
Improved Deadlock Detection and
Detours

An extension for MIRAN

November 28, 2018

Marjolein Zwerver
ICA-5595363

Game and Media Technology
Utrect University, The Netherlands

Supervisors: dr. R. J. Geraerts and W. G. van Toll

Abstract

Crowd simulation is an important area of study since it is a broadly
used subject: from the simulation of crowds in games to increase im-
mersion, to simulations to improve the flow of people during an evac-
uation. As technology advances it is possible to simulate more and
more agents in real time. This also increases interest in the simula-
tion of high-density crowds. Even though there are many methods
that are able to simulate high-density crowds there are still some un-
solved problems. Examples are the forming of deadlocks for a variety
of reasons such as the lack of lane forming or underutilization of avail-
able space.

The aim of this thesis is to create a method that solves some of
these known issues to create more time-efficient paths for agents. For
this purpose, this thesis introduces the Improved Deadlock Detection
and Detours (ID3) algorithm as an extension of the MIRAN algorithm
used for navigation. ID3 improves on MIRAN in two ways: by intro-
ducing deadlock detection and by planning detours using a density-
based method based on the detours planned by the MIRANDA algo-
rithm. The deadlock detection is vision-based and accounts for the
flow of surrounding agents. The detours are improved by determining
the detour goal by sampling density values and detecting what type of
detour is planned. For global detours, paths are repaired using gates
and memory is added to prevent continuous switching between differ-
ent paths.

The experiments show, in most cases, that there was an improve-
ment regarding the time it takes for an agent to reach their goal. In
cases where there was no improvement on the time, there was often
an improvement on either the realism or length of the path.

Crowd simulation
Master thesis

Contents

1 Introduction 4
1.1 Importance of crowd simulation 4
1.2 Density-based crowd simulation 4

1.2.1 Issues with current methods 5
1.3 Research goals and contributions 6
1.4 Document structure . 7

2 Related work 9
2.1 Path planning . 9
2.2 Crowd simulation . 9

2.2.1 High-level planning . 9
2.2.2 Global planning . 10
2.2.3 Route following . 10
2.2.4 Local behavior . 11
2.2.5 Animation . 11

2.3 Flow-based methods . 11
2.4 Density-based crowd simulation 13
2.5 Corner turning . 16

3 Preliminaries 18
3.1 Geometric Concepts . 18

3.1.1 Voronoi diagram . 18
3.1.2 Medial axis . 19

3.2 Modified Indicative Routes And Navigation 19
3.2.1 Explicit Corridor Map 19
3.2.2 Explicit Corridors . 21
3.2.3 Moving the agent . 21
3.2.4 Computing and Choosing Attraction Points 21

3.3 Modified Indicative Routes And Navigation with a Detouring
algorithm . 23
3.3.1 The Density Field . 23
3.3.2 Density-based Candidate Attraction Point Selection . . 23
3.3.3 The Detouring Algorithm 24
3.3.4 Anchoring Bias . 25

3.4 Improved Deadlock Detection and Detours 25
3.4.1 The Velocity Field . 25
3.4.2 Memory . 26

4 Improved Deadlock Detection and Detours 28
4.1 Vision-based deadlock detection 28
4.2 Flow . 31
4.3 Density-based detour goal . 34
4.4 Detecting the type of detour 34

Marjolein Zwerver Page 2 of 59

Crowd simulation
Master thesis

4.5 Repairing global detours . 37
4.6 Memory . 37

4.6.1 Committing to a path 39

5 Experiments and results 41
5.1 Implementation details . 41
5.2 Scenarios . 41
5.3 Results . 47
5.4 Experimental conclusions . 50

6 Conclusions 52
6.1 Summary . 52
6.2 Contribution . 52

7 Future work 54
7.1 Perfect detection of detour type 54
7.2 Estimated density grid . 54
7.3 Navigation through deadlocks 54
7.4 Lane forming . 55

Marjolein Zwerver Page 3 of 59

Crowd simulation
Master thesis

1 Introduction

In Section 1.1, we will start with discussing the importance of crowd simu-
lation. In Section 1.2, we will discuss density-based crowd simulation and
issues with current methods. In Section 1.3, we will discuss our research
goals and contributions and in Section 1.4 we explain the structure of this
thesis.

1.1 Importance of crowd simulation

Crowd simulation is a broad topic of research that has many different appli-
cations. From a business aspect, crowd simulation research can be used to
improve the flow of people in busy places such as shopping malls or airports
[22] which can improve customer satisfaction and income.

Crowd simulation research also has societal importance: research into
evacuation dynamics and crowd disasters can save lives. The goal of the
analysis of evacuation dynamics is to simulate an evacuation situation as
realistically as possible and to try to find what measures can be taken to
ensure people’s safety [14, 25, 13]. It is even used for virtual reality training
systems for urban emergencies [36]. Analysis of crowd disasters is done by
Helbing et al. [16]. In their research, the Love parade disaster is analyzed
and recommendations to prevent future crowd disasters are given.

In terms of entertainment, crowd simulation also plays a small role: al-
gorithms used in games and movies improve the realism and immersion [1].

In addition, ongoing research on the topic of crowd simulation is im-
portant as improvements on hardware and research into working on GPU
hardware [27] allow for more and more realistic simulations to be performed
in real-time.

1.2 Density-based crowd simulation

As the number of agents in simulations increases, agents who plan without
any knowledge of others will no longer produce realistic looking paths, more-
over, the computational load might get too high for interactive applications.
One possibility is to use similar computations for groups of agents to reduce
computation times [4, 34, 35]. The downside of algorithms utilizing this
method is the lack of individual behavior they produce, making the simula-
tion less realistic. Even algorithms that do simulate individual behavior in
high-density scenarios do not always provide realistic behavior: agents may
get stuck in deadlocks or collide with each other. We will use the same def-
inition of a dense crowd as is used in [30] by Stüvel who uses an average of
at least 3 humans per square meter to define dense maneuvering.

Marjolein Zwerver Page 4 of 59

Crowd simulation
Master thesis

Figure 1: An agent takes the shortest path where a slightly longer path would
be traversed faster

1.2.1 Issues with current methods

A lot of issues with current crowd simulation methods can be attributed to
the fact that agents plan without any knowledge of other agents. In high-
density crowds, this leads to different types of problems. In general, these
can be divided into global and local issues. Global issues have to do with the
fact that a general path can lead an agent through locations that contain a
lot of stationary agents blocking a path, while there is a slightly longer path
without agents that would result in a route that takes less time to traverse
(Fig. 1).

Local issues arise because an agent ignores the flow of agents around it.
When many agents move in the same general direction, they might benefit
from aligning their velocities in order to avoid collisions. Another problem
with flow arises in a corridor with two opposing flows: if agents don’t form
lanes, they will get stuck in the middle and get into a deadlock as is shown
in Fig. 2. The second local issue is the underutilization of available space,
when for example agents turn around a corner. As can be seen in Fig. 3,
all agents take the shortest path resulting in overlapping routes where the
better option would be to utilize the space around the corner to avoid this.

Another issue is that an agent sometimes will have no other choice than
to move through a crowded space. This can happen when the only path to
the goal is blocked by a deadlock. Even though these deadlocks should not

Marjolein Zwerver Page 5 of 59

Crowd simulation
Master thesis

occur in realistic situations, there are other situations such as a crowded bar
where moving through a dense crowd is behavior that should be implemented.
In only a few papers, such as the one by Stüvel et al. [32], these kinds of
behaviors are mentioned and handled.

Figure 2: Two opposing groups may form a deadlock in the center of the
corridor

1.3 Research goals and contributions

In this thesis, we seek to improve on paths created by current methods when
simulating high-density crowds. To do this, our aim is to solve some of the
global and local issues mentioned above, and, in doing so, create paths that
avoid congestions and deadlocks. We will try to create better and more re-
alistic paths and use the time it takes for an agent to traverse a path as a
measure of this. The main reason for this is that when there is a short path
blocked by a slow or stationary group of agents we want the algorithm to
prefer longer paths if they can be traversed faster. In conclusion, the main
focus is to improve the arrival time of an agent by avoiding places with many
agents, which avoids slowing the agent down due to collisions. This leads us
to the first research question:

How can we improve current methods to create time-efficient paths in high-
density crowds?

For our attempt to solve the aforementioned issues, we limit the scope of
situations for which we try to solve the problem. The problem scope is
specified with the following assumptions:

• A solution exists such that it is possible for all agents to reach their
goal without global coordination

Marjolein Zwerver Page 6 of 59

Crowd simulation
Master thesis

Figure 3: Underutilization of space around a corner

• Agents have full knowledge of the geometry of the environment

• The environment is static and two-dimensional

• A start and goal position for an agent’s path are given

• Agents have global knowledge of all other agents’ positions and veloc-
ities

To answer the main question we formulated the following subquestions:

• What factors are important when calculating the cost of a path?

• What method can best be used to determine when a path needs to be
replanned?

• What methods can best be used to replan a path?

This thesis seeks to create a method improving on current problems that
similar methods have and in doing so improve behavior for high-density sce-
narios.

1.4 Document structure

The rest of this document is organized as follows. In Section 2, we start sum-
marizing related work regarding path planning and crowd simulation. Then
we will go into more detail by discussing flow-based methods, density-based
methods and methods used for corner turning. In Section 3, we will discuss
concepts and algorithms necessary for understanding our own algorithm such

Marjolein Zwerver Page 7 of 59

Crowd simulation
Master thesis

as the medial axis and the MIRAN algorithm. In Section 4, we will explain
our own algorithm: ID3. In Section 5, we show the experiments we have
conducted and the results. Then, in Section 6, we will conclude that our
algorithm meets our research goals, and, in Section 7, we will discuss our
ideas regarding possible future research.

Marjolein Zwerver Page 8 of 59

Crowd simulation
Master thesis

2 Related work

In this section, we will give an overview of the current research on high-
density crowd simulation. We will start with a broad overview of path plan-
ning and crowd simulation methods and then shift to more specific density-
based methods. For a more general overview on crowd simulation we would
like to refer the reader to the books by Pelechano et al. [26] and Thalmann
and Musse [33].

2.1 Path planning

One of the first algorithms for path planning is Dijkstra’s algorithm [5].
This algorithm finds the shortest path between two nodes in a graph. An
algorithm very similar to Dijkstra’s algorithm was developed later: A* [10].
This algorithm uses a given heuristic function to decrease computation times
on the shortest path. Using A* on a grid is often used for path planning
since the shortest path on the grid is guaranteed to be found if it exists, but
it also has some serious drawbacks [8]. The resulting paths need smoothing,
resulting in an increased computational load. Also, dynamic obstacles or
other agents are not taken into account.

