
GAZE-INDUCED QUALITY CONTROL IN
GEOLOGICAL VOXEL MODELS

MSc Thesis Artificial Intelligence

written by

B. E. Zijlstra
(5774284)

Department of Information and Computing Sciences

Faculty of Science

at the Utrecht University.

Date of the public defense: Supervisors:
April 24th, 2018 Dr Dr E. L. van den Broek (Utrecht University)

Dr P.-P. van Maanen (TNO)
Dr A.J. Feelders (Utrecht University, second reader)



Abstract

Knowledge of the subsurface is an important aspect for a countries
welfare. To gain an understanding of this, geologists use boreholes com-
bined with interpolating methods to build statistical 3D models. Due
to the stochastic properties of these models, domain experts perform a
quality control procedure to find errors, which can be a time consuming
endeavor.

In this thesis, we looked into methods for predicting areas of errors
in GeoTOP, a geological voxel model. Firstly, we show that a previously
used Attention Model performs well when we optimize parameters for
each participant, but with an AUC of 0.61, the algorithm lacked finding
optimal parameters for the combined participants. We show that variance
among experts in assessing errors is high, making generalizing predictions
hard. Secondly, we showed that entropy, the voxel models quantification
of uncertainty, is not a good indicator of where errors occur. With an
average AUC of 0.54, where some participants scored even under 0.5,
we show that there is no relation between entropy and the assessment of
experts. Finally, we introduced a Velocity-Threshold Identification (I-VT)
algorithm combined with tree-based classifiers and showed that with an
AUC of 0.8 over each participant, errors can be found regardless of the
differences among participants. We show why finding optimal parameters
for fixation algorithms is difficult due to a lack of ground truth, but despite
that our new algorithm performs better and faster, allowing for real-time
error predictions. These findings suggest that a geologist combined with
our introduced algorithm can decrease their time spent on quality control.
Furthermore, this thesis can provide as a framework for other fields with a
similar problem description, such as radiologists looking for malignancies.
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1 Introduction

For a country that exploits its subsurface as much as the Netherlands, a thor-
ough geological understanding of the earth beneath is crucial. While this knowl-
edge is mostly obscure among citizens, the Dutch society as a whole benefits
immensely from applications rooted in geology. The Dutch subsurface and the
Dutch part of the North Sea have been a significant contributor to the countries’
wealth, due to a myriad of natural resources: natural gas, oil, geothermal en-
ergy, clean water, and pure silica [1]. Moreover, the high density of population
of the Netherlands demands a good use of the limited space, making a reliable
insight into the subsurface a necessity. For example, a lack of knowledge of
the subsurface during the construction of tunnels and underground cables is a
critical factor in failure costs [2]. Knowledge of the subsurface can also aid in
agriculture since natural soils are variable in their properties [3].

This intense use of the subsurface is not without side effects, however. For ex-
ample, subsiding of land is a problem that can occur due to mineral and gas dis-
tillation. Agricultural practices can contaminate shallow groundwater, threat-
ening drink water quality. Recently, earthquakes in the province of Groningen
[4] in the north of the Netherlands due to gas extraction [5] had both environ-
mental and social impact [6], leading to a national debate on the extraction
of gas. To model the risk of future earthquakes in this area, knowledge of the
geological characteristics of the subsurface is needed [7].

For over a century, the knowledge accumulation of the Dutch subsurface is
performed by the Geological Survey of the Netherlands (GDN) and its prede-
cessors. At first, this task was limited to traditional maps on paper, nowadays
these are replaced mainly with 3D subsurface models. While the rise of com-
putation power gave way to sophisticated 3D models storing much more data
than its predecessors, a large part of its construction is still human work. First,
geologists start with collecting a substantial amount of data of the subsurface.
The Data and Information of the Dutch Subsurface (DINO) of the GDN is
the archive which stores thousands of samples of drillings and cone penetration
tests. Secondly, these samples function as the input for interpolation, creating
a model of the layers of the earth, the characteristics of the rock type, and the
chemical properties. This interpolation combines geostatistical methods with
preprogrammed information of the geological knowledge that domain experts
provide. Thirdly, geologists perform a quality control routine to check whether
areas are modeled correctly. This is a time-consuming task, and requires years
of experience in the field.

In 2014, a bill by the Ministry of Infrastructure and the Environment was
passed [8], stating information about the Dutch subsurface shall be registered
centrally. Due to their expertise, this task is allocated to the GDN, increasing
their workload substantially. This combination of the increased amount of data
and a task needing lots of experience has led to an interest in finding new ways
to improve the workflow of these geological models.

One of the potential areas for improvement is the quality control of the 3D
models. As of now, this process is performed entirely by humans. Geologists
have to assess the entire area for errors in geomodelling, mark these areas, and
describe their findings. This is a laborious process since there can be numerous
errors. However, advancements in Artificial Intelligence (AI) have led to the
emerging of several fields, models, and systems facing similar tasks, which can
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provide inspiration for automated quality control in geological models. Among
these are decision support systems (DSS) [9], intelligence amplification (IA) [10],
and computer-aided diagnosis (CADx) [11], human-in-the-loop (HITL) [12][13].
There is a similar principle in these fields, namely the idea of using both the
benefits of a computer and of a human.

For computers to interact with humans in these frameworks, input is needed
for the computer to process. Since the task of quality control is dependent on the
visual senses, we look at eye movements in this thesis to look into possibilities
of accelerating quality control of voxel models. Eye movements are not ran-
dom [14], which means we can extract meaningful information out of our visual
behavior. In turn, computers can use the cues to automate specific tasks.For
example, eye behavior can function as a pointer, similar to a mouse. Using our
eyes has the advantage of being much faster than operating a mouse or other
media device [15][16]. Moreover, our visual attention predates our actions [17],
which means, in theory, we can know even quicker which areas are of interest
to the user. However, using the eyes as an input has one fundamental challenge
that it needs to address: the Midas touch problem [18] [19]. Named after the
famous king in Greek mythology who turned everything he touched into gold,
this problem faces the same: how do we keep the gold without turning every-
thing into it? To do this, we need to be able to make some cognitive assessment
of the eye behavior, where we can separate eye behaviors leading to different
cognitive behavior. In the scope of our problem, this means finding ways to
separate eye movements that lead to an error in the model from eye movements
that are not on errors.

In this thesis, we look into several ways where AI can provide geologists
in their quality control. By doing this, we try to find an answer to our main
research question: can we predict where errors in geological voxel models will
occur?

First, we examine whether or not eye gaze can be a predictor for errors in
voxel models. We want to make a general algorithm that can do this, which is
challenging since individual differences among people concerning eye movements
are large [20]. Secondly, we investigate whether model uncertainty can be a good
predictor for errors in voxel models. Thirdly, we try a new approach based
on fixation identification to build a faster model and to improve performance.
Apart from this, we assess what conclusions we can make from these findings.
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2 Related Work

The field of automating quality control in geological voxel models is not an active
field of research [21], but other fields can other fields can provide inspiration for
our can inspire us for finding solution. Firstly, we discuss research on geologic
modelling in general, and GeoTOP in particular. Secondly, we discuss the
field of eye-tracking and its advances. Thirdly, we give an overview of visual
attention. Fourthly, we mention machine learning and classification and discuss
several algorithms that can help with our problem space. Finally, we discuss
closed-loop interaction and explain its relevance to the problem at hand.

2.1 Geological Modelling

Geologic modelling, or geomodelling is the science concerned with building com-
puterized models of the surface and subsurface. It ”consists of the set of all the
mathematical methods allowing to model in a unified way the topology, the
geometry, and the physical properties of geological objects while taking into
account any type of data related to these objects.” [22]. The goal is to portray
a representation of the geological reality of the area of interest.

Geomodelling is used in studies on sustainable energy [23], mining [24], man-
aging natural resources, gaining insight in deep foundations, predicting subsi-
dence, reducing chances of geohazards, and many more. In these fields, an
understanding of the subsurface is crucial as they are heterogeneous, mean-
ing that each layer has its unique behavior. Furthermore, the subsurface is
anisotropic, meaning it is directionally dependent. For example, each layer can
have different electrical conductivity.

Building geological models is a complex task. For centuries, these maps were
made in a 2D space. This lack of a third dimension made these maps hard to
interpret, as ’geologists had to communicate ’complex spatial and temporal re-
lationships as a 2-D image using standard colours and symbols.’ [25] Luckily,
improvements in computer technologies resulted in advance of 3D models in the
last three decades [26], making these models much more sophisticated. The de-
mand for this extra dimension in both government and industry makes intuitive
sense, as geology is inherently a 3D science [27].

These models, also called geoscientific information systems (GSIS) [28], are
spatial extensions of 2D maps. There are three approaches to constructing
GSIS: geostatistical, cognitive modelling, and hybrid approaches where both
are combined.

2.1.1 Geostatistical Models

There are several methods available in geostatistical literature, including multi-
point geostatistical methods [29], transition probability indicator simulation
[30], and sequential indicator simulation [31]. These stochastic methods all work
by interpolating the surface based on borehole samples. One of the advantages
of geostatistical methods is that the process is objective, and documentation
is straightforward. However, these methods only work when there are enough
(good) borehole descriptions since these statistical methods are as good as their
data. Furthermore, it is difficult to describe all elements in these models in
areas where much geological knowledge is needed.
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2.1.2 Cognitive Models

Cognitive modelling does not try to build a 3D model explicitly but uses the
implicit knowledge of a geologist to establish the intricacies of a subsurface [26].
As a consequence, cognitive models are capable of incorporating a lot of back-
ground knowledge that is often hard to replicate with geostatistical methods.
Often the subsurface consists of very complex geometrical shapes, which are
hard to incorporate algorithmically. A disadvantage of cognitive modelling is
that the subjective nature of the method makes documentation much harder
since the expert has to document all decisions for other people to understand
the process. As a result, cognitive modelling is both time consuming and dif-
ficult, since expert knowledge can be hard to define explicitly. Furthermore
assessing the quality of this process is also difficult as well.

2.1.3 Hybrid Models

To overcome both disadvantages, many geological models try to implement hy-
brid versions [32] [33]. This method combines the best of both world, by incor-
porating geographical knowledge in the geostatistical model, making them more
realistic. Furthermore, a geologist can later check for errors in the statistical
model as a quality control check. An example of a hybrid model is GeoTOP,
which will provide data for this thesis.

Since most 3D geological models rely on borehole descriptions, their output
is as good as the data. Relying too much on data can be problematic in building
these models, as this data is often sparse [34]. Since interpolating from data is a
statistical method, the output is by definition uncertain. To assess the quality of
these models, many geological models try to quantify this, as ’uncertainties have
a meaning’ [35]. This model uncertainty is often quantified with information
entropy and can be applied both on a whole model as on its parts. Information
entropy is the quantified average amount of missing information in a stochastic
data set, and can be calculated as follows [36]:

H = −
N∑
i

pi log pi, (1)

where H denotes the information entropy over N possible outcomes, and pi
is the probability of outcome i. Since the value H is the sum of the product of
pi with its logarithm, values range between 0 and 1. High entropy should be
interpreted as more uncertain of the outcome. As an example, take throwing
dice. If we use one fair die, the outcome of a throw is entirely random, and the
entropy of the outcome (i.e., the value we throw) is 1. However, if we throw
two dice, the outcome is not wholly random anymore. Here, throwing 2 or 12 is
more uncommon than throwing 7 (the most random state), and the entropy is
lower as a result. A lower entropy also means that we expect to make a wrong
choice on the outcome of throwing one die more often than when we throw two
dice.

Another challenge in geological models is the fact that layers can have com-
plex geometries, due to structural deformations [37]. These distortions make
the output of natural systems seem random at times, because the structure of
the subsurface is sensitive to initial conditions. We cannot infer these initial
conditions solely at the output.
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2.1.4 GeoTOP

In this thesis, we use the GeoTOP model as the 3D model for our experiment.
GeoTOP is a 3D schematization of the Dutch onshore, divided in 100m x 100m
x 0.5m voxels. It models regions of the Netherlands, and provides among other
things the lithostratigraphy of that region. Lithostratigraphy is the ”logical
ordering of rock units, based on lithological properties that discerns a rock unit
from other rock units above, below or lateral from the observed unit.”[38] The
model classifies twelve different units, as can be seen in Figure 1.

The GeoTOP model constructs its voxels as follows:

1. Geological schematization of the boreholes into units that have uniform
sediment characteristics using lithostratigraphical and lithological classes.

2. The model calculates top and base surfaces for each layer. These represent
the bounding surfaces of the units at Formation or Member level. Each
voxel now can be placed within the correct lithostratigraphical context.

