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1 Introduction

Accurate rainfall measurements are crucial for weather forecasting models, water resource man-

agement and flood prediction. The most common and well used measure of rain is the rainfall

intensity, i.e. the amount of rain per unit of time.

It is true that reliable estimates of rainfall intensity can be obtained through instruments such as

rain gauges, provided they are well maintained; however, they only provide point measurements.

Another setback for this method is that in many parts of the world, particularly in developing

countries, there is a real scarcity of such equipment. Recent research [1] has looked at the potential

of using microwave signals from cellular communication networks for rainfall measurements. A

motivation for such methods is how ubiquitous these networks have become in the last decade,

with the huge demand on mobile phone usage. In 2016, an estimated 63 per cent of the global

population owned a mobile phone, with that figure expected to rise another 3 per cent by next

year [2]. The idea in a communication network is that a beam composing of microwaves travels

from a transmitter to a receiver. This structure is known as a microwave link. This research has

analysed the attenuation of these link signals due to rainfall. This is possible because the power

loss along links is recorded by the mobile phone company to monitor their network stability.

Attenuation methods give very encouraging results; however, the results often over exaggerate

the rainfall intensity. The main reason for this is believed to be due to a wet film that appears on

the antenna due to rainfall. Another issue associated with these methods is that it can be hard to

properly determine the signal level during dry weather due to fluctuations caused by atmospheric

turbulence. In this study we introduce a method that could be insensitive to such problems.

Instead of looking at the reduction in power of a signal we propose to analyse the fluctuations

to microwave link signals, using the idea that when a wave travels through a rain drop it will

cause a slight perturbation to the wavefront. There is huge potential to gain more accurate

precipitation measurements through studying fluctuations rather than signal attenuation because

base-line fluctuations predominately occur at lower frequencies, whereas fluctuations from rainfall

occur at a wider range. Moreover, a high frequency signal is much less likely to be sensitive to the

wetting of the antenna. Using fluctuation analysis methods we hope for a retrieval of the drop size

distribution, which can give detailed characteristics of precipitation.

There is limited research into amplitude fluctuations of electromagnetic waves caused by rain-

fall. The only work that is known currently on this topic is the analysis of a laser beam propagating

through rain [3]. This laser beam is taken to be a plane wave, and the wavelength ∼ 10−7m, the

very high end of the electromagnetic spectrum. Studying the effects of rain on microwaves will be

quite different. Microwaves are similar to light in that they are also electromagnetic waves; how-

ever, they have a wavelength in the much lower regions of the spectrum. In general the wavelength

is ∼ 10−3m. This wavelength has a similar order of magnitude to the size of a rain drop, compared

with that of a laser beam and so the result will be quite different. The geometry of the problem will

also differ from that of previous work because we are not assuming plane waves. The beam of the
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microwave signal leaves the transmitter, and the wave propagates in all directions, as concentric

spheres. This is known as a spherical wave and this property will be taken into consideration in

this study.

We begin with an introduction into scattering theory of electromagnetic waves, which is appli-

cable to rainfall. From this we can obtain an expression for the amplitude fluctuations caused by a

monodisperse distribution of raindrops. We then determine certain statistical properties of these

fluctuations, such as the temporal covariance function. From here we can extend by assuming a

more realistic distribution of raindrops and use statistical inference methods to try and retrieve

the drop size distribution. As rainfall intensity is the most commonly used measure of rainfall,

we will show how rainfall intensity can be obtained from the drop size distribution. We test our

theoretical methods using data obtained from the Chilbolton Observatory. The data used does not

come from a microwave link currently in use in a cellular communication network; however, it has

very similar characteristics to those used in real networks. Testing our methods on real microwave

link data can give us a good idea of the feasibility of this method, which can hopefully be a ket

step in using mobile phone communications to give widespread rainfall estimates.
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2 Formulation of the problem

In order to understand how waves propagate through rainfall we first need to illustrate some of

the theory behind electromagnetic scattering. To begin, we will derive a time independent form

of the wave equation. We then want to transform this random wave equation into a different

expression which that can then be solved using a series expansion method, this is known as the

Rytov approximation. This approximation provides a very useful technique in which one can solve

the wave equation, when the amplitude variations are small. The idea behind this method is to

express the total electric field as a product of the unperturbed field and another function to be

determined, known as a surrogate function. In order for this method to work we note that we

assume weak scattering.

An electric field is in general defined as a vector quantity, where the direction that this field

takes at each point along its path defines the polarization of the field. We are assuming line-of-sight

propagation, with very small angle scattering to be the most dominant, and so we can assume that

the change in polarization in this case can be taken to be negligible. As a result of this we can take

the electric field to be scalar, with E denoting a scalar field and E : R3 → R. We take the electric

field to map to a real quantity because we are interested in the amplitude, which is the maximum

electric field strength, and the real part of the electric field. We first state the well known scalar

random-wave equation

∆E + k2(1 + ε(r))E = 0, (2.1)

where ε describes the random dielectric variations of the medium, r is the position vector of

the irregularity, and ∆E represents the Laplacian of E. We are considering a three dimensional

coordinate space R3, with Cartesian coordinates (x, y, z), and r = (x, y, z). We also note that for

this study we place the transmitter at the origin of coordinates. In order to carry out the series

expansion approximation we can assume that a solution will be of the form

E(r) = E0(r) exp(Ψ(r)) (2.2)

where E0(r) is the unperturbed electric field at position r, and Ψ(r) is a surrogate function to

be discovered, which again we take to be a scalar quantity, with Ψ : R3 → C. Here the solution

is chosen to be complex, so it will give us information about the amplitude and the phase of the

wave. If we substitute (2.2) into (2.1), we arrive at the following

E0∇2 exp(Ψ) + 2∇E0 · ∇ exp(Ψ) + k2εE0 exp(Ψ) = − exp Ψ∇2E0 − k2E0 exp(Ψ). (2.3)

We can see immediately that a factor of the unperturbed electric field E0 can be dropped, where

∇E0/E0 = ∇ lnE0 by the chain rule and using the second derivative of two scalar quantities

∇(fg) = f∇2g + 2∇f · ∇g + g∇2f . Dividing through by exp(Ψ) gives

∇2Ψ + |∇Ψ|2 + 2∇ lnE0 · ∇Ψ + k2ε = 0, (2.4)
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where ∇2E0 + k2E0 = 0 from the simple wave equation. It is reasonable to assume that the

unperturbed field can be represented in a similar form to the function E we are trying to determine,

and so

E0(r) = exp(ψ0(r)), (2.5)

with ψ0 being a dimensionless function, with the expression we will use in our series expansion

solution being

∇2Ψ + |∇Ψ|2 + 2∇ψ0 · ∇Ψ + k2ε = 0. (2.6)

To begin solving we will assume a solution of the form

Ψ(r) = ψ0(r) + εψ1(r) + ε2ψ2(r) + ... (2.7)

Substituting (2.7) into (2.6), and equating equal powers of ε gives the following set of equations

∆ψ0 + |∇ψ0|2 + k2 = 0, (2.8)

∆ψ1 + 2∇ψ0 · ∇ψ1 + k2ε = 0, (2.9)

∆ψ2 + 2∇ψ0 · ∇ψ2 + |∇ψ1|2 = 0. (2.10)

...
...

The Rytov solution is in general defined by the first order function ψ1(r), and so using (2.9) we

substitute our following assumed solution

ψ1(r) = Φ(r) exp(−ψ0(r)) (2.11)

with Φ : R3 → C and ψ1 : R3 → C. Using the identity ∆f = ∇2f = (∇ ·∇)f we give the gradient

and Laplacian of ψ1,

∇ψ1 = −∇ψ0 exp−ψ0 + exp−ψ0 ∇Φ (2.12)

∇ · (∇ψ1) = ∆ψ1 = −∆ψ0Φe−ψ0 − 2∇ψ0 · ∇Φe−ψ0 + |∇ψ0|2 + ∆Φe−ψ0 (2.13)

Substituting (2.12) and (2.13)into (2.9) we have

∆Φ− |∇ψ0|2Φ−∆ψ0Φ = −eψ0k2ε. (2.14)

Tatarskii [4] gives the solution of (2.14) as

Φ(L) = k2

∫
G(L, r)ε(r) exp(ψ(L))d3r, (2.15)

where G(L, r) represents Green’s function, with

G(L, r) =
exp(ik|L− r|)

4π|L− r|
. (2.16)

Here L ∈ R3 represents the position of the receiver. Therefore

ψ1(L) = k2

∫
G(L, r)ε(r) exp(ψ(L)− ψ(r))d3r, (2.17)
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which represents the solution at the receiver. Finally, substituting (2.5) back in we get

ψ1(L) = k2

∫
G(L, r)ε(r)

E0(r)

E0(L)
d3r. (2.18)

We are only considering single scattering in this study, i.e. we are assuming that a scattered

wave front is only scattered by one irregularity and not scattered by any additional obstructions

between the first scatterer and the receiver. Hence, equation (2.18) describes the single scattering

term. The following relation links the amplitude and phase to the first order Rytov function,

ψ1 = χ+ iP, (2.19)

where χ represents the log-amplitude fluctuations and P represents the phase fluctuations. Taking

the real part ψ1 will give us the log-amplitude fluctuations. Here we are able to take the log

amplitude as the experiment we will test our methods on is using a logarithmic receiver, as will

be discussed in section (4.2). From equation (2.19), it can be easily seen that the amplitude

fluctuations can be described by the real part of the above scattering integral, and so

χ(L) = <
{
k2

∫
G(L, r)ε(r)

E0(r)

E0(L)
d3r

}
. (2.20)
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2.1 Geometry describing spherical wave propagation

Figure 1: Here we show the geometry to describe the scattering of a spherical wave by a raindrop,

where the receiver is at position L, and x the horizontal position from the transmitter to the drop.