A method that handles single query path planning is the RRT-connect
method [23] by Kuffner et al. This method builds rapidly-exploring random
trees from the start and goal and attempts to connect them. The sampling
of new nodes for each tree is based on the area of its Voronoi region, which
biases exploration towards unexplored paths.

These methods can work well for certain application such as planning
motion for robots with high degrees of freedom, but, to produce realistic
behavior when simulating crowds, there is a lack of flexibility when using
these methods as is. Examples are a lack of smoothness of the paths or the
inability to avoid other agents or dynamic obstacles.

2.2 Crowd simulation

To fix the aforementioned issues with current methods, van Toll et al. sug-
gests to use a hierarchy for agent navigation in virtual crowds [39] that allows
for the needed flexibility. The five levels are high-level planning, global route
planning, route following, local movement, and animation.

2.2.1 High-level planning

High-level planning plans which goals to visit by translating a semantic action
(e.g. go to the store) to one or more paths from a start position to a goal
position.

Marjolein Zwerver Page 9 of 59

Crowd simulation
Master thesis

2.2.2 Global planning

The second level, global path planning, creates a route between the start
and goal passed from the high-level planning level. For some applications,
such as motion planning for robotics, these paths can be used as is. For
other applications such as video games or evacuation studies, these paths are
unrealistic and are used as a route to be followed roughly, also known as an
indicative route. Examples are the probabilistic roadmap method and the
RRT-connect method.

The probabilistic roadmap method [21] attempts to construct a roadmap
of the environment to use for queries. The learning phase that constructs
the roadmap is divided into two steps: a construction step and an expansion
step. The construction step is used to add nodes to the roadmap and the
expansion step is used to improve connectivity of the roadmap by selecting
nodes in difficult regions and attempts to connect them to existing connected
components.

2.2.3 Route following

The route following level calculates a preferred velocity that follows the global
path. Examples are the Indicative Route Method and the Modified Indicative
Routes and Navigation method.

The Indicative Route Method (IRM) [20] by Karamouzas et al. uses a
corridor around the global path or indicative route to solve flexibility issues.
A backbone path is created by retracting the indicative route onto the medial
axis of the environment. The corridor that represents the free space around
this path is then calculated. The indicative route is then followed using four
different forces:

• A boundary force that is a repulsive force away from the corridor’s
boundary

• A steering force towards an attraction point along the indicative route

• A noise force to generate slightly different paths for each agent

• An obstacle-avoidance force that is a repulsive force from obstacles
within a region of influence

A more recent method based on the Indicative Route Method is the Mod-
ified Indicative Routes and Navigation [18] or MIRAN for short by Jaklin
et al. This method adds the possibility to take an agent’s region preference
into account. For example, bicyclists may prefer the bike lane over other
lanes and pedestrians may dislike walking over muddy terrain. This problem
is also described as an agent traversing a heterogeneous environment and is
solved here by assigning weights to the environment polygons that represent
each type of terrain. The steering force that the Indicative Route Method

Marjolein Zwerver Page 10 of 59

Crowd simulation
Master thesis

uses is complemented with weights assigned to attraction points based on
the weights of the types of terrain that are crossed.

2.2.4 Local behavior

The local behavior or collision-avoidance takes the preferred velocity cal-
culated by the route-following method and calculates the final velocity by
taking a velocity close to the preferred velocity that avoids other agents and
obstacles.

One of the earlier methods for local behavior is the social-force model
by Helbing and Molnár [15]. It is stated that pedestrian movement can be
described as if they would be subject to “social forces”. Instead of these
forces being physical, external forces, they originate from an agent’s internal
motivation to move. This internal motivation depends on the agent’s field of
view. The social force is comprised of three different components. The first
component is a force that causes an attraction towards the goal. The second
component is a collision-avoidance force and the last component is an attrac-
tive environment force. This last force is used to attract the agent towards
people (friends, street performers etc.) or objects (stores, shop displays, etc.).

A more recent method by van den Berg et al. [37] presents the Optimal
Reciprocal Collision-Avoidance or ORCA method based on the concept of
velocity obstacles [6]. To determine the best velocity for an agent, a half-
plane of permittable velocities that are guaranteed to be collision-free with
respect to each other agent is determined. The intersection of these half-
planes then produces the set of permitted velocities for that agent compared
to all other agents.

2.2.5 Animation

And last, the animation level adds an animation to the constructed path.

2.3 Flow-based methods

Another category of crowd simulation methods are flow-based methods. As
opposed to agent-based methods, flow-based methods focus on the crowd as
a whole and often have a decrease in computation times as a result.

One of the earlier flow-based methods is the flow tiles method [3] by
Chenney. This method provides the user with an interface to construct a
velocity field using flow tiles. These velocity fields can be used for different
purposes besides crowd simulation such as the simulation of rivers or fog.
Opposite to its broad use is the lack of implementation options for specific
behavior needed for crowd simulation such as varying goal points or speeds
between different agents. This makes its use for crowd simulation limited
since there is a lack of individual behavior which reduces the amount of
realism that can be achieved.

Marjolein Zwerver Page 11 of 59

Crowd simulation
Master thesis

Figure 4: Overview of the algorithm by Narain et al. (Figure courtesy of
Narain et al. [24])

Treuille et al. presented a method that combines global planning with
collision-avoidance [34]. The proposed method works by combining different
potential fields to accomplish different goals. Examples are a static goal field
and a dynamic field that models the other agents for collision-avoidance.
These potential fields are shared among agents with roughly the same goal,
which saves on computation time. The downside of this methods is the lack of
individual behavior. Due to the increase of computation time, as few groups
as possible are preferred. Even though it is stated that interesting crowd
phenomena can be attained with few groups, the small number of groups
limits the realism of simulations. Another downside for crowd simulation of
high-density crowds is the lack of coordination between groups, which will
lead to suboptimal paths for the crowd as a whole.

There are also methods that try to combine the possibility for individual
behavior of agent-based methods with the efficiency of flow-based methods.
An example of such a hybrid method is proposed by Narain et al. [24]. Fig.
4 shows an overview of this method. The method needs a global planner to
determine an agent’s preferred velocity. Then, the speed and density field
are calculated over all agents and this information is combined with the pre-
ferred velocity to get an initial speed. Then, the unilateral incompressibility
constraint is solved, which enforces volumetric constraints on the crowd and
serves as a counterpart to collision-avoidance. Obstacles are avoided by in-
creasing the density of the cells in which the obstacle is contained accordingly.
Even though this method is able to simulate a large number of agents in real-
time there are some drawbacks. One of the downsides of this method is that
it does not anticipate collisions, which leads to suboptimal unrealistic paths.

Marjolein Zwerver Page 12 of 59

Crowd simulation
Master thesis

2.4 Density-based crowd simulation

The aforementioned methods will perform well for a single agent, but as the
number of agents increases, the quality of the paths as a whole will decrease
since global paths might overlap causing agents to collide when this might
not be necessary. The issue is that each agent plans a path without any
knowledge of the positions or paths of the other agents. To solve this issue,
some methods have been presented that use global density information.

A relatively simple method that uses density information for the calcula-
tion of global paths is presented by Karamouzas et al. [19]. A density map
is created by adding density values to a grid and then A* is used on this grid
to produce indicative routes for all agents. After the indicative routes are
calculated, the Indicative Route Method is used to follow these routes. A
nice feature of this method is that it is able to steer agents away from un-
desired regions by increasing the density of the relevant cells. Computation
times are reduced because of the way the density values are updated. Some
issues could still surface because the global paths are planned once based on
the density information available at that time. There could be areas on this
global path that were not crowded at the time the global path was created,
but are crowded the moment the agent passes it.

A paper that solves this issue and uses density information for global
planning and partial replanning is presented by van Toll et al. [40]. This
method uses a navigation mesh that is based on the Explicit Corridor Map [7].
This navigation mesh divides the space into a set of nonoverlapping polygons.
The density value for each cell is updated for each movement step by dividing
the total area of all agents contained in the cell by the total cell area. These
density values can be used for global planning by assigning a density value
for each edge of the medial axis and using A* to find the shortest weighted
path. This algorithm also allows for replanning the path to the goal. This is
useful since density values change as the crowd moves and previously empty
corridors can get blocked up as time passes. A downside to this replanning is
that it is possible for an agent to switch between two corridors if the situation
is really unfortunate. This could be solved by implementing some form of
memory.

While both above methods only influence global behavior, the method by
van Goethem et al. [38] focuses on local behavior. It combines individual
behavior with flow behavior. Each agent’s velocity is computed by interpolat-
ing between the agent’s preferred velocity and the perceived stream velocity
using the agent’s incentive. The agent’s local perceived density influences
the stream velocity in a way that switches between following and aligning
behavior. The incentive is influenced by, among other things, the deviation
from the preferred velocity, the local density and the time spent so far to
reach the goal. The presented method reduces the number of collisions be-
tween agents at high densities, resulting in more time-efficient paths. The
only downside is that the method is local and will not influence an agent’s

Marjolein Zwerver Page 13 of 59

Crowd simulation
Master thesis

global path.
Another method that combines global and local behavior is described in

the master thesis by Bloemheuvel [2]. This method uses a dynamic global
path to increase flexibility. This path is then followed using an alternative
Indicative Route Method which uses local density. If the density is high, the
lane will be followed strictly. If the density is low, the shortest path is taken
which is in accordance with real-life observations.

Another method focused specifically on the simulation of high-density
crowds is the High-Density Autonomous Crowds method or HiDAC [25] by
Pelechano et al. This method is based on the social forces model discussed
in Section 2.2.4 and is combined with psychological and geometrical rules to
simulate emergent behaviors. This algorithm performs very well for evacu-
ation situations: fallen agents are modeled by dynamic obstacles and impa-
tient and panicking agents can be modeled as well. A shortcoming of this
method is that it appears to be made specifically for evacuation simulations.
Collision with other agents is only checked within the same room or near the
room’s doorways. This aspect of the algorithm significantly reduces compu-
tation time, but it is unclear if the algorithm could be extended to larger
open spaces without a significant increase in computation time.

To conclude: there are methods handling the global issues and ones han-
dling the local issues seen in high-density planning, but none manage to solve
both issues at the same time. Also few of these methods solve the issue of
underutilized space when for example turning corners.

The small project by Seń [29] offers an interesting approach that does
improve on local and global issues. It improves upon MIRAN’s candidate
attraction point selection by adding an extra weight factoring in the local
density information. Another important aspect of this method is when high-
density areas are detected, a detour is planned towards a point further along
the indicative route using global density information. A further in-depth
explanation can be found in Section 3.3.

