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December 3, 2018

Abstract
Procedural generation is an interesting field to assist the creative process.
Recently, constraint solving methods have been getting more focus. An ad-
vantage is that they allow for a declarative specification of content. These
methods typically restrict themselves to a grid structure. We explore if con-
straint solving can be applied to dungeon generation and if we can abandon
the grid-based nature of these methods. We created a system where design-
ers can define a graph that governs the topology of a dungeon, we then
use constraint solving to find pieces that fit this layout. This is done with
backtracking and a modified version of Mackworth’s AC3 algorithm [1].
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Chapter 1

Introduction

Procedural generation is an interesting topic in various fields, among which game
development and architecture. Its primary goal is to speed up development pro-
cesses by automating various parts of the creative process, as the creation of game
assets is an expensive part of game development [2]. In some cases, the generation
algorithm is responsible for all of the content in a game. We can typically distinguish
two uses of procedural generation: online vs offline generation. Online generation
means content is generated on demand when the player needs it. This is typically
subject to strict performance requirements. Offline generation means content is gen-
erated before the product is released, which means more computation time may be
used. However, procedural generation can also be used as an interactive tool for
designers, which would be subject to similar performance requirements as an online
system. This interactive approach is also called a mixed-initiative generation process
[3, Chapter 1].

For the use case of level generation, there are various approaches to tackle the
problem. A very simple approach is to create blocks of content with minor random-
ized parts, which can be linked together. This approach is taken by Spelunky [4]
and Ruggnar [5]. Other approaches use grammars to construct levels according to a
set of rewriting rules [6], or search for possible levels with a search or evolutionary
algorithm [3, Chapter 2].

Recently, constraint solving methods have been getting more focus, with games
such as Bad North [7] making use of the WaveFunctionCollapse algorithm [8, 9].
Constraint solving has the advantage that the structure of a level can be defined in
a declarative way. With WFC, one would provide an example, and this example
serves as a base for the final solution. In Refraction [10], a level is specified with a
given mathematical problem that the player needs to solve, in addition to general
parameters such as the size of the level, and aesthetic requirements. This, in turn,
means it is relatively easy for a designer to get what they want out of a generator,
unlike grammars which require careful specification of rules. Constraint solving is,
however, typically used on a grid. We think it would be worth exploring how this
can be used without using a grid-based system. This could, in turn, create a larger
variety in level layouts.

1.1 What are Dungeons?

Dungeons are the typical type of levels in action-adventure games such as The Leg-
end of Zelda series [11]. Dungeons offer a structured level design that can challenge
a player in various ways, overcoming the challenges allows a player to progress
through the level. The layout of a dungeon is usually a non-linear structure con-
taining rooms and hallways that connect these rooms. Rooms should be interpreted
in the abstract sense, they are distinct areas with limited options to pass to other
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FIGURE 1.1: A map of the Skyview Temple in The Legend of Zelda:
Skyward Sword[12]. This image has been adapted from [13].

areas. Hallways are the parts that allow a player to move between rooms. Content
in action-adventure games generally fits into one of three categories: Combat, puz-
zles and dexterity checks. Action-adventure puzzles usually include navigation and
lock-key type puzzles. For lock-key type puzzles, a player has to find a key item and
use this to get past an obstacle. The puzzle element is that recognizing and remem-
bering which obstacle a key item is useful for might not be trivial. The geometric
layout of the dungeon is important for creating these types of puzzles. It typically
involves using a non-linear layout, with branches and looping structures. Dormans
[6] described a system that can generate dungeons that include these type of puz-
zles. It uses the concept of a mission, the tasks a player has to perform and in which
order, to govern the layout of the dungeon. While it does support branches, it has
trouble with loops. Loops are, however, a common occurrence in dungeon design.
The typical purpose of a loop is to create a shortcut back to a place the player has
been before. This reduces the amount of backtracking a player has to do.

1.2 Outline

In this thesis, we discuss an initial exploration of applying Constraint Solving to
dungeon generation. Of particular interest is the promise of using declarative speci-
fications for content generation. In Chapter 2 we discuss work related to the research
in this thesis, here we look at various techniques used for dungeon generation, as
well as constraint solving in general. In Chapter 3 we consider how we can specify a
declarative system for dungeon generation and how this can fit in a larger pipeline,
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then specify it as a constraint satisfaction problem, and finally discuss how this prob-
lem is solved. After that, in Chapter 4, we evaluate the performance of this system
and we study the theoretical performance to determine overall scaling character-
istics. We also discuss how we set up experiments to determine the performance
in practice. The results of these experiments are shown in Chapter 5. Finally, we
discuss some observations we made based on those results, discuss future improve-
ments to the system, and describe more extensive evaluation methods.
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Chapter 2

Related Work

In this chapter, we discuss several techniques used for level generation that are most
relevant for our work. These are constructive methods, grammar-based methods
and constraint solving algorithms. While our proposed system is a constraint solver,
one can draw parallels to both template-based methods and grammars, and these
concepts are essential for how the system fits in the overall pipeline. Other genera-
tion techniques are not as relevant for this work, however, interested readers could
consult pcgbook.com [3] for an overview of procedural generation in general.

2.1 Constructive Methods

In this section, we discuss some traditional level generation methods. Constructive
methods are typically fast and simple but could require a lot of manual work.

2.1.1 Space Partitioning

Space partitioning methods generate content by splitting the generation space into
smaller pieces. For dungeon generation, these methods have been quite popular,
due to the ease of implementation. One example, as provided by Shaker et al. [3,
Chapter 3] is binary space partitioning (BSP), in which the space is iteratively cut in
two pieces, typically on alternating axes. By randomizing the position of the split
plane, variety in size is introduced. In these pieces, a dungeon room can be gener-
ated that fits inside the bounds given by the piece. The generation method results
in a tree of pieces, which determine which rooms end up being connected. As an
alternative, one could choose for a Voronoi diagram, which can have varying results
depending on how the points are distributed.

2.1.2 Physics-based Generation

Another way to generate dungeon layouts is by using a physics-based approach
[14]. For this, one would first generate a large collection of randomly sized rooms.
These are placed at random positions in a small region, such that they all overlap.
Then a physics engine is used to push these rooms apart so they no longer overlap.
The rooms that are within a certain size range are selected, and the rest is ignored
for now. Delaunay triangulation, where each room has one vertex at its center is
then used to create a graph from the selected rooms. This graph indicates which
rooms are connected to each other. In order to not make the rooms fully connected,
the minimum spanning tree is generated from this graph. Several edges from the
Delaunay graph are put back, so the dungeon is less linear. Finally, hallways are
generated between the rooms that should be connected to each other, non-selected

pcgbook.com
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FIGURE 2.1: Physics-based dungeon generation, as explained by [14].

FIGURE 2.2: Generating template-based content similar to Spelunky
and Ruggnar

rooms that are on this path are then included in the dungeon, and space on the path
not covered by a room is filled in.

2.1.3 Template-based Methods

A simple, but effective generation system is template-based construction. This is
used by Spelunky [4, 15] and Ruggnar [5, 16]. The designer first creates a set of
templates, these templates are small sections of a level. Then the generator will
determine a high-level layout. In the case of Spelunky said layout is generated by a
restricted random walk through the grid. Ruggnar takes a different approach in that
it first takes out a few tiles, then determines transitions (including a wall) between
tiles, and then determines reachable regions with a flood-fill algorithm. It finally
selects the largest region to include in the game. In both cases, these result in a few
simple constraints on which templates can fit in each tile, and for each tile, a fitting
tile is selected with a simple search algorithm. The templates are then finalized with
random parameters. Note that the designer should ensure that there is always at
least one fitting template in every case. If this is not the case, a more complex system,
like constraint solving will be required.
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2.2 Grammar-based Generation

2.2.1 Grammars 101

Grammars are a set of rewriting rules. These rules can be used to analyze and de-
scribe structures by breaking them down into a derivation tree. This is used in com-
pilers for programming languages to parse a program so it can be translated to ma-
chine code or another target language. Grammars can however also be used in the
opposite direction, a derivation tree can be generated by starting from a start symbol
and iteratively selecting and applying production rules. The resulting tree or string
can then represent content.

We consider three types of grammars: text grammars, graph grammars and
shape grammars. We also discuss the concept of context-free and context-sensitive
grammars.

2.2.1.1 Text Grammars

Text grammars provide the basis of the concept. We can start with a start symbol
S, and define several production rules that replace symbols by other symbols. A
grammar is simply a set of start symbols and a set of production rules. The original
description of these formal grammars [17] also distinguish between terminal and
non-terminal symbols. Terminal symbols are symbols that cannot be replaced by a
production rule, and non-terminal symbols are symbols that should not exist in the
final result. There are, however, grammars that do not use this restriction. An exam-
ple of a production rule is to replace S by SA, we write this as S → SA. Constantly
repeating this rule results in more As being added to the string. All strings that can
be generated from this grammar can be considered a language that is described by
said grammar. In this case, the language consists of S prepended to any number of
As. This kind of rule is a context-free rule, we only rely on a single symbol to replace
by something else. We can also create a context-sensitive rule: xSx → xyx. This
replaces S by y if it is surrounded by two x symbols. A language that only consists
of context-free rules is considered a context-free language, one that also includes
context-sensitive rules is a context-sensitive language.

For context-free grammars, it is easy to create a derivation tree, as each newly
generated part can still be seen as a separate unit. In Figure 2.3 we visually explain
how a derivation tree can be generated with a context-free grammar. We also show
that this can be used to represent a dungeon. Alternatively, the generated string can
encode instructions to generate content. Prusinkiewicz [18, 19] used this approach to
generate vegetation. For this, a special kind of text grammar is used: The L-system.
L-systems are categorized by applying production rules in parallel to each matching
pattern.

2.2.1.2 Graph Grammars

Text grammars have one major problem in terms of what it can describe, each pattern
of symbols is strictly linear. Graphs can describe structures that are more complex
than linear (and trees through derivation trees or L-systems) structures, and one can
still create rewriting rules to generate graphs. A production rule in a graph grammar
matches a subgraph, and then replaces this subgraph by something else.

A problem is that according to Adams [20] using context-free graph grammars
is not really a viable option. A context-free graph grammar would limit the sub-
graphs to be matched to a single node. This implies that edges can not be modified,
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FIGURE 2.3: An example of a derivation tree, how it is derived from
a simple grammar and how a dungeon could be generated based on

said tree.

this severely limits the kind of graphs that can be generated. Therefore a context-
sensitive approach is required.