Here ρ =
√
y2 + z2, and x� p. Also note that x,y and z are orthogonal to one another.

The geometry of Figure 1 is not to scale, as we expect the angle of scattering to be very small.

We also assume our transmitter to act as a point source when emitting microwaves. This will

simplify our model considerably. We can expand the square roots as follows

R = |L− r| =
√

(L− x)2 + ρ2 ≈ L− x+
ρ2

2(L− x)
+ ... (2.21)

and

|r| =
√
x2 + ρ2 ≈ x+

ρ2

2x
+ ... (2.22)

If E0(r) is a spherical wave propagating from the origin, then

E0(r)

E0(L)
=

L√
x2 + ρ2

exp(ik(
√
x2 + ρ2 − L)). (2.23)

We have already stated that ε(r) represents a small perturbation in the dielectric constant, caused

by the presence of some turbulent eddy. We now make the assumption that

ε(r) = δ(r − r′)S(θ) (2.24)

which means that there is only a perturbation at the scattering particle itself, at position r′, and

that we have no variation anywhere else in the medium. This assumption is also valid as we

are only assuming single scattering. We include the amplitude function, denoted S because this

function describes the outgoing scattered wave in relation to the incoming wave, i.e. it describes
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the perturbation ε. θ = θ(x, y, z) here represents the angle of scattering of the wave front. This

is discussed further in the succeeding section. This leaves (2.20) independent of r by the theorem

for the three dimensional Dirac delta function, which states∫
V

f(r)δ(r − r′)dV = f(r′) (2.25)

where V is any volume that contains the point r = r′, where dV is an element of V expressed in

terms of the components of r.

Using (2.23) and (2.16) we can write (2.20) as

χ(x, y, z) = <
{
k2

∫ ∫ ∫
exp(ik(

√
(L− x)2 + ρ2)

4π
√

(L− x)2 + ρ2
ε(
√
x2 + ρ2)

L√
x2 + ρ2

× exp(ik(
√
x2 + ρ2 − L))dxdxdz

}
.

(2.26)

and so by (2.25) the integral disappears and substituting in (2.24)we can re-write (2.20) as

χ(x, y, z, θ) = <
{
k2

4π

L

x(L− x)
exp

(
ik
L(y2 + z2)

2x(L− x)

)
S(θ)

}
, (2.27)

which represents the amplitude fluctuation of the electric field caused by a single scattering particle

at position (x, y, z).

2.2 The Scattering Amplitude

We want to study the behaviour of microwaves when scattered by water droplets. In order to do

this we need a way of describing what happens to the wave front as it travels through the droplet.

Mie’s scattering theory [6] describes the scattered electromagnetic wave in terms of an amplitude

function. In this section we will express the scattering amplitude in terms of its associated Legendre

polynomials as this will help later on with the numerical computations. We will not however, derive

the amplitude functions from Maxwell’s equations. This method of derivation involves a rigorous

treatment of Maxwell’s equations with the incident field being expressed in the form of spherical

partial waves. We state the solution of the derivation below, which describes the scattering of

electromagnetic waves by homogeneous spherical particles.

It is true that not all raindrops exhibit a perfectly spherical shape; however, for the most

part a sphere can describe the shape of a raindrop, particularly for smaller drops, and so we

omit non-spherical particles. Moreover, we are able to apply Mie’s generalised scattering theory

here because we are considering microwaves, which have a wavelength with order of magnitude of

around 10−3 − 10−2m. The size of a raindrop is typically similar, in the region of around 10−3. If

we were considering particles with a size either much smaller or much larger than the wavelength

we would have to use a more specialised form of Mie’s theory for that particular case.

We are looking at the behaviour of spherical waves diverging from a point source. These waves

behave locally like plane waves in the far-field region. This region is the only one we are interested

9



in, as the behaviour of electromagnetic waves in the near-region is often very complex and difficult

to predict, whereas in the far field waves exhibit more regular behaviour. For this study it is

sufficient to only consider the behaviour of the far field as our path length is 0.5 km which is

significantly larger than the near field region, and so the effect of any scattering in the near-field

region can be neglected. The far-field in our case can be defined by the Fraunhofer distance

df ≥
2D2

λ
, (2.28)

where D represents the diameter of the antenna and λ the wavelength and df represents any

distance away from the transmitter which can be considered in the ’far-field’ region. In our case

df ≥ 10m.

The scattering amplitude which we have defined as S(θ) is a complex function, and describes

the scattering in any direction. This scattering is described by four different amplitude functions,

S1, S2, S3 and S4, where the overall scattering can be written in the form of a matrix.(
ES⊥

ES‖

)
=

(
S2 S3

S4 S1

)
·

(
EI⊥

EI‖

)
exp(ik(|L− r|))

|r|
, (2.29)

where S represents the scattered wave and I represents the incident wave, with⊥ and ‖ representing

the electric field components perpendicular and parallel to the plane of scattering, respectively.

We show the idea in Figure 2.

Spherical particles have S3 = S4 = 0, and so the scattering depends only on two amplitude

functions.

Mie scattering provides a solution to Maxwell’s equation’s to describe electromagnetic scatter-

ing. The solution can be written as an infinite series of spherical partial waves. With this we define

S1 and S2 as

S1(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
{anπn(cos θ) + bn(θ)τn(cos θ)},

S2(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
{bnπn(cos θ) + an(θ)τn(cos θ)},

where

πn(cos(θ)) =
1

sin θ
P 1
n(cos θ) =

dPn(cos θ)

d cos θ
,

τn(cos θ) =
d

dθ
(P 1
n(cos θ)) = cos θ · πn(cos θ)− sin2 θ

dπn(cos θ)

d cos θ
,

where P 1
n are the first order Legendre Polynomials. This means that the scattered wave can be

described by these Legendre Polynomials. Only S1(θ) will be detected by the receiver, so with this

we can then use the product rule to our final expression for S1(θ) as

S1(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)

{
an

P 1
n

sin θ
− bn sin θ

dP 1
n(cos θ)

d cos θ

}
. (2.30)
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Figure 2: Plane of Scattering

The Mie-scattering coefficients are expressed in terms of Riccati-Bessel functions

an =
ψ

′

n(v)ψn(u)−mψ′

n(v)ψn(u)

ψ′
n(v)ζn(u)−mψ′

n(v)ζn(u)
(2.31)

and

bn =
mψ

′

n(v)ψn(u)− ψn(v)ψ
′

n(u)

mψ′
n(v)ζn′(u)− ψn(v)ζn(u)

. (2.32)

Here u = ka and v = mka, where m is the complex refractive index of the water drop, k is the

wavenumber and a is the radius of the water drop. We can define these Ricatti-Bessel functions

as follows, with the Bessel functions of the first (Jα) and second kind (Yα):

ψn(v) =

√
πv

2
Jn+1/2(v) = vjn(v) (2.33)

and

ζn(u) = −
√
πv

2
Yn+1/2(v) = −uyn(u), (2.34)

where jn and yn are the spherical Bessel functions of the first and second kind respectively. In
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order to compute these numerically one can make use of the recursive formula

jn+1(v) =
2n+ 1

v
jn(v)− jn−1(z), (2.35)

where the same relation holds for yn, with

xj0(v) = sin(v), vj1(v) =
sin(v)

v
− cos(v), (2.36)

uy0(u) = − cos(u) and y1(u) =
− sin(u)

u
− cos(u). (2.37)

Using
d

dv

(
vjn(v)

)
=

1

2

(
vjn−1(v) + jn(v)− vjn+1(v)

)
, (2.38)

the derivatives can also be computed. Note here that the derivative of uyn(u) has the identical

form to the derivative of vjn(v).

