
Forecasting German Government Bond

Development by (Deep) Neural Networks on

Technical and Economic Data

Master Thesis

Author: Hans Christian Schmitz

Student number: 6025668

h.c.schmitz@students.uu.nl

Universiteit Utrecht

Advisor: Prof. Dr. Arno Siebes

Second Advisor: Dr. Ad Feelders

Universiteit Utrecht

Algorithmic Data Analysis

Daily Advisors: {Prof. Dr. Damian Borth, Marco Schreyer}
German Research Center for Artificial Intelligence (DFKI)

Multimedia Analysis & Data Mining

University of St. Gallen

Artificial Intelligence & Machine Learning

October 2018

2

Abstract

Artificial Intelligence is on its way to change many aspects of every-day-life.

One often underestimated industry, where this change happens, is the finan-

cial industry. Much work in the area of Artificial Intelligence and Finance is

concerned with time series forecasting. One specific and economically impor-

tant type of time series is the development of government bonds prices over

time. This thesis presents an overview of state-of-the art forecasting tech-

niques on government bond prices and compares the established techniques

with a newly developed, long short term memory recurrent neural network

based technique for bond price forecasting. Initial results show that neu-

ral network based approaches can outperform other established techniques.

However, further research in this direction needs to be conducted.

i

ii

Acknowledgements

For the realization of this thesis, I would like to gratefully acknowledge

the support of the following people.

My first university advisor Arno Siebes, thank you for your extended feed-

back on the draft versions of all the parts of this thesis, enriching discussions

over Skype and in your office, the extraordinary support also in organizational

matters, and, maybe most importantly, for enabling me to conduct this re-

search project at the DFKI in Kaiserslautern.

My daily advisor Damian Borth, thank you for facilitating me at the DFKI,

being positive about this project from the very beginning, when I contacted

you out of the blue, for your helpful and sharp comments on my work at DFKI

and your insights regarding financial data science.

My second university advisor Ad Feelders, who agreed on being the second

advisor for this research project of Utrecht University.

My daily advisor Marco Schreyer, thank you for helping to get up to speed

in the beginning of the thesis project, very to-the-point feedback on many as-

pects of this work, for always being around when any question came up (and

always having an answer or knowing where to search for a solution), and a

vast variety of greatly helpful ideas, and for - not to be forgotten - the great

company in the lunch breaks in Kaiserslautern.

Thank you to everyone else apart from the already mentioned from the

German Research Centre for Artificial Intelligence, especially the Multimedia

and Data Mining group.

And finally, special thanks go to my girlfriend Lea and my family, thank

you for your infinite support, love and willingness to accommodate me on my

many travels between Utrecht and the DFKI.

iii

iv

Contents

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Applying Deep Learning Methods to Financial Time Series Data 1

1.1.2 Applying Deep Learning to Bond Price Forecasting 3

1.2 Thesis Objectives . 4

1.3 Thesis Outline . 5

2 Related Work 7

2.1 Introduction to Deep Learning . 7

2.1.1 Recent Success of Deep Learning 8

2.1.2 Fundamentals of Deep Learning 8

2.1.3 Deep Feedforward Networks 10

2.2 Deep Learning for Time Series Analysis 18

2.2.1 Time Series Analysis . 18

2.2.2 Recurrent Neural Networks 20

2.2.3 Long Short Term Memory . 22

2.3 Financial Data Forecasting . 25

2.3.1 Stock Price Forecasting . 25

2.3.2 Bond Price Forecasting . 29

2.4 Effects of Economic Indicators on Government Bond Prices 31

2.4.1 Federal or Government Bonds 31

2.4.2 Bond Price Influencing Indicators as Found in Related Work . 32

3 German Federal Bond (Bund) Data 36

3.1 Choice for Bunds as Government Bonds 36

3.2 Bund Data . 36

3.3 Exploratory Analysis of Bund Data 37

4 Macro-Economic Data 42

4.1 Economic Indicators with Relevance for Germany 42

4.2 Feature Engineering: Economic Indicators as Additional Features . . 44

4.2.1 Economic Indicators and Bond Price Correlations 44

4.2.2 Correlations between Economic Indicators 48

4.2.3 Ranking the Relevance of Economic Indicators 49

v

Contents

5 Experimental Setup 53

5.1 Training and Test Data . 54

5.1.1 Bund Data . 54

5.1.2 Macro-Economic Data . 58

5.1.3 Fusion of Bund Data and Economic Data 59

5.2 Different Forecasting Setups . 60

5.2.1 Forecasting with Different Time Horizons 60

5.2.2 Forecasting with Different Target 61

5.2.3 Forecasting on Original and Fused Data 61

5.3 Models for Forecasts . 61

5.3.1 Naive . 61

5.3.2 Median and Mean . 62

5.3.3 Linear Regression . 62

5.3.4 ARIMA . 63

5.3.5 Multi-Layer-Perceptron Regressor 66

5.3.6 LSTM . 69

5.4 Features for different models . 74

5.5 Generalizability of different models 74

5.6 Rolling Forecast vs Classical Forecast 75

5.7 Evaluating model performance . 77

6 Experimental Results 79

6.1 Next Day Forecast: Comparison of Model Classes 79

6.1.1 Next Day Price Forecast: Best Performing Model Configura-

tions of Each Class . 80

6.1.2 Next Day Return Forecast: Best Performing Model Configu-

rations of Each Class . 81

6.2 Next Week Forecast: Comparison of Model Classes 83

6.2.1 Next Week Price Forecast: Best Performing Model Configu-

rations of Each Class . 83

6.2.2 Next Week Return Forecast: Best Performing Model Config-

urations of Each Class . 85

7 Discussion 91

7.1 Evaluating Introductory Hypotheses 91

7.1.1 Hypothesis 1 . 91

7.1.2 Hypothesis 2 . 93

vi

Contents

7.1.3 Hypothesis 3 . 94

7.1.4 Hypothesis 4 . 95

7.2 Open Questions . 97

8 Conclusion 102

9 References 106

10 Appendix 113

10.1 Full Experimental Results: Next Day Forecasting 113

10.1.1 Comparison of Less Complex Models 114

10.1.2 Comparison of Performance of ARIMA Models 116

10.1.3 Comparison of Performance of MLP Models, Trained on All

Bunds . 117

10.1.4 Comparison of Performance of MLP Models, Trained on Each

Bund . 123

10.1.5 Comparison of Best Performance of LSTM Models, Trained

on All Bunds . 128

10.1.6 Comparison of Best Performance of LSTM Models, Trained

on Each Bund . 132

10.2 Full Experimental Results: Next Week Forecasting 134

10.2.1 Comparison of Less Complex Models 136

10.2.2 Comparison of Performance of ARIMA Models 138

10.2.3 Comparison of Performance of MLP Models, Trained on All

Bunds . 139

10.2.4 Comparison of Performance of MLP Models, Trained on Each

Bund . 144

10.2.5 Comparison of Performance of LSTM Models, Trained on All

Bunds . 148

10.2.6 Comparison of Performance of LSTM Models, Trained on

Each Bunds . 152

10.3 Development of R-Shiny-App . 156

10.3.1 Motivation . 156

10.3.2 Components . 156

10.4 MAPE per Model for a Selection of 10 Bunds 162

vii

List of Figures

List of Figures

1 Sample LSTM cell, figure from Olah [52] 2

2 US-Dollar denominated credit risk to non-banks outside the United

States according to the International Monetary Fund ([65]). X-axis

depicting years from 2000 until 2018. Y-axis referring credit out-

standing in trillion USD. 4

3 Rule based, classical machine learning and representation learning as

found in Goodfellow et al. ([25]). 9

4 Illustration of a deep learning model as found in Goodfellow et al.

([25]). 10

5 Comparison of common output units. 13

6 Comparison of activation functions (input z ∈ [3, 3]). 14

7 Example: computational graph ([46]). 17

8 Example: cyclic computational graph, black box indicates one step

in the sequence ([25]). 20

9 Example: unfolding of a cyclic computational graph ([25]) 21

10 Simple RNN, figure from Olah ([52]). 22

11 LSTM cell, figure from Olah ([52]). 22

12 Cell state, figure from Olah ([52]). 23

13 Forget layer, figure from Olah ([52]). 23

14 Input gate layer, figure from Olah ([52]). 24

15 Update layer, figure from Olah ([52]) 24

16 Output layer, figure from Olah ([52]). 24

17 Shares by security of total German debt ([18]). 37

18 Bund 10 and 30 from 3rd Jan 2011 to 15th Feb 2018. 39

19 Active Bunds per year. 40

20 Issued/expired Bunds per year. 40

21 Share of 10 and 30 year Bunds over time span. 41

22 Correlations between top 10 overall, top 10 short term and top 10

long term economic indicators. 48

23 Development of four selected indicators over Bund data time span. . . 51

24 Development of seven selected indicators over Bund data time span. . 52

25 Prices: Bund 10 and 30 from 3rd Jan 2011 to 15th Feb 2018. 56

26 Returns: Bund 10 and 30 from 3rd Jan 2011 to 15th Feb 2018, scaled

to range (0,2). 57

27 Autocorrelation for ARIMA Parameter Selection by Box-Jenkins. . . 64

viii

List of Figures

28 Partial autocorrelation of training data, Bund prices for ARIMA pa-

rameter selection. 65

29 Partial autocorrelation of training data, Bund returns. 66

30 Representative example for one selected MLP architecture: losses per

epoch, training on each Bund, different colors indicate different models. 68

31 Representative example for one selected MLP architecture: losses per

epoch, training on all Bunds. 68

32 Overview of MLP architectures, one to three hidden layers. 69

33 Overview of LSTM architectures, one to three hidden LSTM layers. . 71

34 Representative example for one selected LSTM architecture: losses

per epoch, training on each Bund, different colors indicate different

models. 72

35 Representative example for one selected LSTM architecture: losses

per epoch, training on all Bunds. 73

36 Visualization of time series transformation for LSTM input. 74

37 Visualization of rolling forecast method. 76

38 Next day price result visualization of the two best performing models

on a randomly selected ISIN, limited to the first 50 days of the test

data set. 82

39 Next day price result visualization, plot of x vs x̂. 83

40 Next day return result visualization of the two best performing models

on a randomly selected ISIN, limited to the first 50 days of the test

data set. 85

41 Next day return result visualization, plot of x vs x̂. 86

42 Next week price result visualization of the two best performing models

on a randomly selected ISIN, limited to the first 50 days of the test

data set. 88

43 Next week price result visualization, plot of x vs x̂. 88

44 Next week return result visualization of the two best performing mod-

els on a randomly selected ISIN, limited to the first 50 days of the

test data set. 89

45 Next week return result visualization, plot of x vs x̂. 90

46 Mape per ISIN per Model for next day price forecasts. 92

47 Mape per ISIN per Model for next day return forecasts. 96

48 Plot of variance vs mape per model of next day price forecasts. 98

49 Plot of variance vs mape per model of next day return forecasts. . . . 99

ix

List of Figures

50 Longer Training does not improve LSTM model performance, trained

on all Bunds, forecasting next day return. 101

51 Start Page Shiny App . 157

52 Shiny App Navigation Bar . 158

53 Shiny App Choosing Forecast Horizon 158

54 Shiny App Choosing Bund . 159

55 Shiny App Choosing Model . 159

56 Shiny App Choosing Days Range . 159

57 Shiny App Export Function . 160

58 Shiny App Price Graph . 160

59 Shiny App Return Graph . 161

60 Shiny App Current Performance . 161

61 Mape per ISIN per Model for next week price forecasts 162

62 Mape per ISIN per Model for next week return forecasts 163

x

List of Tables

List of Tables

1 Reuters top economic indicators for Germany. 43

2 Average absolute overall correlations between Bund price and eco-

nomic indicators (identified by RIC=Reuters Instrument Code). . . . 45

3 Average absolute short term correlations between Bund price and

economic indicators (identified by RIC=Reuters Instrument Code, if

not stock index such as DAX, NASDAQ or STOXX). 46

4 Average absolute long term correlations between Bund price and eco-

nomic indicators (identified by RIC=Reuters Instrument Code). . . . 47

5 Selection of four promising features for Bund price forecasting. 50

6 Selection of seven promising features for Bund price forecasting. . . . 51

7 Additional information on training and test data. 55

8 ARIMA configurations for prices and return forecasts. 66

9 Next day price forecast, best performing model configurations per

class. Notations as in chapter Experimental Results (6). 81

10 Next day return forecast, best performing model configurations per

class. Notations as in chapter Experimental Results (6). 84

11 Next week price forecast, best performing model configurations per

class. Notations as in chapter Experimental Results (6). 87

12 Next week return forecast, best performing model configurations per

class. Notations as in chapter Experimental Results (6). 89

13 Next day price forecast, normalization instead of scaling, trained on

all Bunds. Notations as in chapter Experimental Results (6). 100

14 Results of next week price forecast, extract of table 11. Best per-

forming LSTM, MLP and Average with respect to the median of the

mean absolute percentage error over all Bunds are reported. Stan-

dard deviation of mape scores over all Bunds per model is listed as

well. 103

15 Next day price forecast results of less complex models 115

16 Next day return forecast results of less complex 115

17 Next day price forecast results of arima models 116

18 Next day return forecast results of arima models 117

19 Next day rice forecast of MLP models, all Bunds 118

20 Different random initializations for next day price MLP models, trained

on all Bunds . 118

xi

List of Tables

21 Next day price forecast of MLP models, trained on all Bunds and

fused data . 119

22 Different random initializations for next day price forecast of MLP

models, trained on all Bunds and fused data 120

23 Next day return forecast results of MLP models trained on all Bunds 120

24 Different random initializations for next day reutrn forecast of MLP

models, trained on all Bunds . 121

25 Next day return forecast result of MLP models trained on all Bunds

and fused data . 122

26 Different random initializations of next day return forecast MLP mod-

els trained on all Bunds and fused data 122

27 Next day price forecast results of MLP models trained on each Bund 123

28 Different random initializations of next day price forecast MLP mod-

els trained on each Bund . 124

29 Next day price forecast results of MLP models trained on each Bund

and fused data . 125

30 Different random initializations of next day price forecast MLP mod-

els, trained on each Bund and fused data 125

31 Next day return forecast results of MLP models trained on each Bund 126

32 Different random initializations of best performing next day return

forecast MLP models trained on each Bund 127

33 Next day return forecast results of MLP models trained on each Bund

and fused data . 127

34 Different random initialization of next day return forecast MLP model

trained on each Bund and fused data 128

35 Next day price forecast results of LSTM models trained on all Bunds 129

36 Next day price forecast results of LSTM models trained on all Bunds

and fused data . 130

37 Next day return forecast results of LSTM models trained on all Bunds131

38 Next day return forecast results of LSTM models trained on all Bunds

and fused data . 132

39 Next day price forecast results of LSTM models trained on each Bund 133

40 Next day price forecast results of LSTM models trained on each Bund

and fused data . 133

41 Next day return forecast results of LSTM models trained on each Bund134

42 Next day return forecast results of LSTM models trained on each

Bund and fused data . 134

xii

List of Tables

43 Next week price forecast results of less complex models 137

44 Next week return forecast results of less complex models 138

45 Next week price forecast results of arima models 139

46 Next week return forecast results of arima models 139

47 Next week price forecast results of MLP models trained on all Bunds 140

48 Different random initializations of next week price forecast MLP mod-

els, trained on all Bunds . 140

49 Next week price forecast results of MLP models trained on all Bunds

and fused data . 141

50 Different random initializations of best performing next week price

forecast MLP models . 141

51 Next week return forecast results of MLP models trained on all Bunds 142

52 Different random initializations of next week return forecast MLP

models trained in all Bunds . 142

53 Next week return forecast results of MLP models trained on all Bunds

and fused data . 143

54 Different random initializations of next week return forecast MLP

models trained on all Bunds and fused data 143

55 Next week price forecast results of MLP models trained on each Bund 144

56 Different random initializations of best performing next week price

forecast MLP model, trained on each Bund 145

57 Next week price forecast results of MLP models trained on each Bund

and fused data . 145

58 Different random initializations of best performing next week price

forecast MLP model trained on each Bund and fused data 146

59 Next week return forecast results of MLP models trained on each Bund146

60 Different random initializations of best performing next week return

forecast MLP model trained on each Bund 147

61 Next week return forecast results of MLP models trained on each

Bund and fused data . 147

62 Different random initializations of best performing next week return

forecast MLP model trained on each Bund and fused data 148

63 Next week price forecast results of LSTM models trained on all Bunds 149

64 Next week price forecast results of LSTM models trained in all Bunds

and fused data . 150

65 Next week return forecast results of LSTM models trained on all Bunds151

xiii

List of Tables

66 Next week return forecast results of LSTM model trained on all Bunds

and fused data . 152

67 Next week price forecast results of LSTM models trained on each Bund153

68 Next week price forecast results of LSTM models trained in each Bund

and fused data . 154

69 Next week return forecast results of LSTM models trained on each

Bund . 155

70 Next week return forecast results of LSTM model trained on each

Bund and fused data . 156

xiv

1 Introduction

1 Introduction

1.1 Motivation

Artificial Intelligence and increasingly Deep Learning are by this time almost om-

nipresent in news, media, politics and many other parts of everyday life. Recent

and successful use cases include speech recognition, image recognition, personal as-

sistants, machine translation, chat bots, text mining and autonomous systems (e.g.

self-driving cars) ([61],[45],[29],[62]). However, there is (among others) one charac-

teristic, which is shared by the many projects with a large share of publicity: they

are not concerned with the financial sector. Public interest was attracted by projects

from automotive, from gaming and media, health-care, logistics, retail and certainly

other sectors. Apart from robo advisory in wealth management, the financial sector

seems to not play a major role in where the public suspects changes due to ad-

vancements in artificial intelligence, often connected to deep learning. One possible

reason for this might be that successful techniques for image and speech recognition

or autonomous systems do not seem directly applicable to the financial industry.

Still, 31% of 345 surveyed German companies expect artificial intelligence to have a

major effect on the financial sector, only being surpassed by logistics (43%), produc-

tion (40%), trade (33%) and service (31%) [62]. On this account, this work targets

one use case of the financial sector: It is concerned with the essential financial in-

strument of government bonds and its aim is to investigate how their development

can be foreseen by modern methods of artificial intelligence.

The understanding of the motivation for this work in greater detail is further

discussed in the remaining lines of this chapter. This explanation is two-fold. First,

the characteristics of financial time series data will be addressed together with their

applicability of deep learning methods. Second, the choice of the specific matter of

bond price forecasting will be illuminated.

1.1.1 Applying Deep Learning Methods to Financial Time Series Data

The majority of successful applications of deep learning use data in form of images

or word sequences. However, in the financial sector, data hardly comes in these

formats. Most of financial data has a temporal component where the development

of objects of interest over time is relevant [44]. However, the analysis of real world

time series data is hard as it is often noisy, complex and high dimensional [72].

Additionally, ergodicity, stationarity and absence of autocorrelation pose problems

to time series modelling in the financial sector which (in addition to other statistical

1

1 Introduction

features) have not been overcome yet or as Cont [14] puts it:

Unfortunately, most currently existing models fail to reproduce all these

statistical features at once, showing that they are indeed very constrain-

ing.

Traditional methods therefore generally fail to model time series with sufficient

precision [44]. This is when machine learning comes into play. Neural networks

and in particular deep networks can model arbitrary complexity [25], which is why

they seem to suit complex time series modelling. Hsu et al. already demonstrated

that the state of the art econometric methods for financial index forecasting are

outperformed by methods of machine learning [30] to the surprise of economic theory.

Research in this area is naturally not limited to the already mentioned and various

attempts to improve stock price prediction and other financial data forecast can be

found. This work investigates bond price development which is to the best of the

author’s knowledge a field of financial data science where the applications of machine

learning are yet limited. However, also in this field, neural networks seem to deliver

promising results [23]. In addition to these few and promising results of deep learning

techniques applied in financial data science, there is another reason, which motivates

the application to financial time series data. This is the recent success of Long Short

Term Memory Recurrent Neural Networks (LSTMs) ([28],[61]). A sample LSTM

cell is shown in figure 1. LSTMs are accountable for a variety of the already named

Figure 1: Sample LSTM cell, figure from Olah [52]

current advancements. They are successfully applied to machine translation ([71]),

language modelling ([73]) and for example the generation of hand-writing ([26]).

LSTMs success is justified by their ability to model sequences, which is key to solving

the just mentioned problems. Furthermore, this ability to understand sequences and

model temporal dependencies is essential to model financial time series data as well.

2

1 Introduction

The combination of already successful application of neural networks to bond price

forecasting without the use of for this purpose designed LSTMs, is encouraging for

the idea of this work, the forecast of bond prices using LSTMs.

The motivation for bond prices as the domain for this investigation will be ex-

plained in more detail in the next paragraph.

1.1.2 Applying Deep Learning to Bond Price Forecasting

The motivation for investigating neural network based approaches and their general

applicability to financial time series data has been addressed now. Next, government

bond prices as an interesting field of applying neural network based methods to

financial time series data will be discussed.

First, government bond data naturally has a relevant time component. Second,

government bond prices share the characteristics mentioned earlier: they are com-

plex, possibly noisy and high-dimensional. This might need additional explanation.

Government bond development is certainly complex as economists have yet not un-

ravelled all the factors and mechanism, which influence their pricing. This leads

directly to the high-dimensionality of bond prices. The time series itself can be

expressed by a function, mapping a point of time to a specific price which is not

high-dimensional. However, trying to incorporate the vast variety of bond price

influencing factors (which is probably necessary for satisfying modelling) quickly

makes it a problem of high-dimensionality (2.4).

Third, government bonds play a major role in governmental finances (3), but

seem underrepresented in related work regarding their importance for the interna-

tional economy. The reason for this might be, that much of this work is conducted

in secret due to the enormous financial interest in this area. Government bonds are

the financial instrument responsible for most of German government debt (3) and a

proxy for national economic well-being. Generally, their importance has increased

for many countries, as government bonds played an important role to overcome the

financial crisis of 2007 and 2008 ([35]). Bonds in US Dollars (USD), important as

the currency of the world’s largest economy and the standard unit of currency in

international markets, account for around half of the USD denominated credit to

non-banks (e.g. governments), outside the USA, (figure 2). Both, worldwide and in

emerging markets (EMEs), the composition of credit is changing in favor of bonds.

Understanding, being able to model and forecast the development of government

bonds, would then have sustainable impact. Foreseeing the economic development

of countries and acting ahead of potential financial or economical crises would just

3

1 Introduction

Figure 2: US-Dollar denominated credit risk to non-banks outside the United States
according to the International Monetary Fund ([65]). X-axis depicting years from
2000 until 2018. Y-axis referring credit outstanding in trillion USD.

be one idea of enormous value to the public.

Fourth, due to their public nature, information on government bonds, their price

development and their possibly influencing, external economic features, is often

found to be publicly available in contrast to for example the related task of stock

price forecasts where necessary information might not be available to the public.

Fifth, few existing work on government bond price forecast already indicates a

superiority of neural network based approaches to other machine learning methods

[23] as well as econometric models [44]. Additionally, the most successful government

bond price forecasting models in related work, which are presented by Ganguli et al.

[23], use neural network based models on the one hand. On the other hand, they do

not report more complex networks (in terms of network depth or units per layer) and

also do not utilize LSTMs, which are designed explicitly for this task. In addition,

they omit any external data which might be highly relevant to the development

of bond prices as economists claim ([27],[64],[48]) and focus their effort of model

building solely on the technical data which comes with the government bond, e.g.

coupon, maturity et cetera.

1.2 Thesis Objectives

In conclusion, the rapid advancement of Artificial Intelligence, the success of LSTMs

for time series data, the tremendous importance of government bonds and the yet

limited research in this combination, constitute substantiated motivation for this

work. This thesis’ overall objective is to investigate the feasibility of forecasting

bond prices by deep learning methods. In order to achieve this overall objective,

4

1 Introduction

several hypotheses have been formulated and will be evaluated in this work:

[Hypothesis 1]:

Government bond price development can be modelled by LSTMs on the basis of

technical bond data and outperforms established computational models, including

recent neural network based techniques.

[Hypothesis 2]:

Enriching the technical bond data by economic features improves the overall model

performance of neural network based models in forecasting future bond development.

[Hypothesis 3]:

Neural network based models outperform other established methods for an increased

forecasting horizon.

[Hypothesis 4]:

Neural networks for the task of return forecasting outperform neural networks aiming

for price forecasting.

1.3 Thesis Outline

The investigation of the formulated objectives and hypotheses requires a variety of

sub-tasks to be solved. This work is therefore structured in the following parts:

1. Following this general introduction an outline of the state of the art of related

work is provided, from introductory words on deep learning ((2.1,2.2), over

time series and financial data forecasting (2.3) until government bonds and

their connection to economic development (2.4).

2. Afterwards, the data available to this work, is examined. First, the bond data

(3) and later the economic data (4).

3. Subsequently, experiments are designed, based on related work and available

data (5). The large amount of results will be summarized hereafter in the

experimental results chapter (6). The full listing of results can be found in the

appendix (10).

4. Finally, in chapter 7 the in this section formulated hypotheses are evaluated

5

1 Introduction

based on the results of this work. The concluding evaluation results and po-

tential future work is stated in Chapter 7 and 8.

6

2 Related Work

2 Related Work

In this section, the related work to this thesis will be discussed. As this work in-

vestigates the application of sequence or time series modeling with deep learning in

the domain of bond prices as a special type of financial data, the following will be

structured into four subsections.

First, a general overview on deep learning will be provided answering questions

about what deep learning actually refers to (at least in this work), its core ideas and

a brief overview of what different problems with which deep learning methods have

been solved in the past.

Second, from the broader introduction of deep learning the specific task of time

series modeling and time series forecasting will be explained. Particularly, recurrent

neural nets (RNN) ([25]) and long short term memory recurrent neural nets (LSTM)

([28][52]) as part of the deep learning umbrella term will be explained.

Third, since this is clearly not the first work, which applies machine learning tech-

niques to financial data modeling, literature on this matter will be evaluated. This

is also two-fold because (1) the different approaches to modeling this data are rel-

evant for this work but also (2) the specific task. For this purpose, the promising

approaches for modeling different types of financial will be discussed as well as the

most successful ideas for the specific financial data type of bond prices.

Lastly, in addition to being the first to apply LSTMs to bond price forecasting,

this is the first work which uses economic indicators in addition to the bond terms

and past prices to forecast price development. Due to this novel approach it will

be necessary to investigate which economic indicators were proven to influence the

bond market. This will be conducted in the last subsection of the related work

chapter.

2.1 Introduction to Deep Learning

The recent increase in usage of the term deep learning might lead to the believe

that this is a very recent invention in the area of artificial intelligence research.

However, deep learning is around since the 1940s ([25]) where researchers started to

investigate how learning in biology works. Nowadays, the original motivation for this

research is more and more obsolete as the differences between learning as humans

do for example and deep learning are still large. These days the research in deep

learning is mostly driven by prestigious successes in speech recognition, handwriting

7

2 Related Work

recognition, text to speech synthesis, image classification, image segmentation and

anomaly detection ([61],[63]). This recent development poses two questions: (1)

Why it this success just recently discovered and (2) how do the techniques behind

those results function? Both questions will be shortly discussed in this introductory

section.

2.1.1 Recent Success of Deep Learning

The first question about the recent success of deep learning is answered for example

by Andrew Ng, a professor at Stanford University and researcher at Baidu. During a

presentation he gave at ExtractConf 2015 he argued that the availability of compu-

tational resources on the one hand and the huge amounts of data on the other hand

is essential for the success lately ([51]) in contrast to the late 1980s and 1990s where

the foundations of deep learning were already defined ([60],[28]), but the necessary

resources and data were missing.

Today, the improvements on graphics processing units (GPUs) allow faster and more

efficient training of larger (or deeper) neural networks as this process involves many

simple matrix multiplications in the forward pass as well as in the backward pass

through such a deep network (backward and forward pass will be discussed in the

next paragraph). This task of matrix multiplication is highly parallelisable and

the computational processing units (CPUs) although being faster than comparable

GPUs do not allow for a high grade of parallelisation in contrast to GPUs.

Besides the hardware improvement for deep learning, there is the enormous increase

in labelled data which is necessary for training deep networks. In the same talk

([51]), the value of deep learning is described as originating in the growing avail-

ability of large amount of supervised data as this is a task, at which deep learning

models are especially good at.

2.1.2 Fundamentals of Deep Learning

Previously, an explanation of the recent success of deep learning has been provided

as well as the information that this area of research is not as new as many people

tend to think. What has not been discussed yet and is subject to this section are

the basic concepts of deep learning. First, it will be reviewed how this is different

from other supervised learning techniques. Then, the commonalities between the

different deep learning approaches and their functionality will be discussed.

8

2 Related Work

Classic Machine Learning vs. Representation Learning A major difference

between deep learning and other supervised learning techniques is the fact that deep

learning models learn the representation of the underlying problem by themselves.

To illustrate this difference an example like handwritten digit classification might

be helpful. Assuming the to be classified data is available as many, fixed grey-scale

pictures. Then, in a classic machine learning approach the digital picture of the

handwritten digit will be characterized by a variety of features. For example, the

amount of greyness in a certain region or the overall amount of greyness in the

picture to distinguish 1s from 8s as writing the digit 1 does not need as much ”ink”

as writing the digit 8 (at least in most cases). At first, this might seem to be a

reasonable approach but as soon as the stroke width changes this could possibly

lead to wrong classification. These types of hand designed features are obsolete in

representation learning. Contrary to classic machine learning, the relevant features

are learned by the technique itself. This difference is illustrated in figure 3, found

in the Deep Learning Book by Ian Goodfellow et al. ([25]).

Figure 3: Rule based, classical machine learning and representation learning as
found in Goodfellow et al. ([25]).

Deep learning then can be seen as a specific case of representation learning, in

9

2 Related Work

which, from the features directly derived from the input, further more abstract fea-

tures are obtained. This process of deriving more and more abstract features from

the raw input features is the difference between deep learning and other representa-

tion learning approaches.

Deep Networks In the context of artificial neural networks, deep networks are

artificial neural networks with multiple hidden layers. How many hidden layers are

necessary for a network to qualify as ”deep” is not defined and already two-hidden-

layer-networks are referred to as deep from time to time ([25]) (more on this matter

later in this section). Figure 4 illustrates a three-hidden-layer network (found in the

Deep Learning book by Goodfellow).

Figure 4: Illustration of a deep learning model as found in Goodfellow et al. ([25]).

2.1.3 Deep Feedforward Networks

Although this work will not use deep feedforward networks but a specific kind of

RNNs, this paragraph will briefly introduce the basics of a deep feedforward network

as they are widely used for many successful applications of deep learning methods

and, more importantly, they share certain characteristics with RNNs, which are

important to be understood for this work.

As in other machine learning disciplines, neural networks try to approximate a

function f ∗(x) = y, of which the exact f ∗ is unknown. Neural networks approxi-

mate f ∗ by a function f(x; θ) = y in a supervised manner ([25]). This approximate

function f(x) of the original, unknown function f ∗(x) is generally not a single func-

10

2 Related Work

tion but on the contrary a composition of multiple functions. This is also how the

term deep learning networks is different from other artificial neural networks: it

relates to the number of functions that are composed in f(x) ([25]). A simple feed-

forward network (not deep though) of two functions could then look like the this:

f(x) = f (2)(x)(f (1)(x)) where the result of f (1)(x) is used as input for f (2), which

then calculates the output. This can also be used to illustrate another important

term in ANNs, layers. Here, there are two layers. The input layer or the first layer,

f (1), and the output layer or in this case the second layer, f (2). Any additional layer

in between the two is then named hidden layer. The number of layers reflects the

depth of the model ([25]). Although the depth of the model as a concept is rather

clear (with some variations as well), there is no common definition of how many

layers, equivalently which depth, is necessary to account for a deep network. So

far, ANNs have been explained as a combination of functions. In this picture, it is

obvious how an output for a given x as input is generated by applying the composed

functions one by one to the input. Also, the to be defined parameters have been

mentioned, which need to be adapted to approximate the unknown, to be estimated

function as closely as possible. How can this be done?

Training is the term that is used in the context of machine learning to iteratively

find the best parameters for the chosen architecture to approximate the original,

unknown function. Training the chosen model is a process, which utilizes available

observations of the input x and the desired output y and tries to find a general

representation, which maps inputs x to an output y.

