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Abstract

Data analysis allows for the extraction of useful patterns or information from
data. However, most data that is stored and processed contains personal in-
formation of individuals. The analysis of this data is therefore increasingly
restricted by laws and regulations, and pressured by the public opinion. This
calls for an approach that allows for performing data analysis, while protect-
ing the privacy of individuals that are in the data. Such an approach would
make storing, processing, exchanging and publishing data more feasible, and
less restricted by regulations.

This thesis report contributes to the field of Privacy Preserving Data Mining,
by addressing the research question: How can data be accurately summarized by
as few instances as possible to support data analysis, while preserving the pri-
vacy of individuals? It does so by introducing a novel approach towards data
anonymization, that can be used to provide privacy guarantees, while mostly
preserving the utility of the continuous data. The existing concept of Den-
sity Estimation Trees (DETs) is used for the multidimensional discretization
of continuous attributes. This research proposes to achieve the privacy model
k-anonymity by using k as a minimum leaf constraint, and a stopping rule dur-
ing the creation of DETs. This discretization of continuous instances therefore
yields a number of equivalence classes, where each equivalence class is defined
by one of the DET’s leaf nodes, and contains at least k instances.

The proposed approach is validated through an experimental evaluation, by
evaluating it using fifteen real-world, synthetic or mixed data sets, containing
continuous attributes. The preservation of data utility is measured by com-
paring a classifier’s performance achieved with the continuous data, and the
performance with the anonymized data. The privacy level is expressed by k
within the context of k-anonymity, which serves as an input parameter for the
DET as well.

The results of the evaluation show that with only three out of the fifteen data
sets, there is a significant difference in classification accuracy when comparing
the continuous and anonymized attributes. In addition, in ten out of fifteen
cases, a k-value of at least 10 achieves the highest classification accuracy.

It can be concluded that in most cases, the anonymization approach that
is introduced succeeds to create an accurate representation of the continuous
attributes that preserves data utility. In addition, it does so while providing
privacy guarantees through k-anonymity for relatively high k-values.
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Chapter 1

Introduction

This thesis describes a research project on Privacy Preserving Data Analysis.
While interest in advanced analysis of large data sets is only increasing, so is
the awareness about the privacy issues that are involved. Section 1.1 contains
a detailed description of the problem to be addressed in this thesis. Next, Sec-
tion 1.2 describes the relevance of the research described in this thesis. Lastly,
Section 1.3 provides an outline of the remainder of the report.

1.1 Problem statement

1.1.1 Background

The interest in data analysis has been present for several decades. Although
concepts like Data Mining and Machine Learning have theoretical differences,
their goal is somewhat similar: to extract useful patterns or information from
data (Witten, Frank, Hall, & Pal, 2016). Data analysis is carried out in many
fields, e.g. health care, transportation, banking, social media and e-commerce.
Learning algorithms yield valuable insights that could not have been gained
otherwise. However, data that is collected and analyzed usually involves people
and their personal information. This means that personal and sensitive data of
individuals is being collected, transferred, analyzed, and sometimes even pub-
lished.

Although the implementation of privacy regulations and laws is not a re-
cent development, new laws are being implemented to fit the challenges and
characteristics of the modern information era. An example of a relatively new
law is the General Data Protection Regulation (GDPR), which is active since
April 2016 for all members of the European Union. This regulation creates
more conditions for data processors, more rights for the individuals whose data
is being processed, and larger fines for violations (European Union, 2016). It
holds for all data processors residing in EU states, and for all processors of
data involving citizens of the European Union. The law thereby accounts for

2



Chapter 1 1.1. PROBLEM STATEMENT

the extra-territorial nature of the internet and removes all ambiguity and im-
portance of server locations and the placement of data centers (EUGDPR.org,
2016). Since the GDPR holds for a large population and is more strict in gen-
eral, organizations that process personal information do care about complying
to it. It was possible to take two years of preparation to comply to the GDPR.
Organizations were therefore expected and required to do so since May 2018.

Strict regulations concerning privacy is a positive development, but organi-
zations do not always have the knowledge on what is and is not allowed. This
could potentially lead to a reserved attitude, which could impede advanced data
analysis. For example, organizations could be restrictive towards sharing their
data with external parties for data analysis, to avoid the risk of violating privacy
regulations. Solutions to share data while respecting confidential or personal in-
formation of individuals are generally not one-size-fits-all.

Apart from new regulations, the awareness of privacy and issues with col-
lecting and sharing data is increasing. At the time of writing, a large privacy
scandal concerning Facebook came to light. Specifically, personal information
of up to 87 million Facebook users was improperly shared with a data analysis
company, Cambridge Analytica (Ingram, 2018). Apart from the initial hit Face-
book took, Cambridge Analytica declared bankruptcy within a few months after
the incident hit the news (Reuters, 2018). Due to the extensive media attention,
most organizations would want to take measures to avoid such scandals, and
individuals become aware of the risks of sharing their information with these
organizations.

The notion of privacy in data analysis is not restricted to organizations or
governments. Processing or publishing data is an integral part in a scientific
environment as well. For example, statistical analyses to test hypotheses are
performed on responses of a questionnaire or survey. Publishing medical data
provides insights in medicine as well, but this type of data naturally contains
very sensitive information on individuals. When publishing this data, it is im-
perative, and in most cases required by law, that individuals in the data remain
anonymous and could not be identified by any means.

Another use of data sets is in education. When educating students in statis-
tics, data analysis, Data Mining, or Machine Learning, using real world data
sets is worth more than using dummy or mockup data (Neumann, Hood, &
Neumann, 2013). However, the public availability of real world data sets leaves
something to be desired (Wixom et al., 2011), and is also restricted by privacy
regulations.

An answer to the issues of organizations, science, and education is to anony-
mize data in such a way that the privacy of individuals is respected, while data
analysis is still possible. This is not a trivial task however, as several cases show
how individuals could be identified from anonymized data with minimal effort
(De Montjoye, Hidalgo, Verleysen, & Blondel, 2013; Malin & Sweeney, 2004;
Narayanan & Shmatikov, 2008; Samarati, 2001; Sweeney, 2002).

3



Chapter 1 1.1. PROBLEM STATEMENT

1.1.2 Privacy Preserving Data Analysis

To avoid de-anonymization and to guarantee the privacy of individuals while
enabling data analysis, research is conducted under terms like Privacy Preserv-
ing Data Mining and Privacy Preserving Data Analysis. The latter will be used
throughout this thesis. The core concept of this field is to use data to our ben-
efit through analysis, without compromising the privacy of individuals in the
data. Various techniques, models, and metrics exist (Mendes & Vilela, 2017).
Although these techniques are very effective when used correctly, their use in
practice is difficult to estimate. There are many different techniques and models
that require tight integration (Prasser & Kohlmayer, 2015). The techniques to
choose depend on the application and the nature and structure of data. More-
over, privacy models require parameters set by the user. Data anonymization
requires at least some amount of preparation, as well as knowledge on the topic.

A common distinction when it comes to privacy in data sets is that between
explicit identifiers and quasi identifiers. The former refers to data that can
directly identify a specific individual, like names and social security numbers.
The latter refers to data that cannot directly identify a specific individual, but
combined with auxiliary information could reveal one’s identity. For example,
data containing street name and age could be enough to identify one specific
individual, when an adversary has auxiliary knowledge on someone’s age and
street. Golle (2006) shows that 63% of US citizens can be uniquely identified
just by the combination of their gender, zip code, and birthdate.

Intuitively, explicit identifiers pose a larger threat for privacy. However,
these are also the least complex to deal with. When sharing or publishing data
for analysis, explicit identifiers are typically removed, either for legal reasons,
or due to the fact that these are usually not the most interesting for data
analysis tasks. The challenge lies with data that is interesting for analysis or
learning tasks, like classification or regression. This data needs to be preserved
for effective analysis. However, its disclosure has potential privacy risks.

This research project addresses this problem, and tries to find a comprehen-
sive method to allow data mining or other analysis techniques to be performed,
while individuals cannot be identified from the data, and thus stay anonymous.
More specifically, the aim is to transform a set of continuous numerical features
and instances into an anonymized set. This is achieved through discretization
and sampling of the original set to create an accurate summary of the data. This
summary should be representative of the original data’s distribution to allow for
effective data analysis, and at the same time preserve the privacy of individual
records in the data. Moreover, the resulting level of data utility and privacy
should be measurable to ensure that both satisfy the defined requirements.

4
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1.2 Relevance

1.2.1 Practical relevance

Over the past two decades, many attempts were made to formulate models pro-
viding privacy guarantees. In addition, several algorithms were proposed that
satisfy a privacy model while data utility is maximized. However, each model
has its drawbacks, and the lack of a silver bullet poses difficulties for practition-
ers. For example, the GDPR encourages employing methods for anonymization
and pseudonymization. Doing so, data processors are allowed to handle data
more freely, or might even fall outside of the regulation’s scope. However, no
approaches were suggested for anonymization, or what criteria can be used to
determine anonymity of data (Wes, 2017). This is understandable, since it is
unlikely that a method can be developed that supports all possible use cases, is
free of ambiguity, provides an absolute privacy guarantee, and preserves maxi-
mal data utility. However, organizations and practitioners would benefit from
a comprehensive approach that can be used to anonymize a set of features and
instances, while preserving the statistical properties of the data. The proposed
approach tries to achieve anonymization through discretization and sampling.
Since these techniques are substantial parts of preprocessing in most data analy-
sis projects (Kotsiantis, Kanellopoulos, & Pintelas, 2006), using an anonymiza-
tion approach based on these techniques would fit in well, and does not require
a radical change in preparing data for analysis.

1.2.2 Scientific relevance

Although many methods, models, and techniques have been studied for achiev-
ing privacy, experimental or empirical research on this topic is limited. This
project contributes to the body of knowledge on Privacy Preserving Data Anal-
ysis by means of an experimental evaluation of applying such a privacy model.
By applying an anonymization approach on multiple data sets, using a number
of different sample sizes, the effect of anonymization on privacy and utility could
potentially be quantified and compared. This makes it possible to evaluate such
an algorithm for anonymizing a set of continuous features and instances.

1.3 Report outline

This thesis is structured as follows. Chapter 2 presents the research design
followed in this project. Chapter 3 contains a theoretical background on the
main concepts, models and techniques on Privacy Preserving Data Analysis,
discretization techniques and resampling. Chapter 4 describes the proposed
approach that is evaluated, and its rationale, while Chapter 5 describes the
experimental setup. The results of the experimental evaluation are presented in
Chapter 6. Finally, the conclusion is presented in Chapter in 7.
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Chapter 2

Research design

This chapter describes the research design that is used in this thesis, including
the research questions, research method and literature research protocol.

2.1 Research questions

This research project aims to find techniques that allow for data analysis on
a data set, thereby incorporating mechanisms that protect the privacy of in-
dividuals. The starting point is a set of continuous numerical features and
instances. This set is summarized through discretization and sampling, and
should be representative of the distribution in the original set, while preserving
the privacy of individual records.

Techniques are studied to create an accurate summary that has the same
statistical properties and characteristics as the original data, to ensure a de-
sired level of data utiliy. At the same time, the method incorporates privacy
preserving mechanisms to ensure that the privacy of individuals is not harmed.
This goal can be summarized by formulating the following research question:

• RQ: How can data be accurately summarized by as few instances as pos-
sible to support data analysis, while preserving the privacy of individuals?

To provide a structured approach for answering the research question, the fol-
lowing subquestions were formulated:

• SQ1: What privacy preserving mechanisms exist, and what techniques can
be used to provide guarantees about privacy?

• SQ2: How can data be partitioned and sampled, while the distribution is
representative of the distribution of the original data?

• SQ3: How are privacy and utility measured, and what levels of privacy
and utility could be considered sufficient?
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• SQ4: What partitioning approach should be used that could be related to
the privacy preserving mechanisms?

• SQ5: How does the proposed approach perform, i.e.: are the achieved
levels of privacy and utility in accordance with the required levels?

• SQ6: How are privacy and utility related, and is it possible to reach a
balance between them?

• SQ7: What is the minimal bucket size, i.e.: how many instances are
needed to create an accurate summary?

The purpose of this thesis is to provide an answer to these subquestions, and ul-
timately to the main research question. The remainder of this chapter describes
the systematic approach to answer these questions.

2.2 Research approach

2.2.1 Design science

The goal of this project is to provide an answer to the research question as
defined in the previous section. A suitable research method should be used
in order to do so. In information science, projects are usually concerned with
solving a particular problem or improving current solutions. In this context,
(Wieringa, 2014) defines design science to be the ”design and investigation of
artifacts in context” (p. 3). In this sense, artifacts are designed to interact with
a problem context, with the intention to improve something in the context.

Within design science, a distinction can be made between design problems
and knowledge questions. The former is concerned with the (re)design of an ar-
tifact to improve a context or to find a solution for a problem that meets some
goals. On the other hand, knowledge questions ask for knowledge about the
world, with the purpose of finding the truth. In contrast to design problems,
knowledge questions are assumed to have only one answer, even if there is un-
certainty about the answer, or if there only exists a partial answer. Design prob-
lems and knowledge questions thus require different questions and approaches,
but they are related as well. Knowledge questions can be used to provide an
understanding about the problem context, or to evaluate the designed artifact.

This project’s main research question poses a typical design problem. In
terms of design science, the problem context consists of a set of continuous
features and instances that needs to be transformed so that it is representative
of the original distribution, while privacy is preserved, with a minimal bucket
size. The artifact to be designed is the approach or algorithm to execute this
transformation.

In the context of information or computer science, it is common to use
experiments. According to Wohlin et al. (2012), experiments are used for the
investigation of various aspects, including:
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• Confirm theories, i.e. to test existing theories.

• Explore relationships, i.e. to test that a certain relationship holds.

• Evaluate the accuracy of models, i.e. to test that the accuracy of certain
models is as expected.

• Validate measures, i.e. to ensure that a measure actually measures what
it is supposed to.

In this sense, the design and validation of the artifact (algorithm) could be
described as an experimental evaluation, in which the artifact is applied, fol-
lowed by an evaluation of the effects of applying the artifact. Tichy, Lukowicz,
Prechelt, and Heinz (1995) stressed the importance of using experiments in com-
puter science. In addition, Hooker (1994) identified two ways of studying the
performance of algorithms: (1) using deductive mathematics and (2) using com-
putational experiments. He argues that the second approach is more adequate
when dealing with practical problems. In this sense, experiments can be used
to actually test and validate an algorithm in a context. Wieringa’s concept of
design science, in which an artifact is designed and investigated in a context,
allows for the execution of an experimental evaluation.

2.2.2 Design cycle

To address design problems, Wieringa (2014) introduced the design cycle, which
can be used for solving most real-world problems or to improve their solutions.
The design cycle consists of three main tasks. Problem investigation is concerned
with providing a thorough understanding of the problem at hand. Next, during
treatment design, the requirements and objectives of the artifact to be developed
are specified, and a treatment is designed. In this sense, treatment refers to the
interaction between the designed artifact and the problem context, in order to
treat the problem. The third task in the design cycle is treatment validation.
The purpose of this task is to validate whether the treatment has the desired
effect, i.e. whether it meets the specified goals and satisfies the requirements.
The validation process should ensure that the proposed treatment does solve the
problem context, or that the treatment is an improvement over current solutions.
These tasks together are referred to as a cycle since it is common that multiple
iterations of each task are performed during a design science project. Table 2.1
provides an overview of the tasks and typical concerns during each task.

The design cycle is part of a larger cycle, called the engineering cycle. This
larger cycle consists of two extra tasks, concerned with the implementation
of the treatment. In this sense, implementation means the application of the
treatment to the original problem context. Figure 2.1 shows the engineering
cycle, in which the first three tasks form the design cycle.
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Table 2.1: Design cycle tasks

Task Concerns
Problem investigation Stakeholders

Goals
Conceptual problem framework

Treatment design Treatment requirements
Contributions to goals
Available treatments
New treatment design

Treatment validation Desired effect of treatment
Compliance to requirements
Trade-offs for different artifacts

Figure 2.1: Engineering cycle

2.3 Research method

Since the research question of this project is a design problem, the main research
activities during this project are summarized by the design cycle tasks. This
project can therefore be structured in accordance to the three tasks of the
design cycle: (1) problem investigation, (2) treatment design, and (3) treatment
validation.

2.3.1 Problem investigation

When designing an artifact for a problem context, it is important to first get a
thorough understanding of this problem context. Figure 2.2 contains a simplified
overview of the problem context. It starts with a set of continuous features and
instances. A summary of the data is generated through discretization and re-
sampling, representing the original distribution. Discretization and resampling
form the artifact to be designed, with respect to privacy preserving mechanisms.
The treatment is the interaction between this artifact and the problem context:

9



Chapter 2 2.3. RESEARCH METHOD

the set of features and instances.

Figure 2.2: Problem context

This problem context provides us with the concepts to be investigated. To
understand discretization and resampling with respect to privacy preserving
mechanisms, each of these concepts needs to be studied separately. To relate
this to the research questions described in Section 2.1, these concepts are studied
by providing an answer to SQ1 and SQ2.

When it comes to Privacy Preserving Data Analysis, the aim is to transform
the data in such a way that there is some guarantee or requirement in terms
of privacy. In this project, we are concerned with the privacy of individuals
in a set of continuous features and instances. To provide such guarantees, or
to satisfy some privacy constraints, there is a need for quantifying the level of
privacy in such a set. Similarly, part of the problem context is to preserve the
original distribution. In order to do so, there should be a measure or criterion for
determining whether the anonymized data represents the original distribution.
This could be called a data utility measure. The first part of SQ3 is concerned
with ways of quantifying both the level of privacy and the level of utility.

2.3.2 Treatment design

The next task of the design cycle is treatment design. As discussed earlier,
the treatment refers to the artifact to be designed, with respect to the inter-
action with the problem context. In other words, the treatment involves the
anonymization approach, and the interaction with the data it is applied to. Part
of the treatment design phase is to specify the treatment’s requirements. These
are important during the later validation phase, where the proposed treatment
is evaluated. Specifying requirements for the levels of privacy and utility makes
it possible to compare the results with these requirements during the validation
phase.

During the problem investigation, measures are studied for expressing pri-
vacy and utility. The objective of this project is to obtain sufficient levels for
both of these measures. This translates into the treatment design. Require-
ments for the treatment involve incorporating sufficient levels of privacy and
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utility. Following the question of how to measure these levels, the second part
of SQ3 is concerned with sufficient levels for both.

