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Abstract 

Parkinson’s disease (PD) is one of the most common neurological diseases in adults over the 

age of 65. Current monitoring of disease stage and progression consists of physician visits, 

which is inefficient and unreliable since symptom severity varies throughout the day. A more 

practical solution could include monitoring behavior throughout the day. Previous work has 

found that typing behavior is an accurate way to differentiate people with PD from those 

without PD. This finding leads to the idea that it may also be useful to use keyboard 

characteristics to detect PD severity. The current study examined whether this was possible. 

Additionally, it compared three different machine learning methods: logistic regression, k-

nearest neighbors, and random forests. Finally, it examined how accuracy of the classification 

of PD severity differed when including increasing amounts of keystrokes (1000, 2000, and 

5000 keystrokes). It was found that the random forests classifier could predict PD stage 

moderately well in the 5000-keystroke dataset. However, there was no further difference in 

model type or clear pattern to show that models become more accurate with increased 

amounts of keystrokes. This study is a first step in examining how computer behaviors might 

be able to be used for predicting and potentially monitoring PD patients’ disease stage. 

 

Key words: Machine Learning, Parkinson’s Disease, Typing Behavior, Computer-Human 

Interaction 
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1. Introduction 

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects roughly two percent of 

individuals globally over the age of 65, making it one of the most common neurodegenerative 

diseases in the elderly (Parkinson’s Australia). The main course of the disease is associated 

with low levels of dopamine in the brain, resulting in loss of motor function; disease onset and 

progression results in symptoms such as tremors, rigidity, postural instability, memory 

disturbances, and executive dysfunction. Although there is no cure at this time, current 

treatment focuses on alleviating symptoms with pharmaceuticals that increase the amount of 

dopamine in the brain. In its early stages, PD may have a mild impact on function, where 

symptoms cause a modest impact on function (Goetz et al., 2008). Later, PD impact may be 

moderate; in this stage, symptoms are frequent and/or intense enough to impact motor 

function considerably, but not prevent it. Finally, when PD gets into severe stages, symptoms 

usually prevent motor function. 

PD severity is often assessed with the use of the Unified Parkinson’s Disease Rating 

Scale (UPDRS; Appendix A), which provides insight into motor evaluations of the patient 

and is scored by a clinician. This scale ranges from zero, which corresponds to a healthy state, 

to 176, which corresponds to severe affliction (Movement Disorder Society Task Force, 

2003). The use of this evaluation is time-consuming and needs to be carried out by trained 

medical personnel. Monitoring and treatment costs can be incredibly expensive, with those 

who have moderate to severe cases costing roughly five times as much as those with mild 

cases (Bohingamu Mudiyanselage et al., 2017). Besides use of the UPDRS, other methods of 

monitoring motor fluctuations in patients include asking the patient to recall the number of 

hours of “ON” and “OFF” time. “ON” time refers to periods when medications are effective 

in relieving symptoms while “OFF” time refers to periods when symptoms are present. 

However, this method of monitoring patients is open to skewed perceptions of “ON” vs 
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“OFF” times since use of some antiparkinsonian medications (e.g., Levodopa) are shown to 

improve memory function during “ON” periods (Costa, Peppe, Brusa, & Caltagirone, 2008). 

This variation in memory function may distort a patient’s recollection of these periods, 

implying that patients are potentially less able to give objective and realistic overviews during 

an appointment. 

1.1. Problems with Current Monitoring of Disease Progression in PD 

PD is one of the costliest neurological diseases, coming in at roughly $14.4 billion in 

the United States and €13.9 billion in Europe annually (Gustavsson et al., 2011; Olesen et al., 

2012; Kowal et al., 2013), and is expected to increase in the proportion of affected individuals 

due to increasing life expectancies (Dorsey et al., 2007). Currently, a significant portion of 

annual costs for PD goes to unexpected hospitalizations and outpatient care (Andlin-Sobocki, 

Jonsson, Wittchen, & Olesen, 2005; von Campenhausen et al., 2011). Patients with PD 

schedule appointments with their neurologists on average every two to six months (von 

Campenhausen, 2011); however, there have been instances of 100% of patients going 

untreated for long periods of time in rural areas (Willis et al., 2011). Even in urban areas, 

patients can go untreated roughly 40 – 50% of the time due to inadequate access to 

specialized care (Willis et al., 2011). Currently, patients might just be asked to check in with 

their neurologists to have them examine how they are doing and if they are managing their 

symptoms as expected. These appointments, however, do not have a high level of efficacy in 

monitoring patients due to appointment times being too short to capture the variation in 

symptom presentation during the day (Patel et al., 2017). 

Ineffective monitoring of symptom progression and presentation can be extremely 

detrimental for patients, as they depend upon treatment for their prolonged independence. For 

example, if a patient has lapsed into a state where they may need extra care in the home or a 

different medication plan since they have worsened symptoms, this may go unnoticed if they 
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are having an “ON” moment. Early detection of disease progression and treatment adjustment 

could lead to early intervention and treatment, resulting in an increase in the amount of time 

patients live independently to an average of 15 years as compared to 8 years with poor or late 

treatment (Men, 2013). This calls attention to an unmet need for clinical specialists and 

patients with PD: an inexpensive method of remote monitoring. It is possible that with 

improved remote patient monitoring, appointment necessity will be reduced, therefore 

reducing frequency of scheduled visits or resulting in more e-consultations. Additionally, 

improved remote monitoring systems could help reach hard-to-reach patient populations such 

as in rural areas. These remote monitoring systems can be incorporated into future e-Health 

solutions, which would ultimately help in relieving many outpatient costs (e.g., early 

recognition of advancing disease stage/symptoms or reduction of the number of annual 

physician appointments). 

Machine learning offers the possibility of doing exactly this using different kinds of 

data. The reason why machine learning might outperform other methods of monitoring 

include its ability to discover hidden relationships in data, its resistance to data errors, its 

ability to provide interactive feedback/monitoring summaries to patients and physicians, and 

its ability to scale to a very large number of patients (Brunato, Battiti, Pruitt, & Sartori, 2013). 

Below we will discuss a few existing studies using machine learning for remote monitoring 

and explain why the current study might be a particularly practical solution for remote 

monitoring. 

1.2. Existing Remote Monitoring Possibilities 

1.2.1. Voice Recognition 

PD affects the speech of afflicted individuals since it involves complex motor 

coordination. For example, PD symptoms that are present in speech include reduced loudness, 
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increased vocal tremors, and breathiness. Dysphonia (inability to produce normal vocal 

sounds) and dysarthria (difficulty in pronouncing words) both relate to PD and have been 

used in speech recordings to distinguish people with PD from healthy controls (Little et al., 

2011). The fact that voice characteristics can be used to make this accurate classification led 

to the assumption that it could also be used to classify the severity of PD in individuals. 

However, in a study by Bayestehtashk and colleagues (2015), tasks eliciting speech for PD 

severity assessment resulted in only moderately accurate PD severity discrimination; 

therefore, although this may have practical application in combination with other measures in 

the future, it is currently not reliable as a sole measure for disease severity. 

1.2.2. Wearable Sensors and smartphones 

In the last decade, wearable sensors have emerged as tools to continuously obtain 

information from PD patients in day-to-day life. Wearable sensors can be worn for extended 

periods on parts of the body. These kinds of sensors include accelerometers, gyroscopes, and 

vibration sensors and can be installed in devices such as fall detectors and mobility monitors. 