Training a machine learning model needs a defined optimization procedure, a cost

function, and a model family. In addition to those, which are generally necessary

for training a machine learning model, in deep learning, there are additional choices

to be made, which are about the activation function and the architecture (How

many layers? How many units? How are they connected?). Also, finding global

minima of the cost function is not feasible due to the complexity of the composed

function ,which is why the efficient gradient based approach of back-propagation

([60]) is needed. This already answers some of the questions ,which need to be

decided to train a deep learning model. The optimization procedure is gradient

based, most often with the back-propagation algorithm due to the chosen model

family of neural networks. Before introducing the back-propagation algorithm later

in this section, the other open questions are discussed, which are about the cost

function, the architecture and the activation function in the hidden units.

The choice of a cost function is important for all kinds of machine learning

11

2 Related Work

problems ([25]). In deep learning, the cross entropy is used for this purpose most

often, defined as in the following ([25]):

J(θ) = −Ex,y∼p̂datalog pmodel(y|x) (1)

Here, J dependent on θ (parameters of the approximation function) is the cost

function. It is the cross entropy between training data and model prediction, which

translates to the negative sum over all products between training data points and

the logarithm of their corresponding model predictions. For discrete distributions,

which is the case in this work as the investigated time series consist of a finite number

of data points, the cross entropy can be represented with this formula, which might

be easier to read ([77]):

J(θ) = −
∑
x

p(x)log q(x) (2)

Now as the cost function is defined which is not exclusively used in neural net-

works, next, output units are addressed. There are many different output units

available and they all have their upsides and shortfalls, of which the most common

output units are linear, sigmoid and softmax output units. As the output unit is

part of the last layer, the output layer, the calculation of the output unit is expected

to fit the problem, which is modelled. Then, there are natural choices for an out-

put unit depending on a problem and its assumed underlying distribution. Firstly,

the linear output layer consisting of possibly multiple output units, defined in the

following equation, approximates the target y by a multiplication of the features h

with the weights W plus a bias term b ([25]):

ŷ = WT h + b (3)

This can be used for the forecast of a numerical value, for example, and might be

less suitable for a classification problem. Next, there is the sigmoid output unit. A

sigmoid output unit is defined as the following ([25]):

ŷ = σ (wT h + b) (4)

A sigmoid output unit consists of a linear part, exactly the same as the linear output

12

2 Related Work

unit, but then applies a σ function defined like the following to the result ([55]):

σ =
1

1 + e−x
(5)

The common use case for a sigmoid output would be a binary classification. If a

classification over more than two classes is desired, the softmax output unit is the

one to choose generally. Here, the standard linear output (here denoted with z is

calculated and then used as input to the softmax function, which is calculated for

all i where i are the positions in the vector z.

softmax(z)i =
ezi∑
j e

zj
(6)

Below, a comparison between the three common output units can be found for an

exemplary input range (h) from −5 to 5, b = 0 and W T = 1.

Figure 5: Comparison of common output units.

Next, hidden units and activation functions in neural network design are briefly

introduced. As the design choices for hidden units and activation functions are still

part of the active research area of deep learning, again, there is no globally superior

choice for one or the other hidden unit or activation function. Generally, this is

identified in the process of developing a deep learning model. However, rectified

linear units (ReLUs) are a reasonable choice to start with as justified by Goodfellow

et al. ([25]) due to their similarity to linear units, their consistent gradients and

interpretable gradient direction.

Rectified linear units work similarly to linear output units. They also receive

an input x and calculate a result in the same way. The difference then comes with

13

2 Related Work

the activation function, which is used on top and applied for every element in the

resulting vector z ([25]):

z = WT x + b (7)

These activation functions are non-linear and allow neural networks to fit non-linear

data at the end ([25]). The activation function, here denoted with g(z), for a rec-

tified linear unit is defined as g(z) = max0, z, meaning that any input z will be

propagated unless it is smaller than 0. Then 0 is propagated through the unit into

the next layer of the network. One rather obvious drawback of ReLUs is the fact

that they cannot differentiate between negative inputs, which makes learning from

negative input impossible for units using ReLUs impossible ([25]). To overcome this

disadvantage, adaptions of ReLUs may be utilized, for example a leaky ReLU, which

then does not set negative input to 0, but rather multiplies it by a small, positive

value, or an Exponential Linear Unit (ELU), which calculates α (ez −1) for negative

inputs. An overview of the different types of linear units, sigmoid and hyperbolic

tangent, which are also used as activation functions is depicted below:

Figure 6: Comparison of activation functions (input z ∈ [3, 3]).

The sigmoid and hyperbolic tangent (tanh) are widely used as activation func-

tions. However, both share the same disbenefit: They both only have a high absolute

slope in regions around 0. For smaller and larger values the slope gets close to 0,

which impedes any gradient-based learning ([25]). This effect of the sigmoid function

and the hyperbolic tangent can be observed in the figure above (blue and orange

lines). This is one of the reasons why linear units have gained more attention re-

cently in the domain of feedforward networks ([25]). Another one is the fact that

gradient-based learning for linear units is easy. This is because the gradient is large

14

2 Related Work

and the second derivative is 0 as long as the input is larger than 0, which means that

the iterative gradient-based optimization approach in theory is very well applicable

([25]). One of the few downside of linear units is the problem of a non-existing

derivation at input x = 0. This, however, is practically solved by using left or right

derivatives in the established deep learning frameworks like TensorFlow ([49]).

Cost function, hidden and output units are now briefly introduced. Apart from

the gradient-based learning algorithm, which will close this introduction to deep

feedforward networks, the question of how to design the structure of a neural network

remains to be discussed. The abstract structure of a feedforward network, however,

is given. A group of hidden units is organized in a layer and attached to possibly

more layers before the output layer containing the output units marks the final layer.

Mathematically, the first can then be described as:

h(1) = g(1) (W(1)T x + b(1)) (8)

Continuing with the second layer like this:

h(2) = g(2) (W(2)T h(1) + b(2)) (9)

This composition of layers continues until the output layer and yields this a chain-like

structure where each element of the chain is a layer consisting of possibly multiple

units. When defining the structure of the network questions regarding the number of

layers, the number of units in each layer, the order of the layers and the connection

between layers and units need to be addressed. Unfortunately, there is no universal

guideline for choosing the most suitable architecture for a given task. The ability of

neural networks to learn non-linearity with only one hidden layer ([25]) does not ease

structural decisions. In general, a given task may be approximated with a single

layer, which contains more units in the same way a deeper, multi-layer structure

with far less units per layer might provide results of the same quality. However,

there is a risk of non-deep networks to not generalize as well as deeper networks

while the deeper networks are considered to be harder to train ([25]). At the end,

the choice for a structure is dependent on the task to be tackled.

The missing part to this introductory section on deep feedforward nets is the

training algorithm, which is essential for deep learning with the help of back-

propagation and gradient based learning. By now, what has been introduced is

the forward path through the network, meaning that an input x flows through the

network and after passing through the output layer, an output is provided. What is

15

2 Related Work

missing is the process of adapting the weights in the now decided network architec-

ture to reduce the training error. Theoretically, this could be achieved by computing

precise minima or maxima since the network can be seen as a function. However,

these methods provided by analytical calculus are computationally costly and not

feasible in most realistic scenarios ([25]). The back-propagation algorithm defined

by Rumelhart et al. ([60]) together with any gradient based learning algorithm

provides an inexpensive solution for computing the gradient of the cost function in

a neural network, denoted as ∇θ J(θ) ([25]). Gradient based learning techniques

utilize the calculated gradient (the vector of partial derivatives, which can be un-

derstood as the descent in the directions of the dimensions) to find (most often)

local minima to the cost function J(θ). The idea behind gradient based learning is

to use locally available information to iteratively find a (local) minimum of the cost

function. This is achieved by adapting the weights in the opposite of the gradient

direction as this reflects the steepest descent. The only parameter, which needs to

be adapted in this scenario, is the learning rate, which equals the step size in the di-

rection of the steepest descent ([46]). The choice of this parameter can be critical as

too large learning rates might overstep the sought minimum and too small learning

rates might decelerate the approach. This idea of gradient descent as one gradient

learning algorithm can be expanded and other faster gradient learning algorithm, of-

ten referred to as optimizers are available, e.g. stochastic gradient descent, gradient

descent with momentum, Adagrad et cetera ([59]).

Although the main idea of gradient based learning is now introduced, the cal-

culation of the gradient has not been tackled yet. The calculation of the gradient

is only of interest because in deep learning the analytical tools, which are available

to compute derivations are not easily applicable due to the size of the networks.

Also, a numeric computation is not feasible due to its computational cost. These

two reasons make the usage of the back-propagation algorithm essential for neural

networks. To explain the concept of back-propagation it is helpful to introduce the

concept of the computational graph as a representation of a neural network. In

this graph, the vertices correspond to operations, directed edges are drawn from a

vertex A to B if and only if A produces an output used as an input for B. The first

nodes in this graph receive additionally variables as input and the last nodes in this

directed graph output the result of the computation. Generally, many functions can

be computed by these computational graphs (details about limitations can be found

in Goodfellow et al. ([25])). An example of such a graph, representing the function

f(x, y, z) = (x+ y) ∗ z can be found below:

16

2 Related Work

Figure 7: Example: computational graph ([46]).

Actually computing the gradient of the function f for an input tuple (x, y, z)

then means to compute the partial derivations ([46]):

δf

δx
,
δf

δy
,
δf

δz
. (10)

The calculation of those is not directly clear, also when the function is translated in

the computational graph. What can be derived from the graph already is the local

information for each node, meaning the partial derivations at the nodes. For this

example, these depict themselves as below ([46]):

q = x+ y,
δq

δx
= 1,

δq

δy
= 1

f = qz,
δf

δq
= z,

δf

δz
= q (11)

This information already provides the solution for the partial derivation of f in

direction z. Still missing are the directions x and y. Those are calculated with the

application of the chain rule (of calculus), which is applied below to calculate the

direction of x ([46]):
δf

δx
=
δf

δq

δq

δx
(12)

This iterative application of the chain rule is the main idea behind back-propagation

and essential to a wide array of practical application of neural networks. Similarly

to the provided, simple example, this approach can be used for other functions and

other networks and for multi-dimensional input to model more complex problems.

As the relevant fundamental concepts of deep learning for this work are now

introduced, in the next step, the possibilities of deep learning for the general problem

of time series modeling will be discussed.

17

2 Related Work

2.2 Deep Learning for Time Series Analysis

2.2.1 Time Series Analysis

Before investigating the use of neural networks and deep learning in time series

modeling, it is certainly beneficial to first define what a time series and what the

challenge of modeling a time series actually is. Naturally, time series occur in many

application areas, of which economics and finance are two prominent ones ([8]).

Time series in finance is usually described as in the quote below:

A time series is a sequence of numerical data points in successive order.

In investing, a time series tracks the movement of the chosen data points,

such as a security’s price, over a specified period of time with data points

recorded at regular intervals. ([38])

In this work, the chosen data points are Bund prices and also returns as described

later in this work. Also, period of time and the regular interval selection is discussed

in the same later chapter 3. Next, as the nature of a time series is introduced, the

question remains how to actually analyze this data and more importantly how to

make forecasts of the development of the time series as this is essential to this

work. Generally, there are plenty of methods in use for this purpose. Providing

detailed information on all the relevant methods for time series forecasting would

certainly exceed the scope of this work. However, the idea of classical decomposi-

tion, stationary, autoregressive and moving average processes are beneficial for an

understanding of the later tested ARIMA model and are therefore defined in the

next few paragraphs.

Trend, Seasonality, Cycles and Residuals One of the well established methods

to describe a time series is the method of classical decomposition ([8]). Following

this approach, a time series ([8]) (denoted as Xt−n, Xt−n+1, ..., Xt = X for a fixed

length n) into:

• Trend: long term differences in mean ([8])

• Seasonality: cyclical changes due to the calendar ([8])

• Cycles: other cyclical changes ([8])

• Residuals: random (or other) fluctuation ([8])

A time series, X, then equals a conjunction of trend, seasonality, cycles, and resid-

uals.

18

2 Related Work

(Weakly) Stationary Processes (Weakly) Stationary Processes are another de-

scription of time series. To satisfy the requirements of a stationary process, a time

series must fulfill the following:

1. The time series must have a constant expected value: E(Xt) = µ, where µ is

constant ([8])

2. The autocovariance function must be independent of γk: cov(Xt, Xt+k). This

means that the function must not depend on t or k, but depend only on the

difference t− k ([8])

Autoregressive Processes The autoregressive process of order p is referred to

by AR(p), and can be defined as follows ([8]):

Xt =

p∑
r=1

φrXt−r + εt

where φ is a sequence of fixed constants and ε is a sequence of independent random

variables with mean 0.

Moving Average Processes The moving average process of order q is denoted

by MA(q) and defined as follows ([8]):

Xt =

q∑
s=0

θs + εt−s

where θ is a sequence of fixed constants and ε is a sequence of independent random

variables with mean 0.

ARMA Processes The autoregressive moving average process, ARMA(p, q) then

is defined as follows ([8]), with φ, θ and ε as introduced:

Xt =

p∑
r=1

φrXt−r + εt +

q∑
s=0

θs + εt−s

ARIMA Processes ARIMA processes are an extension to ARMA processes.

They prove useful if the underlying data is not stationary, which is a requirement for

a successful time series analysis as an ARMA process. The addition of ARIMA to

ARMA comes with the idea of the first order difference. So, instead of analyzing the

19

2 Related Work

original time series, the first order differences are then modeled denoted as follows

([8]):

Xt = ∆Yt = Yt − Yt−1

This slightly different time series might then be suitable to be analyzed as an ARMA

process. If not, second and higher order differences can be tested ([8]).

2.2.2 Recurrent Neural Networks

Recurrent neural nets (RNNs) (first described by Rumelhart et al. ([60])) are a

family of neural networks for the processing of sequential data. A popular view is

that convolutional neural networks (CNNs) are specialized for processing grids of

values (e.g. images) whereas RNNs are specialized for processing sequences of values

([25]). Although this view seems to change these days and there is work using CNNs

for sequence modelling as well ([40]), the general idea behind the invention of RNNs

was sequence modelling and it is still widely used for this purpose, which is why a

brief introduction into RNNs is provided in this paragraph.

One of the key ideas behind RNNs is the idea of parameter sharing over differ-

ent parts of the model. This means that, in contrast to feedforward networks as

described earlier (2.1.3), not every input feature has its own parameters configured,

but that they are the same over several input features in RNNs. This is referred to

as sharing. Sharing can be achieved by including cycles in the computational graph

(2.1.3,[25]). Cycles then define the influence of a value on its own successors in the

sequence. These cyclic computational graphs then can be utilized to model dynamic

systems, where the result of an equation is dependent on the result of that same

equation at an earlier point of time. Formulated as a cyclic computational graph,

this equation can be depicted as in the following ([25]):

Figure 8: Example: cyclic computational graph, black box indicates one step in the
sequence ([25]).

To avoid a recurrent formulation, the same equation can be applied a finite

number of times, which yields an expression of the same equation without recurrence.

20

2 Related Work

The advantage of avoiding the recurrent formulation then, is that this expression can

then by depicted as a directed acyclic graph, as illustrated in the following ([25]):

Figure 9: Example: unfolding of a cyclic computational graph ([25])

This figure corresponds to the following recurrent equation, where h indicates

that the state is hidden within the network, x represents the feature input vector,

t the element in the sequence and θ the configuration of the network ([25]):

h(t) = f(h(t−1),x(t; θ) (13)

With the unfolded representation of recurrent networks, they can be treated as

feedforward networks. Of particular interest then, is the fact, that backpropagation

as introduced for feedforward networks, can then be used to model sequences in

recurrent networks as well. This insight then results in a variety of possible recurrent

network architectures, which are not specified in this work. More information on

this matter can be found for example in Goodfellow et al. ([25]).

So, if sequence modelling by RNNs works, this should be used for the purpose

of this work as well. However, there is one important drawback to RNNs, the

challenge of long-term dependencies ([25]). The precise mathematical problem will

not be discussed here, more information on that can be found in Goodfellow et al.

in chapter 8.2.5 ([25]). There, the problem is summarized as:

The basic problem is that gradients propagated over many stages tend

to either vanish (most of the time) or explode (rarely, but with much

damage to the optimization).

This problem occurs in recurrent networks but not in other, non-recurrent networks.

This can be easily illustrated by a multiplication of a weight w in the network by

itself many times. The product wt will either converge to almost 0 or to very large

numbers depending on w < 1 or w > 1 ([25]). In case of a non-recurrent network

with different weights w(t) at each time step, it is not guaranteed that the problem

does not occur but is is certainly more likely that it does not.

21

2 Related Work

2.2.3 Long Short Term Memory

One possible solution to prevent exploding or vanishing gradients, but still maintain

the structural advantages of RNNs, are long short term memory recurrent neural

nets (in short LSTMs, ([28])). LSTMs have the same chain-like structure as RNNs

as earlier introduced. The difference lies in each unit of the chain. While RNN units

mostly consist only of a simple input, activation function and output combination

(figure 10), LSTM units, also denoted as LSTM cells, have a more complicated

structure within their units (figure 11).

Figure 10: Simple RNN, figure from Olah ([52]).

Figure 11: LSTM cell, figure from Olah ([52]).

This structure consists of the following components, which will be briefly ad-

dressed next:

• Cell state (12)

• Forget gate layer (13)

• Input gate layer (14)

• Update layer (15)

• Output layer (16)

22

2 Related Work

Cell state The cell state, highlighted in the figure below (12), is the structure

connecting the different LSTM cells and allowing information to easily flow from

one cell to the next (and back when updating). The information contained in the

cell state can be changed by other mechanism within the LSTM cells. These changes

are conducted by so-called gates.

Figure 12: Cell state, figure from Olah ([52]).

Forget gate layer The forget gate (13), as one might guess, can be used to let or

not let information through and incorporate this information in the cell state from

LSTM cells located prior to the current cell in the chain. This is realized by a sigmoid

function, which returns numbers between 0 and 1 as seen earlier. Dependent on this

output, earlier information will be used ranging from not used at all (if sigmoid

returned only 0) or used completely (if sigmoid returned 1). The amount of earlier

information let through and the current cell state will be then point-wise multiplied

to obtain the new cell state.

Figure 13: Forget layer, figure from Olah ([52]).

Input gate layer This alteration of the cell state however only has effects on

the question of how much of past information should be used. Current information

available due to the new inputs and how this can be added to the cell state is next.

This is achieved in the input gate layer (14), consisting of the actual input gate,

which decided what needs to be updated, and a hyperbolic tangent layer, which

decides by how much the update will effect the cell state.

23

2 Related Work

Figure 14: Input gate layer, figure from Olah ([52]).

Update layer Now, as it is calculated how much information from the past will be

kept and how new information is added, this is actually conducted and the new cell

state will be computed by multiplying the old state by ft, resulting in the desired

forget behavior, and adding the product of it and Ct. This results in a new cell

state.

Figure 15: Update layer, figure from Olah ([52])

Output gate layer Before outputting this cell state then, there is a filter to

adapt this state consisting of a sigmoid, a hyperbolic tangent layer and a point-wise

multiplication (16). This filter can be useful if one does not actually want to output

the cell state, but maintain implications, which this cell state might have for future

cells.

Figure 16: Output layer, figure from Olah ([52]).

LSTM networks have been shown to be better suited for learning long-term

24

2 Related Work

dependencies than RNN networks ([25]), which is why they are certainly to be

considered in this work.

2.3 Financial Data Forecasting

Until now, the focus of this chapter has been set solely on deep learning and its

use for time series modeling. Next and independently from deep learning, financial

data forecasting, in particular stock and bond prices, will be illuminated. Of special

interest in this field are naturally results, which can be used as a baseline for the

later proposed approach for bond price forecasting. However, also the work in the

closely related field of stock prices will be investigated as ideas in this areas might

be applicable to the task of bond price forecasting. First, successful results for

stock price forecasting and their approaches will be discussed as the number of

publications in this area is rather high. This comparison will allow for a first idea

of which methods might be fruitful for the task of bond price forecasts. Then, ideas

for bond price forecasting will be addressed.

2.3.1 Stock Price Forecasting

The amount of work, which is concerned about understanding stock prices or fore-

casting them is rather high. The efforts, which are put in this area by banks and

other players in the financial sectors are most probably even higher than in public

research as price predictions with high accuracy guarantee profits.

Generally, efforts for price forecasting in the stock market can be distinguished into

two categories, the fundamental and the technical analysis ([10]). The difference

can be briefly explained as technical analysts believe that all the necessary infor-

mation for price forecasting can be found in the price development itself whereas

fundamental analysts incorporate other information, for example information about

the company in their analysis and their estimation of the price ([10]). The ap-

proach presented in this work belongs rather to the fundamental analysis although

the training of the model later might yield the result that the price development

is the major feature for price forecasting and then identify patterns in past prices

to forecast future values. In order to obtain an overview, which methods are used

in fundamental analysis lately and how successful they are, related work in this

area will be introduced in three categories: traditional statistical learning, machine

learning and deep learning approaches.

25

2 Related Work

Traditional statistical linear learning approaches, which are widely used (ac-

cording to Cavalcante et al. ([10])) are time series regression, exponential smooth-

ing, autoregressive integrated moving average (ARIMA) and its variations, general-

ized autoregressive conditional heteroskedasticity (GARCH). An example of a pure

ARIMA approach can be found in the work by Adebiyi et al. ([2]).

Before diving deeper into the results of Adebiyi et al., the general idea behind

ARIMA models will be recapitulated as already discussed earlier (2.2.1). As the

name already implies, ARIMA models combine three ideas in one modeling ap-

proach. ARIMA models are defined by the parameter tuple (p, d, q). The letter p

stands for the autoregressive part, the letter d for the integrated part and the letter

q for the moving average part of the ARIMA acronym. Next, the meaning of these

parameters will be elucidated.

First, there is the autoregressive or AR component defined by the parameter p.

This autoregressive component is the weighted sum over a constant number of past

data points of the time series (2.2.1). The choice of weights is chosen by training

on the past. How many past values are chosen, which is at the end referred to by p,

has to be defined differently and this will be discussed later in this paragraph.

Second, there is the term integrated, which is called the differencing term and

denoted by I in the ARIMA acronym and by the parameter d in the parameter tuple

(2.2.1). It is used to make the series stationary which has several reasons. One is

that for example correlation and other statistical measures are only useful in this

context. Also, non-stationary time series will always be over- or underestimated by

an ARIMA model. Making a time series stationary by differencing is the idea to not

build the model directly on the time series yt itself but rather on the dth difference,

∆dyt. The first difference ∆1yt is then defined by ∆1yt = yt − yt−1. Important

to note here is that the second difference is not defined by ∆2yt = yt − yt−2 but

rather by ∆2yt = ∆1yt−∆1yt−1. This can be expanded then for any integer number

d, which is then reported in the parameter tuple (p, d, q). The idea of differencing

however cannot guarantee to yield a stationary series. This has to be identified in

testing different parameters and observing mean and variance over the series for the

obtained results.

Third and last, there is the idea of a moving average or MA in ARIMA, defined

by the parameter q (2.2.1). The parameter q refers to the number of data points,

of which the weighted errors are considered for calculating the current data point in

time, yt. Here again, the best weights for the given problem are defined by training

whereas the number of points is chosen with a different tool, which is defined next.

The identification of suitable parameters p, d, q for an ARIMA model can be

26

2 Related Work

conducted in different ways. One rather straightforward but also slightly arbitrary

method is the utilization of autocorrelation for this purpose. Autocorrelation means

the correlation between a time series and its past values. Depending on how strongly

correlated a time series with how many past values is Tools to identify the three

parameters: Autocorrelation to identify parameters p, d, q. Autocorrelation is the

correlation between a time series and its past values.

Together, these parameters then define a specific ARIMA model ([82]) of the

form:

yt = c+ εt +

p∑
i=1

aiyt−i +

q∑
j=1

bjεt−j (14)

In their work, Adebiyi et al., develop two ARIMA models, one, which forecasts

the development of the Nokia stock price, and another one forecasting the Zenith

Bank stock. They claim that both of their models prove that ARIMA models can

achieve satisfying results in stock price prediction. However, the applicability of

their results to other stock prices and their development might be less successful

as the Nokia and Zenith bank rates seem to have developed rather linearly. Non-

linear, complex price developments over time might be not sufficiently modelled

with the chosen ARIMA approach. This in general is a problem of the so-called

traditional statistical learning approaches. They all share the property that they

cannot facilitate highly non-linear modeling ([68],[31]). However, as ARIMA (and

other) approaches show, for certain stocks and their price development modeling

linearity seems to be sufficient. What is necessary at the end however, is a model

with the ability to model both, linear and non-linear behaviour on the markets ([79]).

Non-Linear Machine Learning This paragraph provides a short overview of the

approaches on stock price forecasting using what is here called machine learning tech-

niques. In contrast to traditional statistical learning approaches, machine learning

techniques can capture non linearity without assumptions about data ([10]), which

is why in literature there are currently favored over the provided example of ARIMA

models. Frequently used methods in machine learning for stock price forecasting are

support vector machines adapted for regression (SVR) and artificial neural networks

(ANN). In the review paper by Cavalcante et al. ([10]) it is stated that previous

work using ANN was mostly focusing on feedforward ANNs with a limited depth

(a number of layers of around 3 is observed frequently). However, this seems to

be sufficient to show the listed advantages of being able to cope with non-linearity

firstly and secondly being able to handle data with unknown underlying properties

([47]). One rather recent work by Zhong et al. uses ANNs: Stock market return

27

2 Related Work

([85])

Despite all the advantages of ANNs in forecasting financial time series, Cavalcante

states that ANNs are highly sensitive to various parameters, such as input data and

target variables, the type of the neural network, the number of layers, learning rate

and optimization algorithm and are therefore complex to train correctly ([10]). This

is one of the reasons why much literature using SVR can be found ([31],[9],[32],[17]).

Hybrid Models have gained momentum due to the fact that researchers wanted

to combine advantages of multiple forecasting techniques and eliminate disadvan-

tages of for example finding local vs. global optima (it is claimed that ANNs tend

to find local optima ([47])), the difficulty of hyper-parameter optimization and the

avoidance of overfitting ([10]) in addition to the earlier mentioned disadvantages of

SVMs and ANNs. Combinations include ARIMA and ANNs by Zhang et al. ([84]),

ARIMA and SVR by Wang et al. ([79]), the combination of decision tress, ANNs

and SVMs in an expert system, which includes price forecasting by Weng et al.

([81]) and a combination of SVM and KNN for stock market forecasting by Chen et

al. ([11]).

Deep Learning approaches, lastly, have especially recently drawn more attention

although the field of deep learning in finance is still rather unexplored ([10]). The

recent rise in attention might be caused by the the general recent success of deep

learning as described earlier. However, there is literature, which suggests that deep

learning can be a viable approach for stock price forecasting. Successful work can be

for example found in Chong et al. ([13]), Jiang et al. ([40]), Ding et al. ([15]) and

more in the review paper by Langkvist ([44]). Interestingly, none of these methods

use the for the exact purpose of time series modeling invented LSTMs. This might

be due to the assumption that prices do not depend heavily on past prices and can

be expressed by other factors (fundamental analysis). This seems to conflict with

the big advantage of neural networks that they can be both, a fundamental and a

technical analysis ([43]). Technical analyses by definition works with past stock data.

Not using past data at all then might not make good use of the major advantage

of neural nets as conducting possibly both, a technical and a fundamental analysis

at the same time. This also causes the thought that a LSTM based approach for

financial data forecasting is worth investigating.

This as the first reason for investigating LSTMs in a financial data forecasting con-

text is supported by a second reason, which are the results that have been observed

28

2 Related Work

in the referenced related work. Chong et al. ([13]) seem to outperform ARIMA

models just slightly with the presented hybrid DNN approach. Others (e.g. Jiang et

al. ([40])) show promising results for DNNs but with a slightly different task again

(portfolio management). So, results for different tasks in the domain of stock mar-

kets mostly with DNNs are mixed. It is certainly not decided yet, which approach

works best for the different tasks discussed in this area of research.

2.3.2 Bond Price Forecasting

The specific task of bond price forecasting is less well studied than the different facets

of stock price forecasting, be it trend or concrete price forecasting. Most the work

on this matter has a financial or economic background and does not investigate

specific algorithms for forecasting the bond price or a trend for the bond price

development. Two sources from the area of computer science, which will be used for

creating a baseline for the later introduced work here are the Kaggle challenge on

bond price forecasting ([69]), which provides a first idea of the necessary quality for

satisfactory results. In addition, there is the work by Ganguli et al. ([23]), which

compares different approaches for bond price forecasting including autoregressive-

moving average models (ARMA), similar to the earlier mentioned ARIMA model,

regression trees, random forests as well as ANNs. Ganguli et al. ([23]) conclude

that neural networks perform best for this task. They use neural networks with

just two layers for this task using Levenberg-Marquardt optimization. They also

report that more complex networks (meaning a higher number of neurons) yield a

better performance on the test set while compared to two-layer networks with fewer

neurons. The fact that increasing complexity improves performance is another hint

why the implementation and evaluation of the more complex LSTM-based approach

might prove successful.

Contrary to the here proposed solution however, is the fact that the information,

which they use is limited to the information directly associated with the bond. This

involves data that is slightly more than in a pure technical analysis but still not a

fundamental analysis in the sense that it uses all the relevant data associated with

the bond pricing. Ganguli et al. ([23]) use the same data which is used in the Kaggle

competition. Columns of this data set are labelled as the following as can be found

on Kaggle ([69]):

• id: id of the row

• bond id: id of the bond (only in training data)

29

2 Related Work

• trade price: the price of the corresponding trade

• weight: weights the row for the evaluation process in the challenge. Long

periods of no trading result in a higher weight for the row (assumption that

price is correct if longer constant)

• current coupon: coupon at the time of the trade (definition of coupon later

in section about government bonds)

• time to maturity: time until the bond has to be paid back (more details also

later)

• is callable: true/false. Right of the issuer to buy back the bond before

maturity date is reached

• reporting delay: time difference between trade and report of the trade

• trade size: amount of the trade

• trade type: between customers or dealers

• curve based price: A fair price estimate based on implied hazard and fund-

ing curves of the issuer of the bond

• received time last diff{1-10}: The time difference between the trade and

that of the previous {1-10}

• trade price last{1-10}: trade price of the last {1-10} trades

• trade size last{1-10}: trade size of the last {1-10} trades

• trade type last{1-10}: trade types of the last {1-10} trades

• curve based price last{1-10}: curve based price of the last {1-10} trades

In total, the data set contains around 750000 rows, which equals 750000 bond trades.

It is important to notice that these are not 750000 different bonds. Many of the rows

(trades) in the data set refer to the same bond identified by the bond id. Overall,

there are about 3500 different bonds. Noteworthy at this point is also that most

of the information found in a row is duplicate information that is also found in a

different row. By formulating the problem in this manner it seems that it is tried

to shift the task from time sequence modeling to a task where the development of

the price over time is not represented in greater detail apart from the last 10 prices,

types and sizes.

30

2 Related Work

2.4 Effects of Economic Indicators on Government Bond

Prices

Related work on bond price forecasting focuses mainly on the bond price develop-

ment itself and does not include many external features for model building. This is

often called a technical analysis. However, also the analyses seen in the related work

do use additional information, which is not regularly used in technical analysis, e.

g. the type of the buyer/seller. This already provides a hint that additional infor-

mation for price forecasting might be helpful. This work will study the possibilities

of forecasting bond prices and their trends with past bond price data enriched by

economic data as bond price development is strongly connected to the development

of (national) economy ([27]).

This section studies the effect of economic development on bond prices for the pur-

pose of identifying relevant economic measures, which will be used as features in

the later model design. First, before studying economic indicators with impact on

bond prices, government bonds and especially the German bonds, as these are the

ones, which will be used in the experiments for this work, will be explained. Once

the essential information on bonds is provided, it will be investigated how bond

pricing and (national) economic indicators intertwine. In this part of this work,

this investigation is limited to related work, of which the majority has a finance

or economics background. Later, when experiments will be conducted, a possible

selection of features of the total number of economic indicators will be discussed.