During the problem investigation, privacy preserving mechanisms are stud-
ied, as well as methods for partitioning data. Part of the treatment is the
integration and relationship between mechanisms for providing privacy and par-
titioning and discretization techniques. Ways of doing this are studied during
the treatment design phase, by providing an answer to SQ4.

2.3.3 Treatment validation

During the treatment validation task, it is assessed whether the designed treat-
ment would contribute to the defined goals if it would be implemented. Ac-
cording to Wieringa (2014), validation ”consists of investigating the effects of
the interaction between a prototype of an artifact and a model of the problem
context and of comparing these with requirements on the treatment” (p. 31).
In other words, we can apply the artifact to a set of continuous features and
instances, and validate whether the effects are in accordance with the require-
ments specified during treatment design.

One aspect of the validation is how the treatment performs, especially in
terms of the levels of privacy and utility. During treatment validation, the
effects of applying the artifact are compared with the requirements, so that it
can be assessed whether these requirements are satisfied. This assessment would
provide an answer to SQ5.

Another important aspect of the validation is the trade-off between the level
of privacy and the data’s utility. To provide very strict privacy guarantees, the
data needs to be transformed in such a way that the risk of reconstructing the
original data is close to zero. However, such alterations result in a reduction
of utility as well, which in turn hurts data analysis. It is therefore valuable to
study the effects of the treatment regarding the balance between privacy and
utility. More specifically, the effect of increasing and reducing the required level
of privacy with respect to the utility is observed. This is addressed by SQ6.

The last area of interest during validation is the effect of the bucket size on
the levels of privacy and utility. This can be studied by reducing the number of
instances to create a summary of the original data, and measuring how it affects
privacy and utility. This could potentially be used to determine the minimum
amount of instances that are needed to generate an accurate summary of the
data. This part of the validation is addressed by SQ7.

A concise overview of the application of the design cycle and the connection
with the subquestions is illustrated by Figure 2.3.

2.3.4 Thesis structure

The use of design cycle and the allocation of the subquestions to the tasks allows
for a convenient structure of the main elements of this research project. The
problem investigation task is mainly concerned with a thorough understanding
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Figure 2.3: Design cycle application

of the problem domain, current practices and the state of the art. This is stud-
ied through a literature review. The literature research protocol is explained
in Section 2.4, while the resulting theoretical background is discussed in Chap-
ter 3. The treatment design involves the design of an algorithm that can be
used to transform a data set for the sake of providing privacy guarantees while
preserving utility. This is discussed in Chapter 4. The treatment validation is
performed through an experimental evaluation of this algorithm, of which the
setup is described in Chapter 5. The results of the experimental evaluation are
discussed in Chapter 6. The relationship between the subquestions, design cycle
tasks and the chapters addressing these questions is provided in Table 2.2.

Table 2.2: Report overview

SQ Design cycle task Section Chapter
SQ1

Problem investigation Theoretical background 3SQ2
SQ3a
SQ3b

Treatment design Treatment design 4
SQ4
SQ5

Treatment validation Results 6SQ6
SQ7

2.4 Literature research protocol

The main concepts that are studied in this project are Privacy Preserving Data
Analysis and discretization. This is also reflected by the subquestions, and their
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main concern is to study the models and techniques that are available in current
literature, as well as approaches to quantify and measure the level of privacy
and data utility. To study these concepts, a snowball approach is used to obtain
an overview of the available techniques. More specifically, the starting point
of the literature search is a recent survey providing a structured overview of
the available literature on the concepts. For Privacy Preserving Data Analysis,
such a survey is conducted by Mendes and Vilela (2017). For discretization
techniques, Garcia, Luengo, Sáez, Lopez, and Herrera (2013) and Ramı́rez-
Gallego et al. (2016) provide extensive overviews of the available methods. From
these surveys, the concepts are further studied through the cited literature. This
snowballing results in a selection of literature that provide an overview of the
developments and state of the art of Privacy Preserving Data Analysis and
discretization.
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Chapter 3

Theoretical background

This chapter contains a literature review with an overview of the concepts that
are relevant for this thesis, including state-of-the-art practices.

3.1 Privacy

To get a thorough understanding of Privacy Preserving Data Analysis (PPDA),
the concept of privacy is important to define. Although privacy has definitions
beyond the scope of information technology, the used definition in this research
project is focused on this perspective. Schoeman (1984) identifies three possible
ways to think about privacy from an information perspective:

1. An individual’s claim, entitlement or right to determine what information
may be communicated to others.

2. A measure of control an individual has over the information about himself,
and who has access to that information.

3. A state or condition of limited access to a person.

From these definitions, it follows that what is considered to be private informa-
tion is determined by an individual. Moreover, an individual should have some
control over what happens with this information. However, it can be argued
whether individuals have any control over the collection and analysis of their
personal information, especially in the current information age. In PPDA, the
responsibility for the privacy of individuals lies with the actors that process
personal or sensitive information. In this sense, Bertino, Lin, and Jiang (2008,
p. 3) define informational privacy as:

”The right of an entity to be secure from unauthorized disclosure
of sensible information that are contained in an electronic repository
or that can be derived as aggregate and complex information from
data stored in an electronic repository”.
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In this definition, whether an individual participates in a data set or not, and
whether this is by choice or not, the individual’s personal, private, or sensitive
information must be protected from unauthorized disclosure.

3.2 Privacy Preserving Data Analysis

In the analysis of large data sets, issues can arise with confidentiality or privacy.
Various techniques and concepts exist to alter the data for the sake of anonymity
of the records of individuals in a data set. However, these alterations result in
a reduction in data quality, or utility. PPDA is concerned with techniques,
methods and models to anonymize a data set while keeping a desired amount
of data utility (Aggarwal & Philip, 2008).

A taxonomy can be used to classify different types of personal information
that could exist in a data set (Bezzi, 2010). The underlying concept is the
possibility to identify a specific individual from the data. The most obvious
information that could identify an individual is data containing names or social
security numbers. These are known as explicit identifiers, as the possibility
that this information reveals the identity of an individual is large. Another
type of identifiable information is known as quasi identifiers (QIDs). These
do not specifically reveal one’s identity, but in combination with background
information or additional, publicly available information, they could potentially
lead to the identification of an individual. Examples are attributes containing
age, zip code, or city of residence. The last type of attributes are typically
known as sensitive attributes, which themselves do not identify individuals, but
contain information that one would not want to be disclosed or known publicly.
For example, people might want to keep their income or medical condition a
secret. An overview of these concepts and examples of them are shown in Table
3.1. It is worth noting that this taxonomy provides some way of thinking about
different types of information, although the distinction between them is not
always as clear-cut. For example, it is not unthinkable that the income and
disease attributes can be used as identifying attributes.

Table 3.1: Attribute types and examples

Explicit identifier Quasi identifier Sensitive attribute
Name Age Income
Social security number Zip code Disease

City Political orientation
State
Country

When publishing data sets, dealing with explicit identifiers is a trivial task,
as names or identification numbers can and should simply be removed from
data. However, only removing explicit identifiers has been shown to be insuffi-
cient. For example, Samarati (2001) shows how an anonymized data set with
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medical information could be linked to publicly available information to iden-
tify individuals in the data set. This is known as a linkage attack. Moreover,
Sweeney (2002) used a public voter list to identify the governor of Massachusetts
in the medical data, thereby revealing his medical information. In this exam-
ple, the QIDs from the medical data were coupled with those from the voter
list to gain additional information, and to reveal sensitive attributes. Similarly,
Narayanan and Shmatikov (2008) illustrate how auxiliary information can be
used to de-anonymize a data set containing anonymous movie ratings by Netflix
users. Lastly, De Montjoye et al. (2013) show that even in a data set containing
more than a million records, individuals could be uniquely identified with 95%
certainty with a small amount of additional information.

Although it is unlikely that the risk of disclosing personal information could
be removed completely (while maintaining a reasonable amount of data utility),
various models exist to ensure a certain level of privacy, to avoid linkage attacks,
and to create a common ground for quantifying privacy.

3.2.1 k-anonymity

Related to linkage attacks, k -anonymity is concerned with sets of quasi identi-
fiers. A data set is said to be k -anonymous if a record’s identifiable attributes
cannot be distinguished from at least k -1 other records (Sweeney, 2002). Take
for example a data set containing the QIDs age and city. If there is a record
containing 49 and Amsterdam for these attributes respectively, with k set to 2,
this model states that there should be at least one other record with the values
49 and Amsterdam. This set of records with identical values is known as an
equivalence class. In a k -anonymous data set, there are at least k records in
each equivalence class in the data. The advantage of this model is that when the
combination of QIDs is known, it cannot directly be used to uniquely identify
one individual from the data. Instead, at least k records are returned from such
a query.

3.2.2 l-diversity

The l -diversity model takes k -anonymity as a starting point, but then requires
that for every equivalence class there exists at least l ‘well represented’ values
for each sensitive attribute (Machanavajjhala, Gehrke, Kifer, & Venkitasubra-
maniam, 2006). There are different methods to determine whether values are
well represented. In any case, in the example, if we would require our data to be
2-diverse, both records having an income of 30,000 would not satisfy 2-diversity.
Instead, there should be two different values for income and any other sensitive
attribute. This ensures that an adversary could not find sensitive information
on individuals in the data set, just by having background knowledge or publicly
available information on the combination of QIDs.
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3.2.3 t-closeness

Intuitively, l -diversity provides more security by extending the k -anonymity
model. However, it has its own drawbacks. The first is the consideration of the
distribution in the data. For example, consider a sensitive attribute containing
people’s voting behavior. In this data set, 99% of the individuals in the data
voted for Party A, while 1% voted for Party B. The l -diversity principle could
enforce that for a certain equivalence class, 50% of the records contain Party
A, and 50% contain Party B for this attribute. As the overall distribution of
values in the data for this attribute is highly skewed, having an equivalence class
where both values are equally represented reveals more information on an indi-
vidual. By applying l -diversity, the probability of someone in this equivalence
class voting for Party B increases from 1% to 50%. This principle is known as
skewness attack.

Another threat of the l -diversity model is the similarity attack. Consider an
equivalence class where records contain values for the income attribute of 28k,
29k, 30k, and 31k. As these are all distinct values, they could satisfy 4-diversity.
However, an adversary can still gain knowledge from these values, as they are
relatively close together.

The t-closeness principle deals with these types of attacks, and is concerned
with the distribution of values for sensitive attributes within equivalence classes
compared with the overall population (Li, Li, & Venkatasubramanian, 2007).
It makes sure an adversary does not gain much information by knowing the
equivalence class of an individual, and consequently gaining knowledge through
the distribution of sensitive values in that equivalence class compared to the
overall distribution. More precisely, an equivalence class has t-closeness if the
distance between the distribution in this class and the distribution in the whole
data set is smaller than threshold t. In our example where 99% would vote
for Party A and 1% for Party B, t-closeness would ensure that in equivalence
classes, there would also be a division similar to 99%/1% for that particular
sensitive attribute.

3.2.4 ε-differential privacy

Another principle is that of ε-differential privacy (or just differential privacy).
This means that the inclusion or absence of a record in a database does not
substantially change the outcome of the analysis. In other words, the difference
between analyses on a data set with and a data set without that record should
be smaller than ε (Dwork, 2008). Contrasting the previously discussed mech-
anisms, differential privacy has a strong mathematical foundation. Consider a
mechanism M, that answers queries on a data set x. A neighbouring set x′ is
different from x in one record. The mechanism M is ε-differentially private if
for all neighboring data sets x, x′, and for all events (measurable sets) S in the
space of outputs of M (Dwork, McSherry, Nissim, & Smith, 2017):
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Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S)

In other words, when querying two sets that differ in just one record, the differ-
ence in outcome should be smaller than ε. The advantage of this principle over
the ones mentioned earlier is that differential privacy does not take into account
any background knowledge or knowledge gained from other data sources. This
is especially useful since auxiliary knowledge does not just exist in the past, any
potential future knowledge should be considered as well. As auxiliary knowledge
is not a concern with differential privacy, it is not necessary to take knowledge
that could possibly exist in the future into account, or to make any model of an
adversary’s knowledge for that matter. Differential privacy also provides a more
intuitive sense of privacy for the individual than previously discussed privacy
models. Whether an individual participates in a data set or not, the statistics
of the data should not change by a large amount.

Another way of looking at differential privacy is that an adversary should
not gain any posterior knowledge on individuals in the data set that is greater
than its prior beliefs. This poses the fundamental challenge of data analysis
while preserving privacy. Gaining knowledge is one of the goals of storing and
analyzing data. However, data that is too accurate harms the privacy of individ-
uals. Differential privacy supports the approach to limit the knowledge gained
on individuals from the data, while knowledge is gained on the population in
the data.

The earlier definition of differential privacy is not an algorithm to achieve
this privacy model. Instead, it places constraints on the mechanismM. If x and
x′ differ in just one row, the difference in output ofM(x) andM(x′) should be
minimal, with ε limiting their difference. This allows for different approaches to
achieve differential privacy.

One possible approach is that of randomized response, introduced by Warner
(1965) to provide anonymity in surveys with sensitive questions. Consider the
case where the question is posed whether someone voted for Party A. Before
replying with YES or NO, the respondent flips a coin. If it’s heads, the respon-
dent answers truthfully. When it is tails, the respondent flips another coin, and
replies with YES or NO based on the outcome of the second coin flip. This
technique works well at the data collection stage, but could also be used with
learning techniques like classifiers, without losing too much accuracy (Du &
Zhan, 2003).

A popular technique that works with numeric attributes is the Laplace mech-
anism. Based on the magnitude by which an individual’s data can change an
outcome, the mechanism adds noise randomly drawn from a Laplace distribu-
tion. Since the outcome of M(x) contains random noise, the information gain
by comparing the outcomes of M(x) and M(x′) is limited (Dwork & Roth,
2014; Dwork et al., 2017).

Dwork et al. (2017) make a distinction between two scenarios for PPDA:
interactive and non-interactive. In the latter, a data set to be published is
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altered through some algorithm, resulting in a ’sanitized’ or anonymous data
set which can be used for analysis. In an interactive setting, the underlying data
set is not released. Instead, a mechanism is employed that answers queries on
the data set. These queries typically involve aggregates like the sum, average, or
count of instances in a data set that have some value x for attribute f . Achieving
differential privacy would be more difficult in a non-interactive setting, since
the algorithm has to take into account all possible queries on the data. In an
interactive setting, a differentially private result can be generated based on the
query at that time. Most literature on the subject therefore discuss mechanisms
to achieve differential privacy in an interactive setting.

Differential privacy is the most recent influential development in PPDA,
and is considered the standard when attempting to achieve information pri-
vacy. Some organizations have created their own implementation of differential
privacy. For example, Google developed RAPPOR, a technology that allows
for the analysis of the activity and usage of client-side software by end-users
(Erlingsson, Pihur, & Korolova, 2014). In the spirit of differential privacy, RAP-
POR achieves high data utility that allows for the analysis of a group of users,
while the information on individual users is limited. To provide strong privacy
guarantees, RAPPOR achieves ε-differential privacy with ε set to ln(3).

Another attempt is made by Apple, with the goal of analyzing user behaviour
of Apple customers. Examples are the most popular emojis, new and emerging
words, and which web sites cause high energy and memory usage when using
Safari (Apple, 2017). Although the attempt to achieve differential privacy by
organizations with such a large user base is a positive development, the effec-
tiveness of the implementation can be questioned. By reverse engineering the
privacy components in MacOS 10.12, Tang, Korolova, Bai, Wang, and Wang
(2017) argue whether Apple’s implementation actually provides strong guaran-
tees about a user’s privacy. According to Apple (2017), the ε-values range from
2 to 8. Although the choice of ε is in essence a social question, Dwork (2008)
considers reasonable ε-values to be 0.01, 0.1, or ln(2) to ln(3) in some cases.
Whether the implemented values for ε are sufficient in a certain environment is
difficult to assess. However, it is clear that higher ε-values provide less privacy
guarantees. In addition, the differences between small values (between 0 and 1)
of ε are much more significant than differences between larger values.

Although the advocators of differential privacy are confident about the guar-
antees and promises it offers due to its mathematical foundations, some skep-
ticism exists. Sarathy and Muralidhar (2010) show that adding noise from a
Laplacian distribution to achieve differential privacy could potentially reduce
data quality to such an extent that the data becomes meaningless. Moreover,
Bambauer, Muralidhar, and Sarathy (2013) question the practical use of dif-
ferential privacy altogether. They claim that the answers of simple statistical
questions like averages or correlations would be ”gibberish”, and the application
in regression and other complex analyses would be very difficult. To take full
advantage of differential privacy, the release or exchange of traditional data sets
would be impossible as well. These statements caused a discussion between pro-
ponents and the authors of the article (McSherry, 2016a, 2016b; Bambauer &
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Muralidhar, 2016). Although many are attracted by the promises of differential
privacy, it is clearly not universally accepted. In addition, there are only a few
cases where differential privacy is used in practice. The most notable attempts
are made by Erlingsson et al. (2014) and Apple (2017).

3.3 Discretization

Data exists in many forms, and the format of data can be classified in different
ways. It is common to differentiate between nominal, discrete, and continuous
data. With nominal data, there is no useful order between values, while there
is an order in values with discrete and continuous data. While continuous data
can take an infinite amount of possible values, the set of possible values is finite
with discrete data.

In data analysis, it is useful to avoid the use of continuous attributes. For
example, using continuous attributes in a decision tree algorithm reduces the
speed and accuracy of learning. Moreover, discrete values are easier to un-
derstand, use, and explain for both users and experts (Liu, Hussain, Tan, &
Dash, 2002). Various advanced data analysis algorithms can therefore only deal
with discrete attributes, thereby requiring or implementing an additional step
of discretization. As continuous features are common, there is a wide variety of
discretization techniques that transform a continuous feature to a discrete one.

In the context of PPDA, continuous attributes are by nature less private than
discrete attributes. For example, consider a data set containing 100 residents
of a certain street, and a continuous attribute for age. If there would be only
one resident with an age of 45, and an adversary with auxiliary knowledge on
the age of that resident, the individual could be identified from the data, along
with possible sensitive information. If instead, the individual’s age would be
presented as the interval [41, 50], the identification risk of that individual is
reduced. This is because it is likely that more residents have an age within
[41, 50], so it becomes more difficult to identify just one individual from the
data. This generalization approach is used to achieve privacy models including
k -anonymity (Mendes & Vilela, 2017), and is closely related to discretization.

