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Abstract

Methane (CH4) is the second most important atmospheric greenhouse gas af-
ter CO2. Due to its shorter lifetime compared to CO2, it is a good target for
short-term global warming mitigation. The recently launched instrument TRO-
POspheric Monitoring Instrument (TROPOMI) provides us with atmospheric
total column measurements of CH4 at an unprecedented combination of high
spatial resolution of ∼ 7 × 7 km2 and daily global coverage. Consequently,
TROPOMI can allow us to detect and quantify localized sources of CH4 that
can be reduced to effectively mitigate global warming. After only its first month
in orbit, TROPOMI measured an unexpected high concentration of CH4 over
the South Sudan region. In this study, we examine TROPOMI data in this re-
gion for the time period of November-December 2017, and we compare it with
simulations of CH4 total column concentrations produced by the atmospheric
transport model WRF-CHEM. We find that the model underestimates the CH4
spatial gradients mainly because of too low input emissions. We find that
the model concentration enhancement, due to the wetland or anthropogenic
emissions, is approximately 8 times lower than the enhancement measured by
TROPOMI.

Further, we analyze monthly averaged XCH4 data from TROPOMI. We find
that monthly TROPOMI XCH4 enhancement follows the spatial pattern of high
resolution wetland map and shows seasonality consistent with CH4 emissions
from a process-based wetland model. Thus, it is likely that the enhancement is
caused largely by CH4 emissions from wetlands. We also quantify CH4 emissions
from TROPOMI data for November and December 2017 via a measurement-
only (transport model-independent) approach. Overall, we estimate that the
Sudd wetlands in the South Sudan region emitted 1057 ± 447 tonnes of CH4
per hour in November 2017 and 566±348 tonnes of CH4 per hour in December,
2017. Comparing these results with the available CH4 emissions estimates from
different process-based models, we find that the models highly underestimate
the Sudd wetland emissions.
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1 Introduction

Methane is a greenhouse gas present in the atmosphere of Earth and is a major
cause of the current global warming. The recently launched TROPOspheric
Monitoring Instrument (TROPOMI) provides us with high quality measurements
of methane, allowing to study its sources in unprecedented detail. During its
first month in operation, TROPOMI observed unexpectedly high concentrations
of methane in South Sudan region.

We begin this chapter, section 1.1, describing the role of methane in global
warming. Subsequently, in section 1.2 we describe TROPOMI methane mea-
surements and, in section 1.3, the region of interest South Sudan. In section 1.4,
we explain the concrete objectives of this study and we conclude, in section 1.5,
explaining how the rest of the document is organized.

1.1 Methane and Significance
Methane (CH4) is a major atmospheric Greenhouse Gas (GHG). CH4 is the
second most important GHG after CO2 [Stocker et al., 2013]. Even though its
concentration in the atmosphere is 200 times lower than CO2, on a molecule-
for-molecule basis CH4 is more powerful than CO2 because of its higher Global
Warming Potential (GWP) [Stocker et al., 2013].

According to the Environmental Protection Agency (EPA) [EPA], GWP is
defined as the amount of heat that is absorbed by emissions of 1 ton of gas over
a specific period of time, relative to the emissions of 1 ton of CO2. As a result,
the reference GWP of CO2 is by default equal to 1 regardless the time horizon
that is examined. On the other hand, the GWP of CH4 is equal to 84 computed
over a 20-year period [Stocker et al., 2013]. The GWP index of CH4 is computed
taking into account also its indirect effects. For instance, CH4 is a precursor of
ozone (O3) which is itself a greenhouse gas [Stocker et al., 2013](IPCC, 2001).
Hence, the global warming impact of CH4 is very important. Further, CH4 has
a short lifetime of approximately 12.4 years [Stocker et al., 2013] in contrast
with CO2 whose lifetime varies from 30 to 95 years [Jacobson]. Consequently, a
reduction in CH4 concentration can lead to rapid positive effects on atmospheric
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warming. Overall, due to its short lifetime and its large GWP, CH4 is considered
a good target for short term climate change mitigation.

1.1.1 Methane Budget
There are several sinks responsible for the removal of CH4 from the atmosphere.
The dominant sink is the reaction with hydroxyl radical (OH), mainly in the
troposphere, which contributes 90% of the total loss. The oxidation of CH4 by
OH produces water and CO2. The second most important sink is its transport to
stratosphere, where CH4 is also oxidised. Another sink with a minor significance
is the destruction of CH4 by bacteria (methanotrophs) found in soil, which
consume CH4 as a source of carbon and energy [Jacob, 1999, Saunois et al.,
2016].

According to Ciais et al. [2014], from pre-industrial times to up until 2015,
the concentration of CH4 in the atmosphere has nearly tripled from 700 to 1834
parts per billion (ppb). Despite its large growth and significant role in climate
change, and even though its total global emissions and atmospheric sinks are
relatively well known, CH4’s budget is not fully understood yet [Prather et al.,
2012, Saunois et al., 2016].

The global emission of CH4, as calculated by Saunois et al. [2016], is approx-
imately 558[540-568] Tg per year. However, our estimations as regards each
individual source of CH4 are extremely uncertain; our knowledge about each
individual contribution is not adequate yet [Stocker et al., 2013, Dlugokencky
et al., 2011, Houweling et al., 2014].

CH4 is emitted in the atmosphere by sources of both natural and anthro-
pogenic origin. Anthropogenic processes play important role in CH4 budget as
approximately 60% of CH4 is produced by human activities [Saunois et al., 2016].
The most important anthropogenic sources are agricultural and waste processes
(see table 1.1 and fig. 1.1). Some representative instances of such sources are
landfills and rice cultivations that, under anaerobic conditions (oxygen-free),
emit CH4. Also, livestock production (mainly through enteric fermentation in
animals) including animal manure produce CH4. Another important source is
the fossil fuel sector that includes coal mining and oil and gas industry where
industrial processes such as production, processing, transfer and storage release
CH4. Another anthropogenic source with minor significance is biomass and
biofuel burning, which release CH4 due to incomplete combustion as a side
product.

Under the natural sources category, the most dominant source are natural
wetlands where anaerobic decomposition of organic carbon occurs. The rest of
the natural sources, for example, termites, wild animals, wildfires, and geological
sources, have a minor contribution to CH4 emissions.

13



Figure 1.1: The pie chart shows the approximate contribution of each source to
the total global emissions [Saunois et al., 2016]. Detailed reviews of CH4 global
budget can be also found in Saunois et al. [2016].

1.2 TROPOMI
Sentinel-5 Precursor (S-5P) satellite [Veefkind et al., 2012] is an atmospheric
chemistry mission that was launched on 13 October 2017. An illustrative di-
agram of the S-5P instrument is shown in fig. 1.2. The primary target of
S-5P is to provide atmospheric tracer measurements from space for the domain
of air quality and climate change. The TROPOspheric Monitoring Instrument
(TROPOMI) is the only instrument onboard the S-5P satellite, which developed
with a collaboration between European Space Agency (ESA) and Netherlands
Space Office (NSO).

Figure 1.2: Illustration of Sentinel-5 Precursor satellite with one single payload
on board, TROPOMI (Source: ESA/ATG medialab).
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Table 1.1: The Table presents global CH4 emissions of each source category in
Tg CH4 per year. The ranges indicate the 1-σ uncertainties. Please note that
differences of 1Tg CH4 yr−1 in the totals can occur because of rounding errors.
Detailed reviews of CH4 global budget can be also found in Saunois et al. [2016]
.