Regarding the issues mentioned in Section 1.2, these are only partially
solved or improved upon. It does, however, improve upon both local and
global issues. The first local issue regarding flows is not handled, as all
other agents are stationary. The issue of underutilized space around corners
is improved upon by the improved candidate attraction point selection by
using the density grid.

Regarding the global issues: this method will not avoid crowded paths
when calculating the initial indicative route, but when they are detected as
the indicative route is traversed, a detour will be planned. This detour can
plan around deadlocks as can be seen in Fig. 5., but it can also make an
unnecessary detour when the agent is already going with the flow of agents.
Another issue is that the quality of the detour that is planned depends on the
local-area-radius parameter. If this parameter puts the goal for replanning
inside of the deadlock, the last part of the detour will go back into the
deadlock, see Fig. 5c.

Marjolein Zwerver Page 14 of 59

Crowd simulation
Master thesis

(a) The initial indicative route

(b) Indicative route after planning a de-
tour

(c) Indicative route after planning a de-
tour when the local-area-radius is too low

Figure 5: Global problem solving by MIRANDA

Marjolein Zwerver Page 15 of 59

Crowd simulation
Master thesis

2.5 Corner turning

A situation where problems at high densities often are apparent is when
agents turn a corner. The methods mentioned in this section try to improve
agent behavior at corners.

A relatively simple method for corner turning is presented by Rojas et al.
[28]. This paper utilizes an invisible group agent comprised of five fixed agent-
sized slots in a row. An agent is assigned to each of the slots. Each agent
uses its corresponding slot as a waypoint agent to be followed. The speed at
which the agent follows the group agent is based on a finite-state machine
depending on the distance from the group agent. For effective corner turning
behavior, path wide triggers are placed right before the corner. In addition,
user-defined waypoint graphs are placed to guide agents along the corner.
Once the first agent corresponding to a group agent steps on the trigger, the
best waypoint graph is chosen. The group agent then follows this waypoint
graph to efficiently guide agents along the corner. The collision-avoidance is
done separately to avoid other agents and dynamic obstacles. The existence
of parallel waypoint graphs balances wide corner turns and corner hugging
increasing the flow of people. The downside to this approach is that these
waypoint graphs have to be created manually which can take up a significant
amount of time for large environments such as city blocks.

He et al. [12] observes that people tend to use safer routes rather than
short ones to move around corners [11]. To guide agents along these safer
routes, shadow obstacles are placed on each corner. Once the area of the
shadow obstacle has been entered, the agent will be steered such that the
viewing range is maximized. Once the agent can sufficiently see beyond the
corner, the shortest route to the goal is chosen again. The improved visibility
reduces the chances of collision. At the same time, little use is made of
additional space on the outside of the corner and there is also no coordination
between agents, which will still provide issues at higher densities.

The paper by Tsai et al. [35] proposes to use a similar approach for
navigation fields by placing crowd monitors at the corners of objects. These
crowd monitors collect data on crowd flow and density around their assigned
corner. A guidance path is then created around the corner, which is converted
to a guidance field as can be seen in Fig. 6. This approach reduces congestion
because it is specifically tailored to the local density and flow, and guides
agents away from congested areas. One disadvantage of this method is that
it does not handle dynamic obstacles. Also, the underlying navigation field
is created using only a single goal cell, guiding all agents to the same point.

The paper by Dias et al. [4] uses a Cellular Automata model to move
agents around corners. To produce realistic behavior, their model is cali-
brated using experimental data collected by Zhang et al. [42]. Both discrete
and continuous floor representations were used and it was verified that both
could accurately represent pedestrian behavior around corners. One of the
advantages of Cellular Automata models is that they are easy to implement,

Marjolein Zwerver Page 16 of 59

Crowd simulation
Master thesis

Figure 6: (a) The initial navigation field. (b) The guidance path and resulting
navigation field. (Figure courtesy of Tsai et al. [35])

in return more complex individual behavior cannot be modeled. With this
model, the used trajectory data was of a single person turning a corner and
so more complex inter-pedestrian interactions cannot be modeled.

To conclude: the methods mentioned in this section are specialized in im-
proving behavior around corners, but it is often unclear if and how the other
local and global density-related issues are being dealt with. This shows that
there is a need for a method that either switches between existing methods
or an extension of current methods to solve multiple issues at the same time.

Marjolein Zwerver Page 17 of 59

Crowd simulation
Master thesis

3 Preliminaries

This section provides an in-depth explanation of the geometric concepts and
algorithms used and extended within this thesis. In Section 3.1, we discuss
basic geometric concepts that underlie the Modified Indicative Routes And
Navigation algorithm discussed in Section 3.2. In Section 3.3, we discuss an
extension: the Modified Indicative Routes And Navigation with a Detouring
Algorithm method. In Section 3.4, we will discuss the velocity field and
memory components, which are components of our own extension.

3.1 Geometric Concepts

3.1.1 Voronoi diagram

The Voronoi diagram of a set of points P is the subdivision of the plane into
regions. For each point p in P called a site, its corresponding region consists
of all points in the plane closest to p. Points that are equidistant from two
sites form the Voronoi edges and points equidistant from three or more sites
are the Voronoi vertices. An example of a Voronoi Diagram of a set of points
can be found in Fig. 7.

Figure 7: A Voronoi diagram of a set of points

There are various generalizations of the Voronoi diagram calledGeneralized
V oronoi Diagrams (GVD) including Voronoi diagrams for higher-dimensional
spaces, Voronoi diagrams with different metrics and distance functions, and
Voronoi diagrams with different types of inputs. For applications in crowd
simulation, we are interested in Voronoi diagrams of straight-line segments.
This diagram consists of two types of edges: a straight-line segment and a
parabolic arc. Figure 8 shows the different types of Voronoi edges depending
on the type of sites.

Using the definition of a GVD for line segments, we can extend the con-
cept to polygons by treating each polygon as a finite chain of straight-line
segments closing in a loop.

Marjolein Zwerver Page 18 of 59

Crowd simulation
Master thesis

(a) Voronoi segment defined by
two points

(b) Voronoi segment defined by a
point and a line

(c) Voronoi segment defined by
two lines

(d) Two Voronoi segments de-
fined by two intersecting lines

Figure 8: Different Voronoi segments based on the type of sites. The blue
segments are the Voronoi segments defined by the black sites

3.1.2 Medial axis

Related to the concept of the GVD is the medial axis. The medial axis is
obtained from the GVD by deleting edges that connect to obstacle’s convex
corners. The medial axis of a U-shaped environment is showed in Fig. 9a.
Note that the edges that are removed are not necessary for path planning
since they do not give any access to new parts of the environment. These
edges are merely connections between the medial axis and the obstacle.

3.2 Modified Indicative Routes And Navigation

In this Section we discuss the Modified Indicative Routes And Navigation or
MIRAN method and its underlying concepts. Algorithm 1 gives an overview
of the method.

3.2.1 Explicit Corridor Map

The Explicit Corridor Map (ECM) is the medial axis of the environment
annotated with event points together with their closest points to obstacles.
Every edge is formed by a concatenation of the types of segments shown in
Fig. 8. The points where these types of segments join are called the event
points. For every vertex and event point, the closest obstacle point is stored.

Marjolein Zwerver Page 19 of 59

Crowd simulation
Master thesis

(a) (b)

Figure 9: (a) The medial axis of a U-shaped environment in blue. The dotted
lines are the edges removed from the GVD to obtain the medial axis. (b) The
Explicit Corridor Map of a U-shaped environment. The orange lines connect
the vertices to their closest obstacle points.

Algorithm 1 The MIRAN method

Input. Start s, goal g, indicative route from s to g
Output. Smooth terrain-dependent path from s to g

1: i← 0
2: x0 ← s
3: while xi 6= g do
4: ri ← ComputeReferencePoint(xi)
5: Ai ← ComputeCandidateAttractionPoints(ri, xi)
6: αi ← PickBestCandidate(Ai, xi)
7: xi+1 ← MoveAgentTowardsAttractionPoint(xi, αi)
8: i← i+ 1

Marjolein Zwerver Page 20 of 59

Crowd simulation
Master thesis

Since an edge is defined by two obstacles, the closest obstacle points are the
closest points on each of these obstacles. This is the same for the vertices,
except these are defined by three or more obstacles and will have an equal
number of closest obstacle points. Fig. 9b shows the ECM of a U-shaped
environment.

3.2.2 Explicit Corridors

The ECM can be used to plan a path for each agent. The start point s and
goal point g are retracted onto the medial axis resulting in s′ and g′. A graph
search is then used to find the shortest path between s′ and g′. This path
is called the Indicative Route or IR. In order to plan a path, an Explicit
Corridor is extracted from the ECM corresponding to the indicative route.
This explicit corridor is a description of the free space around the path. It
is defined as a sequence of maximum clearance disks with their center on
the medial axis. This corridor is used to be able to plan around dynamic
obstacles and agents, since the corridor indicates the free space around the
path.

3.2.3 Moving the agent

After the path is calculated and the corresponding corridor is extracted,
MIRAN uses a force-based steering method very similar to the IRM to follow
the path. Three forces are calculated to steer the agent towards its goal: A
steering force Fs(x) towards the goal, a boundary force Fb(x) away from the
corridor’s boundary and an avoidance force Fo(x) to avoid dynamic obstacles
and other agents.

3.2.4 Computing and Choosing Attraction Points

The steering force Fs(x) is implemented as an attractive force towards an
attraction point. This attraction point is a point on the medial axis ahead
of the agent, pulling the agent towards the goal. First, the set of possible
attraction points Ai is calculated for each timestep i after which the best
attraction point is selected.

To compute Ai, first, the reference point is computed. If the agent’s
current position is xi, the reference point ri is defined as the first closest
point from xi to the part of the indicative route πind that lies between the
previous reference point ri−1 and the previous attraction point αi−1 for i ≤ 1
(Fig. 10). For the initial step i = 0, r0 = x0 is used.

To calculate the set of attraction points Ai, two parameters are used: the
sampling distance d and the shortcut parameter σ. The sampling distance
defines the maximum curve length distance between the candidate attraction
points. The shortcut parameter defines the maximum curve length distance
from the reference point to the farthest attraction point. If the value of this
parameter is increased, points closer to the agent but further along πind can

Marjolein Zwerver Page 21 of 59

Crowd simulation
Master thesis

Figure 10: The reference point is the closest point on the part of πind that
lies between ri−1 and αi−1. Choosing the closest point c would lead to an
undesired shortcut. (Figure courtesy of Jaklin et al. [18])

be used as an attraction point, increasing the length of path that is skipped
and increasing smoothing.