Unlike text grammars, there is also some variation in how rules and the applica-
tion of them can be defined. One approach splits production rules from connection
rules. This first removes connections involving the nodes that a production rule is
applied to, then applies the production rule, replacing nodes, and then reconnects
nodes according to the connection rules. This can somewhat reflect a context-free
system, however, the trade-off is that connections are not preserved, even if only a
single node is replaced. Another system only has production rules, and this method
preserves connections. This requires adding identifiers to each node in the produc-
tion nodes, so the algorithm can match nodes from the left-hand side to the right-
hand side of the rule.

2.2.1.3 Shape Grammars

Even more complex are shape grammars. Instead of using symbols, one can use
shapes as the units to replace. In a pure shape grammar, shapes can even be gen-
erated through emergence. Shapes that are not the right-hand side of a rule and
do not exist initially, can in certain situations still get generated. These new shapes
might still be matched in the left-hand side of a rule. Doing this is hard as it requires
spatial pattern matching. A more simplified model just considers objects, which
may be scaled, rotated and translated to generate more complex shapes. This is the
context-free interpretation of shape grammars and can be very effective to generate
geometry.

2.2.2 Dungeon Generation with Grammars

Dungeon Generation with grammars has been getting research attention for quite a
while. In 2002, Adams [20] proposed a system that generates a dungeon layout from
graph grammars, and then create missions inside this dungeon. Missions are graphs
that describe the way a player has to traverse through a dungeon. Missions are then
used to place key items. In 2010, Dormans [6] proposed a similar system, that starts
with generating the mission and creates dungeons based on the specified mission.
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FIGURE 2.4: An example provided by Dormans [6] that specifies
shape grammar rules depending on mission graph nodes

FIGURE 2.5: An example of how a mission is used to create a dun-
geon. The mission graph on the left is drives the selection of produc-
tion rules as specified in Figure 2.4. Together they form a grammar
that results in the dungeon on the right. The image was provided by

Dormans [6].

We visualize said system in Figures 2.4 and 2.5. This system was later extended to
include an intermediate space graph, allowing for content not directly related to the
mission. Van der Linden [21] described a method to define grammars for generating
missions based on the game’s mechanics.

2.2.3 Grammar Networks

In an attempt to improve the level of control for designers, Middag designed a
grammar-based system called Designer Controlled Grammar Networks [22]. This
system brings a few advances to the approach used by Dormans:

• Graph nodes may hold attributes, and production rules can work on just a set
of attributes.

• The left-hand side of production rules can have programmable conditions, and
is not limited to simply matching subgraphs and attributes.

• Rule selection, which is usually based on the attributes in the mission graph,
can be completely programmed.

• Constraints may be applied to grammars, which can be fixed using special
production rules.

• Multiple grammars and their respective structures may interact, in a complex
designer specified network. This means that, for example, a production rule
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for the grammar that generates a mission graph can depend on a node in a
space graph.

A major disadvantage, however, is that the system relies on a web of cyclical
references, meaning that while control is available, it is not necessarily intuitive.

2.3 Constraint solving

Constraint solving is gaining more ground in recent generation methods, providing
effective control for designers while still allowing for a good variety in generated
content. It helps with generating exactly the kind of content a designer wants. In the
following three sections, we discuss various constraint solving methods and work
that explores or applies these methods.

2.3.1 Finite Domain Constraint Solving and the AC3 algorithm

The basic form of constraint solving is solving finite domain Constraint Satisfaction
Problems (CSPs). Here we have a set of variables and relations between variables.
These variables can have a finite number of values. The CPS then defines a finite set
of constraints, which can fit into three categories:

• Comparative or relational constraint: Requires a specific relation between two
variables to be satisfied.

• Cardinality constraint: Limits the number of variables that can take on a cer-
tain value. This is a global constraint that can affect all variables.

• Narrowing or domain constraint: Limits the values a variable can take on.

Foged and Horswill [23] explained well how the solver can be optimized with
several steps, starting with a brute force approach, and finishing with an optimized
algorithm with the following features:

• Backwards checking: Avoid continuing building a solution when a constraint
is already violated.

• Constraint propagation: Avoid attempting solutions that can be deduced to
fail given the current state. This is done by deriving additional narrowing
constraints as the search space is explored.

• Backtracking: In case a failing solution is found, the problem state is rolled
back so that another path can be attempted without restarting the algorithm.

In particular, such an optimized algorithm is the AC3 algorithm (Arc Consistency
Algorithm #3) [1]. While even more optimized algorithms exist, this algorithm is rel-
atively easy to implement and therefore quite popular. This algorithm is specifically
about the method of constraint propagation and mainly considers comparative con-
straints.

The algorithm considers the CSP as a graph, called a constraint network. Each
node represents a variable, which can have a domain of possible values. The CSP
provides a set of narrowing constraints. The domains for each node are adjusted to
be consistent for these narrowing constraints in the initialization process. Then, the
CSP also provides a set of relational constraints or comparative constraints. These
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are considered edges in the graph. The solver relies on choosing values from the do-
main for a single variable each iteration. This choice is then propagated. AC3 keeps
a set of nodes Q that have new information, which starts with the chosen variable.
It then iteratively removes one node from Q and checks all values for consistency in
their neighbors. Each neighbor that had its domain adjusted gets added to Q. The
algorithm continues until Q is empty, or a domain becomes empty.

2.3.2 Answer Set Programming

ASP is a method of defining and solving CSPs without having to create a custom
solver algorithm. One would write the CSP in a domain specific language, after
which the problem is solved with generic solver tools such as Clingo [24]. These
tools, in turn, provide optimized implementations of constraint solving algorithms.
Programming the CSP is typically done in AnsProlog, a language based on predicate
logic. AnsProlog has two main constructs: Facts and Rules. A fact is an expression
that is considered true. Rules can be used to generate or deduce new facts. There are
three different types of rules:

• A choice rule describes how a new fact may be guessed.

• A deduction rule describes how new faces can be derived from existing facts.

• An integrity rule describes that a certain combination of facts are forbidden in
a valid solution.

ASP allows for a large variety of constraint problems, however, it requires under-
standing a relatively complex logical language. Aside from that, existing solvers can
often not work directly with the level representation, so a translation algorithm is re-
quired to integrate ASP into the game or development pipeline. If this is a complex
task or results in undesired overhead, it could be a benefit to use a more domain-
specific solver.

2.3.2.1 Application

ASP has been explored for puzzle generation in Refraction [10]. Refraction is a game
in which lasers must be redirected, split and combined in such a way that a set of
receivers receive the correct power of laser light. The purpose of this game is to
teach players mathematical concepts of fractions. Puzzles are created by creating a
conflict between the lasers’ output and the receiver’s required input, as well as by
obstructing a straight path between laser and receiver. This second aspect means
that the layout of the level is important for determining the difficulty of the puzzle.

Smith et. al. set up several requirements for the generation system:

• A level should obviously be solvable.

• Tweakable difficulty in terms of logical and mathematical skills required to
solve a puzzle. This means that alternative solutions can only be allowed if
they also meet these requirements.

• Aesthetic requirements, including size, distribution of game elements and spe-
cific arrangement of elements.
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The problem treats all those requirements as equal. A level that doesn’t meet
the aesthetic requirements will be rejected in the same way that a level that is not
solvable is rejected; they are all hard constraints.

Smith et. al. compared the performance of ASP and a constructive method they
created specifically for this game. We first discuss the general approach to the prob-
lem, which is shared between the two methods. Similar to Dormans’ approach to
split dungeon design in missions and spaces, the puzzle generation problem is also
split into missions and spaces. A mission for Refraction describes the topology of
the laser system as a Directed Acyclic Graph (DAG), and thus a primary solution
independent of its spacial location. The input of the mission generation system is
expressed as a mathematical expression which the player needs to solve the puzzle.
Several other parameters are given for use of the spatial part of the puzzle. Spaces
are generated by a concept they call grid embedding. Here the mission is embedded
in the grid, in such a way that the solution specified in the mission DAG is possi-
ble. Additionally, requirements for the number of blocking elements and aesthetic
requirements must also be resolved. Finally, after grid embedding is completed, the
resulting puzzle is solved to search for alternative solutions, which are then addi-
tionally tested against the constraints.

The constructive method starts with the mathematical expression, derives an ex-
pression tree from that and transforms that in several steps into the mission DAG.
The search method then embeds this DAG into the grid and solves puzzles. ASP is
capable of dealing with the entire process, for details on which rules are specified,
we refer to the paper by Smith [25].

In their analysis that compares the methods, they noticed that ASP takes signif-
icantly less code. Performance-wise, mission construction has a similar execution
between the constructive and ASP method, although ASP has some initialization
overhead, making constructive faster for single generation runs. Grid embedding is
about 5 times faster with ASP compared to search-based on average, but also here
overhead is a thing. Puzzle solving is very slow with the search method, while ASP
can solve it quickly. Qualitatively, ASP is powerful as it allows for quick iteration on
the generation constraints. Additional requirements can be added without having
to rewrite the design of the algorithm.

2.3.3 WaveFunctionCollapse

WFC [8, 9] is a constraint solver designed to create textures locally similar to example
textures. It is inspired by discrete model synthesis. Discrete Model Synthesis was
first described by Merrell [26]. He formally described the problem of creating new
models out of examples. For discrete model synthesis, the models consist of a grid of
labeled geometry. The model can, therefore, be reduced to a labeled grid, a texture
with a finite number of values per pixel. To create new models from example models,
he defined the adjacency constraint, two labels may only be adjacent to each other in
the generated model if they are also adjacent in the example model. He introduced
an algorithm based on constraint propagation that solves this problem.

WFC extends on this by adding support for larger patterns, instead of just ad-
jacency constraints. The algorithm works in two steps: Pattern extraction and the
actual constraint solving step. Patterns are extracted from an example model and
placed into an index containing each pattern, with optionally rotated and mirrored
versions. The constraint solving algorithm attempts to solve two constraints to
achieve local similarity:
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• C0: Each pattern should occur at least once in the example model.

• Weak C1: The distribution of patterns in the output and the example model
should be similar. Note: Hard C1 would mean exactly equal distributions and
this would contradict C0 in some cases.

Inspired by quantum mechanics, it takes some concepts as metaphors. The to-
be-generated model is called the wave (function). Each state (pixel) on the wave
is initialized in a superposition of all possible patterns. This is similar to the set
of possible states mentioned in Section 2.3.1. This superposition is represented as
a boolean array at each pixel, with each element of the array representing a label,
and the value specifying whether it is an allowed value. The algorithm then iterates
through two phases:

1. Observation, which consists of selecting a state and choosing a new state.

2. Constraint propagation.

State selection is done based on the minimum non-zero entropy heuristic. En-
tropy is defined as in the following equation:

Entropy(p) =


undefined if sum(p) = 0
0 if sum(p) = 1
sum( f ∗ p) + ε otherwise

(2.1)

In this equation, p is the boolean array (true = 1), f is an array of frequencies for
each pattern in the example model, and ε is a small random number that serves as
a tiebreaker. If entropy is undefined, it means a contradiction has been found. The
algorithm aborts in this case, as it does not implement backtracking. In practice, a
contradiction is rare, as stated by Gumin [9].