Discretization can be considered as a preprocessing technique for data analy-
sis. As previously described, discretization functions as a data preparation step,
since some learning algorithms require discrete instead of continuous values, or
have a higher performance with discretized attributes. Additionally, discretiza-
tion functions as a data reduction step as well (Garćıa, Luengo, & Herrera,
2015). This is due to the fact that a continous attribute can contain a large
spectrum of possible values. Discretization algorithms can reduce this spectrum
to a limited number of intervals, preferrably the smallest number of intervals
while still representing the original values well.

The result of a discretization process is a finite set of values. To arrive
at this point, each value from a continuous attribute is assigned to one of the
possible discrete values. The general discretization approach can be described
in four steps (Ramı́rez-Gallego et al., 2016). First, the continuous values are
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sorted in descending or ascending order. In the second step, cut points are
evaluated to either split or merge adjacent intervals, based on some evaluation
measure. In the next step, the candidates that satisfy a condition are split or
merged, depending on the discretization technique. Lastly, the discretization
process stops at some point, with the goal of limiting the resulting number of
intervals. At the two extremes of discretization, either all values are assigned
to one interval, or there are intervals for every continuous value. More intervals
means more precision but less understandability, while fewer intervals sacrifices
accuracy for understandability. The stopping criterion is used to control this
trade-off.

Discretization techniques can be categorized in different ways. Similar to
the categorization of machine learning algorithms, there are supervised and un-
supervised discretization methods. Supervised methods take the class labels of
instances into account, while unsupervised methods do not (Dougherty, Kohavi,
& Sahami, 1995). In addition, discretizers can be either univariate or multivari-
ate. Univariate approaches look at one attribute at a time when deciding cut
points and deciding on intervals. On the other hand, multivariate approaches
take the whole set of attributes to be discretized when deciding on cut points
and intervals. These approaches are especially useful in the context of machine
learning algorithms, since the interdependence between attributes is particu-
larly interesting (Garcia et al., 2013). Lastly, discretizers can either split or
merge intervals to arrive at the desired set of intervals. In the former case, the
algorithm starts with an interval containing all attribute values and splits until
some stopping criterion. In the latter, there is an interval for all continuous
values, and intervals are merged until some stopping criterion. Taxonomies of
discretizers are described in more detail by Dougherty et al. (1995); Garcia et al.
(2013); Kotsiantis and Kanellopoulos (2006); Liu et al. (2002); Ramı́rez-Gallego
et al. (2016).

A convenient discretization method is the equal-width discretizer. In this
approach, all intervals or bins have the same value range or width. With k bins,
the bin size δ for an attribute x with values between xmin and xmax is defined
as (Dougherty et al., 1995):

δ =
xmax − xmin

k

In contrast, when each bin has the same number of instances, it is called an equal-
frequency discretizer. These are both examples of unsupervised approaches,
since class labels are not taken into account.

Holte’s 1R discretizer (Holte, 1993) is a common supervised approach. Bins
are created with instances that preferably have the same class label. Since this
could result in very small and too many bins, a restriction is imposed on the
minimum number of instances that a bin can contain.

Another supervised discretizer is the Chi2 algorithm, which is an improved
version of ChiMerge (Kerber, 1992). This method uses the statistical test χ2 to
evaluate which intervals should be merged (Liu & Setiono, 1997). The algorithm
makes sure the discretized values represent the original, continuous distribution.

21



Chapter 3 3.3. DISCRETIZATION

Apart from discretization, Chi2 checks for consistency in an attribute with re-
gards to the class label, and inconsistent features are discarded. Chi2 therefore
functions as a feature selection algorithm as well.

Similar to Chi2, the Omega algorithm functions as both a discretization and
a feature selection technique (Ribeiro, Ferreira, Traina Jr., & Traina, 2008).
Like 1R, Omega employs a parameter to limit the minimum interval size. It
also uses an inconsistency rate to determine which intervals are merged. For
feature selection, a global inconsistency rate is used to determine which features
should be discarded. Compared to other discretization and feature selection
methods, Omega results in a small error rate when training a C4.5 classifier,
while the number of nodes of the resulting decision tree is relatively small.

Discretization can also be achieved using tree based density estimation. With
this technique, the best cut point is found in a step-wise fashion (Schmidberger
& Frank, 2005). Similar to the construction of classification trees, a tree is
created which initially contains one node, containing all training instances. The
cut point that maximizes the likelihood based on the training data and the
ranges of the current node is chosen, and two new nodes are created. To prevent
overfitting, 10-fold cross validation is used to determine the optimal number of
splits, and this number is used as a stopping criterion for the construction of the
tree. The density estimation tree results in a number of intervals with varying
width, and does not take class labels into account.

Fayyad and Irani (1993) propose a supervised discretization approach that
uses information entropy as an evaluation measure for discretization. In addi-
tion, their approach uses the Minimum Description Length Principle (MDLP)
(Rissanen, 1978) as a stopping criterion. This widely used discretization tech-
nique is among the better performing discretizers, and one of the most compared
techniques in literature (Garcia et al., 2013; Ramı́rez-Gallego et al., 2016).

So far, only univariate approaches were discussed, since most of the ex-
isting discretization techniques consider only one variable. This means that
variables are discretized separately without regarding other possible variables.
In data analysis tasks however, we are interested in finding patterns, clusters
or relationships between variables and possibly some class label. For example,
consider the dimensions X1 and X2 forming a cluster together. However, in
isolation, no meaningful patterns can be extracted from both the dimensions.
Discretizing X1 and X2 separately would ignore the relationship between the
two, so this relationship could potentially be lost. Multivariate or multidimen-
sional discretization methods do regard multiple variables, with the objective of
preserving the relationships between them.

A common multivariate approach is to first partition each continuous at-
tribute in n basic regions, and then to merge intervals of instances that have
a similar distribution over multiple dimensions (Bay, 2000). In other words,
intervals X and Y are merged if Fx ∼ Fy. Any attempt at such a multivari-
ate approach requires a way of comparing Fx and Fy. Bay (2000) describes a
Multivariate Discretization (MVD) approach, where a test of differences called
STUCCO is implemented. This test involves determining the support of a com-
bination of attributes. In this case, support simply means the percentage of
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observations where a combination of attribute values holds, with respect to the
total number of observations (Bay & Pazzani, 1999).

Since the continuous attributes were already partitioned to some extent, it
is possible to compare the support of the different groups of instances G1 and
G2, for a specified attribute-value pair C. That is, we compare P (C|G1) and
P (C|G2), for example, P (sector = IT | male) and P (sector = IT | female). So,
the support is a measure for defining the difference between two groups, and
is used to determine whether or not these groups should be merged. When
the support of the two groups are similar, i.e. if Fx ∼ Fy, the groups are
merged. When the difference in support is too large, a discretization boundary
remains between the two groups. It should be decided how large the differences
in support can be while claiming that the groups have a similar distribution.

Bay’s MVD shows the ingredients for multivariate discretization approaches.
Instead of using measures like χ2 or an inconsistency rate, which works in uni-
variate cases, merging is done by determining and comparing the distribution of
groups of multivariate instances. Comparing the interdependence of attributes
between groups is a major task of multivariate discretization, since its goal is
to preserve this interdependence. Since determining a multivariate distribution
is not a trivial task, different discretization approaches make use of different
measures.

In MVD, support is essentially a measure for the distribution over multiple
variables. Mehta, Parthasarathy, and Yang (2005) use Principal Component
Analysis (PCA) to identify the interdependence between continuous attributes,
along with a similarity measure based on Association Mining principles. Wei
(2009) adopts a density-based clustering algorithm by Ankerst, Breunig, Kriegel,
and Sander (1999) to find regions that could hide possible patterns in the data.
In their effort to find a way to measure distances between multivariate distri-
butions, Nguyen, Müller, Vreeken, and Böhm (2014) propose the Interaction
Distance (ID), which doesn’t require any assumptions on the distribution of
variables. Their discretization algorithm uses MDLP (Rissanen, 1978) to find
the optimal number of cut points for a dimension Xi. Then, Xi is discretized
using ID, so the interaction between Xi and the other dimensions is preserved.

3.4 Sampling

From a statistics point of view, sampling is required for making inferences about
a population. Additionally, most data sets are in fact already a sample from
some population. If there would be access to a whole population, it does not
make sense to construct statistical or machine learning models. Instead, we
would just be querying the available data. However, we usually do not have
access or knowledge about the whole population. In addition, with classifiers or
regression models, we want to make statements about future examples. This is
why samples from a population are taken, and statistical tests are performed to
make inferences about the population. When it becomes expensive or impracti-
cal to analyze a sample, we can sample from an artificial population. As this is
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usually the data set itself, it can be seen as taking a sample from a sample of the
real population, hence technically called resampling (Kaplan, 1999). In the data
mining context however, creating a subset of a data set can also be referred to as
data sampling (Aggarwal, 2015), or instance selection (Olvera-López, Carrasco-
Ochoa, Mart́ınez-Trinidad, & Kittler, 2010; Garćıa et al., 2015).

There are multiple reasons for using resampling. For example, the Big Data
era comes with a number of challenges. Properties of Big Data include its
variety, volume, velocity, variability, complexity, and value (Katal, Wazid, &
Goudar, 2013). Most data mining techniques are not able to process such large
volumes, in combination with the velocity of data (Wu, Zhu, Wu, & Ding,
2014). This brings up the need to process just a subset of large data sets, or the
implementation of Big Data solutions including distributed and decentralized
data processing.

In many learning algorithms, it is common to divide the available data in
two parts: a training set and a test set (Garćıa et al., 2015). This prevents both
overfitting and underfitting, and helps ensuring that the model generalizes to
new cases. One approach is to use a random majority of instances as a training
set, and to use the remaining instances to validate the trained model. Another
common technique is k -fold cross validation, in which the data is randomly
partitioned in k sets of equal size. Then, k -1 folds are used for training and one
is used to validate the model. This is repeated until every fold is used to validate
the model (Kohavi, 1995). Taking this even further, leave one out requires k to
be equal to N, the number of instances in the data. This results in a very high
computational complexity, especially in large data sets.

Sampling can be related to privacy as well. If there is a data set containing
records with personal information, creating a smaller subset intuitively reduces
the risk of information leakage (Ebadi, Antignac, & Sands, 2016). Joy and Gerla
(2017) also show how differential privacy could be achieved just by using a sam-
pling technique. Lin, Wang, and Rane (2013) apply an approach to sampling
to preserve privacy in the aggregation of distributed databases. By using ran-
dom sampling, Li, Qardaji, and Su (2012) show how a k -anonymity algorithm
achieves differential privacy, since the random sampling step adds uncertainty
about whether or not an individual is included in the subset.
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Treatment design

4.1 Goals

The goal of this research is to find an answer to the research question stated
in Section 2.1: How can data be accurately summarized by as few instances as
possible to support data analysis, while preserving the privacy of individuals? To
do so, an algorithm is developed and validated through experimental evaluation.
The objective of this algorithm is to transform a set of continuous features and
instances in such a way that both the privacy of individuals and the utility are
preserved. An additional part of the evaluation is to achieve these objectives
with as few instances as possible. The anonymization approach is a combination
of privacy preserving mechanisms and discretization techniques. The result of
the transformation is a set of features and instances that provides guarantees
on the privacy of individual records, while mostly maintaining the utility of the
original data.

The remainder of this chapter is dedicated to describing the proposed ap-
proach to anonymization through discretization and the rationale behind it,
relating to SQ3b and SQ4.

4.2 Privacy preservation

Over the past two decades, many privacy preserving models have been proposed
to achieve privacy in data sets. The most well-known were discussed in Section
3.2, but there are many possible variations for these models. Differential privacy
is considered to be the most favorable model these days, mainly due to its strong
mathematical foundations. In addition, there is no need to consider auxiliary
information that can be used to perform linkage attacks. However, as discussed
in Section 3.2.4, differential privacy has some drawbacks as well. In this project,
aiming for an implementation of differential privacy is not suitable to achieve
the goals, for a number of reasons. Firstly, this project’s aim involves the
transformation of a data set in such a way that it still represents the original
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data, while the privacy of individuals in the data is not harmed. This makes
it possible to release or share the data with external parties, and to use the
data with commonly used mining and learning tasks, without compromising
the privacy of any of the individuals in the data. These objectives call for an
approach that works in a non-interactive setting, while differential privacy’s
strenghts are mainly found in the interactive setting.

Another difficulty is the need for a privacy property that can be placed on
the anonymized data, so the privacy level can be measured. With differential
privacy, this property holds for the mechanism instead of the data.

In the third place, a differentially private mechanism is specifically designed
for a data set, since the amount of noise that is added to the query answers
heavily depends on the characteristics of the data. For this project, the aim is
to have a general-purpose algorithm that can be applied to different data sets,
making differential privacy not a suitable model to pursue.

A model that does work in these circumstances is k-anonymity. Although
it has its drawbacks as well (Domingo-Ferrer & Torra, 2008), k-anonymity is a
suitable model to achieve privacy through discretization. First of all, it is one
of the more intuitive and easy to understand models that exist. Secondly, the
re-identification risk, the risk that a specific individual can be identified from
the data, can be determined intuitively as well. If we require that for every
equivalence class there are at least k records in the data, the maximum re-
identification risk is 1/k. Thus, higher values for k reduces the re-identification
risk, and an acceptable threshold can be decided on. In addition, more sophisti-
cated measures can also be used to determine the risk of re-identification more
precisely (El Emam & Dankar, 2008; Rebollo-Monedero, Parra-Arnau, Diaz, &
Forné, 2013). Another consideration is the way k-anonymity is achieved. To
make sure that there are at least k records for each equivalence class, general-
ization and suppression of attribute values are common techniques (Samarati,
2001). Suppression simply involves removing an attribute’s value. On the other
hand, generalization would replace an attribute value with a more general value.

Different approaches for generalization with respect to k-anonymity were
proposed. A possible approach is to create a generalization hierarchy for the
attribute to be generalized (Samarati, 2001). In the ARX Data Anonymization
Tool by Prasser and Kohlmayer (2015), such a hierarchy can be created for
both continuous and categorical attributes. An example of such a hierarchy for
continuous attributes is shown in Figure 4.1. The hierarchy in this example
represents an age attribute in a data set. To satisfy k-anonymity for some
level of k, values of this continuous attribute can be generalized bottom-up. For
example, if a record would contain the value 34 for this attribute, generalization
would replace this value with [17, 39]. If more generalization is required in order
to satisfy k-anonymity, this would be done by going up a level in the hierarchy,
and transform into [17, 61]. The highest level interval contains the whole range
of the attribute. With the ARX tool, it is possible to create such a hierarchy
manually for each attribute. However, in this project, the idea is to incorporate
this in the anonymization algorithm. Doing so eliminates the tedious task of
creating generalization hierarchies by hand. In addition, as discussed in Section
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Figure 4.1: Generalization hierarchy example

3.3, generalization of continuous attributes is closely related to discretization.
Using discretization techniques to achieve k-anonymity could therefore ensure
that the intervals that are created represent the distribution of the data.

As discussed in Chapter 3, the concept of k-anonymity is to combat linkage
attacks, in which auxiliary knowledge is used to identify specific individuals
by linking quasi-identifying attributes from different sources. As critics of k-
anonymity have pointed out, this requires a model of the auxiliary knowledge
available to the adversary. Theoretically, this requires a model of all available
knowledge to any adversary, now and in the future. It is very unlikely that
such a model would ever be complete. Instead, it would be safer to assume
that an adversary knows everything, and that any attribute in a data set could
potentially identify an individual. Therefore, every continuous attribute in a
data set is included in the transformation process to evaluate the discretization
algorithm in this research project.

4.3 Discretization

The scope of this project involves anonymizing a set of continuous attributes and
instances. A continuous numeric variable can be transformed into a discrete set
of bins. Different approaches to do so were discussed in Section 3.3. In general,
a discretization approach would sort attribute values, and either split or merge
consecutive intervals based on some criteria. The aim of these criteria is to
preserve the characteristics of the variable, and to decide which split or merge
candidate would yield the best results. Discretization typically results in a set
of cutpoints or intervals.

Ram and Gray (2011) introduced the concept of Density Estimation Trees
(DETs). DETs can be used for the fundamental task of density estimation of
multivariate data, and are analog to classification or regression trees, commonly
used in learning tasks. Similarly, Schmidberger and Frank (2005) explored the
possibility to perform discretization using tree-based density estimation. The
underlying idea of this approach is to iteratively partition the data, while the
resulting decision tree represents an estimation of the probability density function
of the data. Based on this concept, the approach to discretization that is used
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in this project is a tree-based discretization approach.
One advantage of using a tree-based approach is that it is easy to interpret

and visualize. Decision trees are widely used in learning tasks, for example
classification and regression trees, which are especially powerful with Random
Forest (Breiman, 2001). It is a flexible and intuitive concept that practitioners
are familiar with.

The main reason for using tree-based discretization is that it yields a struc-
ture that is similar to a generalization hierarchy like the one shown in Figure
4.1. This means that the starting point is the complete value range, which then
is iteratively partitioned. In other words, the root node would contain all of the
instances, while lower level nodes contain progressively fewer instances. This is
a useful property in the current context. Lower level nodes with smaller interval
ranges potentially make for a more accurate model of the data, but it does not
benefit data privacy. Instead, more privacy is achieved at the higher level nodes,
since these intervals have a wider range, and a larger number of instances would
fall into this range. However, wider, more general intervals naturally leads to a
less accurate representation of the data.

One of the essential ingredients of tree-based models is some evaluation cri-
terion to decide on the best values (and attributes) to split a node. With
classification trees, examples of evaluation criteria include the misclassification
error, Gini index and entropy (Moisen, 2008). DETs need evaluation criteria to
determine the best partitioning as well. In this case, the goal of such criteria is to
find a structure that best represents the distribution of the data. Schmidberger
and Frank (2005) use the log-likelihood to select the best cutpoints in their uni-
variate approach of discretization through tree-based density estimation. Ram
and Gray (2011) describe a multivariate approach, where the best split point
is chosen by minimizing the Integrated Squared Error (ISE), an approach also
used by Anderlini (2016). This multivariate approach would be suitable for the
efforts to achieve data privacy through discretization, especially when applying
k-anonymity.