After calculating the reference point, the part of πind that is visible from
xi: Vi is computed. This leads to the division of πind into invisible and
visible intervals Vj = [aj, bj] such that for each t ∈ Vj, πind(t) is visible. The
endpoints of each visible interval πind(aj) and πind(bj) are the first points
added to Ai. Next, each visible interval is sampled using sampling distance
d as the curve length distance between two consecutive attraction points. The
sampling is repeated until the total curve length distance exceeds shortcut
distance σ. The final set Ai (Fig. 11) contains all attraction points sorted
from smallest to largest curve length distance from the reference point.

Figure 11: Set of attraction points generated by the MIRAN method (Figure
courtesy of Jaklin et al. [18])

After computing Ai, the best point needs to be selected to serve as the
agent’s attraction point. This is done using weighting function ω. For each
attraction point αij we consider the straight-line segment between the agent’s
current position xi and αij . The weight ω of this line segment l(aij , xi) is
computed using the Euclidean distance of the line segment, the different
types of terrain it crossed and the agent’s terrain preferences by using the
following formula:

Marjolein Zwerver Page 22 of 59

Crowd simulation
Master thesis

ω(l(aij , xi)) =
∑
T∈Tij

w(T) ∗ lTij/dij ,

where Tij is the set of terrain types that l(aij , xi) crosses, w(T) is the
weight for each terrain type T , lTij is the length of the line segment that
intersect terrain type T and dij is the curve length distance along πind from
the reference point ri to the candidate attraction point αij . After calculating
the weights for each attraction point, the attraction point corresponding to
the lowest weight ω is selected as the final attraction point.

The steering force Fs(x) is now in the direction of the chosen attraction
point and with some speed close to the agent’s preferred speed. The total
force F (x) = Fs(x) + Fb(x) + Fo(x) is the force exerted on the agent.

3.3 Modified Indicative Routes And Navigation with
a Detouring algorithm

The Modified Indicative Routes And Navigation with a Detouring algorithm
or MIRANDA is an extension for MIRAN with two key components: the
density-based attraction point selection and the detouring algorithm which
both rely on the density field.

3.3.1 The Density Field

The density field DF is a function that provides a density value ρ for every
point in the free space. The function used here is the Gaussian Density
Distribution function with σ = 4, applied to a grid. Each agent interacts
with this density field using two parameters: ρt is the maximum density an
agent is willing to navigate through and ρs is the scaling factor that describes
the weight of the density values when planning a path.

3.3.2 Density-based Candidate Attraction Point Selection

This method uses the information from the density field to improve on the
candidate attraction point selection from the MIRAN method. This is done
by adding a density weight to the weight for each attraction point. The value
of this weight is the weighted average value of density over the line segment
l(αij , xi). There is also a density threshold ρt. When the density for any
point on the line segment l(αij , xi) is larger than ρt, the value of the density
weight is set to infinite. This represents that the path from xi to αij is not
traversable. This results in the following weight function:

δ(l(aij , xi)) =

infinite if DF(p) > ρt at any point p on l(αij , xi)

∫ xi
αij
DF(p)dp

dij
otherwise

Marjolein Zwerver Page 23 of 59

Crowd simulation
Master thesis

After calculating the density weight, the final weight is calculated by
adding it to the original weight:

w(αij) = ω(l(αij , xi)) + ρs ∗ δ(l(αij , xi))

3.3.3 The Detouring Algorithm

In addition to the density-based candidate attraction point selection, a de-
touring algorithm is used to plan around blocked routes. Algorithm 2 gives
an overview of the algorithm. The first step in constructing the detour is the
calculate the local detour goal. The local detour goal gdetour is considered to
be the limit of the local area for detouring purposes (Fig. 12). gdetour is taken
to be the first intersection of the unvisited part of the agent’s IR: πfree and
the local area boundary. The local area boundary is a circle with the agent’s
position xi as its center point, and a radius dlocal. The first intersection is
taken to prevent undesired detours in for example a maze-like environment.

Algorithm 2 FindLocalDetour

Input. Current position xi, local-area-radius dlocal, indicative route πind
and its unsampled subcurve πfree, goal position g, density field DF
Output. A local detour πmodified from xi to a point on πfree free from
high-density areas.

1: c← the circle centred on xi with radius dlocal
2: P ← the set of intersections between c and πfree
3: if P is empty then
4: gdetour ← g
5: else
6: gdetour ← the first point along πfree in P
7: πdetour ← A*(xi, gdetour)
8: j ← 0
9: p0 ← gdetour

10: π0 ← A*(xi, p0) + the subcurve of πind from p0 to gdetour
11: while path cost(πj) ≤ β ∗ path cost(πdetour) and pj ∈ πfree do
12: pj+1 ← pj slid back d along πfree
13: πj+1 ← A*(xi, pj+1) + the subcurve of πind from pj+1 to gdetour
14: j ← j + 1

15: πmodified ← πj−1

After gdetour is determined, a path from xi to gdetour is found using A*.
The cost function of A* is altered to take density information into account.
The step cost now consists of the line segment length, the region weight and
the density weight, resulting in the following formula:

stepcost(na, nb) = l(na, nb) + ω(l(na, nb) + δ(l(na, nb)) ∗ ρs

Marjolein Zwerver Page 24 of 59

Crowd simulation
Master thesis

Figure 12: The local area boundary in green, the intersection with the IR is
the detour goal (Figure courtesy of Seń et al. [29])

3.3.4 Anchoring Bias

After finding the detour, the method states that there is an anchoring bias:
a desire to return to the original path. The goal is to find the path that
reconnects to the original path the fastest while the difference in path cost
lies under a certain percentage of the cost of the original path. This is
implemented by sampling πfree in the backwards direction starting at gdetour.
For each sample πj, a path from the agent to πj is calculated using A*. The
new path cost is compared to the increased original cost:

path cost(πj) ≤ β ∗ path cost(πdetour),

where β > 1 is the factor by which the path cost is allowed to increase.
When πj does not meet this requirement anymore, πj−1 is chosen as the final
detour goal πmodified. Detour paths with different values for β can be found
in Fig. 13.

3.4 Improved Deadlock Detection and Detours

In this Section we discuss the velocity field and memory components which
are components of our own algorithm.

3.4.1 The Velocity Field

One of the things we want to accomplish with our extension is that when a
group of agents blocks a path for another agent, but their velocity is very
similar to this agent’s velocity, no deadlock is detected and the agent will
continue its original path. To accomplish this, we will use a velocity field
to access the velocity of agents. The velocity field VF is a function that
provides a velocity value vp for every point p in the free space. Any desired

Marjolein Zwerver Page 25 of 59

Crowd simulation
Master thesis

(a) (b)

Figure 13: (a) Original path. (b) Detour path using different values for β.
Dark green β = 1.05, light green β = 1.075, turquoise β = 1.1, dark blue is
the detour before modification. (Figure courtesy of Seń et al. [29])

function can be used here, but we propose the following formula as used in
Hillbrand et al. [17] :

#»

V (l, t) =

∑
p∈P (t)

#»v pf(l, p)∑
p∈P (t) f(l, p)

,

where l is a location, t is the current time, P (t) is the set of locations of the
agents, #»vp is the velocity of agent p and f(l, p) is a weighting factor. Because
we use the Gaussian-based density function, the corresponding weighting
function is as follows:

fgaussian(l, p) =
1

πR2
e−

d(l,p)

R2 ,

where d(l, p) is the Euclidean distance between l and p and R is a param-
eter that influences the agent’s contribution to the perceived density. This
function is applied to a grid over the free space, where the cell width needs
to be equal to the cell width used for the density field.

3.4.2 Memory

A disadvantage of previous methods is, in worst case, that an agent could
switch between two paths indefinitely. In this case, using some form of mem-
ory can be beneficial. Memory could also be useful with stationary agents if,
for example, we would limit the use of density values only to the cells that
are visible to the agents. This could prevent the same situation where the
best path is alternating between two corridors, and would add more realism

Marjolein Zwerver Page 26 of 59

Crowd simulation
Master thesis

at the cost of longer total path lengths. In these cases, we will refer to the
agents blocking the path as a block.

To solve the issue, we add a list of memoriesM to the agent. A memory
M consists of the following components:

• pblocked1 : the first point on πind that was blocked

• pblocked2 : the last point on πind that was blocked

• tblocked: the time the block was encountered

• cblocked: a list of the cells that are affected

• vblock: the block’s average velocity

When a deadlock is detected, cblocked is determined by using a flood-fill
algorithm starting at pblocked1 to find all grid cells c for which DF(c) > ρt.
vblock is calculated by taking the average velocity of these cells:

vblock =

∑
c∈cblocked VF(c)

|cblocked|

Marjolein Zwerver Page 27 of 59

Crowd simulation
Master thesis

4 Improved Deadlock Detection and Detours

In this Section we will discuss our own contribution: the Improved Deadlock
Detection and Detours or ID3 algorithm. The ID3 algorithm consists of sev-
eral components discussed in the following sections. The deadlock detection
is improved by introducing vision-based deadlock detection and accounting
for flow. The detours are improved by determining the detour goal by sam-
pling density values and detecting what type of detour is planned. For global
detours, paths are repaired using gates and memory is added to prevent con-
tinuous switching between two paths.

4.1 Vision-based deadlock detection

The detection of a deadlock when using the MIRANDA method uses the
sampling and look-ahead distance used by MIRAN. The advantage of using
the existing attraction points is that no extra computation time is needed to
compute these points. Unfortunately, there are several disadvantages:

When using higher sampling distances similar to the ones in the paper
introducing the MIRAN method (d = 10 or 20), small deadlocks can easily
go undetected, unless the cap rejection limit is really low. Changing the
parameters involved with the deadlock detection also influences the MIRAN
algorithm, while, ideally, these components would be separate. Lastly, unless
a high look-ahead distance is used with a relatively low rejection cap limit,
deadlocks will only be detected two meters ahead (Fig. 14b).

To ensure deadlocks are detected in time, we propose a vision-based
method (Fig. 14c). This method uses a deadlock length parameter ld that
indicates the size of the deadlocks the agent needs to plan around. The vis-
ible part of the agent’s indicative route is sampled using sampling distance
dv which is calculated as follows:

dv = ld ∗ precision

Where the precision determines the number of sample points. Making the
number of sample points dependent on the deadlock length ensures we do
not get more sample points than necessary for large deadlock sizes. For now,
we use ld = lcell = 0.3 so a detour is always planned if a path is blocked,
independent of the number of agents blocking the path.