These kinds of wearable sensors have a lot of potential for accurately monitoring patients 

since they can continuously monitor a patient’s symptoms within their homes throughout the 

day; however, they come with a number of drawbacks. First, since PD is more common in the 

elderly, this is not a very practical method for people who are unfamiliar or uncomfortable 

with technology; this has been documented as a difficulty and reason for not wanting to use 

them by this population (Kubota, Chen, & Little, 2016; de Lima et al., 2016). Second, patients 

can feel anxious or uncomfortable wearing these devices due to the appearance or fit of bulky 

sensors (Cancela et al., 2014), and there is a need for the development of unobtrusive 

monitoring systems for inside and outside of the home (Espay et al., 2016). In addition to this, 

wearable sensors can confuse some tasks like mowing the lawn with symptoms such as 

tremors and does not accurately assess gait in patients who live in cluttered environments 
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(Kubota et al., 2016); they may also not be able to distinguish slowness of movement due to 

bradykinesia versus fatigue or other factors (Espay et al., 2016). Finally, these kinds of 

wearable sensors and accompanying software are often very expensive, costing over $3000 

excluding software (Zhang et al., 2016). This can easily become a major hurdle to people, 

especially to those who’s insurance will not help cover costs. 

Many of these issues can be solved with the use of quasi-wearables, which can be used 

to monitor patients without other wearable devices, such as smartphones. Smartphones are not 

uncomfortable or intrusive; furthermore, they are relatively inexpensive when compared to 

larger wearable sensors. Smartphones can be used to install monitoring programs such as 

HopkinsPD (Zhan et al., 2016) and Apple ResearchKit (Neto et al., 2016). These kinds of 

applications often require patients to complete multiple rounds of active tests each day to 

monitor symptoms. This is done by administering several short tests such as ones to measure 

gait, posture, voice, balance, dexterity, reaction time, tapping, and memory. Currently, 

however, these smart phone applications have only been used to detect medication responses 

in patients with PD. Additionally, there are still drawbacks to using smartphones for PD 

monitoring purposes. First, requiring multiple tests to be taken each day by people who may 

have memory disturbances is not practical or reliable and would likely result in inconsistent 

usage. Relatedly, there is a high dropout rate from quasi-wearable applications, resulting in 

inconsistent or rare usage (Ledger D, McCaffrey D, 2014), likely due to the lack of 

meaningful feedback given by these applications (Espay et al., 2016). Both of these facts 

indicate that the use of a smartphone application would not be ideal for monitoring programs. 

An additional concern surrounding these systems is that invasions of privacy often 

accompany quasi-wearable sensors. With GPS being monitored, patient’s physical locations 

and homes can be located; this requires secure anonymization precautions in order to protect 

the privacy of patients.  
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1.3. Leads for New Programs 

Although existing approaches might not be practical to implement, recent studies 

revealed a promising behavior that might be able to be used to predict PD severity—typing. 

Using typing behavior is more practical and low-cost than other proposed solutions since it is 

a common behavior that people engage in; in older individuals (over the age of 50), it was 

found in a survey that most people use computers, especially for word processing and 

emailing (Goodman, Syme, & Eisma, 2003). Through the use of keyboard recordings, 

individuals would not have to remember to take tests multiple times during the day or learn 

how to use a new technology, as typing on a keyboard is already familiar to most people. 

Keyboard recording software would be able to record the typing characteristics, and machine 

learning could be used to determine the severity of PD based on these characteristics.  

Typing behavior can be highly individual and can be used to identify users (Das, 

Mukhopadhyay & Bhattacharya, 2014; Bartmann, Bakdi, & Achatz, 2007; Giot & 

Rosenberger, 2012; Kang, Choi, Kim, Ma, & Lee, 2015; Teh, Teoh, Tee & Ong, 2011). There 

are multiple factors that are affected by PD that would, in turn, affect typing behavior. For 

example, rest tremor is a highly recognized and common symptom of PD (Jankovic, 2008). 

Bradykinesia, or a slowness of voluntary movement, is another common symptom of PD that 

could likely affect typing behavior. Additionally, there is the unilaterality that is associated 

with PD, especially at its earlier stages (Jankovic, 2008). Finally, the rigidity that is seen in 

PD is common in the wrists (Jankovic, 2008), and could affect typing behavior. These 

symptoms could all be manifested in more or less of the following typing characteristics 

(depending on severity): reaction speed, hold times, latency times, asymmetry of responses 

between left and right hands, hesitations and pauses, and overall variability of movement. 

Recently, Adams (2017) used these features in a machine learning approach to distinguish 
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individuals with early-stage PD to those who were neurotypical; in this study, he achieved 

100% accuracy when using individuals with at least 2000 keystrokes.   

Using these same features, it can be reasoned that this approach could also provide 

some insight into the severity stage of PD. For example, the unilaterality would likely 

decrease as PD progresses (Hoehn & Yahr, 1967), and the other symptoms (e.g., 

bradykinesia) could likely get worse, affecting aspects of typing behavior more. The current 

study will examine if characteristics of typing behavior can be used to predict the severity of 

PD in individuals. 

Although Adams (2017) included all individuals who had typed more than 2000 

keystrokes, it would be useful to know how many keystrokes can provide adequate accuracy 

into the severity of an individual’s PD. By understanding how many keystrokes are necessary 

to reveal information about PD stage, we can create a threshold of keystrokes necessary for 

accurate machine learning models. Therefore, the current study will also be comparing the 

accuracies given for machine learning in datasets comprised of differing keystroke counts. 

This is important to investigate if this is to be used for diagnostic purposes, since it would be 

vital to know how many keystrokes are needed to give an accurate prediction of PD stage. 

Therefore, we will compare a dataset comprised of 1000 keystrokes, 2000 keystrokes, and 

5000 keystrokes to determine how many keystrokes may be necessary to accurately predict 

PD stage. 

Finally, the current study will investigate which kind of machine learning algorithm 

fits best with this kind of data. We will compare three different commonly used algorithms 

also used in the Adams (2017) study since all models used in his study resulted in accurate 

classification: multinomial ordinal logistic regression (LR), k-nearest neighbors (kNN), and 

random forests (RF). Since these are common algorithms, they would be easy to implement 

into any monitoring systems without deep understanding and heavy customization of models. 
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1.4. Research Questions 

The three exploratory research questions posed in this study are the following: 1) can 

typing behavior predict PD severity, 2) which machine learning method best predicts severity, 

and 3) does accuracy of severity classification significantly increase with more keystrokes? 

 

2. Materials and Methods 

2.1. Participants 

 The study by Adams (2017) was approved by the Human Research Ethics Committee 

(in agreement with National Health and Medical Research Council guidelines; Australian 

Research Council) at Charles Sturt University (protocol number H17013). Participants were 

50 to 80 years of age with a median birth year of 1948 and a median diagnosis year for those 

with PD of 2014. Participants were recruited with the help of Google Ads and the Michael J 

Fox Foundation “Trial Finder” facility. Participants could visit the research website to apply 

to partake in the research project, and inclusion criteria for participants were that they had to 

own and regularly use (at least a few minutes each day) a Windows computer and be at least 

50 years old. Exclusion criteria were if they were diagnosed with any other neurological 

disorders.  

2.2. Methods 

Keyboard recordings were collected between July 2016 and March 2017 after 

participants downloaded and installed Tappy, a custom keylogging application, on their home 

computers. Participants were simply asked to continue using the computer as they normally 

would. Tappy ran in the background so that participants did not notice it running, and it 

recorded timestamps (with a timing accuracy within 3 milliseconds) when letter keys were 
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pressed with specifications about whether the key was on the right (R) or left (L) side of the 

keyboard or if the space bar (S) was pressed. Participants were asked to ensure that they were 

the only user of the Window’s account on which Tappy was installed. PD information was 

collected from participants by means of a questionnaire, which was distributed after the 

installation of Tappy. 