2.4.1 Federal or Government Bonds

Federal or government bonds are debt securities issued by a government to sup-

port government spending ([36]). The exact terms and conditions for these bonds

vary from government to government. What the majority has in common is the

mechanism that an investor provides equity to the government, which agrees to pay

back the exact amount agreed on at a later point in time. This alone would not be

appealing for investors as they receive the exact amount of money back at the end

of the debt when the maturity date is reached. In addition to the original amount,

investors normally receive an annual interest rate payment, called coupon. This can

be fixed or reliant on a different measure and is defined when the bond is handed

out by the government ([33]). This issuing process is normally conducted by the

federal bank of the corresponding government on a regular basis, several times a

year. Most countries’ federal banks publish a calendar, which includes fixed dates

for the issues of bonds. Maturities and coupons of bonds can vary vastly, which is

31

2 Related Work

another reason why this work focuses on German bonds (in addition to data avail-

ability). Investors with a long-term investment strategy (e.g. pension funds) use

bonds frequently as a tool to secure their assets over long time as governments (at

least a high number of them) do not have the reputation to go bankrupt, which

makes them a rather non-risky investment. This can also be observed in the high

number of countries that Moody’s (one of the three large rating agencies) rates as

investment grade ([50]). A similar situation could be found at one of the other

well-known rating agencies but is not reported here ([83]). Another property, which

is shared by bonds is that they are tradeable on the secondary market. This means

that investors can not only fund the government directly by buying a bond from the

government when issued but bonds can also be traded between investors, which is

why they function similarly to stocks. Some bonds even allow a separate trading of

coupon and investment.

2.4.2 Bond Price Influencing Indicators as Found in Related Work

The question,, which indicators influence the bond price development, has been

around for a long time. Macaulay ([48]) started searching an answer to that ques-

tion in the 1930s already and it is continued today by other researchers ([27]).

Macauley focused mainly on meta information of the bond price like curvature or

duration. Curvature and duration can be calculated directly from the properties of

the bond ([48]). In addition, there are many other bond influencing indicators. A

brief overview on the different indicator categories with examples, which are reported

to influence bond prices are given below.

Technical information means any information either directly available with the

bond like maturity or yield or information, which can be calculated from the prop-

erties of the bond like convexity, curvature or duration ([48]).

Base (or bank) rates are possibly the most influential indicators apart from

technical information itself for bond prices ([48],[64]). Base rates are the interest

rates, which are the rates used by a federal bank of a government or a monetary

union to lend money to the banks within the monetary union. The bond price of a

nation is however not only influenced by the base rate of the corresponding federal

bank but also by base rates defined by federal banks of nations, which have a strong

economic relation to each other. This effect is well investigated for the United States

of America (USA) ([64]). For German bonds this is not as well studied. However, as

32

2 Related Work

a nation, which is highly connected in global trade, it seems reasonable to assume a

similar mechanism which would then assume following federal banks’ base rates to

be influential:

• European Central Bank (ECB)

• Federal Reserve (FED)

• Bank of England (BoE)

• Bank of Japan (BoJ)

• Schweizerische Nationalbank (SNB)

• Bank of Canada (BoC)

• Reserve Bank of Australia (RBA)

Credit ratings are also reported to have a major impact on bond pricing ([34]).

However, the change of credit rating, which would then influence the bond price

in a later model is a rather rare event. For the chosen domain of German bonds

for example, the credit rating did not change for the last six years ([83]). This is

why the credit rating might be less useful for this work but it is certainly highly

impactful.

Financial market rates , similar to base rates, are rates, at which banks lend

other banks money. Mostly, on a short term basis. Financial market rates are

adapted on a daily basis and have the reputation of influence on bond prices as

well ([48],[64]). The most important for the European and therefore for the German

market are:

• EURIBOR and

• LIBOR

Stock indices as a indicator for the development of the economy in a nation or

union of nations are also reported to impact bond prices ([66]). Applying this idea

to the German bond would yield the following stock indices as relevant (possibly

in this order) although it is not exactly reported, which of the following indices

influences the price more or less strongly:

• DAX

33

2 Related Work

• Dow Jones

• NASDAQ

• S&P 500

• EURO STOXX

• FTSE

• RTS

• Nikkei

Economic data publications , lastly, can have an impact on bond prices. There

are various different types of economic data, of which the following are reported

to influence either the US bond price or the German bond price ([1],[3],[24]) and

therefore are candidates for a later model implementation:

• payroll

• industrial production

• new home sales

• durable goods orders

• the producer price index

• the consumer price index

• the consumer confidence index

• the ISM manufacturing index (formerly NAPM index)

• housing starts

• initial jobless claims

• Euro aggregated PMI (Purchasing Manager’s Index)

• Euro aggregated PPI (Producer Price Index)

• Euro aggregated M3 (Measure of money supply)

• unemployment

34

2 Related Work

• DE unemployment

• FR unemployment change

• FR industrial production

• FR business confidence

• FR consumer price index

• IT consumer price index

• durable goods orders

• housing starts

• initial jobless claims

• consumer confidence

• new home sales

• M2 medians

• Chicago PMI (purchasing managers index)

• consumer confidence

• employment cost index

• industrial production

• Michigan sentiment, final(University of Michigan Consumer Sentiment Index)

• real GDP, advance

• real GDP, final

• retail sales

35

3 German Federal Bond (Bund) Data

3 German Federal Bond (Bund) Data

In this section, the reasons for choosing German bond prices as the domain for the

model development are explained and the data, which will be used for training the

model, is introduced including the sources of the data.

3.1 Choice for Bunds as Government Bonds

Limiting the scope of the models for bond price forecasting is a reasonable idea, as

the general mechanism, which describes the bond price development, is yet unknown.

Starting model development for this task right at the beginning with the most

complex model trying to explain multiple or even all bond price developments in

one model is not part of this work. However, at the moment, the goal of producing

reasonable forecasts for bonds of a single country is sufficiently challenging.

This explains the choice for one country but the choice for German Federal Bonds

(Bunds) is supported by another argument: practical considerations play an impor-

tant role as well. For the model development there are two considerations, which

need to be addressed. First, in addition to information on the general mechanisms

of bond price development, it is desirable to find related work on the bond price

development specifically for the chosen country. This will lead to countries, which

have had a large economy over the last years, as the impression arises, that these are

the ones economic research pays more attention to. Secondly and essential for any

model development, will be the availability of a large amount of high quality data.

There are possibly more candidates, which fulfill these criteria. Due to geographical

vicinity the choice then fell on German Federal Bonds (Bunds).

3.2 Bund Data

As the data used for model development and feature selection and engineering is

chosen, questions about the source of the data and the Bunds in general are to

be answered in this section. The source of the data is the German Central Bank

(Bundesbank), which publishes the latest information on Bunds on a daily basis.

As common for the majority of countries, Germany has a range of different secu-

rities, to which Bunds also belong. Countries normally offer different bonds, most

often characterized by maturity, where a higher maturity yields a higher interest

rate. The exact maturity then varies from country to country, starting at one year

(e.g. USA: T-Bills ([75])) and ending at 50 years (e.g. France: Obligations assim-

ilables du Trésor ([76])). Bunds have two different maturities, 10 and 30 years, of

36

3 German Federal Bond (Bund) Data

which the 10 year Bunds account for the larger part of the Bund debt (17, [18]).

Their prices are expected to be impacted by Germany’s economic development, since

a major component of a bond price in general is the credit risk of the bond issuing

government. On the Bundesbank’s website, the importance of Bunds is illustrated

with the following figure about the share of total government dept between the

different securities including the Bunds:

Figure 17: Shares by security of total German debt ([18]).

Another important point to make, before moving on to the exploratory analysis

of the Bund data, is the distinction between primary and secondary market. The

primary market is the market, in which a bond is issued from the government to the

bond holder. As this situation, in which a Bund is issued, does not occur often (in

the observed time span - which is discussed in the next paragraph - the maximum

number of Bunds issued per year is five), this work focuses on the secondary market.

The secondary market is the market, in which third parties can acquire bonds from

other bond holders. The government is not involved in transactions of this market.

3.3 Exploratory Analysis of Bund Data

Now, that it is established, which data is used in particular and what different

Bunds (Bund 10 and Bund 30) are included in this data, it seems reasonable to take

a closer look at the selected data. The data available starts at the 3rd of January

2011 and ends at the 15th of February 2018. This results in around seven years of

37

3 German Federal Bond (Bund) Data

Bund information. Bund information is provided on a trading-daily-basis, meaning

that information is not available for seven days per week but rather for five days or

even fewer days, in case there is a public holiday. Considering this, the total amount

of trading days is 1797. For each of the 1797 trading days and for each active Bund,

the following information can be retrieved on the website ([7]) on a daily basis:

• ISIN (International Securities Identification Number)

• Bezeichnung (name)

• Fälligkeit (maturity)

• Restlaufzeit (time to maturity)

• Emissionsvolumen (volume of issue)

• Kurs (price / rate)

• Rendite in Prozent (yield)

• Netto-Rendite in Prozent (net yield)

• Kurs plus Stückzinsen (price plus interest)

Overall, there are 61 Bunds active in the given time span. As some reach their

maturity and others are issued in this time span, this equals 74963 data points. The

whole time span ranges from the 3rd Jan 2011 to the 15th Feb 2018. The line graph

one the next page illustrates the price development of every Bund in the available

period per trading day.

38

3 German Federal Bond (Bund) Data

F
ig

u
re

18
:

B
u
n
d

10
an

d
30

fr
om

3r
d

J
an

20
11

to
15

th
F

eb
20

18
.

39

3 German Federal Bond (Bund) Data

Over the whole time span, there is a minimum of 25 active Bunds and a maximum

of 39 active Bunds per year. An overview of the number of active Bunds per year is

given in the figure below:

Figure 19: Active Bunds per year.

A closely linked question which is answered in the following graph is how many

Bunds are issued and how many expire in each year. This changes from year to year

but in the time span given, more Bunds are issued than expired per year on average.

Figure 20: Issued/expired Bunds per year.

Not mentioned in the analysis of the data so far, has been the amount of 10 and

30 year Bunds. It is known, that both types of Bunds are in the sourced Bundesbank

40

3 German Federal Bond (Bund) Data

data, but the exact shares have not been discussed. The following graph illustrates

what might have been already guessed from the supreme importance of 10 year

Bunds, that Bund 10 are more than twice as frequent as 30 year Bunds:

Figure 21: Share of 10 and 30 year Bunds over time span.

This fact, that the Bund 10 are represented in a higher number than the Bund

30 might be important, although the goal will be to develop one model for the two

Bund types. This choice can be justified, because there should not be a difference

between the two which cannot be explained by the fundamental data of the Bund.

Otherwise, risk-less profits would be the consequences, since two identical products

would be sold for two different prices. Further information on how Bund types are

handled is presented in section 5.1.

In the following section, the economic indicator data available will be studied in

more detail.

41

4 Macro-Economic Data

4 Macro-Economic Data

This section will describe the available data sources for macro-economic data. There

are three natural resources available to this work to obtain macro-economic data for

Germany, which are the governmental sources of the Statistical Office of the Eu-

ropean Union (Eurostat) ([16]), the Federal Statistics Office of Germany (Statistis-

ches Bundesamt) ([70]) and the commercial application Eikon by Thomson Reuters

([57]). The amount of economic data provided by the mentioned institutions is enor-

mous. Not all data therefore is processed in this work. A reasonable pre-selection

is essential to (a) not exhaust the means of this work and (b) also to sustain a

certain level of interpretability. With the theoretical considerations on economic

data, which effects bond price development, a promising starting point is set. In

addition, Thomson Reuters provides a set of top economic indicators for economic

development for most countries. The intersection between Thomson Reuters’ top

indicators for Germany and the theoretical considerations described earlier (2.4) will

undergo the pre-selection process for promising features.

4.1 Economic Indicators with Relevance for Germany

Thomson Reuters’ Eikon, a commercial financial analyis tool, provides extensive

financial data for all kinds of institutions and also countries as well as monetary

union. Both are of interest for this work with Germany as a member of the European

monetary union. One feature, which is provided by Eikon, is the rating of all their

available economic data. The most relevant - relevance defined by Thomson Reuters

here - are then combined in so-called top indicators per country and monetary union.

These indicators are not necessarily data from the country or monetary union itself.

Also, data from interconnected economies can be found. For example, German top

indicators include European data and vice versa. The full list of top indicators for

Germany can be found in the table 1 on the next page.

42

4 Macro-Economic Data

C
a
te
g
o
ry

N
a
m
e

R
IC

S
ta

rt
D
a
te

H
is
t.

E
n
d

D
a
te

S
o
u
rc
e

F
re

q
u
e
n
c
y

C
on

su
m

er
S
ec

to
r

R
E

T
A

IL
S
A

L
E

S
E

X
C

L
C

A
R

S
(C

A
L

A
D

J
)

X
-1

2-
A

R
IM

A
a
D

E
R

S
L

S
/
C

A
0
1
.0

1
.9

4
1
9
9
4

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
C

on
su

m
er

S
ec

to
r

R
E

T
A

IL
S
A

L
E

S
E

X
C

L
C

A
R

S
(C

A
L

A
D

J
)

X
-1

2-
A

R
IM

A
a
D

E
R

T
L

P
X

V
F

/
A

0
1
.0

1
.9

4
1
9
9
4

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
C

on
su

m
er

S
ec

to
r

R
E

T
A

IL
S
A

L
E

S
E

X
C

L
U

D
IN

G
C

A
R

S
IN

D
E

X
a
D

E
R

S
L

S
X

M
V

F
/
C

0
1
.0

1
.9

4
1
9
9
4

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
C

on
su

m
er

S
ec

to
r

P
O

P
U

L
A

T
IO

N
(3

1.
D

E
C

F
R

O
M

20
03

,
P

A
N

B
D

F
R

O
M

19
91

)
a
D

E
P

O
P

T
O

T
0
1
.0

1
.5

0
1
9
5
0

2
0
1
6

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

A
n
n
u
a
l

C
on

su
m

er
S
ec

to
r

L
E

N
D

T
O

D
O

M
E

N
T

P
&

H
H

,
O

T
H

L
O

A
N

T
O

E
M

P
L

&
O

T
H

IN
D

,
T

O
T

A
L

,
A

L
L

B
N

K
S

a
D

E
O

L
E

M
P

IN
D

1
0
.0

1
.6

8
1
9
6
8

Q
4

2
0
1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

Q
u
a
rt

er
ly

E
x
te

rn
al

S
ec

to
r

B
O

P
C

A
P

IT
A

L
&

F
IN

A
N

C
IA

L
A

C
C

O
U

N
T

B
A

L
A

N
C

E
(P

A
N

B
D

M
0
79

0)
a
D

E
C

A
F

B
A

L
A

0
1
.0

1
.7

1
1
9
7
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

C
U

R
R

E
N

T
A

C
C

O
U

N
T

B
A

L
A

N
C

E
a
D

E
C

U
R

A
C

0
1
.0

1
.7

1
1
9
7
1

J
an

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

B
O

P
:

E
X

P
O

R
T

S
F

O
B

a
D

E
E

X
P

/
A

0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

B
O

P
:

IM
P

O
R

T
S

C
IF

a
D

E
IM

P
/
A

0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

B
O

P
:

V
IS

IB
L

E
T

R
A

D
E

B
A

L
A

N
C

E
a
D

E
T

B
A

L
/
A

0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

E
X

P
O

R
T

S
O

F
G

O
O

D
S

(F
O

B
)

a
D

E
E

X
P

G
D

S
B

/
A

0
1
.0

1
.6

2
1
9
6
2

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

IM
P

O
R

T
S

O
F

G
O

O
D

S
(C

IF
)

a
D

E
IM

P
G

D
S
B

/
A

0
1
.0

1
.6

2
1
96

2
J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

V
IS

IB
L

E
T

R
A

D
E

B
A

L
A

N
C

E
D

E
T

B
A

L
=

E
C

I
0
1
.0

1
.6

2
1
9
6
2

J
an

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

IN
T

E
R

N
A

T
IO

N
A

L
R

E
S
E

R
V

E
S

a
D

E
F

G
R

E
S

1
2
.0

1
.9

8
1
9
98

F
eb

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

T
O

T
A

L
E

X
P

O
R

T
S

O
F

G
O

O
D

S
a
D

E
E

A
E

X
P

G
D

S
/
A

0
1
.0

1
.7

1
1
9
71

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

T
O

T
A

L
IM

P
O

R
T

S
O

F
G

O
O

D
S

a
D

E
IM

P
G

D
S
/
A

0
1
.0

1
.7

1
1
9
7
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
E

x
te

rn
al

S
ec

to
r

G
E

R
M

A
N

M
A

R
K

S
T

O
U

S
$

(M
T

H
.A

V
G

.)
a
D

E
X

R
U

S
D

0
1
.0

1
.5

7
1
9
5
7

F
eb

1
8

B
a
n
k

o
f

E
n
g
la

n
d

M
o
n
th

ly

In
d
u
st

ry
S
ec

to
r

P
R

O
D

U
C

T
IV

IT
Y

:
O

U
T

P
U

T
P

E
R

M
A

N
-H

O
U

R
W

O
R

K
E

D
,

M
&

Q
&

M
F

G
S
C

T
(B

+
C

)
a
D

E
L

P
O

U
T

M
H

W
/
C

A
0
1
.0

1
.9

1
1
9
9
1

D
ec

1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
In

d
u
st

ry
S
ec

to
r

U
L

C
P

E
R

U
N

IT
O

F
T

U
R

N
O

V
E

R
O

N
H

R
L
Y

B
A

S
IS

(C
H

A
IN

-L
IN

K
E

D
)

a
D

E
P

R
L

C
P

R
U

N
/
C

A
0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

Q
u
a
rt

er
ly

In
d
u
st

ry
S
ec

to
r

IN
D

L
P

R
O

D
:

IN
D

U
S
T

R
Y

IN
C

L
C

N
S
T

R
(C

A
L

A
D

J
)

a
D

E
IP

T
/
C

A
0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
In

d
u
st

ry
S
ec

to
r

IN
D

L
P

R
O

D
:

M
A

N
U

F
A

C
T

U
R

IN
G

(C
A

L
A

D
J
)

a
D

E
IP

M
A

N
/
C

A
0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
In

d
u
st

ry
S
ec

to
r

M
A

N
U

F
A

C
T

U
R

IN
G

O
R

D
E

R
S

a
D

E
N

O
M

F
G

/
A

0
1
.0

1
.9

1
1
9
9
1

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
In

d
u
st

ry
S
ec

to
r

M
A

N
U

F
A

C
T

U
R

IN
G

O
R

D
E

R
S

(C
A

L
A

D
J
).

a
D

E
N

O
M

F
G

/
C

A
0
1
.0

1
.5

2
1
9
5
2

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
In

d
u
st

ry
S
ec

to
r

IN
S
O

L
V

E
N

C
IE

S
-

B
U

S
IN

E
S
S

E
N

T
E

R
P

R
IS

E
S

a
D

E
IN

S
O

L
P

E
0
1
.0

1
.7

5
1
9
7
5

D
ec

17
F

ed
er

a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
L

ab
ou

r
M

ar
ke

t
E

M
P

L
O

Y
E

D
P

E
R

S
O

N
S

(R
E

S
ID

E
N

C
E

C
O

N
C

E
P

T
,

IL
O

)
a
D

E
E

M
P

D
E

/
A

0
1
.0

1
.9

2
1
9
9
2

J
a
n

1
8

B
u
n
d
es

a
g
en

tu
r

fu
r

A
rb

ei
t,

G
er

m
a
n
y

M
o
n
th

ly
L

ab
ou

r
M

ar
ke

t
U

N
E

M
P

L
O

Y
M

E
N

T
R

E
G

IS
T

E
R

E
D

(P
A

N
B

D
F

R
O

M
J
A

N
19

92
)

(C
A

L
A

D
J
)

D
E

U
E

M
P

=
E

C
I

1
2
.0

1
.9

1
1
9
9
1

F
eb

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly

L
ab

ou
r

M
ar

ke
t

U
N

E
M

P
L

O
Y

M
E

N
T

:
%

C
IV

IL
IA

N
L

A
B

O
U

R
(%

D
E

P
E

N
D

E
N

T
L

A
B

O
U

R
T

O
D

E
C

1
9
6
8)

a
D

E
U

N
R

0
1
.0

1
.5

0
1
9
50

F
eb

1
8

B
u
n
d
es

a
g
en

tu
r

fu
r

A
rb

ei
t,

G
er

m
a
n
y

M
o
n
th

ly
L

ab
ou

r
M

ar
ke

t
W

A
G

E
&

S
A

L
A

R
Y

,
O

V
E

R
A

L
L

E
C

O
N

O
M

Y
-

O
N

A
M

T
H

L
Y

B
A

S
IS

(P
A

N
B

D
M

0
1
9
1
)

a
D

E
W

S
T

O
T

0
1
.0

1
.6

0
1
9
60

*
J
a
n

2
0
1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
L

ab
ou

r
M

ar
ke

t
W

A
G

E
&

S
A

L
A

R
Y

:
O

N
H

R
L
Y

.
B

A
S
IS

-
P

R
D

G
.

S
E

C
T

O
R

(B
D

H
R

W
A

G
E

F
)

a
D

E
W

G
S
L

H
R

B
S
/
C

0
1
.0

1
.6

0
1
9
60

*
J
a
n

2
0
1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k
/
T

h
o
m

so
n

R
eu

te
rs

M
on

th
ly

L
ab

ou
r

M
ar

ke
t

E
M

P
L

O
Y

E
D

P
E

R
S
O

N
S

(R
E

S
ID

E
N

C
E

C
O

N
C

E
P

T
)

((
%

Y
O

Y
)

a
D

E
E

M
P

T
O

O
/
A

0
1
.0

1
.9

3
1
9
9
3

J
a
n

1
8

T
h
o
m

so
n

R
eu

te
rs

M
o
n
th

ly

M
on

ey
&

F
in

an
ce

M
O

N
E

Y
S
U

P
P

L
Y

M
0

a
D

E
M

0
0
1
.0

1
.8

0
1
9
8
0

J
a
n

1
8

T
h
o
m

so
n

R
eu

te
rs

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
M

O
N

E
Y

S
U

P
P

L
Y

-
G

E
R

M
A

N
C

O
N

T
R

IB
U

T
IO

N
T

O
E

U
R

O
M

1
(P

A
N

B
D

M
0
7
9
0
)

a
D

E
M

1
A

B
0
1
.0

1
.7

3
1
9
7
3

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k
/
T

h
o
m

so
n

R
eu

te
rs

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
M

O
N

E
Y

S
U

P
P

L
Y

-
M

2
(C

O
N

T
R

IB
U

T
IO

N
T

O
E

U
R

O
B

A
S
IS

F
R

O
M

M
01

95
)

a
D

E
M

2
B

C
/
A

0
1
.0

1
.6

0
1
9
6
0

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k
/
T

h
o
m

so
n

R
eu

te
rs

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
M

N
Y

.
S
U

P
L

-
M

3
(C

O
N

T
R

IB
T

O
E

U
R

B
A

S
IS

F
M

.
M

01
95

),
F

M
M

06
20

10
E

X
C

a
D

E
M

3
A

B
C

/
A

0
1
.0

1
.6

9
1
9
6
9

J
a
n

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k
/
T

h
o
m

so
n

R
eu

te
rs

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
D

IS
C

O
U

N
T

R
A

T
E

/
S
H

O
R

T
T

E
R

M
E

U
R

O
R

E
P

O
R

A
T

E
a
D

E
P

R
A

T
E

0
7
.0

1
.5

0
1
9
5
0

M
a
r

1
8

E
C

B
-

E
u
ro

p
ea

n
C

en
tr

a
l

B
a
n
k

M
on

th
ly

M
on

ey
&

F
in

an
ce

L
O

N
G

T
E

R
M

G
O

V
E

R
N

M
E

N
T

B
O

N
D

Y
IE

L
D

-
9-

10
Y

E
A

R
S

a
D

E
G

B
O

N
D

0
1
.0

1
.5

7
1
9
57

F
eb

1
8

D
a
ta

st
re

a
m

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
D

A
X

S
H

A
R

E
P

R
IC

E
IN

D
E

X
,

E
P

a
D

E
S
H

R
P

R
C

F
0
9
.0

1
.5

9
1
9
5
9

M
a
r

1
8

R
eu

te
rs

M
o
n
th

ly
M

on
ey

&
F

in
an

ce
L

E
N

D
IN

G
T

O
E

N
T

E
R

P
R

IS
E

S
&

IN
D

IV
ID

U
A

L
S

a
D

E
B

A
N

K
L

P
A

0
1
.0

1
.5

0
1
9
5
0

*
J
a
n

2
0
1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly

N
at

io
n
al

A
cc

ou
n
ts

G
D

P
a
D

E
G

D
P

/
C

A
0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

F
ed

er
al

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

C
O

N
S
U

M
E

R
E

X
P

E
N

D
IT

U
R

E
a
D

E
G

P
C

/
C

A
0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

G
O

V
E

R
N

M
E

N
T

C
O

N
S
U

M
P

T
IO

N
a
D

E
G

E
X

P
/
C

A
0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

F
IX

E
D

IN
V

E
S
T

M
E

N
T

a
D

E
G

F
C

F
/
C

A
0
1
.0

1
.9

1
19

9
1

Q
4

2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

C
H

A
N

G
E

IN
S
T

O
C

K
S

a
D

E
G

F
IC

H
G

0
1
.0

1
.9

1
1
99

1
Q

4
2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

E
X

P
O

R
T

S
O

F
G

O
O

D
S

&
S
E

R
V

IC
E

S
a
D

E
E

X
P

/
C

A
0
1
.0

1
.9

1
1
99

1
Q

4
2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

IM
P

O
R

T
S

O
F

G
O

O
D

S
&

S
E

R
V

IC
E

S
a
D

E
IM

P
/
C

A
0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

G
N

I
a
D

E
N

IG
/
A

0
1
.0

1
.9

1
1
9
9
1

Q
4

2
01

7
D

eu
ts

ch
e

B
u
n
d
es

b
a
n
k

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

IP
D

O
F

G
D

P
a
D

E
G

D
P

D
E

F
/
A

0
1
.0

1.
9
1

1
9
9
1

Q
4

2
0
1
7

T
h
o
m

so
n

R
eu

te
rs

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

P
E

R
S
O

N
A

L
S
A

V
IN

G
S

R
A

T
IO

(P
A

N
B

D
Q

01
91

)
a
D

E
G

P
S
/
A

0
1
.0

1
.6

0
1
9
6
0

Q
4

2
0
1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

D
IS

P
O

S
A

B
L

E
IN

C
O

M
E

(P
A

N
B

D
Q

01
91

)
a
D

E
D

IP
IN

C
/
A

0
1
.0

1
.6

0
1
9
6
0

Q
4

2
0
1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k
/
T

h
o
m

so
n

R
eu

te
rs

Q
u
a
rt

er
ly

N
at

io
n
al

A
cc

ou
n
ts

N
A

T
IO

N
A

L
IN

C
O

M
E

:
E

N
T

R
E

P
R

E
N

E
U

R
IA

L
&

P
R

O
P

E
R

T
Y

IN
C

O
M

E
a
D

E
G

E
T

P
R

IN
/
A

0
1
.0

1
.9

1
1
9
9
1

Q
4

2
0
1
7

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

Q
u
a
rt

er
ly

P
ri

ce
s

C
P

I
(C

A
L

A
D

J
)

a
D

E
C

P
I/

A
0
1
.0

1
.5

0
1
9
5
0

F
eb

1
8

D
eu

ts
ch

e
B

u
n
d
es

b
a
n
k

M
o
n
th

ly
P

ri
ce

s
C

P
I:

T
O

T
A

L
a
D

E
C

P
I

0
1
.0

1
.5

0
1
9
5
0

F
eb

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
P

ri
ce

s
H

IC
P

:
T

O
T

A
L

a
D

E
H

IC
P

0
1
.0

1
.9

6
1
9
9
6

F
eb

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
P

ri
ce

s
E

X
P

O
R

T
P

R
IC

E
IN

D
E

X
a
D

E
E

X
P

0
1
.0

1
.6

2
1
9
6
2

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
P

ri
ce

s
IM

P
O

R
T

P
R

IC
E

IN
D

E
X

a
D

E
IM

P
0
1
.0

1
.6

2
1
9
6
2

J
a
n

1
8

F
ed

er
a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly
P

ri
ce

s
P

P
I:

IN
D

U
S
T

R
IA

L
P

R
O

D
U

C
T

S
,

T
O

T
A

L
,

S
O

L
D

O
N

T
H

E
D

O
M

E
S
T

IC
M

A
R

K
E

T
a
D

E
P

P
I

0
1
.0

1
.5

0
1
9
5
0

J
a
n

18
F

ed
er

a
l

S
ta

ti
st

ic
a
l

O
ffi

ce
,

G
er

m
a
n
y

M
o
n
th

ly

S
u
rv

ey
s

B
U

S
IN

E
S
S

E
X

P
E

C
T

A
T

IO
N

S
(P

A
N

G
E

R
M

A
N

Y
)

D
E

B
U

S
E

=
E

C
I

0
1
.0

1
.9

1
1
99

1
F

eb
1
8

If
o

-
In

st
it

u
te

fo
r

E
co

n
o
m

ic
R

es
ea

rc
h
,

U
n
iv

er
si

ty
o
f

M
u
n
ic

h
M

o
n
th

ly
S
u
rv

ey
s

C
O

M
P

O
S
IT

E
L

E
A

D
IN

G
IN

D
IC

A
T

O
R

-
T

R
E

N
D

R
E

S
T

O
R

E
D

a
D

E
C

L
E

A
D

0
1
.0

1
.6

1
1
9
6
1

D
ec

1
7

M
a
in

E
co

n
o
m

ic
In

d
ic

a
to

rs
,c

o
p
y
ri

g
h
t

O
E

C
D

M
o
n
th

ly
S
u
rv

ey
s

C
O

N
S
U

M
E

R
C

O
N

F
ID

E
N

C
E

IN
D

IC
A

T
O

R
-

G
E

R
M

A
N

Y
a
D

E
B

U
C

F
M

/
A

0
1
.0

1
.8

5
1
9
8
5

F
eb

1
8

D
G

E
C

F
IN

-
D

ir
ec

to
ra

te
G

en
er

a
l

fo
r

E
co

n
o
m

ic
a
n
d

F
in

a
n
ci

a
l

A
ff

a
ir

s
M

o
n
th

ly
S
u
rv

ey
s

T
R

A
D

E
&

IN
D

:
B

U
S

C
L

IM
A

T
E

,
IN

D
E

X
D

E
B

U
S
S
=

E
C

I
0
1
.0

1
.9

1
1
9
9
1

F
eb

1
8

If
o

-
In

st
it

u
te

fo
r

E
co

n
o
m

ic
R

es
ea

rc
h
,

U
n
iv

er
si

ty
o
f

M
u
n
ic

h
M

o
n
th

ly

T
ab

le
1:

R
eu

te
rs

to
p

ec
on

om
ic

in
d
ic

at
or

s
fo

r
G

er
m

an
y.

43

4 Macro-Economic Data

4.2 Feature Engineering: Economic Indicators as Additional

Features

One essential step to later improve traditional forecasts must be the selection of

relevant economic features of the above mentioned. The major aim of this selection

is to avoid over-fitting, improve training duration and interpretability. As literature

does not specify, how development of a national economy, the world economy in total

or other influential economies effect bond prices in greater detail, this needs to be

investigated for later model development. Although research is vague about effects

of the majority economic indicator, some must be seen as influential, e.g. the central

banks’ base rates. The investigation of economic indicator relevance in this work

is limited by the nature of the bond data as time series data. Prominent feature

selection methods like Principal Component Analysis (PCA) are not intended to be

used for time series data. That is the reason why in this work correlations between

economic indicators and bond price are the main criterion for feature selection.

In addition, correlations between economic indicators themselves will be tested to

avoid the inclusion of redundant information to the later model building. Detailed

information on the feature selection is provided within the next paragraphs.

4.2.1 Economic Indicators and Bond Price Correlations

The first step to identify relevant economic indicators is to test correlations between

the indicators and the bond price. Since there is a large number of Bunds, for which

correlations between indicators are tested, the average of the correlations for each

Bund and economic indicator is used as the result for the correlation between Bund

prices in general and the specific economic features.

The identification of possibly relevant economic features then has been conducted

in three parts. First, the overall correlations were calculated, meaning how Bund

prices and economic features correlate over the whole time span in which the Bunds

are active. Second, what is denoted here as short-term and long-term correlations

has been calculated. This is motivated by the idea that certain economic features

might effect the Bund price only when the remaining time to maturity is short

or long. Short-term correlations were then identified on Bunds with a maturity

less than two years. Long-term correlations on the other hand, were set to be

those with a time to maturity longer than two years. This distinction might seem

arbitrarily to the reader and although it is partially true that the distinction could

have been chosen to be made otherwise. The results of the correlations of Bund

price and economic features in the following tables of overall correlations (2), short-

44

4 Macro-Economic Data

term correlations (3) and long-term correlations (4) indicate that the decision is

reasonable. This might need additional explanation which can be found in the

remaining lines of this subsection.