2.3 The Covariance of Amplitude Fluctuations

We are taking the amplitude fluctuations caused by rainfall to be a wide-sense stationary (WSS)

random process, which means that the mean and the autocovariance do not vary with respect to

time. The autocovariance simply gives the covariance of the random process with itself, but at

two different points in time. We can define this by

Cχ(t1, t2) = E[(χt1 − µt1)(χt2 − µt2)] (2.39)

where µt defines the mean value of the random process at time t. The preceding equation is

describing to what extent the amplitude fluctuations differ from one another at different time

points. Because we have a WWS random process the covariance should only depend on the

temporal separation τ = t1 − t2. We can write this, assuming that the random process is known

over an finite interval [−T, T ], as T →∞

Cχ(τ) =
1

T

∫ T

0

χ(t1)χ(t2)dt (2.40)

We will now bring in the concept of an ensemble average. An ensemble is defined as all possible

configurations of the system; so naturally an ensemble average is the mean of these states. It is

commonly denoted as 〈χ〉, where

〈χ〉 =

∫ ∞
−∞

p(χ)χdχ (2.41)

where p(χ) represents the probability density function of χ. Without prior measurements, it is

not possible to know the exact pdf of the amplitude fluctuations. We now make the assumption

that the ensemble average almost always equals the time average, i.e. the ensemble average and
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temporal average must converge as T →∞. This is known as the ergodic hypothesis. We can then

write

〈χ(t)〉 ≈ 1

T

∫ T

0

χ(t)dt (2.42)

and so we can re-write equation (2.40) as

Cχ(τ) = 〈χ(t)χ(t+ τ)〉 (2.43)

We can apply Taylor’s hypothesis here, and say that the medium is frozen while the measurement of

a raindrop is being taken, where the velocity of a falling raindrop, denoted v is taken to be constant

during this interval. This is a reasonable assumption if the raindrop is at terminal velocity. Then

the amplitude fluctuation caused by a single raindrop measured at time t1 and time t2 should be

identical to the result measured at time t1 but at a different point in space, defined by vτ . This

can be written as

Cχ(τ) = 〈χ(x, y, z, t1)χ(x, y, z, t1 + τ)〉 = 〈χ(x, y, z, t1)χ(x, y, z − vτ, t1)〉 (2.44)

Another way of expressing this is to say that the temporal covariance is related to the spatial

covariance by the terminal velocity of the raindrop v.
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2.4 Fresnel Zones

Here we will introduce the concept of a Fresnel zone. These zones are crucial in determining

whether any scattered wave will arrive in or out of phase with the waves propagating along the

line of sight. A Fresnel Zone is a prolate ellipsoid, whose size is approximated by the following

formula

Fn =

√
nλd1d2

d1 + d2
(2.45)

where Fn is the radius of the nth Fresnel Zone, λ the wavelength of the signal and d1,d2 are the

distances from either end to a point along the line of signal.

Figure 3: Fresnel Zones

There are an infinite number of Fresnel zones but only the signal contained within the first three

Fresnel zones has any effect on the signal at the receiver. The first Fresnel zone is illustrated in

Figure 3 above. Not all of the wave will propagate along the line of sight - the direct path between

the signal and receiver- and some of these waves will be reflected by obstructions. When both the

reflected and non-reflected wave reach the receiver, they may be out of phase due to the difference

in path length, which will lead to destructive interference. This happens when the two signals

are π radians apart. We get constructive interference when the two signals are 2π radians out of

phase, and so the two signals will add together and will not negatively impact the output at the

receiver. The first Fresnel zone radius is calculated so any objects causing reflections will arrive in

phase with one another, the second zone will be out of phase, the third in phase and so on. The

first Fresnel zone is the most significant in terms of signal strength and this is the one we will focus

on in the succeeding section.
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3 The Power Spectrum

Up until now we have given the reader some insight into spherical wave propagation and defined

some statistical properties of microwaves passing through rainfall, such as the temporal covari-

ance. We now introduce the Wiener-Khinchin theorem, a key theorem that will enable us to

compare theoretical predictions with microwave link data, a key step in the retrieval of the drop

size distribution.

3.1 The Wiener–Khinchin Theorem

Our expression for the temporal covariance function from section (2.3) is as follows

Cχ(t) = 〈χ(x, y, z)χ(x, y, z − vt)〉,

so we have

Cχ(t) =

∫ ∞
−∞

χ(x, y, z)χ(x, y, z − vt)dz.

where we are able to integrate over the spatial variable z by Taylor’s Hypothesis. Our amplitude

function from expression (1.25), which we repeat below, is a complex number and so we can expand

this expression as follows

χ = <
{
k2

4π

L

x(L− x)
exp

(
ik
L(y2 + z2)

2x(L− x)

)
S(θ)

}
=
k2

4π

L

x(L− x)

(
SR cos

(
L(y2 + z2)

2x(L− x)

)
− SI sin

(
L(y2 + z2)

2x(L− x)

))
,

(3.1)

where SR and SI denote the real and imaginary part of the amplitude function S(θ) respectively.

In the following equations we defined S(θ) in terms of x, y, z because θ will be dependent on these

terms as we will see in (3.2). The temporal covariance function can then be written, where we

expand to integrate over x and y as well to include the whole volume, as

Cχ(t) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

β2

×
[
SR(x, y, z)SR(x, y, z − vt) cos

(
β

2
(y2 + z2)

)
cos

(
β

2
(y2 + (z − vt)2)

)
− SR(x, y, z)SI(x.y, z − vt) cos

(
β

2
(y2 + z2)

)
sin

(
β

2
(y2 + (z − vt)2)

)
− SR(x, y, z − vt)SI(x, y, z − vt) sin

(
β

2
(y2 + z2)

)
cos

(
β

2
(y2 + (z − vt)2)

)
+ SI(x, y, z)SI(x, y, z − vt) sin

(
β

2
(y2 + z2)

)
sin

(
β

2
(y2 + (z − vt)2)

)]
dz

(3.2)

with

β =
L

x(L− x)
. (3.3)
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Using the trigonometric identity cos(u) cos(v) = 1
2 [cos(u− v) + cos(u+ v)] can simplify the above,

giving

Cχ(t) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

β2

2

×
[
(SR(x, y, z)SR(x, y, z − vt) + SI(x, y, z)SI(x, y, z − vt)) cos(2zvt− (vt)2)

+ (SR(x, y, z)SR(x, y, z − vt)− SI(x, y, z)SI(x, y, z − vt)) cos(2y2 + 2z2 − 2zvt+ (vt)2)

− (SR(x, y, z)SI(x, y, z − vt)− SR(x, y, z − vt)Si(x, y, z) sin(2y2 + 2z2 − 2zvt+ (vt)2)

+ (SR(x, y, z − vt)SI(x, y, z)− SR(x, y, z)Si(x, y, z − vt)) sin(2zvt− (vt)2)

]
dz.

(3.4)

We now introduce the Wiener-Khinchin Theorem, which is crucial in order for us to compare

theoretical predictions with real data. Here we consider a time series µ(t) for t → ∞. The

temporal covariance function for this time series at time t and time t+ τ is

Cτ (t) =
1

T

∫ ∞
0

µ(t)µ(t+ τ)dt (3.5)

The Fourier transform of µ : R→ C is defined as

µ̂(f) =

∫ ∞
−∞

µ(τ)e−i2πfτdτ (3.6)

for f ∈ R. Now we introduce the function P (f), which denotes the power spectral density. This

describes the distribution of power as a function of frequency, per unit of frequency. This is defined

as

P(f) ' |µ̂(f)|2 (3.7)

for a short time interval t. The units of the power spectrum are watts per hertz (W/Hz). We

note that the power spectral density is usually expressed in the limit as t → ∞; however, we use

the definition of the energy spectral density here as were are considering finite time. The Wiener-

Khinchin theorem then states that if µ is a wide sense stationary process, where its temporal

covariance function exists and is finite for all τ ∈ t, then we can define the Fourier transform of

it’s temporal covariance function as the power spectrum of µ.