Marjolein Zwerver Page 28 of 59

Crowd simulation
Master thesis

(a)

(b) (c)

Figure 14: (a) Initial configuration. (b) Without vision-based detection, the
deadlock is detected very late. (c) With vision-based detection, the deadlock
is detected at the start. This way, the agent starts evasion at an earlier stage.

For each sample point pj, if the density value for the corresponding grid
cell is higher than the density threshold, the sample point is blocked:

DF(pj) > ρt

The distance between consecutive blocked points is measured and if this
distance exceeds ld, it is classified as a deadlock. We chose precision = 0.2
to ensure that in the worst case, the measured deadlock size is only 20 percent
lower than the actual size. The precision can be increased, but this will come
at the cost of higher computation times.

Fig. 15 shows the influence of ld on the agent’s behavior. While we set
our deadlock size to the grid cell size, it might be beneficial to increase the
size so detours are not planned around small deadlocks. When there are only
two rows of agents as in Fig. 15a instead of replanning around the block,

Marjolein Zwerver Page 29 of 59

Crowd simulation
Master thesis

navigating through the block of agents might be more desirable behavior.
We will extend on possible methods to accomplish this in Section 7. Fig.
15b shows an agent with ld = 2.0 which prevents the detour being taken.
Fig. 15c shows an agent with ld = 0.3 which results in the agent planning a
detour around the block.

(a)

(b) (c)

Figure 15: (a) The initial scenario. (b) No detour is taken because the part
of the IR that is blocked is smaller than the deadlock size parameter. (c)
The deadlock size parameter is set to grid cell width and a detour is planned.

In contrast to MIRANDA which checks for deadlocks every simulation
step using information that is mostly already present in the framework, our
method computes additional sample points. Because of this, we decided to
add a cooldown tvision to our vision-based method. The cooldown is the
number of seconds between our vision-based deadlock checks. The addition

Marjolein Zwerver Page 30 of 59

Crowd simulation
Master thesis

of the cooldown ensures that the user can make their own trade-off between
precision and computation time that is most suitable for the application.

4.2 Flow

The MIRANDA method plans a detour when a dense enough group of agents
is detected, regardless of the movement of this group (Fig. 16b). When the
movement of the group of agents is similar to the agent’s desired movement,
the agent can move with the flow and prevent an unnecessary detour (Fig.
16c). To accomplish this, we used the concept of an incentive from van
Goethem et al. [38]. This concept uses several factors to determine an
agent’s incentive to coordinate with the crowd; the one we adopt is the
deviation factor Φ, which makes an agent leave a stream if its individual
velocity deviates too much from the stream’s velocity.

The MIRANDA method checks if the density value of an attraction point
exceeds threshold ρt to determine whether or not it should be blocked. In ad-
dition, we add two requirements regarding the difference between the agent’s
velocity vindiv and the stream’s velocity vstream. For an attraction point to be
blocked, the first additional requirement is that the difference between the
angle of the agent’s velocity vindiv and the flow’s velocity vstream must exceed
threshold Φdev. Where vstream is determined by looking up the corresponding
value in the velocity field VF as is described in Section 3.4.1. The second
additional requirement is that l(vstream) must be lower than the agent’s speed
l(vindiv) multiplied by the speed deviation speeddev. The speed deviation is
the factor by which the agent is willing to reduce its speed, so speeddev = 0.5
signifies that the agent is willing to lower its speed by half.

The added two requirements result in the improved density weight δ+(l(aij , xi)):

δ+(l(aij , xi)) =

infinite if DF(p) > ρt at any point p on l(αij , xi)
and ∠(vindiv, vstream) > Φdev

and l(vstream) < l(vindiv) ∗ speeddev
∫ xi
αij
DF(p)dp

dij
otherwise

When using the vision-based deadlock detection, we do not use the agent’s
current velocity vindiv. Instead, for each sampled point we use the expected
direction of the agent at that point by taking the local angle of the indicative
route vexpect. We do this to prevent cases where the agent’s current velocity
does not match the velocity at the sampled points. This for example happens
when an agent is turning at a corner. Not using vexpect in such a case would
result in the agent planning a detour while it is not necessary.

Marjolein Zwerver Page 31 of 59

Crowd simulation
Master thesis

(a) (b)

(c)

Figure 16: (a) Initial configuration. (b) With MIRANDA, deadlocks are
detected and detours are planned for a large portion of the group. (c) With
our method, no deadlocks are detected and the agents proceed as normal.

The influence of speeddev and angledev is show in Fig. 17. The group
has a preferred speed of 1.0 m/s and the single agent has a preferred speed
of 1.4 m/s. In Fig. 17b two paths were traced corresponding to an agent
with different values for speeddev while angledev = 1

2
π. Here the formula

l(vstream) < l(vindiv)∗speeddev is used to determine if a detour will be planned.
The light green path is traced for an agent with speeddev = 1.0. Here 1.0 <
1.4 ∗ 1.0, which results in the path being blocked and the agent planning a
detour. The yellow path was traced for an agent with speeddev = 0.5. Here
1.0 ≮ 1.4 ∗ 0.5, which results in the cells not being blocked and the agent
continuing its path behind the group of agents.

In Fig. 17c two paths were traced corresponding to an agent with different

Marjolein Zwerver Page 32 of 59

Crowd simulation
Master thesis

values for angledev while speeddev = 0.5. Here the formula ∠(vindiv, vstream) >
Φdev is used to determine if a detour will be planned. The light green path is
traced for an agent with angledev = 1

4
π. Here ∠(vindiv, vstream) > 1

4
π, which

results in the path being blocked and the agent planning a detour. The yellow
path was traced for an agent with angledev = 1

2
π. Here ∠(vindiv, vstream) ≯

1
2
π, which results in the cells not being blocked and the agent continuing its

path behind the group of agents.

(a)

(b) (c)

Figure 17: (a) The initial scenario. (b) Two possible paths depending on
the speed deviation value: the light green path for speeddev = 1.0 and the
yellow path for speeddev = 0.5. (c) Two possible paths depending on the
angle deviation value: the light green path for angledev = 1

4
π and the yellow

path for angledev = 1
2
π.

Marjolein Zwerver Page 33 of 59

Crowd simulation
Master thesis

4.3 Density-based detour goal

When a deadlock is detected by using MIRANDA, the current detour goal
is set to be the intersection of the local area boundary and the unvisited
subcurve of the indicative route πfree. This point is only influenced by the
radius of the local area boundary. The main disadvantage of this approach
is that if the area blocked with agents is large enough, the detour goal will
lie within this blocked area as can be seen in Fig. 5c. We suggest a density-
based approach where πfree is sampled until a point with sufficiently low
density is found, to use as the new detour goal. To determine this point, we
sample πfree starting at the first blocked point pblocked encountered by either
MIRANDA or our vision-based approach. The sample distance d is the same
as the sample distance used for MIRAN. We continue sampling until we find
a point for which the density lies below the density threshold ρd. In our
experiments, we found ρd = ρt ∗ 0.5 to produce good results.

DF(pj) < ρd

The first point pj that satisfies this formula will serve as our detour goal
gdetour.

4.4 Detecting the type of detour

One downside of the density-based detour goal selection is that the new
detour goal is right behind the deadlock. The problem this causes is that in
some scenarios, like the one seen in Fig. 21a, the section of the indicative
route behind the deadlock will have to be traversed twice for the agent to
reach its original goal. Since this only happens for certain detours, we would
like to detect the type of detour. If the detour planned by the algorithm is
not in the same homotopic class as the original path we consider it to be a
global detour (Fig. 19c, 19d). This situation occurs when a path is blocked
entirely by other agents. If there is a group of stationary agents but the
detour can be planned around these agents locally, so the homotopic class
is the same as the original path, we consider this to be a local detour (Fig.
19a, 19b).

To solve the problem of determining which type of detour is planned we
use a set of waypoints or gates. We define these gates as 2D areas, part of
the walkable area. We have decided to implement these gates in the form
of disks using information already present in the Explicit Corridor Map: the
ECM vertices and their clearance. With each vertex as a center, we use the
clearance as a radius to form a disk around the center. An example of this
can be seen in Fig. 18.

To determine the type of detour, first, we determine which gates are
crossed if the original path would be continued and which gates would be
crossed if the detour path would be taken. To determine which gate is crossed
for a given point pj, we check for intersection with all gates G. Then, if pj

Marjolein Zwerver Page 34 of 59

Crowd simulation
Master thesis

2

3

4

5

8

9

11

12

Figure 18: A scenario where the vertices of the ECM are used as gates. Each
gate is defined by a vertex and its clearance, which is used as the radius of
the disk.

lies in multiple gates, we take the gate which center lies closest to pj to
be the corresponding gate. The next step is to remove the loops in both
sets of gates. A loop consists of a set of gates Gfirst followed by any gate g
followed by Gsecond which equals Gfirst in reverse order. An example would
be {5, 8, 7, 4, 7, 8, 5}, where Gfirst = {5, 8, 7} and g = 4. These loops are
removed because the removal of a loop does not change the homotopic class
of the path. But to be able to compare sets of gates to determine the type
of detour, the presence of a loop can result in the incorrect classification of
a detour. Consider a set of gates for the original path Go = {2, 3, 4, 6} and
a set of gates for the detour path Gd = {2, 3, 4, 5, 8, 7, 4, 7, 8, 5, 6}. When
comparing these sets as is, they are not equal and thus the detour path will
be incorrectly classified as a global detour. After removing the loop {5, 8, 7,
4, 7, 8, 5}, Gd = Go = {2, 3, 4, 6} and the path will be correctly classified as
a local detour. There is another possible scenario that forms a loop: when
only one other gate is crossed either at the start or end of the path. These
loops will not be filtered out using our algorithm. Instead, when comparing
the two sets of gates for equality, we also check whether they are the equal
except for one added gate either at the start or end. Pseudocode for the
algorithm can be found in Algorithm 3.

Unfortunately there still are cases where the original path and the detour
path are in the same homotopic class but still cross a different set of gates.
An example can be found in Fig. 20. In this scenario, the original path
crosses gates {51, 50} and the detour path crosses {51, 53, 50}. This results
in the classification of the detour path as a global detour, while it is in fact
a local detour. Fortunately, the downsides of misclassification are minimal.

