonstrated outstanding results for refining requirements,

as our first approach depends on the matching between two inputs: The predefined domain

ontology 1 and the output of the Visual narrator tool which is considered as ontology 2.

The main goal of the business process modeling is to provide common language for

communities of software and business engineers. As stated by Giaglis et al. [69] software

that supports the business must be aligned with the business processes.

Nowadays, business is closely tied to the application of appropriate software systems and

its usage, business process management brings the business perspective and the IT

infrastructure together. However, the concrete specification of usage or transformation of

business process models into the software models is still relatively limited [68]. To address

these limitations, we investigated the potential use of BPMN in refining requirements

engineering user stories.

29 | P a g e

Chapter 5

5. Using Domain Ontology to Refine User Stories.

We will discuss different scenarios that illustrate a co-evolution process of a domain

ontology and a collection of requirements expressed as user stories. Such co-evolution

process outlines the key idea of this process: how ontologies can be used to refine user

stories. This process shown in Figure 11.

Figure 11. User stories refinement process

Consider an existing product backlog, which lists the features that the product owner desires

for the final product. Product backlogs contain user stories that are sorted from higher to

lower priority and may also include acceptance criteria that articulate precisely when the

user stories are done [33].

Second, suppose the product owner disposes of a domain ontology that describes individuals

(instances), classes (concepts), attributes, and relationship between the instances and the

concepts.

The refinement process starts by taking the highest priority set of the user story from the

product backlog. The first set of the user story will be processed by the visual narrator (VN)

that automatically extract a conceptual model from a set of user story requirements [35].

The output from the VN can be considered as ontology, and then it will be checked against

the domain ontology using an ontology matching tool. For example, we may use

AgreementMaker system [34] for matching schemas and ontologies. In order to handle

many different matching scenarios, AgreementMaker uses a wide range of iterative

matching methods. The tool helps in making alignment between the two schemas or
ontologies by depicting new mapping between two concepts or adding a new relations,

concepts and instances.

30 | P a g e

The matching process can be done automatically or manually by expert intervention.

However, in order to do the comparison, we have to assign the source and the target ontology

that we want to compare. First, we will set the domain ontology as the source and the output

from VN as the target for refinement. Next, we will do it the other way around, so the VN

output will be the source and the domain ontology will be the target.

Figure 12. Schema of the AgreementMakerLight Ontology Matching Module, extracted from The

agreementmakerlight ontology matching system [76].

Figure 12. Shows the schema of the AgreementMaker ontology matching model. Where

Lexicon contains the local names of all listed classes, their labels, and all their synonyms.

Relationship Map contains the òis aò and part of relationships between all listed classes.

Matchers are algorithms that compares two ontologies and return an Alignment between

them. Alignment is a data structure used by the ontology matching module to store mappings

between the input ontologies. Selectors are algorithms used to trim an Alignment by

excluding mappings below a given similarity threshold [76].

In our example, the underlying idea about the matching process is to develop both the user

stories and the domain ontology simultaneously. Adding, updating and deleting a new

classes, properties and relations using the matching tool will reduce the mismatching

between the user story and the domain ontology. Hence, co-evolution of refining the user

stories and building the domain ontology would be possible as a result of the matching

process.

31 | P a g e

5.1 Scenario for Using Domain Ontology to Refine User Stories:

Assume that we have the following scenario: we are developing a system that supports the

university education system, where the students can submit their thesis online, professors

can check the students thesis and make notes, comment and eventually grade the uploaded

document. The professor assistant also plays a role in terms of following up the students

work, managing and keep tracking of the students deliverables.

Some suggested user stories could be as the following:

S1: As a student, I want to upload my academic paper to the system, so that I can hand it in

to my supervisor.

S2: As a student, I want to edit my paper, so that I can make the required modification

S3: As a professor, I want to read the uploaded paper, so that I can grade it

S4: As a supervisor, I want to edit the paper, so that I can make a notes

S5: As an Assistant, I want to read the paper, so that I can follow up the changes

S6: As an Assistant, I want to edit the paper, so that I can give my feedback

S7: As a student, I want to update my grade, so that I can improve my GPA

The output of visual narrator has many formats as it mentioned previously one as shown in

Table 4:

ID Number Subject Predicate Object Occurs in

S1 Student Upload Paper 1

S2 Student Hand To Supervisor 1

S3 Student Edit Paper 2

S4 Student Make Modification 2

S5 Professor Read Paper 3

S6 Professor Grade -pron- 3

S7 Supervisor Edit Paper 4

S8 Supervisor Make Note 4

S9 Assistant Read Paper 5

S10 Assistant Follow Change 5

S11 Assistant Edit Paper 6

S12 Assistant Give Feedback 6

S13 Student Update Grade 7

S14 Student Improve GPA 7

Table 4. Report of user story parsing, and conceptual model creation

32 | P a g e

After processing the output from the visual narrator and the domain ontology, we can find

the following cases:

¶ Two terms refer to the same concept. For instance, the user stories S6 and S7 the

concept supervisor and professor handled separately while in the domain ontology

it is explicitly mentioned that the two concepts are actually the same as it shown in

the ontology concepts synonym. So, the analyst can merge the two concepts in the

user stories. Likewise, for the two individual (master thesis -graduation project) and

(Lecturer- Professor). As it shown in the Figure 13.

Figure 13. Class annotation for the lecturer concept

¶ From the report of user story parsing Table 4, S6 shows an undefined object and

that lead to ambiguity in the user story S3 , while at the domain ontology it is clear

that the concept professor has an object property ñcanGradeò the academic paper.

So, the analyst can modify the user story number 6 to become the Refine S3: As a

professor, I want to read the uploaded academic paper so that, I can grade the

academic paper as it shown in the Figure 14.