This can easily be seen by the fact that the temporal covariance function, defined as Cτ =

x(t) ∗ x(τ) is the convolution of the signal at two different time points. A convolution in the time

domain is a multiplication in the frequency domain, and at two different points in the time domain

is the same as its complex conjugate in the frequency domain. This leads to

F{Cτ (t)} = F{x(t) ∗ x(τ)} = F{x(t)}F{x(τ)} = Y (f)Y ∗(f) = |Y (f)|2 (3.8)

where Y (f) =
∫∞
−∞ x(t)e−i2πftdt.
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Using equation (3.6), we can write the Fourier transform of the autocovariance function as

Fχ(f) =

∫ ∞
−∞

e−i2πftCχ(t)dt

=
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

e−i2πft
∫ ∞
−∞

β2

2

×
[
(SR(x, y, z)SR(x, y, z − vt) + SI(x, y, z)SI(x, y, z − vt)) cos(2zvt− (vt)2)

+ (SR(x, y, z)SR(x, y, z − vt)− SI(x, y, z)SI(x, y, z − vt)) cos(2y2 + 2z2 − 2zvt+ (vt)2)

− (SR(x, y, z)SI(x, y, z − vt)− SR(x, y, z − vt)Si(z) sin(2y2 + 2z2 − 2zvt+ (vt)2)

+ (SR(x, y, z − vt)SI(z)− SR(x, y, z)Si(x, y, z − vt)) sin(2zvt− (vt)2)

]
dzdt

(3.9)
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3.2 Angle of scattering

Figure 4: Angle of scattering

We will now define our scattering angle θ which we have shown in figure 4. We are only

interested in the far field solution and so the transverse coordinate x will be a lot larger than y and

z we can make the assumption that r ≈ x and R ≈ L−x. This will greatly simply our expression.

We define our scattering angle θ as

θ = π − θ1 − θ2

= π − arccos

(√
y2 + z2

x

)
− arccos

(√
y2 + z2

L− x

) (3.10)

Because we are considering the far-field solution, both terms inside the brackets will be smaller

than unity, we can use the approximation arccos(ξ) = π
2 − ξ, with |ξ| � 1. This leads to

θ = β(
√
y2 + z2) (3.11)

where β = L
x(L−x) as defined in (3.3).

3.3 The Method of Stationary Phase

We will introduce the following substitution in order to gain some idea of how the integral in (3.9)

behaves in the limit t→∞. In order to factorise the term inside of the trigonometric functions in

18



(3.9) we can write

γ =
2k

β
,

v̄ = βv,

ȳ = βy and

z̄ = βz.

(3.12)

Fχ(f) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−i2πft
∫ ∞
−∞

1

2

[
(SR(

√
ȳ2 + z̄2)SR(

√
ȳ2 + (z̄ − v̄t)2)

− SI(
√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2)) cos(γ(ȳ2 + z̄2 − z̄v̄t+ (v̄t)2/2))

+ (SR(
√
ȳ2 + z̄2)SR(

√
ȳ2 + (z̄ − v̄t)2) + SI(

√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2))

× cos(γ(z̄v̄t− (v̄t)2/2))

− (SR(
√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2) + SR(

√
ȳ2 + (z̄ − v̄t)2)SI(

√
ȳ2 + z̄2))

× sin(γ(ȳ2 + z̄2 − z̄v̄t+ (v̄t)2/2))

+ (SR(
√
ȳ2 + (z̄ − v̄t)2)SI(

√
ȳ2 + z̄2)− SR(

√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2))

× sin(γ(z̄v̄t− (v̄t)2/2))

]
dz̄dt.

(3.13)

We can see here that the trigonometric functions involved in (3.13) oscillate rapidly compared with

the associated Legendre polynomials involved in the amplitude function. This is clear because of

the factor γ � 1 inside the cosine and sine function. The rapid oscillations of the trigonometric

functions means that the integrand will average out to almost zero. An anomaly to this happens

when the term inside the trigonometric function is stationary. We can show the idea with the

following integral, of the form

F (u) =

∫
R
f(t) exp(iug(t))dt, (3.14)

where the role of f(t) is to guarantee convergence, and u ∈ R is considered as u → ∞. (3.14)

resembles the form of the integrals in (3.13) and we suppose that g′(t0) = 0, where t0 ∈ (a, b), and

that g′(t0) 6= 0 in the rest of the interval. We can also assume that g′′(t0) 6= 0 and f ′(t0) 6= 0.

The integral can then be approximated by finding all points where the derivative with respect to

t is zero, and evaluating in the neighbourhood of these points. This is known as the method of

stationary phase.

We can re-write (3.14) as

F (u) = exp(iug(t0))

∫
R
f(t) exp(iu[g(t)− g(t0)])dt. (3.15)

Now take φ = ug(t), which is the phase term, and expand this as a Taylor series about g(t), which
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gives us g(t) = g(t0) + g′′(t0)
2! (t− t0)2 + O[(t− t0)3]. Substituting this in we have

F (u) ≈ exp(iug(t0))

∫ t0+ε

t0−ε
f(t) exp(iu[g(t)− g(t0)])dt

≈ f(t0) exp(iug(t0))

∫ t0+ε

t0−ε
exp

(
iu

2
g′′(t0)(t− t0)2

)
dt

≈ f(t0) exp(iug(t0))

∫ ∞
−∞

exp

(
iu

2
g′′(t0)p2

)
dp

= f(t0) exp(iug(t0))

√
2πi

ug′′(t0)

= f(t0) exp(iug(t0))∓ iπ

4

√
2π

u|g′′(t0)|

(3.16)

where p = t − t0. We have used the identity
√

π
−ix = e

iπ
4

√
π√
x

and the plus and minus signs

correspond to g′′(t0) > 0 and g′′(t0) < 0 respectively. We note before evaluating the Fourier

transform of the amplitude fluctuations in this way that it is assumed by this method that the

stationary point t0 ∈ R is in t-space and so we can evaluate the integral at cos(ug(t)), rather than

exp(iug(t)).

For readability we will split equation (3.13) into four integrals and tackle them separately. We

will label them Fn for n ∈ [1, 4], where
∑4
n=1 Fn(f) = Fχ(f). Our first integral will be

F1(f) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−i2πft
∫ ∞
−∞

1

2

[
(SR(

√
ȳ2 + z̄2)SR(

√
ȳ2 + (z̄ − v̄t)2)

− SI(
√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2)) cos(γ(ȳ2 + z̄2 − z̄v̄t+ (v̄t)2/2))

]
dz̄dt.

(3.17)

Evaluating the above integral with respect to t could become quite complicated and so we introduce

another substitution z′ = v̄t − z̄ in order to reduce the expression within the amplitude function

S.

F1(f) =

∫ ∞
−∞

k4

16π2

2

v̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−2πf z̄v̄ i

∫ ∞
0

(SR(
√
ȳ2 + z̄2)SR(

√
ȳ2 + z′2)

− SI(
√
ȳ2 + z̄2)SI(

√
ȳ2 + z′2)) cos

(
2πf

z′

v̄

)
cos(γ(ȳ + z̄/2 + z′2/2))dxdz̄dz′.

(3.18)

We have changed the limit of the integral with respect to z′ because the integral is symmetric

around z′ = 0. We can then use cos(u) cos(v) = 1
2 [cos(u − v) + cos(u + v)] in order to determine

the stationary phase point for z′. This will give

cos

(
2πf

z′

v̄

)
cos(γ(ȳ + z̄/2 + z′2/2)) =

1

2

(
cos

(
γ[ȳ + z̄2/2 + z′2/2]

+
2πfz′

v̄

)
+ cos

(
γ[ȳ + z̄2/2 + z′2/2]− 2πfz′

v̄

)) (3.19)

where we have both g(z′) = γ[ȳ + z̄2/2 + z′2/2] + 2πfz′

v̄ and g(z′) = γ[ȳ + z̄2/2 + z′2/2] − 2πfz′

v̄ .

We note that we only have a stationary point within the second term because the first term will
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give a negative stationary point which is out of bounds for z′. By doing this we can recognize from

g′(z
′

0) =
−2πfz

′
0

v̄ − γz̄ that there is a stationary point at z
′

0 = 2πf
γv̄ with g′′(z

′

0) = γ > 0. F1 now

takes the form

F1(f) =

∫ ∞
−∞

√
2π

γ

k4

16π2

2

v̄

∫ ∞
−∞

e2πfi z̄v̄ dz̄

∫ ∞
−∞

(
SR(

√
ȳ2 + z̄2)SR

(√
ȳ2 +

(
2πf

γv̄

)2)

− SI(
√
ȳ2 + z̄2)SI

(√
ȳ2 +

(
2πf

γv̄

)2))
cos

(
γ(ȳ + z̄/2) +

π

4
−
(

2πf

v̄

)2(
1

2γ

))
dxdȳ.