Finally, note that the wave state is based on patterns, not label values. This means
that the wave does not represent the final model when all values are collapsed, the
model can be extracted based on the assigned patterns. Gumin did implement a way
to visualize intermediate solutions.

It is also possible to constrain specific values before and while running the al-
gorithm, which in turn reduce the number of possible patterns at that pixel. This
allows for a mixed-initiative approach, as well as interaction with other generation
algorithms. Stalberg [27] created a web-application showcasing how it can be used
in a mixed-initiative manner.

WFC has been used for generation of levels in various games such as Bad North,
Proc Skater, and Caves of Qud [7, 28–30].
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Chapter 3

Methods

As mentioned in the introduction, we want to create a declarative way to define the
structure of a level, and let a generation system create content that fits said structure.
We focus on a constraint solving system to do this. Similar to the approach taken for
Spelunky and Ruggnar, as explained in Chapter 2.1.3, we allow a designer to create
several modules that can be used in the generation process.

These modules consist of three parts: geometry, a skeleton and collision infor-
mation. The geometry is, in our implementation, a simple game object, and can
include actual game functionality. Collision information can be optionally included
with the geometry and specifies the bounds of the module. Finally, skeletons specify
how modules can connect to each other through connectors. Each connector speci-
fies a plug type, which drives constraints on which modules can connect with each
other, and/or through which connectors. Plug types can represent the type of transi-
tion between modules. These transition types can represent hallways, tubes, vertical
drops or even multiple hallways. Unlike the Spelunky-method and many constraint
solving methods, these modules don’t need to be on a grid. We also don’t need a
full coverage of modules to generate content. Removing this grid restriction means
several optimizations can no longer be used in the constraint solving system. One
problem this introduces is that one can no longer guarantee that modules perfectly
fit. Thus, one would have to test whether modules can be made to fit into the sys-
tem. We will describe this process in more detail in Section 3.3 and 3.4. First, we
look into how our system can fit in a larger pipeline, then we specify our input. We
then specify the constraint problem in a more formal way and finally describe the
way our system solves it.

3.1 The Generation Pipeline

As mentioned before, the proposed pipeline uses a set of small chunks of a level
we call modules. Multiple levels can be generated using those modules, based on a
graph that specifies topological constraints on the level. The graph can also specify
additional constraints like the set of modules allowed on a given node, and how
they need to be connected. The pipeline consists of the following four steps:

1. Design or generate modules, small chunks of a dungeon or level.

2. Design or generate a graph that specifies the topological layout of the level.

3. Run the constraint solver to assign modules to the nodes of the graph and
place them in the game world. The output of this step is the full geometry of
the dungeon.

4. Run scripts on each module to decorate the dungeon and to configure game
mechanics.
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FIGURE 3.1: A schematic visualization of the input and output of the
system. It takes a graph and a set of modules and outputs a dungeon

made from the given modules, in a way it fits the graph.

This pipeline allows for both human and automated design of levels, while the
overall geometry is generated with constraint solving. From these specifications, we
can derive the requirements for our constraint solver.

First of all, we take as input a graph and a set of modules. The goal is to assign
each node in the graph a module and in a way that these modules can seamlessly
connect to each other. More specifically, the modules should connect as specified in
the graph. Additionally, modules cannot overlap.

3.2 Input

3.2.1 Modules

A module is a game object consisting of three components: A skeleton, a collider,
and the geometry. The latter may include other colliders and implement game me-
chanics. For our purpose, we consider the geometry a black box that is carried with
the module. The skeleton defines where, and in which direction, other modules can
be attached, by specifying connectors. The collider specifies the bounds of the mod-
ule, to capture the constraint of no overlapping modules. For user convenience, we
do provide the option to specify the collider with the geometry itself.

Ideally, we want to support flexible modules, rather than purely rigid compo-
nents, however, this does make the constraint problem more complicated. We will
define an interface that may support flexible modules, however the implementation
is left for future research. To make modules more flexible, we need to open the black
box of geometry a bit, and link parts of the geometry to connectors. We also need
to specify the range of freedom that each connector has, both rotationally and in a
prismatic sense. Additionally, while connectors can be represented with a local co-
ordinate system (position and direction) in the rigid case, to support rotations and
prismatic translations, we need to define the connector as an arm. This allows the
connecting position to be in a different location from the rotational pivot. We call the
position of the end of this arm the plug position.
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FIGURE 3.2: Implementation overview of the module specification.
We keep the skeleton part separate from the geometry. Various com-
ponents are set to the correct values automatically using code that
executes in edit mode. The name of the skeleton is set to list all labels

on the module, separated by the pipe character (|).

3.2.2 Plug Types

Plug types define the type of connection between two modules. This can represent
variations in hallways in terms of shape, size, and decoration. However, they can
also capture other concepts such as a drop in elevation. The constraint solver has to
make sure that plug types match. However, in order to support one-way passages,
such as a drop in elevation, it is possible to have two variants or genders of the same
plug type. If two genders are defined, we specify that connecting modules must
use different genders of the plug to properly connect. Plug types that support this
asymmetric relation may only support asymmetric connections.

Plug types are specified with the module and assigned to connectors.

3.2.3 The Level Graph

The level graph describes the topology of a level and describes module set con-
straints on nodes by means of labels, and plug constraints on edges. Plug constraints
cover both the plug types available for an edge, and optionally also which node uses
which gender, making the edge asymmetric. In addition to these constraints, we al-
low users to specify attributes, which can be used in a further pass as gameplay
information.

We implemented a graph editor in Unity, which is displayed in Figure 3.3. This
editor allows the user to create new nodes, edges between nodes and edit constraints
and attributes. Due to this freedom, it is, however, possible that we don’t have a con-
nected graph. To deal with this, we can delete lone nodes and if multiple connected
subgraphs exist, we remove the smallest ones. This is a manual pruning option for
the user. When generating, this pruning process is applied to a copy of the graph,
which is then used in the generation process.

3.3 Formalizing the Constraint Problem

As input, we have a module set Mall . Each module m in this set has a set of labels,
which we denote L(m). We also have a graph, where for each node i, there is a vari-
able constraint which consists of one or more module labels (if none are specified,
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FIGURE 3.3: The graph editor we made in Unity to specify our level
graphs. In the implementation the term "styles" is used for "plug

types".

we default to its complement, thus all possible labels). We write S(i) for the set of
possible labels that are consistent with the node.

The set of possible modules on node i, denoted M(i) can be defined by the fol-
lowing equation:

M(i) = {m ∈ Mall |∃s ∈ S(i) : s ∈ L(m)} (3.1)

In other words, the set of possible modules on node i is any module that has a
consistent label for this node. This constraint is resolved in the initialization phase
of the algorithm.

The next constraint to consider is the plug constraint. Each edge between nodes
needs to have a consistent plug type, and in case of asymmetric plugs, they need to
have opposite genders as well. For this, we consider the concept of an arrangement.
Since each module has a fixed set of connectors, with a fixed plug type (and gender),
we can say that there are a fixed number of ways a module can be connected to their
neighbors. We, therefore, match up each individual connector with a neighbor. We
call this an assignment, which also carries information about the plug type and gen-
der. Assignments have four properties: neighbor n(a), plug type p(a), plug gender
p′(a) and its connector c(a). An arrangement is identified by a module identifier
combined with all assignments. When initializing the problem, we, therefore, need
to find the domain of arrangements; this is done by determining every permutation
of neighbors. We can then narrow this set based on plug consistency. The goal of the
algorithm is to find an arrangement for each node in the graph.
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To assist with this problem, we also include the domain of plug types in our
system. We write P(e) for a domain of plug types on an edge e. e = (i, j) is an
un-ordered pair between nodes i and j. An arrangement A(i) on node i is plug
consistent if the following predicate holds:

∀a ∈ A(i) : ∀a′ ∈ A(n(a)) : p(a) = p(a′) ∧ p′(a) = −p′(a′) ∧ p(a) ∈ P((i, n(a)))
(3.2)

In this equation, n(a) is the node referenced by assignment a (a neighbor of i).
p(a) is the plug type of a, and p′(a) is the gender of said plug. In this case, we encode
two genders with 1 and −1, where a symmetric plug will have a gender of 0. The
user may specify a narrowed version of P(e) in the level graph. By default, it will
consist of every plug type used in the module set.

We further specify that a plug type has to be either symmetric or asymmetric,
but cannot support both at the same time.

¬∃ a1, a2 ∈ {a ∈ A(i)|i ∈ G} : p(a1) = p(a2) ∧ |p′(a1)| 6= |p′(a2)| ∧ a1 6= a2 (3.3)

Additionally, we don’t support dangling connectors; all connectors in a module
must connect to a neighboring node.

Finally, the user may specify gender constraints. Gender constraints can specify
that an edge must have an asymmetric relation (given edge (i, j), then for all as-
signments in all arrangements on node i: n(a) = j → p′(a) 6= 0 and similarly for
node j).

3.4 Solving the Problem

Now with a formal definition of the problem in place, we can discuss our approach
to solve this problem. We created our solver in C#, and a large part of the solver can
be used outside a Unity environment with a small amount of additional work.

3.4.1 Overview

Constraint solving is an iterative process, in which a decision for a variable is made
each iteration, checked for consistency and then propagated through the problem.
This propagation system then allows for reducing the number of decisions to make.
If an inconsistency is detected during this process, the system can then backtrack to
try other choices. Our system is based on the same concept but has some subtleties
that need to be dealt with.

We first provide a description of the overall system. This system is also visual-
ized in Figure 3.4.

First, we initialize the problem state, after that, we start an iterative process with
a given maximum number of iterations. Each iteration, we start by checking if we
found our solution already, in which case the system terminates. This is the case if
all nodes are verified, and thus have a domain containing only a single arrangement.
If we did not find a solution yet, we choose a node to make an arrangement decision
for. After that, we decide on an arrangement A for this node. This arrangement is
then tested; we check if it fits and does not violate any collision constraints. If this
test passes, we first create a backup of our problem state, including the decision,
and then we set the domain of the node to only contain arrangement A. We can
then consider the node validated. If the test did not pass, we remove arrangement A
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FIGURE 3.4: A schematic overview of the system.

from the domain of the node. After either case is handled, we proceed to propagate
this modified domain through the problem state. When propagation does not result
in a contradiction, we continue with the next iteration. If it, however, does result
in a contradiction, we perform a rollback to the previous state. We then remove the
coupled decision from the state and propagate again. The system will continue per-
forming rollbacks and propagation until either we find no contradiction anymore,
in which case we can continue to the next iteration, or run out of backup states. In
the latter case, we report there is no solution to the problem and terminate.