3. Stochastic interpolation is used to assign a lithoclass to the voxels.[38]

The GeoTOP uses borehole descriptions as an input for the model, which are
made available from the Dino-loket. A borehole description contains information
about the stratigraphy and lithological properties of that area. This information
then gets translated to correspond with the classes used by GeoTOP. As there
are slight differences between stratigraphical units and the ones by GeoTOP, also
known as geological units. Borehole descriptions provide an accurate picture of
the stratigraphy and lithology, but since only 10% of the surface has a borehole
description [39] (below the surface this percentage is even lower), GeoTOP uses
statistical methods for predicting remaining voxels.

In the second step, stratigraphical layers get modelled by stapeling geological
units onto each other with top and base rosters. By calculating the distance
between them, the thickness of each layer gets calculated as well. Each of these
top and base layers has a standard deviation of the height. These represent the
model uncertainty, which provides an indication where errors are more likely.

Finally, stochastic interpolation determines the eight different lithoclasses.
GeoTOP contains eight different lithoclasses (see Figure 1). Each voxel in the
model gets a probability of each lithoclass, based on borehole descriptions, ge-
ological units, layers, and preprogrammed domain knowledge. GeoTOP subse-
quently picks the most likely lithoclass, and gets a model uncertainty measure
for the lithoclass with a Sequential indicator simulation. Since we are primarily
concerned with stratigraphy, the working of this model is beyond the scope of
this thesis. For an explanation, see [40][41].
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Figure 1: 3D model of the Gelderse Vallei are showing lithostratigraphic units.
Adopted from [42].

Building the GeoTOP model is a labor and cost intensive process, as com-
pleting a block the size of a province takes two years [43], and the costs of
building GeoTOP increased with ’two orders of magnitude’ [43]. The first year
is spent on data preparation and building a geological concept, the second year
on writing documentation and quality control. In this thesis, we focus on the
latter.

GeoTOP consists of two types of data: hard and soft. Hard data is the type
of data serves as an input for the geostatistical model, i.e., the borehole descrip-
tions mentioned earlier. The soft data in GeoTOP are geological constraints
that are applied to the model [43]. These are constraints on the interpola-
tion techniques, based on knowledge on geological plausibility. Whereas the
interpolation is a stochastic method, the current geological features are entirely
deterministic.

The result of this hybrid geological model is a complex interaction between
borehole data, statistical modelling and decades of expert knowledge of geolo-
gists. As a result, analyzing this data is a complex task. The quality control
of the geological models is often done by highly experienced experts, with an
average of 7 years in the quality control of Gelderse Vallei.

2.2 Eye-tracking

In eye-tracking research, the goal is to gain meaningful information out of raw
gaze points and other tracked features of the eye. Since eye movement is re-
lated to attention [44], we can gain insight into a participants thought process
by following their eye movement [45]. Unfortunately, this is not a direct rela-
tionship, but since cognitive data is not readily available eye movement is the
best indicator for visual attention. According to Rayner [46], we can divide
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Table 1: Frequently occurring measures in eye-tracking research.

Fixation Saccade Mixed

Temporal
Total fixation duration Saccade duration Total reading time
Gaze duration First pass time
Average fixation duration
Time to first fixation
Revisited fixation duration

Spatial
Fixation position Saccade length Scanpath pattern
Fixation sequence

Count
Fixation count Saccade count
Average fixation count Inter-scanning count
Revisited fixation count
Probability of fixation count

studies into eye-movement in roughly three eras that shaped the field. The first
era (1879-1920) was a period where basic eye movements were detected. The
second era (1930-1958) is a period where the focus laid on application rather
than understanding, unsurprisingly coinciding with the height of the behavioris-
tic movement in psychology. During the third period (1970-1998), technological
advancements led to improvements in eye movement recording systems. Further-
more, increased computational power resulted in possibilities to examine eye-
tracking data much more thoroughly. After Rayner’s overview, eyemovement
studies continued to grow in several directions. Firstly, eye-racking devices con-
tinue to lower in price while increasing in quality and ease of use [47]. Secondly,
increasing computational power allowed for more accessible analysis, now even
possible on consumer hardware. Thirdly, the rise of smartphones give rise to
a new field of applications, but these developments are in an early phase [48].
Fourthly, research in identifying fixations and saccades become more standard-
ized, with overviews and introductions in eye-tracking methodology [49][50] and
fixation identification [51]. Finally, machine learning techniques found its way
to eye-tracking research as well [52][53].

Nowadays eye-tracking applications have found their way into many different
areas, among them being measuring the effectiveness of advertisements, inves-
tigating human-machine interaction in aviation, and understanding how people
solve complex tasks. The intentions of participants during an experiment have
an impact on the information the experiment provides, and as a result, some
experiments are more useful than others for the scope of this thesis. Applica-
tions in eye tracking can be divided in couple of ways [54], as can be seen in
Figure 2. Firstly, eye-tracking systems can be either diagnostic or interactive.
In the former, the systems tracks eye movement without applying changes. In
the latter, eye-movement is an input to aid the user. In their turn, interactive
systems can be either selective or gaze-contingent. Selective systems replace
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mouse movement with the eye movement of the user, without making further
assumptions. Gaze-contingent systems use knowledge about the user to process
information to make more complex displays. These distinctions are conceptually
important since they provide a framework to increase the understanding of how
the human-computer interaction model uses eye movement. Firstly, a diagnos-
tic eye-tracking system needs to be implemented to show how gaze behaviour
can predict where experts see errors in the model. Secondly, a gaze-contingent
interactive system needs to be implemented to actually automate parts of the
quality control.

Figure 2: A hierarchy of different applications in eye-tracking. Adopted from
[54].

An interesting aspect of research in eye-tracking has been the fact that it has
been labelled as a promising field for over five decades [20], which is unusually
long. Typically, new technologies are touted as promising very briefly, after
which it either delivers its promises or get discarded as a failed endeavour. This
means that on the one hand, people see the immense potential that using eye-
movement for analysis has. As a French saying goes, ”Les yeux sont le miroir de
l’âme”. Since we cannot access a persons thoughts directly, knowing where they
look can be one of the closest ways to address it. This relation is far from causally
since there is not a one-on-one relationship between where we look at and what
we think about (more on this later). On the other hand, certain obstacles proved
to be too big to allow eye-tracking research to move beyond their infancy in a
fast manner. Firstly, the first eye-tracking devices had reliability issues and were
labour intensive, but nowadays setting up an eye-tracking experiment is less
demanding. Modern eye tracking systems are often provided with software that
makes set up tasks like calibration convenient. Still, not all hardware issues are
solved. Goldberg and Wichansky estimates that 20% of the participants cannot
be tracked reliably [55], a non-trivial amount that has many different causes.
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Among these are eye tracking systems having trouble finding the center of the
pupil of participants with dark iris colors, glasses or lenses inferring the signal,
and people with low eyelids that obfuscate a part of the iris. Secondly, even
when system tracks the eye movements correctly, the extraction of meaningful
information is still a time and labour consuming process. Since eye tracking
systems usually measure between 20 and 250 eye movements per second, the
amount of data increases rapidly. The rise in computation power has made this
process more manageable, but a consensus in methods and parameter settings
are severely lacking. As a result, researchers often have to start from scratch,
which makes the automating process much more time consuming. Finally, the
interpretation of data has been a challenge as well. After classifying saccades
and fixations, an explanation has to be made between the eye movement and
the cognitive activities. There are three approaches to do this: top-down based
on cognitive theory, top-down based on design hypothesis, bottom-up, or a
combination of either of these three approaches. In the top-down based approach
based on cognitive theory, empirically tested hypotheses will be used to infer
information about the dataset. For example, a researcher can use knowledge
of the correlation between pupil size and cognitive workload [56] to find places
where the participant has trouble performing the task. In the top-down based
on design hypothesis, a researcher can find what the effect of the experiment
design has on the results. For example, does changing screen colours affect
the fixation time? Finally, in the bottom-up approach no theories about eye
behaviour are assumed, but rather the data is used to hypothesize a theory.

Almost all human eye movement used in eye-tracking studies consist of three
types: saccadic, smooth pursuit, and fixations. Saccades are quick, simultaneous
movements of both eyes between two or more fixations. They can be both
voluntary and reflexive, with a duration between 10ms and 100ms [49]. These
movements are too fast for the brain to process, which means that people do
not perceive information during these eye movements. This process is known
as saccadic suppression[46]. Fixations are the periods where the visual gaze is
roughly in a single location. When our eyes locate a moving object, we call
this a smooth pursuit. Since the eye-tracking data used in this thesis is on still
images, we model only saccades and fixations.

2.2.1 Fixation identification algorithms

Since the properties of saccades and fixations are different, we can implement
an algorithm to categorize between the two. The assumption is that since the
brain can not process images during a saccade, these parts are effectively noise
in the data. Unfortunately, this does not imples that each time a participant
fixates on an object their mind concerns with the same object as well. The
relationship between fixation, visual attention and visual attention is a highly
debated area without definite conclusions as of yet.

We can find saccades by measuring the velocity of the movement of the eyes
and find a threshold to categorize between fixation and saccades. According to
[49], the researcher should find the threshold empirically. See 3 for a plotted
example to find saccades.
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Figure 3: Sample of eye movement of participant 4 of the dataset used in this
thesis, where the right y-axis denotes the position of the gaze point x through
time, and the left y-axis the angle of between two time periods. The red line
denotes a threshold, where values of the angle that are above the threshold are
labeled as saccades and values under the threshold as fixations.

In 2000, Salvucci and Goldberg [51] proposed a taxonomy of fixation iden-
tification algorithms, where they identified five algorithms: velocity-threshold
identification (I-VT), Hidden Markov model fixation identification, (I-HMMM),
Minimum Spanning Tree Identification (I-MST), and Area-of-Interest Identifica-
tion (I-AOI). Tafaj et al. (2012) [57] used a Bayesian Mixture Model (I-BMMM),
were a Euclidean distance between gaze points was used as a metric to differ-
entiate saccades and fixations. Santini et al. (2013) [58] proposed a Bayesian
Decision Theory Identification (I-BDT) for ternary classification (i.e., smooth
pursuits were labeled as well), which works on eye-tracking with smaller frame
rates as well. Apart from that, they also used an expert for labeling the data
as ground truth. As a result, they were able to show the performance of their
algorithm and showed that the I-BDT had a precision of 95.60%, comparing
favorably to the 89.57% of state-of-the-art algorithms.

Surprisingly, a consensus in ideal combinations of algorithms, parameters,
which oculomotor events to identify, ideal sampling frequency, and thresholds
is lacking. In fact, detecting eye movements is far from solved at the moment.
Andersson et al. [59] identify five problems that researchers have to deal with,
that are relevant to the scope of this thesis:

1. There is little agreement on how to evaluate eye-movement algorithms.

2. Theoretical rigor is lacking in what exactly a saccade or fixation means.

3. Most algorithms lack indications on how to select parameters.
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Table 2: The effect of three visual expertise theories on features in eye-tracking
data, where higher and lower indicates the performance of experts in a task in
comparison with intermediates or novices.

Theory Affected feature Effect

Theory of long-term working memory Fixation duration shorter
Information-reduction hypothesis Number of relevant fixations higher

Number of irrelevant fixations lower
Relevant fixation duration higher
Irrelevant fixation duration lower

Holistic model of image perception Time to first relevant fixation faster
Saccade length longer

4. Literature on comparisons between algorithms is scarse, usually only to
prove that a new algorithm performs better.

5. Despite a shared intuition between researchers about eye-movement defi-
nitions, humans labeled fixations do not have a standard ground truth.

2.2.2 Eye-tracking features

After identifying fixations and saccades, several measures can be calculated to
get a better understanding of how an expert looks at geological voxel models.
Lai et al. (2012) [60] summarizes commonly used eye-tracking measures in
2D applications. These measures can be drawn from fixations, saccades, or
a combination and deal with either temporal aspects, spatial aspects or the
number of occurrences.

The subfield of understanding how experts solve complex problems or tasks is
a good fit for this thesis. Gegenfurtner, Lehtinen, and Säljö [61] provide a com-
prehensive overview of expertise differences in visual tasks. Their meta-analysis
tested several theories about expertise in comprehension of visualizations.

Firstly, the theory of long-term working memory proposes that experts have
much shorter fixation lengths. The reasoning behind this is that expertise in a
subject results in qualitative changes of memory structures in the brain, which
allow them to quickly encode information in long-term memory and access it
during their visual task.

Secondly, the information-reduction hypothesis argues that experts are much
better at separating task-relevant from task-irrelevant information, which in-
creases the speed of completing the task.

Finally, the holistic model of image perception states that experts are able
to quickly extract global information of visual stimuli. The experts can extract
information from distanced and para foveal regions, and as such objects of
interest do not have to be in the fovea.