(3.20)

We will first evaluate (3.20) with respect to ȳ as it can be easily seen that there will be a stationary

phase point at ȳ0 = 0, where again the integral is symmetric with respect to ȳ. Here we have

g′(ȳ0) = 2γȳ and g′′(ȳ0) = 2γ.

Using the relation cos(π2 − u) = sin(u) gives

F1(f) =

∫ ∞
−∞

√
π

γ

√
2π

γ

k4

16π2

2

v̄

∫ ∞
−∞

(
SR(z̄)SR

(
2πf

γv̄

)
− SI(z̄)SI

(
2πf

γv̄

))
cos

(
2πf

z̄

v̄

)
sin

(
γz̄

2
−
(

2πf

v̄

)2(
1

2γ

))
dxdz̄.

(3.21)

In a similar way to above the stationary phase point for z̄ is found to be z̄0 = 2πf
γv̄ . This reduces

the preceding equation to

F1(f) =

∫ ∞
−∞

√
π

γ

2π

γ

k4

16π2

1

v̄

(
S2
R

(
2πf

γv̄

)
+ S2

I

(
2πf

γv̄

))
sin

(
π

2
−
(
πf

v̄

)2(
2

γ

))
dx. (3.22)

Using (3.12) we can write

F1(f) =

∫ ∞
−∞

k5/2

8π2

1

v

√
L

πx(L− x)

(
S2
R

(
2πf

γv̄

)
+ S2

I

(
2πf

γv̄

))
sin

(
π

2
− 2

(
πf

v

)2
x(L− x)

kL

))
dx.

(3.23)

Next we will evaluate F2(f) with

F2(f) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−i2πft
∫ ∞
−∞

1

2

[
(SR(

√
ȳ2 + z̄2)SR(

√
ȳ2 + (z̄ − v̄t)2)

+ SI(
√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2)) cos(γ(z̄v̄t− (v̄t)2/2)

]
dz̄dt

=
k4

8π2

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−i2πft
∫ ∞

0

1

2

[
(SR(

√
ȳ2 + z̄2)SR(

√
ȳ2 + (z̄ − v̄t)2)

+ SI(
√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2))

× (cos(γ(z̄v̄t− (v̄t)2/2) + 2πft) + cos(γ(z̄v̄t− (v′t)2/2)− 2πft))

]
dz̄dt.

(3.24)

A stationary phase point exists for the second term, with g′(t0) = γz̄v̄ − γv̄2t − 2πf and so
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t0 = z̄
v̄ −

2πf
γv̄2 , with g′′(t0) = −γv̄2 < 0. This gives

F2(f) =

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

√
2π

γv̄2

k4

16π2

∫ ∞
−∞

e−i2πftdz̄

∫ ∞
0

1

2

[
(SR(

√
ȳ2 + z̄2)SR

(√
ȳ2 +

(
2πf

γv̄

)2)

+ SI(
√
ȳ2 + z̄2)SI

(√
ȳ2 +

(
2πf

γv̄

)2)
× cos

(
γz̄2

2
+

(
2πfz̄

v̄

)
+

(
2πf

v̄

)2(
1

2γ

)
− π

4

)]
dz̄dt.

(3.25)

Evaluating the preceding integral with respect to z̄, we find that g(z̄0) = αz̄2

2 −
2πfz̄
v̄ + 2πf2

2γv̄2 − π
4 ,

g′(z̄0) = γz̄ − 2πf
v̄ , g′′(z̄0) = α > 0 and z̄0 = 2πf

γv̄ . Substituting back in, we find that g(z̄0) = 0. As

everything cancels we have cos(0) = 1. This leaves us with

F2(f) =

∫ ∞
−∞

√
2π

γv̄2

√
2π

γ

k4

16π2

∫ ∞
−∞

S2
R

(√
ȳ2 +

(
πf

kv

)2)
+ S2

I

(√
ȳ2 +

(
πf

kv

)2)
dxdȳ

=
k3

16πv

∫ ∞
−∞

∫ ∞
−∞

S2
R

(√
ȳ2 +

(
πf

kv

)2)
+ S2

I

(√
ȳ2 +

(
πf

kv

)2)
dxdȳ.

(3.26)

When equation (3.26) is written in the form of (2.30), this is a very difficult integral to evaluate.

We will first change the variable of integration to θ, where θ =
√
ȳ2 +

(
2πf
γv̄

)2
. This gives

F2(f) =
k3

16πv

∫ ∞
−∞

∫ ∞
πf
kv

(S2
R(θ) + S2

I (θ))
θ√

θ2 −
(
πf
kv

)2 dxdθ. (3.27)

There is still an infinite upper limit on this integral that we want to remove. We can reduce the

limit of this integral and only consider the scattering angles θ, which ensures that the scattering

wave remains inside the first Fresnel zone. As the Fresnel zone is a prolate ellipsoid the equation

can be written as follows, where we take our origin of coordinates to be at the location of the

transmitter, with the origin of the ellipsoid to be at (L2 , 0, 0);

(x− L
2 )2(

L
2

)2 +
y2

F 2
1

+
z2

F 2
1

= 1, (3.28)

where F1 is the radius of the first Fresnel zone as defined in (2.45). If we only consider the

projection of the ellipsoid on the xy−plane we have

(x− L
2 )2(

L
2

)2 +
y2

F 2
1

≤ 1. (3.29)

Rearranging for y, which we transform back into ȳ, gives

ȳ ≤ β

√
F 2

1 −
(
F1x
L
2

)2

. (3.30)
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From the relation θ =
√
ȳ2 +

(
2πf
γv̄

)2
we have

ȳ =

√
θ2 −

(
πf

kv

)2

. (3.31)

Combining (3.30) and (3.31) gives

θ ≤

√(
πf

kv

)2

+ β2
(
F 2

1 −
(
F1x
L
2

)2)
, (3.32)

so equation (3.27) can then be re-written as

F2(f) =
k3

16πv

∫ ∞
−∞

∫ h(f,x)

πf
kv

(S2
R(θ) + S2

I (θ))
θ√

θ2 −
(
πf
kv

)2
dxdθ,

(3.33)

where

h(f, x) =

√(
πf

kv

)2

+ β2

(
F 2

1 −
(
F1x
L
2

)2)
. (3.34)

The remaining two integrals, F3 and F4, can be evaluated in a very similar way. For F3, we have

F3(f) =
k4

16π2

∫ ∞
−∞

dx

∫ ∞
−∞

dȳ

∫ ∞
−∞

e−i2πft
∫ ∞
−∞

1

2

×
(
SR(

√
ȳ2 + z̄2)SI(

√
ȳ2 + (z̄ − v̄t)2) + SR(

√
ȳ2 + (z̄ − v̄t)2)SI(

√
ȳ2 + z̄2

)
× sin(γ(ȳ2 + z̄2 − z̄v̄t+ (v̄t)2/2)dz̄dt.

(3.35)

The trigonometric function is of almost identical form to that of F1, and so we can evaluate it in

the same way. This will give

F3(f) = −
∫ ∞
−∞

k5/2

8π2

1

v

√
L

πx(L− x)

(
SR

(
2πf

γv̄

)
SI

(
2πf

γv̄

))
cos

(
π

2
− 2

(
πf

v

)2
x(L− x)

kL

))
.

(3.36)

By following a similar method to that of F2, we know that SR(
√
ȳ2 + z̄2) = (SR(

√
ȳ2 + (z̄ − v̄t)2)),

with the same result for SI and so F4(f) = 0. Our final result for the analytical expression for the

Fourier transform of amplitude fluctuations caused by raindrops is

Fχ(f) = A

[
k5/2

8π2

1

v

∫ L

0

√
L

πx(L− x)

(
S2
R

(
2πf

γv̄

)
+ S2

I

(
2πf

γv̄

))
× sin

(
π

2
− 2

(
πf

v

)2
x(L− x)

kL

))
− 2SR

(
2πf

γv̄

)
SR

(
2πf

γv̄

)
× cos

(
π

2
− 2

(
πf

v

)2
x(L− x)

kL

)))
+

k3

16πv

∫ h(f,x)

πf
kv

(S2
R(θ) + S2

I (θ))
θ√

θ2 −
(
πf
kv

)2
dθdx

]
,

(3.37)
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where we have limited the range of integration for the spatial variable x to 2D2

λ < x < L − 2D2

λ

to account for any scattering between the transmitter and receiver. Any scattering where x > L

would be back scattering, which we are not taking into consideration. 2D2

λ defines the far-field

region, from (2.28). We show this result numerically in the following plots, where we approximated

the integral by expressing it as a Riemann sum. It is important to note here that the amplitude

function S(θ) is a function of f , and so this needs to be taken into account. Also note that we have

included the constant A, which represents the number density. We include here the number density

of raindrops for a mono-disperse distribution because we want now a realistic approximation of

total fluctuations caused by all the raindrops causing fluctuations that are seen at the receiver,

and so we include the number density. It is commonly expressed as

A =
R

4.8π × 106a3v
, (3.38)

where R is the rainrate, v is the terminal velocity of a raindrop, and a the radius.
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Figure 5: The Fourier Transform for a monodisperse distribution, for a range of drop sizes. Here

the rain rate is taken to be 5mm/h.
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Figure 6: The Fourier Transform for a monodisperse distribution, for a range of drop sizes. Here

the rain rate is taken to be 25mm/h.
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4 The Data

4.1 Microwave Links

Microwave links are a type of communication system with a huge range of uses. These include

cellular communication networks as well as wireless internet access. The main reason they are

used in many communication services is due to the huge amount of information they can carry

at very high speeds. Moreover, despite any attenuation in the signal, mainly due to rainfall and

turbulence, the transmission is not disrupted.