Overall Correlations The overall correlations table (2) does not seem promising

at first with no economic features correlating strongly to the Bund prices, and the

ten highest correlations between 0.467 and 0.481. However, the economic features,

which would be expected to occur in this table, when consulting economics research

can be found, e.g. ECB policy rates, labour costs and consumer prices.

Econ. Indicator (RIC) Avg. Correlation Description

aDEPRLCPRUN CA 0.481 Unit labour cost,
hourly basis (Germany)

aXZBIDR 0.478 Euro zone,
ECB main fixed rate

aDECPI A 0.475 Consumer price index,
seasonally adjusted (Germany)

aDEHICP 0.475 Harmonised consumer
price index (Germany)

aDECPI 0.472 Consumer price
index (Germany)

sp500 low ld 0.470 Lowest rate of S%P 500
of last day of the month

aDEINSOLPE 0.469 Insolvencies,
businesses (Germany)

dax tief avg 0.468 Average (month) of
lowest DAX rate for each day

dax erster avg 0.467 Average (month) of
opening DAX rate for each day

dax hoch avg 0.467 Average (month) of
maximum DAX rate for each day

Table 2: Average absolute overall correlations between Bund price and economic
indicators (identified by RIC=Reuters Instrument Code).

As the low number of correlations contrasts many work in economics as intro-

duced earlier (2.4,) which does find strong effects of certain economic features to

government bond price development, this leads to the idea that this overall cal-

culation of correlation might be too demanding. Possibly, different effects can be

observed with different remaining times to maturity. The following two tables of

short term correlations (3) and long-term correlations (4) support this claim.

45

4 Macro-Economic Data

Short Term Correlations In short-term correlations, identified correlations climb

until 0.710 for ECB deposit rates which is closer to the expectations from an eco-

nomic point of view. However, remaining economic indicators do not meet the

expectations in short-term correlations as can be seen in table (3).

Econ. Indicator (RIC) Avg. Correlation Description

EUECBD=ECI 0.710 Euro Zone,
ECB deposit rate

aDELPOUTMHW CA 0.490 Labour productivity
(Germany)

DEZEWC=ECI 0.464 Current economic situation
(Germany)

aDEEMPTOO A 0.451 Employed persons
(Germany)

DEBUSS=ECI 0.429 Business climate
(Germany)

euro stoxx vol last day 0.415 EURO STOXX volume
last day of month

aDEBUCFM A 0.413 Consumer confidence
(Germany)

aDEGPS A 0.386 Personal savings
(Germany)

NASDAQ vol ld 0.352 NASDAQ volume
last day of month

aDEOLEMPIND 0.331 Loans to domestic
employees (Germany)

Table 3: Average absolute short term correlations between Bund price and economic
indicators (identified by RIC=Reuters Instrument Code, if not stock index such as
DAX, NASDAQ or STOXX).

Long Term Correlations Testing for long term correlations, the correlations

rise even higher to a maximum of 0.792 for the ECB main fixed rate. In contrast

to short-term correlations, long-term correlations are also rather high for a variety

of other indicators like labour cost, insolvencies and consumer prices for example.

Details can be found in the following table (4).

At the end, these results do not come as surprising as one might think. Due to the

nature of Bunds, their long-term investment character with very little risk involved,

it seems reasonable, that short-term changes in the economy effect the Bund price

differently than long-term changes. Slight economic changes do not seem to tangle

the Bund price significantly on a short-term, as the risk can be considered low due to

46

4 Macro-Economic Data

Econ. Indicator (RIC) Avg. Correlation Description

aXZBIDR 0.792 Euro Zone,
ECB main fixed rate

aDEPRLCPRUN CA 0.779 Unit labour cost,
hourly basis (Germany)

aDEINSOLPE 0.773 Insolvencies,
businesses (Germany)

aDEPRATE 0.770 Policy rate,
discount rate (Germany)

aXZECB 0.770 Policy rate,
ECB main refinancing rate

aDECPI A 0.767 Consumer price index
(Germany), seasonally adjusted

aDECPI 0.764 Consumer price index
(Germany),

aDEHICP 0.763 Harmonised consumer
price index (Germany)

aDEGDPDEF A 0.760 Implicit price
deflator (Germany)

aDEM1AB 0.757 Domestic finance,
money supply (Germany)

Table 4: Average absolute long term correlations between Bund price and economic
indicators (identified by RIC=Reuters Instrument Code).

the fact, that the maturity soon will be reached. On the contrary, for long remaining

times to maturity, these small changes might disturb the Bund price. This is caused,

since risk might be seen as increasing due to the long remaining time to maturity

and possibly evolving economic problems of the bond issuing government.

This limited investigation of economic effects on Bond prices showed that

1. the effects of economic indicators as claimed by economists (2.4) can be ob-

served in the data for German Bund price development

2. the effects are different depending on the remaining time to maturity

3. there are promising economic features, which can be later used for model

building

At this point, it remains open, how the economic indicators themselves are inter-

twined with each other. This question will be necessary to answer to achieve the

actual goal of this chapter of identifying the indicators, which will be later used for

model building.

47

4 Macro-Economic Data

4.2.2 Correlations between Economic Indicators

To study the relation between the economic indicators themselves, their correlations

to each other are computed. This will help to exclude superfluous information by

later including multiple economic features in a model, which carry the same infor-

mational value. In the following heat map (22), the highest short-, long-term and

overall correlations calculated in the subsection prior to this are combined and their

correlations to each other are depicted. Red indicates high correlations, whereas blue

means hardly any correlation. Note that stock price information such as NASDAQ,

EURO STOXX and DAX are not included in this visualization.

Figure 22: Correlations between top 10 overall, top 10 short term and top 10 long
term economic indicators.

48

4 Macro-Economic Data

Now, as the relations between the economic indicators themselves become clearer,

this helps to identify relevant indicators for later modelling. It is important to note,

that not every blue mark in the map is useful or relevant. It needs to be kept in mind,

that the whole column (or row) needs to be considered to evaluate an indicator’s

relevance. How indicators are selected at the end is discussed next.

4.2.3 Ranking the Relevance of Economic Indicators

Since the selection process of this work is certainly not the only reasonable approach

and there might be others which are even more promising, two different sets of

economic indicators will be tested in model building later. There are good reasons

to further test different indicator sets, but this would expand this already extensive

experimental work even more. In addition, the assumption is, that this should suffice

to study the advantages and disadvantages of adding economic features to Bund

forecasts. This is why only two different sets of economic indicators are introduced

in the following.

Four economic indicators The first approach and a rather straightforward idea

is to simply use the three economic indicators from short- and long-term and overall

correlations with highest correlation to Bund prices. This would lead to including

Unit Labour Cost, ECB Deposit Rate and ECB Main Refinancing Rate in the model.

This also complies with economic research on bond price development. However,

ECB Deposit Rate and ECB Main Refinancing Rate strongly with each other, as can

be seen in the heat map of the prior subsection (22). Therefore, the indicator with

the second highest correlation of the long-term correlations, Insolvency Proceedings

is included as well. An overview of then four indicators can be found in the table

(5) below.

49

4 Macro-Economic Data

Econ. Indicator Description Correlation

aDEPRLCPRUN CA Unit Labour Cost, 0.481 (Overall)

per Unit of Turnover (Hourly)

EUECBD=ECI Policy Rates, 0.708 (Short Term)

ECB Deposit Rate

aXZBIDR Policy Rates, 0.792 (Long Term)

ECB Main Refinancing Rate

aDEINSOLPE Insolvency Proceedings, 0.773 (Long Term)

Enterprises, Total

Table 5: Selection of four promising features for Bund price forecasting.

Another interesting fact, which has been addressed only indirectly yet, is the

question of how these economic indicators develop over time. It is already known,

that they correlate to Bund prices and also how Bund prices develop over the time

(3). However, the precise development of these indicators has not been looked into

yet. This development is depicted in figure (23). Note that the y-axis is scaled to

the range (0,1). This is the same min-max-scaling which will be used later in the

model building. As the original units of these indicators are neither self-explanatory

nor share the same units, this visualization has been chosen. It is believed, that it

does not loose the relevant information about the development of the indicators.

Seven economic indicators The second set of economic indicators is selected

differently. Here, the seven fields with minimal correlation (”most blue fields”) of

the heat map of indicator indicator correlation were selected. At the same time,

fields need to have a correlation to the Bund price development of at least 0.5. This

approach tries to combine the two ideas of having (a) a stronger correlation between

Bund prices and indicators and (b) choosing those indicators, where correlation to

others is not strong to not include already available information.

The choice for seven economic indicators then remains to be explained. Again,

this could be criticized as arbitrarily, but within the experimental nature of this

work this seemed reasonable due to the following reasons. (a) The selection of the

seven indicators included a variety of economic data, which seems relevant because

of the prior correlation analysis and in related, economic work, for example labour

cost, consumer prices, ECB rates and insolvencies. (b) Selecting many more than

the now selected seven indicators might result in lower interpretability. By limiting

the number of indicators to seven here, it is believed to keep the later models simple

50

4 Macro-Economic Data

Figure 23: Development of four selected indicators over Bund data time span.

enough to understand the relevance each indicator plays at the end in forecasting

Bund development. An overview of the second set of economic indicators to be

tested is found in figure (6).

Econ. Indicator Description Correlation

aDEPRLCPRUN CA Unit Labour Cost, 0.778

per Unit of Turnover (Hourly)

aDEHICP Harmonised Consumer Prices 0.763

aDECPI A Consumer Prices 0.764

aDEPRATE Policy Rates, 0.770

Short Term Discount Rate

aXZBIDR Policy Rates, 0.792

ECB Main Refinancing Rate

aXZECB Policy Rates, 0.770

ECB Main Refinancing Rate

aDEINSOLPE Insolvency Proceedings, 0.773

Enterprises, Total

Table 6: Selection of seven promising features for Bund price forecasting.

51

4 Macro-Economic Data

Also for this set of indicators, the development is depicted (24). The visualization

is created in the same way it has been for the set of four indicators (23).

Figure 24: Development of seven selected indicators over Bund data time span.

52

5 Experimental Setup

5 Experimental Setup

In this section, the different experimental setups will be discussed. This is addressed

by the following:

1. The available data will be recapitulated and the fusion of Bund data and

selected economic data will be introduced (5.1).

2. The forecasts will be done with two different time scopes. One experimental

setup will illuminate the next day forecast, whereas the other one investigates

next week forecasts. Further explanation on the chosen time horizons can be

found in the subsection Forecasting with Different Time Horizons (5.2.1).

3. Additional experiments are conducted with different targets. One the one

hand, models for price forecasts will be implemented. On the other hand, the

return, the difference between price at day t and price at day t − 1, will be

modelled. Detailed explanation on this choice can be found in the subsection

Forecasting with Different Targets (5.2.2).

4. In the next part of this section, the choice of implemented models will be

explained, ranging from simple models to more complex neural network based

approaches. Details in section Model Choice for Forecasts (5.3).

5. The four last subsections of this section are rather brief, but they are concerned

with relevant choices, such as

• which features can be incorporated in the various models (5.4)?

• how are the various models expected to generalize (5.5)?

• the introduction of the rolling forecast technique (5.6).

• how are model performances at the end evaluated (5.7)?

Soft- and Hardware Tools Used in this Work Soft- and hardware have not

been discussed so far, and they will not be addressed in greater detail. Nonetheless,

a brief note, on which tools were used throughout the development of this work,

seems appropriate at this point.

This work includes a rather extensive experimental section running different

methods with different configurations on different data. Nevertheless, memory is

not a problem as data sets are still small. However, especially neural network based

approaches are computationally costly and therefore most of this computation has

53

5 Experimental Setup

been conducted on various different servers of the DFKI’s multimedia analysis and

data mining group. They were equipped with 64 to 512 GB of ram group running

on Open Suse, equipped with one to eight NVIDIA GTX 1080 in different versions.

Coding of the models has been done in Python 2 and 3. Parts of the evaluation were

done in Python 2 and 3 as well as in R and MS Excel. Development of Python code

was conducted in Visual Studio Code (Version 1.27.2), while R code was written in

RStudio (Version 1.1.383).

5.1 Training and Test Data

In this subsection, the available data will be discussed as well as the decision of how

to split the data into training and test. This is done in three parts:

1. The available information on the Bund data as seen earlier will be shortly

revised (5.1.1).

2. The economic data discussed earlier will be reviewed in the context of how

this can be used for experimentation (5.1.2).

3. The available and the chosen methods to fuse the data sources of Bund data

and economic data will be addressed (5.1.3).

5.1.1 Bund Data

The Bund data which has already been discussed in detail in a separate section (3)

is the basis for any other additional experiments with more data. This data set

contains the price development over time, which this work aims to model and derive

reasonable forecasts from. The reader is referred to the corresponding section (3)

for more details on the data itself. Here, the focus is placed on the question of how

to use this data set for a supervised training of the selected models (model selection

is discussed later in this section (5.3)). At the end, this boils down to the answer of

two major questions:

1. How is the data set split into training and test data?

2. Are the many different Bund time series all modelled by one model, by a

number of different models or maybe one model for each time series?

In the following, the two questions will be answered in the order they have been

posed. First, the choice of training and test data tries to mimic the real-world

scenario, in which the future is unknown. This means, that at a certain point

54

5 Experimental Setup

of time, every information in the past will be known and therefore used for the

supervised training. Every information in the future from that point of time will

be unknown and used for testing the obtained model. For certain models, there are

additional choices for a validation set available. These details are described in depth,

when choices for the different models and their experimental setup is explained (5.3).

In this work, the point of time to divide data into training and test data has been

set to the 1st of February 2017. Every information before the 1st of February

2017 in time (starting at the 3rd of January 2011 as the 1st was not a working day)

then is consequently training data, every information after (and including) the 1st

of February 2017 in time (ending at the 15th of February 2018) then is test data.

Why is this specific date then chosen, is a reasonable question to ask. The answer to

that is, that the choice for the exact date is supported by arguments of training and

test data size. Still, including one additional one month in the training or test set or

vice versa would still be a reasonable choice. Setting the 1st of February 2017 as the

point of time where to split the Bund data into training and test results in 63656

data points in the training data and 11307 data points in the test data. Additional

information can be obtained in the following table 7.

training data test data

Number of Bunds 58 46

Average data points per Bund 1043 185

Median data points per Bund 1216 261

Maximum data points per Bund 1536 261

Table 7: Additional information on training and test data.

On the next two pages, all Bund data is depicted over the whole time span with

the split into training and test data on the 1st of February 2017. The first page

covers Bund price development, whereas the second one addresses Bund return

development.

55

5 Experimental Setup

F
ig

u
re

25
:

P
ri

ce
s:

B
u
n
d

10
an

d
30

fr
om

3r
d

J
an

20
11

to
15

th
F

eb
20

18
.

56

5 Experimental Setup

F
ig

u
re

26
:

R
et

u
rn

s:
B

u
n
d

10
an

d
30

fr
om

3r
d

J
an

20
11

to
15

th
F

eb
20

18
,

sc
al

ed
to

ra
n
ge

(0
,2

).

57

5 Experimental Setup

Second, the question of how many models should be built for training is ad-

dressed. At the end, this question is answered, when the model selection is explained

due to the difference of the variety of models. However, some more general remarks

can be made here already. Due to the nature of the simpler models, for example

the naive approach of forecasting the next day price/return to be equivalent to the

current day, they are only reasonable to be trained for each Bund separately. For

models which aim to acquire a more general understanding of how Bund price devel-

opment works, this is not so clear. Possibly, one model might work well due to the

fact that Bunds can be distinguished by their technical information (e.g. coupon,

maturity, et cetera). This means that a model would be able to find a well suited

abstraction of the larger number of training Bunds. On the contrary, one model for

each Bund might be easier to learn due to the large discrepancies in price range of

different Bunds. Another, third option, might be that the Bunds can be clustered

or categorized in certain groups which share characteristics which can be learned.

For example, the earlier formulated hypothesis (3), that it should not play a role, if

a Bund has 10 or 30 year maturity as it is defined by its technical details, might not

be entirely true - although reasonable arguments for this claim exist. For models,

which can be reasonably trained on sets of Bunds, this work will report results for

both extrema, training on all Bunds and training on every Bund. This should suffice

to point into a direction, which is worth further investigation.

5.1.2 Macro-Economic Data

The macro-economic data, obtained via Thomson Reuters Eikon, described in fur-

ther detail earlier (4), will be used as additional features to the technical data of the

Bund data set.

Naturally, there are again several options of how this economic data could be

integrated in the model implementation, of which the chosen option will be discussed.

In this work, it has been decided to focus on a rather limited number of additional

features (4). Experiments will be conducted with two different additional feature

sets, which share the characteristics, that they are small in size. The first additional

feature set only contains four additional, economic features. The second additional

feature set contains seven, economic features. The analysis in chapter 4 led to the

two feature sets listed in tables 5 and 6.

58

5 Experimental Setup

5.1.3 Fusion of Bund Data and Economic Data

In this work, data from two sources is combined. On the one hand, there is the Bund

data, which is obtained from the German Federal Bank (Bundesbank) (3). On the

other hand, there is economic data made available by Thomson Reuters (4). In this

work, the two data sources are combined with an early fusion approach, meaning

the combination of the two data sources before model building. Details on this data

fusion are described next.

Technically, these two data sources are stored as data frames within Python.

Rows of the Bund data contain the price for a Bund on a specific data (on a daily

resolution) with the column information already given earlier (3). Rows of the

economic data contain the value of a specific economic indicator referred to in the

columns for a specific date on a monthly resolution. For the combination of the two

data frames into one, which makes modelling later feasible, it will be necessary to

align the timely resolution of the two data frames. First, it needs to be decided

(a) if Bund data should be transformed to match economic data resolution or (b)

if economic data should be aligned with Bund data resolution (to be precise, there

would be a third option of adapting both resolutions two a different one, but this is

not discussed here, as it seems without cause at this moment). This first question

is comparably easy to answer, as the main focus is still placed on Bund prices.

This means, that loosing information about the Bund data is not desired (and

transforming higher, daily resolution to a monthly resolution will certainly loose

information).

Consequently, this results in the question of how to adapt economic indicator

resolution (monthly) to Bund price information (daily). This could be achieved

in various ways, of which three are discussed here. First, one option (a) is to set

the value of the economic indicator to a constant for each day in the month. This

constant would be naturally set to the value, which is available for that month in

the economic data set. That approach has the advantage that it is rather easy to

implement. Also, it does not make strong assumptions about the economic data,

although the scenario is not entirely realistic. This is because it is unknown for each

economic indicator, at which exact day of the month the data is published. In case it

is not published on the 1st of every month, this way of adapting the resolution of the

data then might include knowledge about future development of the economic data.

The second option (b) is the idea of linear interpolation. The values per day of each

month then are modelled with a linear function through the original economic data

for each month. One drawback is, that the days, which are starting and ending points

59

5 Experimental Setup

for the interpolation, are in this scenario rather arbitrarily chosen, as it is unknown,

when this data is published exactly. It will be assumed, that it is the first day of

each month, which again might at some points include future knowledge. However,

for the purpose of modelling the Bund price correctly (and showing as a first step its

feasibility) this seemed more reasonable than omitting already available information,

which would be the other option. An important benefit of this method is, that those

values, when interpolated, change on a daily basis. As forecasting will be done with

a daily time horizon as well, as it will be explained in the next subsection (5.2.1),

this characteristic of the linear interpolation seems almost essential. This is also,

why it has been chosen for the fusion of the two data sources in this work. For the

sake of completeness, a third option (c) is to model the days in between the obtained

economic data points not linearly but with more complex approximations. This has

similar consequences as (b) with the additional disadvantage that this modelling

might add more complexity to the data fusion than required. However, this will be

kept in mind and addressed later in this work again.

5.2 Different Forecasting Setups

5.2.1 Forecasting with Different Time Horizons

Until now, it has not been discussed, what the actual scope of the forecasts will be.

This will be covered in this subsection.

Next Day Considering the daily Bund data, the most intuitive forecast would

probably be a next day forecast. This is also, what can be seen in the available

related work (2.3.2). Also, less complex models are expected to perform already quite

well on this task, which makes a comparison between more sophisticated approaches

easier. More details on model selection and their configuration is found in 5.3.

Next Week In contrast to next day forecasts, forecasts about the more distant

future are not found frequently in related work. However, forecasting the more

distant future is not only an interesting task in theory, but also valuable in practice.

Additionally, looking further into the future than the next day might be a task, in

which less complex models are outperformed by neural network based approaches.

This however, needs to be verified with the upcoming experimental results.

60

5 Experimental Setup

5.2.2 Forecasting with Different Target

Another distinction, which will be included in the experiments as well, is the dis-

tinction between price and return (return = difference between price at day t and

price at day t− 1) as the target for the forecasting.

Price This distinction is primarily made due to the non-stationarity of the Bund

price development. Stationarity has been discussed earlier already (2.3.2) and finds

application in modelling time series.

Return In contrast to the Bund price development, the returns of the Bunds

are stationary and therefore it is assumed, that this stationarity allows for better

forecasting models.

Both, price and return forecasts, will be tested and reported in the next sections.

5.2.3 Forecasting on Original and Fused Data

5.3 Models for Forecasts

A major component of this work is to compare neural network based and deep learn-

ing inspired solutions to bond price forecasting to other state of the art methods for

this task. In order to enable a fair comparison between the LSTM based approached

developed in this work, the common technique of ARIMA time series modeling has

been implemented. In addition, the neural network approach proposed by Ganguli

et al. ([23]) particularly designed for the challenge of bond price forecasting, as

stated in the work by Ganguli et al. ([23]), has been implemented based on the

bond price data used in this work. In addition, a LSTM based approach with its

focus on sequence modelling will be developed. All in all, this leads to an exten-

sive comparison of less complex models, such as naive, median, mean and linear

regression and more sophisticated ones, like ARIMA, MLP and LSTM models. For

all of them, the selected configurations will be discussed next. Note that all the

definitions in the remaining lines of this chapter cover the next day forecast. With

small adaptions, this can be easily extended to next week forecasts.

5.3.1 Naive

The first forecasting technique is also the most simple one, but surprisingly not

uninteresting as later experiments will show. The method which is often referred

to as Naive uses the value of the current moment (yt) to forecast the next moment

61

5 Experimental Setup

(yt+1) by assuming that the next moment will be equivalent to the current one. In

the context of this work, t refers to days in the available data.

ŷt+1 = yt (15)

Especially for stationary time series with low volatility, naive forecasts are expected

to approximate the actual values well.

5.3.2 Median and Mean

In addition to the naive approach, the most common approaches are probably me-

dian and mean forecasts. Both methods use a number of points of the past to

calculate mean, or respectively median, from this number of points and assume that

this calculation is close to the value of the next moment. As in naive forecasting, t

here denotes a day and yt represents the value at point t. ŷ denotes a forecast, not

a (necessarily) true value.

ŷt+1 =

y t+1
2

t odd

1
2
(y t

2
+ y t

2
+1) t even

(16)

Formula for mean:

ŷt+1 =
yt + yt−1 + ...yt−n

n+ 1
(17)

Both, mean and median, can have similar results. However, there are also differences.

For example, the median is more robust to outliers due to its property, that it

ignores any extreme values in a set. The mean can be influenced by those, which

is not necessarily a disadvantage and can possibly include useful information in the

forecast.

What needs to be decided for median and mean forecast however, is the number

of days, which will be considered for calculating median, respectively mean. Looking

back one day into the past would be equal to the naive approach which is why this

is omitted. In this work, three, five and ten days will be tested and results reported

in section 6.

5.3.3 Linear Regression

Linear models are also commonly used due to their rather good interpretability

and also their limited complexity. They also use a number of points of the past

to forecast the upcoming moment in time (ŷt+1). In contrast to median and mean,

62

5 Experimental Setup

every point in the past (yt−i) is weighted (ai) and their sum is added to an intercept

(b).

ŷt+1 = b+
n∑
i=0

aiyt−i (18)

The adjustment of those weights is calculated on the already available data. The

specific implementation in this work is based on the scikit-learn Python library

([53]). Also, for linear regression, a number of past days, which will be considered,

needs to be chosen. As for median and mean, three, five and ten days will be tested

and results reported in the next section.

5.3.4 ARIMA

ARIMA processes have been already introduced in section 2.2.1 about time series

analysis. They have been proven useful in time series forecasts and will be further

applied in this work. As explained earlier, an ARIMA model consists of an autore-

gressive, an integrated and a moving average part, for each of which a parameter

must be set. How to best choose these three parameters has been investigated by

George Box and Gwilym Jenkins, which is why the gold standard method for select-

ing those parameters is named Box-Jenkins method ([4]). The Box-Jenkins method

uses autocorrelation and partial autocorrelation to identify the parameters for the

ARIMA model. Parameter choices for this work will be discussed next.

Identifying the autoregressive parameter First, the parameter for the au-

toregressive part, denoted as p, is identified. This is achieved by calculating the

autocorrelation of the to be modelled time series, in this case all the available Bund

data. Autocorrelation generally is the correlation between a sequence of values and

a delayed or shifted version of the same sequence of values. The number of shifts

is referred to as lags and in the following autocorrelation plot, autocorrelation (on

the y-axis) is plotted against the number of lags (on the x-axis). Following the Box-

Jenkins approach, to identify a suitable parameter p, the number of lags, where a

sufficiently strong autocorrelation exists, should be chosen. Here, the precise selec-

tion criterion differs in literature ([6]). In this scenario, the autocorrelation seems

rather high for up to 200 lags which indicates that a p of up to around 200 would be

reasonable, in theory. However, in practice calculating ARIMA models for a p this

large is not feasible due to enormous computation times. Running experiments with

p of 100 would have taken months, and even with p of 50 multiple weeks. That is

why it has been chosen to limit p to 10 in the conducted experiments, which already

63

5 Experimental Setup

Figure 27: Autocorrelation for ARIMA Parameter Selection by Box-Jenkins.

takes more than a week to compute for the total number of Bunds. With 10 as the

upper bound for p, other p tested were 1,3 and 5. The reader might have noticed

that this selection of p was conducted based on the autocorrelation of the prices.

If returns are also considered in model building, this would require to inspect the

autocorrelation of returns as well. However, as the computational limitations have

been made clear, limits for p in case of forecasting returns are set. This is why p for

return forecasts is chosen as for price forecasts.

Identifying the integration parameter For the parameter of the integrated

part of ARIMA, i, which helps to obtain stationarity, it will be necessary to distin-

guish between prices and returns. As seen earlier, the returns are stationary. This

means the i in return forecasting can be set to 0. For the price forecasting on the

contrary, it has been argued that prices are non-stationary. Here, setting i = 1

induces stationarity, which is necessary for the ARIMA model to be computed.

Identifying the moving-average parameter The last part of the ARIMA

model, the moving-average parameter is selected based on the partial autocorre-

lation plot ([4]). Partial autocorrelation in contrast to autocorrelation itself does

not only calculate correlation between value and lag, but also removes the influ-

ence from all lags smaller than the one calculated. This helps to identify correla-

tion between value and lag without the effects of any smaller lags. Identifying the

64

5 Experimental Setup

moving-average parameter, or q, then is done similarly by inspecting the partial

autocorrelation graph. Here, one can observe that the partial autocorrelation does

Figure 28: Partial autocorrelation of training data, Bund prices for ARIMA param-
eter selection.

decay rapidly to and circles around 0 after lag = 1. This is why q of 1 or 0 will be

tested for Bund price forecasts.

This parameter, q, however, does not necessarily need to be the same for return

and price. With a q of around 1, computational boundaries are not met yet. Hence

for this parameter, an inspection of the partial autocorrelation plot of returns seems

necessary as well. In this plot, it can be seen, that the partial autocorrelation already

decays to 0 at lag = 1. This means that testing any higher number than 1 as q for

return forecasting is not promising and does not comply with the here conducted

Box-Jenkins approach.

All in all, this results in the following ARIMA (p, d, q) configurations for price

and return forecasts:

65

5 Experimental Setup

Figure 29: Partial autocorrelation of training data, Bund returns.

price ARIMA return ARIMA

configuration (p, d, q) configuration (p, d, q)

(1,1,0) (1,0,0)

(1,1,1) (1,0,1)

(3,1,0) (3,0,0)

(3,1,1) (3,0,1)

(5,1,0) (5,0,0)

(5,1,1) (5,0,1)

(10,1,0) (10,0,0)

(10,1,1) (10,0,1)

Table 8: ARIMA configurations for prices and return forecasts.

ARIMA model implementation in this work is based on the StatsModels package,

statistics for Python, and their implementation of ARIMA modelling ([56]).

5.3.5 Multi-Layer-Perceptron Regressor

The last two model classes, of which the configurations will be discussed, are neural

network based approaches, starting with the Multi-Layer-Perceptron (MLP) Re-

gressor. An introduction into feedforward networks to which MLPs belong has been

66

5 Experimental Setup

provided earlier (2.1.3). Now, different MLP configurations and architectures are

addressed. Fortunately, there are starting points provided in related work 2.3.2,

especially in Ganguli et al. ([23]). Although the work presented there, is built on

a different data set and also on different government bonds, it is assumed that the

configurational choices can be transferred to the tasks discussed here. In addition of

how to chose the number of units and layers in the network, there are several other

questions which need to be answered of which just a few are named in the following:

• How to structure the input?

This questions aims at the way, the data is transformed, before fed into the

network. One transformation, which is often used, and connected with the

choice of activation function, is scaling. If for example hyperbolic tangent is

chosen as the activation function (2.1.3), any values passed as input to an

activation function larger than one only have a marginal effect. In the case

of Bund price prediction this could be a problem as Bund prices start with a

minimum at around 80 Euro (Bundesbank’s standard price, 3). Still, it has

been decided that the input is not scaled for MLPs which is connected to

answers to the following questions.

• Which activation function to choose?

Of the various activation functions available, ReLU is the one used for this

task, mainly due to its ability to handle values as large as the Bund prices.

Also, for Bund returns this should be suitable as they are scaled to the range

(0,2).

• Which optimizer to choose?

There are also various optimizers to choose from, which adapt the weights

while training. For this task, the Adam is used, a stochastic gradient based

optimizer. Other optimizers might work as well.

• Which learning rate might work best?

The choice of learning rate in combination with the optimizers (not all opti-

mizers require a defined learning rate) is also important as unfortunate choices

of learning rates might oversee a minimum or converging to a local minimum,

while another minimum exists. For this task, the learning rate is set to 0.001.

• How many epochs of training?

Figure 31, depicting the loss per epoch when forecasting on price or return

and trained on either each Bund or all Bunds, is used to derive an idea of how

67

5 Experimental Setup

long training should be conducted (in epochs). All of the losses depicted in the

figures below decay within the provided scope on the x-axis. Most of the loss

curves are declining towards zero already after a few epochs. Few models need

slightly longer and only outliers are not close to zero after the here reported

scope of 50 epochs. This results in the selection of 50 epochs of training for the

LSTM models. The number of training epochs will be discussed later again.

(a) Losses per epoch, price,
each Bund, architecture: (20,10).

(b) Losses per epoch, return,
each Bund, architecture: (25,10,10).

Figure 30: Representative example for one selected MLP architecture: losses per
epoch, training on each Bund, different colors indicate different models.

(a) Losses per epoch, price,
all Bunds, architecture: (10,10,10).

(b) Losses per epoch, return,
all Bunds, architecture: (30,20,10).

Figure 31: Representative example for one selected MLP architecture: losses per
epoch, training on all Bunds.

In addition to these question, there are more parameters to be set. For these

configurations, however, default settings of the scikit-learn package ([53]), on which

implementation of MLP models in this work is based, and its MLP regressor are

utilized.

68

5 Experimental Setup

As briefly mentioned earlier, there is another important choice about the ar-

chitecture of the network: How many units and how many layers should be used?

Ganguli et al. report only results for one-hidden-layer-networks with 5, 10, 20 and

30 units in the hidden layer. Building on their experimental insight, MLPs in this

work will also be tested with 10, 20 and 30 units per layer. However, 5 units will

not be tested as MLPs with 5 units in one hidden layer were outperformed by MLPs

with the other numbers of units per layer. In addition, 25 units per layer will be

tested to illuminate performance between the two best performing MLPs with 20

and 30 units per hidden layer.