Time Period 2003-2012

Tg/yr
Uncertainty

Range
NATURAL
SOURCES 231 [194-296]

Natural Wetlands 167 [127-202]
Other natural sources 64 [21-132]
ANTROPOGENIC
SOURCES 328 [259-370]

Agriculture and waste 188 [115-243]
Fossil fuels 105 [77-133]
Biomass and biofuel burning 34 [15-53]
SINKS 548
Total Chemical loss 515
Soil uptake 33 [28-38]
SUM OF SOURCES 558 [540-568]
SUM OF SINKS 548
IMBALANCE 10
ATMOSPHERIC GROWTH 10 [9.4-10.6]

TROPOMI is flying in a sun-synchronous orbit at altitude of 824 km with
local overpass time 13:30 pm. It is a multispectral imaging spectrometer that
detects solar radiation reflected or scattered back to space from Earth’s atmo-
sphere and surface. As the spectral fingerprint of each target atmospheric trace
gas is known, its concentration can be calculated from the measured spectra
and information about path length of the light (see fig. 1.3). The retrieval algo-
rithm calculates the total column concentration for the trace gas by iteratively
fitting spectral observation of backscattered light to a modeled spectrum.

Compared to its heritage instruments, TROPOMI has a wide range of advan-
tages since it combines the best features of each and in most cases it improves
their performance (see fig. 1.4). For instance, it has the comparable (or better)
resolution than GOSAT (10 × 10km2). GOSAT has fairly low spatial sampling.
SCIAMACHY, on the other hand, has good spatial sampling but low precision
and large pixel size.

Further, TROPOMI has an improved signal-to-noise ratio (2−5%) for mea-
surements under low albedo conditions. TROPOMI has a very high spatial
resolution (3.5 × 7 km2 for all trace gases, except for CO and CH4 that is
7×7km2). As a result, for the first time it is possible to detect air pollution on
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Figure 1.3: Illustration for measuring CH4 from space. θ is the solar zenith
angle and θv is the satellite viewing angle (Source: Jacob et al. [2016]).

facility and city scale from space [Borsdorff et al.]. With such fine resolution, it
can distinguish individual sources of pollution and provide us with more dense
measurements [Borsdorff et al., 2018].

TROPOMI has more spectral bands than its predecessors: ultraviolet and
visible (270-500 nm), near‐infrared (675-77 nm), and shortwave infrared (2305-2385
nm). This allows TROPOMI to measure a wider range of atmospheric trace
gases such as nitrogen dioxide (NO2), ozone (O3), formaldehyde (CH2O), sul-
phur dioxide (SO2), methane (CH4), and carbon monoxide (CO). In addition,
it observes clouds and aerosols-related parameters, which can be fed into the
retrieval algorithms of trace gases.

Furthermore, TROPOMI follows a polar sun synchronous orbit to scan a
stripe of the Earth using a two dimensional detector (See fig. 1.5). The dimen-
sion of the strip across the track of the satellite, the so called swath, is 2600km,
while along the track is 7 km. TROPOMI takes a measurement every 1 sec-
ond. The detector is a two dimensions array of sensors: one dimensions is used
to measure spatial information and the other to measure spectral information.
Hence, for every ground pixel, a large spectral range is measured and TROPOMI
can measure more tracers than the previously launched satellite. Completing
14-15 orbits per day, TROPOMI accomplishes global coverage on a daily basis
[Veefkind et al., 2012, Nijkerk et al., 2012](see fig. 1.6).

Emission inventories are category-wise, spatiotemporal records of emissions
of atmospheric trace gases. Using these datasets as input, an atmospheric
transport models simulates the concentration of the trace gas in space and
time. Using these datasets air quality can be monitored and policies to mitigate
the pollution can be implemented. However, the emission inventories are often
inadequate due to ,for instance, lack of continuity in the data they rely on,
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Figure 1.4: Illustration of TROPOMI pixel size (nadir pixel) in comparison with
previous and current satellites.

Source: http://www.tropomi.eu/gallery/science-data-products-gallery

Figure 1.5: TROPOMI measurement principle (Source: Nijkerk et al. [2012]).

incapability to account for extreme weather events and random event such as
volcanic eruptions ([ESA]).

An efficient way to calibrate the inventories is to use the information of satel-
lite measurements. TROPOMI is capable of detecting variability of the trace gas
sources and provide detailed information about their spatio-temporal evolution
[van Weele et al., 2008]. With its high spatial resolution, it can map sources
even on a city scale. The quantification of individual anthropogenic and natural
sources and the validation of inventories using the TROPOMI measurements
can lead to a significant reduction in uncertainties of the trace gas invento-
ries. Using the novel TROPOMI data, a major improvement of the emission
inventories is expected.
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Figure 1.6: Illustration of TROPOMI global coverage and examples of atmo-
spheric trace gases that it can measure.

Source: http://www.tropomi.eu/gallery/tropomi-daily-coverage

1.3 Study Area: South Sudan
South Sudan, officially known as Republic of South Sudan, is the world’s newest
country since it gained its independence from Sudan on 2011 after decades of
civil war. It is located in the North Eastern Africa, between 3◦ and 13◦N
latitudes, and 24◦ and 36◦E longitudes (see fig. 1.7).

Figure 1.7: Location of South Sudan.

Frankenberg et al. [2011] , identified South Sudan as a significant local-
ized CH4 source. This result was inferred by averaging seven years of CH4
observations of SCIAMACHY. On the other hand, Hu et al. [2018] observed an
enhancement of CH4 over South Sudan after averaging only first one month of
TROPOMI measurements (see fig. 1.8). The spatial structure of the CH4 en-
hancement follows the structure of the biggest wetland expanse of South Sudan,
Sudd.
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Figure 1.8: CH4 mixing ratio retrieved by TROPOMI over western and central
Africa, averaged for the time period between 12 November and 30 December
2017 (Source: Hu et al. [2018]).

However, the data from a processes-based bottom-up model for wetland
emissions (LPJ model, see section 2.2.2), suggests that Sudd is not one of
the most important wetland regions worldwide. Figure 1.9 compares the CH4
emission of LPJ over the region of South Sudan and Paraguay. Globally the
Sudd wetlands have the 10th position in the rankings of wetland with highest
CH4 emissions (see fig. 1.9).

(a)

(b) (c)

Figure 1.9: a) Illustration of averaged CH4 emissions from LPJ wetland model
for the months of November-December adapted to the area where TROPOMI
has signal, LPJ emissions focused over the regions of b) Paraguay and c) South
Sudan.
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Another cause of the South Sudan CH4 enhancement can be anthropogenic
CH4 emissions. According to U.S Energy Information Administration (EIA),
most of South Sudanese oil producing assets are located near or across the shared
borders between Sudan and South Sudan, not very far from where the CH4 en-
hancement is observed (see fig. 1.10). Overall, the cause of CH4 enhancement
over South Sudan as measured by TROPOMI needs a better explanation.