Individual keystroke timings were saved and added to a CSV file on the participant’s 

computer, which was automatically uploaded to the lab’s database server once a day. In order 

to protect participants’ privacy their personal information (e.g., names) was replaced by a 

randomized 10-digit code. In order to ensure what information was sent to the database 

server, participants were able to access their own data at any time. 

2.3. Preparation for Data Analysis 

2.3.1. Classification methods and metrics 

  We compared three different supervised machine learning algorithms (LR, kNN, and 

RF) which were also used in Adams’s (2017) study in order to determine which algorithm 

works best to classify PD stages. All models were designed to maximize Cohen’s Kappa, 

which is a performance metric that compensates for random hits and is particularly good for 

multi-class problems and imbalanced datasets (Ben-David, 2008a; Ben David, 2008b). The 

different machine learning algorithms are briefly described below: 

LR: LR is a supervised method that can be used for multi-class classification. We used 

ordinal LR with LASSO penalty in order to further reduce the effect of 

multicollinearity since LR is particularly sensitive to correlated features (Hosmer & 

Lemeshow, 1989; Ryan, 1997). Ordinal LR models can be used when the response 

variable belongs to one of multiple ordered categories. 
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kNN: This algorithm classifies unlabeled data based on their similarities with 

examples in the training set. The only adjustable parameter in this form of 

classification is k, the number of nearest neighbors to include in the estimate of class 

membership. It finds the k closest features in the training set and assigns to the class 

that appears most frequently within the k-subset. By varying k, the model can be made 

more or less flexible. 

RF: RF is a classifier that consists of a combination of tree classifiers where each tree 

depends on the values generated using a random vector sampled independently from 

the input vector, and each tree casts a unit vote for the most popular class to classify an 

input vector (Breiman, 1999). All trees have the same distributions (Breinman, 2001). 

RF models are relatively robust to outliers and noise in the data; therefore, they tend to 

do well in high-dimensional data (Breinman, 2001). 

 There are many different kinds of metrics that can be used to evaluate the performance 

of a model. The current study uses 2 different families of metrics—threshold and rank. 

Threshold metrics are used to minimize the number of errors a model makes, making them 

popular in different applications of classifiers. Additionally, we make use of rank metrics, 

which are important for cases in which good class separation is crucial. Several studies have 

shown that performance metrics often do not agree on a best model (Huang Lu, & Ling, 2003; 

Szöllősi et al., 2012; Duan et al., 2014). This is especially the case when working with 

imbalanced datasets and multiclass problems (Ferri Hernández-Orallo, & Modroiu., 2009); in 

these cases, more than balanced and binary cases, the different performance metrics tell us 

different things. In this study, we utilized three performance metrics in order to simplify the 

comparison/generalization to other studies; the results of the classifications were evaluated on 

the criteria of Accuracy, Cohen’s Kappa, and Area Under the Receiver Operating 

Characteristic Curve (AUC). Each one is briefly described below. 
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Accuracy is a widely used threshold-based metric to determine class discrimination 

ability of classifiers. It is calculated from the confusion matrix by comparing the 

correctly classified cases to all cases. The biggest advantage is its simplicity; however, 

Accuracy as a metric can be misleading in imbalanced cases. For example, a 

classification method could have classified all cases into the majority class, in these 

cases, we know that the algorithm did not learn as we expected, but the Accuracy 

alone would not be able to provide insight into its poor performance. Additionally, 

Accuracy does not take the impact of chance into account (Powers, 2012). For these 

reasons, Cohen’s Kappa and AUC might provide more insight. Although Accuracy 

may not be the best metric for the current study, it is used in order to generalize better 

to other studies since Accuracy is the most widely-used performance metric for 

machine learning (Szöllősi et al., 2012). 

Cohen’s Kappa is another threshold-based metric that takes into account the random 

correct classification and gives a “chance corrected coefficient of agreement” (Reed, 

2000). Essentially, Kappa gives an approximation of how much better our classifier is 

performing over the performance of a classifier that guesses at random according to 

the frequency of each class. It is calculated as the difference between correct 

observations and expected outcomes, divided by the complement of expected 

outcomes. Cohen’s Kappa ranges from -1 to 1. According to Landis and Koch (1977), 

less than 0 indicates no alignment, 0 – 0.20 is slight alignment, 0.21 – 0.40 is fair 

alignment, 0.41 – 0.60 is moderate alignment, 0.61 – 0.80 is substantial alignment, and 

0.81 – 1 represents almost perfect alignment. Cohen’s Kappa is commonly used as a 

measure of classifiers in medicine and statistics (Kaymak, Ben-David, & Potharst, 

2012). Therefore, it is useful in this study since it is likely to be used in other related 

studies, which in turn makes it simple to compare to other studies. This, in 
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combination with its preference over Accuracy in cases with imbalanced data makes it 

a good option as a performance metric.  

AUC is a rank-based metric that gives an overall evaluation about classification 

abilities of the models. It is independent of prevalence and is considered highly 

effective for scoring the performance of models with ordinal data (Allouche, Tsoar, & 

Kadmon, 2006). However, it can give misleading information if the ROC curves are 

crossing (Hand, 2009). It also uses different misclassification cost distributions for 

different classifiers (Hand, 2009). To calculate the AUC, the true positive rate 

(sensitivity) is plotted against the false positive rate (1.0 – specificity) as the threshold 

varies from 0 to 1, where 1 relates to no error, and .5 relates to random models. A 

good model will achieve a high true positive rate while the false positive rate is still 

relatively small. Since the current study deals with multiclass classification, AUC in 

this study will be calculated as outlined by Hand and Till (2001) when there are more 

than two classes included for classification; this computes the average of multiple 

ROC curves. There has been some controversy about the use of AUC in multiclass 

situations since this method of calculating AUC assesses the average ability of 

separating any pair of classes. Although a high AUC calculated this way means that a 

classifier is good at separating most pairs, it is still possible that some classes are 

harder to distinguish. However, it is used in the current study since it measures 

accuracy in a genuinely different way than any other performance metrics (Ferri, 

Hernández-Orallo., & Modroiu, 2009). Additionally, it is highly recommended in 

situations with imbalanced data (Ertekin, Huang, Bottou, & Giles, 2007). Despite 

these benefits of using AUC, it has been known to mask poor performance as well 

(Jeni, Cohn, & De La Torre, 2013). Therefore, we wanted to use this metric in 

combination with other commonly used metrics. 
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2.3.2. Features 

Participants’ typing information was used to create aggregated features for hold time, 

latency time, and flight time to be used in the models. Hold time is defined as the time 

between the press and release of a key. Latency time is the time between a key press of one 

key to the key press of the next key. Finally, flight time refers to the time between releasing a 

key and pressing the next key. Several features were derived from each of these keystroke 

characteristics using the side of the keyboard as well as the direction from which the previous 

keystroke came. This meant that a R, L, S, R-R, R-L, R-S, L-R, L-L, L-S, S-S, S-R, and S-L 

version of each characteristic was created (e.g., L_Hold_Time, and S-R_Flight_Time). For 

each of these, a mean, skew, kurtosis, and standard deviation was created for each participant. 

For hold times, an additional difference score was created between R and L means for a 

measure of asymmetry. Similarly, for latency time and flight time, difference scores were 

created between R-R and L-L means, and R-L and L-R means to create measures of 

asymmetry. 