4.2 Experimental Set up

The data was collected from an experiment set up at the Chilbolton Observatory in Southern

England. The experiment recorded data from a logarithmic receiver and a linear receiver. Only

data from the logarithmic receiver is relevant for this study, as we saw earlier when we derived

the log amplitude fluctuations. In the data collection process the transmitter and receiver were

positioned 500m away from one another, and placed 4m above the ground. The carrier frequency

used was 26GHz, and the sampling frequency 25Hz. The transmit power of the link was 3dBm.

Data was collected over a five month period, from September 2009 to January 2010.

(a) 26Ghz and 38 Ghz Transmitter at Chilbolton

Oberservatory

(b) Birds Eye View with the yellow line showing the

path of the microwave links

As previously mentioned, current research being done on using microwave links for rainfall

estimation looks at attenuation of the signal. We show here the link signal data and rainfall

intensity for two different days. We firstly plot the rainfall intensity measured with a rain gauge,

as well as the power output at the receiver, for 6thOctober 2009, which is shown in figure (8). In
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figure (9) we zoom in on a time period where there is large amount of rainfall. We also show a

similar result for 23rd December 2009. It is clear to see that there is a definite relation between

rainfall intensity and signal attenuation.
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Figure 9: 06/10/2009, 04:45-05:15
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Figure 10: 23/12/2009
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Figure 11: 23/12/2009,16:00-16:30
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4.3 Drop Size Distribution

The main goal of this project is to investigate the possibility of retrieving an estimation of the

drop size distribution (DSD) from the microwave link signals. Most work that has been done on

using microwave links for precipitation measurements have looked at the attenuation of the signal,

and from this, estimating path-averaged rainfall intensities. The difference in this study is that we

propose to measure the drop size distribution. This distribution is important in many applications

such as radar meteorology and cloud physics. Knowing the drop size distribution can also give

us information on soil erosion. Interestingly, this is because the amount of soil that is lost during

a rainfall event is a function of the kinetic energy of the precipitation, with larger drops having

greater kinetic energy due to increased mass and terminal velocity. As we will show in this section

a rainfall event will almost always have a range of different drop sizes, and so naturally the overall

kinetic energy of any rain event will be dependent upon the drop size distribution. We will not

focus too much on the use of the drop size distribution; however, in this section we will try to give

the reader an idea of what the DSD is exactly, and how it is modelled in current literature.

Up until now we have assumed a mono-disperse distribution of raindrops, where we have used

A to give us the number density, i.e. an approximation of the number of raindrops per unit

volume. In real life situations it is not realistic to assume that all the raindrops are the same size,

in actual fact the size of drops measured in rainfall usually range from about 0.3mm in radius up

to about 5mm. When we are assuming a situation with a range of drop sizes we can label our new

density function as N(D). From here on, D will denote the diameter of a raindrop. We will use

millimetres as units when describing this variable. It is important to note nonetheless that during

any numerical computations involved in this study we have used metres. We start by giving a

definition

Definition 4.1. The drop size distribution is defined as the number of raindrops per unit volume

per unit diameter.

The units are mm−1m−3. This spectrum of drops is usually measured with an instrument called

a disdrometer. This device works by measuring the vertical momentum of a raindrop falling onto

its surface area, this momentum is then converted into a small electrical pulse. The amplitude of

this pulse is then used to provide an estimate of the diameter of the raindrop that caused it. The

disdrometer that we are using in this study measures the diameter of raindrops from 0.3mm up to

5mm, split up into 127 bins. From the data the volume distribution of drops can be calculated by

the following well-defined formula

N(Di)t =
n(Di)t

A∆tv(di)∆Di
, (4.1)

where t represents the time interval over which the measurement was taken, n(Di)t the raw drop

count in the ith bin, A the exposed surface area of the disdrometer’s sensor, and ∆Di is the interval
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between drop sizes. The terminal velocity of a raindrop is commonly predicted by the following

formula

v(Di) = 3.78D0.67
i . (4.2)

The assumption that will be made here is that the drop size distribution is spatially homogeneous,

and stationary over the interval which we are measuring, for example 1 minute. We will show some

plots of DSDs from which we can make some observations.

Here we have combined every six bins into one to get a smoother curve. We have also only

plotted up to a drop size radius of 1.75mm. Several observations can be made from the plots below.

In general the distribution is right- skewed, i.e. there concentration of smaller drops is much larger

than that of larger drops. It can also be noted that we observe predominantly unimodel plots. It

is true that there are small peaks for larger drops in certain minutes but there is in general one

maximum.
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In order to get more of an idea of the drop size distribution from a modelling perspective we

first present one of the most known distributions that are used. The gamma distribution is written

as

N(D) = N0D
w exp(ΛD), (4.3)

where Λ, w, and N0 represent the slope, shape and scaling parameter respectively. It was found

however, that for only a few samples this distribution tended to underestimate the number of drops

which are in the range 0.3 to 1mm and overestimate those smaller than 0.3mm, which we show

here.

From (4.1) we can consider defining the total number of drops ∀D as

n(Di)t = ntP (Di)t, (4.4)

where nt is the total drop count across all drops for some time t, Di is the ith drop, P (D)t is

the probability distribution of raindrops, which we come to in the next section. Substituting the
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The Gamma Distribution plotted against disdrometer data, 04:57-04:58am, with a rainfall rate of

17 mm/h. Here N0=8× 103mm−1m−3, w=1 and λ=4.1R−0.21 where R is the rainrate.

preceding equation into (4.1) gives

NDi =
ntP (Di)t

A∆tv(di)∆Di

=
NtP (Di)t

∆Di
,

(4.5)

where Nt = nt
A∆tv(di)

represents the total drop count per unit volume.

These last comments provide an overall idea of the drop size distribution, which become more

apparent in the inversion problem.
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4.4 Comparison of the Spectrum

In order for it to be possible to compare theoretical predictions with real data we can no longer

assume that we have a monodisperse distribution of raindrops. We need to incorporate the volume

distribution of raindrops N(a). We can rewrite (3.37) as

FD(f) =

∫ Dmax

Dmin

N(D)Fχ(f)dD. (4.6)

where FD(f) represents our forward model. Using thew Wiener-Khinchin theorem we can then

say

PD(f) ≈ FD(f) (4.7)

where PD(f) represents the power spectrum of the amplitude fluctuations, which is obtained

directly from the data. We say approximately equal here because we haven’t account for other

phenomenon such as turbulence which can also cause amplitude fluctuations. We will now plot

the temporal power spectrum of the amplitude fluctuations of the main signal along with our

models prediction of the Fourier transform of the temporal covariance function. Here we plot the

logarithmic frequency, and our time interval is one minute. As the rain rate can vary over a one

minute period we have split each period into six intervals and taken an average. The rain rate is

not included in (4.6), but we state the corresponding rain rate below obtained from data obtained

from rain gauges. We illustrate the results below.
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Figure 19: We plot the Power Spectrum of the data with the Fourier transform of the temporal

covariance function. Here the data corresponds to that of 05:05am, with a rainrate of 1.2 mm/h.

From figures (19) and (20) we see that our theoretical output is an underestimation of the

power spectrum for a lower rainfall intensity and for lower frequencies. This is most likely due to

the effects of turbulence which we have not accounted for here. Turbulent eddies will have some
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Figure 20: Here the data corresponds to that of 05:00am, with a rainrate of 3 mm/h.

effect on the overall signal, and particularly when we have a low rain rate, ≤3mm/h for example,

the effects of turbulence become more apparent.