These three theories can help us in assessing the level of expertise, which
can be useful for thinking of implementations. Furthermore, it can give us an
insight in differences in quality control.
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2.2.3 The relationship between gaze, visual attention, and cognition

In this thesis, eye movement is used to infer a cognitive assessment of the stimuli,
namely deciding whether an area is correct or incorrect. When we use eye move-
ment to infer what people think, we have the underlying assumptions that gaze
location and attention are related and that there is a relationship between where
we look at and where we think about. Empirical evidence suggests that there
is a relationship between these phenomena. Just and Carpenter [62] showed
that people tend to look at the object they are thinking about in tasks such
as the comparison of rotated figures, mental arithmetic, sentence verification,
and memory scanning. Thomas and Lleras [63] showed that the link between
eye movement and cognition work both ways: it can both show what a person
thinks and diverting eye movement can influence how we think.

Unfortunately, there are phenomena where these relationships break down.
One famous example that demonstrates this is Simons and Chabris [64] exper-
iment in change blindness, a phenomenon where persons do not perceive con-
siderable changes in objects and environment in the area of their focus. They
demonstrated this by asking participants to count how often a group of persons
throw a basketball towards each other. Meanwhile, a man in a gorilla suit walks
between the group, a remarkable event. However, due to the participants focus
on the ball, they often entirely miss the man in the suit. These findings show
that when a person gazes in a direction it does not guarantee that they perceive
the things in that area. There is no consensus among scientists whether partici-
pants literally do not see the gorilla, or if they do see it but the phenomenology
is inaccessible. In a recent paper, Cheng differentiated several levels of seeing
[65]: crowding, indexing, and attending. Crowding happens when a person sees
something, but there is no attention, or even visual indexing: meaning that the
object is separated from other objects in the persons vision. Indexing is an early
stage in visual perception, where objects are encoded as different entities, but
they are not attended by the person [66]. Finally, attending means that the
object is both seen and has the attention.

Ideally, one would be able to separate these from each other, especially at-
tending from the other levels of seeing. Just like saccadic blindness, gaze points
that are not attended are primarily noise in eye tracking data. Unfortunately,
methods in how to categorize these are lacking.

2.3 Visual Attention

Attention is a state where humans select a mental direction. When this atten-
tion is selected voluntary, we speak of endogenous attention. The involuntary
direction of eye movement is known as exogenous attention. By definition, en-
dogenous attention has an internal cause: our cognition directs our attention
,for example, when we have a certain task, like finding an object in a larger area,
or during reading. Our endogenous attention is thus related with our goals and
desires. Exogenous attention is the mental direction that is caused by stimuli
from outside ourselves. Here we can think of looking at the direction of the
sirens of an ambulance, but also that some colors draw our attention more than
others. There are several theories as per why humans have selective attention:
because of our brain’s incapacity to process several visual stimuli at the same
time, because cognitive incapability to have several thoughts at the same time,
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or because we need a single direction to be coherent.
Conceptually, attention is an interesting phenomenon. On the one hand,

the nature of it is common sense. As the American psychologist William James
noted: ”Every one knows what attention is.”[67] However, we should divide
knowledge of attention into two views: first-person and third person. Attention
from a first-person view is easy to grasp, as we experience its existence every
day. We know what it means to have full attention for something, and some-
times while driving, we realize we have not been attentive for a while. From a
third-person perspective, explaining attention is not trivial at all, and remains
an active field of research in (cognitive) neuroscience, (neuro)psychology, phi-
losophy, computer science, and artificial intelligence. Attention also relates to
other challenging philosophical concepts, for example, whether it is necessary
or sufficient for consciousness and its relation to epistemology.

Visually attention modelling is primarily concerned with answering the fol-
lowing two questions [68]:

1. Can an agent’s visual attention be predicted, given its circumstances and
behavior is known?

2. Can an agents behavior or output be predicted given we know its visual
attention?

To answer these questions, often a combination of behavioral cues, environ-
mental properties and mechanism of human attention are used.

Visual attention modelling gained serious interest in the last few decades
and in fields such as object recognition and detection, video summarization,
and interactive computer graphics apply visual attention. Most visual attention
models focus on a small aspect of human attention.

In studies in visual attention modelling, applications often use either bottom-
up models or top-down models. The focus of these two is parallel with the
distinction of respectively exogenous and endogenous attention.

2.3.1 Bottom-up visual attention

Bottom-up visual attention is directed focus towards visual stimuli, usually be-
cause an area in the visual field is conspicuous, meaning the area differs from
other parts of the area. Bottom-up attention is automatic, reflexive, and swift.
Bottom-up attentional models deal with saliency: finding areas that stand out
in a picture. Areas can be conspicuous for several reasons, including color, ori-
entation, shape, symmetry, containing humans or other animals, and including
text. See Table 3 for an overview of influential bottom-up approaches. The last
two decades, saliency models have become increasingly more advanced, and they
have been successful in predicting fixations in free-viewing. However, when a
specific task is involved their explanation power is unconvincing [69]. The reason
for these results is because when tasks are involved, a vast majority of fixations
are task related [70].
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2.3.2 Top-down visual attention

Top-down visual attention is much slower since it is guided by our longer-term
cognitive strategies [89] such as task-related knowledge, emotions, and expecta-
tions. The relationship with these phenomena makes modelling top-down atten-
tion consequently much harder. Since task-related knowledge differ in each task,
modelling top-down visual attention is task-dependent as well. Furthermore,
several objects and actions are often coinciding, which makes it challenging
to derive attentional conclusions based on eye movement, let alone statements
about the cognitive state of the observant. From a neurological viewpoint, top-
down attention is more challenging than bottom-up as well. At the moment,
we know relatively much less about the neural instantiation of the top-down
components of attention [90] [91].

Despite these challenges, there are advancements in top-down modelling.
Yarbus [45] showed that different type of questions for the observant lead to
changes in gaze behavior. These findings show that we use our top-down visual
attention as a ’spotlight’: we zoom in on areas that are in line with our goals
and tasks so that we can ignore the irrelevant areas. In tasks with a clear goal,
it is possible to make inferential statements about cognitive strategies from
understanding visual attention. When external referents are available in the
data, research show that can we can have an idea what happens internally in
the agent [92]. Navalpakkam and Itti [93] proposed a computational model for
task-specific guidance of visual attention, but it requires precise specification of
the task at hand. This need for a specification is a severe limitation of the current
state-of-the-art top-down visual attention models. While small successes have
been claimed in laboratory experiments, translating this to real-world problems
seems to be too challenging at the current state of affairs.

Still, an understanding of top-down attention is essential for most applica-
tions in computational attention models. Whenever humans have a task (either
internally or externally provided), top-down influences seem to dominate over
bottom-up attention. For example, Zelinsky et al. [94] found that during the
visual search a purely top-down model provided a better approximation of hu-
man eye behavior than a mixed model with bottom-up features. Other research
suggests that visual saliency seem to have little effect on similar tasks [95] and
that top-down attention often only needs one fixation. [96].

There are three major primary of top-down influences:

1. Object Features

2. Scene Context

3. Task Demand

While top-down attention is an integral part of visual attention, it ”lacks
principled computational top-down frameworks which are applicable to different
task types” [69]. A lack of a framework makes modelling top-down attention
hard, and as a result most research is focused on easy tasks for the participant
instead.

In short, attention is a constant interaction between top-down and bottom-
up influences. The question of how humans integrate both in tasks is still a
’central open question’ [69]. While this makes the field open, it makes using
these techniques non-trivial and deriving conclusions out of them troublesome.
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Modelling visual attention is still in its infancy, and often assumptions have
to be made because concluding evidence is lacking. For example, even though
many researchers stress that attention and eye fixation are not the same, the
former is ofter measured by the latter. By doing this, researches ignore covert
attention fully in these models.

2.4 Machine Learning

Since voxels in GeoTOP data are either correct or incorrect, the goal of finding
this is a binary classification problem. In this subsection, we briefly discuss
several classifiers, their advantages and disadvantages, and a brief explanation
of their workings.

Machine Learning is a field where predictions are made by generalizing from
examples. The goal in using classifying algorithms is to find a way to describe
the training data, in a way that can predict new data points correctly. Machine
Learning has become a staple in many applications, and performance excels in
problems where manual programming is not feasible [108]. This makes machine
learning a justified approach, as this applies to both finding GeoTOP errors as
using Eye-Tracking data.

Domingos [109] mentions a few key aspects when applying machine learning
to solve problems, which can be a guide for predicting labels algorithmically.
Firstly, learning by machines can be informally written in the following informal
equation:

Learning = Representation+ Evaluation+Optimization (2)

Solving machine learning problems is dealing with these three parts. Rep-
resentation means that a computer can understand the classifiers, because they
are formally written. A computer can only learn the classifiers that we feed
to model. This is also known as the hypothesis space. Then, after we have
implemented the classifiers, we need an objective way to assess how good their
predictions are. We consider this in the evaluation part. A simple function is
the accuracy rate, or simply the percentage of correct guesses. However, in a
later section, we show why for some problems (like quality control) this evalu-
ation function is not ideal. After we know how to classify our data and how to
identify good and bad classifiers, we search for a method to search among all
possible classifiers. This part searches for the best classifier on our data, or to
find a good enough solution if the data is too complicated]. Table 5 shows an
overview of often used methods.

Secondly, in machine learning the most important aspect is building a clas-
sifier that can generalize. An algorithm should not only perform well on the
data the model sees, but also on similar new data. The fact that the classifier
does not know this data means that we do not know the function that needs
to be optimized since we assess the predicting power on the test set (which the
model has no access to during training).

Thirdly, data alone is not enough. Knowing about the problem to be solved
can help choosing the right representation, as no classifier can beat random
guessing over all possible functions [110].

Fourthly, feature engineering is a crucial part of machine learning. Often,
the focus on picking the right classifier gets the most attention, but building and
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Table 5: Overview of the three components of learning in machine learning.
Adopted from [109], where italics are added to denote methods used in the scope
of this thesis.

Representation Evaluation Optimization

Instances Accuracy/Error rate Combinatorial optimization
K-nearest neighbor Precision and recall Greedy search
Support vector machines Squared error Beam Search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability Continuous optimization

Logistic Regression Information gain Unconstrained
Decision Trees K-L divergence Gradient descent
Sets of rules Cost/ Utility Conjugate gradient

Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming
Graphical models Quadratic programming

Bayesian networks
Conditional random fields

selecting the rights features are often more important. Predicting on raw data
is often not ideal, and incorporating useful features can significantly improve
the prediction of the classifier. Finding features can be a difficult step however,
as it requires knowledge that is specific to the domain of your problem, instead
of general machine learning knowledge.

Fifthly, the fact that we can represent a function does not mean that we can
learn it. For example, a decision tree cannot learn trees where there are more
leaves than training samples [109]. Moreover, if the hypothesis space has too
many local optima, we cannot guarantee to find the optimal function.

Finally, the most important rule is that more data is often better than better
algorithms. While machine learning deals with a lot of ingenious techniques in
feature engineering, classifiers, and other ways to improve the predictions, the
best way to improve the performance of a classifier is to give it more data. In
the next subsections, we briefly discuss a couple of conventional classifiers that
we use in later sections.

2.4.1 Logistic Regression

In binary classification problems, the probability that Y is 0 or 1 is based on
the input variables that can be calculated with a logistic regression. Logistic
regression is a model that predicts categories based on the most probable class.
The probability is calculated as follows [111]:

p(y = 1|x) =
eβ0+β1X+···+βpXp

1 + eβ0+β1X+···+βpXp
(3)

We fit this model by using a maximum likelihood function, a method for
determining parameter values. In maximum likelihood, the method finds values
that maximise the likelihood of observed data. This likelihood is calculated as
follows [111]:
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`(β0, β1, . . . βp) =
∏

j:yj=1

p(xj)
∏

j′:yj′=0

(1− p(xj′)). (4)

In our data, this means that we want to find values for β̂0, β̂1, . . . , β̂p+1

that will maximize the likelihood of either a marking (Y = 1) or a non-marking
(Y = 0) best.

2.4.2 Tree-based Methods

Decision trees build a model by finding splits that separate observations best.
At each split, the algorithm finds a partition to make meaningful subsets that
can make better predictions than the entire dataset. The goal is to find the best
splits while keeping the tree as small as possible because larger trees are more
likely to overfit. Splits that divide a node that consists of only one class are
called leaf nodes.

To find the splits at each step, we need to quantify the performance of a
split so that the tree can pick the best split at each step. Decision trees pick
the best split via an impurity measure. There are different measures for doing
this, each with their way to decide which split is best. Three popular impurity
measures are resubstitution error, Gini-index, and information gain.