4.4 Privacy preserving discretization

The approach to achieve privacy in a set of continuous features and instances
involves discretization through Density Estimation Trees to achieve k-anonymity
for a desirable level of k, while aiming to preserve data utility. This is a novel
approach, since DETs have not been used before for achieving data privacy.
It takes the existing concept of discretization through DETs (Schmidberger
& Frank, 2005; Ram & Gray, 2011; Anderlini, 2016), but incorporates k as
a minimum leaf stopping rule during the construction of a DET. Since the
DET’s leaf nodes effectively represent equivalence classes, this novelty can be
used to partition and assign data to their respective equivalence classes, thereby
achieving k-anonymity.

The DET would yield a discretization structure similar to a generalization
hierarchy. This is used to assign the continuous numeric attributes to a discrete
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number of bins, thereby transforming each value to an interval. Consider the hi-
erarchy shown in Figure 4.1. Each of the continuous values of this age attribute
would be discretized by assigning them to the leaf nodes of the hierarchy, i.e.
[17, 39], [40, 61], [62, 73], and [74, 90].

Constructing a DET involves iteratively partitioning node t in two new child
nodes tL and tR, both containing a subrange of t. To determine the best split,
the approach by Ram and Gray (2011) is used. They use the integrated squared
error (ISE), and show that the error for any node t can be defined as:

R(t) = − |t|
2

N2Vt

where |t| is the number of instances in node t, N is the total number of instances,
and Vt is the proportion of the volume of the data associated with node t. A
DET is then constructed top-down by maximizing the error’s reduction in each
node, i.e. R(t)−R(tL)−R(tR).

In terms of discretization, using DETs provide an unsupervised, multidi-
mensional approach. As a result, it can be applied to most data sets containing
continuous attributes, not just in the context of supervised learning. In addition,
the multidimensional nature of it means that it tries to preserve the interaction
between attributes, which is important in the context data analysis like learning
tasks. The assumption is that potential patterns not only reside within each
dimension individually, but also come from the interplay between dimensions. A
multidimensional approach takes the multidimensional structure into account,
thereby aiming to preserve the multivariate distribution. Additionally, DETs
are nonparametric density estimators. This means that the method does not
require assumptions on the distribution of the data.

Figure 4.2: Discretization tree example

Figure 4.2 shows how DETs are used for multidimensional discretization.
The tree starts with the root node, containing all instances with values for the
attributes x and y. The first division is performed by splitting on x, where
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instances with values lower than x0 will go to the left node, and those with
higher values to the right. This is illustrated by the intervals [xmin, x0) and
[x0, xmax], indicating all values of x until x0, or from x0 onwards respectively.
These nodes are split further on y0 and y1. The result of this process is a Density
Estimation Tree that can be used as a discretization structure. The leaf nodes
of this tree represent the bins to which the continuous values can be assigned to.
In this example, there are four leaf nodes, so the data would be partitioned in
four exclusive bins. The range of these bins is composed of the cut point value
on one side, and either the minimum or maximum value of the attribute value
among the instances in that bin. If an attribute is not divided into multiple
intervals, the interval would simply be the complete range of that attribute.

So far, one essential aspect of a tree-based algorithm, the evaluation criterion
is discussed. Another important part of such an algorithm, and of discretization
techniques in general, is deciding how many nodes or bins are needed to obtain
an accurate representation of the data. In theory, a decision tree that best fits
the available instances could contain nodes for each individual instance. How-
ever, such a model would not generalize well for new instances, but it would
be overfitting the available observations. In the construction of decision tree
models like classification trees or DETs, the algorithm should contain an ap-
proach to avoid overfitting models. For example, cross-validation is widely used
to estimate the optimal number of cuts that best represents the available data
(Schmidberger & Frank, 2005; Ram & Gray, 2011). However, Anderlini (2016)
argues that cross-validation is too expensive, and prefers an a priori solution to
prevent overfitting in DETs, namely a minimum leaf constraint. By specifying
how many instances a node should contain at least, nodes containing only a few
instances are never created in the first place. Since the aim of k-anonymity is
to end up with at least k instances per equivalence class, this can be achieved
a priori by specifying a minleaf that is equal to k. Increasing k (minleaf) then
means that fewer leaf nodes are created, containing more instances. This would
lead to a less accurate model, but results in a higher privacy level according
to k-anonymity. Lower k-values would allow more splits, containing fewer in-
stances. While this provides less privacy guarantees, it could result in a more
accurate model. Table 4.1 shows the resulting data when the tree from Figure
4.2 is used to discretize the hypothetical data.

Table 4.1: Discretized data

# x y
1..35 xmin - x0 ymin - y0
36..90 xmin - x0 y0 - ymax
91..105 x0 - xmax ymin - y1
106..160 x0 - xmax y1 - ymax

This example shows how k-anonymity is achieved through DET discretiza-
tion. The DET is constructed with minleaf = k. The original instances are
then assigned to the leaf nodes or bins. These values are then essentially gen-
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eralized from the more unique, continuous value, to a more general one. This
means that all the instances in a bin have the same values. In the terminology
of k-anonymity, we can consider the attributes {x, y} as the quasi-identifier. In
the example, we have four equivalence classes, since there are four combinations
of {x, y}, represented by the leaf nodes. The number of instances in each leaf
node represents the number of records within each equivalence class. Since the
minleaf constraint is set beforehand, each equivalence class contains at least
that amount of instances. In this example, leaf node 6 is the smallest bin with
15 instances, which means that k was set to 15 or less.

Figure 4.3: Anonymization approach

This approach is essentially comprised of two parts. The first one is con-
structing the DET, requiring the data set and k as input parameter. The sec-
ond is to use this discretization structure to discretize instances for the sake of
achieving k-anonymity. It is very much possible to use the entire data set to be
anonymized as input data for the DET, and then discretize this data. However,
this approach also allows for the construction of the DET on a subset of the
data, and then use this model to discretize new instances. This could be useful
when using larger data sets to improve the performance. It can also be useful
when data is continually generated, and new instances need to be anonymized.
At the same time, newly generated data can be used to further improve the
model. The approach is illustrated by Figure 4.3. This approach allows for
the evaluation of the amount of training instances that are needed to create an
accurate representation of the data as well. The evaluation can be done on the
complete data, and on subsets of it, to evaluate whether less instances can still
provide an accurate representation of the data.

4.5 Measures

As discussed in Sections 3.2 and 4.2, k-anonymity requires that for every equiv-
alence class, i.e. for every combination of attribute values, there exists at least
k records. Additionally, the re-identification risk is 1/k at maximum. With
k-anonymity, k is the level of privacy. Higher values for k increases the level of
privacy, and reduces the re-identification risk. However, k is an input parame-
ter as well, so it should be set to a desirable level. Unfortunately, there is no
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optimal level of k. A desirable level of k depends on the context, and how hard
it is to achieve this depends on the data set. In some data sets, achieving some
level of k could require more alterations, resulting in larger utility reductions,
than other data sets.

It can be assumed that higher k-values generally provide more privacy guar-
antees. The algorithm will therefore be evaluated for a range of k-values. Con-
sidering the re-identification risk 1/k, k-values between 10 and 20 would result
in a re-identification risk of 5-10%. This would make it highly unlikely to iden-
tify a specific individual from the data. At the same time, these values should
not be unrealistically low so that it constraints data utility too much. However,
part of the evaluation is to see whether higher k-values can still mostly preserve
the utility.

Apart from measures for achieving privacy in the data, there should be some
expression of the data utility. The main interest is the comparison of the utility
of the transformed data and the original data. To do so, a Random Forest
classifier is used to assess whether the utility is preserved in the transformed
data. To allow for a comparison, a classifier is trained on both the original data
and the transformed data, following the approach of Nguyen et al. (2014).

The performance of a classifier can be expressed through various measures.
To provide a complete view of the performance of the classifier, the following
performance measures are used:

• Accuracy

• F1

• Recall

• Precision

• ROC score (for binary classification cases)

The difference between the performance of the classifier trained on the orig-
inal data and the classifier trained on the transformed data then acts as a
utility measure. If the performance of the classifier on the transformed data is
much worse than the performance of the classifier on the original data, this is
an indication that the discretized attributes lack the interaction present in the
continuous attributes. To determine whether these differences are acceptable or
not, significance testing on the classifiers’ accuracies will determine if there is a
significant difference between the accuracy obtained with the anonymized data,
and the accuracy obtained with the continuous data. If there is a significant
difference between the two, this indicates that the utility is not preserved.

33



Part III

Treatment validation

34



Chapter 5

Experimental setup

5.1 Setup

The approach to achieve k-anonymity through DET discretization was discussed
in Section 4.4. To be able to conduct an experimental evaluation, this approach
was implemented in Python. The implementation consists of a tree-based algo-
rithm that iteratively subdivides nodes in two new nodes, based on the approach
by Ram and Gray (2011) to determine the best local splits. Applying this to a
data set results in a list of bins. These bins describe the ranges of each dimen-
sion, which are defined by the training instances that belong to this bin. This
list of bins is used to discretize a (sub)set of instances. The measures discussed
in Section 4.5 are then evaluated for different k-values and amounts of training
instances.

The aim of the experiments is to find an answer to subquestions SQ5, SQ6,
and SQ7 from Section 2.1. SQ5 is concerned with the levels of privacy and
utility that are achieved from the output of the algorithm. Subsequently, SQ6
is concerned with the trade-off between privacy and utility, and addresses the
effect of higher and lower privacy levels on the level of utility. The aim of this
is ultimately to find a point where the levels of privacy and utility can both
be considered satisfactory. Lastly, SQ7 is concerned with finding the minimal
amount of instances that are needed to still provide an accurate and privacy
preserving summary of the data.

5.2 Measures

During the experimental evaluation, both the level of privacy and utility are
expressed through some measures. The level of privacy is measured through the
value of k in accordance with the k-anonymity model. This k-value serves as
an input parameter as well. The approach is evaluated for a range of k, from
k = 5 up until k = 100, with steps of 5. This range should include reasonable
values for k. Evaluating over this range also provides insights into the effect of
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increasing k regarding the resulting data utility.
Since it is infeasible to express the difference between two multivariate dis-

tributions, one continuous and one discrete, the utility of the output of the
algorithm is expressed in terms of its classifier performance. A classifier is
trained on both the original and the transformed data. This classifier therefore
acts as a goodness of fit regarding the discretized data and the preservation of
the properties of the original data, and thereby as an indicator for utility.

Considering the amount of instances that are needed to provide an accurate
model of the data, the another measure is the bucket size, expressed as the
proportion of the set of training instances. This is evaluated by creating the
DET on different subsets of the training set, and evaluating the performance
on the same test set. The proportions of training set sizes that are evaluated
range from 10% to 90%, with steps of 10. This is in addition to the evaluation
where the complete data is used and divided into training and test set.

Lastly, the runtime is reported for each data set. This provides an indica-
tion of the complexity of creating the discretization structure on the training
instances. Table 5.1 provides an overview of the measures that are used during
the evaluation.

Table 5.1: Evaluation measures

Measure Metric
Privacy level k

Utility

Classifier performance:
- Accuracy
- F1
- Recall
- Precision
- ROC

Minimal bucket size Proportion of the training set
Computational complexity Runtime in seconds

5.3 Data

In order to validate the performance and applicability of the use of DET dis-
cretization for anonymization, various data sets are used for the evaluation of
the approach. All data sets used for the evaluation contain class label infor-
mation. This is the case since a Random Forest classifier is used to assess the
goodness of fit of the transformation process as part of the evaluation. The
class label information is only used by the classifier during the evaluation, and
entirely disregarded by the DET discretization technique. When it comes to
evaluating discretization or machine learning algorithms, it is common to test
the algorithm on data sets from the UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017). This conveniently allows for the comparison of
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classifiers or discretization techniques.
In addition to the evaluation on UCI data sets, the approach is also eval-

uated on synthetically generated data. This can be used to amplify certain
characteristics of the data, and to specify shapes and dimensions.

5.3.1 Real-world data

The discretization for the sake of anonymity approach is tested on some common
UCI repository data sets. Although anonymization is usually performed on
sensitive and personal information, the discretization algorithm can be used on
any data set containing continuous attributes, and the levels of privacy and
utility can be measured. From the UCI repository, four well known data sets
containing only continuous attributes are used. These data sets are described
in Table 5.2.

Table 5.2: Real-world data sets

Data set Instances Attributes Classes
breast 682 9 2
glass 213 9 6
iris 150 4 3
wine 178 13 3

5.3.2 Synthetic data

A distinction can be made between three types of generated synthetic data sets
for the evaluation of the anonymization approach. At the core of discretization
through DETs, the objective is to model and partition the data through density
estimation. This can be considered as an unsupervised discretization approach,
so possible class labels are not considered when partitioning the data. This
could mean that partitions are being made in such a way that the potential
interactions between attributes contributing to the class information are lost.
To validate whether the discretization algorithm is able to distinguish ’meaning-
less’ attributes, the iris set is extended with additional attributes, with values
randomly drawn from a Gaussian distribution. Three variations are evaluated,
with one, five, and ten additional attributes respectively.

The discretization algorithm is also validated on completely generated syn-
thetic data, created with the datasets module from scikit-learn. Eight synthetic
data sets are used, with varying numbers of instances and attributes. The first
four sets are constructed with scikit-learn’s make classification utility from the
datasets module. These sets pose a typical classification problem with interde-
pendent attributes. The first two sets contain the same number of instances,
but differ in the number of attributes. The other two sets contain the same
number of attributes, while the number of instances differ.
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The remaining four synthetic data sets are similar in the amount of instances
and attributes. However, these sets differ in the shape of the clusters that are
placed in the data, as illustrated by Figure 5.1. Synthetic data set 5 and 6
are generated with scikit-learn’s utilities make moons and make circles, and are
illustrated by Figure 5.1a and 5.1b respectively. Synthetic sets 7 and 8 are illus-
trated by Figure 5.1c and 5.1d, and are comprised of a number of distinctable
clusters that are placed around a center. Table 5.3 provides a description of
the generated data sets and their dimensions. All eight data sets is a binary
classification problem, with the exception of Synthetic 8, which has six distinct
class labels.

(a) Synthetic 5 (b) Synthetic 6

(c) Synthetic 7 (d) Synthetic 8

Figure 5.1: Synthetic data sets 5-8

Table 5.3: Synthetic data sets

Data set Instances Attributes sklearn type
Synthetic 1 1000 5 make classification
Synthetic 2 1000 10 make classification
Synthetic 3 10000 2 make classification
Synthetic 4 20000 2 make classification
Synthetic 5 1000 2 make moons
Synthetic 6 1000 2 make circles
Synthetic 7 1000 2 make blobs
Synthetic 8 1000 2 make blobs
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5.4 Experimental procedure

The experimental evaluation involve applying the anonymization approach to
different data sets, both real-world and synthetic. Table 5.4 provides an overview
of all data sets that are part of the evaluation. Depending on the size of the data
set, two approaches are used to evaluate the goodness of fit of the anonymization
process. With a larger number of instances, the data set is randomly split in two
parts: 70% training instances and 30% test instances. The training instances
are anonymized through DET discretization. The transformed set is then used
to train a Random Forest classifier. The remaining 30% is then discretized by
assigning them to their respective bins according to the DET created on the
training set. The performance of the classifier is then expressed in terms of its
performance on the test set.

Table 5.4: Data sets

Data set Instances Attributes Classes Evaluation
breast 682 9 2 10-fold CV
glass 213 9 6 10-fold CV
iris 150 4 3 10-fold CV
wine 178 13 3 10-fold CV
iris + 1 150 5 3 10-fold CV
iris + 5 150 9 3 10-fold CV
iris + 10 150 14 3 10-fold CV
Synthetic 1 1000 5 2 Train/test
Synthetic 2 1000 10 2 Train/test
Synthetic 3 10000 2 2 Train/test
Synthetic 4 20000 2 2 Train/test
Synthetic 5 1000 2 2 Train/test
Synthetic 6 1000 2 2 Train/test
Synthetic 7 1000 2 2 Train/test
Synthetic 8 1000 2 6 Train/test

For smaller sets, 10-fold cross validation is used. In this case, the data is
randomly split in ten folds. For ten iterations, nine folds are used as training
set, and the remaining as test set. Every fold is used as test set exactly once.
For every iteration, the training set is anonymized through DET discretization,
and then used as training set for the Random Forest classifiers. The classifier
performance is evaluated on the test fold, and the performance measures are
averaged over all iterations.

To compare the results, four other approaches are used and evaluated through
their classification performance. In the first place, a classifier is trained and
tested on the original, continuous attributes, without using discretization. These
results serve as the baseline classification performance results. In addition, the
equal-width and equal-frequency discretization methods are used. These are
unsupervised, univariate approaches, so all attributes are discretized individ-
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ually. Both methods require the number of bins as input parameter. Similar
to the evaluation of anonymization through DET discretization, both methods
are evaluated over a range of this parameter. Finally, the results are compared
with the supervised MDLP discretization approach by Fayyad and Irani (1993),
which does not require an input parameter.

Studying the effect of the number of instances that are needed to obtain
an accurate summary requires an additional approach. When using the train-
test evaluation approach, instead of using the full training set to construct the
DET, only a proportion is used. When using cross-validation, a proportion of
the instances included in the training folds is used. This proportion is evaluated
in the range of 0.1 to 0.9, with steps of 0.1, while the test set remains the same.
For each proportion, the same range of k-values is used for the evaluation as
with the main evaluation, or a subset of it. This results in the classification
accuracy for every combination of k-value and training set proportion.
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Results

The experimental evaluation yields many results, and these are presented in this
chapter. When it comes to the performance of the anonymization approach, the
results regarding utility and privacy are of particular interest. For every data
set that is part of the evaluation, the same output is generated. The results for
each set can roughly be divided in three categories:

1. Diagnostic results. These are mainly focused on the anonymization ap-
proach and the performance measures of the classifier indicating the utility.
The classification performance results are illustrated in this chapter. Ap-
pendix A contains the corresponding tables with the exact values, and the
performance measures’ standard deviations when cross-validation is used
for the evaluation.

2. Comparative results. These results provide a comparison between DET
discretization for anonymization, and the discretization techniques equal-
width, equal-frequency, and MDLP. The comparison of the classification
accuracy for these different techniques are illustrated in this chapter. Ap-
pendix A contains a similar comparison, for F1 and the ROC AUC score.
The runtime of the techniques is also compared in Appendix A.