Furthermore, in contrast to research of Ganguli et al., this work will explore the

effect of adding one and two additional hidden layers to the MLPs resulting in the

experimental setup, that MLPs with one, two and three hidden layers will be tested.

These extra hidden layers will contain 10, 20, 25 and 30 units just as the first hidden

layer. This results in 84 different MLP architectures, which will be evaluated in this

work. An abstraction of the 84 different architectures can be found below in figure

32.

(a) One hidden layer, var-
ious numbers of units per
layer.

(b) Two hidden layers, var-
ious numbers of units per
layer.

(c) Three hidden layers,
various numbers of units
per layer.

Figure 32: Overview of MLP architectures, one to three hidden layers.

5.3.6 LSTM

LSTMs (2.2.3), to the best of the author’s knowledge, have not been applied to

bond price forecasting. Consequently, there is no starting point, when addressing

architectural and configurational questions. Although a comparison between MLP

69

5 Experimental Setup

and LSTM is not entirely fair, architectural choices for LSTMs are taken similarly

to the MLP setup. This means, that between one and three LSTM layers of 10, 20,

25 and 30 LSTM cells are tested in this work, resulting in 84 different LSTM archi-

tectures equivalent to the number of MLP architectures. In addition to the LSTM

layers, dropout is added in between them to avoid overfitting and allow for a more

generalized model. The concept of dropout has not been introduced yet. Dropout

is a common regularization technique in neural networks, meaning it is designed

to avoid overfitting on the training data, which then could lead to better (because

more general) models. These models possibly perform worse on the training data.

However, they often perform better on test data. The technical idea behind dropout

is simple: With a fixed chance (in this work 0.1 will be used) connections between

layers are randomly dropped in each training epoch and information contained in

the connection from the output of one layer is not transported to the next layer.

This results in every LSTM layer being followed by a dropout layer. Similarly to the

MLP architecture, the last two layers then are a Dense layer (fully connected layer)

and an activation layer for outputting the forecast. An architectural abstraction can

be found in figure 33.

In addition to the architectural design choices, the same questions, which were

posed in combination with the MLP design, need to be answered:

• How to structure the input?

As mentioned in the MLP section, the question of how to structure input

is connected to other questions, especially the question about the activation

function. Before, scaling was not used due to the characteristics of the data

and the capabilities of the ReLU function used in the MLP examples. In

LSTMs however, hyperbolic tangent is used as the activation function (2.1.3),

not ReLU. In contrast to ReLU, the hyperbolic tangent is almost constant for

inputs larger than one. For the purpose of return forecasting this might not be

a problem, but for Bund prices it is assumed to be problematic. This is why,

for the LSTM experiments, all input will be scaled to the range (0,1) with

min-max-scaling. Scaling any original value x to x′, within the range (0,1),

works as follows:

x′ =
x−min(x)

max(x)−min(x)
(19)

This min-max-scaling is conducted for every column of the full data frame,

including both training and test data. Before doing this, it was ensured that

minimum and maximum values of return and price are located in the training

data to avoid look-ahead bias ([37]).

70

5 Experimental Setup

(a) One hidden LSTM
layer, various numbers of
LSTM cells per layer.

(b) Two hidden LSTM layers,
various numbers of LSTM cells
per layer.

(c) Three hidden LSTM
layers, various numbers of
LSTM cells per layer.

Figure 33: Overview of LSTM architectures, one to three hidden LSTM layers.

• Which activation function to choose?

The choice for the hyperbolic tangent function for this experimental setup

has already been mentioned. The arguments supporting this choice are of

practical nature: First tests have been done with no scaling similarly to MLP

but they did not converge due to problems with exploding gradients. This

made adaptions in scale of the input necessary. With the LSTM layers, the

hyperbolic tangent is the default choice of the Keras deep learning library

([12]), which builds on Tensorflow ([49]), and is used for the implementation

of LSTM models in this work. The default activation function of hyperbolic

tangent has not been changed. The last layer, the Dense layer, uses a linear

activation function to generate the output.

• Which optimizer and which learning rate to choose?

The optimizer is chosen as in the MLP setup, meaning Adam is used as opti-

71

5 Experimental Setup

mizer. Different initial tests for the learning rate showed that a learning rate

of 0.001 seems reasonable. Larger learning rates resulted in a non-converging

behavior of the networks.

• How many epochs of training?

Figure 35, depicting the loss per epoch when forecasting on price or return

and trained on either each Bund or all Bunds, is used to derive an idea of how

long training should be conducted (in epochs). All of the losses depicted in

the figures below decay within the provided scope on the x-axis. Most of the

loss curves are declining towards zero already after a few epochs. Few need

a little longer and only outliers are not close to zero after the here reported

scope of 50 epochs. This results in the selection of 50 epochs of training for

the LSTM models.

(a) Losses per epoch, price,
each Bund, architecture: (20,10). (b) Losses per epoch, return,

each Bund, architecture: (25,10,10).

Figure 34: Representative example for one selected LSTM architecture: losses per
epoch, training on each Bund, different colors indicate different models.

72

5 Experimental Setup

(a) Losses per epoch, price,
all Bunds, architecture: (10,10,10).

(b) Losses per epoch, return,
on all Bunds, architecture: (30,20,10).

Figure 35: Representative example for one selected LSTM architecture: losses per
epoch, training on all Bunds.

Another property of LSTM models has been not mentioned yet, which is the

ability to include multiple time steps in the training. Thus, in contrast to MLP

networks, the LSTM approach presented in this work makes use of this LSTM

characteristic and does not train models solely on the current features, but also on

past features, while maintaining their structure. This structural relation is one of

the key differences between LSTM and MLP models, as they could, theoretically,

also utilize features of earlier points in time, but they do not consider their relation.

Then, the question remains of how many points of the past are considered. Here,

various different options are possible. Structuring the data in a way, that the model

can train well on it seems reasonable. This can be achieved by taking the whole

sequence of a Bund of training information with n entries and splitting it into n−k+1

k-tuples, where k ∈ N can be chosen arbitrarily and the amount of tuples will then

be determined by the the size of the training information and the size of the tuples

(n). A visualization of this transformation of time series data to LSTM input is

depicted in figure 36. These k-tuples are constructed in the way, that if the training

time series data is ordered, and each point in the time series is denoted by xt and

its corresponding target (price or return) by yt, for every t > k, there is a tuple

constructed with xt, xt − 1, ..., xt − k. Each tuple is then assigned the value of the

next point in time, yt+1. This combination of tuples (xt, xt−1, ..., xt−k) and target

(yt + 1) is used for LSTM model training. In this work, models with k ∈ [3, 10] will

be implemented.

73

5 Experimental Setup

Figure 36: Visualization of time series transformation for LSTM input.

5.4 Features for different models

Implicitly touched until now has been the property that MLP and LSTM models,

in contrast to the other ones described, can use other features except the target

value itself for forecasting. All other models forecast future price/return develop-

ment solely with past price/return information. This also means, that only MLP

and LSTM can make use of the fused data set which contains additional economic

features. For MLP and LSTM models therefore, both options will be implemented

and results reported. So, for each MLP and LSTM model configuration, there will

be one model with and one without incorporating the additional data in the fused

data set.

5.5 Generalizability of different models

One important aspect, which has not been sufficiently touched until now, is, what

has been called generalizability of different models. This aims at the ability of the

neural network based approaches, MLP and LSTM, to be trained for a broader,

more general purpose of forecasting on every Bund, even on those which were not

included in any training data.

In contrast to the MLP and LSTM approach, naive, mean, median, linear and

ARIMA models do not have this capability to generalize or at least not in the con-

text, in which they are used in this work. Naive, mean, median, linear and ARIMA

models need to be trained for each and every Bund, resulting in an equivalent num-

74

5 Experimental Setup

ber of models and Bunds in the training data. The neural network based approaches

can be used similarly, meaning that one model is trained for each Bund. However,

due to their ability to generalize and abstract from a specific Bund, it is also rea-

sonable to train one model for all Bunds. This more general model is then also

expected to be able to make reasonable forecasts on yet unseen (meaning unavail-

able in training data) Bunds. Both approaches, training a model on all Bunds and

training models on each Bund will be tested in this work’s experiments.

Furthermore, there is an additional important feature in model training when

it comes to generalizability. This is the possibility to already include a validation

set in the model training phase. This option is available for both MLP and LSTM

networks and will be conducted for both with a validation fraction of 10%, meaning

that 10% of the training data will be used to validate the model in each step of the

training phase (when updating weights in the networks). This is commonly used to

avoid overfitting and achieve further generalizability.

In summary, the naive, mean, median, linear and ARIMA models do not general-

ize as well as the two neural network techniques mentioned. This is why approaches

based on the naive, mean, median, linear and ARIMA methods are trained for each

Bund whereas MLP and LSTM based approaches are trained in two ways, on each

Bund and on all Bunds.

5.6 Rolling Forecast vs Classical Forecast

Another essential difference lies in the way the forecasting is actually conducted,

but, first, how forecasting is actually done has not been explained yet, this needs to

be addressed.

By now, it is clear how training and test data are set up. The model performance

will be evaluated on the test data (more information on this matter in section 5.7,

but how are forecasts for the test data calculated? In this work, there are two

different ways of forecasting, which are connected to the model choice. There is,

what will be called rolling forecast in this work, for naive, mean, median, linear and

ARIMA models, and there is a here called classical forecast, which is different from a

rolling forecast model. How these two forecasting approaches differ, is tackled next.

In essence, the idea of the classical forecast refers to the idea of training a model

on the training data and then being able to apply the obtained model on every

element in the test data set. However, this is not appropriate for naive, mean,

median, linear and ARIMA models. A simple example works best to illustrate this:

The naive model, for example, will almost certainly produce large errors in forecast

75

5 Experimental Setup

when the naive model of the some random day in the training data set is applied

to one of the points in the test set. Assume that the Bund price on day t is 100.

The naive model trained on day t would then suggest that the Bund price on day

t + 1 is also 100. For subsequent days and Bund prices, which are normally not

changing drastically from a day to its subsequent day, this will probably work with

only a slight error. Nevertheless, using the same model trained at day t, will almost

certainly produce a large error when forecasting the Bund price for day t + 100

or maybe even t + 1000. Due to the nature of the naive, mean, median, linear

and ARIMA models, which consider solely a certain, limited number of days of the

past, these models need to be re-trained after every forecast made in the test set.

This process of re-training and forecasting is the idea behind the rolling forecast. A

visualization of this process can be found in figure 37.

Figure 37: Visualization of rolling forecast method.

On the contrary, MLP and LSTM models are trained on the training data and

then the Bund price/return of every element of the test set should be reasonably

forecasted by the corresponding model. One might ask, if the rolling forecast could

not be used for MLP and LSTM models as well to improve their forecasts as well.

It is certainly correct, that a rolling forecast could be used with MLP and LSTM

models. However, this will not be executed in this work’s experiments due to two

considerations. (a) When training on all the training data, which is almost 60,000

elements (3) when training on all Bunds or slightly above 1,500 elements when

76

5 Experimental Setup

training on each Bund, adding one element to the training scope will not change

much. (b) Training MLP and LSTM are time-consuming in contrast to naive, mean

and linear approaches. Using rolling forecast on this would certainly exceed the

experimental means of this work.

5.7 Evaluating model performance

The final subsection, before moving on to the experimental results, will be dedicated

to the question of how to actually evaluate model performance. In general, model

performances are measured by the distance between prediction and actual value and

many adaptions to it. The probably most frequently used one is the mean squared

error metric (mse), defined as follows:

mse =
1

n

n∑
t=1

(yt − ŷt)2 (20)

The mean squared error will also play an important role in the evaluation of model

performance in this work. In addition to the mse, another metric, the mean absolute

percentage error (mape) will be reported. It is defined as below:

mape =
1

n

n∑
t=1

|yt − ŷt
yt
| · 100 (21)

The mape avoids two characteristics, which can be seen as a disadvantage of the

mse. (a) The mse punishes far distant forecasts harder than absolute errors like

mape. (b) The mse can not be interpreted without understanding of the underlying

data. A mse of 0.5 can be satisfactory or the very opposite. A mape of 0.5 on

the contrary, seems more likely to be satisfying (although this is admittedly context

dependent). Hence, these two metrics, mse and mape, will be used for model per-

formance evaluation. Another affair, which needs to be kept in mind, is the fact,

that in this work not just one forecast for each model is evaluated. Every model

needs to make forecasts for at least the 43 different Bunds (3) in the test scope.

Consequently, every model will be associated with a minimum of 43 mean squared

errors and mean absolute percentage errors. Making sense of all these results would

not be very convenient which is why for each model, the mean and median of the

43 different error results will be reported. This yields four different performance

measures for each model, the mean of mses, the median of mses, the mean of mapes

and the median of mapes. In the results section (6), those will be denoted as mse

77

5 Experimental Setup

(mean), mse (median), mape (mean) and mape (median).

78

6 Experimental Results

6 Experimental Results

The extensive experimental nature of this works yields a large number of results,

which are fully reported in the appendix. Here, only the best performing models

per combination of model class, target, without and with economic data will be

reported.

Model class in this context refers to the selected models for the experiments of

this work, meaning naive, linear, mean and median (which will be often referred to

as less complex models, ARIMA models, MLP and LSTM models. So, exemplar-

ily, for the model class MLP, results have been calculated for next day and next

week forecasts, both for price and return and both with and without the fused eco-

nomic data set. For each of those combinations the best performing model (where

performance is measured as described earlier (5.7) is reported in this section and

summarized in the following.

In addition, two visualization are provided for each task (next day/week and

price/return forecast). One depicting the two best performing models on the task

on a randomly selected ISIN, a second one depicting the actual value of x vs the

prediction for that x, x̂.

The reason behind showing the first visualization is to obtain an understanding

of how the development over time is captured by the two best performing models

(the best performing in terms of mse (median) and the best performing in terms of

mape (median)) of each tasks. The aim behind exhibiting the second visualization

is to grasp, how each of the models generally perform on the given task. In contrast

to the representation in a table, this provides insight in additional characteristics of

each model, which are lost due to the absolute character of the errors in the tables,

e.g. if a model almost always forecasts a value too high or too low.

First, results of next day price and return forecasting are listed, followed by the

results of next week price and return forecasting.

6.1 Next Day Forecast: Comparison of Model Classes

The first subsection of this chapter is concerned with the task of next day forecasting

and its results. In the following, results for next day price forecasts as well as next

day return forecasts are reported. As already addressed, results for each of the task

are accompanied by one table reporting the best performing models per class and

two visualizations.

79

6 Experimental Results

6.1.1 Next Day Price Forecast: Best Performing Model Configurations

of Each Class

The task of next day price forecasting is solved by many models in the following table

(9) in high quality. Best performance with respect to mape (median) was achieved

by the naive model. The best performance regarding mse (median) is observed for

the MLP model, trained on each Bund, without additional economic data.

Generally, next day price forecast results for different models are similar and

there are only two outliers, the LSTM models, trained on each Bund, which yield

unsatisfactory results. All the other models perform well on this task, both when

measured by mape or mse. Interestingly, the MLP model, achieving the best mse

(median) score, is one of the worst, when evaluated by mape (median). One reason

for this might be the absence or larger numbers of outliers in the forecast. Other

models might yield forecasts with a larger number of outliers, which is heavily pun-

ished by the mse score. That the naive model (and others) are better performing

with respect to the mape must mean, that these models forecasts very well on parts

of the time series, where no outliers are found.

Figure (38) shows the forecasts of the two best performing models, the naive one

and the MLP (trained on each Bund) and the first 50 days in the actual test data

set of a randomly selected Bund. In this example, both models seem to model the

test data also graphically well, with maybe even better performance of the MLP

model. Note that this is simply one example of many forecasts on many and larger

time horizons as well. However, it seems well suited to provide the reader a visual

impression of how well the models work, in addition to the table reported earlier.

Another interesting visualization of the results is the plot of x (on the x-axis)

versus x̂ (on the y-axis). The points of the optimal model would be placed on the

thin black line on the diagonal. This would mean, that every prediction (x̂) is equal

to the corresponding actual value x. This plot especially helps to identify, if certain

models generally aim too high or too low, or if they forecast more or less constant

values. In this specific scenario, it can be observed that most of the LSTM models

tend to aim too high whereas MLP models are closer to the optimal black points.

The best two models for this task, MLP (trained on each Bund) and the naive

model, are highlighted in the plot with different symbols. It can be observed, that

points belonging to these two models are rather close to the optimal points.

80

6 Experimental Results

mape mape mse mse
model (median) (mean) (median) (mean)

average, last 3 days (15) 0.18 0.23 0.07 4.63
linear, last 3 days (15) 1.27 1.4 0.06 11.2
median, last 3 days (15) 0.19 0.24 0.08 3.59
naive, last 1 day (15) 0.14 0.18 0.04 6.73
arima (1,1,0) (17) 1.26 1.46 0.13 9.30
mlp, trained on all Bunds:
mlp (10) (19) 0.27 0.32 0.12 0.33
mlp (20,10), four ind. (21) 0.41 0.51 0.47 0.94
mlp, trained on each Bund:
mlp (20,10) (27) 1.25 1.43 0.01 3.29
mlp (10,30), seven ind. (29) 1.22 1.40 0.06 3.36
lstm, trained on all Bunds:
lstm (30), 3 days (35) 0.19 0.27 0.06 3.55
lstm (25,25,20), 0.19 0.25 0.05 0.323
3 days, four ind. (36)
lstm, trained on each Bund :
lstm (30,10), 3 days (39) 0.95 1.12 2.18 14.02
lstm (10,20), 2.99 3.38 19.48 25.97
3 days, four ind. (40)

Table 9: Next day price forecast, best performing model configurations per class.
Notations as in chapter Experimental Results (6).

6.1.2 Next Day Return Forecast: Best Performing Model Configura-

tions of Each Class

The result for the task of next day return forecasting are reported in the following

table (9). Surprisingly, the results are worse than for price forecasting, when consid-

ering the mape. Mean squared error scores are low, but this is certainly due to the

data itself, which is limited to a much smaller range than the price forecast. Best

performance for this task was achieved by neural network based approaches. With

respect to mape (median) the LSTM model, which has been trained on all Bunds,

performed best. The best performance regarding mse (median) is observed for the

MLP model trained on all Bund. Both are trained on the original, technical data

without additional economic data.

Next day return forecast results for different models are similar and there is only

one slight exception, the naive models. All the other models perform similarly on

this task, both when measured by mape or mse.

One reason for the comparable results for most of the models is that all of

81

6 Experimental Results

Figure 38: Next day price result visualization of the two best performing models on
a randomly selected ISIN, limited to the first 50 days of the test data set.

them tend to forecast an almost constant value for the return, which (for neural

network based approaches) seems to minimize their loss function. This behavior is

also depicted in the following plot (40), showing the two best performing models for

the task of next day return forecast, again with respect to mse (median) and mape

(median).

The MLP model for this task and ISIN forecasts value around the constant of

1.11 or 1.12. Spikes in its plot seem to follow larger spikes in the actual data (around

day 21 and 22 for example). Spikes for the LSTM model seem to take on values

above the more or less constant line at around 1.11/1.12. However, many other

spikes seem to be missed. The LSTM model is even more predictable in its behavior

and forecasts values slightly below 1.10.

As for next day price forecasts, the following visualization of the results (39) is

the plot of x (on the x-axis) versus x̂ (on the y-axis). The points of the optimal

model would be placed on the thin black line on the diagonal. This would mean

that every prediction (x̂) is equal to the corresponding actual value x.

In this specific scenario, it can be observed, that almost all models tends to circle

a constant value. This complies with the visualization introduced before (40). The

best two models for this task, the LSTM and the MLP (both trained on all Bunds),

are highlighted in the plot with different symbols. The impression, which arises from

the plot, is, that these two models do not clearly outperform other models plotted.

82

6 Experimental Results

Figure 39: Next day price result visualization, plot of x vs x̂.

This corresponds to the information in table 10.

The only plot, which would differ visually, is the plot for the naive model, but

this approach produces largest error, which is why it is not depicted here, as only

best performing models per model class are shown.

6.2 Next Week Forecast: Comparison of Model Classes

The second subsection of this chapter copes with the task of next week forecasting

and its results. In the following, results for next week price forecasts as well as next

week return forecasts are reported. As already addressed, results for each of the

task are accompanied by one table (11) reporting the best performing models per

class and two visualizations (42,43).

6.2.1 Next Week Price Forecast: Best Performing Model Configurations

of Each Class

The task of next week price forecasting is solved by many models in the table 11

in high quality. Best performance with respect to mape (median) was achieved

by the LSTM model, trained on the fused data set and on all Bunds. The best

performance regarding mse (median) is observed for the MLP model trained on

83

6 Experimental Results

mape mape mse mse
model (median) (mean) (median) (mean)

average, last 10 days (16) 3.53 3.72 0.0042 0.0045
linear, last 10 days (16) 4.51 4.74 0.0057 0.0060
median, last 10 days (16) 3.50 3.66 0.0041 0.0043
naive, last 1 day (16) 4.66 4.86 0.0075 0.0082
arima (1,0,0) (18) 3.29 3.48 0.0038 0.0041
mlp, trained on all Bunds :
mlp (20,10,30) (23) 3.27 3.27 0.0035 0.0035
mlp (20,10), four ind. (25) 3.52 3.93 0.0041 0.0046
mlp, trained on each Bund :
mlp (25,10,10) (31) 3.53 3.75 0.004 0.0044
mlp (20,30,30), four ind. (33) 3.65 3.88 0.0041 0.0045
lstm, trained on all Bunds :
lstm (30,30,10), 3 days (37) 3.22 3.44 0.004 0.0042
lstm (25,25), 3.23 3.26 0.004 0.0045
10 days, four ind. (38)
lstm, trained on each Bunds :
lstm (10,10,25), 3 days (41) 3.60 3.93 0.004 0.004
lstm (10,20,30), 3.69 3.99 0.005 0.005
3 days, four ind. (42)

Table 10: Next day return forecast, best performing model configurations per class.
Notations as in chapter Experimental Results (6).

each Bund, without additional economic data.

Next week price forecast results mostly are achieving good scores. Except the

results of the naive model and the LSTM models, trained on each Bund, which

yield unsatisfactory results. All the other models perform well on this task, both

when measured by mape or mse. In contrast to the next day price forecast, the

best performing models with respect to the mape (median), the LSTM model, also

achieves top performance when measured by mse (median). In this metric, it shares

the top performance with the mlp model.

In general, next week price forecasts seem to be similar to next day price forecasts

in their quality. As expected, measured performances drop, but not deeply. The

naive model does not work as well anymore, which can be expected, too, since the

difference from one day to the next intuitively is smaller than the difference from

one day to the next week.

Also similar to the next day price forecast, is plot 42 of the two best performing

models, the MLP and the LSTM model. Both seem to grasp the development of

84

6 Experimental Results

Figure 40: Next day return result visualization of the two best performing models
on a randomly selected ISIN, limited to the first 50 days of the test data set.

the Bund price with a shift of around five days. This indicates, that the price at the

current point of time still is the best indicator for the price in five days, with small

variations. These variations seem to be large enough to not let the naive model

work as well as other models.

Again similar to the next day price forecast, are the results depicted in plot 43

of x vs x̂ . Here, MLP models seems to forecast values below the optimal diagonal

and LSTM models seem to forecast values slightly higher. This complies partially

with the plot above (42), at least after day 30, where MLP forecast tend to be too

low, whereas the LSTM forecasts are close to the actual data. Collectively, model

forecasts are similar, which is why points of certain models are almost completely

covered by points of other models, e.g. the LSTM models, which are drawn in shades

of green.

6.2.2 Next Week Return Forecast: Best Performing Model Configura-

tions of Each Class

The result for the task of next week return are reported in table 12. The results

are similar to the ones for next day return forecasting, when considering mse and

mape. Again, mean squared error scores are low for already introduced reasons.

Best performance for this task were achieved by the LSTM model, which has been

85

6 Experimental Results

Figure 41: Next day return result visualization, plot of x vs x̂.

trained on all Bunds on the fused data set and the ARIMA (1,0,0) model.

As for the next day return forecast, results are comparable for most of the mod-

els. Mape (median) is normally around 3% with exceptions for the linear and the

naive model. Values for mse (median) are also close by each other with the same

exceptions. The performance of the naive model is not surprising, as it has been ar-

gued already, that is it not well suited for both, return and next week forecast. The

combination of the two then yields no satisfactory results as expected. Only the lin-

ear model performs worse. One explanation might be that the linear approximation

and the non-stationarity do not work well together.

In contrast to the comparison between next day and next week price, which

were similar, but a tendency of better performance was seen for the next day price

forecasts, results for next day return and next week return are even closer. The

reason for this however does not seem to be the better quality of the next week

return forecasts. Rather, the forecasts for next day and next week return seem to

follow the same pattern of circling a constant, which, in contrast to price forecasts,

works better for the stationary return.

This behavior of the two best performing models, ARIMA and LSTM, of circling

around a constant is also shown in graph (44)of the forecast for first 50 days in the

test set.

86

6 Experimental Results

mape mape mse mse
model (median) (mean) (median) (mean)

average, 3 days (43) 0.344 0.42 0.26 7.55
linear, 3 days (43) 0.410 0.48 0.35 5.14
median, 3 days (43) 0.495 0.57 0.49 4.84
naive, 1 day (43) 1.409 1.70 0.96 89.66
arima (1,1,0) (45) 0.408 0.54 0.40 9.77
mlp, trained on all Bunds:
mlp (10,10,10) (47) 0.516 0.83 0.53 17.56
mlp (20,10), four ind. (49) 0.643 0.80 0.75 2.27
mlp, trained on each Bund:
mlp (20,10) (55) 1.231 1.40 0.23 0.81
mlp (10,25), seven ind. (57) 1.207 1.40 0.46 1.12
lstm, trained on all Bunds:
lstm (10), 3 days (63) 0.385 0.59 0.37 1.53
lstm (30,25,10), 0.338 0.54 0.23 1.38
3 days, four ind. (64)
lstm, trained on each Bund:
lstm (30,10), 3 days ((67)) 1.060 1.50 4.06 5.18
lstm (10,25,10), 1.570 2.84 5.45 22.33
3 days, four ind. (68)

Table 11: Next week price forecast, best performing model configurations per class.
Notations as in chapter Experimental Results (6).

The visualization (45) of the results of x (on the x-axis) versus x̂ (on the y-axis)

is similar to next day return forecasts.

Also in this specific scenario of next week return forecasts, it can be observed,

that almost all models tends to circle a constant value, which supports the insight

form the earlier plot. The best two models for this task, the ARIMA and the LSTM

model (trained on all Bunds), are highlighted in the plot with different symbols.

The impression, which arises from the plot, is, that these two models do not clearly

outperform other models plotted. This corresponds to the information in the table.

The only plot, which significantly differs visually, is the plot for the MLP model,

trained on all Bunds and on the fused data set. This model consequently is not

close to a constant. Moreover, when considering the metrics of the table, it does not

outperform the models with a more constant behavior.

87

6 Experimental Results

Figure 42: Next week price result visualization of the two best performing models
on a randomly selected ISIN, limited to the first 50 days of the test data set.

Figure 43: Next week price result visualization, plot of x vs x̂.

88

6 Experimental Results

mape mape mse mse
model (median) (mean) (median) (mean)

average, 10 days (44) 3.580 3.800 0.00426 0.0046
linear, 10 days (44) 6.130 6.310 0.00971 0.0104
median, 10 days (44) 3.550 3.740 0.00415 0.0045
naive, 1 day (44) 4.930 5.120 0.00805 0.0085
arima (1,0,0) (46) 3.280 3.474 0.00389 0.0042
mlp, trained on all Bunds:
mlp (30,20,10) (51) 3.630 4.700 0.00442 0.0070
mlp (20,10), four ind. (53) 3.600 4.100 0.00440 0.0048
mlp, trained on each Bund:
mlp (10,20,10) (59) 3.534 3.760 0.00417 0.0044
mlp (25,20,10), four ind.(61) 3.511 4.093 0.00400 0.0050
lstm, trained on all Bunds:
lstm (10,10,25), 3 days (65) 3.290 3.472 0.00400 0.0040
lstm (20,25,20), 3.279 3.294 0.00400 0.0039
3 days, four ind. (66)
lstm, trained on each Bund:
lstm (10,20,30), 3 days (69) 3.571 4.245 0.00440 0.0047
lstm (30,10,30), 3.496 5.483 0.00400 0.0130
10 days, four ind. (70)

Table 12: Next week return forecast, best performing model configurations per class.
Notations as in chapter Experimental Results (6).

Figure 44: Next week return result visualization of the two best performing models
on a randomly selected ISIN, limited to the first 50 days of the test data set.

89

6 Experimental Results

Figure 45: Next week return result visualization, plot of x vs x̂.

90

7 Discussion

7 Discussion

The aim of this chapter is to discuss the large amount of experimental results, which

have been introduced in the prior section. Emerging from this discussion, the first

important part of this chapter is to assess the hypotheses, which were established

in the introduction of this work. Second, additional findings are discussed. Finally,

questions, which are still open or arose in the process of developing this work and

might be relevant for future research, are formulated.

7.1 Evaluating Introductory Hypotheses

The next lines of this section are concerned with arguing for each of the four initially

formulated hypotheses, if they are supported by the experiments of this work or if

they should be dropped.

7.1.1 Hypothesis 1

[Hypothesis 1]: Government bond price development can be modelled by LSTMs

on the basis of technical bond data and outperforms established computational mod-

els, including recent neural network based techniques.

Modelling government bond prices by LSTMs seems generally possible, as long

as LSTMs are not trained on each Bund separately. The hypothesis is supported

by the experiments and the results obtained in this work. Although not all neu-

ral network based approaches (LSTM, on each Bund) performed as expected, most

neural network based approaches performed well, in many cases even best for the

specific task 6. If the slight improvement in performance is worth the additional

complexity is a different question. For certain tasks LSTMs outperform established

methods. Generally, the advantages of neural network based models are reflected in

this work. Of the eight best performances, two are reported for each combination

next {day,week} and {price,return}, six are neural network based.

The following figure (46) depicts the mape for model for a random selection of

10 Bunds for the task of next day price forecasts.

91

7 Discussion

Figure 46: Mape per ISIN per Model for next day price forecasts.

Other figures of the mean absolute percentage error per model for a selection of

10 Bunds can be found in the appendix (61, 62) and in the next paragraph (47).

It is observed, that MLPs, trained on each Bund and on all Bunds produce high

quality results. When considering the mse (median), MLPs score highest results

with a mse (median) of 0.01. Also, the naive model is suited for this task, best

performing with respect to a mape (median) of 0.14. LSTMs, if they are trained

on all Bunds, achieve second best performance with respect to a mape (median) of

0.19 and second best performance in terms of mse (median) with 0.05 (9). On the

contrary, training them on each Bund and consequently evaluating LSTM models

for each model for each Bund does not work well. For next day return forecasts,

LSTM models achieve the best mape (median) score with 3.22 (10). For next week

price forecasts, LSTM models are most successful in terms of mape (median), 0.338,

and with respect to mse (median), 0.23 (11). Also, for next week return forecasts,

LSTM models accomplish the best mape (median) score of 3.279.

92

7 Discussion

Certainly surprising is the large difference between MLP and LSTM models.

trained on each Bund. While MLP models (on each Bund) perform best in certain

cases and often very well, LSTM models (on each Bund) are in many cases (just as

the one depicted in the figure above) the ones with worst performance. A convincing

explanation is still to be sought. One possible reason might be the rather small

number of training epochs for the LSTM models. The LSTM, trained on all Bunds,

might be able to avoid this problem due to the larger number of training samples

in every epoch.

Another noteworthy fact about the neural network based approaches is the one,

that architectural choices seem less important than expected. Best performing MLP

and LSTM models for different tasks have a variety of different units per layer and

also a different number of layers. When consulting the full experimental results

in the appendix for each of the results tables, it becomes clear, that the results of

different model architectures for a specific task and training setup is often rather

small. This indicates, that the tasks as posed in this work, and with the data

available, can be solved by many of the tested architectures, at least to the extent

presented in this work.

All in all, the neural network based approaches achieve better performances

than ARIMA or less complex models. Two questions however remain open, which

are discussed later again: (a) is the minor gain in performance obtained by the

neural networks based performances worth their higher complexity and consequently

their significantly longer computation times and (b) do the neural network based

approaches really learn much when it comes to return forecasting? Their almost

constant forecasts answer this question in the negative.