The resubstitution error is a measure that calculates the portion of instances
that have an incorrect prediction if we pick the majority class at that node:

i(t) = 1−max
j
p(j|t) (5)

While picking the majority class makes intuitive sense, there are instances where
the resubstitution error picks suboptimal splits. For example, in cases where a
split could lead to a leaf node, the resubstitution error sometimes picks other
splits. To increase the tendency of splits towards creating leaf nodes, we decrease
the value of the measure faster than in a linear fashion. The Gini-index is a
measure that looks at the distribution of the labels and calculates the probability
that an instance in the dataset has an incorrect label by random assignment
based on the distribution. We can measure this as follows:

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t)). (6)

Finally, the information gain is a measure that favors smaller trees by picking
splits that result in the purest nodes. We can calculate this as follows:

i(t) = −p(0|t)logp(0|t)− p(1|t0logp(1|t). (7)

See Figure 4 for an example of a decision tree that uses the Gini-index. Here,
we calculate the information that a random sampling generates from a node by
observing its class. Section 2.1.3. mentions entropy, the average amount of
information in a stochastic process. These two concepts are related since the
information gain calculates the difference between the entropy of the parent
node minus the weighted sum of the entropy of the child node. The information
gain calculates the information that each split generates and picks the most
informative split.
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Figure 4: An example of a decision tree, with maximum depth and maximum
leaf nodes of 6. This tree visualizes a fit on the preprocessed data in Subsection
4.5. Decision trees are easy to visualize, but usually, lack predicting powers.

Decision trees have several advantages compared to other machine learning
techniques. First, the model is a complete white box. By visualizing the tree,
even an untrained eye can see rather straightforward how the model classifies.
The tree is simple to understand and to interpret, as each node is just a split
based on the value of one feature. While people often struggle with statistical
intuitions [112], decision trees mimic the way in which human decision making
works much better. The algorithm also requires little preparation, as it can
handle values that are not normalized. As splits look only at one feature at a
time and consider only the order of values, normalization is not necessary.

However, decision trees have some severe limitations as well. Firstly, their
performance is not among the best performing machine learning approaches.
Secondly, small changes can have a massive impact on the shape of the tree.
As a result, they are not very robust. The high sensitivity to changes in data
means decision trees have a high variance. We want to have a tree that is a
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good representation of the information of the dataset, but when small changes
can alter the tree entirely the visualization becomes less useful.

Several techniques build on decision trees that can increase the performance
of the model. A better performing model means decreasing the error rate.
Errors can have are a combination of the following factors:

error = bias + variance + irreducible error (8)

To reduce errors, a model can either reduce bias or variance (or both), as by
definition you cannot prevent irreducible errors. Usually, in machine learning,
we have to make a compromise between bias and variance. Having a high bias
means that the algorithm is not capable of finding specific information in the
data, for example, because the assumptions are too unspecified. Often simpler
models suffer from a high bias and low variance since they ignore complex
relations. Models that have more complex assumptions can represent the data
of the training set much better. As a result, their bias is lower, but in the
process, they can find ’information’ in the noise. As a result, the algorithm
suffers from pareidolia, where it sees faces in clouds. Increasing the sample
size also reduces the variance, as more data increases the estimate of the mean
of a group. As a result, the standard deviation decreases. There are several
techniques to reduce error rates in decision trees: bootstrap aggregating, which
tries to reduce the variance, and gradient boosting, which tries to (primarily)
reduce bias.

Both techniques try to overcome the limitations of decision trees via ensemble
learning. In ensemble learning, the main idea is that multiple weak learners
are better than one learner. By combining some hypotheses, the idea is that
together they form a better hypothesis. In bootstrap aggregating or bagging,
the algorithm draws a sample with replacement from the training dataset and
repeats this B times, where B denotes the number of bootstrapped data sets
or trees. Each sample has the same size as the training set, which means that
observations can appear several times in a bootstrapped dataset. Bagging then
creates a decision tree for each sample and averages over their predictions or
take a majority vote. The variance of a single tree is σ2, which means that the

mean over all trees is σ2

B . This formula shows that bagging reduces variance,
since increasing n will decrease the average variance. In this thesis, we use a
Random Forest algorithm [113], which is a method that builds upon bagging.
Just as in bagging, Random Forests build several trees with bootstrapping, but
they randomly select only a selection of m predictors. Typically this is

√
p,

where p denotes the total number of features.
Where Random Forests build multiple trees over which it averages, gradi-

ent boosting [114][115] builds trees sequentially. Instead of building new trees,
Gradient Boosting uses weak hypotheses and corrects on these hypotheses in
the next iteration. After each tree, the technique calculates the shortcoming
of the hypotheses via gradient descent. Boosting thus uses work sequentially
since the algorithm knows the information of other trees. Instead of growing one
large decision tree, gradient boosting builds a small tree. These smaller trees
tend to have a higher difference between observed values and estimated values,
also known as residuals. Gradient boosting tries to solve this, by iteratively fit-
ting small trees to these residuals. By making this process slower than decision
trees, boosting works well on improving parts of the data where its performance
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is suboptimal.
After the Gradient Boosting is finished building trees, we can also calculate

the influence of each feature in the model. This can be measured by calculating
the number of times a tree selects a feature for splitting. We weight this value
with the squared improvement to the model of each split and average this value
over all trees [116].

2.5 Closed-loop Interaction

Human-computer interface is a discipline concerned with the design, evalua-
tion, and implementation of interactive computing systems for human use and
with the study of major phenomena surrounding them[117]. Schomaker et al.
(1995)[118] proposes a taxonomy for a basic model that we implement as a
framework for this thesis. See Figure 5. As can be seen, the human agent and
the computer agent are physically separated, but they communicate through
an interface. There are two processes involved: perception and control. The
perceptive process consists of Human Input Channels (HIC) and Computer Out-
put Media (COM). HIC is the input that a human gets from the computer, and
COM is the output from the computer to a human. The control process consists
of Human Output Channels (HOC) and Computer Input Modalities (CIM).

Figure 5: Basic model that shows the interaction between a human and a com-
puter. The arrows represent the direction of the interaction, where the dotted
line indicates the intrinsic perception/action loop that occurs independently of
the computer. Adopted from [12].
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In this model, we can identify cognitive or computational components. In
the case of computer agents, the processing design is known and readily available
for the designer. In the case of humans, we do not have all information on this
process, but rather infer this by observing human behavior (i.e., eye-movement).

For all four previously mentioned components, four epistemological levels of
observation can be defined [118]:

1. Physical/physiological level. The physical level denotes the system char-
acteristics and processes, such as resolution, delay time, and the constraint
in the interaction between the agents.

2. Information theoretical level. This level denotes the characteristics of the
information in the component, like entropy.

3. Cognitive level. Denotes the representation and procedures, explicitly
made in syntax and semantics.

4. Intentional level. The intentional level denotes the goals and beliefs of the
component and is crucial to understand for pattern recognition. Examples
of these goals for the user are anomaly detection and browsing.

In a later section, we implement these components with corresponding epis-
temological levels.

Eye signals can provide as a signal for our machine learning task. See Figure
6 for a pattern recognition pipeline. Here, sensors of a physical system capture
raw signals that are potentially useful for the task at hand. These raw signals are
in turn preprocessed with filtering and artifact removal techniques. Then, the
processed signals can, in turn be, synchronized and segmented based. Since the
signal is often large in volume, feature extraction is often needed to separate
redundant information from informative, which makes the machine learning
task both faster and more robust, since it reduces the chances of overfitting.
Here, the first step is finding potentially informative features with their optimal
parameters. Then, in this entire pattern space, the most useful features are
selected. The selected features together will form the reduced pattern space,
and serves as input for the classification algorithms.
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Figure 6: A pattern recognition pipeline, where raw signals are processed into
a classification algorithm for decision making. Adopted from [12]

In this thesis, we will use both eye-tracking data and geological data as
signals in this pattern recognition pipeline.

2.6 Previous Experiments

In van Maanen et al. (2014,[42]) an eye-tracking experiment was conducted on
expert geologists of Dutch geological survey. Twelve participants, of which ten
males and two females, were asked to look at a part of the GeoTOP model from
Utrecht and the Gelderse Vallei, an area in the west of the Netherlands. This
part consisted of a 3D space with size 20700m (x) by 24500m (y) by 50m (z), but
the experts watched them in two-dimensional slices (x) with (y, z) coordinates.
During each slice, participants first had to scan the image to check for errors
in the GeoTOP model. When participants thought they were finished checking
errors on a slice, they pressed the space bar to manually mark voxels that they
assessed incorrectly. After that, another space bar continues them to the next
slice. Each participant performed this routine for 70 slices in total. We use the
same dataset in this thesis.

2.6.1 Eye-tracking Experiment

The slices were shown on a 1024 x 768 screen, and participants had their heads
on a chin rest at 61cm from the monitor. The complete task took 70 min on
average, with view intervals of 29 seconds and mark intervals of 31 seconds.
For the experiment, a Tobii X50 with 50hz sample rate was used. Each trial
generated two files: gaze.csv and events.csv.
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Figure 7: Gazepoints of all participants for slice 49.

The collected data consists of twelve participants (n), that for each slice
(x) have gaze tracked through time t, where gaze is a vector consisting of gaze
points x and y, cam x and y, distance of the pupil, pupil size and validity of
both left and right eye. In total, the participants took 9 hours and 19 minutes
to check the slices, excluding the time it took for them to mark the areas.

The Tobii x50 is a standalone eye tracking system, with an accuracy between
0.5-0.7. The measured gaze angles are accurate up to around 35 degrees, and
has a latency of 35 ms.

Figure 8: Gazepoints of all participants plotted on slice 10.

For each slice, participants were asked to assess whether errors in the model
made by GeoTOP occurred. Since only eye behavior is measured during the
view time, participants were asked to only go to the marking phase of each slice
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Figure 9: Overview of the Rivierengebied, an area in central Netherlands. The
main area that used in this experimental set-up is the B05, but some parts of
B01, B02, B05, B09, and B10 are also in this dataset. Adopted from [41].

after finishing. Each participant started with a mock slice, so that the task was
fully understood before starting the experiment. They were also informed that
each wrong pixel should be labeled instead of drawing circles around the area, as
this would confuse evaluation metrics. While humans interpret an empty circle
as one area of one error, the computer only understand pixels being wrong/right.

2.6.2 GeoTOP data

In this thesis, we use GeoTOP for our experiment on geological data. The
complete GeoTOP data consists of 64 3D areas, which covers a large part of the
Dutch subsurface. Each area is a dataset with rows of x, y, and z coordinates,
where x denotes the direction of west to east, y from south to north, and z
from the lowest measured part of the subsurface to the surface. The GeoTOP
model used in this research is a part of the Rivierengebied from Utrecht and
the Gelderse Vallei, an area in the west of the Netherlands. This part consisted
of a 3D space with size 20700m (x) by 24500m (y) by 50m (z), but the experts
watched them in two-dimensional slices (x) with (y, z) coordinates.

The largest part of the area used in this experiment is the B05 Rivierenge-
bied, but since the slices have a small overlap, small parts of the surrounding
B01, B02, B06, B09, and B10 appear in the dataset as well. See Figure 9 for
the locations of these areas. After that, the x coordinates are used to divide the
dataset into 70 slices, starting at 141950, with steps of -300 for each increment
in x. Then for each x, each row with z and y values is used to build a 245*120
screen, creating 70 slices with y and z coordinates corresponding in shape (but
not size!) of the eye tracking data.
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2.6.3 Mathematically Modeling Visual Attention

In van Maanen et al. (2014)[42] a mathematical attentional model [68][119]
was used to find whether visual attention can be a good predictor for manually
marked errors in geological voxel models. In their experiment, eye-tracking data
of twelve domain experts was used to determine the rate between attention and
manually marked errors. They found that with optimal parameter settings the
model was able to find 68% of he marked errors, while only 18% of the area not
marked as an error drew attention. With an Area under the ROC Curve (AUC)
of 0.82, this result can be classified as good. Their experiment also showed that
a large percentage of the errors was found in a short period: the first 3.5% of
viewing provided 54.8% of the AUC.

The areas of attention were located as follows. First, the model assumes
that attention was constant:

A(t) =
∑
x,y

AV (x, y, t) = 1, (9)

where A(t) = the total amount of attention at point t, and AV(x,y,t) is the
attention value for area (x,y) at time t. This assumption is not universally ac-
cepted, as some models incorporate a framework with dynamic visual attention
[83]. Secondly, errors were predicted by attention exceeding a threshold:

e(x, y) =

{
1 if AV (x, y, t) ≥ α for some t

0 otherwise,
(10)

where e(x, y) is the estimation of an error at point (x, y).
Thirdly, since people pay more attention to the center than to the periphery

of their visual space, a gaze parameter was introduced.Here the relative distance
of each area (x,y) to the gaze point is used as a factor to determining the
attention value of (x,y). For each new attention value of time, this is modeled
as follows:

AVnew(x, y, t) =
1

1 + γ · r(x, y, t)2
, (11)

where γ denotes the relative impact of distance r(x, y, t) to the gaze point
on the attentional state, and r(x, y, t) is the Euclidean distance between the
coordinates and gaze point.

Fourthly, the attentional model assumes that the amount of attention is
limited, so the value of AV should be normalized to incorporate this:

AVnorm(x, y, t) =
AVnew(x, y, t)∑

x′,y′ AVnew(x′, y′, t)
· (A(t) = 1), (12)

where AVnorm denotes the normalized value of attention. In the normalized
model, each area of (x, y) now has a value between 0 and 1.