3. Results concerning the training set proportion. These results are included
in this chapter, and are illustrated as a colored heatmap containing the
classification accuracy for every evaluated combination of k and training
set proportion.
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6.1 Real-world data

6.1.1 Breast

The first data set is the breast set from the UCI repository. The classification
performance measures are shown in Figure 6.1, along with the baseline accuracy
of the classifier trained on the original data. This effectively illustreates how
much of a difference there is between a classifier trained on the original data,
and one on the anonymized data. Additional results are shown in Appendix
A.1. The results show that with a k-value of 15, the highest cross-validated
classification accuracy of 0.95 is achieved, with a baseline accuracy of 0.96. In
addition, Figure 6.1 shows that the classification performance is relatively stable
up until a k-value of 95.

Figure 6.1: Classification performance breast

The performance of the DET anonymization approach is compared with
other discretization techniques as well. Figure 6.2 shows the classification ac-
curacy for these techniques. For the DET approach, the input parameter k on
the x-axis ranges from 5 to 100. The input parameter equal-width and equal-
frequency, the number of bins, is inverted on this axis, and ranges from 100 to
5. This is the case since low k-values with the DET approach result in a higher
number of bins, while high k-values result in less bins. Inverting the axis for
equal-width and equal-frequency makes sure that with these three techniques, a
high number of bins is on the left side of the graph, and a lower number on the
right. MDLP and no discretization do not require an input parameter, so these
approaches resulted in one accuracy measure instead of one for each parameter
value. This comparison shows that EW could achieve 0.97 accuracy at 80 bins,
EF 0.97 at 60 bins, while MDLP also resulted in 0.97 classification accuracy.
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Although DET performs slightly worse with 0.95, it is relatively close to the
other approaches up until a k-value of 95.

Figure 6.2: Classification accuracy comparison breast

The DET anonymization approach is evaluated for different proportions of
the training set as well. Figure 6.3 shows the classification accuracy for the
various combinations of k and the training set proportion. The cells highlighted
in blue indicate relatively high accuracy, while the red highlighted cells contain
relatively low measures. The best classification accuracy results are found in
the upper right corner, with low k-values and a larger training set. However,
it is still possible to obtain high accuracy with less data and reasonably high
k-values. For example, with only 50% of the training instances and k = 30, an
accuracy of 0.94 is achieved.
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Figure 6.3: Classification accuracy heatmap breast
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6.1.2 Glass

The classification performance results for the glass set are shown in Figure 6.4.
This shows that the highest classification accuracy that is achieved is 0.58, with
k = 5. The accuracy without discretization is 0.65. Compared to the breast set,
there is a larger difference in classification performance between the anonymized
and the original data. In addition, the performance quickly declines beyond low
k-values.

Figure 6.4: Classification performance glass

A comparison with the other discretization methods is illustrated by Figure
6.5. The other techniques perform better than without discretization. EW
achieves 0.77 accuracy with 45 bins, EF obtains 0.76 with 70 bins, while MDLP
results in an accuracy of 0.75.

Lastly, Figure 6.6 shows a heatmap of the classification accuracy for the
combinations of training set proportion and k. It shows a general degradation
in performance when increasing k or decreasing the amount of training instances,
although an accuracy of 0.57 is achieved with only 50% of the training instances
and k = 5. It is clear that the DET approach has some difficulties with the glass
data set when it comes to classification performance. This could be caused by
the fact that this data set is smaller than the breast set, is a relatively difficult
classification problem, and has six distinct class labels. Additional results are
included in Appendix A.2.
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Figure 6.5: Classification accuracy comparison glass

Figure 6.6: Classification accuracy heatmap glass
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6.1.3 Iris

The classification performance results concerning the iris set are shown in Figure
6.7. The highest classification accuracy that is achieved is 0.95, at k = 5.
The accuracy that is achieved without discretization is 0.96. The results show
decreasing performance around the k-values 45 and 70. This corresponds with
changes in the number of bins that are created by the algorithm, which are
significant with this particular data set. The iris data set is small, and has
three class labels. Up until a partitioning of the data in three parts, the class
labels are relatively straightforward to predict. However, partitioning the data
in two parts, which happens around k = 45, doesn’t give the classifier enough
information to predict the three class labels. The same is naturally true when
there is just one bin, which is the case from k = 70 onwards. Figure 6.7 shows
how the classification performance increases around k = 30 after an initial
decline, and is still high at k = 40. Table A.3 shows that at this k-value,
exactly three bins are created, while lower k-values naturally result in a slightly
larger number of bins. These results indicate that in terms of utility, discretizing
into three bins are actually preferable over more than three bins. In terms of
privacy, increasing k does not always result in a decline in utility.

Figure 6.7: Classification performance iris

A comparison in performance with the other discretization techniques is
provided by Figure 6.8. With EW, an accuracy of 0.96 is achieved with 55 bins,
EF results in 0.97 with 80 bins, while MDLP obtains an accuracy of 0.96. This
shows that all methods can obtain similar classification performance.

Figure 6.9 shows the accuracy heatmap for the iris set. Again, the highest
accuracy is obtained in the top right part of the heatmap, with low k-values and
a larger number of training instances. However, relatively high accuracy can be
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Figure 6.8: Classification accuracy comparison iris

obtained with higher k-values and less training instances. As long as the data
is partitioned in three parts or more, the utility of the iris set is still mostly
preserved. Appendix A.3 contains additional results for this data set.

Figure 6.9: Classification accuracy heatmap iris
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6.1.4 Wine

The results for the wine data set are shown in Figure 6.10. Similar to the iris
set, wine has a small number of instances and distinct class labels, but a larger
number of attributes. The highest classification accuracy that is achieved at
k = 5 is 0.90, with a baseline accuracy of 0.97. With this data, the performance
drops noticeably at k = 55 and k = 85. As Table A.4 of Appendix A.4 shows,
at these values, the discretization results in two bins and one bin respectively,
which makes it impossible for the classifier to predict the three distinct class
labels.

Figure 6.10: Classification performance wine

Figure 6.11 shows a comparison of the classification accuracy between the
different discretization methods. EW, EF, and MDLP are all able to achieve
0.98 accuracy.

The heatmap with classification accuracy for DET discretization is provided
by Figure 6.12. The higher accuracy values in the top right are all examples
where at least three bins are created. The clear drop in performance, illustrated
by the light blue cells, occurs when the data is partitioned in less than three
parts.
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Figure 6.11: Classification accuracy comparison wine

Figure 6.12: Classification accuracy heatmap wine
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6.2 Synthetic data

As discussed in Section 5.3.2, there are three types of synthetic data to evaluate
the anonymization algorithm. The first type involves three variations of the iris
set, in which one, five and ten additional, random attributes are added to the
data. These results are discussed first, followed by the results on the eight full
synthetic data sets.

6.2.1 Iris + 1

The first variation of iris is that with one additional attribute. The classification
performance results are shown in Figure 6.13. These show that the highest cross-
validated accuracy of 0.94 is achieved with k = 40, while the baseline accuracy
is 0.97. This is slightly less than the accuracy of 0.95 that is achieved with the
original iris set. In general, Figure 6.13 shows a similar trend to the original
set, with a clear performance decrease around k = 45 and k = 70, caused by the
discretization in less than three bins. There is an increase towards k = 40 after
an initial decline as well. Appendix A.5 contains additional results for this set.

Figure 6.13: Classification performance iris + 1

Figure 6.14 illustrates a comparison with the other discretization methods.
Both EF and EW result in an accuracy of 0.97, while MDLP obtains an accuracy
of 0.94.

The accuracy results for the various combinations of k and training set pro-
portion is shown by Figure 6.15. When three bins or more are created, the
accuracy is high, indicated by the blue top right area. With less than two bins,
the performance naturally drops.
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Figure 6.14: Classification accuracy comparison iris + 1

Figure 6.15: Classification accuracy heatmap iris + 1
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6.2.2 Iris + 5

The second set is the iris data with 5 additional attributes. The classification
performance is shown by Figure 6.16. The cross-validated accuracy of 0.92 is
achieved at k = 40. The baseline cross-validated accuracy is 0.93. Again, the
results are very similar to the original iris set and iris + 1, but slightly lower.
Additional results are included in Appendix A.6.

Figure 6.16: Classification performance iris + 5

The comparison with other discretization methods in terms of classification
accuracy is shown in Figure 6.17. Their best accuracy results are very similar.
EW and EF both achieve an accuracy of 0.96, while MDLP is able to achieve
0.93 accuracy.

Figure 6.18 shows the classification accuracy heatmap. Although the same
pattern applies as with the other iris variations, it is less clear. This is illustrated
by the fact that the top right cell, with the lowest k-value and the largest number
of training instances, the classification accuracy is far from the highest. Instead,
better results are achieved at higher k-values.
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Figure 6.17: Classification accuracy comparison iris + 5

Figure 6.18: Classification accuracy heatmap iris + 5
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6.2.3 Iris + 10

The last iris variation has 10 additional attributes. Figure 6.19 shows the clas-
sification performance for this data. The k-value of 40 results in the highest
cross-validated accuracy of 0.94, while the baseline accuracy is 0.92. The per-
formance results show the same trend as with the other iris variations, although
the increase around k = 40 is even more apparent. In addition, the performance
in general is slightly worse than with the previous variations. Additional results
are included in Appendix A.7.

Figure 6.19: Classification performance iris + 10

Figure 6.20 shows a comparison with the other discretization techniques.
With EW and EF, an accuracy of 0.97 is achieved, while using MDLP obtains
0.95 accuracy.

The classification accuracy heatmap is shown in Figure 6.21. The pattern
is somewhat similar to iris + 5, in that the highest accuracy results are not
obtained at the lowest k-values for each training set size. Instead, higher k-
values result in a higher classification accuracy, which is also the case with the
regular results, where k = 40 obtains the best performance.
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Figure 6.20: Classification accuracy comparison iris + 10

Figure 6.21: Classification accuracy heatmap iris + 10
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6.2.4 Synthetic 1

Apart from the extended iris data, the DET anonymization approach is evalu-
ated on full synthetic data as well. In this case, the data is split in a training
set and a test set, instead of using cross-validation.

The first synthetic set contains 1000 instances and five attributes. The
classification performance results that were obtained are shown in Figure 6.22.
With k-values of 30 and 40, the highest classification accuracy of 0.77 was
obtained, with a baseline accuracy of 0.89. In this case, the performance on the
original data is substantially higher than on the anonymized data. Appendix
A.8 contains additional results for this data set.

Figure 6.22: Classification performance synthetic 1

Figure 6.23 shows the comparison with other discretization methods. The
accuracy results obtained with these methods are all close to the accuracy with-
out discretization. EW results in 0.88 accuracy, EF in 0.89, and MDLP obtains
an accuracy of 0.84.

The classification accuracy heatmap is shown in Figure 6.24. The distinction
between high and low accuracy values is not as clear as with the real-world data.
The highest accuracy values of 0.80 are obtained with relatively higher k-values
and a smaller set of training instances. In general however, the bottom left part
of the heatmap shows very low performance results, while the top right contains
accuracy values around 0.70.
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Figure 6.23: Classification accuracy comparison synthetic 1

Figure 6.24: Classification accuracy heatmap synthetic 1
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6.2.5 Synthetic 2

The second synthetic data set also contains 1000 instances, but ten attributes.
The results of the classification performance on the test set are shown in Figure
6.25. The highest classification accuracy that is achieved on the test set is 0.67,
corresponding to k = 10. Further results are included in Appendix A.9. In this
case, the performance difference between the original data and the anonymized
data is larger than with the previous data sets.

Figure 6.25: Classification performance synthetic 2

A comparison in classification accuracy with other discretization methods
is shown in Figure 6.26. With both EW and EF, an accuracy of 0.88 can be
obtained, while MDLP results in an accuracy of 0.80.

Figure 6.27 shows the classification accuracy heatmap for this data set. Sim-
ilar to the first synthetic data set, there is no clear pattern to detect regarding
high and low accuracy values. In addition, with only 30% of the training in-
stances, an accuracy of 0.78 is achieved, which is much higher than the accuracy
of 0.67 that was originally obtained with the complete training set.
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Figure 6.26: Classification accuracy comparison synthetic 2

Figure 6.27: Classification accuracy heatmap synthetic 2
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6.2.6 Synthetic 3

The third synthetic set consists of 10,000 instances and two attributes. The
classification performance is shown in Figure 6.28. With a k-value of 5, the
highest classification accuracy of 0.94 is achieved, with a baseline accuracy of
0.96. The performance results show a clear decline in performance when in-
creasing k. Additional results are included in Appendix A.10.

Figure 6.28: Classification performance synthetic 3

Figure 6.23 shows a comparison with the other discretization methods when
it comes to the classification accuracy. EW results in an accuracy of 0.95, EF
obtains 0.96, while MDLP results in an accuracy of 0.92.

The classification accuracy heatmap is shown in Figure 6.30. Compared to
the first two synthetic data sets, it is more clear that the top right part, with
lower k-values and a larger training set, results in a higher accuracy. However,
high accuracy results are still achieved with less training instances.
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Figure 6.29: Classification accuracy comparison synthetic 3

Figure 6.30: Classification accuracy heatmap synthetic 3
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6.2.7 Synthetic 4

Synthetic set 4 has 20,000 instances and two attributes. Figure 6.31 shows the
classification performance on the test set. The highest classification accuracy
of 0.94 is achieved at k = 15, which is slightly higher than the accuracy on the
continuous data. The additional results are shown in Appendix A.11.

Figure 6.31: Classification performance synthetic 4

Figure 6.32 shows a comparison with the other discretization methods in
terms of accuracy. In this case, all discretization methods are able to achieve
an accuracy close to the accuracy that is achieved without discretization. Both
EW and EF can obtain an accuracy of 0.95, and MDLP an accuracy of 0.94.

The heatmap regarding classification accuracy values is shown in Figure
6.33. Most of the higher accuracy values are obtained in the top right part
of the heatmap. In addition, an accuracy of 0.95 is achieved with 90% of the
training set, which is slightly higher than the evaluation on the complete training
set.
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Figure 6.32: Classification accuracy comparison synthetic 4

Figure 6.33: Classification accuracy heatmap synthetic 4
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6.2.8 Synthetic 5

Synthetic set 5 is created with the make moons utility, and has 1000 instances
and two attributes. Figures 6.34 shows the classification performance on the
test set, for different k-values. Between k = 60 and k = 85, the highest classifi-
cation accuracy of 0.99 is achieved, while the baseline accuracy is 0.99 as well.
An interesting observation is that there is no clear decline in accuracy when
increasing k, in contrast to the results of the previous data sets. Appendix A.12
contains additional results for this data set.

Figure 6.34: Classification performance synthetic 5

Figure 6.35 shows a comparison with other discretization methods. EW, EF
and MDLP all achieved an accuracy of 1.

Figure 6.36 shows the classification accuracy heatmap for this data set. This
shows that most of the higher accuracy results are obtained in the top right
part, although a high accuracy can also be achieved at higher k-values and less
training instances.
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Figure 6.35: Classification accuracy comparison synthetic 5

Figure 6.36: Classification accuracy heatmap synthetic 5
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6.2.9 Synthetic 6

Synthetic data set 6 is generated with the make circles utility, and consists of
1000 instances and two attributes. Figure 6.37 shows the classification perfor-
mance for different levels of k. The highest classification accuracy is 0.93, while
an accuracy of 1 is achieved with a classifier on the original, not discretized set.
In general, a decline in performance is apparent when increasing k, although
there is an increase around k = 50 after an initial decrease.

Figure 6.37: Classification performance synthetic 6

Figure 6.38 shows the comparison with other discretization methods. Both
EW and EF can achieve an accuracy of 1, just like the results without discretiza-
tion. MDLP obtains an accuracy of 0.90, which is slightly less than the results
for DET discretization for low k-values.

The classification accuracy heatmap is shown in Figure 6.39. The highest
accuracy that is achieved is in the top right cell. This accuracy of 0.96 is
even higher than the 0.93 that was achieved with the complete set of training
instances.
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Figure 6.38: Classification accuracy comparison synthetic 6

Figure 6.39: Classification accuracy heatmap synthetic 6
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6.2.10 Synthetic 7

Synthetic data set 7 is generated through the make blobs utility, and consists of
two very distinct clusters in two dimensions, with 1000 instances. The classifi-
cation performance results are shown in Figure 6.40, while additional results are
included in Appendix A.14. The classification accuracy that is achieved without
discretization is 1. The same accuracy of 1 is achieved with the anonymization
approach, at least with k-values from 5 to 100. In fact, up until a partitioning
of the data in two parts, an accuracy of 100% is achieved. Since this set con-
tains 1000 instances, of which 700 are used by the discretization algorithm, the
maximum k-value to end up with two bins is 700/2 = 350. Higher k-values will
result in one large interval containing all instances, making the classification
task impossible. So, in this hypothetical case, all possible instances belong to
one of the two clusters present in the data, so having just two bins would be
enough to accurately classify even new instances.

Figure 6.40: Classification performance synthetic 7

Figure 6.41 shows a comparison with the other discretization methods. All
methods can achieve an accuracy of 1, as expected. This particular data set is
a simple classification problem, so discretization does not hurt the classification
performance. This is also illustrated by the classification accuracy heatmap in
Figure 6.42. As long as at least two parts are created with the DET discretiza-
tion approach, the utility is hardly sacrificed. For example, with a proportion of
0.1 and k = 35, there are 1000 ∗ 0.7 ∗ 0.1 = 70 training instances. With k = 35,
this means that 70/35 = 2 bins are created, which results in an accuracy of 0.97.
However, at k = 40, a maximum of 70/40 = 1.75 bins can be created, which is
less than two bins. This means that just one bin is created, which is reflected
by the accuracy that is achieved for this k-value.
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Figure 6.41: Classification accuracy comparison synthetic 7

Figure 6.42: Classification accuracy heatmap synthetic 7
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6.2.11 Synthetic 8

Synthetic data set 8 is similar to 7, in that it is constructed with make blobs, and
it contains 1000 instances over two dimensions. However, this set consists of six
distinct clusters. The classification performance results are shown in Figure 6.43.
The highest classification accuracy that is achieved is 0.89, and the accuracy
with classification without discretization is 0.89 as well. Additional results are
included in Appendix A.15. In this case, Table A.15 reports k-values ranging
from 5 to 150. The results show a trend that is consistent with results obtained
with other data sets. Up until a partitioning in six bins, corresponding to a k-
value of 110, the performance remains relatively stable. Higher k-values result
in fewer bins, and in a decline in classification performance. This particular
data set has six classes to predict. Each cluster represents one class. When
the discretization algorithm partitions the data in six parts, this is still enough
information for the classifier. Having less bins than the number of distinct class
labels ultimately results in a substantial performance decline.