The superiority of neural network based approaches seems evident to a certain

extent. As the hypothesis suggests, however, LSTM models do not seem to perform

better than MLP models. Although LSTM models show best performance for some

tasks, MLP models are performing often similarly, sometimes even better (6). That

LSTM models generally outperform MLP models, is not supported by the results of

this work.

7.1.2 Hypothesis 2

[Hypothesis 2]: Enriching the technical bond data by economic features improves

the overall model performance of neural network based models in forecasting future

bond development.

93

7 Discussion

For MLP model forecasts, this does not enhance performance significantly. For

next day price forecast for example, MLP models trained on all Bunds obtain a

mape (median) score of 0.27 on the original data and a score of 0.41 on the fused

data (9). Trained on each Bund, there is improvement, but it is small. From a

mape (median) of 1.25, it declines to 1.22. For LSTM models, trained on all Bunds,

next day price forecast performances are almost identical for both, training on fused

and original data with a mape (median) of 0.06 and 0.05 (9). For next day return

forecasting, results for both, MLP and LSTM models, are similar. Training on the

fused data does not increase performance. On the contrary, next week forecasts

seem to profit from training on the fused data set. With respect to mape (median),

the LSTM models, trained on all Bunds and on the fused data set, accomplish top

performance with a mape of 0.338 for next week price forecasts and 3.279 for next

week return forecasts. Enriching the feature space with economic data, at least in

the way it has been done in this work, might help in certain scenarios, especially for

longer forecasting horizons. Not much evidence however is obtained, that this adds

value in general.

7.1.3 Hypothesis 3

[Hypothesis 3]: Neural network based models outperform other established meth-

ods for an increased forecasting horizon.

How do next day and next week forecasts compare, both in price and return?

Already mentioned is the apparent superiority of price forecasts over return forecasts.

The difference between next day and next week forecasts is on the contrary rather

small.

Target: Price When targeting price, a small difference in performance metrics

can be observed (9, 11). Forecasting the next day seems easier than forecasting

the next week, which answers the expectations. Best next day price forecasting

performance with respect to mse (median) is 0.01 obtained by the MLP model,

trained on each Bund. For next week price forecasts, LSTM and MLP models

perform equally well in terms of mse (median) with a value of 0.23. When trying to

probe the causes of these results, and especially when looking at the corresponding

plots for next day and next week price forecasts (38, 40), the reason behind this,

94

7 Discussion

is possibly the characteristic, that best performing models are similar to the naive

approach of forecasting values close to the current value. For next week forecasts,

with larger variations than for next day forecasts. This rolling forward of the current

value seems to be the best strategy, naturally combined with small adaptions, for

the tasks at hand.

Target: Return The rolling forward of the current value is not successful for

return values. Both, for next day and next week. Models forecasting the return on

the contrary, are inclined to circle around constants (40, 44). The almost constant

forecast then does not yield a large discrepancy in next day and next week return

forecast, which manifests itself in the top performances. Top next day return per-

formance, measured in mape (median) is 3.22 by the LSTM model (10). Best next

week return mape (median) scores, are also obtained by LSTM models with a value

of 3.28.

In next week forecasts, neural network based approaches perform better than

other approaches. The difference between mape and mse for neural network based

approaches and easier methods also increases slightly (9, 11). For next week fore-

casts, LSTM models also outperform MLP models. This could indicate, that a

longer time horizon improves neural network based approaches’ performance, espe-

cially LSTM models, compared to less complex models, ARIMA or MLP models.

However, the difference is rather small and at least for the chosen time horizons, the

variation might be negligible.

7.1.4 Hypothesis 4

[Hypothesis 4]: Neural networks for the task of return forecasting outperform

neural network aiming for price forecasting.

The forecasts for both, next day and next week price, are, in terms of the mean

absolute percentage error, better than the forecasts for the corresponding return

forecasts (9, 10, 11, 12). Next day price forecasts range from a mape (median) of

0.19 to 2.99. Price forecasts for the next week achieve a mape (median) between

0.338 and 1.5 for neural network based models. Next day return forecasts result in

a mape (median) of in between 3.22 and 3.69. Next week return forecasts scores

range from 3.279 to 3.630.

This is surprising and does comply with the expectations formulated in the in-

95

7 Discussion

troduction to this work. Among others, missing stationarity was expected to cause

problems for neural network based price forecasts, while return forecast should have

benefited from this features. On the contrary, return forecasts perform worse than

expected, which is also clearly shown in the plots (38, 39, 40, 41). The circling

around constant values of neural network based approaches (and others) does not

convey the impression, that much is learned. The general superiority of price forecast

over return forecasts can be inferred from the plots of the mean absolute percentage

errors per model for a random selection of Bunds. The corresponding price plot (46)

shows lower mape scores than the corresponding return plot (47) below, which can

be seen easily, when consulting the y-axes of both plots.

Figure 47: Mape per ISIN per Model for next day return forecasts.

Evidence collected in the experiments of this work, points in the very opposite

direction of this [Hypothesis 4]. Although theoretically, there a good reasons to

believe, that this hypothesis is valid, in this work’s experiments, the results indicate

96

7 Discussion

the opposite. Price forecasting achieved more satisfactory results than return fore-

casting (9, 10). First ideas for this unexpected behavior have been discussed, but

further explanations for this are sought.

7.2 Open Questions

The presented results and the evaluation of the initially formulated hypotheses pose

some further questions, which are briefly addressed in this subsection. For a few

questions, first answers are provided, whereas some remain open for future research

in this area.

1. Can differences in performances for specific Bunds be observed?

This important question has not been addressed yet, which is why a few

thoughts on this are explained. The theoretical background for not distin-

guishing between the obvious difference in 10 and 30 year Bunds has been

provided in earlier sections of this work (3). In practice, one difference be-

tween 10 year and 30 year Bunds is the increased variance in prices of 30 year

Bunds due to their longer runtime and higher exposure to risk. Figure (48)

shows for each model and ten randomly selected Bunds, the Bunds’ variance

in price and the mape of the best model per class. Although the difference is

not large, it seems that, especially for well performing models like the MLP

(on each Bund), the Naive, and the LSTM (on all Bunds), the mean absolute

percentage errors increases with increasing variance. When thinking about

this, this might not be as surprising and it does not conflict with the earlier

statement, that theoretically 10 year and 30 year Bunds can be modelled with

one model. Instead, what might be useful to incorporate in future models,

is the variance, which seems to be connected to the remaining time to matu-

rity. This does not directly connect to 10 and 30 year Bunds, as in the given

training data set, there are 10 year Bunds with larger maturity than 30 year

Bunds and vice versa. Consequently, the development of different models for

ranges of remaining time to maturity might be interesting. For the return,

the observations of the variance of the price data, do not hold (Figure 49).

Variance in return seems not connected to runtimes of Bunds. Error metrics

also do not seem to be strongly effected by variance of returns.

2. Can certain scenarios be identified, where some models seem to be more suitable

97

7 Discussion

Figure 48: Plot of variance vs mape per model of next day price forecasts.

than others?

Apart from the models, which have performed best, for the given task, are

there more scenarios, in which certain models are to be preferred over others?

Already mentioned is the idea, that certain models might be more successful for

shorter remaining time to maturity, other might be more successful for longer

remaining time to maturity. Are there other factors? Possibly, lower interest

rates or coupons might be modelled be other models than higher interest rates

or coupons. Further differentiation of this rather global approach in this work

might be useful.

3. Is it desirable to test more or different models for further improvement of re-

sults?

The number of models tested per model class was already large for the scope of

this work. There is no evidence, that simply adding more layers and/or units

will drive performance in the desired directions. Maybe different model types

yield better performances. Recent work uses convolutional neural networks

and reinforcement learning for time series forecasting ([40]). Also, a combi-

nation of LSTM to capture time dependency and convolutional networks to

98

7 Discussion

Figure 49: Plot of variance vs mape per model of next day return forecasts.

capture other aspects might be worth trying.

4. Is the choice of economic indicators correct? Should they be modelled differ-

ently?

The choice of economic indicators certainly could be changed. This work has

not presented much evidence, that this does improve model quality notably.

One problem could be the different resolution of days and months in the differ-

ent data sets and the chosen approach to fusion the data. Different approaches

to address this problem might be more successful.

5. How do general models like certain neural network based perform on unseen

Bunds? This has not been evaluated within the scope of this work. However,

it is expected, that neural networks trained on all Bunds perform similarly on

unseen Bunds and are comparable to the provided results. This is certainly

an advantage of these models, as many other models are not able to handle

unseen Bunds.

6. Could different scaling of the data before training change the results as desired?

Min-max-scaling as used for the input for the LSTM models looses more infor-

99

7 Discussion

mation than normalization, for example. This is why, it is a reasonable idea

to try this different approach to scale the input data. For the specific task of

next day price forecasting, an LSTM model, trained on all Bunds, has been

trained. The top 5 performances with respect to mape (median) are reported

in table 13. When comparing the results for the two different inputs for the

LSTM model, the normalized input performs worse than the min-max-scaled

input. Consequently, changing the scaling method for the input does not seem

to yield major benefits.

7. One last question is regarding the number of training epochs, especially for re-

turn forecasting. Would longer training epochs be beneficial for return forecast

and impact the approximately constant forecast?

A first idea of how more epochs change the forecast is tested for the LSTM

model for next day return forecasting, trained on all Bunds. The behavior of

the loss function, which has been seen for the first 50 epochs already in the

experimental setup, is not surprising (figure 50). It can be expected that the

loss declines quickly at the beginning (the orange box in the plot). Maybe,

it is expected to not decline as quickly as depicted here. However, the reason

for no further improvement is, that the loss is constant after it has reached a

certain (near 0) threshold (the purple box in the plot). So, as least as the task

is constituted in this work, longer training does not seem to help.

model mape (median)

lstm (10), 3 days 1.04
lstm (20), 3 days 1.07
lstm (25), 3 days 1.10
lstm (30), 3 days 1.12
lstm (10,10), 3 days 1.26

Table 13: Next day price forecast, normalization instead of scaling, trained on all
Bunds. Notations as in chapter Experimental Results (6).

100

7 Discussion

Figure 50: Longer Training does not improve LSTM model performance, trained on
all Bunds, forecasting next day return.

101

8 Conclusion

8 Conclusion

The motivation of this work has been to set an example of the large potential of

Artificial Intelligence in the financial industry with the help of currently in vogue

techniques of neural networks and especially LSTMs. The financial industry’s most

prominent data type is time series data, which is notoriously hard to model. Much

effort has been invested into the modelling and forecasting of stock price time series

data. This work investigated the related, but far less explored topic of government

bond development. In contrast to stock data, government bond data is expected

to be largely driven by the economic development of the bond issuing government.

Therefore, relevant data for the modelling and forecasting of government bond de-

velopment is accessible to the public. Understanding government bonds in greater

detail, with their large impact on global economy, and to improving capabilities of

modelling their development, would be of enormous benefit to governments world-

wide, to adjust economic policies and prevent financial crises.

With the publicly available bond data, and state-of-the-art methods of Artificial

Intelligence, German government bonds (Bunds) have been modelled with different

time horizons, targets and modelling approaches. Neural network based approaches,

especially LSTM models due to their design for sequence modelling, were expected

to being able to model the Bund development with high quality. Furthermore,

LSTM were anticipated to outperform already introduced neural network based ap-

proaches and other, well established methods for government bond price forecasting

including ARIMA models. These expectations were formulated in the following four

hypotheses, which investigated within this work. The outcome of this research is

summarized for each of the initially formulated hypotheses:

[Hypothesis 1]:

Government bond price development can be modelled by LSTMs on the basis of

technical bond data and outperforms established computational models, including

recent neural network based techniques.

It has been shown, that LSTMs are capable of modelling German government

bonds. Depending on the specific task, they outperform established computational

models, also neural network based ones, of which MLP models have been compared

in this work. LSTMs were especially useful for next week price forecast, for which

they achieved better scores than the MLP model (second best) and the average

model (best of remaining tested models), as shown in table (14).

102

8 Conclusion

ID model mape (median) std (over mape)

1 average, 3 days (43) 0.344 0.33

2 mlp (10,10,10) (55) 0.516 0.26

3 lstm (30,25,10), 3 days, four ind. (64) 0.338 0.62

Table 14: Results of next week price forecast, extract of table 11. Best performing
LSTM, MLP and Average with respect to the median of the mean absolute percent-
age error over all Bunds are reported. Standard deviation of mape scores over all
Bunds per model is listed as well.

In most of the tested scenarios, neural network based approaches outperformed

established methods. However, the improvement of performance has been minor in

most cases. It is questionable, if the added complexity justifies the small advance-

ments.

[Hypothesis 2]:

Enriching the technical bond data by economic features improves the overall model

performance of neural network based models in forecasting future bond development.

Interestingly, it is not obvious, that the implemented models benefit significantly

from the large amounts of available economic data. Table 14 above presents LSTM

models, which perform best on the fused data set. However, there the scores do

not seem to be a significant improvement to training models on the original data

set. This might be caused by the selection of economic data for model building in

this work and the fusion technical and economical data into one data set. Certainly,

further research in this area seems promising, as economic research clearly identified

data, which drives government bond development, and first steps for modelling this

development by modern computational methods as LSTMs are made.

[Hypothesis 3]:

Neural network based models outperform other established methods for an increased

forecasting horizon.

More distant forecasting horizons do not effect model performance as strongly

as one might expect. Observations show a decline in performance for more distant

events in the future, but larger discrepancies might have been expected. LSTM

models, trained on all Bunds and on the fused data set, achieved a mape (median)

103

8 Conclusion

of 0.19 and a mse (median) of 0.05. For next week price forecast, performance of

the same model declines to 0.338 (mape (median)) and 0.23 (mse (median)). Con-

sequently, mape (median) performance increases by 0.148 and mse (median) rises

by 0.18. Difference in performance of the average model, is 0.164 in mape (median)

and 0.19 in mse (median). Hence, more distant forecasting horizons do not only

show no significant effects on model performance, in addition, LSTMs do not profit

as expected from an increased forecasting horizon in comparison with established

methods.

[Hypothesis 4]:

Neural networks for the task of return forecasting outperform neural networks aim-

ing for price forecasting.

Another surprising aspect is the unanswered expectation, that return develop-

ment is easier to model than price development. This is manifested in the fact, that

the majority of models for price forecasting obtain a mape (median) score between

close to 0% and around 1.5%. Return forecasts mostly achieve mae (median) scores

of around 3%. This contrasts initially formulated expectations. First ideas, why

this might be the case, such as an insufficient number of training epochs, do not

seem to remedy this fact.

This thesis answered a variety of questions regarding LSTMs’ ability to model

German bond development. However, as discussed in chapter 7.2 in detail, a num-

ber of questions for further research in this area emerged. There is uncertainty, if

the training including the scaling could be improved. First ideas did not enhance

the presented results, but further investigation might lead to an advance in perfor-

mance. Another technical aspect is the possibility of implementing further, deep

learning inspired models, such as a combination of LSTM and convolutional net-

works. Furthermore, the decision for economic data, which is used in addition to

technical bond data, is not set in stone. Other choices might yield improvements for

bond development forecasting. Lastly, different scenarios, in which certain models

forecast in satisfactory quality and also in which they leave room for improvement,

need to be investigated: Which models perform well on government bonds with long

remaining time to maturity? Which perform well with short remaining time? Which

models capture volatile bonds? Are there models, which model Bunds with higher

interest rates better than Bunds with lower interest rates, or potentially the other

way around? All these aspects, which are concerned with the nature of governmen-

104

8 Conclusion

tal bonds and their impact on modelling might be worth further investigation.

In conclusion, on the one hand this extensive experimental work on Bund de-

velopment forecasting confirmed expectations of LSTM models being able to model

Bund development. On the other hand, other expectations remain unanswered and

interesting directions for future research emerged.

105

9 References

9 References

[1] Magnus Andersson, Lars Jul Overby, and Szabolcs Sebestyén. “Which news

moves the euro area bond market?” In: German economic review 10.1 (2009),

pp. 1–31.

[2] Adebiyi A Ariyo, Adewumi O Adewumi, and Charles K Ayo. “Stock price

prediction using the ARIMA model”. In: Computer Modelling and Simulation

(UKSim), 2014 UKSim-AMSS 16th International Conference on. IEEE. 2014,

pp. 106–112.

[3] Pierluigi Balduzzi, Edwin J Elton, and T Clifton Green. “Economic news and

bond prices: Evidence from the US Treasury market”. In: Journal of financial

and Quantitative analysis 36.4 (2001), pp. 523–543.

[4] George EP Box et al. Time series analysis: forecasting and control. John Wiley

& Sons, 2015.

[5] Peter J Brockwell and Richard A Davis. Introduction to time series and fore-

casting. springer, 2016.

[6] Peter J Brockwell and Richard A Davis. Time series: theory and methods.

Springer Science & Business Media, 2013.

[7] Bundesbank. Bundesbank - Kurse und Renditen. https://www.bundesbank.

de/Navigation/DE/Service/Bundeswertpapiere/Kurse_und_Renditen/

kurse_und_renditen.html. [Online; accessed 4-May-2018]. 2018.

[8] StatsLab Cambridge. Time Series. http://www.statslab.cam.ac.uk/

~rrw1/timeseries/t.pdf. [Online; accessed 10-Aug-2018]. 2018.

[9] Lijuan Cao. “Support vector machines experts for time series forecasting”. In:

Neurocomputing 51 (2003), pp. 321–339.

[10] Rodolfo C Cavalcante et al. “Computational intelligence and financial mar-

kets: A survey and future directions”. In: Expert Systems with Applications 55

(2016), pp. 194–211.

[11] Yingjun Chen and Yongtao Hao. “A feature weighted support vector machine

and K-nearest neighbor algorithm for stock market indices prediction”. In:

Expert Systems with Applications 80 (2017), pp. 340–355.

[12] François Chollet et al. Keras. https://keras.io. 2015.

106

https://www.bundesbank.de/Navigation/DE/Service/Bundeswertpapiere/Kurse_und_Renditen/kurse_und_renditen.html
https://www.bundesbank.de/Navigation/DE/Service/Bundeswertpapiere/Kurse_und_Renditen/kurse_und_renditen.html
https://www.bundesbank.de/Navigation/DE/Service/Bundeswertpapiere/Kurse_und_Renditen/kurse_und_renditen.html
http://www.statslab.cam.ac.uk/~rrw1/timeseries/t.pdf
http://www.statslab.cam.ac.uk/~rrw1/timeseries/t.pdf
https://keras.io

9 References

[13] Eunsuk Chong, Chulwoo Han, and Frank C Park. “Deep learning networks for

stock market analysis and prediction: Methodology, data representations, and

case studies”. In: Expert Systems with Applications 83 (2017), pp. 187–205.

[14] Rama Cont. “Empirical properties of asset returns: stylized facts and statisti-

cal issues”. In: (2001).

[15] Xiao Ding et al. “Deep learning for event-driven stock prediction.” In: Ijcai.

2015, pp. 2327–2333.

[16] Statistical Office of the European Union (Eurostat). Statistical Office of the

European Union (Eurostat). http : / / ec . europa . eu / eurostat / about /

overview. [Online; accessed 29-July-2018]. 2018.

[17] WEN Fenghua et al. “Stock price prediction based on SSA and SVM”. In:

Procedia Computer Science 31 (2014), pp. 625–631.

[18] Deutsche Finanzagentur. Federal Bonds. https://www.deutsche-finanzagentur.

de/en/institutional-investors/federal-securities/federal-bonds/.

[Online; accessed 4-May-2018]. 2018.

[19] Deutsche Finanzagentur. Federal notes. https://www.deutsche-finanzagentur.

de/en/institutional-investors/federal-securities/federal-notes/.

[Online; accessed 4-May-2018]. 2018.

[20] Deutsche Finanzagentur. Federal Treasury notes. https://www.deutsche-

finanzagentur.de/en/institutional-investors/federal-securities/

federal-treasury-notes/. [Online; accessed 4-May-2018]. 2018.

[21] Banque France. Taux indicatifs des bons du Trésor et OAT. https://www.

banque- france.fr/statistiques/taux- et- cours/taux- indicatifs-

des-bons-du-tresor-et-oat. [Online; accessed 4-May-2018]. 2018.

[22] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of sta-

tistical learning. Vol. 1. Springer series in statistics New York, 2001.

[23] Swetava Ganguli and Jared Dunnmon. “Machine Learning for Better Models

for Predicting Bond Prices”. In: arXiv preprint arXiv:1705.01142 (2017).

[24] Linda S Goldberg and Deborah Leonard. “What moves sovereign bond mar-

kets? The effects of economic news on US and German yields”. In: (2003).

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[26] Alex Graves. “Generating sequences with recurrent neural networks”. In: arXiv

preprint arXiv:1308.0850 (2013).

107

http://ec.europa.eu/eurostat/about/overview
http://ec.europa.eu/eurostat/about/overview
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-bonds/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-bonds/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-notes/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-notes/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-treasury-notes/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-treasury-notes/
https://www.deutsche-finanzagentur.de/en/institutional-investors/federal-securities/federal-treasury-notes/
https://www.banque-france.fr/statistiques/taux-et-cours/taux-indicatifs-des-bons-du-tresor-et-oat
https://www.banque-france.fr/statistiques/taux-et-cours/taux-indicatifs-des-bons-du-tresor-et-oat
https://www.banque-france.fr/statistiques/taux-et-cours/taux-indicatifs-des-bons-du-tresor-et-oat
http://www.deeplearningbook.org
http://www.deeplearningbook.org

9 References

[27] T Clifton Green. “Economic news and the impact of trading on bond prices”.

In: The Journal of Finance 59.3 (2004), pp. 1201–1233.

[28] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[29] Robert D. Hof. Deep Learning. https://www.technologyreview.com/s/

513696/deep-learning/. [Online; accessed 10-Oct-2018]. 2013.

[30] Ming-Wei Hsu et al. “Bridging the divide in financial market forecasting: ma-

chine learners vs. financial economists”. In: Expert Systems with Applications

61 (2016), pp. 215–234.

[31] Cheng-Lung Huang and Cheng-Yi Tsai. “A hybrid SOFM-SVR with a filter-

based feature selection for stock market forecasting”. In: Expert Systems with

applications 36.2 (2009), pp. 1529–1539.

[32] Wei Huang, Yoshiteru Nakamori, and Shou-Yang Wang. “Forecasting stock

market movement direction with support vector machine”. In: Computers &

Operations Research 32.10 (2005), pp. 2513–2522.

[33] John C Hull and Sankarshan Basu. Options, futures, and other derivatives.

Pearson Education India, 2016.

[34] John Hull, Mirela Predescu, and Alan White. “The relationship between credit

default swap spreads, bond yields, and credit rating announcements”. In: Jour-

nal of Banking & Finance 28.11 (2004), pp. 2789–2811.

[35] Jochen R. Andritzky IMF. Government Bonds and Their Investors: What Are

the Facts and Do They Matter? https://www.imf.org/external/pubs/ft/

wp/2012/wp12158.pdf. [Online; accessed 10-Oct-2018]. 2012.

[36] Investopedia. Government Bond Definition. https://www.investopedia.

com/terms/g/government-bond.asp. [Online; accessed 30-Apr-2018]. 2018.

[37] Investopedia. Look-Ahead Bias. https://www.investopedia.com/terms/l/

lookaheadbias.asp. [Online; accessed 19-Sep-2018]. 2018.

[38] Investopedia. Time Series. https://www.investopedia.com/terms/t/

timeseries.asp. [Online; accessed 08-Aug-2018]. 2018.

[39] Marko Jerkic. Neural Network Output Units. https://markojerkic.com/

neural-network-output-units/. [Online; accessed 28-May-2018]. 2018.

[40] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. “A deep reinforcement learning

framework for the financial portfolio management problem”. In: arXiv preprint

arXiv:1706.10059 (2017).

108

https://www.technologyreview.com/s/513696/deep-learning/
https://www.technologyreview.com/s/513696/deep-learning/
https://www.imf.org/external/pubs/ft/wp/2012/wp12158.pdf
https://www.imf.org/external/pubs/ft/wp/2012/wp12158.pdf
https://www.investopedia.com/terms/g/government-bond.asp
https://www.investopedia.com/terms/g/government-bond.asp
https://www.investopedia.com/terms/l/lookaheadbias.asp
https://www.investopedia.com/terms/l/lookaheadbias.asp
https://www.investopedia.com/terms/t/timeseries.asp
https://www.investopedia.com/terms/t/timeseries.asp
https://markojerkic.com/neural-network-output-units/
https://markojerkic.com/neural-network-output-units/

9 References

[41] Charles M Jones, Owen Lamont, and Robin L Lumsdaine. “Macroeconomic

news and bond market volatility1”. In: Journal of Financial Economics 47.3

(1998), pp. 315–337.

[42] D Ashok Kumar and S Murugan. “Performance analysis of Indian stock mar-

ket index using neural network time series model”. In: Pattern Recognition,

Informatics and Mobile Engineering (PRIME), 2013 International Conference

on. IEEE. 2013, pp. 72–78.

[43] Monica Lam. “Neural network techniques for financial performance prediction:

integrating fundamental and technical analysis”. In: Decision support systems

37.4 (2004), pp. 567–581.

[44] Martin Längkvist, Lars Karlsson, and Amy Loutfi. “A review of unsuper-

vised feature learning and deep learning for time-series modeling”. In: Pattern

Recognition Letters 42 (2014), pp. 11–24.

[45] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature

521.7553 (2015), p. 436.

[46] Fei-Fei Li, Justin Johnson, and Serena Yeoung. Convolutional Neural Net-

works for Visual Recognition - Training Neural Networks I. https://youtu.

be/wEoyxE0GP2M. [Online; accessed 29-May-2018]. 2018.

[47] Chi-Jie Lu, Tian-Shyug Lee, and Chih-Chou Chiu. “Financial time series fore-

casting using independent component analysis and support vector regression”.

In: Decision Support Systems 47.2 (2009), pp. 115–125.

[48] Frederick R Macaulay et al. “Some theoretical problems suggested by the

movements of interest rates, bond yields and stock prices in the United States

since 1856”. In: NBER Books (1938).

[49] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org. 2015. url: https:

//www.tensorflow.org/.

[50] Moody’s. Moody’s Sovereign Ratings. https://www.moodys.com/research/

Sovereign-Supranational-Rating-List--PBC_186519. [Online; accessed

30-Apr-2018]. 2018.

[51] Andrew NG. What data scientists should know about deep learning. https:

//www.youtube.com/watch?v=O0VN0pGgBZM. [Online; accessed 20-Apr-2018].

2015.

109

https://youtu.be/wEoyxE0GP2M
https://youtu.be/wEoyxE0GP2M
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.moodys.com/research/Sovereign-Supranational-Rating-List--PBC_186519
https://www.moodys.com/research/Sovereign-Supranational-Rating-List--PBC_186519
https://www.youtube.com/watch?v=O0VN0pGgBZM
https://www.youtube.com/watch?v=O0VN0pGgBZM

9 References

[52] Christopher Olah. Understanding LSTM Networks. https://colah.github.

io/posts/2015-08-Understanding-LSTMs/. [Online; accessed 27-Feb-2018].

2015.

[53] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[54] PIMCO. Everything you need to know about bonds. http://europe.pimco.

com/EN/Education/Pages/Everythingyouneedtoknowaboutbonds.aspx.

[Online; accessed 30-Apr-2018]. 2012.

[55] Saimadhu Polamuri. Difference Between Softmax Function and Sigmoid Func-

tion. https://dataaspirant.com/2017/03/07/difference- between-

softmax- function- and- sigmoid- function/. [Online; accessed 28-May-

2018]. 2018.

[56] StatsModels Statistics in Python. StatsModels ARIMA. http://www.statsmodels.

org/devel/generated/statsmodels.tsa.arima_model.ARIMA.html. [On-

line; accessed 20-Sep-2018]. 2018.

[57] Thomson Reuters. Thomson Reuters Eikon. https://amers1.login.cp.

thomsonreuters.net/. [Online; accessed 29-July-2018]. 2018.

[58] Duke University Robert Nau Fuqua School of Business. Identifying the num-

bers of AR or MA terms in an ARIMA model. https://people.duke.edu/

~rnau/411arim3.htm. [Online; accessed 17-May-2018]. 2018.

[59] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: arXiv preprint arXiv:1609.04747 (2016).

[60] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-

ing representations by back-propagating errors”. In: nature 323.6088 (1986),

p. 533.

[61] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:

Neural networks 61 (2015), pp. 85–117.

[62] Dr. Holger Schmidt. Künstliche Intelligenz rückt auf der IT-Agenda der Un-

ternehmen weit nach oben. https://netzoekonom.de/2018/05/10/kuenstliche-

intelligenz-rueckt-auf-der-it-agenda-der-unternehmen-weit-nach-

oben/. [Online; accessed 22-Aug-2018]. 2018.

[63] Marco Schreyer et al. “Detection of Anomalies in Large Scale Accounting

Data using Deep Autoencoder Networks”. In: arXiv preprint arXiv:1709.05254

(2017).

110

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://europe.pimco.com/EN/Education/Pages/Everythingyouneedtoknowaboutbonds.aspx
http://europe.pimco.com/EN/Education/Pages/Everythingyouneedtoknowaboutbonds.aspx
https://dataaspirant.com/2017/03/07/difference-between-softmax-function-and-sigmoid-function/
https://dataaspirant.com/2017/03/07/difference-between-softmax-function-and-sigmoid-function/
http://www.statsmodels.org/devel/generated/statsmodels.tsa.arima_model.ARIMA.html
http://www.statsmodels.org/devel/generated/statsmodels.tsa.arima_model.ARIMA.html
https://amers1.login.cp.thomsonreuters.net/
https://amers1.login.cp.thomsonreuters.net/
https://people.duke.edu/~rnau/411arim3.htm
https://people.duke.edu/~rnau/411arim3.htm
https://netzoekonom.de/2018/05/10/kuenstliche-intelligenz-rueckt-auf-der-it-agenda-der-unternehmen-weit-nach-oben/
https://netzoekonom.de/2018/05/10/kuenstliche-intelligenz-rueckt-auf-der-it-agenda-der-unternehmen-weit-nach-oben/
https://netzoekonom.de/2018/05/10/kuenstliche-intelligenz-rueckt-auf-der-it-agenda-der-unternehmen-weit-nach-oben/

9 References

[64] U.S. Securities and Exchange Commission. Interest Rate Risk - When Interest

Rates Go Up, Prices of Fixed-Rate Bonds Fall. https://www.sec.gov/

investor/alerts/ib_interestraterisk.pdf. [Online; accessed 06-Mar-

2018]. 2013.

[65] Bank For International Settlements. BIS Quartely Review. https://www.bis.

org/publ/qtrpdf/r_qt1809.pdf. [Online; accessed 10-Oct-2018]. 2018.

[66] Robert J Shiller and Andrea E Beltratti. “Stock prices and bond yields: Can

their comovements be explained in terms of present value models?” In: Journal

of Monetary Economics 30.1 (1992), pp. 25–46.

[67] Robert Shumway and David Stoffer. Time Series Analysis and Its Applica-

tions. Vol. 3. Springer New York Dordrecht Heidelberg London, 2010.

[68] Yain-Whar Si and Jiangling Yin. “OBST-based segmentation approach to

financial time series”. In: Engineering Applications of Artificial Intelligence

26.10 (2013), pp. 2581–2596.

[69] Benchmark Solutions. Benchmark Bond Trade Price Challenge. https://

www.kaggle.com/c/benchmark-bond-trade-price-challenge. [Online;

accessed 27-Feb-2018]. 2012.

[70] Federal Office of Statistics for Germany (Statistisches Bundesamt). Statistis-

ches Bundesamt. https://www.destatis.de/DE/Startseite.html. [Online;

accessed 29-July-2018]. 2018.

[71] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing systems.

2014, pp. 3104–3112.

[72] Graham William Taylor. Composable, distributed-state models for high-dimensional

time series. University of Toronto Toronto, 2009.

[73] Tensorflow. Recurrent Neural Networks. https://www.tensorflow.org/

tutorials/sequences/recurrent. [Online; accessed 10-Oct-2018]. 2018.

[74] Robert Tibshirani et al. An introduction to statistical learning-with applica-

tions in R. 2013.

[75] U.S. Department of Treasury. Daily Treasury Bill Rates. https://www.

treasury.gov/resource-center/data-chart-center/interest-rates/

Pages/TextView.aspx?data=billrates. [Online; accessed 29-July-2018].

2018.