Finally, the model assumes that gaze travels faster than attention among
the grid. As a result, a decay factor is included to let attention values persist
for a longer time:

AV (x, y, t) = λt
′−t ·AV (x, y, t′) + (1− λt

′−t) ·AVnorm(x, y, t) (13)
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Here, λ is the decay parameter that transitions the gaze into attention. Higher
values of λ should be interpreted as a slow decay, while lower values indicate a
faster decay.
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3 Hypotheses

This thesis aims to investigate the applicability of automating tasks during qual-
ity control in geological voxel models. In 2014, previous research [42] established
a link between eye-movement and errors in geological voxel models. An atten-
tional model was implemented to map the attention to markings and showed
that this method was a great way to predict errors. However, one downside of
the research was the fact that the model optimized the parameters on each par-
ticipant, making the model incapable of making generalized statements. Ideally,
we want our model to be able to make generalized predictions without having
to be trained on new participants. For this reason, we use the model to train
on all participants instead of making individual participant models. Due to the
fact that participants have different expertise, eye-behavior, and marking style,
we hypothesize the model performance will decrease:

Hypothesis 1. Generalizing previous attentional models on geological voxel
models will decrease their predicting powers.

Apart from the input of participants, we also look into the information pro-
vided by geological voxel models itself. GeoTOP models are partly statistical
models and have an entropy value for each voxel. This entropy value represents
the uncertainty about the correctness of voxels. As a consequence, we hypothe-
size that voxels with higher entropy are more often incorrect and voxels with a
lower entropy are more often correct and vice versa. We use this information to
build an a priori model. We look into the relationship between model entropy
and the number of errors. Since the entropy of the GeoTOP model is an in-
dicator of model uncertainty, we expect this to be a good predictor for finding
these errors.

Hypothesis 2. Entropy is a good predictor for finding errors in geological voxel
models.

Finally, we look into methods of analyzing eye-movement behavior. Studies
have stated that processing raw gaze data into fixations can decrease complexity
without losing valuable information and increase computational performance
[51]. We can use these techniques to extract meaningful eye behavior features
combined with machine learning classifiers to assess our last hypothesis:

Hypothesis 3. Implementing fixation identification algorithms with a machine
learning classifier will reduce computation time while improving its predictive
powers.

4 Method

In this section, we describe the several experiments we performed to test our
hypotheses. Firstly, we give a description of the experimental setup of the eye-
tracking research [42]. Secondly, we present an overview of the GeoTOP data
that was used in the eye-tracking experiment. Thirdly, we describe methods
of preprocessing our data. Fourthly, we present evaluation metrics to compare
models. Finally, we test several models.
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4.1 Signal Processing

In Section 2.5, a pattern recognition pipeline was discussed, which we apply here
to error predictions in geological voxel models. Figure 6 gives an illustration of
the order of processing.

Quality control in geological voxel models consists of several signals: the eye
behavior of geology experts, information from GeoTOP itself, and the markings
of the experts.

Firstly, the eye movement of experts is a signal that can be measured and
used to extract relevant features from it. See ref Section 2.2 for an overview of
different signals in eye movement, and behavior we can infer from it. To collect
eye data, an eye-tracker collects raw signals. In this thesis, a Tobii x50 was
used for measuring the experts eye behavior. The Tobii x50 has a 50hz frame
rate, meaning it collects 50 data points each second. The rate at which an
eye-tracker samples is a significant aspect, as the eye is in constant movement.
The higher the sample rate, the more accurate picture we can have about the
position of the eye at any given moment. In turn, this helps the accuracy
of identifying higher-level features, like saccades and fixations. According to
Nyquist-Shannon sampling theorem, the sampling frequency should be at least
twice as big as the eye movements [120]. However, since the choice of eye-tracker
preceded this thesis, the conclusion should be reversed: since the experiment
uses a 50hz tracker, we should only consider eye behavior of 25hz and lower.
Fixations are less sensitive to low sample rates than saccades [121], since they
have a longer duration and less positional variation. Tracking saccades with
a 50hz eye-tracking system is more problematic. There is ample support for
the claim that 50hz is not a good sample rate for measuring saccades, as short
saccades of 10◦ are not accurate under 60hz [122] and for calculating maximum
saccadic velocity an eye-tracker of 300hz is needed [123]. Furthermore, data
yielded by Andersson et al. [121] suggest that after 250,000 saccades, there are
differences in total fixation duration time. For this reason, they suggest using
event detection algorithms rather than temporal sampling.

Secondly, we can look at the geological ’signals’ in the pipeline. Each of these
voxels has the attribute of having a certain lithostratigraphy with an entropy
value. This entropy value can be used as a predictor of error, as we expect
entropy to be correlated with markings.

Finally, the markings of the experts are explicit indications of their cognitive
assessment of voxels, indicating the expert thinks the lithostratigraphy of the
voxel is either correct or incorrect. We use this as ground truth for the classifier,
where Y = 0 for correct voxels and y = 1 for incorrect voxels.

Ideally, we would like these experts to be reasonably robust in their agree-
ments among each other. When raters tend to agree on the value of Y , we can
extract valuable information from this. For example, in these situations, we
can identify when some participants fail to see an incorrect marking and can
hypothesize that this is due to fatigue. We can also assess which errors are easy,
and which are more difficult. High agreement among experts can also help us
in the process of creating a single artificial expert, and help us identifying when
experts make mistakes.

Unfortunately, participants in assessing the GeoTOP model were in general
not in agreement with each other. When looking at the markings, we must
conclude that finding a ground truth between the participants is non-trivial. In
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Table 6: Inter-rater agreement of pixels between all participants. Values are
calculated with Cohen’s Kappa, where a 1 means a perfect agreement between
participants and 0 means two participants do not agree more than random
assigning labels. As we can see, the inter-rater agreement is low, making it hard
to create an ’average’ expert that looks like the participants.

0 1 2 3 4 5 6 7 8 9 10

0 - 0.04 0.04 0.03 0.03 0.02 0.03 0.05 0.03 0.05 0.04
1 0.04 - 0.19 0.09 0.05 0.01 0.07 0.14 0.02 0.04 0.01
2 0.04 0.19 - 0.08 0.03 0.01 0.05 0.12 0.02 0.03 0.03
3 0.03 0.09 0.08 - 0.08 0.06 0.09 0.13 0.10 0.05 0.09
4 0.03 0.05 0.03 0.08 - 0.06 0.05 0.07 0.09 0.07 0.07
5 0.02 0.01 0.01 0.06 0.06 - 0.05 0.04 0.15 0.09 0.12
6 0.03 0.07 0.05 0.09 0.05 0.05 - 0.06 0.06 0.08 0.04
7 0.05 0.14 0.12 0.13 0.07 0.04 0.06 - 0.06 0.06 0.05
8 0.03 0.02 0.02 0.10 0.09 0.15 0.06 0.06 - 0.09 0.12
9 0.05 0.04 0.03 0.05 0.07 0.09 0.08 0.06 0.09 - 0.07
10 0.04 0.01 0.03 0.09 0.07 0.12 0.04 0.05 0.12 0.07 -

order to assess the level of agreement between experts, we calculate inter-rater
agreement with a Cohen’s kappa coefficient (k). This is calculated as follows
[124]:

k =
p0 − pc
1− pc

, (14)

where p0 is the relative observed agreement, and pc the probability of chance
agreement. By doing this, we can measure the agreement between experts while
taking into account that they agree with each other based on chance. In Table
6 we see that the inter-rater agreement is low among experts.

This low inter-rater agreement shows an added complexity in this problem
space. Apparently, even though these experts have the same global task, the
execution of their role is different. One of the explanations is that most of these
experts have a specific domain of expertise, and as a result is the part that
they look at most. A second explanation is that it shows the difficulty of the
task at hand. If finding errors would be a trivial task, we would see a much
higher inter-rater agreement. The fact that these are low means that experts
see different errors, some unobservable to others. It also means that we cannot
use the agreement of experts to make a conclusive division between errors and
non-errors. Earlier we mentioned that the targets of each participant provide a
ground truth, but ideally we would like to assess their performance as well. This
way, we would compare the expert markings to a ’true’ correct/incorrect array.
However, if the experts lack any real agreement, then the subsequent analysis
will yield spurious results [125].

Table 7 adds further evidence in the difference between expert markings. As
we can see, some participants have over 20 times as much markings as other par-
ticipants. These large differences in labeling can be problematic, since this can
favor classifiers heavily to the participants with the highest number of marking
pixels.
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Table 7: Overview of marking behavior of all participants. The total markings
is the total number of pixels where y = 1, average markings is the number of
connected pixels with value 1, and average marking size the average amount of
pixels adjacent to each other. This table indicates clearly how different partici-
pants mark, as participant 2 has over 28 times as many markings as participant
5.

Participant
Total
markings

Average
markings

Average
marking size

Number of
empty slices

0 6603 41 162 0
1 22340 19 1187 4
2 23923 22 1088 0
3 5969 23 256 0
4 3006 10 308 4
5 846 4 207 24
6 2489 5 454 10
7 16677 34 495 0
8 2447 9 287 1
9 3420 6 614 4

10 1977 12 171 1

The marking dataset consists of 111945 ones and 362096055 zeros, respec-
tively 0.03% and 99.97%. These differences are fairly consistent between both
participants and slices, with standard deviations of 0.00034 for participants and
0.00031 for slices. See figure for the entire distribution. 81.47% of the pixels
coordinates of the screen has no markings in any of the (slice,participant) com-
binations. One issue we can infer from the number of markings of errors in
the data is the fact that the division between errors and non-errors favors non-
errors, which makes the classes imbalanced. The problem of imbalanced data
sets generally applies in situations where the majority class is large and the
minority class is small [126]. Imbalanced datasets provide problems for many
machine learning algorithms and evaluation metrics, making this a non-trivial
aspect of our data. Traditional machine learning algorithms tend to favor the
majority class, which can lead a poor performance for predicting the minority
class. As we want to find the errors in the data set, this is a significant challenge.

There are a couple of ways to deal with this problem, with the most popular
being undersampling, oversampling, and weighting samples. Undersampling is
the process of reducing the amount of the majority class samples in the training
data to correct the bias [127]. Contrastingly, oversampling is a technique that
adds minority samples to reach to the same balance as in undersampling [128].
An example of these techniques is SMOTE [129], where synthetic minority in-
stances are created by using k-nearest neighbors on the feature values. Finally,
the bias towards the majority class can also be reduced by adding weights to
the minority class, making errors on these samples more costly. As a result,
choosing majority class always would reduce the model performance.

Class imbalances can be problematic for training models, since predicting
the majority will give us a 99.97% accuracy rate. One possible solution is to
add weight to the mean squared error, in this case the positive class label. As
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a result, predicting markings as non-markings will be punished more severely,
which will increase the cost of predicting only majority classes.

Figure 10: An example of a slice used in the questionnaire performed on par-
ticipants after the eye-tracking experiment. The experts were asked to indicate
whether they thought the shading was an error, the shape was correct, how
conspicuous, and what kind of error it was.

Apart from the markings of all slices, a follow-up questionnaire was per-
formed on all experts, where they were showed six of the 70 slices to answer
questions about the nature of errors. Each slice contained between twelve and
fifteen marks, where a region was considered a possible error if a certain thresh-
old was met of expert marks. See Figure 10 for an example of an image that
was used in this questionnaire. The participant answered a series of questions
on each marking to give a better understanding of the nature of these marking.
They indicated whether it was an error, the level of certainty they had, the
difficulty of finding the error, the severeness of the error, whether the error was
conspicuous, whether the error was marked correctly, and the type of error. The
questionnaire indicated eleven types of errors: the base of the unit is too pointy,
the base of the unit is too irregular, the top of the unit is too irregular, the
lateral transition between the units is too sharp, a certain unit is not present or
underrepresented, a certain unit is overrepresented, the unit is lying too deep,
the unit is lying too high, the order of units is wrong, the shape of the units is
wrong, or other. See Appendix C for the entire questionnaire.
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Figure 11: Average of values given by participants over all errors used in the
questionnaire. This bar plot shows that the average severeness of errors is very
low, and that they were hard to find.

The six slices in the questionnaire can provide a ground truth, since all ex-
perts have checked these markings. See Figure 11 for the average percentages of
the levels of severeness, certainty, conspicuity, and indication. This figure shows
clearly that the average severeness of an error is very low (50%). Even though
the questionnaire only treats around 8% of the data, we can already see that
there is a difference of opinion of the experts concerning the errors. The exis-
tence of disagreements is a thought-provoking find, since if the experts showed
more agreeableness among each other, the difference in inter-rater agreement
could be due to experts not seeing some markings. The results of the ques-
tionnaire show that this is not the case, because even after being shown the
areas they still disagree. Figure 12 shows a distribution of how each participant
perceives areas as errors. Here we see an apparant disagreement among experts,
as most of the areas are either really an error or really not. The results of this
make finding an average error rather challenging, and suggests that using each
participant’s own ground truth is the best we can do. These disagreements also
show again the difficulty of both interpreting the GeoTOP data and interpreting
the expert’s performance.
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Figure 12: Distribution of severity assessment by experts of each error showed
in the questionnaire. Here we can see that the errors follow an extreme bimodal
distribution: most are either very unlikely or very likely to be an error.