Marjolein Zwerver Page 35 of 59

Crowd simulation
Master thesis

2

3

4

5

8

9

11

12

(a)

2

3

4

5

8

9

11

12

(b)

2

3

4

5

8

9

11

12

(c)

2

3

4

5

8

9

11

12

(d)

Figure 19: (a) Initial configuration. Gates crossed are: 2, 3, 9, 5. (b) Planned
detour is local. Gates crossed are: 2, 3, 9, 5. (c) Initial configuration. Gates
crossed are: 2, 3, 9, 5. (d) Planned detour is global. Gates crossed are: 2, 8,
11, 12, 9, 5

Marjolein Zwerver Page 36 of 59

Crowd simulation
Master thesis

Algorithm 3 isGlobalDetour

Input. A set of points Poriginal = {p0, ..., pn} that forms the original path
and a set of points Pdetour = {p0, ..., pn} that forms the detour path
Output. If the detour path is a global detour

1: Goriginal ← getGates(Poriginal)
2: Gdetour ← getGates(Pdetour)
3: Goriginal ← removeLoops(Goriginal)
4: Gdetour ← removeLoops(Gdetour)
5: globalDetour ← isEqual(Gdetour, Goriginal) or isOneOff(Gdetour, Goriginal)
6: return globalDetour

First, situations like this rarely occur, especially when trying to find the
shortest path from A to B. Second, we only use this classification to repair
the path and to add memory. We will discuss why the downsides of the
misclassification are minimal in the respective sections.

4.5 Repairing global detours

After classifying the detour, global detours might need repairing in situations
like in Figure 21a, which we will use as the example here. We will use the
same gates used for classification of the detour to repair the path. First,
we find the last gate G that is entered by πdetour twice. This is the gate
corresponding to ECM vertex 9: G9. Next, We find the first and last point
on the indicative route that are within the area of this gate: πfirst and πlast.
Lastly, we connect πfirst and πlast, removing all points that lie between them
resulting in the repaired path πrepaired. The repaired path can be found in
Figure 21b.

Regarding the misclassification of the type of detour: if a local detour is
classified as a global detour, no gate G will be found and no repairs will be
made.

4.6 Memory

For a global detour, in addition to repairing the path, we add a memory M
to the agent to indicate the original path was blocked as explained in Section
3.4.2. Next, for each one of the agents memories M ∈ M, we check if the
detour intersects any of its cells cblocked. If no intersections are found, the
agent proceeds as normal. Otherwise, the agent is making a detour through
a previously crowded section of the environment. When this scenario occurs,
we want the agent to stick to either the current path or the planned detour.

Marjolein Zwerver Page 37 of 59

Crowd simulation
Master thesis

Figure 20: Scenario with ECM edges in blue and the Voronoi diagram of
the ECM vertices in black. In this scenario, the detour (red path) will be
incorrectly classified as a global detour. Note that the gates for all vertices
are drawn but not visible due to the scale of the image.

2

3

4

5

8

9

11

12

(a)

2

3

4

5

8

9

11

12

(b)

Figure 21: (a) The path after planning a detour to the density-based detour
goal. (b) The repaired path by connecting the first and last point in the top
gate.

Marjolein Zwerver Page 38 of 59

Crowd simulation
Master thesis

4.6.1 Committing to a path

To choose between the current path and the planned detour path, we estimate
the time it would take the agent to traverse both paths. The path that
would take the least time to traverse is chosen as the path the agent has
to commit to. After that, the agent is not allowed to make global detours
until the decision gate is reached. Pseudocode of the algorithm can found
in Algorithm 4. We define the decision gate in the following way: When a
global detour is planned, it is planned to gdetour after which it connects to
the original path. From that point on, the original path and the detour path
are the same. This point from which both paths are the same is marked by
a gate. This is the decision gate. The decision gate usually lies on a fork in
the path, hence its name.

There are some scenarios in which this method cannot be used to find
the decision gate, for example when there are no common gates between the
original path and the detour path. This can occur when gdetour is the original
goal position and the original path and the detour path both reach the goal
through an entirely different path. In this case, we take the last gate of the
detour path to be the decision gate.

To estimate the time to traverse a path, we start by estimating the current
location of the block pblock if the block was not encountered in the current
simulation step. We start with the average velocity of the block vblock and
determine if the block is heading in the same or opposite direction as the
agent. This is done by comparing vblock to the direction of πind at the location
of the block as shown in the formula below. Note that if l(vblock) = 0 the
cost is set to infinite. This signifies that the path is blocked and ensures the
other path under consideration is chosen.

Φblock = ∠(vblock, pblocked2 − pblocked1)

We take pblocked2 − pblocked1 here for the direction of the agent because it is an
approximation of the average velocity of the agent while moving through the
block. If the block lies around a sharp corner, the direction of the indicative
route at pblocked1 and pblocked2 can differ a lot. In cases like these taking an
average velocity is needed to produce the correct results. If Φblock >

π
2
, the

block moves in the opposite direction and the cost is set to infinite.
Next we calculate the estimated distance the block has traveled:

lblock = vblock ∗ (t− tblocked)

Lastly, we move pblocked either forwards along πind until we have moved it a
distance equal to lblock. This results in the point pblock.

The next step is to calculate the time it would take for the agent to reach
pblock, tblock. We calculate this by multiplying the agent’s preferred velocity
with the length of the indicative route between the agent and the estimated
block location:

tblock = vpref ∗ πind(pagent, pblock),

Marjolein Zwerver Page 39 of 59

Crowd simulation
Master thesis

where πind(pagent, pblock) is the subpath of πind from pagent to pblock. The
last step is to calculate the time it would take to move from the block to
the decision gate, tdecision. We calculate this by multiplying the average
block speed with the distance on the indicative route between the estimated
location of the block and the first point in the decision gate:

tdecision = vblock ∗ πind(pblock, pdecision)

The final estimated time is calculated as follows:

testimate = tblock + tdecision

The path with the lowest value for testimate is selected as the final path. The
next step is to prevent the agent from planning a global detour until the
decision gate is reached. We accomplish this by checking, for each attempted
global detour, if the decision gate has been reached by the agent. If it has,
the global detour is allowed. Otherwise, the agent continues its original path.

Algorithm 4 commitToPath

Input. A set of points Pcurrent = {p0, ..., pn} that forms the current path,
a set of points Pdetour = {p0, ..., pn} that forms the detour path, the set
of all memories M for the agent and the memory corresponding to the
crossed block Mdetour

Output.
1: Mcurrent ← crossedMemory(Pdetour,M)
2: Gcurrent ← getGates(Pcurrent)
3: Gdetour ← getGates(Pdetour)
4: Gdecision ← findDecisionGate(Gcurrent,Gdetour)
5: tcurrent ← EstimatePathTime(Pcurrent, Gdecision,Mcurrent)
6: tdetour ← EstimatePathTime(Pdetour, Gdecision,Mdetour)
7: if tdetour > tcurrent then
8: setPath(Pdetour)
9: else

10: setPath(Pcurrent)
11: stickToPath(Gdecision)

Marjolein Zwerver Page 40 of 59

Crowd simulation
Master thesis

5 Experiments and results

In this section we show our implementation details, experimental setup and
experiment results.

5.1 Implementation details

Our experiments were performed on an Intel Core i5-3470 @ 3.2 GHz with
8 GB of RAM memory. We used the existing UUCS framework1 created by
Kremyzas, van Toll and Geraerts. We implemented the MIRANDA algo-
rithm within this framework for comparison. All of the parameters used in
our experiments can be found in Table 1. Each block corresponds to one of
the algorithms and each algorithm uses the parameters from its own block
and the ones above it, with the exception of the dlocal and β which are not
utilized by ID3.

Parameter Symbol Value

ID
3

M
IR

A
N

D
A

M
IR

A
N

Agent radius r 0.24 m
Agent’s preferred velocity vpref 1.4 m/s
Look-ahead distance σ 5 m
Sampling distance d 1 m
Cell size lcell 0.3 m
Density threshold ρt 1.4 agents/m2

Density weight scaling factor ρs 5
Local-area-radius dlocal 25 m
Anchoring bias β 1.05
Candidate attraction point rejection limit capreject 0.6
Density grid update time tρ 2 s
Deadlock length ld 0.3 m
Velocity grid update time tvel 2 s
Angle deviation Φdev

1
4
π

Speed deviation speeddev 0.5
Vision replan cooldown tvision 2 s
Precision precision 0.2
detour goal density threshold ρd 0.7 agents/m2

Table 1: Parameters used in our experiments

5.2 Scenarios

To test and compare our algorithm we created sets of scenarios as shown
in the Figures below. Agents are colored differently depending on which
algorithm is used: orange agents use MIRAN, green agents use MIRANDA
and blue agents use our own extension ID3. The indicative route for each

1https://ucrowds.com/documentation/core/ Page 41 of 59

Crowd simulation
Master thesis

agent or group of agents is represented by a dark blue line. Paths for each
agent were traced and are displayed in the same color as the agent.

Our scenarios are divided into 3 sets and one single scenario: The first
set is shown in Figure 22. This set contains scenarios where one agent moves
(blue) and the other agents remain stationary (orange). The second set is
shown in Figure 23 and consists of scenarios that were made to test the mem-
ory aspect of ID3. The third set is shown in Figure 24 and consists of one
environment with different configurations. The top row contains experiments
where all agents have a preferred obstacle clearance of 0.5. For the experi-
ments on the bottom row, the preferred obstacle clearance depends on the
initial distance to the obstacle. For the left column, each agent goal has the
same obstacle clearance as the distance to the obstacle corresponding to the
starting position. For the right column, the goals are switched: The agent
that starts with the most clearance to the obstacle has the goal position with
the least amount of clearance to the obstacle. The goal of this is to force to
agents to cross paths at some point to reach their goal and thus make it more
difficult. We conducted these experiments for two cases: in the first case, all
agents use MIRAN, for the other case we randomly made 20% of the agents
use the ID3 algorithm which resulted in 4 out of 19 agents using ID3.

The last scenario, as shown in Figure 25 is a large city environment used
for two purposes: to compare CPU times for each component of the ID3

algorithm and to compare CPU times between MIRAN, MIRANDA and
ID3. Four regions are defined in this environment. Every simulation second,
we spawn 15 agents with their start and goal position assigned randomly
to these regions. To create a more realistic scenario, an agent’s preferred
obstacle clearance is randomly set to a value between 0.5 and 2.5 m. We also
let the simulation run for 3 minutes before measuring the CPU time taken
by each substep.

Marjolein Zwerver Page 42 of 59

Crowd simulation
Master thesis

(a) Busy corner
(b) Blocked path

(c) Many corners

(d) Random

Figure 22: Single agent experiments. The indicative route is shown in dark
blue. Traced paths are shown with the color corresponding to the agent’s
algorithm: orange = MIRAN, green = MIRANDA and blue = ID3.