111

https://www.sec.gov/investor/alerts/ib_interestraterisk.pdf
https://www.sec.gov/investor/alerts/ib_interestraterisk.pdf
https://www.bis.org/publ/qtrpdf/r_qt1809.pdf
https://www.bis.org/publ/qtrpdf/r_qt1809.pdf
https://www.kaggle.com/c/benchmark-bond-trade-price-challenge
https://www.kaggle.com/c/benchmark-bond-trade-price-challenge
https://www.destatis.de/DE/Startseite.html
https://www.tensorflow.org/tutorials/sequences/recurrent
https://www.tensorflow.org/tutorials/sequences/recurrent
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates

9 References

[76] Agence France Trésor. Medium and Long-Term OATs. http://www.aft.

gouv.fr/rubriques/medium- and- long- term- oats_172.html. [Online;

accessed 29-July-2018]. 2018.

[77] Udacity. Cross Entropy. https://youtu.be/tRsSi_sqXjI. [Online; accessed

28-May-2018]. 2018.

[78] Bruce Vanstone and Gavin Finnie. “An empirical methodology for develop-

ing stockmarket trading systems using artificial neural networks”. In: Expert

systems with applications 36.3 (2009), pp. 6668–6680.

[79] Baohua Wang, Hejiao Huang, and Xiaolong Wang. “A novel text mining ap-

proach to financial time series forecasting”. In: Neurocomputing 83 (2012),

pp. 136–145.

[80] Jian-Zhou Wang et al. “Forecasting stock indices with back propagation neural

network”. In: Expert Systems with Applications 38.11 (2011), pp. 14346–14355.

[81] Bin Weng, Mohamed A Ahmed, and Fadel M Megahed. “Stock market one-day

ahead movement prediction using disparate data sources”. In: Expert Systems

with Applications 79 (2017), pp. 153–163.

[82] Wikipedia. Autoregressive–moving-average model. https://en.wikipedia.

org/wiki/Autoregressive%E2%80%93moving- average_model. [Online;

accessed 9-May-2018]. 2018.

[83] Wikipedia. List of countries by rating. https://en.wikipedia.org/wiki/

List_of_countries_by_credit_rating. [Online; accessed 4-May-2018].

2018.

[84] G Peter Zhang. “Time series forecasting using a hybrid ARIMA and neural

network model”. In: Neurocomputing 50 (2003), pp. 159–175.

[85] Xiao Zhong and David Enke. “Forecasting daily stock market return using

dimensionality reduction”. In: Expert Systems with Applications 67 (2017),

pp. 126–139.

112

http://www.aft.gouv.fr/rubriques/medium-and-long-term-oats_172.html
http://www.aft.gouv.fr/rubriques/medium-and-long-term-oats_172.html
https://youtu.be/tRsSi_sqXjI
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://en.wikipedia.org/wiki/List_of_countries_by_credit_rating
https://en.wikipedia.org/wiki/List_of_countries_by_credit_rating

10 Appendix

10 Appendix

10.1 Full Experimental Results: Next Day Forecasting

This subsection reports the results of the next day forecasts. It includes forecasts

for both price and return as well as forecasts based solely on the Bund data and

forecasts based on Bund data fused with economic data. The latter are only available

for the neural network based approaches of MLP and LSTM.

The extensive experimental nature of this works yields a large number of results

which are fully reported here the appendix. For the vast variety of models with

different target and, for those models where it is reasonable, with additional eco-

nomic data, a maximum of ten best performing results is reported per combination

of model class, target, without and with economic data. Model class in this context

refers to the selected models for the experiments of this work, meaning naive, linear,

mean and median (which will be often referred to as less complex models, ARIMA

model, MLP and LSTM models. So, exemplarily, for the model class MLP, there

will be results reported for next day, both for price and return and both with and

without the fused economic data set. For each of those combinations the ten best

performing (where performance is measured as described earlier (5.7), ordered by

mean of mean squared errors over all tested Bunds, are reported in this section.

Below, an overview of the results found in this section as they occur is provided to

help the reader navigate through the large amount of reported results.

Results: Next day forecasting 10.1:

Reporting all the results of next day forecasts.

1. Less complex models (10.1.1)

i. Target: price

ii. Target: return

2. ARIMA (10.1.2)

i. Target: price

ii. Target: return

3. MLP, trained on all Bunds (10.1.3)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

113

10 Appendix

4. MLP, trained on each Bund (10.1.4)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

5. LSTM, trained on all Bunds (10.1.5)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

6. LSTM, trained on each Bund

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

10.1.1 Comparison of Less Complex Models

In this part of this work, results of mean (= average), linear, median and naive

models are reported, denoted here as less complex models. First, results for next

day price forecasts will be listed, second results for next day return forecasts will be

reported.

Next Day Price Forecast The following table (15) lists the results of the fore-

casts for the next day price obtained with average, linear, median and naive models

(in this order) with their different configurations of how many days of the past are

considered. The best performing model (in terms of the median of mean squared er-

rors over all Bunds) in this case the naive approach - forecasting the next time step

to be equivalent to the current one for any time step - has been the most successful

model.

114

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

average, last 3 days 4.63 0.07 0.23 0.18

average, last 5 days 4.31 0.11 0.28 0.23

average, last 10 days 4.31 0.21 0.38 0.32

linear, last 3 days 11.20 0.06 1.40 1.27

linear, last 5 days 7.11 0.06 1.40 1.27

linear, last 10 days 5.14 0.09 1.41 1.27

median, last 3 days 3.59 0.08 0.24 0.19

median, last 5 days 3.71 0.12 0.28 0.23

median, last 10 days 4.03 0.23 0.38 0.33

naive, last 1 day 6.73 0.04 0.18 0.14

Table 15: Next day price forecast results of less complex models.

Next Day Return Forecast The following table (16) lists the results of the

forecasts for the next day return obtained with average, linear, median and naive

models (in this order) with their different configurations of how many days of the

past are considered. The best performing model (in terms of the median of mean

squared errors over all Bunds) in this case the median approach - taking the last 10

days at any given point of time into account - has been the most successful model.

mse mse mape mape

model (mean) (median) (mean) (median)

average, last 3 days 0.00545 0.00501 4.09 3.93

average, last 5 days 0.00495 0.00482 3.88 3.70

average, last 10 days 0.00454 0.00421 3.72 3.53

linear, last 3 days 0.01365 0.01204 6.89 6.66

linear, last 5 days 0.00851 0.00785 5.62 5.45

linear, last 10 days 0.00604 0.00570 4.74 4.51

median, last 3 days 0.00548 0.00527 4.10 3.92

median, last 5 days 0.00499 0.00483 3.91 3.71

median, last 10 days 0.00439 0.00412 3.66 3.50

naive, last 1 day 0.00821 0.00755 4.86 4.66

Table 16: Next day return forecast results of less complex models.

115

10 Appendix

10.1.2 Comparison of Performance of ARIMA Models

In this part of this work, results of different ARIMA models will be reported. First,

results for next day price forecasts will be listed, second results for next day return

forecasts will be reported. ARIMA models for the next day price forecast include

ARIMA models with p ∈ 1, 3, d = 1, and q ∈ 0, 1. ARIMA models for the next day

return forecast include ARIMA models with p ∈ 1, 3, d = 0, and q ∈ 0, 1.

Next Day Price Forecast The following table (17) lists the results of the the

next day price forecast obtained with ARIMA (1,1,0), ARIMA (1,1,1), ARIMA

(3,1,0) and ARIMA (3,1,1) models (in this order). The best performing model (in

terms of the median of mean squared errors over all Bunds) in this case the ARIMA

1,1,0 model has been the most successful model.

mse mse mape mape

model (mean) (median) (mean) (median) failed

arima (1,1,0) 9.302 0.139 1.461 1.2653 0

arima (1,1,1) 9.310 0.140 1.460 1.2653 32

arima (3,1,0) 12.180 0.140 1.482 1.2651 0

arima (3,1,1) 12.183 0.141 1.481 1.2655 12

Table 17: Next day price forecast results of arima models. Ordered by mse (median)
and mape (median)

Next Day Return Forecast The following table (18) lists the results of the the

next day return forecast obtained with ARIMA (1,0,0), ARIMA (1,0,1), ARIMA

(3,0,0) and ARIMA (3,0,1) models (in this order). The best performing model (in

terms of the median of mean squared errors over all Bunds) in this case the ARIMA

1,0,0 model has been the most successful model.

116

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median) failed

arima (1,0,0) 0.00416 0.0038 3.485 3.297 0

arima (1,0,1) 0.00417 0.0039 3.495 3.302 20

arima (3,0,0) 0.0041895 0.0039 3.515 3.305 0

arima (3,0,1) 0.0041984 0.0040 3.529 3.327 9

Table 18: Next day return forecast results of arima models. Ordered by mse (me-
dian) and mape (median)

10.1.3 Comparison of Performance of MLP Models, Trained on All

Bunds

In this part of this work, results of different MLP models, which were trained on

all Bunds, will be reported. First, results for next day price forecasts will be listed,

second results for next day return forecasts will be reported. For both of the two

different targets, results will be reported for forecasts on the original Bund data set as

well as for forecasts on the fused data set, including economic features. In addition,

for each best performing model per task, results for the same model configuration

but with a different random initialization will be reported.

As described in detail in the prior section of experimental setup (5.3.5), MLP

architectures range from one to three hidden layers containing 10, 20, 25 or 30 units

each. Reporting all 84 architectures would require unnecessary attention of the

reader, which is why it has been decided to only report the top 10 performing models.

Performance hereby is ranked again by the median of mean squared errors over all

the tested Bunds. Other performance metrics as introduced in the experimental

setup (5.7) are reported as well.

Next Day Price Forecast The following table (19) lists the results of the the

next day price forecast obtained with MLP models and different architectures. The

best performing model (in terms of the median of mean squared errors over all

Bunds) in this case the MLP (10) model has been the most successful model.

Models in the table are ordered by the column mse (median). Training is conducted

on all Bunds.

117

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10) 0.337 0.121 0.328 0.271

mlp (25,20,10) 0.376 0.209 0.368 0.313

mlp (25,25) 0.467 0.19 0.4 0.331

mlp (20,20,30) 0.465 0.257 0.423 0.344

mlp (30,30) 0.597 0.231 0.435 0.349

mlp (30,30,30) 0.577 0.238 0.445 0.363

mlp (20,20,20) 0.741 0.353 0.488 0.39

mlp (20,10,25) 0.725 0.329 0.489 0.393

mlp (25,20,20) 1.312 0.407 0.615 0.407

mlp (30,20,10) 0.904 0.47 0.517 0.408

Table 19: Ten best performing next day price forecast results of MLP models trained
on all Bunds, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Price Forecast Model

The following table (20) lists the results of the the next day price forecast obtained

with the already seen MLP (10) model, which performed best on the task of next

day price forecasts, when training started with five other random initializations.

Training is conducted on all Bunds.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10), seed=5555 0.2667 0.1044 0.2835 0.2360

mlp (10), seed=9999 0.4325 0.1149 0.3389 0.2444

mlp (10), seed=1234 0.3374 0.1215 0.3282 0.2705

mlp (10), seed=6789 0.4868 0.2236 0.4202 0.3154

mlp (10), seed=5678 1.0689 0.2838 0.5800 0.3899

Table 20: Five different initializations of best performing next day price forecast
MLP model, trained on all Bunds, ordered by mape (median).

Next Day Price Forecast on Fused Data The following table (21) lists the

results of the the next day price forecast obtained with MLP models and different

118

10 Appendix

architectures but in addition to prior results trained on the fused data set. The best

performing model (in terms of the median of mean squared errors over all Bunds)

in this case the MLP (10), seven ind. model has been the most successful model.

Models in the table are ordered by the column mse (median). Training is conducted

on all Bunds.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind. 0.945 0.474 0.515 0.412

mlp (10), seven ind. 0.994 0.384 0.572 0.466

mlp (10), four ind. 2.413 0.717 0.871 0.474

mlp (20,10,20), four ind. 1.951 0.522 0.728 0.503

mlp (25,30,30), four ind. 2.536 0.479 0.83 0.517

mlp (25,10,30), four ind. 1.081 0.737 0.612 0.533

mlp (20,10), seven ind. 1.687 0.694 0.723 0.541

mlp (20,10,10), seven ind. 6.115 0.723 1.087 0.551

mlp (20,25,30), four ind. 1.347 0.727 0.709 0.551

mlp (30,10), seven ind. 1.186 0.495 0.701 0.552

Table 21: Ten best performing next day price forecast results MLP models trained
on all Bunds and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Price Forecast Model,

Trained on Fused Data The following table (22) lists the results of the the next

day price forecast obtained with the already seen MLP (10), seven ind., model,

which performed best (with regards to mse) on the task of next day price forecasts

on the fused data set, when training started with five other random initializations.

Training is conducted on all Bunds.

119

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10), seed=4567 2.0807 0.3567 0.6879 0.4037

mlp (10), seed=5555 1.0378 0.3760 0.6001 0.4586

mlp (10), seed=1234 0.9944 0.3840 0.5725 0.4659

mlp (10), seed=6666 3.9058 0.4036 1.0435 0.5558

mlp (10), seed=2222 2.1842 0.6033 0.7844 0.5512

Table 22: Five different initializations of best performing next day price forecast
MLP model, trained on all Bunds and fused data with seven indicators.

Next Day Return Forecast The following table (23) lists the results of the the

next day return forecast obtained with MLP models and different architectures.

The best performing model (in terms of the median of mean squared errors over

all Bunds) in this case the MLP (30,20,10) model has been the most successful

model. Models in the table are ordered by the column mse (median). Models are

trained on all Bunds.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10,30) 0.0035 0.0035 3.2751 3.2751

mlp (10,20,10) 0.0035 0.0035 3.3561 3.3561

mlp (30,20,10) 0.0036 0.0036 3.4263 3.4263

mlp (20,20) 0.0039 0.0039 3.4640 3.4640

mlp (30,20,20) 0.0036 0.0036 3.6517 3.6517

mlp (25,10,10) 0.0048 0.0048 4.3220 4.3220

mlp (10,10,20) 0.0046 0.0046 4.3549 4.3549

mlp (30,30,10) 0.0051 0.0051 4.4460 4.4460

mlp (25,30,10) 0.0042 0.0042 4.4809 4.4809

mlp (30,30,30) 0.0046 0.0046 4.4831 4.4831

mlp (25,20) 0.0051 0.0051 4.4906 4.4906

Table 23: Ten best performing next day return forecast results MLP models trained
on all Bunds, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

120

10 Appendix

Different Random Initializations for Best Next Day Return Forecast

Model The following table (24) lists the results of the the next day return forecast

obtained with the already seen MLP (30,20,10) model, which performed best on the

task of next day return forecast (with regards to mse), when training started with

five other random initializations. Models are trained on all Bunds.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (30,20,10), seed=4444 0.00480 0.00434 4.13020 3.78059

mlp (30,20,10), seed=1234 0.00607 0.00436 4.59131 3.64575

mlp (30,20,10), seed=8888 0.00660 0.00476 4.93531 3.73337

mlp (30,20,10), seed=2222 0.00697 0.00550 5.59091 4.68932

mlp (30,20,10), seed=6666 0.00770 0.00612 5.96564 4.88125

Table 24: Five different initializations of best performing next day return forecast
MLP model, trained on all Bunds, ordered by mape (median).

Next Day Return Forecast on Fused Data The following table (25) lists the

results of the the next day return forecast obtained with MLP models and different

architectures, trained on the fused data set. The best performing model (in terms of

the median of mean squared errors over all Bunds) in this case the MLP (20,10),

four ind. model has been the most successful model. Models in the table are

ordered by the column mse (median). Models are trained on all Bunds.

121

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind. 0.0046 0.0041 3.934 3.5292

mlp (20,10,10), seven ind. 0.0046 0.0043 3.9591 3.7835

mlp (20,20,25), four ind. 0.0357 0.0074 11.1314 5.0617

mlp (25,20,10), four ind. 0.016 0.0071 8.3463 5.8197

mlp (10,20), seven ind. 0.0392 0.008 9.2284 6.5168

mlp (20,10,30), seven ind. 0.0528 0.0146 14.7329 9.1361

mlp (30,30,10), seven ind. 0.0214 0.0165 11.0573 10.5383

mlp (25,30,25), four ind. 0.0396 0.0193 13.9474 10.554

mlp (20,20,20), seven ind. 0.4852 0.013 38.9305 10.7692

mlp (20,10,25), four ind. 0.0278 0.016 12.5895 10.8193

Table 25: Ten best performing next day return forecast results MLP models trained
on all Bunds and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Return Forecast

Model, Trained on Fused Data The following table (26) lists the results of

the the next day return forecast obtained with the already seen MLP (20,10), four

ind. model, which performed best on the task of next day return forecast (with re-

gards to mse), when training started with five other random initializations. Models

are trained on all Bunds.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), seed=1234 0.00463 0.00415 3.93395 3.52920

mlp (20,10), seed=1111 0.03865 0.00475 8.79669 4.18204

mlp (20,10), seed=5678 0.24254 0.02372 25.99458 12.50295

mlp (20,10), seed=5555 0.05101 0.03035 17.95088 15.19884

mlp (20,10), seed=6789 0.19274 0.04139 27.79356 17.76645

Table 26: Five different initializations of best performing next day return forecast
MLP model, trained on all Bunds and fused data with four indicators, ordered by
mape (median).

122

10 Appendix

10.1.4 Comparison of Performance of MLP Models, Trained on Each

Bund

Similarly to the part before, this part reports results for various different MLP

models. First, reporting the results for the next day price forecast and, second,

reporting the results for the next day return forecast. Also as before, results for

models trained solely on the Bund data but also results for models trained on the

fused data set will be reported. The difference is that in this part of the work,

models reported are trained on each Bund and not on all Bunds as before. Other

configurations are identical, meaning that also different random initializations are

reported as well as the top 10 architectures per task.

Next Day Price Forecast 27 Here, results for the task of next day price fore-

casting with MLP models, trained on each Bund are reported (27). Results are

ordered by the median of mean squared error per Bund and best performance for

this metric is obtained by the mlp (20,10) model.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10) 3.2961 0.0144 1.4331 1.2583

mlp (10,30) 3.4322 0.0154 1.4553 1.2619

mlp (25,20,10) 3.3223 0.0169 1.4337 1.2619

mlp (30,30) 3.6965 0.3096 1.4791 1.2647

mlp (30,25) 3.4567 0.1005 1.4584 1.2673

mlp (10,25) 3.3632 0.0218 1.4355 1.2703

mlp (20) 3.2874 0.0299 1.4315 1.2706

mlp (20,20) 3.3363 0.0525 1.4423 1.2726

mlp (10,30,30) 3.4002 0.0414 1.4549 1.2734

mlp (10,20,30) 3.4847 0.0593 1.4601 1.2735

Table 27: Ten best performing next day price forecast results of MLP models trained
on each Bund, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Price Forecast Model,

Trained on Each Bund When initializing the mlp (20,10) network with other,

also random, states although the task of forecasting then next day price, the results

123

10 Appendix

can differ as can be seen in the following table (28).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), seed=1111 3.2861 0.0085 1.4384 1.2699

mlp (20,10), seed=1234 3.2961 0.0144 1.4331 1.2583

mlp (20,10), seed=3456 3.278 0.0152 1.4315 1.262

mlp (20,10), seed=4567 3.2831 0.0223 1.4305 1.2691

mlp (20,10), seed=2222 3.3395 0.0284 1.4297 1.2624

Table 28: Five different initializations of best performing (with regards to mse) next
day price forecast MLP model, trained on each Bund, ordered by mape (median).

Next Day Price Forecast on Fused Data The following table (29) reports the

results for the task of next day price forecasting with MLP models, trained on each

Bund. In addition to the results reported just before this paragraph, models were

trained on the fused data set. The results in the table are ordered by the median of

the mean squared errors of forecasts for all Bunds. The best performing model for

this task when evaluating with the mentioned metric is the MLP (20,20,10).

124

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10,30), seven ind. 3.3604 0.0636 1.4094 1.2294

mlp (20,25), seven ind. 3.417 0.0846 1.431 1.2307

mlp (20,10), seven ind. 3.479 0.1609 1.4178 1.2344

mlp (10,10), seven ind. 3.3373 0.0399 1.422 1.2383

mlp (30), four ind. 3.803 0.2469 1.4703 1.243

mlp (10,20), seven ind. 3.35 0.0563 1.4092 1.2446

mlp (20,20,10), four ind. 3.4185 0.0235 1.4497 1.247

mlp (10),

seven ind. 3.3407 0.0397 1.4135 1.251

mlp (30,2

0), seven ind. 3.4407 0.1823 1.4301 1.2523

mlp (20,2

0), seven ind. 3.4788 0.1272 1.4348 1.2558

Table 29: Ten best performing next day price forecast results MLP models trained
on each Bund and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Price Forecast Model,

Trained on Each Bund and Fused Data Also, for the task of next day price

forecasting on fused data, the best performing (with regards to mse) model will be

re-trained with different random initializations to further assess its quality. Results

are listed in table (30)

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,20,10), four ind., seed=1234 3.4185 0.0235 1.4497 1.247

mlp (20,20,10), four ind., seed=4444 3.3111 0.0301 1.4437 1.2837

mlp (20,20,10), four ind., seed=6543 3.3935 0.0865 1.4716 1.3252

mlp (20,20,10), four ind., seed=3456 3.6321 0.1292 1.474 1.327

mlp (20,20,10), four ind., seed=3333 3.4917 0.1575 1.4452 1.3291

Table 30: Five different initializations of best performing next day price forecast
MLP model, trained on each Bund and fused data.

125

10 Appendix

Next Day Return Forecast The following table (31) lists the results of the the

next day return forecast obtained with MLP models and different architectures.

The best performing model (in terms of the median of mean squared errors over

all Bunds) in this case the MLP (25,10,10) model has been the most successful

model. Models in the table are ordered by the column mse (median). Models are

trained on each Bund.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,10,10) 0.0044 0.0040 3.7514 3.5354

mlp (10,20,10) 0.0046 0.0041 3.9264 3.5374

mlp (20,20,10) 0.0052 0.0046 4.2842 3.5494

mlp (20,10,30) 0.0050 0.0043 4.1643 3.5690

mlp (30,30,10) 0.0047 0.0042 3.9992 3.6237

mlp (10,30,30) 0.0052 0.0043 4.2472 3.6677

mlp (30,20,10) 0.0055 0.0045 4.3221 3.6832

mlp (25,10,25) 0.0051 0.0044 4.2248 3.6933

mlp (20,30,20) 0.0049 0.0044 4.2212 3.7076

mlp (10,30,20) 0.0051 0.0046 4.3797 3.7133

Table 31: Ten best performing next day return forecast results MLP models trained
on each Bund, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Day Return Forecast

Model, Trained on Each Bund Table (32), which can be found below, re-

ports results for the best performing MLP model, MLP (25,10,10) for the task of

next day return forecasts, trained on each Bund. Results are ordered by the median

of mean squared errors over the forecasts for all Bunds.

126

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,10,10), seed=1234 0.00439 0.00401 3.75139 3.53538

mlp (25,10,10), seed=7777 0.00465 0.00418 3.79992 3.51382

mlp (25,10,10), seed=4321 0.00472 0.00428 4.06478 3.64749

mlp (25,10,10), seed=5678 0.00474 0.00430 4.09051 3.69136

mlp (25,10,10), seed=4567 0.00493 0.00437 4.06607 3.63823

Table 32: Five different initializations of best performing next day return forecast
MLP model, trained on each Bund, ordered by mape (median).

Next Day Return Forecast on Fused Data The following table (33) lists the

results of the the next day return forecast obtained with MLP models and different

architectures trained on the fused data set. The best performing model (in terms of

the median of mean squared errors over all Bunds) in this case the MLP (20,30,30)

model has been the most successful model. Models in the table are ordered by the

column mse (median). Models are trained on each Bund.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,30,30), four ind. 0.0045 0.0041 3.8863 3.6514

mlp (25,25,10), seven ind. 0.0048 0.0043 4.0880 3.7180

mlp (30,10,10), four ind. 0.0051 0.0044 4.0837 3.6429

mlp (30,25,10), four ind. 0.0050 0.0045 4.2054 3.8102

mlp (20,30), four ind. 0.0051 0.0045 4.2401 3.7652

mlp (20,10,20), seven ind. 0.0058 0.0045 4.6355 3.7510

mlp (10,20), seven ind. 0.0048 0.0045 4.1372 3.7541

mlp (10,25,30), four ind. 0.0055 0.0045 4.6164 4.2220

mlp (25,30,30), seven ind. 0.0065 0.0045 5.0582 3.8656

mlp (30,30,10), four ind. 0.0054 0.0046 4.4792 3.9782

Table 33: Ten best performing next day return forecast results MLP models trained
on each Bund and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

127

10 Appendix

Different Random Initializations for Best Next Day Return Forecast

Model, Trained on Each Bund and Fused Data Again, the best performing

model, which is the MLP (20,30,30), for the task of next day return forecasting on

fused data (trained on each Bund), is re-trained with different random initializations.

Results can be found in table (34).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,30,30), seed=1234 0.0045 0.00414 3.88632 3.65141

mlp (20,30,30), seed=6789 0.0059 0.00426 4.43678 3.58897

mlp (20,30,30), seed=7654 0.00603 0.00446 4.68675 3.743

mlp (20,30,30), seed=2222 0.00528 0.00449 4.46158 3.79794

mlp (20,30,30), seed=2345 0.00547 0.00449 4.53185 3.66439

Table 34: Five different initializations of best performing next day return forecast
MLP model, trained on each Bund and fused data with four indicators, ordered by
mape (median).

10.1.5 Comparison of Best Performance of LSTM Models, Trained on

All Bunds

In this part of this work, results of different LSTM models, which were trained on

all Bunds, will be reported. First, results for next day price forecasts will be listed,

second results for next day return forecasts will be reported. For both of the two

different targets, results will be reported for forecasts on the original Bund data set

as well as for forecasts on the fused data set, including economic features.

As described in detail in the prior section of experimental setup (5.3.6), LSTM

architectures range from one to three hidden layers containing 10, 20, 25 or 30 units

each. Reporting all 84 architectures would require unnecessary attention of the

reader, especially since for the LSTM models there are two different input scenarios

(incorporating last 3 or last 10 days) tested, which would equal 168 models to

be reported, which is why it has been decided to only report the top 10 performing

models. Performance is here ranked again by the median of mean squared errors over

all the tested Bunds. Other performance metrics as introduced in the experimental

setup (5.7) are reported as well.

Next Day Price Forecast The following table (35) reports the ten best perform-

ing next day price forecast results of LSTM models trained on all Bunds, ordered

128

10 Appendix

by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30), 3 days 3.55 0.064 0.27 0.192

lstm (20,25), 3 days 3.81 0.068 0.33 0.192

lstm (20,30,20), 3 days 4.25 0.100 0.47 0.272

lstm (25,20,30), 3 days 5.70 0.104 0.66 0.283

lstm (30,25,30), 3 days 4.13 0.112 0.39 0.294

lstm (30,20,20), 3 days 5.73 0.121 0.62 0.306

lstm (20,20,25), 3 days 4.51 0.127 0.51 0.287

lstm (30,20,30), 3 days 3.72 0.131 0.35 0.292

lstm (25,30,25), 3 days 3.94 0.148 0.41 0.305

lstm (20,20), 3 days 4.09 0.168 0.42 0.332

Table 35: Ten best performing next day price forecast results of LSTM models
trained on all Bunds, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM with two
hidden layers and x LSTM cells in the first hidden layer and y LSTM cells in the
second.

Next Day Price Forecast on Fused Data The table below (36) reports the

ten best performing next day price forecast results of LSTM models trained on all

Bunds, ordered by mape (median).

129

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (25,25,20), 3 days, four ind. 0.323 0.054 0.252 0.190

lstm (25,25,30), 3 days, four ind. 1.100 0.074 0.391 0.198

lstm (30,20,30), 3 days, four ind. 0.549 0.075 0.313 0.198

lstm (30,30), 3 days, four ind. 0.320 0.073 0.242 0.201

lstm (30), 10 days, four ind. 0.970 0.078 0.386 0.205

lstm (10,20), 3 days, four ind. 0.460 0.067 0.305 0.206

lstm (25,20,10), 3 days, four ind. 0.545 0.082 0.334 0.208

lstm (25,25), 3 days, four ind. 0.268 0.075 0.240 0.212

lstm (20,30,10), 3 days, four ind. 4.260 0.083 0.677 0.222

lstm (20,30,25), 3 days, four ind. 0.513 0.076 0.320 0.226

Table 36: Ten best performing next day price forecast results of LSTM models
trained on all Bunds and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM
with two hidden layers and x LSTM cells in the first hidden layer and y LSTM cells
in the second.

Next Day Return Forecast The following table (37) lists the ten best perform-

ing next day return forecast results of LSTM models trained on all Bunds, ordered

by mape (median).

130

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30,30,10), 3 days 0.0042 0.0040 3.4427 3.2282

lstm (30,25,10), 3 days 0.0041 0.0039 3.4399 3.2283

lstm (30,20,30), 3 days 0.0041 0.0039 3.4405 3.2310

lstm (25,10,25), 3 days 0.0041 0.0039 3.4412 3.2311

lstm (25,25,20), 3 days 0.0041 0.0039 3.4393 3.2325

lstm (25,25,30), 3 days 0.0042 0.0039 3.4429 3.2329

lstm (30,25,30), 3 days 0.0042 0.0039 3.4482 3.2334

lstm (25,20,20), 3 days 0.0042 0.0039 3.4414 3.2345

lstm (30,25,20), 3 days 0.0042 0.0040 3.4416 3.2353

lstm (30,10,10), 3 days 0.0041 0.0039 3.4418 3.2354

Table 37: Ten best performing next day return forecast results of LSTM models
trained on all Bunds, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM with two
hidden layers and x LSTM cells in the first hidden layer and y LSTM cells in the
second.

Next Day Return Forecast on Fused Data Next (38), the ten best performing

next day price forecast results of LSTM models trained on all Bunds and fused data

are reported. They are ordered by mape (median).

131

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (25,25), 10 days, four ind. 0.0045 0.0040 3.2661 3.2306

lstm (20,30), 10 days, four ind. 0.0045 0.0040 3.2624 3.2313

lstm (10,30), 10 days, four ind. 0.0045 0.0041 3.2625 3.2315

lstm (25,25,10), 10 days, four ind. 0.0045 0.0040 3.2620 3.2334

lstm (25,20,30), 3 days, four ind. 0.0045 0.0040 3.2622 3.2337

lstm (30,25,20), 10 days, four ind. 0.0045 0.0040 3.2635 3.2339

lstm (20,10,10), 10 days, four ind. 0.0045 0.0041 3.2641 3.2342

lstm (10,30,20), 10 days, four ind. 0.0045 0.0040 3.2657 3.2352

lstm (30,30,20), 10 days, four ind. 0.0045 0.0041 3.2640 3.2360

lstm (10,10,25), 10 days, four ind. 0.0045 0.0040 3.2603 3.2372

Table 38: Ten best performing next day return forecast results of LSTM models
trained on all Bunds and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM
with two hidden layers and x LSTM cells in the first hidden layer and y LSTM cells
in the second.

10.1.6 Comparison of Best Performance of LSTM Models, Trained on

Each Bund

In this part of this work, results of different LSTM models, which were trained on

each Bund, will be reported. First, results for next day price forecasts will be listed,

second results for next day return forecasts will be reported. For both of the two

different targets, results will be reported for forecasts on the original Bund data set

as well as for forecasts on the fused data set, including economic features.

As described in detail in the prior section of experimental setup (5.3.6), LSTM

architectures range from one to three hidden layers containing 10, 20, 25 or 30 units

each. Reporting all 84 architectures would require unnecessary attention of the

reader, especially since for the LSTM models there are two different input scenarios

(incorporating last 3 or last 10 days) tested, which would equal 168 models to

be reported, which is why it has been decided to only report the top 10 performing

models. Performance is here ranked again by the median of mean squared errors over

all the tested Bunds. Other performance metrics as introduced in the experimental

setup (5.7) are reported as well.

132

10 Appendix

Next Day Price Forecast The following table (39) reports the ten best perform-

ing next day price forecast results of LSTM models trained on each Bund, ordered

by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30,10), 3 days 14.022 2.184 1.128 0.957

lstm (20,10), 3 days 12.005 3.007 1.005 1.106

lstm (25,10), 3 days 13.946 3.109 1.332 1.187

lstm (25,20), 3 days 14.493 2.870 1.410 1.209

lstm (20,25), 3 days 15.646 3.626 1.403 1.274

lstm (25), 3 days 14.279 3.539 1.346 1.290

lstm (30,20), 3 days 14.628 3.829 1.372 1.319

lstm (30), 3 days 15.750 5.857 1.529 1.568

lstm (25,25), 3 days 15.894 6.316 1.638 1.610

lstm (25,20,10), 3 days 16.767 5.469 1.540 1.642

Table 39: Ten best performing next day price forecast results of LSTM models
trained on each Bund, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM with two
hidden layers and x LSTM cells in the first hidden layer and y LSTM cells in the
second.