4.1.1 Preparation

To prepare the data, we preprocess on the gaze.csv and events.csv of each
participant. The preparation of the dataset consists of several stages. First, data
preprocessing removes noise and unreliable data. Secondly, data segmentation
creates segments of the data to make analysis simpler. Thirdly, we extract
meaningful features out of raw signals. And finally, parameter values for these
features can be found.

We preprocess the eye behavior of each participant in the gaze.csv file.
Since the eye-tracker takes samples at a fixed interval, sometimes participants
are blinking during an interval. These blinks are removed from the data, as
participants do not have visual input during blinks. The Tobii x50 makes blink
removal trivial since these occurrences have a validity of 0 and their coordinates
of gaze points are a negative integer.

Then, gaze points at areas of the screen that are outside of the image are
removed as well. The experiment is performed on a 1024 ∗ 768 screen, with
the geological slices being 980 ∗ 480. The image offset of x is 22 and the offset
of y is 144. For both x and y, the gaze points less than offset or more than
the screen size minus offset are removed. After this, we resize the images. The
GeoTOP model consists of slices with size 245∗120, but the experiment enlarged
each voxel to 4 by 4 pixels. As a result, all gaze points of 4 adjacent in either
horizontal or vertical direction refer to the same voxel. For this reason, we resize
the images, and it has the added advantage that it decreases computation time
and file sizes dramatically. The gaze behavior is resized by dividing all gaze
points by 4. After this, gaze point coordinates are divided by the offset, making
all gaze points in the range of either 0-245 for x and 0-120 for y. The markings
in events.csv are resized as well, in the same way.

After the preprocessing, gaze and marking data gets segmented, separating

38



data for each slice. The events.csv of each participant consists of 4 columns:
timestamp, event type, click x, and click y. The event type is an integer
that can be used to interpret the type of action. See 18 in Appendix B for an
overview. For each row where event key is 4, we use the value of click x to
indicate the slice number in a new column slice. Rows with an empty value
of this column (i.e., with another event type) get interpolated. Each slice now
gets a matrix of size 245 ∗ 120, where markings get a value of 1 and the rest 0.
Then, we use timestamp to find the timeframes of each slice and use that to
segment gaze.csv as well. Then, all gaze data and target data get stored in a
multidimensional array, with the first dimension being slice number, the second
participant number and the following for storing either gaze data or a 245 ∗ 120
matrix with the markings.

Figure 13: The markings of all participants plotted on slide 10.

The GeoTOP areas were also preprocessed, using only the voxels that were
looked at in the experiment. For this several GeoTOP files were used: B01,
B02, B05, B06, B09, and B10. See Figure 9 for the locations of these areas.
Each file had rows with values for x, y, and z. For each file, we used the voxels
with a value of x between 120950 and 141950, with a step size of 300. For the y
values, we use between 444550 and 468950 (step size 100). All values of z are in
the data available. Now each row had a unique value of x, y, and z, which were
transformed in matrices as well. For the values of entropy and lithostratigraphy,
we made a matrix with dimensions x, z, y. Note that these values correspond
to the Tobii output of slice, y, and x.

4.1.2 Dilation

When evaluating a model, a straightforward method is by checking which pix-
els are correctly predicted corresponding to the markings. For this reason, it
is important that participants mark the entire area that they consider to be
erroneous since if they mark only half evaluation metrics will underperform.
Another advantage of filling the entire area is that in this case, it will make
the dataset less imbalanced, which is beneficial for the performance of machine
learning algorithms.
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Figure 14: Effect of dilation on the markings of experts. Slices on the left are
all slice 14 of participant 0, slices on the right are slice 16 of participant two.This
demonstrates how dilation can help removing errors in filling the marked areas.

(a) Slice 14, participant 0, no dilation (b) Slice 16, participant 2, no dilation

(c) Slice 14, participant 0, dilation with 1
iteration

(d) Slice 16, participant 2, dilation with 1
iteration

(e) Slice 14, participant 0, dilation with 5
iterations

(f) Slice 16, participant 2, dilation with 5
iterations

Analyzing these markings show that errors occur, however. Often some areas
have small spaces of non-markings, and some participants encircled areas instead
of filling them in. See Figure 14a for an example of these incorrect labeling. We
use dilation to correct these markings. Dilation is an operator in mathematical
morphology, where foreground areas (i.e., markings) are gradually enlarged to
fill in holes in the area.
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Dilation can be operated as follows [130]:

A⊕B = x|(B)x ∩A 6= ∅, (15)

for the sets A and B, where (B)x denotes the translation by x = (x1, x2).
We implement this by performing the ndimage.morphology.binary dilation

function of the SciPy library [131]. The amount of growth of the object depends
on the structuring element, where the common elements are 4−n or 8−n [132].
In the former, pixels grow on horizontal and vertical neighbors, and the latter
also on diagonal adjacent neighbors. In this thesis, we use a 4 − n operation,
which can be calculated as follows [130]:

C4(n) = {(x, y) ∈ Z2 : |x|+ |y| ≤ n}, (16)

where n denotes the number of iterations. We use 6 iterations, which empir-
ically seem to correspond best to better markings. We use this dilated target
data as an extra dataset, to compare whether this leads to better results. See
Figure 14 for an example of this dilation. This figure illustrates well how di-
lation can lead to better markings. In the right subfigures, we see that the
participant struggled with filling in pixels inside an object. Dilation helps to fill
these empty pixels, without distorting the borders too much. In the left figure,
we see an even more problematic image. Here, the participant circled the areas
without marking the inner area. In some of these cases, dilation is not enough
to fill the areas without some other areas sticking to each other.

After preprocessing eye-tracking and GeoTOP data, we can extract features
and parameters for classification. Since we test three different models, these
will be discussed separately in the following subsections.

4.2 Evaluation Metrics

To be able to compare the tested models, we implement the same technique for
measuring the effectiveness of each method. This section explains the chosen
performance metric with motivation so that the different models can be com-
pared and we can derive a conclusion from this comparison. One of the most
frequently used methods in pattern recognition and machine learning is the
Receiver operating characteristics (ROC) graph, a technique for visualizing, or-
ganizing and selecting classifiers based on their performance [133]. ROC curves
are commonly used in binary classifiers and shows the relationship between the
true positive rate (TPR) and the false positive rate (FPR) for various hit rating
settings. The ROC curve is a good alternative for just using classification accu-
racy, since the former work better on unbalanced datasets than the latter. For
example, whenever the distribution of a binary classification problem is 99%-
1%, picking solely the majority class will result in a 99% accuracy. However,
the ROC would be able to show that the classifier is poor by showing that the
FPR is 1.

Here the TPR is calculated as follows:

True positive rate =
true positives

all positives
, (17)

and the FPR:
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False positive rate =
false positives

all negatives
. (18)

The ROC graph is a two-dimensional graph with the TPR on the Y-axis and
the FPR on the X-axis. By plotting the rates of different thresholds, we can see
the relative trade-off between benefits and costs. The diagonal line where y = x
shows the performance of randomly guessing the correct class. The more a point
is near the upper left corner, the better that model is at exploiting information
of the dataset.

After plotting the ROC curves of each model, we can go one step further by
measuring the Area Under the ROC Curve (AUC). The AUC is equal to the
probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one. Values of the AUC vary between 0.5 and
1, where 0.5 means the classifier does not perform better than random, and 1
indicates a perfect classifier. However, it should be noted that AUC weights
FPR and FNR equally. As a result, it could be the case that a model has a
lower AUC than another, but still could be favored due to the distribution of
FPR and FNR. In our case, this is a domain specific preference.

In the performance measure, we measure the AUC of each model with the
others. For each model, we measure the AUC of each fold in a 10-fold cross
validation, which allows us to compare each fold. Each fold consists of randomly
selected 63 train slices and 7 test slices. We use this fold size because it has
proven to be empirically successful [134], and because more folds will lead into
problems in slices where no markings are present. The motivation for comparing
folds instead of the entire model is because we see whether a certain model
consistently outperform others or if variation in folds is more important.

4.3 Generalized attentional Model

Firstly, we will use the gaze data of participants to implement the attentional
model [42] of section 2.3.

We separate the training and test data in each fold. During the training
phase, we use the gaze data of the training set as input and the normalized
markings as target data. The motivation for normalizing the targets is that
now both matrices have a sum of one, and we can now easily calculate the
distance between the predictions and targets with a Mean Squared Error.

The model tunes two parameters for minimizing this distance: γ and λ. As
previously mentioned, the gamma parameter denotes how visual attention is
spread among the pixels from the gaze location. Since calculating the γ for each
gaze point is computationally intensive, we calculate the values beforehand. So
for each γ we calculate the distance matrices, which is a two-dimensional array
of ((screensizex ∗4), (screensizey ∗4)). Then, at each point t a we use a subset
of the matrix, where the gaze points correspond with the center of the matrix.
The attention at time t is then combined with the decay attention, where the
division is calculated with Equation 13.

This model returns an attention matrix for each (participant, slice) combi-
nation in the test set, where the sum of each combination equals to 1. These
can be compared to matrices of the same sizes with markings. Since the dataset
contains a huge imbalance between classes, we expect scoring metrics to be a
problematic part of the research. For this reason, we test Mean Squared Error
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(MSE) with different weights of the data, and AUC. The MSE is calculated as
follows:

MSE =
1

n

n∑
i=1

((yi − f̂(xi))
2 ∗ wi), (19)

where at each ith observation f̂(xi) is the prediction that function f̂ gives
and wi the weight of i. Since 1s are underrepresented in our data set, we
experiment with different weights sizes for each i where yi = 1. Different weight
sizes of 1, 10, 100 and 1000 are measured. After finding the best γ and λ values
of the training set, we can use the prediction matrix of normalized attention to
find the best α value to separate markings from non-markings, respective values
of 1 and 0.

We test two methods for finding optimal parameters: a linear search and
by minimization of the cost function. For linear search, values of γ were used
between 0 and 120, and λ between 0 and 20. For the minimizing function, the
SciPy package was optimize.minimize was used [131]. The minimization used
a LBFGS-B algorithm [135] [136]. The bounds corresponded with the values of
the linear search.

4.4 Entropy Model

Before implementing other eye-tracking models, we now look whether we can
find errors in the model a priori. Since these models are built using statistical
methods, we can use this data as input for a model to find markings of experts
as well. The motivation to test this model first is straightforward: there is much
more data already available. Where the eye-tracking experiment covers only one
area, a priori data of over 100 regions is available. Furthermore, only a small
sample of the 3d model is in the experiment, whereas data is available for every
voxel. Conducting eye-tracking experiments is both time and cost expensive, so
trying to find alternatives is a good idea. Should we be able to find a good fit
using only GeoTOP data, automating quality control would be much easier.
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Figure 15: Difference in the distribution of entropy levels between the marked
voxel unmarked voxels. The x-bar represents normalized entropy levels between
0 and 1 in blocks of 5% and the y-axis the percentage of occurrences.

4.5 Velocity-Threshold Identification (I-VT)

The Velocity-Threshold Identification algorithm is a spatial algorithm that clas-
sifies gaze points in eye-tracking data as either fixations or saccades based on
whether the velocity between two consecutive data points surpasses the thresh-
old.

Picking the right fixation detection algorithm is non-trivial, as there is no
general consensus on which algorithm to pick from the wide range of possible
algorithms and parameters. For this thesis, we use the I-VT for several reasons:
its relatively ease of implementation, it has a clear guideline for picking the right
parameter values, its performance is among the best[59], and because studies
suggest event detection algorithms perform better with sampling rates of only
50hz.

For each data point, the visual angle is measured as follows [49]:

V = 2 arctan

(
S

2D

)
, (20)

where S denotes the Euclidean distance between gazepoint x and gazepoint
y of two data points, and D the distance in cm between the participant and the
screen.