Additionally, although all combinations of keystroke tuples were originally included, 

it was found that there were very few cases of participants using the space bar twice in a row; 

therefore, all features using S-S were dropped, leaving 138 features. However, this still meant 

that there were many features in comparison to the number of participants in each dataset 

(Table 1). Additionally, when examining a correlation matrix of these features, the data 

presented that many were highly correlated with each other.  Since many machine learning 

algorithms are sensitive to high-dimensional data, redundant features, or multicollinearity 

(Kotsiantis, Zaharakis, & Pintelas, 2007), it was decided that feature selection would have to 

be used in order to reduce the amount of features. 
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Table 1 

Descriptive Statistics of Participants 

Characteristic  With Levodopa  Without Levodopa 

 
Number of 

Keystrokes 
1000 2000 5000  1000 2000 5000 

Gender 
Male 68 54 38  42 32 24 

Female 76 68 51  34 31 25 

Severity 
Control 35 29 20  35 29 20 

Mild 48 41 33  26 22 20 

Moderate 48 42 27  13 10 7 

Severe 13 10 9  2 2 2 

Tremors 
Yes 69 59 44  24 19 16 

No 75 63 45  52 44 33 

Sidedness 
Left 33 32 25  13 13 12 

Right 40 34 28  18 15 13 

None  71 56 36  45 35 24 

 

 

In order to address this, prior to training models, a Genetic Algorithm (GA) was used 

to reduce the number of features to only salient features. The GA was developed based on 

evolutionary principles of natural selection (Goldberg, 1988), and is often used for feature 

reduction (Siedlecki & Sklansky, 1993; Roth & Levine, 1994; Yang & Honavar, 1998; Sun, 

Bebis, Yuan, & Louis, 2002; Zamalloa et al., 2008). In a comparison between Correlation, 

Recursive Feature Elimination, and GA as feature selection techniques on three separate high-

dimensional datasets, GA was the most effective feature selection technique (Glander, 2017). 

Additionally, in a study by Zamalloa and colleagues (2008), GA performed better than 

Principal Component Analysis (PCA) on untransformed data; for these aforementioned 
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reasons, the current study utilized a GA in place of PCA, which was the preferred feature 

selection method in Adams’s (2017) study.  

 2.3.3. Pre-Processing 

Data frames were made consisting of participants and their aggregated keystroke 

information. Some machine learning methods such as kNN cannot perform with missing 

values (Kotsiantis, Zaharakis, & Pintelas, 2007); in order to resolve conflicts resulting from 

missing values, all missing values were fit with mean imputation. Furthermore, all variables 

were scaled and centered to ensure that no features outweighed others solely due to 

differences in scaling and unit differences between features. Three datasets were created by 

using only the first 1000 keystrokes of every participant in one dataset, 2000 keystrokes in a 

second dataset, and 5000 keystrokes in a third dataset. Any hold times, latency times, or flight 

times that lasted more than 3500 milliseconds were considered intentional and subsequently 

removed.  

Adams (2017) removed participants who used Levodopa from the analysis presumably 

due to its use greatly affecting the ability to detect differences in keystroke information 

between PD controls and mild PD. In order to determine whether participants using Levodopa 

should be excluded from the analysis, we examined whether the influence of Levodopa was 

indeed as strong as Adams predicted. In order to do this, we used the 5000-keystroke dataset. 

We then used all three machine learning methods that would be used in the study to determine 

whether it was possible to predict Levodopa-use based on keystroke information.  

Each model was run 25 times and collected Accuracy, Cohen’s Kappa, and AUC as 

performance metrics. Additionally, we ran a non-learning Null model 25 times that always 

predicted the majority class. A GA was used to select which features should be included in the 

models. Then we compared the three performance metrics using three separate Analyses of 
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Variance (ANOVA’s) to examine whether the models could predict Levodopa-use better than 

the Null model (Table 2). Since all three ANOVA’s showed that there was a significant main 

effect for model type, we used Tukey’s post hoc tests to examine how the models differed 

from each other. Tukey’s post hoc comparisons confirmed that all models performed 

significantly better than the Null model for all performance metrics (Table 3), meaning that 

Levodopa-use indeed greatly influenced keystroke information. For this reason, participants 

taking Levodopa were removed from the main analysis. This exclusion left very few people 

(N = 2; Table 1) in the severe condition; therefore, we only used participants from the control, 

mild, and moderate condition in the analyses. Due to the focus of the study being in predicting 

disease stage, we are mostly interested in accurately predicting the mild and moderate groups. 

With this in mind, it was necessary to determine whether disease stage could be predicted 

when all three classes were included in the data. 

 

Table 2 

ANOVA’s Comparing Performance Metrics of Models to Examine whether Levodopa-use 

could be Predicted 

Effect F statistic df Error df ɳ2 p-value 

Accuracy      

    Model .486 3 96 .350 < .001* 

Kappa      

    Model .969 3 96 .345 <.001* 

AUC      

    Model .278 3 96 .344 < .001* 

Note: * < .0001 
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Table 3 

Means, Standard Deviations, and p-values for Tukey’s Pairwise Comparisons of Performance 

Metrics for Models Predicting Levodopa-use 

 Descriptives  Tukey’s Post Hoc Comparisons 

Model M SD  kNN RF Null 

Accuracy       

    LR .583 .115  .4311 .918 <.001* 

    kNN .623 .089   .818 <.001* 

    RF .600 .065    <.001* 

    Null .448 .104     

Cohen’s Kappa       

    LR .207 .162  .589 .941 <.001* 

    kNN .254 .174   .264 <.001* 

    RF .185 .130    <.001* 

    Null 0 0     

AUC       

    LR .608 .0837  .444 .954 <.001* 

    kNN .638 .098   .190 <.001* 

    RF .597 .069    <.001* 

    Null .500 0     

Note * < .0001 

 

Initially, in order to determine whether all three classes (control, mild, and moderate) 

could be included in the models for accurate performance, all models were trained using 

stratified 5-fold cross-validation and run once. The performance metrics and confusion 

matrices of these models were inspected in order to determine whether the moderate class (the 

underrepresented class) could be correctly classified. If it were shown that the use of all three 

classes resulted in poor classification of the moderate class, then the included classes would 

be restricted to include only mild and moderate cases. For the purposes of this study, these are 
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the most important classes to discriminate between since they are the classes with some 

degree of PD severity (while the control group was never diagnosed with PD). Final 

performance metrics for these models can be seen in Table 4 below. Although the 

performance metrics indicate that the use of all three classes might result in relatively accurate 

predictions (since chance level for Cohen’s Kappa is 0 and .5 for AUC), it should be noted 

that due to an underrepresentation of patients with moderate impact in all three datasets, none 

of the classifiers were good at classifying this level; this was determined by examining the 

confusion matrices, which showed that the moderate class was rarely predicted correctly, and 

it was never predicted correctly in the 5000-keystroke dataset (Appendix B, Appendix C, 

Appendix D). 

 

Table 4 

Results of Classifier Accuracy in All Datasets Using Control, Mild, and Moderate Classes 

    Classifier Accuracy Cohen’s Kappa AUC 

1000 keystrokes    

    LR .346 .066 .566 

    kNN .500 .228 .550 

    RF .539 .232 .630 

2000 keystrokes    

    LR .318 .044 .559 

    kNN .500 .237 .628 

    RF .546 .209 .712 

5000 keystrokes    

    LR .235 -.270 .661 

    kNN .647 .400 .691 

    RF .706 .500 .738 
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 Due to the poor classification of the minority class when all classes were included, this 

step was repeated using only the mild and moderate classes in order to examine whether this 

would result in better classification of the moderate class. Since this class was still 

underrepresented in comparison to the mild class, the models were run using oversampling. 