33 | P a g e

Figure 14. Property assertion for the concept lecturer

¶ The user story number S7 suggest a new object property that not exist in the domain

ontology ña student can update his own gradeò for this case a distinction between

open word assumption and close word assumption is needed. The Closed World

Assumption (CWA) is the assumption that what is not known to be true must be

false. On the contrary, the Open World Assumption (OWA) it is the assumption that

what is not known to be true is simply unknown. If the analyst considers the concept

under the (CWA) then the new concept should be deleted from the user stories.

Otherwise, a new concept should be added to the user stories [36].

¶ An ontology considered as a vague if it has at least a vague definition of a concept

[37]. From our example the domain ontology shows that the assistant has a property

to ñhelpò the professor such a vague property might be confusing for the analyst.

While the user stories S5 and S6 shows that the assistant can ñread ñand ñeditò the

uploaded academic paper. The analyst then has to add the two new properties to the

domain ontology as an object property for the assistant. So that the individual Max

which has a class of assistant, can read and edit the students academic paper.

¶ Ontology Log: At the same time, in order to keep track of all the changes and the

reasoning behind it and to avoid any confusion in the future, all the previous changes

for both the ontology and the user stories have been registered and documented in

log by the matching tool.

After all the seven user stories have been refined and stored in the product backlog, a

new set of user stories processed again in the same manner. Repeat the same process

recursively until all the user stories in the backlog have been refined.

34 | P a g e

Although the previous approach looks theoretically promising, according to the expert

opinion it might be not a practical solution for the following reasons:

¶ Nowadays, just few companies use domain ontology to represent their knowledge.

¶ Due to the structure of the domain ontology, in practice, it is difficult to extract user

stories from it, since most of the relations are (is-a, has-a) relations which are not

necessarily helpful in creating new user stories.

¶ Domain ontology mainly focuses on information structure instead of process

structure. Thus, it does not contain activities, tasks or workflows that help in

describing processes. Processes are useful because they support the analysts in

understanding the domain area.

For the previously mentioned reasons, there was a need for another domain knowledge. For

that, we investigated the use of business processes as domain knowledge since business

processes are widely used by companies and they support modeling of different types of

activities, tasks and workflows. Weske et al. [75] defines business process as a set of

activities that are performed in coordination in an organizational and technical environment.

These activities jointly realize a business goal.

35 | P a g e

Chapter 6

6.1 Using BPMN to Refine User Stories

We present the potential use of a BPMN-based business process for refining user stories in

a specific business domain.

The process shown in Figure 15 has two input streams: the first one is the software stream

represented by the product backlog which contains a set of user stories, and the second is

the business stream represented by the BPMN diagram.

Figure 15. RE user story refinement using BPMN diagram

The first input, the user stories from the Product Backlog, is directly processed via the VN

tool (visual narrator tool). VN tool extracts a conceptual model from the user stories and as

a result the triple (Subject1, Predicate1, Object1) is generated.

The second input - BPMN diagram - is processed in two phases:

In the first phase, all possible user stories from the BPMN diagram are extracted, however

the focus was solely on the pool/lane and on the task. The extraction is carried out as the

following:

The Connextra template is used - Lucassen et.al. [41]:

Template: ñAs a <type of user>, I want <goal>, so that <some reason>ò

36 | P a g e

The <type of user> is replaced by <pool / lane> and the <goal> is replaced by the <task>

Thus, the following new user story template based on BPMN diagram is generated:

 ñAs a <pool / lane>, I want <Task>ò.

At the end of the first phase a set of possible user stories are extracted from the BPMN

diagram. Then, the user stories are processed via VN to extract the conceptual model and

the triple output of the second phase becomes: (Subject 2, Predicate 2, Object 2).

Next, the two tuples (Subject, Predicate, Object) from the Product backlog and BPMN are

compared against each other. The source is the triple set from the BPMN diagram and the

destination is the triple set from the product backlog as shown in Figure 16

Figure 16. Comparison between elements from source and the corresponding destination tuples

Next, three thresholds T, T2 and T3 are specified for each element of the tuple: subject,

predicate and object, respectively. The process starts by computing the semantic similarity

of the subjects from the source and destination. If the similarity score is above T1, we

compute the semantic similarity of the predicates, otherwise suggest a whole new user story

based on the source. Likewise, we compute the semantic similarity of the two predicates. If

the similarity score is above T2, we compute the semantic similarity of the objects,

otherwise suggest a new user story from the source and continue to the objects and calculate

their semantic similarity. If the similarity score is above T3, finish the current process and

pick the next user story from the product backlog, otherwise suggest a new user story from

the source. This is depicted in the flowchart Figure 17:

37 | P a g e

Figure 17. Story Suggestor Flowchart

6.2 Scenario:

Suppose that we are developing a system that supports the university education system,

where the students can submit their thesis online, professors can check the students thesis

and make notes, comment and eventually grade the uploaded paper. The professor assistant

also plays a role in terms of following up the students work and managing and keeping track

of the studentôs deliverables. The BPMN diagram for the university education system is

shown in Figure 18.

38 | P a g e

Figure 18. BPMN diagram for the university education system

As aforementioned, first all user stories from the BPMN diagram need to be extracted. The

extraction is done using the following template:

 ñAs a <pool / lane>, I want <Task>ò.

The Pool / lane and the corresponded task is shown in Table 5:

Pool/ Lane Task

Student Write academic paper

Upload academic paper

modify the academic paper

Submit the final version

Professor Review the academic paper

make comments to the academic paper

Grade the academic paper

Approve the academic paper

Professor assistant Review the academic paper

follow up the students modifications

Table 5. Pool / lane and the corresponded task, as it extracted from the BPMN diagram