Figure 6.43: Classification performance synthetic 8

Figure 6.44 shows the classification accuracy comparison with other dis-
cretization methods. The accuracy that is achieved is similar for the different
methods. With EW, an accuracy of 0.90 is achieved, while EF and MDLP
resulted in an accuracy of 0.88. The classification accuracy heatmap is shown
in Figure 6.45. Most of the higher accuracy scores are in the top right part,
although some higher scores are still obtained at higher k-values.
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Figure 6.44: Classification accuracy comparison synthetic 8

Figure 6.45: Classification accuracy heatmap synthetic 8

72



Chapter 6 6.3. RUNTIME

6.3 Runtime

For each data set used in the evaluation and discussed in the previous sections,
a comparison between the four discretization methods regarding runtime is in-
cluded in Appendix A. In this section, the runtime of the DET anonymization
approach is compared between a selection of data sets. This could provide more
information about how data set dimensions affect the runtime of the algorithm.

Figure 6.46 shows the runtime for the three extended iris, of which the results
were discussed in Section 6.2, and additional results are shown in Appendices
A.5, A.6, and A.7. These data sets consist of 150 instances and five, nine, and
fourteen attributes respectively. In all cases, there is an exponential decline
in runtime when increasing k. As shown in Tables A.5, A.6, and A.7, this
corresponds with the exponential decline in the number of bins that are created
for different k-values. In addition, there is a noticeable difference in the time it
takes to construct a DET on the three variations of the data, especially at low
k-values. This indicates that having more dimensions increases the runtime.
In addition, the difference in runtime between iris + 5 and iris + 10 is larger
than that between iris + 1 and iris + 5. In this case, the results indicate that
the runtime scales exponentially with the amount of dimensions, rather than
linearly.

Figure 6.46: Runtime extended iris

A similar comparison can be made between synthetic data sets 1 and 2,
which both consist of 1000 instances, but five and ten attributes respectively.
Figure 6.47 shows the runtime of both data sets. In this case, there is a large
difference between the two sets. At k = 5, the runtime for synthetic set 1 is
6.8 seconds, while it is 225 seconds for synthetic set 2. At higher k-values, the
difference in runtime decreases. In addition, the runtime declines exponentially
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over k, although this is most noticeable for synthetic set 2. Tables A.8 and A.9
show the same trend regarding the number of bins that are created for each k.
The number of bins is also very similar for both sets, as they have the same
amount of instances.

Figure 6.47: Runtime synthetic 1 and 2

Synthetic sets 3 and 4 are similar in that they both consist of two attributes.
However, these data sets differ in their number of instances. However, synthetic
set 3 contains 10,000 instances, while synthetic 4 has 20,000. Figure 6.48 shows
the runtime for these data sets. Synthetic set 3 shows a slight overall decrease
in runtime between 105 and 87 seconds, while the runtime of synthetic set 4
remains relatively stable around 340 seconds. This contrasts the more noticeable
trends in runtime when increasing k for most of the other data sets. Tables A.10
and A.11 do show an exponential decrease in the amount of bins that are created
for both sets. These results also show that generally speaking, the amount of
bins that are created for synthetic set 4 is about double the amount of bins that
are created for synthetic set 3 for all k-values. This is not unexpected since
synthetic 4 contains double the amount of instances as synthetic 3.

The last comparison is between synthetic sets 5, 6, 7 and 8. These all consist
of 1000 instances, and two attributes, so their dimensions are exactly the same.
However, as explained in section 5.3.2, the clusters in the data are differently
shaped. Tables A.12, A.13, A.14 and A.15 show that for each of these data sets,
the amounts of created bins are roughly the same for the various k-values. Figure
6.49 shows how the runtime differs for these sets. Synthetic set 7 and 8 were both
created using the make blobs utility, and their runtime is very similar. Synthetic
sets 5 and 6 were created with make moons and make circles respectively. Their
runtimes are higher, most noticeable at lower k-values. This indicates that the
runtime is not necessarily directly deducible from the dimensions of the data.
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Figure 6.48: Runtime synthetic 3 and 4

Figure 6.49: Runtime synthetic 5 - 8
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6.4 Discussion

The results of all the evaluated data sets were discussed in the previous sections
of this chapter. Table 6.1 contains an overview of the highest accuracy that is
achieved for each data set for the discretization methods, and the corresponding
input parameter values. In the case of DET discretization, when multiple k-
values result in the same accuracy, the highest of these k-values is included in
the table, since this means a higher privacy level, less bins, and therefore a less
complex model. When this is the case for EW and EF, the lowest number of bins
is included, since this represents a less complex model as well. The accuracy
values in bold indicate the highest accuracy that is achieved for that data set.
The DET column indicate whether the accuracy that is achieved is within 0.05
from the highest accuracy of all discretization methods for that data set. Green
cells indicate values within that range, red cells indicate that the value is not in
that range.

Table 6.1: Classification accuracy comparison

Data set Original DET k EW h EF h MDLP
breast 0.96 0.95 15 0.97 80 0.97 60 0.97
glass 0.66 0.58 5 0.77 45 0.76 70 0.75
iris 0.96 0.95 5 0.96 55 0.97 80 0.96
wine 0.97 0.90 5 0.98 30 0.98 30 0.98
iris + 1 0.97 0.94 40 0.97 15 0.97 15 0.94
iris + 5 0.93 0.92 40 0.96 30 0.96 20 0.93
iris + 10 0.92 0.94 40 0.97 30 0.97 80 0.95
Synthetic 1 0.89 0.77 40 0.88 50 0.89 75 0.84
Synthetic 2 0.86 0.67 10 0.88 55 0.88 20 0.80
Synthetic 3 0.96 0.94 5 0.95 90 0.96 100 0.92
Synthetic 4 0.94 0.94 15 0.95 40 0.95 25 0.94
Synthetic 5 0.99 0.99 85 1.00 5 1.00 5 1.00
Synthetic 6 1.00 0.93 5 1.00 10 1.00 15 0.90
Synthetic 7 1.00 1.00 100 1.00 5 1.00 25 1.00
Synthetic 8 0.89 0.89 100 0.90 15 0.88 50 0.88

This overview shows that the DET discretization method does not achieve
the highest accuracy on any of the data sets, except for a shared best accuracy for
synthetic set 7. However, for ten data sets, the accuracy with DET discretization
falls within a range of 0.05, of which 7 are within 0.02. In some cases, the
classification accuracy heatmaps have shown that a higher accuracy is sometimes
achieved with less training instances.

The key difference between DET discretization to achieve k-anonymity and
the other discretization methods is that the anonymization approach partitions
the data horizontally in a multivariate fashion, while the other methods do not.
For example, equal-width discretization with ten bins divides each dimension
into ten bins separately. This means that there are still many possible com-
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binations of attribute values. Instead, with DET discretization, instances in
each bin have the exact same values for each dimension as the other instances
in that bin. This therefore results in the creation of equivalence classes. In
other words, DET discretization partitions the whole data over all attributes
into bins, while the other methods discretize each attribute into bins. This
could result in much more multivariate bins, which could be beneficial for the
preservation of utility. In addition, this also means that the other discretization
methods can not be used for anonymization through achieving k-anonymity,
which is possible with DET discretization. In any case, the comparison between
these discretization techniques still provides an indication of the performance of
anonymization through DET discretization. Especially with the glass data set
and synthetic sets 1 and 2, the difference with the best accuracy for that data
set is substantially large, compared to the other results.

The differences between the classification accuracy results are tested for sig-
nificance. This is done by testing difference of proportions – which would be
two accuracy results – through computing the z statistic (Kuncheva, 2004). In
a two-sided test with a significance level of 0.05, the null hypothesis H0 that
both accuracies are equal is rejected if |z| > 1.96. Table 6.2 shows the |z|-values
for a difference test between the accuracy achieved with DET and the accuracy
with the continuous attributes. It also shows these values for a difference test
between the accuracy achieved with DET and the best performing discretization
method. The values in bold indicate that |z| > 1.96, which would reject the null
hypothesis that the accuracies are the same, but instead lead to the conclusion
that the accuracies are significantly different. For synthetic sets 1, 2, and 6, the
differences in accuracy achieved by DET and the accuracy on the continuous
data are significantly different. In addition, for glass, wine, and synthetic sets 1,
2, and 6, the differences in accuracy achieved by DET and the best performing
discretization method are significantly different.

Compared to the continuous attributes, the three data sets that achieved a
significantly different accuracy with DET discretization are synthetic sets 1, 2,
and 6. Synthetic 1 and 2 were both generated with the make classification
utility, and contain five and ten attributes respectively. The difference in perfor-
mance could be caused by the higher number of attributes these two sets have,
since the other generated synthetic sets all contain two attributes. In addition,
synthetic 2, containing ten attributes, has an even larger difference with the
continuous data than synthetic 1, indicating that the method does not perform
well on higher number of attributes. This is not always the case however, since
breast, glass, wine, and the three extended iris sets have at least five attributes
as well, and there is no significant difference in accuracy with those data sets.

Synthetic sets 3 and 4 contain 10,000 and 20,000 instances respectively, and
both contain two attributes. In both cases, there classification performance is
high, and there is no significant difference with the continuous attributes. This
indicates that there is no noticeable connection between the amount of instances
and the performance of the DET discretization approach.

Synthetic sets 5, 6, 7, and 8 were generated with scikit-learn’s utilities, and
contain a certain pattern in the data. Synthetic sets 5, 7, and 8 all have an
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Table 6.2: Accuracy differences significance testing

Data set DET Continuous |z| Discrete |z|
breast 0.95 0.96 0.47 0.97 0.72
glass 0.58 0.66 1.20 0.77 2.92
iris 0.95 0.96 0.45 0.97 0.83
wine 0.90 0.97 1.91 0.98 2.40
iris + 1 0.94 0.97 0.89 0.97 1.02
iris + 5 0.92 0.93 0.36 0.96 1.19
iris + 10 0.94 0.92 0.55 0.97 1.02
Synthetic 1 0.77 0.89 2.26 0.89 2.26
Synthetic 2 0.67 0.86 3.17 0.88 3.56
Synthetic 3 0.94 0.96 0.51 0.96 0.64
Synthetic 4 0.94 0.94 0.03 0.95 0.19
Synthetic 5 0.99 0.99 0.26 1.00 0.82
Synthetic 6 0.93 1.00 2.69 1.00 2.69
Synthetic 7 1.00 1.00 - 1.00 -
Synthetic 8 0.89 0.89 0.07 0.90 0.31

accuracy equal to the accuracy achieved on the continuous attributes. These
results indicate that the DET discretization approach works well with the data
generated with make moons and make blobs. However, the accuracy achieved
with synthetic set 6 is significantly different from the accuracy on the continuous
attributes, indicating a low performance on this data set with a circular shape,
since it was generated with make circles.

The three variations on iris that contain a number of attributes with ran-
domly drawn values all perform well compared to the continuous data. Their
highest classification accuracy values do not significantly differ from the ac-
curacy on the continuous attributes. Figure 6.19 indicates that overall, the
classification performance is lower than with the original iris set in Figure 6.7.
However, the accuracy results on the continuous data for these variations slightly
decrease as well, as more noise is added. Since there is no significant difference
in the accuracies of the continuous and anonymzed data for these variations,
these results show that the DET approach is able to handle attributes that do
not contribute to meaningful interactions.

When it comes to the runtime, the results in Appendix A show that this
is much higher than with the other discretization methods. In the case of EW
and EF, almost no computation is required, since the intervals are determined
solely based on the number of bins as input parameter. MDLP requires a bit
more computation, since it is an entropy-based method to determine the best
intervals based on the class information. On the other hand, Density Estimation
Trees determine the bins based on the amount of instances that are associated
with the proportion of the data in that bins. As discussed in Chapter 4.4,
this requires the calculation of the volume of a node. This is an expensive
computation, especially considering it needs to be determined for each possible

78



Chapter 6 6.4. DISCUSSION

split candidate in each dimension. However, a more efficient implementation
of this algorithm than the one created for this evaluation could decrease the
runtime drastically.

Considering the trade-off between privacy and utility, many of the results
show that the lowest k-values do not always result in the best classification
performance. In other words, increasing k by 1 or 5 does not immediately result
in a utility decrease. Table 6.1 show that in ten out of fifteen data sets, k-values
of 10 and higher resulted in the highest classification accuracy. In addition,
choosing higher k-values usually result in only a slight decrease in performance.
In general however, there is a noticeable decline in performance when increasing
k. This is caused by the fact that less bins are created when k is increased.
Knowing the amount of bins that can be created for a given value of k can
be used to estimate a reasonable range for this parameter. For example, the
results for the iris set and its variations, and the results for synthetic set 8 show
that the performance drops when less bins are created than there are distinct
class labels. Since the maximum amount of bins that can be created for a given
amount of k is equal to n

k , where n is the amount of training instances, this can
be used to at least choose a k that can result in as many bins as there are class
labels. For example, the maximum value for k that could result in three bins
would be equal to n

h , where h is the number of bins. In the case of iris, this
would be 135

3 = 45, as nine folds are used as training folds for every iteration.
The results for iris and the variations show that the performance starts to drop
from this k-value. Choosing any higher k-values would therefore fail to preserve
the utility. Using the amount of distinct class labels naturally only work with
classification tasks, but determining the maximum amount of bins that can be
constructed based on k and the training set size should give a general idea of
the range of k-values to choose from, even in unsupervised situations. In the
context of anonymizing data for supervised learning, an approach similar to the
evaluation used in this project can be used to partition the data with respect
to the classification performance measures. This would involve determining a
minimal acceptable k-value, and estimating the maximum k based on the data
and the number of distinct class labels. DETs can then be created over the
range of these k-values, and based on some performance measure, one could
choose from the best performing one, and use the corresponding k-value for the
actual anonymization.

The classification accuracy heatmaps show that having more training in-
stances for the DET does not always result in the highest accuracy. However, a
pattern can be identified from these heatmaps. In general, the higher accuracy
values are found in the top right part, with lower k-values and more training
instances, while the lower accuracy results are found in the bottom left. The
heatmaps show that even with less training instances, the utility can be mostly
preserved. However, the training set proportion does influence the maximum
k-value at which the utility is still preserved. In the case of iris, 135 instances
and k = 40 can result in three bins. With only 75 training instances, k = 40
results in 75

40 ≈ 1.9 bins, which is not enough to preserve its utility. This is es-
pecially the case with smaller data sets like iris, but it is noticeable with larger
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data sets as well, for example synthetic data sets 3 and 4, discussed in Sections
6.2.6 and 6.2.7.
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Conclusions

7.1 Main conclusions

The motivation for this research project included two aspects that were key
elements throughout this report: the the benefits of data analysis, and the
need to protect the privacy of individuals in the data. The effort to unite
these two interests was formulated in the main research question: ”How can
data be accurately summarized by as few instances as possible to support data
analysis, while preserving the privacy of individuals?” This research question
is addressed throughout the parts of this thesis report, structured by the sub-
questions as formulated in Section 2.1. In Chapter 3, various models to achieve
data privacy were discussed, along with their advantages and disadvantages,
thereby addressing SQ1. Differential privacy and k-anonymity are among the
most well-known privacy models. In addition, SQ2 was addressed in the same
chapter by discussing different discretization techniques for data partitioning.
Popular techniques include equal-width and equal-frequency binning, MDLP,
1R, Chi2, and discretization through tree-based density estimation.

SQ3 is concerned with ways of expressing the levels of privacy and utility.
Since there is no universally agreed upon measure of data privacy, measuring
the level of privacy depends on the privacy model that is used to anonymize
data. In fact, the prominent privacy models and their variations in literature
have at least one input parameter to express the amount of privacy, within the
context of that model. For most models, literature does not prescribe what
levels of these privacy expressions are sufficient. On the other hand, expressing
the utility is more complicated. A common approach to determine the goodness
of fit of discretization models is to train a classifier and evaluate its performance
on the discretized data.

The proposed treatment was presented in Chapter 4 to address SQ4. This
treatment involves privacy preserving, horizontal discretization through density
estimation trees, by using k as a stopping rule to achieve k-anonymity. DETs
allow for the creation of an accurate, multidimensional model regarding the true
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density of the data. At the same time, using k as a minleaf constraint, and the
leaf nodes as bins, the continuous data can be horizontally partitioned. This
results in a set of equivalence classes where each equivalence class contains at
least k records.

To address SQ5, the treatment was validated by evaluating the classifica-
tion performance on real-world, semi-synthetic and full synthetic data sets, and
compared with other discretization techniques in Chapter 6. In five out of fif-
teen data sets, the classification accuracy on the anonymized data is the same
or higher than using the original, continuous attributes. In nine cases, the dif-
ference in accuracy between the original and the anonymized data is within a
range of 0.02. In only two out of fifteen cases, the accuracy on the original data
is at least 0.1 higher than on the anonymized data. In ten cases, the difference
in accuracy between DET discretization and the best performing discretization
technique is within 0.05, of which seven are within 0.02. In three out of fifteen
cases, the accuracy obtained by the best performing discretizer is at least 0.1
higher than with the proposed treatment. In addition, in ten cases, the high-
est accuracy for DET discretization was obtained with k-values greater than
or equal to 10. Even when higher k-values are desirable, the classification per-
formance is only slightly worse. Significance testing shows that in three out of
fifteen cases, the accuracies of the anonymized data and the continuous data
are significantly different. It can therefore be concluded that anonymization
through DET discretization is able to preserve data utility in most cases, while
incorporating privacy guarantees by achieving k-anonymity, for relatively high
values of k.

SQ6 involves the relationship between privacy and utility. It is clear that
not every single increase in k results in a decline in data utility. There is also
no general ’optimal’ k-value that balances privacy and utility for all data sets.
However, in general, there is a noticeable decrease in utility for higher ranges
of k compared to lower ranges. The amount of bins that can be created for
a given value of k indicate the maximum k-values. In addition, in supervised
cases, the number of bins should at least be equal to the number of distinct class
labels to allow for the preservation of utility. The minimum k-value depends
on the context. With k equal to 10 or 20, the utility can be preserved in most
cases, especially with larger data sets. These values can be considered as a safe
minimum for k, especially since current literature states much lower k-values.