(a)

Source: http://news.bbc.co.uk/nol/shared/spl/hi/world/10/sudan/img/sud_oil.gif

(b)

Figure 1.10: a) Oil and Gas oil producing assets located near or across the
shared borders between Sudan and South Sudan. b) Averaged CH4 mixing
ratio retrieved by TROPOMI for the time period between 12 November and 30
December 2017. It is observed that the general patterns of CH4 enhancements
and oil assets show some similarity in the structure, however, the latter are
shifted southeastward.
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1.4 Objectives
After the launch of TROPOMI, exciting results are expected in the fields of
atmospheric composition and air quality. Using the high quality measurements
of TROPOMI, we investigate the CH4 sources over South Sudan in details.
Specifically, we qualify and quantify CH4 emissions over the region of South
Sudan. The primary purpose is to find out the dominant sources that are
responsible for the CH4 enhancement observed in TROPOMI data. This is
done via the following steps:

• We use the Atmospheric Transport Model, WRF, to convert the CH4
emissions from wetland model and inventories into atmospheric concen-
tration. Moreover, we compare it with the CH4 mixing ratio retrieved by
TROPOMI for the months of November and December 2017.

• We verify the accuracy of existing emission inventories by comparing them
with the emissions calculated from TROPOMI data using a transport
model-independent method called the Source Pixel method.

1.5 Organization
The rest of this master thesis is divided in 3 chapters:

In chapter 2, we give the reader a brief explanation of the analysis method
used for this study. We describe the orbital and the monthly averaged TROPOMI
data. We present the atmospheric transport model used to simulate the CH4
concentration over the region of South Sudan and explain the method used to
quantify of emission rates of CH4.

In chapter 3, we present the results of this master thesis. We compare the
model with observations from TROPOMI in order to find out whether the model
and the agree. Moreover, we quantify CH4 emission from TROPOMI data and
compare this result to several bottom-up wetland models of CH4 emission.

We conclude this document, in chapter 4, with a few remarks about this
study and a discussion about the results. We also indicate possible further
directions of research on the subject.
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2 Data and Methods

In this chapter, we explain the data and methods used in our analysis. We start
in section 2.1 by introducing the TROPOMI CH4 product. We continue, in
section 2.2, with a brief description of the Atmospheric Transport Model used
to simulate the atmospheric CH4 concentration and their comparison with the
observations. Finally in section 2.3, we introduce a model-independent emission
quantification approach, the Source Pixel method, and process-based wetlands
models of CH4 emissions.

2.1 TROPOMI Data Product

2.1.1 Retrieval Approach
As mentioned in section 1.2, TROPOMI operates in several spectral bands
measuring solar backscattered radiation. For this study, we use only spectral
measurements from the short-wave infrared (SWIR) band as we focus on CH4
that absorbs radiation at 2.3 µm. The column-averaged dry air mole fraction
of atmospheric CH4 (XCH4) is calculated with near uniform sensitivity in the
troposphere taking into consideration CH4’s absorption features [Jacob et al.,
2016, Hu et al., 2018].

Aerosols and cirrus particles present in the atmosphere modify the lightpath
of the measured solar backscattered radiation. For instance, the lightpath is
shortened when it is reflected back to space without penetrating the whole at-
mospheric column (see fig. 2.1). This would lead to an underestimation in the
XCH4 in comparison to the real or true XCH4 (see middle panel of fig. 2.1).
Higher surface albedo, on the other hand, can increase the length of the light-
path in presence of aerosol and cirrus leading to an overestimate of XCH4 (see
right panel of fig. 2.1). Consequently, not taking into account possible lightpath
changes can induce substantial biases in the measured XCH4.

In order to reduce the error due to modified lightpath, the computation
of XCH4 is done using the full physics retrieval algorithm, RemoTeC [Butz
et al., 2009, 2011, Hasekamp and Butz, 2008, Hu et al., 2016]. This algorithm
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Figure 2.1: Illustration of the scattering of light by aerosol and cirrus particles
in the atmosphere. The left panel shows an idealized case without scattering.
The middle and right panels show the shortening and increase of the light path
due to scattering resulting in an underestimation and overestimation of CH4
mixing ratio, respectively.

retrieves scattering properties such as amount, size and height of aerosols and
surface albedo, simultaneously with the CH4 column, to account for the light
path modification.

2.1.2 TROPOMI XCH4
Herein, we use S5P L2 CH4 data product that includes XCH4 measurements
retrieved from TROPOMI. In the version of the data that we use (10.9, one
band retrievals), an additional more strict filtering is applied to minimize the
error caused by cirrus [Hu et al., 2018].

The data for each TROPOMI orbit is a NETCDF format file. For this
analysis, we use only the orbits where TROPOMI has signal over the region
of interest (between 2◦ and 11.5◦ N latitudes and 24◦ and 36◦ E longitudes),
for the months of November and December 2017. We set a threshold of 100
pixels of valid measurements per orbit to exclude orbits with sparse coverage.
Table 2.1 shows the adequate orbits for both months. The specific variables
taken from the dataset for our study are displayed in table 2.2.

Table 2.1: Orbits with adequate TROPOMI data for the months of November
and December 2017 after applying threshold of 100 valid measurement per orbit
for the region between 2◦ and 11.5◦ N latitudes and 24◦ and 36◦ E longitudes)

November December
Orbit Data Orbit Date
568 22-11-2017 923 19-12-2017
625 26-11-2017 937 18-12-2017
639 27-11-2017 1079 28-12-2017

1093 29-12-2017
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Table 2.2: Variables from the S5P L2 CH4 product data used in the study. Nobs
is number of observations.

Name Units Dimension Description

time sec nobs Time of measurement
(seconds since 1970-01-01 00:00:00)

latitude_center Degrees North nobs Center latitude of measurement
longitude_center Degrees East nobs Center longitude of measurement
lat_corners Degrees North (nobs, 4) Corner latitude of measurement
lon_corners Degrees East (nobs, 4) Corner longitude of measurement

XCH4 ppb nobs Column averaged dry air mixing
ratio of CH4

XCH4_precision ppb nobs Precision of XCH4

XCH4_priori ppb nobs A priori value of column averaged
dry air mixing ratio of CH4

surface_pressure hPa nobs Surface pressure
aerosol_optical_thickness dimensionless nobs Aerosol optical thickness
surface_albedo dimensionless nobs Surface albedo

u10 m/sec nobs Eastward wind component
at 10 m height

v10 m/sec nobs Northward wind component
at 10 m height

qa_value dimensionless nobs
Value for filtering:
0.4: pre-filter but not post-filter
1: post-filtered data (strict filter)

2.1.3 Re-gridding of TROPOMI data
For further analysis of TROPOMI data, we produce a map of monthly averaged
XCH4 on a regular grid with spatial resolution of 0.1 × 0.1 degrees. Every
orbit that TROPOMI measures has a different spatial distribution of grid cells,
depending on the viewing zenith angle at the moment of the observation. For
this reason, we do regridding for each day of November and December, taking
into account all the available orbits for the region of interest. Afterwards, we
combine all the regridded orbital sets to calculate separately the monthly mean
of XCH4 for each month.

To improve the accuracy of the data, we compute the orbital regridding of
XCH4 weighting the value of each TROPOMI pixel with its XCH4_precision.
Hence, each pixel contributes to the final mean XCH4 of the grid cell according
to its precision: the more precise a pixel is, the more it contributes. The
advantage of computing precision weighted averaged data is that we decrease
the influence of the data points with worse precision.