10
1

10
0

10
1

log(f)

0

50

100

150

200

250

300

350

P
ow

er
 S

pe
ct

ru
m

 (
W

/H
z)

data
model

(a) Logarithmic x-axis

10
1

10
0

10
1

log(f)

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

P
ow

er
 S

pe
ct

ru
m

 (
W

/H
z)

data
model

(b) Logarithmic x and y-axis

Figure 21: The data corresponds to that of 04:55am, with a rainrate of 38.7 mm/h.

When we have a much higher rain rate, like in figure (21) it is realistic to say that the amplitude

fluctuations due to rainfall will be much more dominant than those from atmospheric irregularities.

We also will not expect the data to show exactly what the model predicts. This is due to a number

of factors, for instance we have not included the effects of multiple scattering, as the expressions

would be far too complex. Moreover, we are considering a 500m path length and taking the drop

size distribution to be constant throughout the spatial domain 0 < x < L, whereas this will also

most likely will not be the case. Lastly we have not taken into account any wind factor, which will

33



most likely be present during heavy rainfall. This, along other atmospheric variables make it very

difficult to obtain a model with an exact match to the data.
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5 The Inversion Problem

5.1 The Theory

In the previous sections we have described our forward model which takes our derived Fourier

transform of the amplitude fluctuations of a spherical electromagnetic wave and the known drop

size distribution for some time t, to produce a theoretical prediction of the power spectrum of the

signal.

We now take the drop size distribution as the unknown quantity of interest and use our model

and the observed signal to make an inference on this. We denote our unknown quantity ξ∈Rn,

where n denotes the number of drop sizes, the signal from the microwave links we will denote d,

and the known observation process we will denote H. In the absence of errors we have a forward

map H : ξ → d. Deterministic inversion problems make use of regularization to produce a point

estimate of parameter ξ. Probabilistic methods present the most likely solution of the problem,

from an average over all possible solutions. We can see from above that our solution is not exact,

i.e there is noise present in the model. Naturally the noise is probabilistic and so the key point

in our problem is that we want to quantify the uncertainty on any measurement noise present

in the system and on our drop size distribution. This leads us to follow the Bayesian approach

in order to gain as much information as possible on ξ. The advantage of statistical approaches

is that they give more than just a single estimate, because the unknown quantity of interest is

described as a probability distribution. These methods also take all prior information on the

unknown parameters into account in a very systematic way, along with model and measurement

errors. Moreover, inferential methods provide solutions where a large range of unknown parameters

can be quantified.

To begin we can express our problem in linear form, where

d = Hξ + ε,

where ε represents all noise present in the system, and is seen as a random variable. We can show

this in matrix form as follows


d ∈ Rf


=


H ∈ Rf×n




ξ ∈ Rn


+


ε ∈ Rf
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where H represents the Fourier transform of the amplitude fluctuations that we derived in section

2.

The probability of measuring the data d given that we have the real parameter set ξ is

P (d|ξ) = P (ε = d−H(ξ)) = Pε(d−H(ξ)). (5.1)

where Pε represents the probability measure induced by the random variable ε. Arriving at a

solution of the inverse problem involves drawing samples from P (d|ξ), which we will show is a

probability density function parameterised by ξ via the forward model H.

We explore what is known about the noise process and what we can say about it. Often only

the statistical properties of noise ε are known. We will make the assumption that the noise in our

system is additive white Gaussian noise. This additive noise is also taken to have zero mean as we

are assuming there is no systematic error. We also assumed it is white, so that it has a constant

power spectrum and hence there is no time correlation on the errors. Lastly, taking our noise to

be Gaussian is a reasonable assumption by the central limit theorem. The theorem states that

the distribution of the sum of a large number of independent random variables will tend towards

a normal distribution, and so without knowing the error at each individual step in the process, we

can assume the resultant error over the whole system will accumulate into a Gaussian distribution.

The key idea naturally in Bayesian Inference is to use Bayes rule to derive the posterior prob-

ability as a consequence of the prior probability and the likelihood function. This can be written

as

P (ξ|d) =
P (d|ξ)P (ξ)

P (d)
, (5.2)

where P (ξ|d) represents the posterior distribution, P (d|ξ) the likelihood function and P (ξ) the

prior probability.

Following from the fact that we have assumed the probability distribution of measurements

errors to be normally distributed we define the likelihood function for observing the data d to be

modelled by a multivariate Gaussian distribution which can be written as

P (d|ξ) ∝ exp
(
− φ(d−Hξ)

)
, (5.3)

where φ(·) represents the energy function of the system. Our assumption of noise being additive,

white and normally distribution means the energy function takes the form φ(·) = 1
2 (·)Σ−1(·), so

P (d|ξ) ∝ 1

(2π)n/2|Σ|1/2
exp

(
− 1

2
(d−Hξ)TΣ−1(d−Hξ)

)
, (5.4)

where Σ represents the n × n covariance matrix and |Σ| represents the determinant of Σ. Here

n represents the number of unknown parameters, so the number of gradations we distribute our

drop sizes into.

36



We have stated that the errors are identically and independently distributed random variables and

so they are statistically uncorrelated, i.e. their covariance is zero, and so the covariance matrix of

a white noise vector Rn will be an n × n matrix with the form Σ = σ2I. Here σ is the standard

deviation of the measurement error and I represents the identity matrix.

We don’t know the exact value for σ2 and so we need to make an estimate. It should be noted

that any electronic noise from the instruments used in the experiments can be treated as negligible

compared with other sources of noise. We consider the most predominant source of noise to be the

discrepancy between the forward model and the observed data. This is commonly known as the

residual sum of squares, and defined as

RSS =

n∑
i=1

ε̂i =

n∑
i=1

(di −Hξ̂i), (5.5)

where ξ̂ represents the predicted vector ξ. The problem we face is that because ξ is our vector of

unknown parameters that we want to retrieve, we don’t want the variance to be a function of the

unknowns. We get around this by using a sample of data from the receiver, and corresponding

disdrometer data. With a number of samples we can get an average value for our so called predicted

outcome and use this to obtain an estimate of what the error will be. We do this by running our

forward model, with known drop size distributions, along with the data for several rain events to

work out an average difference between the two. We can then use this average as our measurement

error, which can then be used in the inverse model for predicting the unknown parameters in the

future. An estimation of the variance can then be written as

σ̂2
ε =

1

f̂ − n

n∑
i=1

ε̂i, (5.6)

where f̂ the number of frequency values we are considering. We use f̂ -n rather than f̂ -1 in the

denominator to adjust for the estimation of the n-dimensional parameter ξ.

5.2 The Prior Probability

Now that we have some idea on how to model P (d|ξ) we need to find a way to express our prior

knowledge on our unknowns as a probability distribution. This step is crucial in Bayesian analysis

and so a prior probability P (ξ) must be chosen with care. In the case of Bayesian inference a prior

gives us some idea of the probability of observing the true parameter value, before any evidence or

data is taken into account. So instead of P (D), as defined in (4.3) for example, we want P (N(D)),

which we denote P (ξ). In other words we don’t want the probability of observing a drop, we want

the probability of getting the correct volume distribution of each drop size.

It is also important to note that we are assuming to have no prior knowledge about the corre-

lation between the different components of ξ. We can write this as

P (ξ) =
∏
i

Pi(ξi), (5.7)
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where i represents the number of different drop sizes. We have an abundance of data and so we

can assume to have some knowledge about the expected value for each ξi. We also assume that

the dispersion around the mean values is the same for each ξi. Under the assumption that our

variables ξi are identically and independently distributed brings us to using a Gaussian prior law

by the central limit theorem, which states that the probability distribution of the average of these

random variables will approach a normal distribution. With this we have N (E[ξ], σξ2). This gives

P (ξ) ∝ 1√
2πσξ

exp

(
− 1

2σξ

∑
i

|ξ − E[ξi]|2L2

)
=

1√
2πσξ

exp

(
− 1

2σξ
||ξ − E[ξ]||2L2

)
,

(5.8)

where E[ξ] represents the assumed vector of expected values. This mean can be approximated over

a large number of samples from different rainfall events. Substituting (5.4) and (5.8) back into

(5.2) we obtain

P (ξ|d) ∝ exp

(
− 1

2σξ
||ξ − E[ξ]||2L2

− 1

2σ̂ε
||d−Hξ||2L2

)
. (5.9)

5.3 Maximum a posteriori estimate

Going back to (5.2) we note that we have not yet considered the function P (d). In general, this

term is known as the marginalised likelihood and is just a normalising finite constant. We will show

now why this can be ignored in our retrieval of the drop size distribution. We will approximate

the posterior distribution by taking the delta function approximation

P (ξ|d) ' δ(ξ − ξ̂MAP ), (5.10)

where ξ̂MAP corresponds to the maximum a posterior estimate (MAP) and can be written as

ξ̂MAP = arg max
ξ

P (ξ|d). (5.11)

The maximum a posterior estimate returns the values which maximise the posterior distribution,

i.e. the set of parameter values that make observing the true parameters given we observe the

data the most likely. In other words the maximum a posteriori estimate gives us the mode of the

posterior distribution. Substituting (5.2) into the above equation gives

ξ̂MAP = arg max
ξ

P (d|ξ)P (ξ)

P (d)
= arg max

ξ
P (d|ξ)P (ξ), (5.12)

because the denominator in this instance has no dependence on ξ and so will play no part in the

optimisation.