In the next few sections, we explain the problem state, decision model, verifica-
tion system and propagation system in more detail.

3.4.2 Problem State

As mentioned before, we start with a set of modules and a graph, where nodes may
be labeled and edges may be constrained to certain plug types. We model our prob-
lem based on a possibility space of arrangements for each node, and a possibility
space of plug types for each edge. To simplify the representation, all modules, labels
and plug types are represented by integers. An array is created that allows for a
mapping between these integers and the actual objects.

For each node, we then store the set of possible arrangements (domain of ar-
rangements) and a boolean variable that indicates whether the node is verified. We
also store a set of possible plug types for each edge. These sets are put in a class that
provides a copy functionality, and instances are placed in a dictionary, allowing fast
access through node IDs and un-ordered pairs of node IDs that represent edges.

In order to ensure consistency of the symmetry of plug types, we also store a list
of asymmetric plug types.

The resulting state can be described with (V, A, P) as the mutable part, where V
and A are accessible by nodes, and P accessible by edges. The asymmetric plug list
and the graph is the immutable part of the state.
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3.4.2.1 Initialization

To perform initialization of the state, we start by transforming all modules, plug
types and the nodes themselves in an integer representation. After that we build the
asymmetric plug type set. We then look for plug type inconsistencies in the module
sets and throw an error if any occurs. That is, if in a module set, a plug type is used
as both symmetric and asymmetric, we can’t properly infer what it should be.

After that, we initialize A by first building the set of possible modules for each
node, which is defined by Equation 3.1, which is then pruned by the number of
edges. We then create permutations of connectors and their neighbors, creating as-
signments. Each module is then combined with each permutation to create the do-
main of arrangements.

P is generated by first setting it to the set of all plug types for all edges. If edge
constraints are specified, we set it to the constrained set instead (it lists all possibili-
ties at this point). V is simply initialized with all nodes being unverified.

Finally, we narrow the edge information, for each edge based on the existing
arrangements, similar to the validPlugs function, which will be discussed in Section
3.4.5.

3.4.3 Decision Model

When determining which node to decide an arrangement for in an iteration, we
first need to determine which are possible candidates. While in a typical constraint
problem, one can pick any variable, we need to deal with the issue of fitting modules
together. This will be explained further in Section 3.4.4; however, the main concept is
that we cannot pick a node that is not adjacent to an already instantiated node. If we
did pick a node that is not connected to something already instantiated, we cannot
determine whether the module actually fits, nor do we know where to instantiate
said module. Because of this, we need to keep track of which nodes are able to be
chosen and update this every iteration.

This frontier of possible choices is the full set of nodes in the graph if there is
no module instantiated yet (or no node is validated), and consists of all unverified
nodes with a verified neighbor.

With a set of possible options available, we can now choose a node. The simplest
method would be to choose randomly, however, we chose for the same heuristic
used in WaveFunctionCollapse [8], namely the minimum entropy heuristic. Entropy
is defined by the size of the domain of arrangements (minus one) on a given node
and a small random offset −0.1 ≤ ε ≤ 0.1 to deal with ties. Unlike WFC, we pick
the actual minimum entropy, rather than the minimum non-zero entropy, since we
want to choose nodes with only one valid arrangement in order to validate them.
Subtracting one is, therefore, not required. In Figure 3.5 we visualize an example of
this process.

Once a node has been selected, we randomly select an arrangement.

3.4.4 Verification System

An arrangement that has been decided on needs to be verified. To do this, we, first
of all, need to instantiate a module. This requires access to the node ID, a mapping
from node ID to already instantiated modules and the arrangement itself, which
provides info about the relevant neighbors and which module is picked.

Instantiation then starts by looking for instantiated neighbors. Here we consider
three cases: There are no module instances yet, there is one instantiated neighbor,



Chapter 3. Methods 20

FIGURE 3.5: A visualization of the decision model. In an arbitrary
iteration, the problem state might look as shown in the image. The
green nodes already have an instantiated module. We consider any
node with an instantiated neighbor, which are the red nodes. We then

evaluate the entropy of these nodes to decide the next node.

and there are multiple instantiated neighbors. In the first case, we can just create
an instance of the module, place it at the origin with default rotation, and consider
it verified. This case would happen on the first iteration in the algorithm. For the
second case, we instantiate a module and align it so it fits with this neighbor. We
then verify collisions. In the last case, we choose an arbitrary neighbor (whatever
pops up first) and instantiate a module to align with that module. We then check for
the remaining instantiated neighbors if it fits; this check allows for a certain error the
user can specify.

3.4.4.1 Instantiation

When instantiating modules based on a given neighbor module, we need to de-
termine the position and rotation of the new module. Here we consider that two
connectors need to form a straight line and connect with a matching local up-vector.
We can, therefore, align the two connectors and then transform this alignment back
to the module itself.

We start by instantiating the new module at the origin with default rotation. Af-
ter determining with which connectors the new module and its neighbor should
connect (Cnew and Cother), we look at what the correct rotation of the module should
be. Cnew has a different rotation and plug position than the module, so we first de-
termine the rotation required to align it with Cother. For this purpose we use the
forward vectors ( f w) of both connectors, and determine the angle from f w(Cnew) to
− f w(Cother) rotated along the up-vector of Cother. Notably, we use − f w(Cother) as
we determine the rotation required such that both vectors are equal, while the target
is to get the vectors point in opposite directions. We then convert this rotation to a
quaternion representation.

R = axis_angle(signed_angle(fw(Cnew), -fw(Cother), up(Cother)), up(Cother))
(3.4)

We then determine the position of the module by taking the plug position of Cother
and from that subtract the plug position of Cnew rotated by the rotation we just de-
termined. This is valid because the alignment requirement demands that the target
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position of the module, plus the rotated position of Cnew should end up at the same
position as Cother.

target + R ∗ pos(Cnew) = pos(Cother) (3.5)

target = pos(Cother)− R ∗ pos(Cnew) (3.6)

3.4.4.2 Collision Checking

In our module specification in Unity, we allow users to specify box and sphere col-
liders. A Unity script then creates a compound collider from these colliders. We
use a custom implementation of collision checking in order to avoid using Unity’s
physics engine and keep full control over the execution of the algorithm. We also
keep full control over which objects are valid for checks. This makes it easier to in-
clude the system in a project since we don’t need to deal with collision layers. An
additional advantage is that porting the system out of Unity would be easier.

A module is checked for collision with any module except their direct (instanti-
ated) neighbors. If any collision occurs, we consider the arrangement of the module
invalid.

3.4.4.3 Instance management

As the problem is being solved, we instantiate modules for certain nodes. We need to
be able to access these modules in order to instantiate and validate other modules.
We also need to be able to clean up instances in case of a rollback. For this, we
keep a dictionary of all instances that maps from node-ID to a tuple that specifies
the module instance and which arrangement is specified with that instance. When
a rollback happens, we check for each node if it is still considered validated in the
problem state. If it is not validated, we delete the instance.

3.4.5 Constraint Propagation System

The most important part of the algorithm is the constraint propagation system. This
makes the solving process reasonably efficient. When a decision has been verified,
whether it is successful or not, or we just performed a rollback, we propagate new in-
formation about the domain of arrangements on a node to other nodes in the graph.
We also update the domain of plug types on edges between those nodes. The system
is very similar to the AC3 algorithm discussed in Section 2.3.1.
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We show this process with the following pseudocode:

Data: changedNode, graph, V, A, P
Result: Whether propagation was successful without contradiction
S← new stack
push changedNode on S
while S not empty do

current← pop from S
if count(A(current)) = 0 then

V(current) = false
return false

end
foreach neighbor n of current do

edge← (current, n)
pCount← count(P(edge))
aCount← count(A(n))
P(edge)← validPlugs(edge)
A(n)← validArrangements(n)
if P(edge) is empty ∨ A(n) is empty then

V(n) = false
return false

end
else if pCount - count(P(edge)) > 1 ∨ aCount - count(A(n)) > 1 then

//if anything was removed from P(edge) or A(n)
push n on S

end
end

end
return true

Algorithm 1: Constraint propagation

In this algorithm, as discussed in Section 3.3, P(edge) refers to the domain of plug
types for a given edge. V(node) refers to whether a node has a verified module.

We make use of two functions, validPlugs and validArrangements to narrow
the possibility space for plug types on edges, and the space for arrangements on
nodes.

Determining the valid plugs is simple. For both nodes connected by a given
edge, we loop over all arrangements in the node, and look for assignments that refer
to the other node. We then insert the plug type belonging to the assignment in a
set and return the intersection of the sets for both nodes. Formally we describe that
with Equation 3.7.

validPlugs((i, j)) = {p(a)|a ∈ A(i) ∧ n(a) = j}
∩{p(a)|a ∈ A(j) ∧ n(a) = i}

(3.7)

To determine the valid arrangements for node i we need a more complicated
approach. We start by assuming all arrangements are valid. We then check in each
arrangement A whether:
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1. There is an assignment with inconsistent symmetry parameters. Assignments
may not specify that a plug has no gender for asymmetric plug types. For-
mally, ∃a ∈ A : ¬isSymmetric(p(a)) ∧ p′(a) = 0.

2. There an assignment with a plug type not part of the domain of plug types of
the edge between the node and the referenced neighbor. Formally: ∃a ∈ A :
p(a) /∈ P((i, n(a)))

3. There is an asymmetric assignment, for which we can derive that the gender
is not consistent with any arrangement of the neighbor. Formally: ∃a ∈ A :
¬isSymmetric(p(a)) ∧ (∀A′ ∈ A(n(a)) : ∀a′ ∈ A′ : n(a′) 6= a ∨ p′(a) = p′(a′))

If one of these things is the case, we remove the arrangement as a possibility. This
is because an arrangement can only be consistent if all assignments are consistent.
Technically, the first item is obsolete with our initialization, however, it is a relatively
cheap check we kept in for debugging reasons.

3.4.5.1 Termination

As the previously mentioned algorithm shows, we continuously add new neigh-
bors to the stack of nodes to consider next. An important question, in this case, is
whether we could say it always terminates. In fact, we can, as long we work in a
finite problem space.