For each grid cell of 0.1×0.1 degrees, the regridded average XCH4, XCH4avg,
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is computed as follows: For each orbital file, there are several measurements
(TROPOMI pixels) of XCH4 and XCH4_precision in each grid cell:

XCH4avg =
∑

x ∗ p−2∑
p−2 (2.1)

where x is XCH4 and p is XCH4_precision of a TROPOMI pixel measure-
ment.

The XCH4 precision error, σpr for each grid cell is computed as:

σpe = 1√∑
p−2 (2.2)

For other variables such as surface pressure, surface albedo, aerosol column,
etc. (see table 2.2), we use the arithmetic mean to calculate the monthly
average of the regridded data. As opposed to the calculation of XCH4, the
error for these variables is assumed negligible.

2.2 Atmospheric Transport model

2.2.1 WRF model
In this study we use the Weather Research and Forecasting (WRF) Model ver-
sion 3.7, with the Advanced Research WRF core (ARW) [Skamarock et al.,
2008]. It is a non-hydrostatic numerical model capable of creating simulation of
atmospheric tracers. To account for variabilities caused by atmospheric trans-
port in our simulation, we use a built-in CHEM module of WRF model, [Grell
et al., 2005].

The first step to run the model is to set the input of the transport sim-
ulation by running WRF Preprocessing System (WPS). This system contains
three programs: geogrid, ungrib and metgrid that are used for initializing the
topographical and meteorological conditions (fig. 2.2).

The output of WPS has to be adjusted with realistic conditions. To do so,
the program real defines the initial and boundary CH4 concentration conditions
based on the CAMS model dataset. The initial conditions provide the model
with information about the time initial concentration of CH4 in the target re-
gion. The boundary conditions represent the spatial initial concentration of CH4
transferred to the model domain from spatial boundaries.

At this point, CH4 emissions have to be taken into consideration (see sec-
tion 2.2.2). Sinks of CH4 are disregarded because they are negligible for the
model run time period compared to the lifetime of CH4 in the atmosphere (see
section 1.1). After the previous steps, the main transport model, wrf, can be
executed as shown in fig. 2.2.

For our study, we run the model for the domain between 2◦ and 11.5◦ N
latitudes and 24◦ and 36◦ E longitudes. The spatial resolution is 7 × 7 km2 and
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Figure 2.2: Program flow of WRF. Under WPS module: geogrid calculates the
topographic information for the focus region, ungrid decodes meteorological
data from GRIB-format files and metgrid spatially interpolates this meteorolog-
ical data for the region. Under WRF module, real creates, initial and boundary
conditions for the simulation. Finally, WRF is executed to run the transport
model with CH4 emissions from different sources as input.
Source: http://www2.mmm.ucar.edu/wrf/users/tutorial/tutorial_presentation_summer_
2015.htm

the time comprehends between 1 of November and 20 December with a time
resolution of 60 seconds.

2.2.2 Emission Dataset
Using the WRF model we simulate CH4 concentrations over the region of South
Sudan, taking into consideration CH4 emissions from several sources: anthro-
pogenic inventories, wetland model and point oil and gas sources.

The WRF model is based on grid equidistant in km. On the other hand, the
grid of emission inventories is in degrees. Therefore, we interpolate the inven-
tories to the WRF grid. In addition, WRF emission unit is moles/km2/hour
but each inventory uses its own units of measure.

Anthropogenic. For the anthropogenic emissions we use Emissions Database
for Global Atmospheric Research (EDGAR) v4.3.2 inventory with spatial res-
olution of 0.1 degrees (See fig. 2.3). This dataset contains the annual mean
emissions of CH4 for the year 2012 measured in kg/m2/sec [Crippa et al., 2018].
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Figure 2.3: EDGAR emissions interpolated to the WRF emission grid.

Wetland. We use CH4 data from LPJ process-based model that represents
the wetland emissions [Hodson et al., 2011]. The LPJ dataset has a spatial
resolution 0.5 degrees and consists of the monthly mean CH4 emissions for
the time period 1980-2014. For our analysis, we use the months of November
and December 2014, filling the missing values of the dataset by applying a
linear interpolation. LPJ also has wetland fraction for each grid cell available
that expresses the inundation fraction, or the water-submerged fraction of land
surface, in the grid cell.

High resolution wetland CH4. The LPJ dataset has a coarse spatial resolu-
tion. In order to improve the resolution, we derive wetland emissions at higher
spatial resolution combining a high resolution (HR) wetland fraction dataset
with LPJ’s CH4 emission and its low resolution (LR) wetland fractions. The
data for the HR wetland fraction is taken from the Tropical and Subtropical
Wetlands Distribution version 2 dataset [Gumbricht et al., 2018]. This dataset
contains information about the annual mean of wetland fraction with 231 meters
spatial resolution. Wetland fraction shows a strong correlation with the CH4
emissions (see fig. 2.4, (a)). Therefore, to compute the HR wetland emissions
we use the ratio of the wetland fractions from HR and LR data as a scaling
factor.
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(a)

(b)

Figure 2.4: a) Monthly mean LPJ wetland emissions as a function of LPJ
wetland fraction for the time period 1980 until 2014. b) Monthly mean LPJ
wetland emissions (red bar, left x-axis) and wetland fraction (blue bar, right
x-axis) for the year 2014. Both graphs show LPJ data for the target region.

We calculate the HR wetland emissions using the following equations:

wm,HR = wm,LR
wa,LR

∗ wa,HR (2.3)
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em,HR = em,LR
wm,LR

∗ wm,HR (2.4)

where w: wetland fraction; e: wetland emissions; m: monthly mean; a: annual
mean.

Because the wetland fraction from the HR data is annual (wm,HR ), we
adjust it to the specific month by multiplying it with the wetland fraction ratio
in LR (wm,LR

wa,LR
). The emission in high resolution is then calculated as the product

of the LR emission per unit of wetland fraction and the monthly wetland fraction
in HR.

(a)

(b)

Figure 2.5: a) LPJ emissions and b) high resolution emissions interpolated to
the WRF emission grid.

Oil and gas tracers. In order to get a more realistic representation of anthro-
pogenic CH4 emissions, we have to take into account the gas and oil activity
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in the region. After executing the model only with anthropogenic and wetland
emissions, we observe that the concentration is largely underestimated.

Assuming there is a missing source in our approach, we include three point
sources representing the CH4 release because of oil and gas production. Due to
the current socioeconomic situation in South Sudan, there is a lack of data of
GHG emissions from the region. Thus, to simulate oil and gas production, we
place three point sources that emit 200 kilotonnes per year each, in the area
where available maps indicate oil and gas are produced (see fig. 2.6).

Figure 2.6: Oil and gas emissions interpolated to the WRF emission grid (7 ×
7 km2). The emissions are represented by three pixel sources located in the
northern part of South Sudan.

Each oil and gas source of CH4 is input as a separate emission tracer in
the model. In the output of the model, the concentration influence of each
tracer is obtained separately. To compute the total concentration of CH4, we
combine the contribution of each tracer. This can be done because WRF is
an approximately linear model, which means that the concentration of CH4
depends linearly on the emissions and boundary conditions.