The results for these models can be seen in Table 5. As can be seen from the performance 

metrics and confusion matrices (Appendix E, Appendix F, Appendix G), this resulted in 

improved classification of the moderate class. Therefore, only the mild and moderate classes 

were used to create the models for statistical comparisons that determined whether models 

performed above chance and which models were significantly better performers than others.  

 

Table 5 

Results of Classifier Accuracy in All Datasets Between Mild and Moderate Classes Using 

Oversampling 

    Classifier Accuracy Cohen’s Kappa AUC 

1000 keystrokes    

    LR .5 -.0426 .4792 

    kNN .5714 .0455 .5208 

    RF .5714 .0455 .5208 

2000 keystrokes    

    LR .5833 -.1538 .4375 

    kNN .6667 .25 .625 

    RF .75 .4 .6875 

5000 keystrokes    

    LR .5 -.3158 .3571 

    kNN .7 .2105 .5952 

    RF .9 .7368 .8333 
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2.4. Data Analysis  

Following the lead of Adams (2017), all three datasets were split into training and test 

sets with a 0.65:0.35 ratio. Data organization was completed using the Python programming 

language (Python Software Foundation) while model calculations were carried out in R 

project (R Core Team) with models being created using the train function in R’s caret 

package (Kuhn, 2017). All models were specified to maximize Cohen’s Kappa, which has 

been recommended for imbalanced datasets (Ben-David, 2008a; Ben-David, 2008b). Each 

model’s performance was evaluated using the validation set. All three aforementioned 

performance metrics (Accuracy, Cohen’s Kappa, and AUC) were used to evaluate a model’s 

ability to discriminate between stages of PD. 

In order to investigate which model performed as the best classifier and whether 

classification improved significantly with increased amounts of keystrokes, models were 

trained using the training data as a single fold and then tested on the validation set. An 

additional non-learning Null model was created that always classified all observations into the 

majority class. This Null model helps determine whether models are predicting disease stage 

better than chance. Models were run 25 times for each model and keystroke set, resulting in a 

total of 300 observations. The three performance metrics for each model were saved into a 

separate dataset, which was used to run three separate ANOVA’s, one for each performance 

metric. Where the ANOVA’s were significant, Tukey’s post hoc tests were used to identify 

significant differences between models.  

 

3. Results  

In order to address our research questions, we ran three separate ANOVA’s in order to 

test for the effect of conditions on Accuracy, Cohen’s Kappa, and AUC. The predictors 
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included in each analysis were Model Type and Number of Keystrokes; however, we also 

included the interaction term between these two predictors in case there was a more complex 

pattern in the data. The results of these three ANOVA’s can be seen in Table 6 and means and 

standard deviations for all models can be seen in Table 7.  

 

Table 6 

Results of ANOVA’s for Accuracy, Cohen’s Kappa, and AUC 

Effect F statistic df Error df ɳ2 p-value 

Accuracy      

    Model 11.782 3 288 .109 < .001*** 

    Keystrokes 32.068 2 288 .182 < .001*** 

    Model*Keystrokes 4.825 6 288 .091 < .001** 

Kappa      

    Model 6.956 3 288 .068 <.001** 

    Keystrokes 4.622 2 288 .031 .011* 

    Model*Keystrokes 4.492 6 288 .086 <.001** 

AUC      

    Model 15.146 3 288 .136 < .001*** 

    Keystrokes 10.163 2 288 .066 < .001*** 

    Model*Keystrokes 10.542 6 288 .180 < .001*** 

Note: * < .05, ** < .001, *** < .0001 
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Table 7  

Means and Standard Deviations of Models’ Performance Metrics 

 Accuracy Cohen’s Kappa AUC 

Models M SD M SD M SD 

1000 Keystrokes       

    LR 583 .139 .069 .241 .558 .118 

    kNN .591 .100 .073 .198 .558 .093 

    RF .586 .115 -.007 .232 .511 .123 

    Null .664 .108 0 0 .500 0 

2000 Keystrokes       

    LR .573 .132 -.027 .241 .486 .123 

    kNN .610 .124 .134 .225 .589 .114 

    RF .649 .105 .146 .203 .574 .091 

    Null .677 .073 0 0 .500 0 

5000 Keystrokes       

    LR .632 .135 .037 .262 .553 .153 

    kNN .712 .127 .112 .312 .555 .152 

    RF .864 .178 .510 .869 .800 .242 

    Null .732 .099 0 0 .500 0 

 

 

When using Accuracy as the performance metric, there is a significant main effect for 

Model Type, F(3, 288) = 11.782, p < .001, and Number of Keystrokes, F(2, 288) = 32.068, p 

< .001. Additionally, there is a significant interaction between Model Type and Number of 

Keystrokes, F(6, 288) = 4.825, p < .001.Due to the significant interaction, we used the Tukey 

post hoc test to compare all models and keystrokes to each other. It was found that the kNN 

classifier at 5000 keystrokes (M = .712, SD = .127)  and the Null model at 5000 keystrokes 

(M = .732, SD  = .099) had significantly higher Accuracy values (Figure 1)  than the LR 

model at 1000 keystrokes (M = .583, SD = .139) and 2000 keystrokes (M = .573, SD = .132). 

They also performed better than the kNN at 1000 keystrokes (M = .591, SD = .100) and the 

RF at 1000 keystrokes (M = .586, SD = .115). Additionally, it was found that the Null model 
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at 5000 keystrokes significantly outperformed the kNN model at 2000 keystrokes (M  = .610, 

SD = .124). Finally, it was found that the RF classifier using 5000 keystrokes (M = .864, SD = 

.178) had significantly higher Accuracy values than all other models. All p-values for model 

comparisons for Accuracy can be seen in Table 8. 

 

Table 8  

Results of Tukey’s Post Hoc Tests for Accuracy 

    Tukey’s HSD Comparisons 

Models  1000 Keystrokes  2000 Keystrokes  5000 Keystrokes 

 LR kNN RF Null LR kNN RF Null LR kNN RF Null 

1000 Keystrokes             

    LR  .999 .999 .452. .999 .999 .749 .225. .959 .012* <.001** .001* 

    kNN   .999 .630 .999 .999 .882 .366 .991 .028* <.001** .004* 

    RF    .511 .999 .999 .799 .268 .973 .016* <.001** .002* 

    Null     .277 .919 .999 .999 .999 .963 <.001** .710 

2000 Keystrokes             

    LR      .996 .558 .117 .868 .004* <.001** <.001* 

    kNN       .992 .731 .999 .125 <.001** .023* 

    RF        .999 .999 .805 <.001** .410 

    Null         .980 .997 <.001** .908 

5000 Keystrokes             

    LR          .469 <.001** .149 

    kNN           <.001* .999 

    RF            .009* 

    Null             

Note *  < .05, ** < .0001 
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Figure 1.Interaction plot showing the means and standard errors of Accuracy for each model 

type at different amounts of included keystrokes. Here the kNN and Null model at 500 

keystrokes outperformed the LR models at 1000 and 2000 keystrokes. They also 

outperformed the kNN and RF models at 1000 keystrokes. Additionally, the Null model at 

5000 keystrokes outperformed the kNN model at 2000 keystrokes. Finally, the RF classifier at 

5000 keystrokes significantly outperformed all other models. 