Both our likelihood function and our prior distribution involve exponentiation. We can simplify

these expressions by considering the logarithm of these functions. This is possible because taking

the log is a monotonic transformation and a strictly increasing function, so will have a maximum
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at the same point, and so we can greatly simplify our expression but maintain the same optimal

result. We can write the log-likelihood as

logL(ξ, d) = log
∏
i

P (d|ξi)P (ξi)

=
∑
i

logP (d|ξi)P (ξi)
(5.13)

From (5.7) we are assuming a statistically independent set of parameters and so the MAP will be

the product of individual estimates

ξ̂MAP = arg max
ξ

P (d|ξ)P (ξ) = arg max
ξ

∏
i

P (d|ξi)P (ξi). (5.14)

Taking the logarithm, as seen from (5.13), results in the following

ξ̂MAP = arg max
ξ

∑
i

log(P (d|ξi)P (ξi)). (5.15)

Substituting the prior and the likelihood function into (5.13) gives the log-likelihood as

logL(ξ, d) = log

[
exp

(
− 1

2σξi
||ξ − E[ξ]||2L2

− 1

2σ̂εi
||d−Hξ||2L2

)]
= −1

2

(
1

σ̂ξ
||ξ − E[ξ]||2L2

+
1

σ̂ε
||d−Hξ||2L2

)
.

(5.16)

From a computational point of view we will minimise the negative of the log-likelihood to obtain

the maximum a posterior estimate. We write this as

ξ̂MAP = arg min
ξ
− logL(ξ, d). (5.17)
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5.4 Results

We will approximate (5.17) with a gradient-based algorithm, and test on signal data from 16rd

January 2010. We obtain various statistical properties, like the error variance from samples from

October 2009, in periods where there was known to be rainfall. Once we had ’trained’ the model

on previous data we could use it to predict the drop size distribution for signals where the drop

size distribution is unknown.

Although it is taken to be unknown we plot the disdrometer data next to the result of the

Bayesian analysis result to compare how well the model worked.
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Figure 22: 16/01/2010,19:55-19:56

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
drop radius

0

200

400

600

800

N
(a

)

Real DSD

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
drop radius

0

200

400

600

800

N
(a

)

Inversion Result

Figure 23: 16/01/2010,19:56-19:57
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Figure 24: 16/01/2010,19:57-19:58
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Figure 25: 16/01/2010,19:58-19:59

We plot the result for six different times. We again take an average over six ten second intervals

over the stated minute. The disdrometer gradations were also combined into 21 bins, rather than

the measured 127 to give a smoother curve. Another reason for this is so that we reduce the

number of parameters to be estimated by a factor of 6, in the hope for faster convergence of the

algorithm. Furthermore, the Fourier transform is a linear transform that takes signal from time

domain to the frequency domain and hence the number of time points will be equal to the number

of frequency points. If we want to consider a retrieval of the drop size distribution over 10 seconds,

or one minute for example, we would not expect as good a result, if any, if we wanted to estimate

127 different parameters. It also makes sense to consider shorter time intervals, otherwise the

values in the disdrometer data and in the Fourier transform of the signal will be of a higher order

or magnitude, and so more room for error. Taking the Fourier transform over 10 minutes for

example also won’t give much information as the rain rate can fluctuate a huge amount in a short
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Figure 26: 16/01/2010,19:59-20:00
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Figure 27: 16/01/2010,20:00-20:01

space of time. In addition, we’re assuming the rain to be a statistically stationary process over the

time interval that is considered. The validity of this assumption is likely to rapidly decrease with

increasing time interval.

It is clear to see that the results shown in the above figure are not the exact drop size distri-

bution; however, it is a promising start. Considering that there are many errors involved in the

measurement process, not just from the model but also from the fluctuations of the signal itself,

the outcome was uncertain, especially as this is the first known study of this method. The most

promising aspect is that the shape and order of magnitude are reasonably correct. Perhaps with

a more appropriate prior or using Markov Chain Monte Carlo Methods which sample from the

whole posterior distribution rather than just the mode, might result in a better outcome.

We can go further in the comparison and see if the retrieved volume distribution of raindrops
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shows a similarity to the measured rain rate. This can be done by the following estimation

(reference)

Rt =
π

6
× 3.610−3

∫ ∞
0

D3V (D)N(D)dD, (5.18)

where Rt is the instantaneous rain rate in mm/h, and D = 2a.

Rainfall Rate

Time Rain Gauge Real DSD Inversion Result

19:55 3.1 2.7 2.5

19:56 5.0 4.3 3.7

19:57 1.8 1.2 0.8

19:58 1.4 1.2 1.5

19:59 2.7 2.6 2.3

20:00 2.5 2.1 1.8

In general the results from the table above show us that the results are promising. A possible

reason for the difference in values between the rain gauge data and that measured using (5.17) are

maybe to do with how much the rain rate can change over one minute. The inversion results show

a slight underestimation for most cases of the rainfall intensity; however, in general the estimate

is reasonable.
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6 Conclusion, Discussion and Future Work

At the start of this thesis it was shown that it is possible to obtain an expression for the temporal

amplitude covariance, using Mie’s scattering theory as a starting point. We note that in general

the key to these spectrum’s showing a shape similar to that of the Power Spectrum of the data

is the amplitude function S(θ), which must be a function of frequency. We initially made the

assumption that S(θ) = S(0), i.e. that we are assuming forward scattering; however, even though

the scattering angles can be taken to be extremely small, they must still vary with f , at least for

the analysis. If we take S to be constant for each drop size, the trigonometric functions involved

become dominant and we get a far more oscillatory function appearing.

Following on from this we defined prior and posterior probabilities to the drop size distribution

and the power spectrum of the signal. Several prior possibilities were tried, like a gamma distri-

bution for example; however, convergence was very slow. In general the Gaussian prior showed

the most promising results. As an idea for future work, possibly the dispersions of the parameters

from their mean value could be taken to follow a distribution rather than be assumed constant, to

account for more likely variability in values for the smaller drop sizes.

One might also want to consider adding the effects of turbulence into the model. This has

not been done here; however, Tatarskii [4] for example gives a rigorous anaylsis on the effects of

atmospheric turbulence on electromagnetic wave propagation. This might help with explaining the

differences observed between the forward model FD(f), as defined in (4.6) and the power spectrum

of the signal, particularly in the lower frequency regions for example.

Multiple scattering is also something one could consider. We have not included the effects of

multiple scattering in our analysis because the raindrops are far enough apart that we can take

single scattering to be the most dominant. However, in some types of precipitation, such a drizzle,

where there are a very large number of small drops, this assumption might not be as valid. In

heavier rainfall, where there are fewer but much larger drops, the assumption of single scattering

is more valid. Moreover, multiple scattering consider second, third and so on order of functions, so

how much effect this would have on our expressions for the amplitude fluctuations due to rainfall

is unknown, but we expect the difference won’t be substantial.

We also found that for certain time frames, the data produced far less smooth curves for the

power spectrum than others. Definite spikes were present for high and low frequencies. It would be

impossible to know the exact reason for this, but this resulted in a worse match to the disdrometer

data in the retrieval. This was only for a small number of cases but perhaps if more time was

available this could be looked into further.

We have shown that we can also obtain information about the rainfall intensity from the drop

size distribution in (5.18). It is much harder to do this the other way around, and so estimating

the drop size distribution directly could be an invaluable technique.

If we wanted to apply this method to using data from microwave links used in mobile phone

networks, something worth noting is the difference in sample frequency. In the data we had access
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to for this study, the signal was sampled at 25Hz, whereas typically mobile phone network sample

at frequencies much lower than this, so this would need to be taken into account when using the

model.

Overall this method for the retrieval of the drop size distribution has great potential, particular

because several atmospheric variables were not accounted for. This may partly be due to the fact

that, as we can see from Figure 5, the spectrum for each individual drop size is quite different,

and so this will help considerably in the inversion problem. There is more work to be done here;

however, it is a definite start in using spectral analysis methods to obtain the drop size distribution

from microwave link data.
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