2.2.3 Total Column Concentration
The WRF model calculates the concentrations of CH4 for the input emissions.
The model provides us with of CH4 concentration at 29 layers of atmospheric
pressure for every hour. TROPOMI data consists of the total column averaged
concentration measurements of CH4 the local overpass time over South Sudan
(13:00 local time or 10:00 UTC).
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Consequently, we need to adapt the model concentration output to TROPOMI
measurements to be able to compare them. To do so, we compute the mean
column concentration of CH4 from WRF output at (10:00 UTC) using the fol-
lowing procedure:

In order to compute the CH4 total column average concentration, CH4c, we
have to take into account the pressure gradient. We use the following equation:

CH4c = (m1 ∗ (Ps − P1,b) + m2 ∗ (P1,b − P2,b) + · · · + mn ∗ (Pn−1,b − Pn,b))
(Ps − Pn,b)

(2.5)
where n: layer number in the column; m: CH4 mixing ratio in the layer; Ps:

surface pressure; Pn,b: boundary pressure of the layer.
For each layer i, we multiply the CH4 mixing ratio mi with the pressure

difference along the layer Pi−1 − Pi.
However, the model does not provide directly the pressure at the boundary

of each layer, but only at the center of the layer. To calculate the boundary
pressure, we apply the following equation:

P0 = Ps (2.6)
Pi+1 = 2 ∗ Pi,c − Pi (2.7)

where i: layer number in the column; Ps: surface pressure; Pi,c: center
pressure of the layer.

2.3 Emission Quantification
To quantify individual CH4 emissions we use multiple approaches: WRF emis-
sions optimization, Source Pixel method, and direct assessment of emissions.

2.3.1 Optimization of WRF model emissions
In order to improve the emission estimates, we apply an optimization approach.
To do so, we spatially interpolate WRF CH4 concentrations to the TROPOMI
grid and remove the data points where TROPOMI did not have measurements
due to, for example, cloud cover. We define a cost function (J), for the op-
timization scheme, as the difference between observations and the model. In
J , the WRF output of each tracer is scaled separately to understand how each
one contributes independently to the total output. The difference of TROPOMI
(XCH4) and the combination of the WRF tracers is the target of the optimiza-
tion. We define the cost function J as follows:

J =
√

(XCH4 − (α ∗ Boundary + β ∗ Wetlands + γ ∗ EDGAR . . . ))2 (2.8)
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The optimization of the cost function gives the scaling factors (α, β, γ, . . . )
for each emissions tracer category of WRF. Because the tracer transport in the
WRF model is linear, the contribution of each tracer to the concentration scales
linearly with the emissions. Therefore, the factor multiplying a concrete tracer
can be used as the scaling factor of that emission inventory.

2.3.2 Source Pixel method
The Source Pixel method [Jacob et al., 2016, Buchwitz et al., 2017] quanti-
fies emissions using atmospheric XCH4 measurements by comparing XCH4 of
possible sources region with an appropriate background region. To apply the
method, first we define a square box (SR) that includes the enhancement caused
by the individual source that we would like to estimate.

Then, we define a background box (BG) that has the reference value of
XCH4. The location of the BG is ideally upwind, right before the source box
and does not contain any significant emission source. Figure 2.7 illustrates a
selection of SR that contains the source and BG that provides the reference
value.

Figure 2.7: Illustration for selecting the source (red) and background (black)
boxes.

Ideally, one would chose the BG and SR boxes in a location where the wind
direction is uniform to make sure that the air passing from BG box is transferred
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to the SR box without being affected by another source or being dispersed.
However, the choice of the BG box might change for different applications
depending on, for example, the measurement data availability.

According to Source Pixel method, the emission rate (Q) is given by the
equation:

Q = MCH4
Mair

DX U p W

g
(2.9)

where MCH4: molecular mass of CH4; Mair: molecular mass of dry air;
Q: source rate in tonnes per hour; DX: CH4 enhancement in ppb; U : mean
absolute wind speed of the source box in km per hour; W : length of side of
the source square box in km; p: surface pressure; g: gravitational acceleration.

To apply the Source Pixel method to the TROPOMI data, we use the pre-
cision weighted mean XCH4 to compute the mean concentration of the source
and background boxes. As a sensitivity test, we also use the median XCH4 for
the calculation, instead of the mean, but the difference is negligible.

Error Calculation

In the use the Source Pixel method, we need to account for the possible errors.
In the eq. (2.9) errors in the enhancement DX directly induce an error in Q.

Thus, any DX error should be taken into account in the quantification of the
source. The potential error sources of Q are the following:

• Precision error: We quantify the accuracy of the mean XCH4 in the
source and background boxes since the error contrasts its standard devia-
tion from its mean. We use the XCH4 precision error of each TROPOMI
measurement, as explained in section 2.1.3, to compute the mean error
for the source and background boxes XCH4.

• Aerosol and Surface Albedo error: Aerosols present in the atmosphere
and differences in surface albedo are other sources of errors in XCH4 mea-
surement as we explained in section 2.1.1. These properties may shorten
or enlarge the lightpath leading to an underestimation or overestimation
of XCH4 relatively to its real abundance.
To calculate the amplification of CH4 concentration due to the aerosol /
albedo difference between the BG and SR, we use a linear fitting between
the aerosol / albedo and XCH4 which has the form y = ax+b (see fig. 2.8
below). From the obtained equation, we calculate the DX caused by the
mean difference of aerosol / albedo of the two boxes. The error, e is
computed from the equation obtained by linear fitting:

e = a(xSR − xBG) e ∈ {albe, aere} (2.10)
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where e: error due to aerosol/albedo difference between the two boxes;
a: slope of the equation obtained by the linear fitting between XCH4 and
aerosol/albedo; xSR: mean aerosol/albedo of the source box; xBG: mean
aerosol/albedo of the background box.

(a)

(b)

Figure 2.8: Linear Regression analysis between XCH4 and: a) surface albedo,
b) aerosol optical thickness (AOT) for November, 2017.
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We compute the total error on DX, σDX using the following equation:

σDX =
√

(peSR)2 + (peBG)2 + (albe)2 + (aere)2 (2.11)
where σDX : total DX enhancement error in ppb; peSR: mean precision

error of the source box in ppb; peBG: mean precision error of the background
box in ppb; albe: error due to albedo difference between the boxes in ppb; aere:
error due to aerosol difference between the boxes in ppb.

Similarly, we account for how the error in wind speed and direction propa-
gates to the error on Q.

• Wind error: Wind error is taken as 40% of the measurement of wind
speed as suggested in Varon et al. [2018].

Finally, we use the following equation to calculate the total error of the
source rate Q, σQ:

σQ = Q ∗
√

(σDX

DX
)2 + (σU

U
)2 (2.12)

where: σQ: total error in CH4 emission rate in tonnes per hour; Q: mean
CH4 emission rate in tonnes per hour; σDX : total DX enhancement error in ppb,
DX means CH4 enhancement in ppb; σU : mean wind error in km per hour; U :
mean wind speed in km per hour.

Sensitivity of the method to the wind data

Source Pixel method is sensitive to the wind data as the Q depends linearly
on the wind speed as shown in eq. (2.9). For our calculations, we use wind
components at 10 m height included in TROPOMI data, which come from
European Centre for Medium-Range Weather Forecasts (ECMWF).

In order to validate the selected wind data, we use the high resolution wet-
land emissions (see fig. 2.5, (b)) as an input tracer to the WRF model. Then,
we apply the Source Pixel method to the column averaged CH4 output of WRF
model for the same box and tracer using the wind data from ECMWF. To do
so, we use the average of CH4 concentration, regridded to TROPOMI pixels,
for three days, 22, 26 and 27 November, where TROPOMI data over the region
is also adequate.