 

When using Cohen’s Kappa as the performance metric, there is a main effect for 

Model Type, F(3, 288) = 2.126, p < .001, and Number of Keystrokes, F(2, 288) = 4.622, p = 

.011. Additionally, there is a significant interaction between Model Type and Number of 

Keystrokes, F(6, 288) = 4.492, p < .001. When examining the interaction in closer detail with 

the use of Tukey’s post hoc comparisons, it can seen that while the RF classifier (M = .510, 

SD = .869) using 5000 keystrokes was significantly higher (Figure 2) than all other models, 

other models did not differ significantly from each other or outperform the Null model. Since 



TYPING TO PREDICT SEVERITY OF PARKINSON’S DISEASE 27 
 

 
 

this was the only model significantly outperforming any other models, it was determined that 

it was driving the main effects found for individual predictors. All p-values for model 

comparisons for Cohen’s Kappa can be seen in Table 9. 

 

Table 9  

Results of Tukey’s Post Hoc Tests for Cohen’s Kappa 

    Tukey’s HSD Comparisons 

Models  1000 Keystrokes  2000 Keystrokes  5000 Keystrokes 

 LR kNN RF Null LR kNN RF Null LR kNN RF Null 

1000 Keystrokes             

    LR  .999 .999 .999. .996 .999 .999 .999 .999 .999 <.001** .999 

    kNN   .999 .999 .994 .999 .999 .999 .999 .999 <.001** .999 

    RF    .999 .999 .922 .871 .999 .999 .977 <.001** .999 

    Null     .999 .944. .901 .999 .999 .985 <.001** .999 

2000 Keystrokes             

    LR      .826 .749 .999 .999 .928 <.001** .999 

    kNN       .999 .944 .996 .999 .002* .944 

    RF        .901 .988 .999 .004* .902 

    Null         .999 .985 <.001** .999 

5000 Keystrokes             

    LR          .832 <.001** .999 

    kNN           <.001* .915 

    RF            .<.001** 

    Null             

Note * < .05, ** <0001 
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Figure 2. Interaction plot showing the means and standard errors of Cohen’s Kappa for each 

model type at different amounts of keystrokes. Cohen’s Kappa for the RF classifier at 5000 

keystrokes was significantly higher than other models. A Cohen’s Kappa value of 0 represents 

chance. 

 

Finally, when using AUC as the performance metric, there is a main effect for Model 

Type, F(3, 288) = 15.146, p < .001, and Number of Keystrokes, F(2, 288) = 10.163, p < .001, 

Additionally, there is a significant interaction between Model Type and Number of 

Keystrokes, F(6, 288) = 10.542, p < .001. When using Tukey’s post hoc comparisons to 

examine the interaction further, results showed that while the RF classifier (M = .800, SD = 

.242) using 5000 keystrokes was significantly higher (Figure 3) than all other models, all 

other models did not differ significantly from each other. In fact, no other models 

outperformed the Null model. Since the RF classifier at 5000 keystrokes was the only model 
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significantly outperforming any other models, it was determined that it was driving the main 

effects found for individual predictors All p-values for model comparisons of AUC values can 

be seen in Table 10. 

 

Table 10  

Results of Tukey’s Post Hoc Tests for AUC 

    Tukey’s HSD Comparisons 

Models  1000 Keystrokes  2000 Keystrokes  5000 Keystrokes 

 LR kNN RF Null LR kNN RF Null LR kNN RF Null 

1000 Keystrokes             

    LR  .999 .971 .879. .642 .999 .999 .879 .999 .999 <.001** .879 

    kNN   .970 .875 .636 .999 .999 .875 .999 .999 <.001** .875 

    RF    .999 .999 .513 .801 .999 .987 .983 <.001** .999 

    Null     .999 .300 .588 .999 .928 .915 <.001** .999 

2000 Keystrokes             

    LR      .122 .314 .999 .733 .707 <.001** .999 

    kNN       .999 .300 .997 .998 <.001** .300 

    RF        .588 .999 .999 <.001** .588 

    Null         .928 .915 <.001** .999 

5000 Keystrokes             

    LR          .999 <.001** .928 

    kNN           <.001* .999 

    RF            .009* 

    Null             

Note * < 001, ** < .0001 
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Figure 3. Interaction plot showing the means and standard errors of AUC for each model type 

at different amounts of keystrokes. AUC for the RF classifier at 5000 keystrokes was 

significantly higher than other models. An AUC value of .5 represents chance 

 

 In summary, RF appears to be the best performing classifier while using 5000 

keystrokes; this holds for all three performance metrics. In addition, the kNN classifier at 

5000 keystrokes does fairly well in comparison to most other models when using Accuracy as 

a performance metric. However, the Null model at 5000 keystrokes still outperforms it. Since 

the RF classifier at 5000 keystrokes is the only model that significantly outperforms the Null 

model using every performance metric, it is the only model that conclusively performs better 

than chance. Furthermore, there is no evidence that one model type outperforms other models 
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consistently when controlling for number of keystrokes. Additionally, there is no evidence 

that models become significantly better performers as more keystrokes are used. 

 

4. Discussion 

The current study was conducted in order to answer three research questions: 1) can 

typing behavior predict PD severity, 2) which machine learning method best predicts severity, 

and 3) does accuracy of severity classification significantly increase with more keystrokes? In 

order to answer these questions, we used different machine learning methods on datasets 

comprised of differing numbers of keystrokes with the goal of determining whether 

keystrokes could be used to predict the stage of someone’s PD. Additionally, we compared 

LR, kNN, and RF as machine learning classifiers in order to determine which machine 

learning algorithm works best to correctly classify PD stages. Finally, we compared datasets 

composed of 1000 keystrokes, 2000 keystrokes, and 5000 keystrokes in order to determine 

whether increasing the number of keystrokes increased the classification performance. 

In this study, it was hypothesized that keystroke characteristics could be used to 

determine PD severity. The current study has helped shed some light on this; it was found that 

typing behavior could moderately predict PD stage when using the RF classifier at 5000 

keystrokes. According to Landis and Koch’s (1977) explanations of Cohen’s Kappa values, 

the RF classifier for the 5000-keystroke dataset performs moderately. Similarly, if using AUC 

as a metric, the RF classifier for the 5000-keystroke dataset performs moderately according to 

previous studies (Obuchowski, Lieber, & Wians, 2004; Mechref, Novotny, Kyselova, & 

Kang, 2008; Del Hoyo, Isabel, & Vega, 2011). With the use of both metrics, as well as the 

classifier being the only model to consistently outperform the Null models, it can be 

determined that the RF classifier at 5000 keystrokes performs moderately well and is the best-



TYPING TO PREDICT SEVERITY OF PARKINSON’S DISEASE 32 
 

 
 

performing classifier. This is an important finding that has potential implications for the ways 

in which PD patients are monitored. Although performance metrics might have to be higher 

for direct implementation into monitoring programs, the finding that typing behavior carries 

information about disease stage in PD is promising for extended research into how closely 

inspecting computer interaction can reveal much about patient health.  

The analyses were originally meant to include the data from the control group; 

however, machine learning with more than two classes in imbalanced datasets resulted in poor 

classification of the minority class. When examining the confusion matrices (Appendix B, 

Appendix C, Appendix D), it can be seen that while the control and mild classes were 

predicted with relative success, the moderate class was almost never predicted correctly. This 

finding is supported by previous studies, which have found that classification results from 

multimajority cases, in which there is more than one majority class (e.g., control and mild), 

are worse than other imbalanced cases due to the imbalance rate being severe. In these cases, 

oversampling also cannot be of use since it would cause overfitting to the minority class 

(Wang & Yao, 2012). Undersampling would also not work to help this since 1) the sample 

size is too small to consider dropping valuable learning opportunities in the training sets and 

2) it would suffer in predicting majority classes (Drummond & Holte, 2003; Wang & Yao, 

2012). 