Theorem 3.1. Algorithm 1 will always terminate in finite time if the size of the graph, P
and A are finite.

Proof. A narrowing pass is one run of popping a node from the stack and narrowing
all its neighbors. Each narrowing pass needs to either push at least one node on the
stack or terminate the algorithm. If a node is pushed on the stack, we know that
at least one node or edge has had one value removed from the domain. In a finite
problem space, the size of the domain of both arrangements and plug types for each
node and edge are also finite. We can, therefore, induce that if the program does not
terminate due to a lack of changes, at least one node or edge will eventually reach
zero possibilities.

We can simplify this problem by encoding the number of possibilities by node
and edge in a vector of integer values. Each narrowing pass, we subtract at least
one from at least one element. If we take the sum of all elements in this vector,
every pass, this sum should also go down by at least one. If we forbid termination,
eventually, this sum would reach zero, which indicates that at least one node or edge
has to have zero possibilities, which is a termination condition. We can, therefore,
conclude that the algorithm will always terminate.
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Chapter 4

Evaluation

To evaluate the system, we want to give answers to several questions:

1. What is the theoretical performance of our algorithm?

2. What is the practical performance of the generation process, and how does this
scale when the problem becomes more complex?

3. Which graph structures are detrimental for the generation performance, and
to which extent?

4. Does generation performance depend on the module sets used?

5. Are there clear bottlenecks in the algorithm, and what are those?

In the next section, we give an answer to the first question. In Section 4.2 we
set up experiments to give answers to the other questions. However given that the
parameter space of the problem is very large, and these parameters are not all inde-
pendent, we can only give an initial indication.

4.1 Theoretical Performance

Constraint Satisfaction Problems are typically NP-complete problems. Our system
is very similar to the AC3 algorithm mentioned in Section 2.3.1. We can show this
similarity by mapping the existing problem to a problem in AC3, where the main
difference would be the requirement to test arrangements.

The overall system is based on backtracking, Mackworth and Freuder [31] have
shown the theoretical performance of such a system, which is O(êân). Here ê is
the number of constraints, â the size of the domain (assuming the domain is, be-
fore considering domain constraints, the same for all variables) and n the number
of variables. Node consistency, thus the constraints that don’t involve relations be-
tween variables can be ensured in O(ân). The constraint propagation of relational
constraints, thus AC3, runs in O(êâ3), with a lower bound of Ω(êâ2). This lower
bound is when no domain is reduced in the process.

In our system, the variables are the nodes of the graph and the domain is the set
of arrangements. The constraints are based on the attributes of these arrangements.
The plug type constraints we store on the edge are the first set to consider. Ad-
ditionally, we consider asymmetry constraints. Our system notably diverges from
AC3 by updating the plug type constraints separately, reducing the set of constraints
to check against over time, at the cost of having to update this set. Updating this has
the same asymptotic complexity as skipping this process, thus it doesn’t impact the
overall complexity.
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Of course, this AC3 algorithm ignores the work we need to do to make a decision
of which node we select. The work spent on this scales linearly with the number of
nodes and the number of edges per node. As module sets support a limited number
of adjacent edges, we can assume a sparse graph, where the number of edges per
node on the average is a relatively small constant, we can consider this process linear
with the number of nodes.

Testing collision between two module instances depends on the number of box
and sphere colliders specified in those modules. For analysis, however, we assume
that this number is bound by a small constant. We do not expect very complex
compound colliders to be specified with modules. Testing if a given module instance
collides with any other instance is, under this assumption, linear with the number
of nodes, as we at most need to check against n− 1 other instances. Checking if an
arrangement fits in the graph is linear with the number of neighbors.

Mackworth and Freuder mentioned that keeping the size of the domain as small
as possible is important for making the system fast. Since this is the number of
possible arrangements, it is worth figuring out how this number scales in different
circumstances.

The number of arrangements at a node is first of all determined by the number
of modules. A second aspect is the number of edges starting from a given node.
Since we generate arrangements based on the permutations of connector-neighbor
assignment, the number of arrangements are thus the factorial of the number of
edges multiplied by the number of possible modules. This is however on a single
node. To determine the total size of the domain we need to know the size of the
union of the domains for each node. Since for each specific number of edges per
node, the domains are disjunct (arrangements belonging to nodes with two edges
are always different from those that belong to three edges), we can determine the
size of the domain for each supported number of edges (the set of which we call J).
This would be the number of possible arrangements for the node that supports a
given number of edges with the maximum number of modules. This is expressed in
Equation 4.1.

â = |
⋃
i∈G

A(i)| = ∑
j∈J

maxi∈{x|x∈G ∧ #edges(x)=j}(|M(i)|) · j! (4.1)

For this equation to work, however, arrangements need to be independent of the
location in the graph. This is not the case in our representation of an arrangement, as
the neighbouring nodes are part of how it is identified. For the purpose of analysis,
we can fix that by addressing neighbors by index in a list of neighbors, rather than
the neighbors directly. This makes the arrangement specification independent of
the location in the graph, allowing it to be reused. This in turn allows for a global
domain of arrangements that work on each node.

The overall system is thus as complex as backtracking (without propagation),
which was O(êân). However, in practice, we expect that propagation results in rea-
sonable speedups. We can, however, not exclude the possibility that there are cases
where propagation has no benefit.

4.2 Experiment Setup

In this section, we look into the practical performance of the algorithm and try to
find the bottlenecks in the algorithm. We also look at the diversity of the content
produced by the algorithm.
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To answer the last four questions mentioned at the beginning of this chapter, we
created a set of experiments. In these experiments, we keep track of several metrics
that indicate the performance of the algorithm and can give insight in which parts
of the algorithm can be a bottleneck. These metrics are the number of iterations, the
overall runtime, time spent propagating, checking collisions and in the instantiation
phase and finally, we count the reason a module is rejected (fitting failure or collision
failure). We executed these experiments on a computer with an AMD Ryzen 1500X
CPU and 8GB DDR4 RAM.

We wish to know how performance is affected from several angles. These consist
of growing the number of nodes in a graph, but also the structure of the graph and
the set of modules that can be used for generation. The hypothesis is that all of these
things have an effect on performance.

4.2.1 Module Sets

We use three different module sets, two of which are slight variations of each other,
and one being drastically different. The first two work in 2D, and consist of simple
rectangles. There are modules for a single end piece, a straight path, a corner, a 3-
way split, a 4-way split, and a 180-degree turn. In the first set, these pieces are all
colored blue (this is arbitrary). The second set also contains alternative modules for
the first five of those, which are colored red. These different modules use a different
plug type on their connectors. In addition, we created modules that allow transition-
ing between the two colors, and thus use both plug types. The third set is modeled
to look closer to an action-adventure dungeon and works in 3D. This set has mod-
ules for rooms with 1 to 6 exits, with variations in the elevation of an exit. It also
has hallway modules, which may contain stairs. They also contain 45 degree turns,
which can display that this system doesn’t rely on a grid. Finally, there is an empty
module with 2 "exits". All module sets are displayed in more detail in Appendix A.

4.2.2 Graphs

In order to test the performance as the size of a graph grows, we test several graphs
that follow a simple pattern: A line and a binary tree. For these two structures, we
measure performance for 5, 7, 9, 11, 13 and 15 nodes. We also look at two loop-based
structures, one being a full loop, and one is a pattern that contains small loops. This
pattern alternates a single node connected to a loop of 3 nodes. For these structures,
we test 5 and 9 nodes, so we can fairly compare them with the line and binary tree.
These graphs are tested on each module set and have no other constraints specified
but their structure. The graphs are also visualized in Figure 4.1.

4.2.3 Sample size

We performed a small preparing experiment to evaluate what a feasible sample size
is for this experiment. We found that an iteration takes on average 2ms. Based on
this we set upper bounds for a single run and determined a sample size of 100 to be
the most appropriate. Of course, taking more samples would result in more accurate
data, ideally, over 1000 as advised by Arcuri et al. [32], however, 100 should be
enough to draw some conclusions. Additionally, in some cases, especially with loop
structures, it can take a lot of iterations to find a result, sometimes many more than
100,000 iterations. For this reason, we set a cutoff point at 25,000 iterations. This
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FIGURE 4.1: The graphs we use for our experiments, including how
we refer to them in the results section.

would put a cap on the time per run of about 50 seconds with the given execution
speed.

4.2.4 Issues

When performing the experiments, we ran into a few issues. The experiments were
controlled by an experiment runner script, that would perform the 100 runs in a loop.
In some cases (module set 3 on loop structures), the experiment could be busy for
more than 5 minutes, after which the runtime massively increases. This is an issue as
it meant that subsequent runs might not be independent in performance. We looked
into the reason for these issues and we figured out that some experiments can create
a massive load on memory. We, therefore, decided to force a garbage collection after
each experiment, and give control back to the Unity engine for a bit, which resolved
this issue. We however still noticed a high memory load on these structures. We
therefore also performed a test on one of these structures (Module 3, Small Loops
with 9 nodes) where we force a garbage collection every 500 iterations.

Further, when developing module sets, it appeared to be quite hard to specify
connectors perfectly. For this reason, we set a fitting threshold that is quite high,
namely 0.1. Modules are one to several units wide.

4.2.5 Statistical Analysis

Of all our experiments we will report standard statistical measures like the mean,
median, and standard deviation. We also perform several statistical tests to see if
structures and module sets make a difference in performance. Here we test if there
is a difference in runtime between module sets for graphs with 5 and 9 nodes. We
also test for a difference in structure for these graphs. As data for these comparisons,
we split the complete dataset just on the variable to compare. We also leave out
any tests not performed on 5 or 9 nodes. As we can not assume that our data is
normally distributed, we use the Mann-Whitney U test. As we have multiple tests,
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9 in particular, we use a Bonferroni correction ([33], Equation 4.2) on a target overall
alpha value of 0.05, resulting in an alpha value of 0.00556 per individual test.

αindividual = αoverall/number of tests (4.2)
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Chapter 5

Results

In this chapter, we show the results of the experiments described in the previous
chapter. First, we report the success rate and the number of iterations. We then
also reflect on the overall runtime of our system, where we also look at the relation
between the runtime and number of iterations. We then look at the other metrics
to see if they give us some additional insights. Finally, we perform some statistical
tests on the data we gathered to determine if module sets and structures make a
significant difference.

5.1 Success Rate

First of all, we consider the success rate of the different experiments. This is im-
portant as with a low success rate, we can’t tell if the other metrics are accurate.
In particular, if the success rate is not 100%, the mean of the experiment is skewed
downwards, as the number of iterations is limited by an upper bound, and thus the
system terminates early at an arbitrarily set point. Because of this, we also report on
the median and standard deviation of the different metrics.