Figure 2.8 shows the result of quantifying emissions Source Pixel method
on WRF model output. We find that the result of the model, 61 tonnes of CH4
per hour, is significantly lower than the emission rate of high resolution wetland
emissions, 241 tonnes of CH4 per hour. The ratio between both emissions gives
us a scaling factor Swrf , which can be used to bias correct the Q estimates of
the Source Pixel method.

Swrf = Qwrf,input

Qwrf,SP M
= 3.96 (2.13)
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The likely reason of the Source Pixel method underestimates is that the
average boundary layer wind speed is underestimated using 10 meter wind
speeds from ECMWF data. We apply the correction factor Swrf to the ini-
tial TROPOMI Q estimates:

QT ROP OMI,final = QT ROP OMI,initial ∗ Swrf (2.14)

(a)

(b)

Figure 2.8: a) Total column CH4 concentration provided by WRF model after
averaging of 3 days (22, 26 and 27 November). Black square: source box
that includes the wetland area of South Sudan. Blue rectangle: background
box used as a reference value for defining the enhancement of XCH4 (source
box is excluded), b) CH4 emission rates computed by high resolution wetland
emissions directly (blue bar) and applying Source Pixel method for WRF model
data (orange bar).
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2.3.3 Other Wetland Models
Finally, we compare the CH4 emissions estimates with individual sources based
on process-based models of CH4 wetland emissions. We use the following mod-
els:

• LPJ and high resolution wetland emissions as explained in section 2.2.2
[Hodson et al., 2011].

• ORCHIDEE wetland emissions and wetland fraction [Ringeval et al., 2010].

• WetCHARTs version 1.0 (extended ensemble) [Bloom et al., 2017].

We compute the mean CH4 emissions by these models for the TROPOMI
source box to compare with our CH4 emissions estimates.
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3 Results and Discussion

In this chapter, we present the main results of this work. We start in section 3.1
introducing the orbitwise TROPOMI CH4 total column concertation (XCH4)
data and, we compare it with the XCH4 data produced by the WRF model. In
section 3.2, we show the temporally averaged, and spatially regridded, XCH4
data for November and December, 2017. For these months, we quantify the
mean CH4 emissions caused by wetlands. Furthermore, we compare the wet-
land emission estimates with several bottom-up models that provide information
about wetland CH4 emissions and wetland fraction.

3.1 Analysing TROPOMI orbital data

3.1.1 Representation of TROPOMI orbital data
As previously explained, section section 2.2.3 , TROPOMI accomplishes a daily
overpass over the region of South Sudan due to its wide swath of 2600 km.
However, the presence of clouds limits the number of orbits with adequate data.
During the time period between 13 November and 30 December 2017 only 7
orbits of TROPOMI are considered suitable for study: they contain enough valid
data points, 100 pixels per orbit, that are evenly distributed over the region. In
this section, we illustrate our orbitwise XCH4 analysis with a focus on the local
orbit of 26 November 2017, which is an example of good TROPOMI coverage
over the region including South Sudan (between 2◦ and 11.5◦N latitudes and
24◦ and 36◦ E longitudes).

Figure 3.1, left graph, displays the TROPOMI XCH4 on 26 November, 2017
(TROPOMI Orbit number 625). We can observe an enhancement of XCH4
at the center of South Sudan. The right graph shows the XCH4_priori (See
table 2.2) model for the same day. The XCH4_priori provides the initial value
for the TROPOMI XCH4 full-physics retrieval algorithm. It is a global transport
model output that takes into consideration information about the topographic
variation of the region and adjusts the XCH4 value depending on altitude and
pressure differences. As shown in fig. 3.1, the XCH4_priori show significantly
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lower variation than TROPOMI XCH4. Hence, we conclude that the large
TROPOMI enhancement at the center of South Sudan is not caused by surface
altitude variations.

(a)

(b)

Figure 3.1: a) TROPOMI XCH4 measurements and b) XCH4_priori for 26
November, 2017 (TROPOMI orbit number 625).

3.1.2 Comparison with WRF model
The total column mean concentration is the sum of WRF-simulated concentra-
tion of 6 different tracers: boundaries, EDGAR, high resolution wetland emis-
sions, and 3 separate tracers for emissions from oil and gas activity. The indi-
vidual contribution of each tracer is shown in fig. 3.2. In fig. 3.3, we present the
total column mean concentration of CH4 (XCH4) produced by the WRF model
for the same day that TROPOMI provided adequate data, 26 of November
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2017.

(a) (b)

(c)

Figure 3.2: WRF-simulated total column concentrations of different tracers for
26 November, 2017: a) oil and gas tracers, b) anthropogenic sources (EDGAR),
and c) high resolution wetland emissions.

Combining the XCH4 values shown in fig. 3.2 and fig. 3.3, it is clear that the
three plumes present in the CH4 total column concentration are caused by the
pixel sources of gas and oil in the northern part of South Sudan. The TROPOMI
XCH4 (see fig. 3.1) does not follow the same structure both in XCH4 value and
spatial distribution.
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Figure 3.3: Mean total column concentration of CH4 produced by WRF model
for 26 November, 2017, 10:00 UTC-(time that TROPOMI measures over the
region).

As we are not interested in the absolute value of CH4 but rather in its
gradient, which is directly influenced by local surface emissions, we show the
TROPOMI XCH4 and WRF data after subtracting their respective medians (see
fig. 3.4). Moreover, to have a more precise comparison, we exclude from WRF
the points where TROPOMI does not have measurements.

In fig. 3.4, we can observe that the pattern of the CH4 concentration for the
two cases partially agrees. However, in the case of the model it is shifted south
and eastwards. In addition, the gradient of CH4 is highly underestimated by the
model. The WRF model is incapable of matching the CH4 spatial distribution
of the TROPOMI data.
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(a)

(b)

Figure 3.4: a) TROPOMI and b) WRF XCH4 minus their respective medians.
The range of the colorbar is ±2∗standard deviations of XCH4 values in the
respective plots.

3.1.3 Optimizing WRF tracers
In order to improve the emission estimates, we minimize the difference between
the observations from TROPOMI and the WRF model as explained in section
section 2.3.1. Therefore, we define the following cost function J :

J =
√

(XCH4 − (α ∗ Boundary + β ∗ Wetlands + γ ∗ EDGAR . . . ))2 (3.1)

The cost function consists of the difference between the observations and
each tracer multiplied by its own factor. For each tracer, we initially set its value
to 1 which leads to a cost of 43.1 ppb; after minimization the cost reduces to
18.3ppb. In table 3.1, we present the result of the minimization method with the
initial and final values of the cost function. The table also shows the individual
scaling factors needed to achieve the minimum value of the cost function.

Figure 3.5 presents the differences between the TROPOMI and the WRF
XCH4 before and after the minimization process. We can observe that the initial
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Table 3.1: Final scaling factor for each WRF tracer, and values of cost function,
derived from the minimization process.