Finally SQ7 is concerned with the minimum amount of instances needed
to create an accurate summary of the data. Constructing the DET with less
training instances still provides a preservation of utility. However, the utility is
affected when the same k-value is used as an input parameter, since less bins
can be created with less training instances. In other words, in terms of DET
discretization, there is no minimum amount of instances, other than a sensible
amount of instances to construct any model on. In addition, when less training
instances are used, lower k-values should be used to ensure similar data utility.

This research project can be concluded by answering the main research ques-
tion. Discretization through density estimation trees can be used to accurately
summarize data, while supporting data analysis. Incorporating k as a stopping
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rule, and horizontally partitioning the data achieves k-anonymity with k as an
input parameter. Only a limited amount of training instances is needed to create
an accurate discretization model that generalizes over new instances.

7.2 Limitations

The proposed approach towards anonymizing data sets incorporates achieving
k-anonymity. Doing so, there is an assumption that k-anonymity is a valid
privacy model that provides guarantees about privacy. This is an assumption
that some agree on, and some do not, as with most privacy models. Therefore,
satisfying privacy concerns by using the proposed anonymization approach in
this research project, requires agreeing upon the validity and guarantees of k-
anonymity.

Although the proposed anonymization approach obtained good classification
performance results for twelve of the fifteen data sets compared to the continuous
data, there were three cases where there was a significant difference compared
to the continuous attributes. This means that this approach to anonymization
does not achieve good results in all cases.

Another limitation is the runtime for constructing the DET, which is sub-
stantial, especially with larger data sets. This currently limits the applicability
of the anonymization to smaller data sets, for example the ones used during the
experimental evaluation.

7.3 Future work

Since this thesis report introduces a new approach towards achieving data pri-
vacy, more evaluation can be performed to determine its validity and applica-
bility on a larger range of data sets with various different characteristics.

Future work based on this research project would also include the explo-
ration of incorporating more privacy mechanisms in addition to k-anonymization
within the context of the described technique. An additional interest would be
to include categorical and ordinal attributes in the anonymization approach, in-
stead of only addressing continuous, numerical attributes. In addition, instead
of DETs, other multidimensional, horizontal discretization methods that could
incorporate k-anonymity can be studied. From a wider perspective, discretiza-
tion methods as means to achieve data privacy would make for an interesting
field of study as well.

83



References

Aggarwal, C. C. (2015). Data mining: the textbook. Springer. doi: 10.1007/978-
3-319-14142-8

Aggarwal, C. C., & Philip, S. Y. (2008). A general survey of privacy-preserving
data mining models and algorithms. In Privacy-preserving data mining
(pp. 11–52). Springer. doi: 10.1007/978-0-387-70992-5 2

Anderlini, L. (2016). Density Estimation Trees as fast non-parametric modelling
tools. In Journal of Physics: Conference Series (Vol. 762, p. 12042).

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS:
ordering points to identify the clustering structure. In ACM Sigmod record
(Vol. 28, pp. 49–60). doi: 10.1145/304182.304187

Apple. (2017). Learning with Privacy at Scale. Machine Learning Journal ,
1 (8), 1–25.

Bambauer, J., & Muralidhar, K. (2016, May 17). A Response to the Crit-
icisms of Fool’s Gold: An Illustrated Critique of Differential Privacy.
INFO/LAW . Retrieved from http://blogs.harvard.edu/infolaw/

2016/05/17/diffensive-privacy/. (online; accessed 2018-04-17)
Bambauer, J., Muralidhar, K., & Sarathy, R. (2013). Fool’s gold: an illustrated

critique of differential privacy. Vand. J. Ent. & Tech. L., 16 , 701.
Bay, S. D. (2000). Multivariate discretization of continuous variables for set

mining. In Proceedings of the sixth ACM SIGKDD international con-
ference on Knowledge discovery and data mining (pp. 315–319). doi:
10.1145/347090.347159

Bay, S. D., & Pazzani, M. J. (1999). Detecting change in categorical data: Min-
ing contrast sets. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 302–306). doi:
10.1145/312129.312263

Bertino, E., Lin, D., & Jiang, W. (2008). A survey of quantification of privacy
preserving data mining algorithms. In Privacy-preserving data mining
(pp. 183–205). Springer. doi: 10.1007/978-0-387-70992-5 8

Bezzi, M. (2010). An information theoretic approach for privacy metrics. Trans.
Data Privacy , 3 (3), 199–215.

Breiman, L. (2001, Oct 01). Random Forests. Machine Learning , 45 (1), 5–32.
doi: 10.1023/A:1010933404324

De Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013).
Unique in the crowd: The privacy bounds of human mobility. Scientific

84

http://dx.doi.org/10.1007/978-3-319-14142-8
http://dx.doi.org/10.1007/978-3-319-14142-8
http://dx.doi.org/10.1007/978-0-387-70992-5_2
http://dx.doi.org/10.1145/304182.304187
http://blogs.harvard.edu/infolaw/2016/05/17/diffensive-privacy/
http://blogs.harvard.edu/infolaw/2016/05/17/diffensive-privacy/
http://dx.doi.org/10.1145/347090.347159
http://dx.doi.org/10.1145/312129.312263
http://dx.doi.org/10.1007/978-0-387-70992-5_8
http://dx.doi.org/10.1023/A:1010933404324


reports, 3 , 1376. doi: 10.1038/srep01376
Dheeru, D., & Karra Taniskidou, E. (2017). UCI machine learning repository.

Retrieved from http://archive.ics.uci.edu/ml

Domingo-Ferrer, J., & Torra, V. (2008). A critique of k-anonymity and
some of its enhancements. In Availability, Reliability and Security,
2008. ARES 08. Third International Conference on (pp. 990–993). doi:
10.1109/ARES.2008.97

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised
discretization of continuous features. In Machine Learning Proceedings
1995 (pp. 194–202). Elsevier. doi: 10.1016/B978-1-55860-377-6.50032-3

Du, W., & Zhan, Z. (2003). Using randomized response techniques for privacy-
preserving data mining. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (pp. 505–
510). ACM. doi: 10.1145/956750.956810

Dwork, C. (2008). Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation (pp.
1–19). doi: 10.1007/978-3-540-79228-4 1

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2017). Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Confidentiality ,
7 (3), 2. doi: 10.29012/jpc.v7i3.405

Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential
privacy. Foundations and Trends R© in Theoretical Computer Science, 9 (3–
4), 211–407. doi: 10.1561/0400000042

Ebadi, H., Antignac, T., & Sands, D. (2016). Sampling and partitioning for
differential privacy. In Privacy, Security and Trust (PST), 2016 14th
Annual Conference on (pp. 664–673). doi: 10.1109/PST.2016.7906954

El Emam, K., & Dankar, F. K. (2008). Protecting privacy using k-anonymity.
Journal of the American Medical Informatics Association, 15 (5), 627–637.
doi: 10.1197/jamia.M2716

Erlingsson, U., Pihur, V., & Korolova, A. (2014). RAPPOR: Randomized Ag-
gregatable Privacy-Preserving Ordinal Response. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Secu-
rity (pp. 1054–1067). ACM. doi: 10.1145/2660267.2660348

EUGDPR.org. (2016). GDPR Key Changes. EUGDPR.org . Retrieved from
https://www.eugdpr.org/key-changes.html. (online; accessed 2018-
04-10)

Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-
valued attributes for classification learning.
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the measurement of privacy as an attacker’s estimation error. Interna-
tional Journal of Information Security , 12 (2), 129–149. Retrieved from
https://doi.org/10.1007/s10207-012-0182-5 doi: 10.1007/s10207-
012-0182-5

Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the process-
ing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). (2016, May 4).
Official Journal of the European Union, L119 , 1–88.

Reuters. (2018, May 2). Cambridge Analytica and British par-
ent shut down after Facebook scandal. Reuters. Retrieved
from https://www.reuters.com/article/us-faceboook-privacy/

cambridge-analytica-shutting-down-wsj-idUSKBN1I32L7. (online;
accessed 2018-05-07)

Ribeiro, M. X., Ferreira, M. R. P., Traina Jr., C., & Traina, A. J. M. (2008).
Data Pre-processing: A New Algorithm for Feature Selection and Data
Discretization. In Proceedings of the 5th International Conference on Soft
Computing As Transdisciplinary Science and Technology (pp. 252–257).
New York, NY, USA: ACM. doi: 10.1145/1456223.1456277

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14 (5),
465–471. doi: 10.1016/0005-1098(78)90005-5

Samarati, P. (2001). Protecting respondents identities in microdata release.
IEEE transactions on Knowledge and Data Engineering , 13 (6), 1010–
1027. doi: 10.1109/69.971193

Sarathy, R., & Muralidhar, K. (2010). Some additional insights on applying dif-
ferential privacy for numeric data. In International Conference on Privacy
in Statistical Databases (pp. 210–219). doi: 10.1007/978-3-642-15838-4 -
19

Schmidberger, G., & Frank, E. (2005). Unsupervised discretization using tree-
based density estimation. In European Conference on Principles of Data
Mining and Knowledge Discovery (pp. 240–251). doi: 10.1007/11564126 -
26

Schoeman, F. (1984). Privacy: philosophical dimensions. American Philosoph-
ical Quarterly , 21 (3), 199–213.

Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (05),
557–570. doi: 10.1142/S0218488502001648

Tang, J., Korolova, A., Bai, X., Wang, X., & Wang, X. (2017). Privacy Loss
in Apple’s Implementation of Differential Privacy on macOS 10.12. arXiv

88

http://dx.doi.org/10.1002/widm.1173
https://doi.org/10.1007/s10207-012-0182-5
http://dx.doi.org/10.1007/s10207-012-0182-5
http://dx.doi.org/10.1007/s10207-012-0182-5
https://www.reuters.com/article/us-faceboook-privacy/cambridge-analytica-shutting-down-wsj-idUSKBN1I32L7
https://www.reuters.com/article/us-faceboook-privacy/cambridge-analytica-shutting-down-wsj-idUSKBN1I32L7
http://dx.doi.org/10.1145/1456223.1456277
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1109/69.971193
http://dx.doi.org/10.1007/978-3-642-15838-4_19
http://dx.doi.org/10.1007/978-3-642-15838-4_19
http://dx.doi.org/10.1007/11564126_26
http://dx.doi.org/10.1007/11564126_26
http://dx.doi.org/10.1142/S0218488502001648


preprint arXiv:1709.02753 .
Tichy, W. F., Lukowicz, P., Prechelt, L., & Heinz, E. A. (1995). Experimental

evaluation in computer science: A quantitative study. Journal of Systems
and Software, 28 (1), 9–18. doi: 10.1016/0164-1212(94)00111-Y

Warner, S. L. (1965). Randomized response: A survey technique for eliminat-
ing evasive answer bias. Journal of the American Statistical Association,
60 (309), 63–69. doi: 10.1080/01621459.1965.10480775

Wei, H. (2009). A novel multivariate discretization method for mining associ-
ation rules. In Information Processing, 2009. APCIP 2009. Asia-Pacific
Conference on (Vol. 1, pp. 378–381). doi: 10.1109/APCIP.2009.102

Wes, M. (2017, April 25). Looking to comply with GDPR? Here’s
a primer on anonymization and pseudonymization. Interna-
tional Association of Privacy Professionals. Retrieved from
https://iapp.org/news/a/looking-to-comply-with-gdpr-heres

-a-primer-on-anonymization-and-pseudonymization/. (online;
accessed 2018-05-08)

Wieringa, R. J. (2014). Design Science Methodology for Information Systems
and Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-662-43839-8 2

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

Wixom, B., Ariyachandra, T., Goul, M., Gray, P., Kulkarni, U. R., & Phillips-
Wren, G. E. (2011). The current state of business intelligence in academia.
CAIS , 29 , 16.
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Appendix A

Experiment results

A.1 Breast

Table A.1: Classification performance breast

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.95 0.94 0.94 0.94 0.94 72 0.42
10 0.94 0.93 0.93 0.94 0.93 40 0.33
15 0.95 0.94 0.94 0.95 0.94 27 0.28
20 0.94 0.94 0.93 0.94 0.93 21 0.25
25 0.94 0.93 0.93 0.94 0.93 17 0.25
30 0.94 0.93 0.92 0.94 0.92 15 0.22
35 0.94 0.93 0.92 0.94 0.92 13 0.21
40 0.94 0.93 0.93 0.94 0.93 10 0.18
45 0.94 0.93 0.93 0.93 0.93 9 0.15
50 0.94 0.93 0.94 0.93 0.94 8 0.14
55 0.94 0.93 0.94 0.93 0.94 7 0.15
60 0.94 0.93 0.94 0.92 0.94 7 0.14
65 0.94 0.93 0.94 0.93 0.94 7 0.14
70 0.93 0.93 0.93 0.93 0.93 7 0.14
75 0.94 0.93 0.93 0.94 0.93 6 0.13
80 0.94 0.94 0.94 0.94 0.94 6 0.13
85 0.94 0.93 0.93 0.94 0.93 6 0.13
90 0.93 0.92 0.92 0.93 0.92 6 0.13
95 0.93 0.92 0.92 0.92 0.92 5 0.12
100 0.85 0.84 0.86 0.86 0.86 4 0.11
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Appendix A A.1. BREAST

Figure A.1: F1 comparison breast

Figure A.2: ROC comparison breast
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Appendix A A.1. BREAST

Figure A.3: Runtime comparison breast

Figure A.4: Standard deviations breast
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Appendix A A.2. GLASS

A.2 Glass

Table A.2: Classification performance glass

k Accuracy F1 Recall Precision Bins Time (s)
5 0.58 0.47 0.47 0.52 33 1.34
10 0.55 0.46 0.49 0.49 16 0.84
15 0.45 0.26 0.30 0.25 10 0.70
20 0.45 0.27 0.32 0.27 8 0.60
25 0.49 0.35 0.43 0.34 7 0.56
30 0.42 0.27 0.33 0.26 5 0.47
35 0.42 0.25 0.34 0.24 4 0.45
40 0.44 0.29 0.37 0.27 4 0.44
45 0.40 0.26 0.36 0.23 4 0.43
50 0.40 0.21 0.34 0.17 3 0.38
55 0.41 0.24 0.35 0.20 3 0.36
60 0.42 0.20 0.27 0.17 2 0.31
65 0.39 0.19 0.24 0.16 2 0.31
70 0.39 0.17 0.23 0.15 2 0.30
75 0.41 0.19 0.27 0.16 2 0.30
80 0.32 0.16 0.27 0.13 2 0.31
85 0.36 0.16 0.25 0.13 2 0.29
90 0.34 0.17 0.29 0.13 2 0.30
95 0.38 0.19 0.26 0.16 2 0.29
100 0.36 0.10 0.19 0.07 1 0.17

94



Appendix A A.2. GLASS

Figure A.5: F1 comparison glass

Figure A.6: Runtime comparison glass
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Appendix A A.2. GLASS

Figure A.7: Standard deviations glass
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Appendix A A.3. IRIS

A.3 Iris

Table A.3: Classification performance iris

k Accuracy F1 Recall Precision Bins Time (s)
5 0.95 0.94 0.95 0.95 22 0.07
10 0.93 0.93 0.92 0.95 10 0.05
15 0.91 0.89 0.90 0.91 7 0.04
20 0.87 0.86 0.87 0.88 5 0.03
25 0.85 0.81 0.82 0.84 4 0.03
30 0.83 0.81 0.83 0.86 4 0.03
35 0.91 0.90 0.90 0.93 3 0.02
40 0.93 0.93 0.93 0.95 3 0.02
45 0.67 0.62 0.72 0.59 2 0.02
50 0.67 0.54 0.67 0.47 2 0.02
55 0.67 0.54 0.67 0.46 2 0.02
60 0.67 0.52 0.67 0.44 2 0.02
65 0.67 0.53 0.67 0.45 2 0.02
70 0.25 0.13 0.33 0.08 1 0.01
75 0.23 0.12 0.33 0.08 1 0.01
80 0.24 0.13 0.33 0.08 1 0.01
85 0.26 0.14 0.33 0.09 1 0.01
90 0.21 0.11 0.33 0.07 1 0.01
95 0.18 0.10 0.33 0.06 1 0.01
100 0.25 0.13 0.33 0.08 1 0.01
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Appendix A A.3. IRIS

Figure A.8: F1 comparison iris

Figure A.9: Runtime comparison iris
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Appendix A A.3. IRIS

Figure A.10: Standard deviations iris
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Appendix A A.4. WINE

A.4 Wine

Table A.4: Classification performance wine

k Accuracy F1 Recall Precision Bins Time (s)
5 0.90 0.89 0.90 0.90 31 4.33
10 0.85 0.84 0.86 0.87 15 2.21
15 0.78 0.77 0.78 0.80 10 1.56
20 0.84 0.85 0.85 0.88 7 1.21
25 0.78 0.78 0.80 0.79 6 1.04
30 0.80 0.80 0.79 0.86 5 0.87
35 0.79 0.76 0.75 0.83 4 0.79
40 0.74 0.72 0.73 0.75 3 0.69
45 0.77 0.76 0.76 0.78 3 0.67
50 0.78 0.77 0.79 0.77 3 0.66
55 0.55 0.45 0.59 0.38 2 0.53
60 0.59 0.47 0.63 0.38 2 0.52
65 0.57 0.47 0.63 0.38 2 0.51
70 0.56 0.48 0.62 0.40 2 0.51
75 0.57 0.47 0.64 0.38 2 0.51
80 0.59 0.49 0.66 0.40 2 0.51
85 0.40 0.19 0.33 0.13 1 0.30
90 0.40 0.19 0.33 0.13 1 0.29
95 0.40 0.19 0.33 0.13 1 0.29
100 0.40 0.19 0.33 0.13 1 0.29
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Appendix A A.4. WINE

Figure A.11: F1 comparison wine

Figure A.12: Runtime comparison wine

101



Appendix A A.4. WINE

Figure A.13: Standard deviations wine
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Appendix A A.5. IRIS + 1