Although the RF classifier using 5000 keystrokes performed moderately well, RF 

classifiers at lesser keystrokes do not seem to perform significantly above chance. 

Additionally, the rest of the tested models also do not predict PD stage significantly better 

than chance. Therefore, it cannot be concluded that one type of classifier is consistently better 

than others. Additionally, due to the fact that no other models significantly outperformed 

other models, it also cannot be determined that classifiers significantly improve in 

performance as the keystrokes included in the datasets increase. Only the kNN and RF 
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classifiers at 5000 keystrokes significantly outperformed its own model type at lesser 

keystrokes. In the case of the kNN classifier, it only significantly outperformed the classifier 

using 1000 keystrokes when using Accuracy as a performance metric. Additionally, while the 

RF classifier at 5000 keystrokes outperformed RF classifiers using less keystrokes, there was 

no significant difference between the 1000-keystroke and 2000-keystroke datasets for any 

performance metric. Since this pattern was also not found for any other models, we conclude 

that there is no evidence for a gradual increase while using increased amounts of keystrokes.  

The finding that a RF classifier performs well in high-dimensional and imbalanced 

data is confirmed by previous studies (Caruana & Niculescu-Mizil, 2006; Caruana, 

Karampatziakis, & Yessenalina, 2008; Brown & Mues, 2011). Caruana, Karampatziakis, and 

Yessenalina (2008) compared 10 different machine learning algorithms on 11 different 

datasets and found that RF was the best performing classifier in high-dimensional data. 

However, they also found that LR performed quite well with high-dimensional data as well. A 

possible reason that LR did not do well in our dataset is likely due to multicollinearity in our 

datasets. Although we took measures to minimize this and limit features to only those which 

were relevant with use of the GA and LASSO, it is likely that many features used were still 

correlated with each other. In addition to this, logistic regression cannot handle complex 

relationships between predictors and outcome (Dreiseitl & Ohno-Machado, 2002; Kuhle et 

al., 2018); the fact that LR did not do well at classifying PD stage in the current study implies 

that the relationship between typing behavior and PD severity is likely complex and therefore 

unsuitable for LR as a classification method. Instead, we should rely on more complex 

machine learning algorithms that can pick up on complex relationships in the data. 

 When examining literature concerning the use of kNN classifiers in high-dimensional 

data, it also helps explain why this model did not tend to do very well at predicting PD stage. 

In a study by Sušac, Pfeifer, and Šarlija (2014), it was found that kNN did significantly worse 
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than other machine learning methods in datasets with high dimensionality. In addition, in a 

study comparing ten different kinds of machine learning methods with each other in high-

dimensional data, it was also found that while kNN was among one of the best performers 

while using lesser amounts of features, it did poorly as the number of features increased, 

likely due to the amount of noise in the data (Caruana, Karampatziakis, & Yessenalina, 2008). 

While we attempted to minimize the amount of noise in the data with the use of a GA, the 

poor performance of the kNN classifier implies that there was likely still noise in the high-

dimensional data that affected its performance.  

In the current study, we expected all performance metrics to increase as we included 

more keystrokes in the datasets. However, models generally did not significantly improve as 

more keystrokes were included. A possible reason for this might simply be that 1000 and 

2000 keystrokes were too few to reveal anything meaningful concerning PD stage. It could be 

that if we used more keystrokes than 5000, we would start to see that classifiers perform 

significantly better than their counterparts at lesser amounts of keystrokes. In the case of 

Accuracy, although we did not see that models consistently performed significantly better 

than models at lesser keystrokes, Figure 1 shows there was a general trend of increased 

Accuracy as more keystrokes are used. This shows that the use of Accuracy alone in machine 

learning studies could be misleading, especially when using imbalanced datasets. The current 

study is a good example of a case where multiple metrics are useful when machine learning is 

used in order to reduce the possibility that a single metric gives a false interpretation of a 

classifier’s performance. 

An additional surprising finding of this study is that Levodopa-use could be predicted 

in participants using PD significantly better than chance. Levodopa is the most common 

antiparkinsonian medication on the market (Monteiro, Souza-Machado, Valderramas, & 

Melo, 2012); it relieves symptoms such as bradykinesia, rigidity, and tremor. In this study, 
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participants using Levodopa were removed to avoid them contributing noise to the data. 

Although patients taking other antiparkinsonian medications such as dopamine agonists and 

monoamine oxidase inhibitors were still included, we were nonetheless able to predict PD 

stage. This implies that Levodopa would be a useful factor to include in models predicting PD 

stage. While the current study shows that you can predict mild and moderate disease stage 

with keyboard characteristics alone in patients not using Levodopa, real-world applications 

would need to be able to differentiate between patients who are also using Levodopa. 

Therefore, future studies could focus on predicting PD stage with Levodopa-use as an 

additional predictor. Additionally, this finding may warrant further investigation into the 

effectiveness of symptom-reducing pharmaceuticals used for PD since the current study 

indicates that Levodopa is perhaps a more effective symptom-reducing drug than dopamine 

agonists and monoamine oxidase inhibitors; these medications were still taken by participants 

included in the datasets but did not distract from being able to predict between mild and 

moderate PD stage. Adams (2017) had also filtered out these participants in his own study, 

indicating that he found a similar effect on his results. In this study, removing Levodopa-users 

from the datasets resulted in few participants in the moderate and severe classes, resulting in 

heavily imbalanced class distributions. Since Levodopa-use increases as PD severity 

progresses, future studies should keep Levodopa-use as a predicting factor for machine 

learning models to prevent this; keeping all possible participants would then help reduce the 

class imbalance. 

Although the results of the current study are promising, there were some limitations. 

First, the study would have benefited from including more participants since it becomes easier 

to differentiate between classes when there is plenty of training data; the fact that small 

sample sizes can lead to inadequate learning for machine learning models (Kotsiantis, 

Kanellopoulos, & Pintelas, 2006) may have been a contributing factor for poor performance 
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in some models in this study. Furthermore, there were very few participants in the moderate 

group, and too few in the severe group to use it for machine learning, resulting in the use of 

oversampling in order to accurately predict the moderate class, and the dropping of the control 

group. The use of oversampling can help increase the number of correctly classified cases in 

the minority class; however, it also increases the likelihood of overfitting (Kubat & Matwin, 

1997) due to the replication of minority class cases in the training set. In turn, this may have 

contributed to poor-performing classification in some cases.  

An additionally limitation in the current study includes that we used subjective data. In 

order to report the stage of PD for each participant, participants were asked to self-report what 

their disease severity was and how much they thought PD impacted their daily lives (Adams, 

2017). It might have been more useful to use physicians’ assessments of patients’ motor 

skills, since there are many potential inherent biases in self-reported data (Hoskin, 2012). This 

would be a more clear, direct link to how PD affects typing. As an example, an individual 

with PD might not find that their disease severity is severe if they have a strong support 

network or help around the house, whereas someone relying on only themselves might find 

that their PD is severe since it affects the quality of their daily lives much more. The 

subjectivity of participants’ answers might have left a discrepancy between the PD stage at 

which they thought they were and the PD stage in which they actually were, meaning that 

their typing characteristics could more closely match their actual PD stage. Additionally, it 

could be the case that patients exhibit some symptoms more severely than other symptoms. It 

would be useful to narrow down which symptoms directly affect typing behavior in case 

symptom severity does not necessarily correlate with disease severity. Any future studies in 

this area may benefit from physician input or standardized methods to collect symptom and 

disease stage. On top of this, future studies would benefit from collecting more data about 

their participants such as profession, education, and comorbidities; this study was limited to 
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include data on only participants’ PD information. Including more information about 

participants in the future would allow us to identify patterns within subgroups or factors that 

contribute to model performance. 