As can be seen in Table 5.1, we have a 100% success rate for most of the test runs
in module set 1 and 2. Module set 3 is less successful and specifically has an issue
with larger graph sizes.

TABLE 5.1: Success Rates

Structure Set 1 Set 2 Set 3 Structure Set 1 Set 2 Set 3
Linear 5 100 100 100 Tree 5 100 100 100
Linear 7 100 100 100 Tree 7 100 100 100
Linear 9 100 100 100 Tree 9 100 100 100
Linear 11 100 100 100 Tree 11 100 100 100
Linear 13 100 100 90 Tree 13 100 100 100
Linear 15 100 100 79 Tree 15 100 100 100
Loop 5 100 100 70 Small L. 5 100 100 99
Loop 9 96 77 7 Small L. 9 100 100 0

Number of successful generation attempts out of 100 runs, by graph structure and number
of nodes. The cutoff point is 25000 iterations.

5.2 Number of Iterations

As mentioned before, we mentioned the number of iterations for each module set
and various graphs. In Figure 5.1 we display the mean number of iterations for each
set of experiments.
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We can see that the loop structures are notably slower than the structures without
loops. We can also see a super-linear growth in the number of iterations as graphs
become larger in those loop-less structures. In Table B.1 we show the exact metrics
(mean, median and standard deviation).

FIGURE 5.1: Chart of the mean iterations, on a logarithmic scale.

5.3 Runtime

We also measured the actual time it took to run these experiments. The mean per-
formance is displayed in Figure 5.2, which is also displayed, along with the median
and standard deviation in Table B.2. The runtime figures follow the same trend as
the number of iterations.

The performance seems to scale super-linearly. We observed a large difference
between the graphs with loops in them and the graphs without loops. The full loop
structure can cause a mean runtime performance impact ranging from a factor 15 to
a factor 2222 when comparing to linear and tree graphs with the same number of
nodes. The small loops structure has less of an impact, with a range of factor 3 to
596.

5.3.1 Relation Between Runtime and Iterations.

We also compared the relation between runtime and iterations. This is displayed
in Table B.3 and Figure 5.3. Here we can see that the speed at which iterations are
executed are variable. Module set 3 is notably slower, but also more consistent.
For module set 2 and 3, the speed is, on average, actually faster for the larger tree
structures and the loop structures compared to the linear structures. Finding the
reason for this requires a more thorough investigation.
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FIGURE 5.2: Chart of the mean runtime, on a logarithmic scale.

FIGURE 5.3: Chart that displays the mean execution speed of the al-
gorithm in iterations per millisecond.
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5.3.2 Statistical Analysis

We performed statistical analysis to determine if there is a significant difference in
runtime (medians) between module sets and structures. For this we performed the
Mann-Whitney U-test, using the implementation in R. In particular we used the
function wilcox.test(x,y, paired= FALSE, conf.inf= TRUE). Calling the func-
tion with conf.inf = TRUE also provides us with an effect measure: The Hodges-
Lehmann estimation. This is an estimation of how much the medians are expected
to differ. We limited the tests to graphs with 5 and 9 nodes. For module set compar-
ison this means that each structure is equally represented, avoiding a bias towards
the loop-less structures, and for structure comparison, it is required as we lack other
data for the loop structures. As mentioned in Section 4.2.5, we use an α-value of
0.00556 per test, determined by the Bonferroni correction.

Since the Mann-Whitney U test is based on quantiles, we also report the quantiles
for each of the compared data sets.

5.3.2.1 Module Set Comparison

TABLE 5.2: Quantiles Module Set Runtime Comparison

Minimum 1st Quartile Median 3rd Quartile Maximum
Set1 5.5 8.7 15.7 134.1 18391.9
Set2 7.2 12.9 24.1 287.9 18740.5
Set3 10.4 33.0 568.4 59913.6 116558.0

Quantiles of the runtime data containing all experiments on graphs with 5 and 9 nodes,
split by module set.

TABLE 5.3: Module Set Runtime Comparison

W p-value Hodges–Lehmann estimation
1-2 262760 5.83E-10 -4.435637
1-3 123490 <2.2e-16 -329.2924
2-3 153760 <2.2e-16 -295.5611

Comparison between module sets based on data from experiments on graphs with 5 and 9
nodes. We used the Mann-Whitney U-test with a null hypothesis of equality.

From the data we see in Table 5.3 we can conclude that for the compared data
sets, there is a significant median difference between module sets.

5.3.2.2 Structure Comparison

TABLE 5.4: Quantiles Structure Runtime Comparison

Minimum 1st Quartile Median 3rd Quartile Maximum
Linear 6.2 8.9 15.7 27.7 17808.2
Tree 5.5 7.7 13.1 20.5 478.4
Loop 7.3 180.6 1977.3 17626.8 69066.4
Small L. 7.2 50.8 389.9 12770.3 116558.0

Quantiles of the runtime data containing all experiments on 5 and 9 nodes, split by graph
structure
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FIGURE 5.4: Chart that displays the mean time distribution between
the different parts of the algorithm.

TABLE 5.5: Structure Runtime Comparison

p-value Hodges–Lehmann estimation
Linear vs Tree 1.51E-07 2.168266
Linear vs Loop <2.2e-16 -1752.036
Linear vs Small L. <2.2e-16 -334.8532
Tree vs Loop <2.2e-16 -1956.731
Tree vs Small L. <2.2e-16 -366.8003
Loop vs Small L. 2.39E-08 179.3259

Comparison between structures based on data from experiments on graphs of 5 and 9
nodes. We used the Mann-Whitney U-test with a null hypothesis of equality.

The data that were shown in Table 5.5 also indicates a significant median differ-
ence between structures on graphs with 5 and 9 nodes, as all the p-values are below
our alpha value of 0.00556.

5.4 Profiling

In addition to measuring runtime, we also measured the runtime of some key com-
ponents of the algorithm. These are the constraint propagation system, the instan-
tiation system, and the collision detection system. Not explicitly measured are the
remaining parts of the algorithm which consist of the decision model and the back-
tracking system which includes creating backup states. In Figure 5.4 we display the
average time distributions between the different parts of the algorithm. Exact num-
bers including median and standard deviation can be found in Tables B.6, B.5 and
B.4. Interesting is that in case of module set 3, a very large part of the time is spent
on instantiation when compared to the other two module sets. For module sets 1
and 2, especially for smaller graph sizes, a lot of time is spent on the not explicitly
measured part of the algorithm.
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5.5 Validation Decisions

During the validation process, an arrangement can be either accepted or rejected for
two reasons: a fitting failure or a collision failure. In Appendix B.3 we present tables
that show the frequency of these failures. In particular, fitting failures should only
occur for loop structures, however, the mean and standard deviation is not 0 for
module set 3 on the linear structure. Looking at the actual data, we found that there
were a number of runs that had a single fitting failure. The reason for this could be a
bug involving an edge case for fit checking or module placement, however, even in
those cases, we would expect multiple fitting failures to occur. We, therefore, cannot
properly explain the reason for this anomaly.

Another thing that is worth noting is that Loop 5 has no collision failures what-
soever on Module sets 1 and 2. And having very few collision failures is actually not
that rare, as there are 11 other tests that have a median of 0 collision failures.

5.6 The Effect of Garbage Collection

We performed an extra test with a forced garbage collect every 500 iterations to re-
solve a memory issue that is most prevalent with the Small Loops structure with 9
nodes. It resulted in an average of 65351.6ms in runtime, and a median of 66175.3.
Comparing this to the experiment without garbage collection (67968.9ms and 64403.9ms
respectively), we can not conclude that it had any difference. We did, however, ob-
serve a lower memory usage over the runtime. Of course, garbage collection also
costs some overhead, so a significant runtime improvement would have been sur-
prising. Full results of the extra test is displayed in Appendix B.4.

5.7 Generation Output

Of course, it is also valuable to know what the output of the generation process is.
While we do not have a full evaluation on diversity, we can show some examples of
the output, which we present Appendix C. Here we also include a few examples for
graphs we did not perform experiments with.
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Chapter 6

Conclusion and Future Work

In this thesis we considered a constraint solving approach to 3D level generation for
structures not restricted to a grid. We made some steps to develop a system that is
capable of doing so and evaluated the performance of the current process. Based on
this evaluation, we can suggest future work to optimize the system. This evaluation,
however, is not complete, more extensive evaluation can be done, especially in terms
of output analysis. It also remains a question whether the system could be useful in
practice. We further reflect on the design issues we encountered with this system
and look into ways that said issues can be resolved.

When reflecting back on our results, we can see that the runtime seems to scale
super-linearly with the number of nodes, although more data is needed to get to
a conclusive answer. We also noticed that loop structures do have a large perfor-
mance impact. We also observed that module sets influence the performance, and
this impact is quite significant. Since this impact also seems to influence the differ-
ence between structures, it is hard to give a conclusive answer to the extent at which
the structures and module sets differ, and even harder to generalize this to other
structures and module sets. One thing we did notice is that in the case of module
set 3, a surprisingly large amount of time is spent in the initialization phase. Also,
the unmeasured overhead was larger than we expected, which was more clear on
module sets 1 and 2.

6.1 Further Evaluation

While we measured the performance for various graphs and module sets, there are
far more possibilities and we only scratched the surface of practical performance
testing. In our theoretical analysis, we found that the number of edges per node
should have an impact on performance, in addition to the number of modules pos-
sible on said nodes. A controlled test where these factors are varied could be used
to verify if this holds in practice. Another point of interest is to look at the impact
of defining constraints on nodes and edges. The current evaluation focuses only on
the topological constraints, or constraints that exist purely due to the graph defini-
tion. Performing the tests with a larger number of samples, like 1000 as mentioned
in Chapter 4, would also allow for a stronger conclusion.

Profiling itself can also be made more extensive, with a focus on smaller pieces
of code.

6.1.1 Diversity Analysis

Due to the scope of the project, we have not been able to provide an analysis of the
diversity of the generated content. Creating such an analysis is, however, valuable
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to assess the usefulness of the system. It can be quite tricky to determine the proper
metric. However, we can specify a few requirements for a good metric:

• The metric should be independent of representation. With symmetric graphs,
the same dungeon can be represented in different ways.

• The metric should capture differences in arrangements, taking symmetry of
modules into account.

• The metric should ensure that subgraphs that result in similar structures need
to be recognized as similar.