Then, values per second are measured, and when these values surpass V
under the threshold are labeled as a saccade. We interpret uninterrupted rows
of fixations as part of one fixation; the rest are one or more subsequent saccades.
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Algorithm 1 Velocity-Threshold Identification. Adapted from [51]

1: function Classify gazepoints . As saccades or fixations
2: for gazepointt do
3: gazedistance← Euclidean distance(t, t− 1)
4: angle← 2arctan(gazedistance/2 ∗ eyedistance)
5: velocity ← angle ∗ 1000

t−(t−1)
6: if velocity > velocity threshold then
7: gazepointt ← saccade
8: else
9: gazepointt ← fixation

10: return gazepoints

11:

12: function Remove blips . Group fixations close in time or space
13: for fixationn (fn) do
14: if angle(fn, fn−1) < angle threshold then
15: fixationn−1 ← merge(fn, fn−1)
16: else if offsetn − endf−1 < time threshold then
17: fixationn−1 ← merge(fn, fn−1)

18: return fixations

We measure the location of each fixation group by calculating the centroid of
the group, which is measured as follows:

Cx =
x1 + x2 + · · ·+ xk

k
,Cy =

y1 + y2 + · · ·+ yk
k

(21)

Where K is a set of k fixation points consisting each of a x and y coordinate.
Then, fixations that are very near in time and location will be merged.

Evinger et al. [137] stated that fixations within 75 ms and 0.5◦ should be
merged, to account for respectively blinks and microsaccades.

After merging fixations, we remove saccades in the dataset and measure cen-
troids of fixations again. For each fixation, the following features get extracted:
fixation centroid, fixation area, fixation time, mean pupil size, pupil size stan-
dard deviation, fixation time point, and the participants experience level.

There is research on the link between pupil size and cognition [56] [138] [139],
that suggest increased pupil size correlates with a high mental workload. For this
reason, we use this as a feature. Blinks are also associated with workload [140]
[141], hence these are extracted as well. In Section 2.2 we discussed some other
aspects of expert knowledge, which motivated extracting the other features.

After extracting the features with the IV-T algorithm, we now have a (42293,
14) matrix, where each row corresponds to a unique fixation. As we can see,
there are considerable differences in fixations that lead to an error (relevant) and
fixations that don’t lead to an error (irrelevant). Firstly, we see that relevant
fixations tend to be more than twice as long than irrelevant fixations. This
finding is in line with other eye-tracking studies about the visual behavior of
experts in complex tasks. Mean fixation lengths can be deceiving, since outliers
can influence these values easily. However, Figure 17 shows that the differences
are fairly robust.
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Figure 16: Scatterplot of the relationship between Eye behaviour features and
information about participants.

Table 8: Differences in relevant and irrelevant fixations of both the normal
markings and the dilated markings.

No Dilation Dilation
0 1 0 1

fixation number 59.47 45.89 60.08 47.75
fixation length 525.35 1277.97 494.72 1137.76

fixation start time 33487.46 46676.11 32951.08 44214.01
gaze time in slice 0.03 0.06 0.03 0.05

blinks during fixation 2.35 12.57 1.99 10.05
mean pupil size 3.92 3.87 3.92 3.89

pupil std 0.05 0.09 0.05 0.08
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Figure 17: Difference in fixation times between fixations in areas with label
error versus fixation times in areas that have a label correct. We can infer from
this that fixation lengths could be useful for classifying errors, since the mean
of class 1 is higher than the Q3 of class 0.

In Figure 17, we plotted the differences in fixation lengths between relevant
and irrelevant fixations. Here we can see clearly that the distribution of fixation
lengths with the current settings is asymmetric, with a positive skew. While
this distribution could be because sometimes people fixate for long periods on
one area, a more sensible explanation would be that this behavior is due to
parameter settings. The value of the Finding a good value of the threshold is
finding a balance between the length of the fixations and the number of fixations.
The lower the threshold value, the more fixations with a lower average fixation
time and vice versa.

In Figure 16 we plotted the difference of the relevant and irrelevant markings,
to see whether we can find patterns. As we can see, some of these features show
promising differences. See Table 8 for an overview of differences in values.
Scatterplots are a great tool for visualizing the problem, before using classifiers.
By plotting the relationship between features, we can quickly see whether some
feature combinations allow for easy separation between relevant and irrelevant
fixations. When there is a separation between the two classes, this means that
they have a decision surface that allows for classification and gives an indication
whether this is possible at all. As we can see in Figure 16, some of the features
we extracted have a clear decision space. For example, we see that fix no and
fix start time show a difference between relevant and irrelevant fixations:
relevant fixations tend to be at later stages. Another feature combination that
looks promising is fix no and std pupil. .

These features can be useful for predicting target areas, but apart from that,
they can also give insight into the way experts look at geological data. In Table
2, we show the difference in saccadic and fixation behaviour between experts
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and novices. By extracting these features, we can test whether these theories
hold for this data set.

Table 9: Extracted features with their descriptions.

Feature Definition

Fixation length Time between the onset and offset of the fixation
Fixation start time Minimum size of ’timestamp’ of the fixation

Fixation time point
Time point of the fixation, a continuous value where
0 denotes the start of the slice and 1 the end.

Centroid X Centroid of the horizontal gaze of the fixation
Centroid Y Centroid of the vertical gaze of the fixation
Blinks Time of blinks in the fixation
Pupil mean Mean size of the pupil during the fixation
Pupil std The standard deviation of pupil size during fixation
Experience The experience of the participant
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5 Results

5.1 Mathematical attention model

First, we minimized the cost function of the mathematical attention model, to
find optimal parameter settings. For each participant, we used their gaze data
as input with the corresponding markings as output. This method proved to
be unsuccessful, as we could not find optimum parameters. In fact, it turned
out that the function did not converge at all and barely changed from initial
parameters.

After the optimization function, we performed a linear search on the math-
ematical attention model. By using a wide range of parameters, we thought to
get a clearer picture of the behavior of the parameters γ and λ on the AUC.
However, there seemed to be no correlation between this either. See Figure
10 for the results over each fold in the 10-fold cross-validation. These results
show that using the same parameters for each participant does not lead to good
results. One explanation for this the high variance between participants, as we
have shown in Table 6. Furthermore, in Table 7 we have shown that the num-
ber of pixels suffer from high variance either, as some participants mark over
ten times as much pixels as others. When using individual parameter settings
we can overcome these obstacles. For example, a participant that uses smaller
markings can score better with a smaller γ, and a participant that uses smaller
timeframes for spotting errors can use a higher λ.

Table 10: AUC values of each fold.

Fold Lambda Gamma AUC

0 0.78 108.5 0.62
1 0.01 0.927 0.64
2 0.96 0.96 0.58
3 0.78 108.5 0.60
4 0.011 0.847 0.59
5 0.04 0.06 0.57
6 0.94 0.35 0.58
7 5.5 1.5 0.63
8 0.011 0.847 0.63
9 0.74 0.05 0.61
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Table 11: AUC values of each fold after dilating the target data

Fold Lambda Gamma AUC

0 0.78 108.5 0.59
1 0.01 0.927 0.60
2 0.89 0.13 0.54
3 0.78 108.5 0.55
4 0.011 0.847 0.54
5 0.04 0.06 0.55
6 0.96 0.53 0.56
7 0.1 11.7 0.56
8 0.87 0.04 0.54
9 0.81 0.08 0.55

5.2 Entropy

Apart from using gaze as input, we can also look at the model itself. Since
entropy is a quantification of the model uncertainty, we can expect to find
more errors at higher entropy voxels. The most promising variables are model

uncertainty lithoclass and model uncertainty lithostratigraphy, since
we hypothesize that a higher uncertainty of the voxel corresponds to whether
an expert considers one to be wrong. Interestingly, these differences turned out
to be marginal. See Figure 15 for an overview of the distribution of entropy
levels between correctly labeled and incorrectly labeled voxels.

Table 12: AUC of the entropy data, where we use the targets of each partici-
pant.

Participant AUC

0 0.578
1 0.425
2 0.423
3 0.561
4 0.483
5 0.689
6 0.452
7 0.528
8 0.632
9 0.631

10 0.667

Since the values of entropy are already between 0 and 1, an AUC can be
measured for classifying voxels based on their entropy. Since each voxel has been
labeled by each participant, every participant has its classifier. See Table e12
for the results. The results show that entropy is not a good predictor for labels
of experts. Interestingly, participants 1 and 2, who had the largest amount
of markings, scored worst. Participant 5, the best performer, had many slices
without markings.
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Table 13: Percentage of each lithostratigraphy occurrence in areas that are
marked versus areas that are unmarked.

Lithostratigraphy Label Marking Non-Marking

none -999 0.140 0.167
Anthropogenic deposits 1000 0.000 0.003
Echteld Formation 1070 0.000 0.003
Nieuwkoop Formation, Hollandveen Member 1090 0.003 0.018
Naaldwijk Formation 1100 0.000 0.001
Nieuwkoop Formation, Basisveen laag 1130 0.001 0.002
Echteld Formation 2010 0.004 0.036
Boxtel Formation, Laagpakket van Wierden 3030 0.006 0.014
Boxtel Formation 3100 0.021 0.030
Kreftenheye Formation, Laag van Wijchen 4000 0.000 0.001
Krefenheye Formation, Laagpakket van Delwijnen 4010 0.338 0.244
Drente Formation 5000 0.006 0.026
Land Ice stowed units 5020 0.000 0.012
Urk Formation 5060 0.208 0.122
Sterksel Formation 5070 0.234 0.271
Peize and Waalre Formation 5120 0.032 0.019
Stroombaan geneation A, Echteld Formation 6000 0.000 0.001
Stroombaan generation A, Naaldwijk Formation 6100 0.003 0.012
Stroombaan generation C, Echteld Formation 6200 0.000 0.003
Stroombaan generation D 6300 0.001 0.016

Furthermore, we looked into the differences between markings in each lithos-
tratigrapy, but these were marginal as well. See Table 13 for an overview.

5.3 Classification

The fixation dataset produced by the I-VT is not sufficient for predicting on
its own but the output can serve as a basis for classification. In the following
subsections, we show the results of three of these classifiers. As the scope of
this thesis was on using feature extraction based on domain knowledge, we use
off-the-shelf classifiers.

5.3.1 Logistic Regression

First, we use the linear model.LogisticRegression of the scikit-learn pack-
age [142] for our logistic regression. We perform a 10-fold cross-validation, where
each fold consists of 63 train slices and 7 test slices. The total number of ob-
servations (i.e. fixations) is 42293. Our motivation for 10 folds is because lower
values would increase bias, while higher will increase variability. Since some
slices do not contain any markings, we found that for example one-versus-all
cross-validation have large outliers in performance. The other parameters that
were used were a l2 penalty, a tolerance for stopping criteria of 0.001, and we
used a weight based on the class imbalance. For example, when the training
data consists of 28 times more irrelevant than relevant fixations, we weighted
the relevant with a factor of 20. This resulted in an average AUC of 0.682, with
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Figure 18: ROC curve of several tree-based methods.

a standard deviation of 0.02. These results are not convincing, but show that
an easy implementation work for predicting the relevant areas. Furthermore, we
can use this to find optimal parameter values. See Table 14 for finding the best
time range for fixation merging. Since the literature gives parameter values for
merging fixations between 75ms-425ms, we test the effect in this range.

Table 14: Effect of merging nearby fixations within a certain time frame,
where the left column denotes the amount of milliseconds between the end time
of fixationn and the begin time of fixationn+1.

Merge fixations <m/s AUC test set

75 0.675
110 0.672
145 0.680
180 0.673
215 0.675
250 0.643
285 0.676
320 0.643
355 0.656
390 0.670
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5.3.2 Tree-based methods

Since the results of logistic regression suggest room for improvement, it makes
sense to see whether other prediction models fare better. For this reason, we
implement a Random Forest and a gradient boost. See Figure 18 for results.
As we can see, these models perform better than logistic regression. Gradi-
ent Boosting and a general Random Forest stick out as best performing. With
respectively 0.780 and 0.779, their results were almost identical. However, we
also performed a one-versus-all Cross-validation, where the Random Forest per-
formed better. Furthermore, the performance of the Random Forest is more
robust: the standard deviation over folds is 0.045 and 0.119 with Random For-
est versus 0.049 and 0.176 in the Gradient Boost with respectively 10-fold and
1-versus-all cross-validation. Testing per slice shows the high variance, indi-
cating finding meaningful fixations is much harder in some slices than others.
After this, we ran another test with both a test and validation set, in order
to see whether the algorithms did not overfit to the hyperparameters. Here,
we performed a cross validation with ten folds, each 7 slices in both test and
validation set. With an average of 0.801 for the Random Forest and 0.800 for
Gradient Boosting, the results were almost identical.

Table 15: Influence of each feature in the classification using Gradient Boost-
ing.

Feature Influence

Pupil mean 0.127
Pupil std 0.126
Fixation start time 0.124
Gaze x 0.108
Gaze y 0.098
Slice 0.094
Blinks 0.086
Fixation in time 0.084
Fixation length 0.077
Fixation number 0.076

After this, we measured feature importance to see how the model makes
decisions. See Table 15 for an overview. It is interesting to see that the mean
and standard deviation of the pupil size are the most important features, as
previous research did not use these features.
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6 Discussion and Future Research

In this section, we point out a few directions for further research. As we have
discussed in Section 2, computer-aided quality control entails a lot of interesting
fields of study, many of them active and progressing. There are numerous ways
of advancing current research.