Marjolein Zwerver Page 43 of 59

Crowd simulation
Master thesis

(a) Memory extended

(b) Memory reverse

(c) Memory block

Figure 23: Memory experiments. The indicative route is shown in dark
blue. Traced paths are shown with the color corresponding to the agent’s
algorithm: orange = MIRAN, green = MIRANDA and blue = ID3.

Marjolein Zwerver Page 44 of 59

Crowd simulation
Master thesis

(a) Same obstacle clearance, normal goals (b) Same obstacle clearance, reversed goals

(c) Dependent obstacle clearance, normal goals (d) Dependent obstacle clearance, reversed goals

Figure 24: Corner experiments. For the top row, all agents have the same
preferred obstacle clearance. For the bottom row, the preferred obstacle
clearance depends on the initial distance to the obstacle. For the left column
the goal position depends on the initial distance to the obstacle. For the
right column, the goals are reversed.

Marjolein Zwerver Page 45 of 59

Crowd simulation
Master thesis

Figure 25: City experiment after 3 minutes. The black rectangles represent
the start and goal regions.

Marjolein Zwerver Page 46 of 59

Crowd simulation
Master thesis

5.3 Results

All results were averaged over 10 runs of the experiment. For the single agent
and memory scenarios we measured the following statistics for the agent:

• Goal reached: Whether or not the agent reached their goal.

• Simulation time: The simulation time in seconds it takes for the agent
to reach their goal.

• Path length: The path length of the traversed path in meters.

• Detours: The number of detours the agent has taken.

Results can be found in Tables 2 and 3.
For the corner scenarios we measured the simulation time shown in Table

4 and the combined path length for all agents shown in Table 5. Traversed
paths for regular goals with and without dependent preferred obstacle clear-
ance are shown in Fig. 26.

For the city environment CPU times were measured for 20 seconds or 200
simulation steps for MIRAN, MIRANDA and ID3. Results can be found in
Table 6. The following are the simulation substeps with a short description:

1. Compute retractions: Computes the retraction of agents onto the
medial axis, used for further calculations.

2. Update CQS: Updates the Character Query Structure, a data struc-
ture that can answer nearest-neighbor queries for agents.

3. Replanning: For MIRAN, replans the path if none of the attraction
points are visible.

4. Periodic Replanning: Periodically checks if replanning is necessary
based on the agent’s vision.

5. Local replanning: If needed, replans a path for an agent using MI-
RANDA or ID3.

6. Compute prefered velocities: Computes preferred velocities for all
agents.

7. Compute actual velocities: Computes all agents’ new velocity, po-
tentially with collision-avoidance

8. Apply forces: Applies the calculated forces to all agents.

9. Update Positions: Updates positions of all the agents.

10. Execute scenario: Spawns agents and calculates their paths, updates
density and velocity sensors.

Marjolein Zwerver Page 47 of 59

Crowd simulation
Master thesis

Scene Method Goal
reached

Simulation
time (s)

Path
length
(m)

Detours

Busy
corner

MIRAN
MIRANDA
ID3

No
Yes
Yes

-
20.2
20.1

-
26.7
26.9

-
1
1

Blocked
path

MIRAN
MIRANDA
ID3

No
Yes
Yes

-
30.8
30.9

-
40.5
40.7

-
1
1

Many
corners

MIRAN
MIRANDA
ID3

No
Yes
Yes

-
64.2
64.0

-
86.1
86.2

-
1
1

Random
MIRAN
MIRANDA
ID3

Yes
No
No

20.1
-
-

23.1
-
-

0
-
-

Table 2: Single agent experiment results

Scene Method Goal
reached

Simulation
time (s)

Path
length
(m)

Detours

Memory
reverse

MIRAN
MIRANDA
ID3

Yes
Yes
Yes

61.3
72.8
60.4

26.4
86.4
45.3

0
10
2

Table 3: Memory experiment results

Marjolein Zwerver Page 48 of 59

Crowd simulation
Master thesis

(a) MIRAN, same obstacle clearance (b) ID3, same obstacle clearance

(c) MIRAN, dependent obstacle clearance (d) ID3, dependent obstacle clearance

Figure 26: Traversed path for the corner experiments with normal goals. The
first row contains results for the experiments with the same obstacle clear-
ance, the second row contains experiments with dependent obstacle clearance.
The first column contains results for MIRAN, the second column contains
results for ID3.

Marjolein Zwerver Page 49 of 59

Crowd simulation
Master thesis

goal
normal reverse

MIRAN (ms) ID3 (ms) MIRAN (ms) ID3 (ms)
obstacle normal 30.1 24.8 31.1 25.5
clearance dependent 19.4 22.0 22.5 21.6

Table 4: Corner experiment simulation time

goal
normal reverse

MIRAN (m) ID3 (m) MIRAN (m) ID3 (m)
obstacle normal 394.4 397.4 403.2 406.8
clearance dependent 395.3 409.8 414.8 415.3

Table 5: Corner experiment combined path lengths

MIRAN (ms) MIRANDA (ms) ID3 (ms)
Compute retractions 0.13 0.08 0.08
Update CQS 0.04 0.04 0.03
Replanning 0.02 0.02 0.01
Periodic replanning 0.02 0.02 88.68
Local replanning 0.02 468.16 9.26
Compute preferred velocities 3.47 4.45 3.15
Compute actual velocities 1.20 1.17 1.14
Apply forces 0.02 0.2 0.02
Update positions 37.67 36.32 37.51
Execute scenario 0.09 4.61 9.37
total 42.68 515.07 149.25

Table 6: City experiment results

5.4 Experimental conclusions

From these experiments we can draw a number of conclusions:

• The single agent tests show no significant improvements regarding time-
efficiency compared to MIRANDA. We do see some improvements re-
garding realism when looking at the traversed paths, especially for the
busy corner scenario. This stems primarily from the addition of the
vision-based deadlock detection, which was created with human-like
obstacle avoidance in mind.

• The random experiment shows that there are situations in which an
improved algorithm like ID3 not only is unnecessary, but will not reach
the goal where algorithms like MIRAN do. For both MIRANDA and

Marjolein Zwerver Page 50 of 59

Crowd simulation
Master thesis

ID3, a detour is taken that leads the agent into a few stationary agents.
The density of the corresponding cells does not exceed the threshold
and therefore no additional detours are planned and the agent gets
stuck.

• For most of the memory experiments, we see a significant reduction of
the time it takes for an agent to reach its goal. We also see that the
switching of paths as is seen for MIRANDA is not present for ID3.

• For the memory extended scenario, we see a slight increase in simulation
time. This is most likely caused by the detour planned at the end,
where, for the last section of the path, we can see that the agent using
ID3 first heads towards a point right behind the deadlock, and the
agent with MIRANDA goes straight towards the original goal. Even
though this is a minor downside of the density-based detour goals, we
see that using the density-based detour goals will reduce the CPU time
used since the detour goal is closer to the agent. This difference only
increases for larger, more realistic scenarios.

• For the corner experiments, we see a reduction in time taken to reach
the goal for a scenario with some agents using ID3 in comparison for the
scenario with only agents using MIRAN for the experiments where the
obstacle clearance was the same for each agent. For the experiments
where the obstacle clearance was dependent on the initial distance from
the obstacle, we see an increase in simulation time for the normal goals
and a slight decrease in time for the reverse goals. This might indicate
that the use of ID3 will provide a greater decrease in simulation time
for more complex scenarios.

• For the city experiment, we see an increase in total CPU time for ID3

compared to MIRAN but a decrease compared to MIRANDA. This
decrease is mostly due to the elimination of the anchoring bias, which
calculates an A* path for multiple sample points which is expensive.

• We also see that the simulation substep responsible for the vision-based
deadlock detection is responsible for over 50% of the total CPU time
of the algorithm and would be an important target for optimizations
to simulate more agents in real-time.

Marjolein Zwerver Page 51 of 59

Crowd simulation
Master thesis

6 Conclusions

This section provides a summary of findings for this thesis. We start with
a summary of observations done throughout this thesis. We then show the
conclusions drawn from the experiments and finish with our contribution.

6.1 Summary

In this thesis, we have shown that there are still some issues that are not
solved by current algorithms regarding high-density crowd simulation. Ex-
amples of still occurring problems are the underutilization of available space
and the absence of memory. We have tried to improve on some of these
problems and made the following observations:

• Vision-based deadlock detection gives an agent more time to evade a
deadlock and makes paths look more realistic.

• There is a need for accounting for flow when planning detours to prevent
unnecessary detours.

• The method MIRANDA uses for determining the detour goal is incon-
venient and should be improved.

• Determining the type of detour has multiple uses: it can help determine
if paths need repairs and if there is a need for the addition of memory
to prevent continuous switching between two paths.

Our algorithm was created with these observations in mind. We did some
experiments to look at the time-efficiency of the paths created by our algo-
rithm.

In conclusion, the experiments show that, in most cases, there was an
improvement regarding the time which an agent needs to reach their goal.
In cases where there was no improvement on the time, there was often an
improvement on the realism of the path.

6.2 Contribution

Our contribution is the algorithm Improved Deadlock Detection and Detours
or ID3 as an extension for MIRAN. This extension improves the deadlock de-
tection by adding vision-based deadlock detection that will detection detours
earlier than previous methods. The algorithm also accounts for the flow of
agents, so agents which move in the same direction will not plan a detour
around each other. The detours are based on the MIRANDA algorithm,
which uses a density grid to capture crowded points on a map. These de-
tours are improved by determining the detour goal by sampling density values
and detecting what type of detour is planned. Detours where an agent can
go around a block locally are called local detours and detours that take an

Marjolein Zwerver Page 52 of 59

Crowd simulation
Master thesis

entirely different path are called global detours. For global detours, double
sections in paths emerge because the detour goal will be right behind the de-
tour. We repair these paths by removing these double sections using gates.
We also use memory to prevent continuous switching between different paths.

Marjolein Zwerver Page 53 of 59

Crowd simulation
Master thesis

7 Future work

Our contribution provides a method that is more suitable for simulation of
high-density crowds. There still are many possibilities for future work. In
this section, we discuss some possible improvements and extensions to our
work.

7.1 Perfect detection of detour type

Since our gate-based method does not always produce the correct results
regarding the classification of the type of detour, a possible improvement
would be to replace this method with a robust method that can determine
whether or not paths belong to the same homotopic class. One possible
method would be to project all points of a path onto the medial axis and
determine if both projected paths belong to the same homotopic class. It
is important, though, to carefully weigh the advantages of a robust method
against the probable increase in computation cost.

