
Graph-defined Dungeons: Exploring Constraint Solving 

for the Generation of Action-Adventure Levels

A Master Thesis project by Twan Veldhuis

Introduction 

Procedural Generation is an effective way to increase

the replayability of games as well as increase the

productivity of the content creation process. We look

into the generation of dungeons. An interesting type of

generation systems involves constraint solving. These

systems allow for a declarative specification of content.

We introduce a constraint solving method to create 3D

dungeons that are not restricted by a grid.

Input

As input, we have a graph. This graph specifies the

topology of the dungeon, and may, in turn, be

generated by a different system. The graph maps

directly to a constraint network and a designer may also

specify additional constraints on the nodes and edges.

We also provide pieces of a dungeon, which should fit

together seamlessly and respect the topology specified

by the graph. We call these pieces modules. Modules

specify collision information, a number of connectors

and the actual geometry.

Method

We created a constraint solving system that is designed

around the problem of fitting pieces together.

Connectors specify where, and in which orientation

modules can connect to each other. They also specify

plug types, which allow distinguishing between

structures that connect modules, such as a tube or a

hallway. Arrangements specify the combination of which

module to use, and which connector should connect to

which neighbor. We use backtracking and a modified

version of Mackworth’s AC3 to find an arrangement for

each node in the graph. The system is implemented in

Unity.

Game and Media Technology

Department of Information and Computing Sciences

Input and Output

We use a graph to specify topology 

and we define a set of modules. 

These modules are then fitted to 

create dungeons that have the same 

topology as the graph. In this figure, 

we show two example outputs for a 

specific graph and module set.

System Overview

This diagram shows an overview of 

our constraint solving system. 

This is a backtracking and 

propagation system, with additional 

verification steps. Before fitting tests 

and collision tests may be performed, 

the module specified by the 

arrangement is instantiated and 

placed into the world.

Decision Model

In our system, we need to decide on 

nodes and arrangements. We choose 

the node with the smallest domain of 

arrangements. We then select an 

arrangement at random.

We only consider nodes that are next 

to a node we already know the 

arrangement of.

Experiments

We tested our algorithm for three module sets and sixteen different graphs.

100 runs were performed per test. A cutoff point of 25000 iterations was used.

We measured the number of iterations, runtime and the time spent in different

parts of the algorithm. We also logged the number of fitting failures and

collision failures.

Conclusion

Performance seems to scale exponential with the number of nodes. We also

find that the different module sets have an impact on performance, in

particular the third set.

The system still has some room for improvement. Most notably, instantiation

of modules is a bottleneck, which may be resolved by delaying the

instantiation of geometry to the end of the algorithm and re-using existing

instances. Additionally, there is some overhead in creating backup states. This

may be replaced by a patch stack, that only records changes.

We also consider some general improvements, such as adding support for

partial generation. Additionally we may split the algorithm in two phases. The

first phase would deal with fitting the geometry to the graph and the second

phase would ensure plug types would match up.

Results

To the right are some of our results, 

including the average runtime and 

the distribution of time spent in 

different parts of the system.

Below are the module sets we used 

for our experiments.

1. 2.

3.