The results of the current study lend inspiration to many different future research ideas 

to expand upon this idea. It appears from this study that keystroke information can provide 

insight into PD stage. However, as previously mentioned, it would be interesting to see if this 

could be increased with a higher number of participants and with objective data on PD stage. 

A promising future project could use UPDRS scores instead of participants’ subjective ideas 

about how their PD affects them. Using UPDRS scores would also allow more comprehensive 

predictions of PD severity since they run on a detailed, numeric scale. The use of broad 

classes of PD severity in this study meant that the models could not learn to distinguish small 

differences between patients. Additionally, it would be beneficial to include more participants 

and include participants who use Levodopa, so that the models might be more generalizable 

and applicable in real-world monitoring systems.  

Furthermore, it would be very interesting to examine more computer behavior in PD 

patients. Examining multiple aspects of computer behavior may help in the monitoring of a 

wider scope of PD symptoms since keystrokes may only reveal information about specific 

symptoms. It would be beneficial to do further research to answer the question of which 

symptoms directly impact different aspects of computer behavior. There are many different 

aspects of computer interaction that might change as PD progresses including keystroke 

behavior, mouse clicks and cursor movements, time of day which they use their computers 

(might be tailored around medication schedule), and the pressure with which individuals press 

their keys and computer mouse devices. Specialized equipment and software would be needed 

for this kind of study in order to keep track of these computer behaviors each day for 

individuals. Additionally, the current study examines PD stage at one point in time. It would 
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be interesting to collect data over time to see how individuals progress. For this, we would 

have to set up a longitudinal study examining different computer interaction behaviors that 

may be affected by PD such as the aforementioned characteristics. By answering these 

questions in the future and creating machine learning models that can detect symptom and 

disease severity, it becomes possible for physicians and patients to make use of more 

objective monitoring practices. 

 The results of the current study indicate that computer interaction can be monitored to 

track disease progression in patients with PD. Specifically, it shows that keystrokes can be 

used to predict mild and moderate PD stage with moderate accuracy. Although the current 

study did not find that keystrokes alone would be accurate enough to use as a monitoring tool, 

it is the first study to examine whether keystroke characteristics can be used for this purpose. 

Perhaps by incorporating other monitoring programs, it could help to improve the way that 

PD patients are currently monitored for their disease progression. Standardized typing tests 

could be developed for patients with PD so that doctors and patients have the ability to 

monitor patient symptoms and give insight into their disease progression. This is a promising 

first step in finding an inexpensive solution for monitoring PD progression.  
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APPENDIX B 

Confusion Matrices for the 1000 Keyboard Dataset Using All Three Classification Groups.  

Models were made using 5-fold cross validation, and then tested on the test set. The dataset to 

create these models consisted of 1000 keystrokes. The results in this table show that the 

moderate class (minority class) is rarely predicted correctly (only twice in the LR model) 

while the control and mild conditions are more likely to be correctly predicted.  

 

LR    

Actual None Mild Moderate 

Predicted    

    None 4 1 1 

    Mild 7 3 1 

    Moderate 4 3 2 

kNN    

Actual None Mild Moderate 

Predicted    

    None 6 0 1 

    Mild 9 7 3 

    Moderate 0 0 0 

RF    

Actual None Mild Moderate 

Predicted    

    None 8 1 2 

    Mild 7 6 2 

    Moderate 0 0 0 
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APPENDIX C 

Confusion Matrices for the 2000 Keyboard Dataset Using All Three Classification Groups 

Models were made using 5-fold cross validation, and then tested on the test set. The dataset to 

create these models consisted of 2000 keystrokes. The results in this table show that the 

moderate class (minority class) is rarely predicted (only once in the LR model) correctly 

while the control and mild conditions are generally more likely to be correctly predicted. 

 

LR    

Actual None Mild Moderate 

Predicted    

    None 3 1 0 

    Mild 6 3 2 

    Moderate 4 2 1 

kNN    

Actual None Mild Moderate 

Predicted    

    None 5 0 0 

    Mild 8 6 3 

    Moderate 0 0 0 

RF    

Actual None Mild Moderate 

Predicted    

    None 9 2 0 

    Mild 4 3 3 

    Moderate 0 1 0 
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APPENDIX D 

Confusion Matrices for the 5000 Keyboard Dataset Using All Three Classification Groups 

Models were made using 5-fold cross validation, and then tested on the test set. The dataset to 

create these models consisted of 5000 keystrokes. The results in this table show that the 

moderate class (minority class) is never predicted correctly while the control and mild 

conditions are often correctly predicted. 

 

LR    

Actual None Mild Moderate 

Predicted    

    None 1 4 2 

    Mild 5 3 1 

    Moderate 1 0 0 

kNN    

Actual None Mild Moderate 

Predicted    

    None 4 0 0 

    Mild 3 7 3 

    Moderate 0 0 0 

RF    

Actual None Mild Moderate 

Predicted    

    None 5 0 3 

    Mild 2 7 0 

    Moderate 0 0 0 
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APPENDIX E 

Confusion Matrices for the 1000 Keyboard Dataset Using Mild and Moderate Classes 

Models were made without the use of cross validation, and then tested on the test set. The 

dataset to create these models consisted of 1000 keystrokes. The results in this table show that 

the moderate class (minority class) is rarely correctly predicted in all three model types. 

However, this is still an improvement in comparison to the number of correctly predicted 

cases of the moderate class when including the control group. 

 

LR   

Actual Mild Moderate 

Predicted   

    Mild 5 4 

    Moderate 3 2 

kNN   

Actual Mild Moderate 

Predicted   

    Mild 7 5 

    Moderate 1 1 

RF   

Actual Mild Moderate 

Predicted   

    Mild 7 5 

    Moderate 1 1 
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APPENDIX F 

Confusion Matrices for the 2000 Keyboard Dataset Using Mild and Moderate Classes 

Models were made without the use of cross validation, and then tested on the test set. The 

dataset to create these models consisted of 2000 keystrokes. The results in this table show that 

the moderate class (minority class) is sometimes correctly predicted in the kNN and RF 

classifiers, but never in the LR classifier. This is an improvement in comparison to the 

number of correctly predicted cases of the moderate class when including the control group 

where it was rarely correctly classified. 

 

LR   

Actual Mild Moderate 

Predicted   

    Mild 7 4 

    Moderate 1 0 

kNN   

Actual Mild Moderate 

Predicted   

    Mild 6 2 

    Moderate 2 2 

RF   

Actual Mild Moderate 

Predicted   

    Mild 7 2 

    Moderate 1 2 
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APPENDIX G 

Confusion Matrices for the 5000 Keyboard Dataset Using Mild and Moderate Classes 

Models were made without the use of cross validation, and then tested on the test set. The 

dataset to create these models consisted of 5000 keystrokes. The results in this table show that 

the moderate class (minority class) is never correctly predicted using the LR classifier, once 

using the kNN classifier, and most often using the RF classifier. This is an improvement in 

comparison to the number of correctly predicted cases of the moderate class when including 

the control group where it was never correctly classified. 

 

LR   

Actual Mild Moderate 

Predicted   

    Mild 5 3 

    Moderate 2 0 

kNN   

Actual Mild Moderate 

Predicted   

    Mild 6 2 

    Moderate 1 1 

RF   

Actual Mild Moderate 

Predicted   

    Mild 7 1 

    Moderate 0 2 

 

 

 