Creating a metric that meets all these requirements is an issue. One could com-
pare pairs of modules to create a representation independent metric, which also
meets the third requirement, but it doesn’t capture arrangements. Considering sym-
metry in arrangements can be even harder, as we don’t consider symmetry in our
system at all. Another issue is that even when one can compare two results, we still
need a method to determine a meaningful metric of the diversity of the complete
experiment. In case of the module-pair metric, we can determine the standard de-
viation of each pair and then sum that, but this is still a metric that depends on the
input graph, thus making it hard to compare the diversity between different graphs.

In specific implementations, it could also be possible to classify modules and
determine metrics based on the frequency of said classifications. Examples would
be the difference between rooms and hallways or 2D and 3D structures in module
set 3. It would then be possible to evaluate the output using an Expressive Range
plot, as introduced by Smith [34]. This approach is commonly used to evaluate the
output of generation processes.

6.2 System Improvements

6.2.1 Optimization Suggestions

From our experiments, we found that for certain module sets, the instantiation part
of the algorithm can become a significant bottleneck. It would be worth restricting
this instantiation part down to the essentials (skeleton and collision), and only in-
stantiating the geometry after the fact. In this implementation, the collision model
would no longer be (optionally) tied to the geometry. We can ensure this at module
specification, however it could also be done as a pre-processing step. Further, as the
same modules are likely used over and over again, even on the same node, it could
be worth it to keep an object pool of modules to test with rather than instantiate
new modules every iteration and destroy modules each rollback. This is valuable
as the destroyed modules need to be cleaned up, which does not seem to happen
automatically given the memory issues we had.

Further, on the first two module sets the part that is not explicitly measured is
also a significant part of the computation time. Additional investigation would be
required to see what the bottleneck is in that phase.

6.2.2 Partial Generation

While we investigated the application of generating content from scratch, the nature
of the algorithm should be well suited for partial generation problems. If one has a
previously generated problem, it could be possible to remove some modules, modify
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parts of the graph, and solve this part of the problem again. Still, existing modules
could be initialized as verified and made immutable (cannot be destroyed in the
process), and the modified system should be able to fill the gaps.

This case should create far more varied generation frontiers, possibly allowing it
to take more advantage of the constraint propagation and decision selection process.
It would be interesting to evaluate this application.

6.2.3 System Design

We noticed that the problem as it is can become quite complex due to the difference
in modules. It might be worth considering splitting certain parts of the algorithm
into separate steps. In particular, it could be interesting to select modules based on
shape first, and then solve based on plug types once the spatial structure is known,
similar to how Spelunky first generates a global path, before filling it in with tem-
plates. The resulting problem can then take advantage of more advanced constraint
solving problems, such as path consistency and WFC (if we can properly provide
patterns), and we no longer have to test whether modules fit in this stage. The two-
phase approach also allows for multiple levels to be generated off the same spatial
structure, thus skipping a part of the process.

6.3 Summary

In this thesis, we described a new 3D level generation system based on constraint
solving. This is a system that allows designers to have a large amount of control
over the output of the system, and express this control in a declarative way by con-
straining the topology of the level with a graph. In the graph, additional constraints
can be specified to add additional control. The system searches for rigid modules
and orientations to connect them together in a way that is consistent with the graph.
This system may fit in a larger generation pipeline where also graphs can be gener-
ated.

We explored whether this approach can be used to deal with a weakness of
grammar-based approaches with long looping structures. However, from our re-
sults, we have indications that these long structures perform quite poorly as well.
Additional work is required to optimize the algorithm to deal with this weakness.
We identified several parts of the algorithm that are worth focusing optimization
efforts on and made a few suggestions. We also identified that both module sets
and graph structures seem to have an impact on performance, although we cannot
explain why. For that, we need more extensive evaluation.

Finally, we considered that the algorithm, with a few modifications, could also
be applied for partial generation. This can be useful for assisting a designer to create
levels by filling in gaps and evaluating constraints.
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Appendix A

Module Sets

In this Appendix, we show our module sets. In Table A.1 we display the number
of modules that support a given number of connectors for each set. In Figures A.1
through A.3 we show the geometry of the modules and their names. The colliders on
the modules are taken generously, especially for set 3. Many colliders don’t extend
outside the geometry, this allows walls to clip a bit. The reason for this is that we
didn’t want to encounter collision failures due to slight misalignments.

TABLE A.1: Number of modules by the number of connectors

Set 1 Set 2 Set 3
1-way modules 2 3 4
2-way modules 4 8 17
3-way modules 1 3 2
4-way modules 1 3 1
5-way modules 0 0 1
6-way modules 0 0 1
Total modules 8 17 26
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FIGURE A.1: Module set 1 geometry. All plug types are equal except
for the yellow objects, which use a different and asymmetric plug
type. The white arc object uses the same plug type as the blue objects.
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FIGURE A.2: Module set 2 is an extension of the first set. This set
introduces the red pieces, which connect with a different symmetric
plug type. We also introduce pieces that connect these different types.

FIGURE A.3: The third set is made to resemble typical room-based
dungeons more. It has one default plug type to connect with, and

one asymmetric one to drop down.
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Appendix B

Result Tables

In this appendix, we show more detailed results from the experiments.

B.1 Iterations

TABLE B.1: Iteration Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 6.56 6.21 22.48 2.75 2.83 43.26 6 5 7
Linear 7 10.15 8.34 78.97 4.28 2.83 202.19 8 7 10
Linear 9 13.80 12.93 408.35 5.25 5.71 1113.76 11.5 10 16
Linear 11 21.37 17.66 1162.27 8.71 8.83 3650.37 19 13.5 17
Linear 13 25.89 22.64 3586.02 13.75 12.67 7862.87 22.5 21 33
Linear 15 32.88 26.36 6702.29 12.78 15.74 10246.76 30 24 76
Tree 5 5.73 5.59 8.57 1.14 1.85 6.43 5 5 6
Tree 7 10.95 10.27 15.64 4.38 5.25 12.41 8 8 9
Tree 9 13.75 12.91 24.49 8.07 8.23 24.31 10 10 13.5
Tree 11 26.05 39.88 102.03 23.24 52.69 242.24 18 16.5 26
Tree 13 45.06 94.56 215.30 65.21 189.02 366.62 21 21.5 47.5
Tree 15 99.52 267.14 462.96 162.05 517.14 818.48 31.5 40 62
Loop 5 202.34 476.91 10349.74 178.80 514.34 10477.00 154.5 305 4190.5
Loop 9 7126.12 11150.42 23787.88 7992.48 9676.44 4845.20 3506.5 8658.5 25000
Small L. 5 39.27 146.82 6282.27 35.67 171.49 5274.80 22 85 5256.5
Small L. 9 555.78 956.26 25000.00 535.97 791.96 0.00 386 831.5 25000
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B.2 Runtime

TABLE B.2: Runtime Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 8.1 9.0 67.8 5.0 2.0 116.9 7.0 8.2 27.0
Linear 7 10.8 13.3 225.6 2.9 2.9 552.1 9.5 12.2 40.9
Linear 9 14.5 18.7 1155.1 3.6 4.6 3122.9 13.3 16.4 61.6
Linear 11 20.9 25.1 3324.4 6.0 7.4 10448.0 19.3 22.7 68.2
Linear 13 25.6 31.4 9972.1 10.4 11.2 21862.0 23.1 29.1 116.8
Linear 15 32.5 37.3 19007.5 11.2 12.9 29006.7 29.1 34.6 234.9
Tree 5 6.3 8.0 26.0 0.8 1.1 22.5 6.1 7.6 19.0
Tree 7 9.5 12.7 45.2 2.5 3.4 36.5 8.4 11.4 25.4
Tree 9 11.6 15.9 70.3 4.9 5.1 70.2 9.4 14.1 38.4
Tree 11 19.0 33.0 310.6 12.8 30.3 741.5 14.4 19.7 77.7
Tree 13 32.0 71.0 634.2 39.1 117.4 1086.1 17.2 26.2 137.7
Tree 15 69.6 195.1 1385.9 105.5 345.2 2454.3 24.5 44.2 201.3
Loop 5 127.8 287.6 25597.2 111.3 296.5 26066.2 97.7 187.7 10094.3
Loop 9 4885.1 7730.5 57731.0 5479.4 6727.6 11875.5 2429.1 6070.3 60371.9
Small L. 5 28.6 97.7 15474.4 22.2 98.3 13032.1 17.8 67.0 12900.9
Small L. 9 408.7 741.7 67968.9 381.7 591.2 11340.7 293.3 660.0 64403.9

B.2.1 Execution Speed

We also looked at the speed at which iterations are executed in iterations per mil-
lisecond.

TABLE B.3: Execution Speed Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 0.83 0.67 0.29 0.15 0.11 0.05 0.80 0.64 0.29
Linear 7 0.91 0.62 0.29 0.13 0.10 0.05 0.87 0.60 0.28
Linear 9 0.93 0.67 0.30 0.13 0.12 0.04 0.91 0.62 0.29
Linear 11 1.00 0.68 0.29 0.13 0.12 0.05 1.01 0.62 0.28
Linear 13 0.99 0.69 0.31 0.12 0.12 0.05 0.99 0.69 0.30
Linear 15 1.00 0.67 0.31 0.08 0.12 0.04 1.00 0.67 0.33
Tree 5 0.91 0.69 0.34 0.08 0.08 0.05 0.89 0.68 0.34
Tree 7 1.12 0.77 0.36 0.14 0.17 0.05 1.06 0.69 0.35
Tree 9 1.14 0.77 0.35 0.14 0.15 0.04 1.08 0.70 0.35
Tree 11 1.25 0.95 0.34 0.21 0.32 0.03 1.21 0.84 0.34
Tree 13 1.27 0.97 0.34 0.17 0.31 0.03 1.22 0.84 0.34
Tree 15 1.28 1.04 0.34 0.16 0.30 0.03 1.25 0.93 0.33
Loop 5 1.53 1.57 0.40 0.16 0.20 0.03 1.58 1.62 0.41
Loop 9 1.43 1.42 0.41 0.10 0.11 0.02 1.45 1.44 0.41
Small L. 5 1.23 1.23 0.40 0.24 0.40 0.02 1.24 1.30 0.41
Small L. 9 1.29 1.20 0.38 0.11 0.19 0.05 1.33 1.26 0.39
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B.2.2 Instantiation Times

Here we report on the percentage of the runtime that is spent in the instantiation
phase of the algorithm. This is the part after a decision has been made, until it is
verified or rejected, excluding the time spent checking collisions.