Scaling Factor
Boundary 1.02
Wetlands 2.02
EDGAR 2.38
Oil and Gas 1 0
Oil and Gas 2 1.09
Oil an Gas 3 0
Cost function Initially: 43.1

Finally: 18.3

agreement is not satisfying because the difference has high values all over the
region (J = 43.1 ppb). After applying the process, the mismatch between WRF
and TROPOMI improves substantially (J = 18.3 ppb). However, the mismatch
in the enhancement located in the center of South Sudan does not improve
after minimization.

(a) (b)

(c)

Figure 3.5: a) TROPOMI orbitwise plot of XCH4 for 26 of November, 2017,
difference between TROPOMI and WRF XCH4 b) before and c) after the min-
imization.

The area where the difference has not improved corresponds to the location
of the enhancement of XCH4 from TROPOMI. This is likely due to lack of the
six WRF tracers to adequately capture the spatial patterns of TROPOMI XCH4.
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Moreover, we quantify how much scaling of each individual tracer is needed,
if they had to explain the TROPOMI XCH4 values. After regridding WRF
to TROPOMI pixels, we calculate the ratio between the average of above 80
percentile XCH4 of TROPOMI and each of the WRF tracers. This process
ignores the spatial distributions and assumes that in each case only one tracer
is responsible for the enhancement. These ratios between TROPOMI and WRF
tracer data is presented in the table 3.2:

Table 3.2: Ratio between the average of above 80 percentile XCH4 of
TROPOMI and each of the WRF tracers.

Tracer Ratio
Wetlands 7.74
EDGAR 4.90
Oil and Gas 1 10.39
Oil and Gas 2 8.62
Oil and Gas 3 9.92

Assuming that wetland emissions are only responsible for the XCH4 en-
hancement seen in TROPOMI data, we have to increase the concentration of
CH4 caused by this tracer approximately 8 times. The linear relation between
concentration and emissions in the model implies that the wetland emissions
would also be 8 times bigger.

3.1.4 Sensitivity test of WRF
To test whether different microphysics options influence the WRF-simulated
XCH4, we do an ensemble of different physical parameterizations of the model
before its execution. We modify the microphysics physical parameter which
specifies the physical processes that governs the atmospheric heat and moisture
tendencies of the model. In order to perform the test, we execute the model
eight times, one for each microphysics option and we compute the difference
between the maximum and minimum values for each pixel in the map among
all different options.

Figure 3.6 illustrates the concentration of CH4 produced by taking only into
account the combination of the three oil and gas sources that represent gas and
oil activity. In the top panel, we selected the default microphysics option. In the
bottom panel, we show the difference between the maximum and the minimum
concentration of CH4 generated with the different microphysics runs for each
tracer of oil and gas activity.

We observe in fig. 3.6 that different microphysics options induce a slight
change of the CH4 gradient. The range of these changes is not enough to
explain why the concentration of CH4 computed by WRF does not match the
spatial patterns of XCH4 measured by TROPOMI. In addition, the direction of
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(a)

(b) (c)

Figure 3.6: a) CH4 mean column concentration produced by WRF model with
oil gas tracers, and b, c) difference between the maximum and the minimum
concentration of CH4 generated with the different microphysics runs for two
tracers of oil and gas activity.

the plume is consistent across the microphysics options. We can conclude that
the use of an inadequate microphysics options is not the cause of mismatch
between the spatial distributions of CH4.

3.2 TROPOMI monthly averages

3.2.1 Representation of TROPOMI monthly data
In fig. 3.7, we show TROPOMI data regridded to a regular grid of 0.1 de-
gree spatial resolution for November 2017. We can observe that the pattern of
XCH4_priori (see fig. 3.7, b) does not show a significant variation over South
Sudan, thus the measurements of XCH4 are not affected by surface altitude
errors (for more information section 2.1.2 and table 2.2). The monthly mean
XCH4, as explained in section 2.1.3, is weighted with the precision value indi-
vidual pixel measurements. The precision error of the regridded data is shown in
fig. 3.7 (d). In fig. 3.8, we present the monthly regridded graphs for December,
2017.
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(b)

(c)
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(d)

Figure 3.7: a) Averaged TROPOMI XCH4, b) priori XCH4 and c) precision
error regridded to 0.1 degrees spatial resolution, and d) number of TROPOMI
pixels contributing to the monthly mean computation for each regular grid cell
for November.

(a)

(b)
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(c)

(d)

Figure 3.8: Similar to fig. 3.7 but for December.

Comparing the monthly averaged XCH4 of November and December, we
observe that the XCH4 for November shows a higher enhancement over South
Sudan. In addition to the concentration of XCH4, the XCH4 enhancement in
the center of the country is larger for November. Whereas for December, the
enhancement is more spread through the country. Furthermore, the enhance-
ment in both months co-locates with the wetland area of South Sudan (see
fig. 2.5 (b)).

Figure 3.9 shows the monthly values of wetland emissions and wetland frac-
tion provided by the LPJ dataset for the year 2014. We can see that both
wetland emissions and wetland fraction follow a similar seasonal pattern. How-
ever, the seasonal variation of emissions is larger than that of wetland fraction.
Moreover, we observe that the wetland emissions decreases by nearly half from
November to December.
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Figure 3.9: Monthly mean wetland emissions (red bar, left x-axis) and wetland
fraction (blue bar, right x-axis) for the year 2014 given by LPJ model for the
target region

Combining the results from fig. 3.7(a), fig. 3.8(a) and fig. 3.9, we conclude
that the seasonal variation of the XCH4 enhancement in observations, agrees
with the seasonal pattern suggested by the LPJ model. In contrast, it is unlikely
for the anthropogenic emissions to have such a seasonal variation. Therefore,
we assume that the wetland emissions are the dominant cause of the XCH4
enhancement measured by TROPOMI over the region of South Sudan.

3.2.2 Emission Quantification from TROPOMI monthly averages
To quantify the CH4 emission rate of wetlands that are responsible for the
observed enhancement of XCH4 in the South Sudan region, we apply the so
called Source Pixel method (section 2.3.2). The advantage of this method is
that we are not dependent on a transport model output, which can be error
prone. Assuming that the enhancement is caused by the wetlands, as inferred
in the previous section, we select the source box directly over the region that
includes the main wetlands in South Sudan according to the high resolution
wetland emissions map (see fig. 2.5).

The estimation of emissions using the Source Pixel method is sensitive to the
placement of the background box. In this work, we observed that the shape and
location of the background box impacts the calculated CH4 enhancement, see
eq. (2.9). Therefore, for the background box, we select a larger box enclosing
the source box. The background region does not include the pixels in the source
box since it represents a reference value that is not affected by sources of CH4
in the source box [Buchwitz et al., 2017], fig. 3.10.
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Figure 3.10: High resolution wetland emissions for November. Black square is:
source box for quantifying wetland emissions using the Source Pixel method;
Blue rectangle is: background box.

Figure 3.11 presents the monthly mean XCH4 for November and December,
2017 in, left and right panels, respectively. The source box and the background
box are same as in fig. 3.10. We observe that, consistent with the data obtained
from the LPJ model (see fig. 3.9), the CH4 source rate is higher for November
than December, 268 tonnes per hour and 143 tonnes per hour, respectively.
Also noticeable in the figure is that, the highest CH4 concentrations are included
within the source box for both months, consistent with our hypothesis that the
dominant source of XCH4 enhancement is Wetlands. We do observe high XCH4
values west of the source box, especially for the month of November, which can
be due to CH4 transported by wind.