A.5 Iris + 1

Table A.5: Classification performance iris + 1

k Accuracy F1 Recall Precision Bins Time (s)
5 0.90 0.89 0.90 0.90 22 0.17
10 0.93 0.91 0.92 0.95 10 0.10
15 0.93 0.93 0.94 0.94 7 0.08
20 0.91 0.89 0.89 0.91 5 0.07
25 0.83 0.81 0.83 0.85 4 0.07
30 0.85 0.81 0.83 0.85 4 0.06
35 0.90 0.88 0.89 0.92 3 0.06
40 0.94 0.94 0.94 0.96 3 0.05
45 0.81 0.79 0.82 0.80 3 0.05
50 0.67 0.57 0.70 0.51 2 0.04
55 0.67 0.53 0.67 0.46 2 0.04
60 0.67 0.52 0.67 0.44 2 0.04
65 0.66 0.51 0.66 0.45 2 0.04
70 0.30 0.15 0.33 0.10 1 0.02
75 0.21 0.12 0.33 0.07 1 0.02
80 0.25 0.13 0.33 0.08 1 0.02
85 0.23 0.12 0.33 0.08 1 0.02
90 0.24 0.13 0.33 0.08 1 0.02
95 0.26 0.14 0.33 0.09 1 0.02
100 0.24 0.13 0.33 0.08 1 0.02
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Appendix A A.5. IRIS + 1

Figure A.14: F1 comparison iris + 1

Figure A.15: Runtime comparison iris + 1
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Appendix A A.5. IRIS + 1

Figure A.16: Standard deviations iris + 1
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Appendix A A.6. IRIS + 5

A.6 Iris + 5

Table A.6: Classification performance iris + 5

k Accuracy F1 Recall Precision Bins Time (s)
5 0.83 0.81 0.81 0.82 24 1.19
10 0.86 0.85 0.86 0.88 12 0.59
15 0.84 0.84 0.86 0.88 7 0.41
20 0.81 0.77 0.82 0.81 5 0.35
25 0.75 0.74 0.77 0.80 5 0.33
30 0.81 0.78 0.79 0.84 4 0.31
35 0.89 0.88 0.88 0.92 3 0.27
40 0.92 0.91 0.91 0.93 3 0.27
45 0.71 0.70 0.72 0.70 3 0.25
50 0.67 0.54 0.67 0.49 2 0.21
55 0.67 0.53 0.67 0.46 2 0.20
60 0.67 0.53 0.67 0.44 2 0.21
65 0.65 0.49 0.62 0.41 2 0.20
70 0.22 0.12 0.33 0.07 1 0.12
75 0.30 0.15 0.33 0.10 1 0.12
80 0.22 0.12 0.30 0.07 1 0.12
85 0.21 0.11 0.33 0.07 1 0.12
90 0.24 0.13 0.33 0.08 1 0.12
95 0.25 0.13 0.33 0.08 1 0.12
100 0.25 0.13 0.33 0.08 1 0.12
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Appendix A A.6. IRIS + 5

Figure A.17: F1 comparison iris + 5

Figure A.18: Runtime comparison iris + 5
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Appendix A A.6. IRIS + 5

Figure A.19: Standard deviations iris + 5
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Appendix A A.7. IRIS + 10

A.7 Iris + 10

Table A.7: Classification performance iris + 10

k Accuracy F1 Recall Precision Bins Time (s)
5 0.82 0.80 0.82 0.85 25 3.71
10 0.79 0.76 0.78 0.79 12 1.92
15 0.81 0.80 0.82 0.82 8 1.31
20 0.81 0.78 0.79 0.82 5 1.08
25 0.71 0.69 0.73 0.77 5 0.96
30 0.67 0.67 0.70 0.76 4 0.85
35 0.75 0.71 0.73 0.75 3 0.72
40 0.94 0.93 0.95 0.93 3 0.69
45 0.68 0.62 0.70 0.58 3 0.63
50 0.64 0.52 0.64 0.46 2 0.57
55 0.67 0.54 0.67 0.47 2 0.55
60 0.67 0.56 0.70 0.48 2 0.55
65 0.67 0.52 0.67 0.44 2 0.56
70 0.23 0.12 0.33 0.08 1 0.34
75 0.19 0.10 0.33 0.06 1 0.34
80 0.18 0.10 0.33 0.06 1 0.34
85 0.23 0.12 0.33 0.08 1 0.34
90 0.24 0.12 0.30 0.08 1 0.35
95 0.27 0.14 0.33 0.09 1 0.34
100 0.27 0.14 0.33 0.09 1 0.33

109



Appendix A A.7. IRIS + 10

Figure A.20: F1 comparison iris + 10

Figure A.21: Runtime comparison iris + 10

110



Appendix A A.7. IRIS + 10

Figure A.22: Standard deviations iris + 10
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Appendix A A.8. SYNTHETIC 1

A.8 Synthetic 1

Table A.8: Classification performance synthetic 1

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.74 0.74 0.74 0.74 0.74 121 6.80
10 0.72 0.72 0.72 0.72 0.72 58 4.28
15 0.76 0.76 0.76 0.76 0.76 37 3.87
20 0.76 0.76 0.76 0.76 0.76 29 3.59
25 0.69 0.69 0.69 0.69 0.69 22 3.48
30 0.77 0.77 0.77 0.77 0.77 19 3.41
35 0.76 0.76 0.76 0.76 0.76 15 3.32
40 0.77 0.77 0.77 0.77 0.77 14 3.21
45 0.76 0.76 0.76 0.76 0.76 12 3.14
50 0.76 0.76 0.76 0.76 0.76 11 3.09
55 0.66 0.66 0.66 0.66 0.66 11 3.00
60 0.64 0.64 0.64 0.64 0.64 8 2.85
65 0.66 0.65 0.67 0.65 0.67 7 2.77
70 0.66 0.65 0.67 0.65 0.67 7 2.80
75 0.66 0.65 0.67 0.65 0.67 7 2.77
80 0.55 0.55 0.55 0.55 0.55 7 2.75
85 0.61 0.61 0.61 0.61 0.61 7 2.78
90 0.61 0.61 0.61 0.61 0.61 7 2.75
95 0.61 0.61 0.61 0.61 0.61 6 2.73
100 0.56 0.55 0.58 0.57 0.58 5 2.58
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Appendix A A.8. SYNTHETIC 1

Figure A.23: F1 comparison synthetic 1

Figure A.24: ROC comparison synthetic 1
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Appendix A A.8. SYNTHETIC 1

Figure A.25: Runtime comparison synthetic 1
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Appendix A A.9. SYNTHETIC 2

A.9 Synthetic 2

Table A.9: Classification performance synthetic 2

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.54 0.54 0.55 0.55 0.55 136 225.89
10 0.67 0.67 0.69 0.68 0.69 65 105.16
15 0.57 0.57 0.59 0.58 0.59 41 34.51
20 0.50 0.50 0.50 0.50 0.50 29 24.61
25 0.56 0.56 0.56 0.56 0.56 25 22.17
30 0.51 0.51 0.52 0.52 0.52 20 17.95
35 0.47 0.46 0.48 0.48 0.48 16 13.53
40 0.48 0.47 0.48 0.48 0.48 15 13.13
45 0.50 0.47 0.52 0.52 0.52 13 12.68
50 0.50 0.46 0.53 0.52 0.53 12 11.57
55 0.44 0.43 0.44 0.45 0.44 11 11.15
60 0.51 0.50 0.52 0.52 0.52 9 10.84
65 0.51 0.50 0.53 0.52 0.53 9 10.62
70 0.48 0.48 0.48 0.48 0.48 7 10.10
75 0.48 0.48 0.48 0.48 0.48 7 10.05
80 0.48 0.48 0.48 0.48 0.48 7 10.01
85 0.47 0.44 0.48 0.49 0.48 7 9.86
90 0.48 0.42 0.50 0.50 0.50 6 9.52
95 0.48 0.42 0.50 0.50 0.50 6 9.52
100 0.48 0.42 0.50 0.50 0.50 6 9.48
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Appendix A A.9. SYNTHETIC 2

Figure A.26: F1 comparison synthetic 2

Figure A.27: ROC comparison synthetic 2
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Appendix A A.9. SYNTHETIC 2

Figure A.28: Runtime comparison synthetic 2
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Appendix A A.10. SYNTHETIC 3

A.10 Synthetic 3

Table A.10: Classification performance synthetic 3

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.94 0.94 0.94 0.94 0.94 1157 105.98
10 0.93 0.93 0.93 0.93 0.93 547 100.86
15 0.93 0.92 0.92 0.93 0.92 362 97.66
20 0.93 0.93 0.93 0.93 0.93 275 93.97
25 0.93 0.93 0.93 0.93 0.93 219 98.53
30 0.93 0.93 0.93 0.93 0.93 181 93.17
35 0.92 0.92 0.92 0.92 0.92 155 92.99
40 0.93 0.93 0.93 0.93 0.93 134 92.01
45 0.93 0.93 0.93 0.93 0.93 125 92.28
50 0.92 0.92 0.92 0.92 0.92 103 91.75
55 0.92 0.92 0.92 0.92 0.92 100 91.40
60 0.92 0.92 0.92 0.92 0.92 91 90.44
65 0.91 0.91 0.91 0.91 0.91 84 89.72
70 0.90 0.90 0.90 0.90 0.90 77 91.10
75 0.90 0.90 0.90 0.90 0.90 73 89.35
80 0.90 0.90 0.90 0.90 0.90 67 88.46
85 0.90 0.90 0.90 0.90 0.90 67 87.77
90 0.90 0.90 0.90 0.90 0.90 64 88.42
95 0.90 0.90 0.90 0.90 0.90 58 89.42
100 0.89 0.89 0.90 0.89 0.90 53 87.08
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Appendix A A.10. SYNTHETIC 3

Figure A.29: F1 comparison synthetic 3

Figure A.30: ROC comparison synthetic 3
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Appendix A A.10. SYNTHETIC 3

Figure A.31: Runtime comparison synthetic 3
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Appendix A A.11. SYNTHETIC 4

A.11 Synthetic 4

Table A.11: Classification performance synthetic 4

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.94 0.94 0.94 0.94 0.94 2299 345.22
10 0.94 0.94 0.94 0.94 0.94 1098 339.30
15 0.94 0.94 0.94 0.94 0.94 725 339.65
20 0.94 0.94 0.94 0.94 0.94 543 342.55
25 0.94 0.94 0.94 0.94 0.94 434 354.39
30 0.94 0.94 0.94 0.94 0.94 355 355.46
35 0.93 0.93 0.93 0.93 0.93 306 346.29
40 0.93 0.93 0.93 0.93 0.93 268 336.57
45 0.93 0.93 0.93 0.93 0.93 238 344.46
50 0.93 0.93 0.93 0.93 0.93 218 331.58
55 0.93 0.93 0.93 0.93 0.93 198 331.02
60 0.93 0.93 0.93 0.93 0.93 179 332.94
65 0.93 0.93 0.93 0.93 0.93 166 334.45
70 0.93 0.93 0.93 0.93 0.93 151 329.84
75 0.93 0.93 0.93 0.93 0.93 140 346.09
80 0.93 0.93 0.93 0.93 0.93 130 352.41
85 0.93 0.93 0.93 0.93 0.93 123 353.18
90 0.93 0.93 0.93 0.93 0.93 117 334.83
95 0.92 0.92 0.93 0.92 0.93 113 336.63
100 0.93 0.93 0.93 0.93 0.93 111 344.15
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Appendix A A.11. SYNTHETIC 4

Figure A.32: F1 comparison synthetic 4

Figure A.33: ROC comparison synthetic 4
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Appendix A A.11. SYNTHETIC 4

Figure A.34: Runtime comparison synthetic 4
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Appendix A A.12. SYNTHETIC 5

A.12 Synthetic 5

Table A.12: Classification performance synthetic 5

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.98 0.98 0.98 0.98 0.98 123 5.98
10 0.99 0.99 0.99 0.99 0.99 59 3.22
15 0.95 0.95 0.95 0.95 0.95 40 2.39
20 0.95 0.95 0.95 0.96 0.95 30 1.94
25 0.98 0.98 0.98 0.98 0.98 25 1.78
30 0.98 0.98 0.98 0.98 0.98 20 1.59
35 0.91 0.91 0.91 0.91 0.91 16 1.32
40 0.94 0.94 0.94 0.94 0.94 15 1.28
45 0.92 0.92 0.92 0.92 0.92 14 1.17
50 0.98 0.98 0.98 0.98 0.98 12 1.15
55 0.99 0.99 0.99 0.99 0.99 12 1.07
60 0.99 0.99 0.99 0.99 0.99 10 0.99
65 0.99 0.99 0.99 0.99 0.99 10 0.85
70 0.99 0.99 0.99 0.99 0.99 9 0.83
75 0.99 0.99 0.99 0.99 0.99 8 0.80
80 0.99 0.99 0.99 0.99 0.99 8 0.79
85 0.99 0.99 0.99 0.99 0.99 8 0.77
90 0.86 0.86 0.87 0.88 0.87 7 0.74
95 0.94 0.94 0.93 0.94 0.93 6 0.67
100 0.95 0.95 0.95 0.96 0.95 6 0.65
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Appendix A A.12. SYNTHETIC 5

Figure A.35: F1 comparison synthetic 5

Figure A.36: ROC comparison synthetic 5
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Appendix A A.12. SYNTHETIC 5

Figure A.37: Runtime comparison synthetic 5
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Appendix A A.13. SYNTHETIC 6

A.13 Synthetic 6

Table A.13: Classification performance synthetic 6

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 0.93 0.93 0.93 0.93 0.93 118 2.82
10 0.93 0.93 0.93 0.92 0.93 56 2.05
15 0.90 0.90 0.91 0.90 0.91 37 1.62
20 0.89 0.89 0.90 0.90 0.90 28 1.28
25 0.88 0.88 0.89 0.89 0.89 23 1.23
30 0.79 0.79 0.80 0.80 0.80 20 1.13
35 0.82 0.82 0.84 0.85 0.84 17 1.08
40 0.78 0.78 0.81 0.83 0.81 15 0.94
45 0.77 0.77 0.79 0.80 0.79 13 0.93
50 0.87 0.87 0.87 0.87 0.87 11 0.69
55 0.89 0.89 0.90 0.90 0.90 10 0.55
60 0.89 0.89 0.90 0.90 0.90 10 0.56
65 0.87 0.87 0.87 0.87 0.87 9 0.54
70 0.84 0.83 0.83 0.85 0.83 8 0.53
75 0.84 0.83 0.83 0.86 0.83 7 0.51
80 0.73 0.68 0.69 0.84 0.69 5 0.49
85 0.73 0.68 0.69 0.84 0.69 5 0.51
90 0.73 0.68 0.69 0.84 0.69 5 0.51
95 0.73 0.68 0.69 0.84 0.69 5 0.52
100 0.73 0.68 0.69 0.84 0.69 5 0.48
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Appendix A A.13. SYNTHETIC 6

Figure A.38: F1 comparison synthetic 6

Figure A.39: ROC comparison synthetic 6
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Appendix A A.13. SYNTHETIC 6

Figure A.40: Runtime comparison synthetic 6
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Appendix A A.14. SYNTHETIC 7

A.14 Synthetic 7

Table A.14: Classification performance synthetic 7

k Accuracy F1 Recall Precision AUC Bins Time (s)
5 1 1 1 1 1 119 1.00
10 1 1 1 1 1 57 0.88
15 1 1 1 1 1 37 0.83
20 1 1 1 1 1 26 0.84
25 1 1 1 1 1 20 0.78
30 1 1 1 1 1 19 0.76
35 1 1 1 1 1 16 0.72
40 1 1 1 1 1 15 0.71
45 1 1 1 1 1 13 0.66
50 1 1 1 1 1 11 0.62
55 1 1 1 1 1 11 0.61
60 1 1 1 1 1 10 0.59
65 1 1 1 1 1 10 0.59
70 1 1 1 1 1 9 0.57
75 1 1 1 1 1 8 0.54
80 1 1 1 1 1 8 0.54
85 1 1 1 1 1 8 0.53
90 1 1 1 1 1 6 0.48
95 1 1 1 1 1 6 0.49
100 1 1 1 1 1 6 0.48
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Appendix A A.14. SYNTHETIC 7

Figure A.41: F1 comparison synthetic 7

Figure A.42: ROC comparison synthetic 7
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Appendix A A.14. SYNTHETIC 7

Figure A.43: Runtime comparison synthetic 7
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Appendix A A.15. SYNTHETIC 8

A.15 Synthetic 8

Table A.15: Classification performance synthetic 8

k Accuracy F1 Recall Precision Bins Time (s)
5 0.88 0.87 0.88 0.87 113 0.79
10 0.86 0.86 0.86 0.86 57 0.74
15 0.86 0.86 0.86 0.85 39 0.69
20 0.88 0.87 0.88 0.87 26 0.68
25 0.89 0.88 0.89 0.88 22 0.65
30 0.89 0.88 0.89 0.88 18 0.62
35 0.89 0.88 0.89 0.88 16 0.61
40 0.89 0.88 0.89 0.88 13 0.62
45 0.89 0.88 0.89 0.88 12 0.60
50 0.87 0.86 0.87 0.87 11 0.57
55 0.87 0.86 0.87 0.87 11 0.59
60 0.87 0.86 0.87 0.87 8 0.57
65 0.87 0.87 0.87 0.87 7 0.57
70 0.87 0.87 0.87 0.88 7 0.56
75 0.87 0.87 0.87 0.88 7 0.55
80 0.88 0.87 0.88 0.88 6 0.54
85 0.88 0.87 0.88 0.88 6 0.53
90 0.89 0.88 0.89 0.88 6 0.53
95 0.89 0.88 0.89 0.88 6 0.53
100 0.89 0.88 0.89 0.88 6 0.53
105 0.88 0.88 0.88 0.88 6 0.55
110 0.89 0.88 0.89 0.88 6 0.55
115 0.78 0.71 0.78 0.66 5 0.51
120 0.61 0.49 0.62 0.42 4 0.49
125 0.61 0.49 0.62 0.42 4 0.49
130 0.61 0.49 0.62 0.42 4 0.50
135 0.61 0.49 0.62 0.42 4 0.50
140 0.56 0.45 0.57 0.38 4 0.49
145 0.56 0.45 0.57 0.38 4 0.49
150 0.55 0.44 0.56 0.37 4 0.52
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Appendix A A.15. SYNTHETIC 8

Figure A.44: F1 comparison synthetic 8

Figure A.45: Runtime comparison synthetic 8
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