TABLE B.4: Instantiation Time Percentage Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 30.04% 22.63% 61.19% 7.05% 6.45% 12.90% 29.06% 19.38% 58.45%
Linear 7 32.33% 21.78% 63.96% 7.22% 5.08% 13.64% 31.16% 20.83% 60.84%
Linear 9 34.47% 22.40% 65.76% 5.96% 5.82% 13.19% 35.01% 20.84% 63.75%
Linear 11 37.63% 23.41% 64.37% 5.36% 6.25% 13.27% 37.62% 23.81% 60.94%
Linear 13 37.03% 22.84% 67.81% 5.33% 5.66% 13.86% 37.21% 22.77% 67.64%
Linear 15 37.06% 22.65% 70.73% 5.08% 5.56% 12.95% 37.61% 22.83% 75.30%
Tree 5 26.46% 19.92% 66.97% 3.77% 2.90% 8.90% 24.84% 19.19% 66.66%
Tree 7 29.71% 20.96% 72.74% 4.90% 4.69% 9.27% 27.21% 18.36% 70.33%
Tree 9 29.01% 20.47% 76.27% 3.88% 4.22% 6.71% 26.53% 18.31% 75.35%
Tree 11 30.91% 24.51% 78.70% 4.68% 7.91% 6.04% 30.59% 21.97% 78.67%
Tree 13 30.19% 23.92% 80.36% 3.84% 7.92% 6.06% 29.33% 21.08% 81.04%
Tree 15 30.28% 25.94% 81.05% 3.82% 7.18% 5.51% 30.08% 23.55% 81.45%
Loop 5 61.44% 55.94% 89.71% 6.97% 6.95% 6.52% 62.00% 57.95% 91.62%
Loop 9 58.86% 53.37% 88.87% 4.08% 3.93% 3.07% 59.95% 54.45% 89.29%
Small L. 5 47.28% 40.38% 90.19% 9.53% 9.91% 3.53% 49.12% 42.37% 91.02%
Small L. 9 50.28% 39.76% 90.19% 5.87% 5.85% 1.17% 51.80% 41.32% 89.78%

B.2.3 Collision Checking Times

Here we report on the percentage of the time spent checking for collisions.

TABLE B.5: Collision Checking Time Percentage Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 3.13% 2.50% 1.36% 1.47% 0.87% 0.98% 2.74% 2.21% 1.10%
Linear 7 4.81% 3.44% 1.86% 1.26% 0.91% 0.74% 4.24% 3.18% 1.60%
Linear 9 6.46% 4.81% 2.36% 1.58% 1.45% 0.85% 6.14% 4.23% 2.07%
Linear 11 9.07% 6.20% 2.73% 2.78% 1.72% 0.80% 8.83% 5.55% 2.50%
Linear 13 10.24% 7.62% 3.30% 2.32% 2.38% 1.03% 10.22% 6.79% 3.05%
Linear 15 12.00% 8.37% 3.88% 2.42% 2.58% 1.17% 11.57% 7.55% 3.52%
Tree 5 3.04% 2.30% 1.33% 0.56% 0.48% 0.67% 2.95% 2.25% 1.22%
Tree 7 5.91% 4.17% 2.12% 1.69% 1.69% 1.15% 5.03% 3.31% 1.94%
Tree 9 7.56% 5.37% 2.54% 1.92% 2.10% 0.59% 6.60% 4.49% 2.45%
Tree 11 11.21% 9.26% 3.12% 3.45% 4.61% 0.67% 9.97% 7.30% 2.98%
Tree 13 14.34% 10.90% 3.80% 4.42% 5.24% 0.75% 13.34% 8.49% 3.68%
Tree 15 17.23% 14.97% 4.56% 5.09% 6.74% 0.93% 15.31% 12.55% 4.54%
Loop 5 8.36% 8.56% 2.30% 2.05% 1.28% 0.33% 8.18% 8.81% 2.29%
Loop 9 16.74% 16.88% 4.48% 1.98% 1.69% 0.56% 16.94% 17.23% 4.59%
Small L. 5 5.46% 5.83% 2.45% 1.89% 2.05% 0.28% 5.47% 6.14% 2.48%
Small L. 9 11.35% 9.41% 3.69% 3.57% 2.89% 0.44% 11.70% 9.61% 3.83%
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B.2.4 Propagation Times

In Table B.6 we report the percentage of the runtime spent propagating constraints.

TABLE B.6: Constraint Propagation Time Percentage Statistics

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 18.14% 31.75% 21.79% 1.63% 3.09% 6.76% 18.12% 32.17% 23.01%
Linear 7 22.14% 39.94% 22.81% 1.56% 2.83% 8.71% 22.40% 40.36% 24.18%
Linear 9 23.60% 44.24% 22.88% 1.79% 4.04% 9.00% 23.45% 44.01% 24.29%
Linear 11 23.73% 45.35% 24.54% 1.78% 3.86% 9.66% 23.71% 45.18% 26.90%
Linear 13 24.44% 46.27% 22.45% 2.83% 4.06% 10.58% 24.32% 47.12% 23.55%
Linear 15 24.33% 46.50% 19.95% 2.78% 4.15% 9.71% 24.34% 46.51% 13.96%
Tree 5 13.20% 30.03% 11.24% 1.50% 2.91% 3.16% 13.61% 29.26% 11.31%
Tree 7 16.91% 37.67% 9.27% 2.02% 2.74% 2.50% 16.93% 38.01% 9.27%
Tree 9 17.55% 40.31% 8.68% 2.97% 3.18% 1.98% 16.96% 40.57% 8.68%
Tree 11 17.96% 37.64% 8.31% 2.67% 6.37% 2.27% 17.58% 40.41% 8.10%
Tree 13 18.75% 39.29% 7.98% 2.80% 7.19% 2.30% 17.83% 42.34% 7.85%
Tree 15 18.58% 35.87% 7.55% 3.23% 10.17% 2.45% 17.41% 37.15% 7.38%
Loop 5 16.54% 23.97% 5.72% 2.80% 3.22% 4.57% 16.00% 23.04% 4.42%
Loop 9 15.25% 21.00% 4.94% 2.19% 3.10% 2.33% 14.61% 19.98% 4.55%
Small L. 5 22.92% 38.62% 5.19% 3.43% 7.66% 1.64% 22.46% 36.47% 4.86%
Small L. 9 26.87% 41.65% 4.61% 6.54% 6.98% 0.72% 24.91% 39.66% 4.75%

B.3 Validation Results

In this section we report metrics about the number of times validation failures oc-
curred in the algorithm. We distinguish two kinds of failures: collision failures and
fitting failures. In the case of collision failures, an arrangement is rejected due to
overlap. In the case of a fitting failure, an arrangement is rejected because connec-
tors don’t align as they should.

B.3.1 Collision Failures

TABLE B.7: Collision-based validation failures

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 1.02 0.91 15.70 2.31 2.46 40.47 0 0 1
Linear 7 2.44 1.02 66.84 3.61 2.45 190.06 0 0 2
Linear 9 3.85 3.17 374.96 4.51 4.99 1047.87 2 0 6
Linear 11 8.56 5.58 1082.94 7.39 7.79 3437.06 7 1.5 4.5
Linear 13 10.81 8.21 3362.66 11.70 11.05 7402.87 7.5 6.5 20
Linear 15 15.15 9.71 6292.99 10.86 13.68 9644.44 13 8 54.5
Tree 5 0.17 0.12 2.48 0.47 0.66 5.70 0 0 0
Tree 7 2.25 1.74 6.61 3.13 3.66 10.18 0 0 1
Tree 9 2.82 2.69 12.19 5.49 6.35 19.38 0 0 3
Tree 11 8.26 18.66 74.90 13.74 36.27 199.44 3 2 12.5
Tree 13 18.29 53.07 162.03 40.80 121.04 294.62 6 3.5 29.5
Tree 15 43.81 134.93 354.26 82.16 255.23 645.04 7 13 40.5
Loop 5 35.09 34.44 1424.26 46.83 53.61 1716.38 17.5 14 695.5
Loop 9 1775.85 1523.06 9257.10 1995.62 2093.36 7144.55 814.5 824 6471
Small L. 5 0.00 0.00 1936.87 0.00 0.00 1815.82 0 0 1328.5
Small L. 9 317.26 366.87 5988.77 400.05 461.56 4603.36 56.5 72 4111
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B.3.2 Fitting Failures

TABLE B.8: Fitting-based validation failures

Mean Standard Deviation Median
Structure Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Linear 5 0.00 0.00 0.14 0.00 0.00 0.35 0 0 0
Linear 7 0.00 0.00 0.15 0.00 0.00 0.36 0 0 0
Linear 9 0.00 0.00 0.15 0.00 0.00 0.36 0 0 0
Linear 11 0.00 0.00 0.18 0.00 0.00 0.39 0 0 0
Linear 13 0.00 0.00 0.18 0.00 0.00 0.39 0 0 0
Linear 15 0.00 0.00 0.14 0.00 0.00 0.35 0 0 0
Tree 5 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Tree 7 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Tree 9 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Tree 11 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Tree 13 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Tree 15 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Loop 5 159.63 362.42 9976.46 144.38 392.80 10108.75 121 231 4055
Loop 9 5482.31 8294.26 22409.50 6299.73 7093.75 4587.18 2718.5 6683.5 23561.5
Small L. 5 28.38 105.12 6020.69 29.28 125.49 5066.04 15 63.5 5036.5
Small L. 9 366.00 624.72 23947.41 348.83 514.02 314.81 252 578.5 24000

B.4 Miscellaneous

Finally, we also show the results of the test we did where we force a garbage collect
every 500 iterations. These results are discussed in Section 5.6.

It consists of 100 runs on the Small Loops structure with 9 nodes.

TABLE B.9: Experiments with Garbage Collection

Mean Std. Dev Median
Iterations 24451.2 3222.9 25000.0
Runtime 65351.6 8841.6 66175.3

Propagation Time 5.34% 0.75% 5.14%
Collision Time 3.97% 0.30% 4.05%
Instantiation Time 88.46% 0.58% 88.56%

Collision Failures 6375.3 4909.6 4515.5
Fitting Failures 23275.5 3109.8 23974.5

Metrics for experiments with Garbage Collection every 500 iterations. In this set of
experiments we had 3 successful runs.
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Appendix C

Output Examples

FIGURE C.1: A generation output with module set 1 for a linear graph
with 15 nodes.

FIGURE C.2: A generation output with module set 3 for a linear graph
with 11 nodes.



Appendix C. Output Examples 47

FIGURE C.3: A generation output with module set 3 for a binary tree
graph with 11 nodes.

FIGURE C.4: A generation output of module set 3 for a loop graph
with 5 nodes.
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FIGURE C.5: A generation output of module set 3 for a graph that
contains a node with 6 adjacent edges.

FIGURE C.6: A generation output of module set 2 on a graph with 17
nodes that contains both a loop and branches.
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