(a)
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(b)

Figure 3.11: Monthly mean XCH4 for: a) November and b) December. Black
square: source box that includes the wetland area of South Sudan (See fig. 3.10).
Blue rectangle: background box used as a reference value for defining the en-
hancement of XCH4 (the source box region is excluded from the background
box).

In the table 3.3 we show the parameter used for the source quantification
and the respective errors: the mean absolute wind speed of the source box U;
the length of side of the source square box W, and the enhancement of XCH4,
DX. Other parameters shown are the aerosol optical thickness (AOT) and the
surface albedo for the source and the background box.

Table 3.3: Emissions quantification using Source pixel method for November
and December, 2017.

November December
Q [t/h] 268.37 ± 113.20 143.38 ± 88.74
U [km/h] 9.60 ± 3.84 8.82 ± 3.53
W [km] 441.54 441.54
∆X [ppb] 11.67 ± 1.59 6.80 ± 3.22
AOT 0.043 0.043 0.050 0.050
Albedo 0.07 0.08 0.09 0.12

As displayed in table 3.3, the magnitude of the wind speed is the same for
both months. The ventilated side of the source box is the same as well, since
the box remains the same. The main factor responsible for the reduction of the
emission rate, Q, from November to December, is the enhancement, DX, which
reduces significantly. Such decrement is consistent with the seasonal pattern
suggested by the LPJ model (see fig. 3.9).

As explained in section 2.3.2, it is likely that using 10 meter wind speeds
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from ECMWF data in the Source Pixel method, the average boundary layer wind
speed is underestimated. The correction factor Swrf applied to the TROPOMI
Q estimates is given by the eq. (2.13):

QT ROP OMI final = QT ROP OMI initial ∗ Swrf (3.2)

The CH4 emissions that we obtain after the applying the correction are
presented in fig. 3.12.

Figure 3.12: TROPOMI CH4 emission rates after applying the correction factor
Swrf .

3.2.3 Comparison with process Models
Figure 3.13 shows the total CH4 emissions from several process models (see
section 2.3.3) for the source box and emission rates computed using TROPOMI
data for 2017 (section 2.1.3). The first two groups of bars are for the months
of November and December of 2010; the last two bars correspond to the same
months but of the most recent year for which the databases are available (for
LPJ, wet_chart_extented and high resolution it is 2014, while for Orchidee it is
2012). For wet_chart_extented, we used the mean of ensemble runs provided
in the dataset and the maximum emissions.
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Figure 3.13: Total CH4 emissions from wetland process models and computed
TROPOMI emission rates for November and December 2017.

From fig. 3.13, we observe that all the model inventories highly underesti-
mate the CH4 emissions produced by wetlands in comparison to the TROPOMI
estimates. The high resolution model, explained in section 2.2.2 is the one that
results in higher values of CH4 concentrations although it still greatly differs
from the observation.

Figure 3.14 presents the mean wetland fraction of the source box as provided
by LPJ, Orchidee and the high resolution wetlands dataset. In this case, the first
bar groups also show the mean wetland fraction for November and December
of 2010, while the second bar group corresponds to the year 2014 for LPJ and
high resolution wetland dataset , and to 2012 for the Orchidee model. We find
that the wetland fraction is greatly underestimated in all the process models in
comparison to the high resolution dataset’s wetland fractions. This might be due
to the fact that the HR model is at a finer resolution of 231 m and hence resolves
the wetlands fractions better than the coarse resolution (0.1 × 0.1 degrees or
∼ 50 × 50 km2) wetlands models.
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Figure 3.14: Mean wetland fraction from wetland process models.
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4 Conclusions

The primary objective of this study was to estimate CH4 emissions in the region
of South Sudan, which allowed us to understand the unexpectedly high con-
centration of CH4 measured by TROPOMI. In order to do so, we used multiple
emission quantification methods. First, we compared the CH4 mixing ratios
retrieved by TROPOMI and those computed from the atmospheric transport
model WRF; Second, we used the model-independent Source Pixel method. Fi-
nally, we compared the CH4 emissions from multiple process-based models with
the emissions calculated from TROPOMI data.

The WRF model shows difficulties following the spatial distribution of XCH4
enhancements of TROPOMI. By comparing the WRF simulated CH4 concen-
tration with the orbital TROPOMI XCH4, we found that the gradient of XCH4
is underestimated by the model. The main reason is that the emissions taken
as an input to the model are too low. By minimizing the difference between the
observations (TROPOMI) and the model (WRF), we found that for a better
agreement, the WRF emissions needed to be scaled up by a factor of approxi-
mately 8 for the anthropogenic and wetland emissions.

In order to study in further detail, we calculated monthly averaged TROPOMI
XCH4 data for November and December 2017, as the monthly averages of XCH4
are more robust against CH4 variation caused by short term meteorological con-
ditions. We observed that the TROPOMI XCH4 enhancement for these months
follows the pattern of high resolution wetland map. In addition, the enhance-
ment follows the seasonality pattern suggested by the CH4 emissions from the
LPJ wetlands model. Therefore, we conclude that it is likely that the main
source of CH4 in South Sudan is wetlands since anthropogenic activities cannot
explain the observed spatiotemporal patterns.

Within the scope of this work, we confirmed that TROPOMI allows us to
detect and localize sources of CH4 with high accuracy and precision. By applying
the Source Pixel method for the months of November and December 2017, we
were able to quantify emissions of CH4 in the region of interest. We obtained
an emission rate of 1057. ± 447 tonnes of CH4 per hour for November and
566 ± 348 tonnes CH4 per hour for December.
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We used the result of TROPOMI source rate estimation to validate existing
CH4 emissions of wetland models. These inventories follow the trend suggested
by TROPOMI measurements; however, they highly underestimate the actual
values of the wetland emissions in South Sudan. Comparing the high resolution
wetland fraction dataset and the wetland fraction used in the models, we found
that the latter is also highly underestimated. Because there is a strong correla-
tion between wetland emissions and wetland fraction (correlation coefficient =
0.83), as shown by the LPJ model, it is likely that the cause of underestimation
of wetland emissions in the models is the underestimation of wetland fraction.

4.1 Future work
Since TROPOMI has been recently launched on 13 October, 2017, the available
data is only for a short time period. An interesting prospect would be to apply
the emissions estimation methods used in this study on data from a longer
time period to investigate on greater detail the CH4 wetland emissions seasonal
pattern over the region of South Sudan.

As explained in this study, the Source Pixel method is very sensitive to the se-
lection of wind data. Therefore, a next step could be to validate the wind model
data with local wind measurements in the region to select the most accurate
model in order to reduce the error induced by wind in the source quantifica-
tion. In addition, other methods for estimating CH4 emissions can be applied
when the situation allows: Gaussian Plume inversion [Fioletov et al., 2015] or
Cross-sectional Flux method [Krings et al., 2011, 2013] when the location of
the source is known; Integrated Mass Enhancement (IME) [Frankenberg et al.,
2016] when the exact position of the source is not known.

By estimating the CH4 emissions using TROPOMI data, we could validate
the process-based wetland model. Using this information, one could improve the
input dataset to the WRF model and improve the WRF simulations. In this work,
we ran the model with different microphysics options although as discussed this
did not explain the mismatch between TROPOMI and WRF XCH4. Another
way to test the accuracy of the WRF model is to try various other combinations
of physical parameters such as the planetary boundary layer schemes.
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