Firstly, we can extract more features. We have shown that several common
eye tracking features deal with saccades, but due to low sample rate saccades
were unavailable to extract. Future research with a higher sample rate can
lead to extracting features like saccade lengths, saccade duration, inter-scanning
count, and scan path patterns. These can potentially improve the prediction
power of the current model. Apart from eye movement, using mouse behavior
as a feature can also be an indicator of interesting areas in a voxel model [143].

Secondly, a focus on using the correct classifiers will presumably lead to a
higher AUC in the IV-T model. Since we used off the shelve classifiers, we
hypothesize that there is still room for optimization in this area. For example,
Ganganwar [144] mentions performances of several classifiers like a modified
support vector machine with good performances on unbalanced datasets. De-
veloping a robust classifier for increased performance could be an interesting
future research opportunity.

Thirdly, general research in eye-tracking can lead to better performance
and understanding of the problem space. Currently, there is no ground truth
in fixation algorithms; the parameters should be inferred empirically. Further
research could use hand labeling to find these parameters. The eye-tracking
data in this research can provide a useful data set for testing fixation algorithms,
but this is a time-consuming endeavor, performed by trained people in labeling
fixations. For example, Hessels et al. [145] stated that 40 min of eye-tracking
data took around 3 hours of labeling. Since the scope of automating geological
voxel models is rather a niche subject, using eye-tracking experts to replace
geological experts will not result in a time saving procedure. However, we
showed that even a simple algorithm was very successful in predicting these
labels.

Fourthly, a move from 2D to 3D in computer-aided predictions [146] could
increase saved time even further. Current research uses 2D slices, but the geo-
logical voxel models are 3D . Research on predicting errors in 3D models could
be an interesting pursuit, as we do not have to make samples of slices, but can
use the entire model.

Fifthly, the questionnaire performed on six slices gives valuable information
on how wrong an error was and the type of error. Having this information on
all eye-tracking data could advance research immensely. When we have an idea
of how wrong each marked area is, we can use this as a better ground truth.
Having a ground truth can be used to research whether cognitive workload can
lead to wrong markings, and can help with training the experts as well. Findings
in the field of radiology could potentially be useful, due to having similar goals
[147][148][149]. The type of error can provide interesting information as well
since we can study whether some experts focus more on certain types of errors
and we can find whether some errors occur only in some parts.

Sixthly, while current models can separate relevant from irrelevant fixations,
ideally, the model would be able to spot different objects within a fixation.
Sometimes several semantically dissimilar groups of markings occur within one
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fixation. Mathe and Sminchisescu (2013) [150] were able to find semantically
different areas by implementing a Hidden Markov Model that classifies Areas of
Interest.

We showed that you can use eye behavior in a pattern recognition pipeline
to predict the location of errors. Since the feature selection plus classification
performs faster than the total amount of gaze time we can do predictions in
real-time. Future research should implement software that uses an eye-tracker
to predict these errors. Apart from errors, the quality control of GeoTOP
consists of the following information per marked error:

1. The error number

2. Date

3. Status (’Open’,’Solved’,’Do not solve’)

4. Borehole number where the error occurred

5. Stratigraphic unit on which the error occurs

6. A description of the error

We can incorporate most of these points easily in a software tool, but the
description of the error is non-trivial. Some initial work has been done on these
via a questionnaire, where for each error the participants were asked to indicate
the type of error. See Table 19 for this questionnaire.

One possible method is to decompose the multiclass problem into several bi-
nary classification tasks. For example, a margin-based binary learning algorithm
[151] has been used after decomposition, or it can be solved via error-correcting
output codes [152]. Another possibility is using a Support Vector Machine [153].

Despite the challenging nature of this problem, we hypothesize this can
significantly increase the benefit of automating parts of quality control, since
this would automatize the annotation part completely.
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7 Conclusions

We gave an overview of research and methods in computer aided quality control
in geological voxel models. The multifaceted nature of the subject makes this
an interesting and complex problem, incorporating ideas that go beyond just
geomodelling. We tested three models, each with a hypothesis.

Conclusion 1. The Attentional Model lacks generalizing power

While in previous research [42] showed good results, applying this model for
a generalized model was less convincing. Since the participants vary too much,
a model predicting on pixel level will suffer in results due to marking differences.

Conclusion 2. Entropy is not a good predictor for finding errors in the GeoTOP
model

Surprisingly, entropy turned out to be not a good predictor for errors. Since
by definition entropy should say something about model uncertainty, we ex-
pected this to see a clear overlap between entropy and expert assessment. As
this is not the case, changes should be made to the entropy model.

Conclusion 3. Fixation identification algorithms can be used for real-time pre-
diction in GeoTOP models

We showed that using knowledge of eye movements can produce a good
predicting model for markings in GeoTOP models. Even without access to a
ground truth for fixations, our model was able to perform well on this dataset.
With simple classifiers, an AUC of 0.78 with a 10-fold cross-validation was
achieved. Further research on feature extraction and optimized classifiers will
increase this performance even further.
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[96] Wolfgang EinhÃ, Ueli Rutishauser, Christof Koch, et al. Task-demands
can immediately reverse the effects of sensory-driven saliency in complex
visual stimuli. Journal of vision, 8(2):2–2, 2008.

[97] Michael F Land and David N Lee. Where we look when we steer. Nature,
369(6483):742, 1994.

[98] Raymond D Rimey and Christopher M Brown. Control of selective per-
ception using bayes nets and decision theory. International Journal of
Computer Vision, 12(2-3):173–207, 1994.

63



[99] Michael F Land and Mary Hayhoe. In what ways do eye movements
contribute to everyday activities? Vision research, 41(25-26):3559–3565,
2001.

[100] Erik D Reichle, Keith Rayner, and Alexander Pollatsek. The ez reader
model of eye-movement control in reading: Comparisons to other models.
Behavioral and brain sciences, 26(4):445–476, 2003.

[101] Mary M Hayhoe. Advances in relating eye movements and cognition.
Infancy, 6(2):267–274, 2004.

[102] Robert J Peters and Laurent Itti. Beyond bottom-up: Incorporating task-
dependent influences into a computational model of spatial attention. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Con-
ference on, pages 1–8. IEEE, 2007.

[103] Nathan Sprague, Dana Ballard, and Al Robinson. Modeling embodied vi-
sual behaviors. ACM Transactions on Applied Perception (TAP), 4(2):11,
2007.

[104] Robert Peters and Laurent Itti. Congruence between model and human
attention reveals unique signatures of critical visual events. In Advances
in neural information processing systems, pages 1145–1152, 2008.

[105] Nicholas J Butko and Javier R Movellan. Optimal scanning for faster
object detection. In Computer vision and pattern recognition, 2009. cvpr
2009. ieee conference on, pages 2751–2758. IEEE, 2009.

[106] Ruben Coen-Cagli, Paolo Coraggio, Paolo Napoletano, Odelia Schwartz,
Mario Ferraro, and Giuseppe Boccignone. Visuomotor characterization of
eye movements in a drawing task. Vision research, 49(8):810–818, 2009.

[107] Tom Erez, Julian J Tramper, William D Smart, and Stan CAM Gielen.
A pomdp model of eye-hand coordination. In AAAI, 2011.

[108] Tom M Mitchell. Does machine learning really work? AI magazine,
18(3):11, 1997.

[109] Pedro Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[110] David H Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural computation, 8(7):1341–1390, 1996.

[111] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[112] Daniel Kahneman and Amos Tversky. On the study of statistical intu-
itions. Cognition, 11(2):123–141, 1982.

[113] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[114] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

64



[115] Jerome H Friedman. Stochastic gradient boosting. Computational Statis-
tics & Data Analysis, 38(4):367–378, 2002.

[116] Jane Elith, John R Leathwick, and Trevor Hastie. A working guide to
boosted regression trees. Journal of Animal Ecology, 77(4):802–813, 2008.

[117] Gaurav Sinha, Rahul Shahi, and Mani Shankar. Human computer inter-
action. In Emerging Trends in Engineering and Technology (ICETET),
2010 3rd International Conference on, pages 1–4. IEEE, 2010.

[118] L Schomaker. A taxonomy of multimodal interaction in the human infor-
mation processing system, 1995. Met lit. opg.

[119] Tibor Bosse, Rianne Van Lambalgen, Peter-Paul van Maanen, and Jan
Treur. A system to support attention allocation: Development and appli-
cation. Web Intelligence and Agent Systems: An International Journal,
10(1):1–17, 2012.

[120] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IRE, 37(1):10–21, 1949.

[121] Richard Andersson, Marcus Nyström, and Kenneth Holmqvist. Sampling
frequency and eye-tracking measures: how speed affects durations, laten-
cies, and more. Journal of Eye Movement Research, 3(3), 2010.

[122] JT Enright. Estimating peak velocity of rapid eye movements from
video recordings. Behavior Research Methods, Instruments, & Computers,
30(2):349–353, 1998.
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Appendix

Appendices

A Voxel attributes

Table 16: Specification of all attributes that a voxel in the GeoTOP model
contains.

# Attribute Description

1 Model surface version Indicates the version of the model’s area

2 X coordinate
The X coordinate calculated from
the center of the voxel

3 Y coordinate
The Y coordinate calculated from
the center of the voxel

4 Z coordinate
The Z coordinate in meters in relation with NAP,
measured from the center of the voxel

5 Geological Unit Refers to the geological unit of the voxel
6 Most probable lithoclass Refers to the the lithoclass the voxel is colored with

7
Probability anthropogenic
deposits

Probability of the voxel being filled with anthropogenic deposits,
where 0 denotes low probability and 1 high probability

8 Probability clay Same for this class

9
Probability sandy clay
and clayey sand

Same for this class

10 Probability fine sand Same for this class
11 Probability coarse sand Same for this class
12 Probability medium grained sand Same for this class
13 Probability gravel Same for this class
14 Probability peat Same for this class

15 Model uncertainty geological unit
The degree in which the model is capable of predicting the correct class,
where 0 denotes low uncertainty and 1 high uncertainty

16 Model uncertainty lithoclass
The degree in which the model is capable of predicting the correct class,
where 0 denotes low uncertainty and 1 high uncertainty
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B Eye-tracking Output

Table 17: The column output of gaze data of gaze.csv after each trial.

Data Description

Number A sequential serial number given to the gaze point

Time
The timestamp, in ms, for this gaze point from the
start of the recording

Screen X (left eye)
The horizontal position of the gaze point, measured
in pixels from the left

Screen Y (left eye)
The vertical position of the gaze point, measured in
pixels from the top

Cam X (left eye)
The horizontal location of the pupil in the camera image,
on a scale from 0 to 1

Cam Y (left eye)
The vertical location of the pupil in the camera image,
on a scale from 0 to 1

Distance (left eye) The distance from the camera to the left eye, in mm
Pupil (left eye) The size of the pupil, in mm
Code (left eye) The validity of the gaze data

Screen X (right eye)
The horizontal position of the gaze point, measured
in pixels from the left

Screen Y (right eye)
The vertical position of the gaze point,
measured in pixels from the top

Cam X (right eye)
The horizontal location of the pupil in the camera image,
on a scale from 0 to 1

Cam Y (right eye)
The vertical location of the pupil in the camera image,
on a scale from 0 to 1

Distance (right eye) The distance from the camera to the right eye, in mm
Pupil (right eye) The size of the pupil, in mm
Code (right eye) The validity of the gaze data

Table 18: Event data columns of event.csv files for each recording.

Event Event Key Data 1 Data 2

Showslide 4 Slide number -
Hideslide 5 Slide number -
Keyboard 3 ASCII code for key pressed -
LMouseButton 1 X mouse coordinate Y mouse coordinate
RMouseButton 2 X mouse coordinate Y mouse coordinate
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C Expert Questionnaire

Table 19: Questions asked during the questionnaire. For six out of the 70 slies,
experts were asked to answer these questions about marked errors in the slice.

Questions

How wrong is the marked area? 0 = not wrong 100 = completely wrong
How sure are you are you of the error? 0 = unsure 100 = completely sure
How easy is the error to spot? 0 = not easy 100 = very easy
How important is the error? 0 = unimportant 100 = very important
How conspicuous is the error? 0 = very inconspicuos 100 = very conspicuos
Is the error marked correctly? 0 = incorrect 100 = correct

What is the error type?

The base of the unit is too pointy 0 = incorrect 100 = correct
The base of the unit is too irregular 0 = incorrect 100 = correct
The top of the unit is too irregular 0 = incorrect 100 = correct
The lateral transition between the units is too sharp 0 = incorrect 100 = correct
A certain unit is not present or underrepresented 0 = incorrect 100 = correct
A certain unit is overrepresented 0 = incorrect 100 = correct
The unit is lying too deep 0 = incorrect 100 = correct
The unit is lying too high 0 = incorrect 100 = correct
The order of units is wrong 0 = incorrect 100 = correct
The shape of the units is wrong 0 = incorrect 100 = correct
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