7.2 Estimated density grid

One issue that is very apparent in scenarios such as the ones part of our
corner scenario where there are two opposing streams is that the agent plans
its detour using the current information on density that is available. The
problem with this approach is that the agents forming the dense areas move
away, therefore the area can be traversed again but the agent will still go
around it. One possible solution for this problem is to use a density grid which
estimates density values for the future. Another possible solution would be
to check regularly whether or not a planned detour is still necessary, and
replan if needed. We do predict that this method will come with a significant
increase in computation time depending on the implementation.

7.3 Navigation through deadlocks

Another element that is missing from our method is the ability for agents to
navigate through a dense crowd. This can be useful in scenarios where there
is no other option than to navigate between agents, in for example a bar or
concert like scenario. We recommend using a method like the one created by
Stüvel et al. [32].

Another option would be to use the composite agent concept by Yeh et
al. [41]. In a scenario where an agent needs to pass through a line of agents,
a proxy repulsing other agents could be placed in the line to create room
for the agent to pass through. It could also be used to improve behavior in
scenarios like our corner scenario (Fig. 24). A proxy could be used to grant
one of the two groups access.

Marjolein Zwerver Page 54 of 59

Crowd simulation
Master thesis

7.4 Lane forming

Lane forming behavior could also be added to the algorithm. The method by
Goethem et al. [38] that is already implemented into the framework might
provide a solution here. It would require some testing to determine if the
different components of the method cause conflicting behavior.

Marjolein Zwerver Page 55 of 59

Crowd simulation
Master thesis

References

[1] Azahar, M. A. B. M., Sunar, M. S., Daman, D., and Bade,
A. Survey on real-time crowds simulation. In International Confer-
ence on Technologies for E-Learning and Digital Entertainment (2008),
Springer, pp. 573–580.

[2] Bloemheuvel, M. Creating dynamic and density dependent indicative
routes for crowd simulation, 2014. (Master’s thesis). Utrecht University.

[3] Chenney, S. Flow tiles. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (2004), Eu-
rographics Association, pp. 233–242.

[4] Dias, C., and Lovreglio, R. Calibrating cellular automaton models
for pedestrians walking through corners. Physics Letters A (2018).

[5] Dijkstra, E. W. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[6] Fiorini, P., and Shiller, Z. Motion planning in dynamic environ-
ments using velocity obstacles. The International Journal of Robotics
Research 17, 7 (1998), 760–772.

[7] Geraerts, R. Planning short paths with clearance using explicit cor-
ridors. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on (2010), IEEE, pp. 1997–2004.

[8] Geraerts, R., and Overmars, M. H. The corridor map method:
A general framework for real-time high-quality path planning: Research
articles. Comput. Animat. Virtual Worlds 18, 2 (may 2007), 107–119.

[9] Guy, S. J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., and
Manocha, D. Pledestrians: a least-effort approach to crowd sim-
ulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
symposium on computer animation (2010), Eurographics Association,
pp. 119–128.

[10] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics 4, 2 (1968), 100–107.

[11] Hashimoto, K., Yoshimi, T., Mizukawa, M., Ando, Y., and
Takeuchi, K. A study of collision avoidance between service robot
and human at corner—analysis of human behavior at corner. In Ubiqui-
tous Robots and Ambient Intelligence (URAI), 2013 10th International
Conference on (2013), IEEE, pp. 383–384.

Marjolein Zwerver Page 56 of 59

Crowd simulation
Master thesis

[12] He, G.-q., Jin, Y., Chen, Q., Liu, Z., Yue, W.-h., and Lu,
X.-j. Shadow obstacle model for realistic corner-turning behavior in
crowd simulation. Frontiers of Information Technology & Electronic
Engineering 17, 3 (2016), 200–211.

[13] Helbing, D., Farkas, I. J., Molnár, P., and Vicsek, T. Simu-
lation of pedestrian crowds in normal and evacuation situations. Pedes-
trian and evacuation dynamics 21, 2 (2002), 21–58.

[14] Helbing, D., and Johansson, A. Pedestrian, crowd and evacuation
dynamics. In Encyclopedia of complexity and systems science. Springer,
2009, pp. 6476–6495.

[15] Helbing, D., and Molnár, P. Social force model for pedestrian
dynamics. Physical review E 51, 5 (1995), 4282.

[16] Helbing, D., and Mukerji, P. Crowd disasters as systemic failures:
analysis of the love parade disaster. EPJ Data Science 1, 1 (2012), 7.

[17] Hillebrand, A., Hoogeveen, H., and Geraerts, R. Comparing
different metrics quantifying pedestrian safety.

[18] Jaklin, N., Cook, A., and Geraerts, R. Real-time path plan-
ning in heterogeneous environments. Computer Animation and Virtual
Worlds 24, 3-4 (2013), 285–295.

[19] Karamouzas, I., Bakker, J., and Overmars, M. H. Density
constraints for crowd simulation. In Games Innovations Conference,
2009. ICE-GIC 2009. International IEEE Consumer Electronics Soci-
ety’s (2009), IEEE, pp. 160–168.

[20] Karamouzas, I., Geraerts, R., and Overmars, M. Indicative
routes for path planning and crowd simulation. In Proceedings of the
4th International Conference on Foundations of Digital Games (2009),
ACM, pp. 113–120.

[21] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars,
M. H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automation
12, 4 (1996), 566–580.

[22] Krijnen, T., Beetz, J., and de Vries, B. Airport schiphol.

[23] Kuffner, J. J., and LaValle, S. M. Rrt-connect: An efficient
approach to single-query path planning. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on (2000),
vol. 2, IEEE, pp. 995–1001.

Marjolein Zwerver Page 57 of 59

Crowd simulation
Master thesis

[24] Narain, R., Golas, A., Curtis, S., and Lin, M. C. Aggregate
dynamics for dense crowd simulation. In ACM Transactions on Graphics
(TOG) (2009), vol. 28, ACM, p. 122.

[25] Pelechano, N., Allbeck, J. M., and Badler, N. I. Control-
ling individual agents in high-density crowd simulation. In Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2007), Eurographics Association, pp. 99–108.

[26] Pelechano, N., Allbeck, J. M., and Badler, N. I. Virtual
crowds: Methods, simulation, and control. Synthesis Lectures on Com-
puter Graphics and Animation 3, 1 (2008), 1–176.

[27] Richmond, P., and Romano, D. M. A high performance framework
for agent based pedestrian dynamics on gpu hardware. Proceedings of
EUROSIS ESM 20 (2008), 27–29.

[28] Rojas, F. A., Park, J. H., and Yang, H. S. Group agent-based
steering for the realistic corner turning and group movement of pedes-
trians in a crowd simulation. Proceedings of Computer Animation and
Social Agents (CASA 2013) (2013).

[29] Seń, R. The detouring algorithm, 2017. (Small project). Utrecht Uni-
versity.

[30] Stüvel, S. A. Dense Crowds of Virtual Humans. PhD thesis, Utrecht
University, 2016.

[31] Stüvel, S. A., de Goeij, M., van der Stappen, A. F., and
Egges, A. An analysis of manoeuvring in dense crowds. In Proceedings
of the 8th ACM SIGGRAPH Conference on Motion in Games (2015),
ACM, pp. 85–90.

[32] Stüvel, S. A., Magnenat-Thalmann, N., Thalmann, D.,
van der Stappen, A. F., and Egges, A. Torso crowds. IEEE
transactions on visualization and computer graphics 23, 7 (2017), 1823–
1837.

[33] Thalmann, D., and Musse, S. R. Crowd simulation. Wiley Online
Library, 2007.

[34] Treuille, A., Cooper, S., and Popović, Z. Continuum crowds. In
ACM Transactions on Graphics (TOG) (2006), vol. 25, ACM, pp. 1160–
1168.

[35] Tsai, T.-Y., Wong, S.-K., Chou, Y.-H., and Lin, G.-W. Direct-
ing virtual crowds based on dynamic adjustment of navigation fields.
Computer Animation and Virtual Worlds 29, 1 (2018).

Marjolein Zwerver Page 58 of 59

Crowd simulation
Master thesis

[36] Ulicny, B., and Thalmann, D. Crowd simulation for interactive
virtual environments and vr training systems. In Computer Animation
and Simulation 2001. Springer, 2001, pp. 163–170.

[37] Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D. Recip-
rocal n-body collision avoidance. In Robotics research. Springer, 2011,
pp. 3–19.

[38] Van Goethem, A., Jaklin, N., Cook, I., Geraerts, R., et al.
On streams and incentives: A synthesis of individual and collective
crowd motion, 2015.

[39] van Toll, W., Jaklin, N., and Geraerts, R. Towards believable
crowds: A generic multi-level framework for agent navigation.

[40] Van Toll, W. G., Cook, A. F., and Geraerts, R. Real-
time density-based crowd simulation. Computer Animation and Virtual
Worlds 23, 1 (2012), 59–69.

[41] Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha,
D., and Lin, M. Composite agents. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2008),
Eurographics Association, pp. 39–47.

[42] Zhang, J., Klingsch, W., Rupprecht, T., Schadschneider, A.,
and Seyfried, A. Empirical study of turning and merging of pedes-
trian streams in t-junction. arXiv preprint arXiv:1112.5299 (2011).

Marjolein Zwerver Page 59 of 59

	Introduction
	Importance of crowd simulation
	Density-based crowd simulation
	Issues with current methods

	Research goals and contributions
	Document structure

	Related work
	Path planning
	Crowd simulation
	High-level planning
	Global planning
	Route following
	Local behavior
	Animation

	Flow-based methods
	Density-based crowd simulation
	Corner turning

	Preliminaries
	Geometric Concepts
	Voronoi diagram
	Medial axis

	Modified Indicative Routes And Navigation
	Explicit Corridor Map
	Explicit Corridors
	Moving the agent
	Computing and Choosing Attraction Points

	Modified Indicative Routes And Navigation with a Detouring algorithm
	The Density Field
	Density-based Candidate Attraction Point Selection
	The Detouring Algorithm
	Anchoring Bias

	Improved Deadlock Detection and Detours
	The Velocity Field
	Memory

	Improved Deadlock Detection and Detours
	Vision-based deadlock detection
	Flow
	Density-based detour goal
	Detecting the type of detour
	Repairing global detours
	Memory
	Committing to a path

	Experiments and results
	Implementation details
	Scenarios
	Results
	Experimental conclusions

	Conclusions
	Summary
	Contribution

	Future work
	Perfect detection of detour type
	Estimated density grid
	Navigation through deadlocks
	Lane forming