Next Day Price Forecast on Fused Data The table below (40) reports the

ten best performing next day price forecast results of LSTM models trained on each

Bund, ordered by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,20), 3 days, four ind. 25.97 19.48 3.38 2.99

Table 40: Ten best performing next day price forecast results of LSTM models
trained on each Bund and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM
with two hidden layers and x LSTM cells in the first hidden layer and y LSTM cells
in the second.

Next Day Return Forecast The following table (41) lists the ten best perform-

ing next day return forecast results of LSTM models trained on each Bund, ordered

133

10 Appendix

by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,10,25), 3 days 0.004 0.004 3.931 3.601

lstm (10,10,30), 3 days 0.008 0.004 5.186 3.797

lstm (30,25), 3 days 0.046 0.004 9.394 3.840

lstm (20,30), 3 days 0.005 0.005 4.140 3.870

lstm (10,10,20), 3 days 0.005 0.004 4.233 3.877

lstm (25,30), 3 days 0.020 0.004 6.907 3.883

lstm (20,25), 3 days 0.006 0.005 4.954 3.967

lstm (20,20), 3 days 0.008 0.004 5.435 3.971

lstm (10,20,25), 3 days 0.006 0.005 4.691 4.066

lstm (10,25), 3 days 0.020 0.005 7.316 4.123

Table 41: Ten best performing next day return forecast results of LSTM models
trained on each Bund, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM with two
hidden layers and x LSTM cells in the first hidden layer and y LSTM cells in the
second.

Next Day Return Forecast on Fused Data Next (42), the ten best performing

next day price forecast results of LSTM models trained on each Bund and fused

data are reported. They are ordered by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,20,30), 3 days, four ind. 0.005 0.005 3.996 3.689

Table 42: Ten best performing next day return forecast results of LSTM models
trained on each Bund and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer of x LSTM cells. LSTM (x,y) stands for a LSTM
with two hidden layers and x LSTM cells in the first hidden layer and y LSTM cells
in the second.

10.2 Full Experimental Results: Next Week Forecasting

This subsection reports the results of the next week forecasts. It includes forecasts

for both price and return as well as forecasts based solely on the Bund data and

134

10 Appendix

forecasts based on Bund data fused with economic data. The latter are only available

for the neural network based approaches of MLP and LSTM.

The extensive experimental nature of this works yields a large number of results

which are fully reported here the appendix. For the vast variety of models with

different target and, for those models where it is reasonable, with additional eco-

nomic data, a maximum of ten best performing results is reported per combination

of model class, target, without and with economic data. Model class in this context

refers to the selected models for the experiments of this work, meaning naive, linear,

mean and median (which will be often referred to as less complex models, ARIMA

model, MLP and LSTM models. So, exemplarily, for the model class MLP, there

will be results reported for next day, both for price and return and both with and

without the fused economic data set. For each of those combinations the ten best

performing (where performance is measured as described earlier (5.7), ordered by

median of mean squared errors or by median of mean absolute percentage errors

over all tested Bunds, are reported in this section. Below, an overview of the results

found in this section as they occur is provided to help the reader navigate through

the large amount of reported results.

Results: Next week forecasting (10.2):

Reporting all the results of next week forecasts.

1. Less complex models (10.2.1)

i. Target: price

ii. Target: return

2. ARIMA (10.2.2)

i. Target: price

ii. Target: return

3. MLP, trained on all Bunds (10.2.3)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

4. MLP, trained on each Bund (10.2.4)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

135

10 Appendix

5. LSTM, trained on all Bunds (10.2.5)

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

6. LSTM, trained on each Bund

i. Target: price

ii. Target: return

iii. Target: price, model with additional economic features

iv. Target: return, model with additional economic features

10.2.1 Comparison of Less Complex Models

In this part of this work, results of mean (= average), linear, median and naive

models are reported, denoted here as less complex models. First, results for next

week price forecasts will be listed, second results for next week return forecasts will

be reported.

Next Week Price Forecasts 43 The following table (43) lists the results of

the forecasts for the next week price obtained with average, linear, median and

naive models (in this order) with their different configurations of how many days

of the past are considered. The best performing model (in terms of the median of

mean squared errors over all Bunds) in this case the average, 3 days approach -

forecasting the next time step to be equivalent to the mean of the last 3 - has been

the most successful model.

136

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

average, 3 days 7.554 0.260 0.415 0.344

average, 5 days 5.441 0.303 0.446 0.376

average, 10 days 4.403 0.310 0.451 0.379

linear, 3 days 5.144 0.351 0.482 0.410

linear, 5 days 4.546 0.359 0.485 0.412

linear, 10 days 5.105 0.467 0.567 0.491

median, 3 days 4.841 0.486 0.567 0.495

median, 5 days 9.673 0.563 1.557 1.331

median, 10 days 27.548 0.664 1.607 1.370

naive, 1 day 89.657 0.955 1.703 1.409

Table 43: Next week price forecast results of less complex models. Ordered by mse
(median) and mape (median)

Next Week Return Forecast The following table (44) lists the results of the

forecasts for the next week return obtained with average, linear, median and naive

models (in this order) with their different configurations of how many days of the past

are considered. The best performing model (in terms of the median of mean squared

errors over all Bunds) in this case the median, 10 days approach - forecasting the

next time step to be equivalent to the median of the last 10 days - has been the

most successful model.

137

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

average, 3 days 0.00558 0.00534 4.23 4.01

average, 5 days 0.00503 0.00470 4.00 3.81

average, 10 days 0.00460 0.00426 3.80 3.58

linear, 3 days 0.10681 0.09982 17.82 17.55

linear, 5 days 0.03176 0.03031 10.38 10.02

linear, 10 days 0.01037 0.00971 6.31 6.13

median, 3 days 0.00561 0.00551 4.25 4.11

median, 5 days 0.00498 0.00481 4.01 3.89

median, 10 days 0.00449 0.00415 3.74 3.55

naive, 1 day 0.00846 0.00805 5.12 4.93

Table 44: Next week return forecast results of less complex models. Ordered by mse
(median) and mape (median).

10.2.2 Comparison of Performance of ARIMA Models

In this part of this work, results of different ARIMA models will be reported. First,

results for next week price forecasts will be listed, second results for next week return

forecasts will be reported. ARIMA models for the next week price forecast include

ARIMA models with p ∈ 1, 3, d = 1, and q ∈ 0, 1. ARIMA models for the next

week return forecast include ARIMA models with p ∈ 1, 3, d = 0, and q ∈ 0, 1.

Next Week Price Forecast The following table (45) lists the results of the the

next week price forecast obtained with ARIMA (1,1,0), ARIMA (1,1,1), ARIMA

(3,1,0) and ARIMA (3,1,1) models. The best performing model (in terms of the

median of mean absolute percentage error over all Bunds) in this case the ARIMA

1,1,0 model has been the most successful model.

138

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median) failed

arima (3,1,0) 10.017 0.397 0.552 0.410 0

arima (3,1,1) 10.023 0.399 0.554 0.413 12

arima (1,1,0) 9.772 0.400 0.539 0.408 0

arima (1,1,1) 9.780 0.400 0.541 0.408 32

Table 45: Next week price forecast results of arima models. Ordered by mse (me-
dian) and mape (median).

Next Week Return Forecast The following table (46) reports next week return

forecast results of ARIMA models. Ordered by mse (median) and mape (median).

mse mse mape mape

model (mean) (median) (mean) (median) failed

arima (1,0,1) 0.00419933 0.00389447 3.4772 3.2802 20

arima (1,0,0) 0.00419586 0.00389448 3.4737 3.2802 0

arima (3,0,0) 0.00419492 0.00389459 3.4732 3.2819 0

arima (3,0,1) 0.00420215 0.00394997 3.4810 3.3027 8

Table 46: Next week return forecast results of arima models. Ordered by mse
(median) and mape (median).

10.2.3 Comparison of Performance of MLP Models, Trained on All

Bunds

In this part of this work, results of different MLP models, which were trained on all

Bunds, will be reported. First, results for next week price forecasts will be listed,

second results for next week return forecasts will be reported. For both of the two

different targets, results will be reported for forecasts on the original Bund data set

as well as for forecasts on the fused data set, including economic features.

As described in detail in the prior section of experimental setup (5.3.5), MLP

architectures range from one to three hidden layers containing 10, 20, 25 or 30

units each. Reporting all 84 architectures would require unnecessary attention of

the reader, which is why it has been decided to only report the top 10 performing

models. Performance is here ranked again by the median of mean squared errors over

all the tested Bunds. Other performance metrics as introduced in the experimental

139

10 Appendix

setup (5.7) are reported as well.

Next Week Price Forecast The following table (47) reports the ten best per-

forming next week price forecast results of MLP models trained on all Bunds, or-

dered by mape (median). Best performance is achieved by the MLP (10,10,10).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10,10,10) 17.555 0.527 0.833 0.516

mlp (10,20,25) 12.403 0.543 0.779 0.565

mlp (20,10,20) 6.656 0.569 0.835 0.556

mlp (25,25,20) 7.322 0.602 0.836 0.557

mlp (10,30,10) 9.293 0.612 0.828 0.634

mlp (10,20,20) 11.345 0.617 1.002 0.598

mlp (30,30,30) 12.148 0.639 0.887 0.621

mlp (25,20,10) 10.668 0.661 0.830 0.562

mlp (25,30,30) 13.513 0.679 0.922 0.622

mlp (25,20) 10.779 0.690 0.909 0.620

Table 47: Ten best performing next week price forecast results of MLP models
trained on all Bunds, ordered by mape (median). MLP (x) stands for a MLP with
one hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers
and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Week Price Forecast Model

Following table (48) lists five different initializations of the best performing next

week price forecast MLP model, trained on all Bunds, ordered by mape (median).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10,10,10), seed=1234 17.5551 0.5273 0.8330 0.5156

mlp (10,10,10), seed=5678 7.4704 0.5288 0.8194 0.5382

mlp (10,10,10), seed=2222 13.7014 0.5501 0.8521 0.5372

mlp (10,10,10), seed=2345 3.1637 0.6455 0.8996 0.5900

mlp (10,10,10), seed=9876 12.8707 0.6689 0.9367 0.6146

Table 48: Five different initializations of best performing next week price forecast
MLP model, trained on all Bunds, ordered by mape (median).

140

10 Appendix

Next Week Price Forecast on Fused Data Below (49), the ten best performing

next week price forecast results of MLP models trained on all Bunds and fused data

are reported. They are ordered by mape (median). Best performing model is the

MLP (20,10).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind. 2.271 0.747 0.799 0.643

mlp (20,10,25), seven ind. 2.322 0.898 0.846 0.66

mlp (20,25) four ind. 4.508 1.005 0.931 0.678

mlp (30,25,10), four ind. 5.581 1.042 1.156 0.713

mlp (30,20), seven ind. 12.065 0.761 1.664 0.72

mlp (30), four ind. 2.576 0.851 0.868 0.72

mlp (20,10), seven ind. 6.401 1.219 1.345 0.739

mlp (10,20,20), four ind. 4.914 1.8 1.164 0.752

mlp (30,20,10), seven ind. 4.155 1.19 1.109 0.753

mlp (30,30), seven ind. 3.622 1.047 1.037 0.78

Table 49: Ten best performing next week price forecast results MLP models trained
on all Bunds and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Week Price Forecast Model,

Trained on Fused Data In the following table (50), five different initializations

of best performing next week price forecast of MLP models are listed. They are

again trained on all Bunds and fused data.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind., seed=2345 1.8291 0.5932 0.6999 0.5719

mlp (20,10), four ind., seed=1234 2.2706 0.7469 0.7986 0.6427

mlp (20,10), four ind., seed=5555 3.0339 1.1029 0.9739 0.7571

mlp (20,10), four ind., seed=3333 3.4532 1.2058 1.0456 0.7700

mlp (20,10), four ind., seed=6789 3.7495 1.5254 1.0742 0.9137

Table 50: Five different initializations of best performing next week price forecast
MLP model, trained on all Bunds and fused data.

141

10 Appendix

Next Week Return Forecast The table below (51) shows the ten best perform-

ing next week return forecast results of MLP models trained on all Bunds, ordered

by mse (median). Best performing in this scenario is the MLP (30,20,10).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (30,20,10) 0.00703726 0.00442275 4.70 3.63

mlp (20,10,30) 0.00742564 0.00465743 4.67 3.83

mlp (25,10,10) 0.00790437 0.00472544 4.88 3.68

mlp (10,10,30) 0.00647998 0.00484183 4.75 3.76

mlp (30,20,20) 0.01062210 0.00510542 5.67 4.36

mlp (10,20,10) 0.00573115 0.00512370 4.53 4.39

mlp (20,10,25) 0.00698273 0.00514286 5.21 4.21

mlp (25,30,10) 0.00938351 0.00514931 5.64 4.47

mlp (25,25) 0.00933842 0.00565894 6.06 4.54

mlp (20,25,25) 0.01012944 0.00569645 6.59 4.66

Table 51: Ten best performing next week return forecast results MLP models trained
on all Bunds, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Week Return Forecast

Model Next (52), five different initializations of best performing next week return

forecast of MLP models, trained on all Bunds, are shown.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (30,20,10), seed=1234 0.00704 0.00442 4.70801 3.63684

mlp (30,20,10), seed=8888 0.00878 0.00473 5.24696 3.94292

mlp (30,20,10), seed=5432 0.00958 0.00528 6.08744 4.34309

mlp (30,20,10), seed=9999 0.03330 0.00590 9.72051 5.12001

mlp (30,20,10), seed=2222 0.00914 0.00606 5.64456 4.60663

Table 52: Five different initializations of best performing next week return forecast
MLP models, trained on all Bunds.

142

10 Appendix

Next Week Return Forecast on Fused Data The following table (53) lists

the ten best performing next week return forecast results of MLP models trained on

all Bunds and fused data, ordered by mse (median). Best performance is achieved

by the MLP (20,10), trained on the fused data set with four additional features.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind. 0.0048 0.0044 4.1 3.6

mlp (25,20,10), four ind. 0.0141 0.0063 8.0 5.4

mlp (10,20), seven ind. 0.0393 0.0067 9.0 5.1

mlp (20,10,10), seven ind. 0.0091 0.0093 7.3 7.5

mlp (20,30,25), seven ind. 0.2736 0.0110 25.3 9.2

mlp (20,10,30), seven ind. 0.0481 0.0114 14.2 9.0

mlp (30,30,10), seven ind. 0.0148 0.0133 9.1 9.3

mlp (20,20,20), seven ind. 0.5098 0.0159 39.7 12.2

mlp (20,20,25), four ind. 0.0434 0.0165 14.7 10.7

mlp (25,10,25), four ind. 0.1466 0.0178 21.8 11.1

Table 53: Ten best performing next week return forecast results MLP models trained
on all Bunds and fused data, ordered by mape (median). MLP (x) stands for a MLP
with one hidden layer and x units. MLP (x,y) stands for a MLP with two hidden
layers and x units in the first hidden layer and y in the second.

Different Random Initializations for Best Next Week Return Forecast

Model, Trained on Fused Data Below (54), five different initializations of best

performing next week return forecast of MLP models, trained on all Bunds and

fused data, are reported.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,10), four ind., seed=1234 0.00480 0.00443 4.08290 3.59340

mlp (20,10), four ind., seed=5678 0.18641 0.02604 24.60491 13.48816

mlp (20,10), four ind., seed=4444 0.42957 0.02713 37.28984 17.19765

mlp (20,10), four ind., seed=6789 0.19973 0.02966 27.13669 13.69185

mlp (20,10), four ind., seed=5432 1.60648 0.03803 61.25495 17.83457

Table 54: Five different initializations of best performing next week return forecast
MLP model, trained on all Bunds and fused data.

143

10 Appendix

10.2.4 Comparison of Performance of MLP Models, Trained on Each

Bund

In this part of this work, results of different MLP models, which were trained on

each Bund, will be reported. First, results for next week price forecasts will be

listed, second results for next week return forecasts will be reported. For both of

the two different targets, results will be reported for forecasts on the original Bund

data set as well as for forecasts on the fused data set, including economic features.

As described in detail in the prior section of experimental setup (5.3.5), MLP

architectures range from one to three hidden layers containing 10, 20, 25 or 30

units each. Reporting all 84 architectures would require unnecessary attention of

the reader, which is why it has been decided to only report the top 10 performing

models. Performance is here ranked again by the median of mean squared errors over

all the tested Bunds. Other performance metrics as introduced in the experimental

setup (5.7) are reported as well.

Next Week Price Forecast The following table (55) lists the ten best performing

next week price forecast results of MLP models trained on each Bund, ordered by

mse (median).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,10) 0.8282 0.1996 1.4077 1.2704

mlp (30) 0.815 0.2004 1.3962 1.26

mlp (20) 0.7766 0.2108 1.3925 1.238

mlp (10,25) 0.7921 0.2123 1.398 1.2392

mlp (20,10) 0.8093 0.2252 1.3957 1.2307

mlp (25,10,10) 0.878 0.2264 1.3983 1.2744

mlp (20,30) 0.8783 0.2308 1.4048 1.2579

mlp (10) 0.8722 0.2323 1.4146 1.2809

mlp (10,20) 0.832 0.2471 1.3986 1.2562

mlp (20,20) 0.9133 0.2474 1.4143 1.2538

Table 55: Ten best performing next week price forecast results of MLP models
trained on each Bund, ordered by mape (median). MLP (x) stands for a MLP with
one hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers
and x units in the first hidden layer and y in the second.

144

10 Appendix

Different Random Initializations for Best Next Week Price Forecast Model,

Trained on Each Bund Below (56), five different initializations of best perform-

ing next week price forecast of MLP models, trained on each Bund, are reported.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,10), seed=2345 0.7997 0.1981 1.404 1.2508

mlp (25,10), seed=1234 0.8282 0.1996 1.4077 1.2704

mlp (25,10), seed=5678 0.7888 0.2096 1.3918 1.2322

mlp (25,10), seed=4321 0.8492 0.2228 1.4092 1.2559

mlp (25,10), seed=4444 0.8228 0.2246 1.4019 1.2382

Table 56: Five different initializations of best performing next week price forecast
MLP model, trained on each Bund.

Next Week Price Forecast on Fused Data The next table (57) reports the

ten best performing next week price forecast results of MLP models trained on each

Bund and fused data, ordered by mse (median). In this scenario, the MLP (20,20),

trained on the fused data set with seven additional features, performed best.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,20), seven ind. 1.2069 0.3734 1.4064 1.2315

mlp (25,20), four ind. 1.1510 0.3808 1.4259 1.3048

mlp (20,10), seven ind. 1.2229 0.3821 1.3962 1.2415

mlp (25,20,10), four ind. 1.1242 0.3822 1.4181 1.2828

mlp (10,10,20), seven ind. 2.1403 0.4090 1.4805 1.2305

mlp (25,25,20), seven ind. 1.3561 0.4312 1.4483 1.2918

mlp (10,10), seven ind. 1.1540 0.4382 1.4118 1.2459

mlp (20), seven ind. 1.1628 0.4400 1.3826 1.2206

mlp (10,25,30), seven ind. 1.5715 0.4423 1.4697 1.3810

mlp (25,25), four ind. 1.4077 0.4423 1.4488 1.3361

Table 57: Ten best performing next week price forecast results MLP models trained
on each Bund and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

145

10 Appendix

Different Random Initializations for Best Next Week Price Forecast Model,

Trained on Each Bund and Fused Data Below (58), five different initializa-

tions of best performing next week price forecast MLP models, trained on each

Bund and fused data, are listed.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (20,20), seven ind., seed=4321 0.787 0.2009 1.3835 1.2312

mlp (20,20), seven ind., seed=4444 0.7951 0.2021 1.3978 1.2489

mlp (20,20), seven ind., seed=6666 0.8037 0.2134 1.3868 1.2195

mlp (20,20), seven ind., seed=7654 0.7838 0.223 1.386 1.224

mlp (20,20), seven ind., seed=5678 0.8717 0.229 1.3967 1.2534

Table 58: Five different initializations of best performing next week price forecast
MLP model, trained on each Bund and fused data.

Next Week Return Forecast The table below (59) lists the ten best performing

next week return forecast results of MLP models trained on each Bund, ordered by

mape (median). Best performance is achieved by the MLP (10,20,10).

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10,20,10) 0.00439 0.00417 3.75994 3.53382

mlp (25,25,25) 0.00590 0.00424 4.54022 3.62975

mlp (25,10,10) 0.00444 0.00426 3.76122 3.54142

mlp (20,25,25) 0.00580 0.00432 4.61424 3.72162

mlp (30,10,10) 0.00464 0.00433 3.91071 3.75160

mlp (10,20,20) 0.00493 0.00433 4.13358 3.82689

mlp (20,10,30) 0.00509 0.00436 4.24335 3.70199

mlp (25,25,20) 0.00641 0.00437 4.82253 3.78202

mlp (25,10,25) 0.00537 0.00437 4.36444 3.69489

mlp (25,10,30) 0.00499 0.00438 4.19517 3.76597

Table 59: Ten best performing next week return forecast results MLP models trained
on each Bund, ordered by mape (median). MLP (x) stands for a MLP with one
hidden layer and x units. MLP (x,y) stands for a MLP with two hidden layers and
x units in the first hidden layer and y in the second.

146

10 Appendix

Different Random Initializations for Best Next Week Return Forecast

Model, Trained on Each Bund Below (60), five different initializations of best

performing next week return forecast MLP model, trained on each Bund, are listed.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (10,20,10), seed=4321 0.00449 0.00417 3.84822 3.66612

mlp (10,20,10), seed=1234 0.00439 0.00417 3.75994 3.53382

mlp (10,20,10), seed=5678 0.00481 0.00427 4.06681 3.76117

mlp (10,20,10), seed=2345 0.00507 0.00429 4.09095 3.58847

mlp (10,20,10), seed=8765 0.00463 0.00431 3.98316 3.6404

Table 60: Five different initializations of best performing next week return forecast
MLP model, trained on each Bund.

Next Week Return Forecast on Fused Data In the following (61), ten best

performing next week return forecast results of MLP models trained on each Bund

and fused data, ordered by mape (median). Here, the MLP (25,25,20) outperforms

other configurations.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,25,20), four ind. 0.00501 0.00413 4.14350 3.52428

mlp (10,30,10), seven ind. 0.00437 0.00420 3.83148 3.63571

mlp (30,20,20), four ind. 0.00505 0.00425 4.34088 3.68780

mlp (10,30,10), four ind. 0.00559 0.00426 4.41108 3.63522

mlp (25), four ind. 0.00489 0.00427 4.15359 3.65914

mlp (25,20,10), four ind. 0.00490 0.00430 4.09301 3.51057

mlp (30,10,30), four ind. 0.00646 0.00430 4.98482 3.82334

mlp (10,10,30), seven ind. 0.00479 0.00431 4.07299 3.58836

mlp (25,25), seven ind. 0.00477 0.00431 4.12372 3.84349

mlp (30,10), four ind. 0.00653 0.00435 4.91454 3.78474

Table 61: Ten best performing next week return forecast results MLP models trained
on each Bund and fused data, ordered by mape (median). MLP (x) stands for a
MLP with one hidden layer and x units. MLP (x,y) stands for a MLP with two
hidden layers and x units in the first hidden layer and y in the second.

147

10 Appendix

Different Random Initializations for Best Next Week Return Forecast

Model, Trained on Each Bund and Fused Data The following table (62),

reports five different initializations of the best performing next week return forecast

MLP model, trained on each Bund and fused data.

mse mse mape mape

model (mean) (median) (mean) (median)

mlp (25,25,20), four ind., seed=7777 0.00509 0.00418 4.19271 3.56795

mlp (25,25,20), four ind., seed=3456 0.00512 0.00426 4.3252 3.67348

mlp (25,25,20), four ind., seed=2345 0.00453 0.00433 3.85467 3.61208

mlp (25,25,20), four ind., seed=4444 0.00596 0.00451 4.80887 3.91811

mlp (25,25,20), four ind., seed=5678 0.00662 0.00458 5.01262 3.78129

Table 62: Five different initializations of best performing next week return forecast
MLP model, trained on each Bund and fused data.

10.2.5 Comparison of Performance of LSTM Models, Trained on All

Bunds

Next Week Price Forecast Following table (63) lists the ten best performing

next week price forecast results of LSTM models trained on all Bunds, ordered by

mape (median). Best performance is achieved by the LSTM (25,10) in this case.

148

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10), 3 days 1.5295 0.3682 0.5868 0.3847

lstm (25,10), 3 days 1.2879 0.3285 0.5874 0.3996

lstm (20,20), 3 days 2.0446 0.3477 0.6439 0.4223

lstm (10,30), 3 days 1.5407 0.3544 0.5449 0.4263

lstm (25,30), 3 days 1.6357 0.3435 0.5828 0.4343

lstm (25,25), 3 days 1.6242 0.3494 0.6143 0.4360

lstm (25,20), 3 days 1.3365 0.3754 0.5477 0.4418

lstm (30), 3 days 1.1821 0.4466 0.5486 0.4512

lstm (20,10,20), 3 days 1.3835 0.3660 0.5935 0.4627

lstm (20,30), 3 days 1.5607 0.4393 0.6267 0.4718

Table 63: Ten best performing next week price forecast results of LSTM models
trained on all Bunds, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer and x units. LSTM (x,y) stands for a LSTM with two hidden
layers and x units in the first hidden layer and y in the second.

Next Week Price Forecast on Fused Data Below (64), the ten best performing

next week price forecast results of LSTM models trained on all Bunds and fused

data, ordered by mape (median).

149

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30,25,10), 3 days, four ind. 1.382 0.230 0.538 0.338

lstm (10,20,20), 10 days, four ind. 1.973 0.238 0.623 0.342

lstm (20,30), 3 days, four ind. 1.864 0.251 0.603 0.344

lstm (10,10,30), 3 days, four ind. 3.129 0.258 0.767 0.356

lstm (30,25), 3 days, four ind. 1.461 0.275 0.557 0.358

lstm (30,30), 10 days, four ind. 1.385 0.252 0.570 0.359

lstm (25,30), 3 days, four ind. 2.159 0.269 0.661 0.361

lstm (20,30), 10 days, four ind. 1.315 0.254 0.562 0.362

lstm (10,10), 3 days, four ind. 1.479 0.262 0.548 0.365

lstm (30,20), 3 days, four ind. 1.660 0.278 0.627 0.369

Table 64: Ten best performing next week price forecast results of LSTM models
trained on all Bunds and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer and x units. LSTM (x,y) stands for a LSTM
with two hidden layers and x units in the first hidden layer and y in the second.

Next Week Return Forecast The next table (65) reports the ten best perform-

ing next week return forecast results of LSTM models trained on all Bunds, ordered

by mape (median).

150

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,10,25), 3 days 0.004 0.004 3.472 3.290

lstm (10,25), 3 days 0.004 0.004 3.487 3.292

lstm (25,25,10), 10 days 0.004 0.004 3.487 3.294

lstm (10,10,25), 10 days 0.004 0.004 3.474 3.295

lstm (30,20,25), 10 days 0.004 0.004 3.473 3.296

lstm (25,30,10), 3 days 0.004 0.004 3.468 3.297

lstm (20,25,10), 3 days 0.004 0.004 3.469 3.297

lstm (25,10,20), 10 days 0.004 0.004 3.469 3.298

lstm (10,25,30), 3 days 0.004 0.004 3.487 3.298

lstm (10,25,10), 3 days 0.004 0.004 3.470 3.298

Table 65: Ten best performing next week return forecast results of LSTM models
trained on all Bunds, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer and x units. LSTM (x,y) stands for a LSTM with two hidden
layers and x units in the first hidden layer and y in the second.

Next Week Return Forecast on Fused Data The table below (66) lists the

ten best performing next week return forecast results of LSTM models trained on

all Bunds and fused data, ordered by mape (median).

151

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (20,25,20), 3 days, four ind. 0.0039 0.0040 3.2935 3.2788

lstm (20,20,25), 10 days, four ind. 0.0039 0.0040 3.3358 3.2789

lstm (30,20,10), 10 days, four ind. 0.0039 0.0040 3.3020 3.2790

lstm (25,25,20), 10 days, four ind. 0.0039 0.0040 3.2960 3.2790

lstm (10,25), 3 days, four ind. 0.0039 0.0040 3.3101 3.2790

lstm (30,30,10), 10 days, four ind. 0.0039 0.0040 3.2912 3.2790

lstm (10,25,10), 3 days, four ind. 0.0039 0.0040 3.2928 3.2791

lstm (20,25,10), 10 days, four ind. 0.0039 0.0040 3.2980 3.2791

lstm (30,25,10), 3 days, four ind. 0.0039 0.0040 3.2928 3.2791

lstm (30,20,30), 10 days, four ind. 0.0039 0.0040 3.2957 3.2792

Table 66: Ten best performing next week return forecast results of LSTM models
trained on all Bunds and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer and x units. LSTM (x,y) stands for a LSTM
with two hidden layers and x units in the first hidden layer and y in the second.

10.2.6 Comparison of Performance of LSTM Models, Trained on Each

Bunds

Next Week Price Forecast Following table (67) lists the ten best performing

next week price forecast results of LSTM models trained on each Bunds, ordered

by mape (median).

152

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30,10), 3 days 5.18 4.06 1.50 1.06

lstm (30,25), 3 days 90.75 4.40 4.17 1.19

lstm (10,25,20), 3 days 7.29 4.85 1.79 1.25

lstm (20,20,25), 3 days 130.41 4.65 5.20 1.31

lstm (25,10), 3 days 62.27 4.90 4.08 1.31

lstm (20,10,25), 3 days 11.24 5.80 2.28 1.32

lstm (20,30,20), 3 days 104.15 5.58 4.96 1.33

lstm (10,20,30), 3 days 48.30 5.51 3.83 1.37

lstm (10,25,10), 3 days 96.70 6.30 5.17 1.39

lstm (20,30,25), 3 days 12.39 5.30 2.26 1.39

Table 67: Ten best performing next week price forecast results of LSTM models
trained on each Bunds, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer and x units. LSTM (x,y) stands for a LSTM with two hidden
layers and x units in the first hidden layer and y in the second.

Next Week Price Forecast on Fused Data Below (68), the ten best performing

next week price forecast results of LSTM models trained on each Bunds and fused

data, ordered by mape (median).

153

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,25,10), 3 days, four ind. 22.33 5.45 2.84 1.57

lstm (10,30,10), 3 days, four ind. 46.52 6.27 3.55 1.70

lstm (10,20), 3 days, four ind. 120.50 5.43 5.18 1.90

lstm (20,30,30), 10 days, four ind. 11.13 9.05 2.39 2.12

lstm (25), 3 days, four ind. 37.50 6.22 3.73 2.13

lstm (10,20,10), 3 days, four ind. 36.65 7.49 3.38 2.13

lstm (30,10), 3 days, four ind. 50.98 11.85 4.58 2.16

lstm (30,20,10), 3 days, four ind. 43.77 10.40 3.54 2.18

lstm (25,10), 3 days, four ind. 99.02 7.03 4.88 2.22

lstm (20,10,10), 10 days, four ind. 230.13 8.37 6.24 2.22

Table 68: Ten best performing next week price forecast results of LSTM models
trained on each Bunds and fused data, ordered by mape (median). LSTM (x)
stands for a LSTM with one hidden layer and x units. LSTM (x,y) stands for a
LSTM with two hidden layers and x units in the first hidden layer and y in the
second.

Next Week Return Forecast The next table (69) reports the ten best per-

forming next week return forecast results of LSTM models trained on each Bund,

ordered by mape (median).

154

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (10,20,30), 3 days 0.0047 0.0044 4.2454 3.5708

lstm (20,10,30), 3 days 0.0046 0.0044 4.1620 3.5765

lstm (25,10,30), 3 days 0.0046 0.0043 4.1683 3.5805

lstm (10,10,30), 3 days 0.0048 0.0045 4.3522 3.6107

lstm (20,10,20), 3 days 0.0048 0.0043 4.3215 3.6898

lstm (10,25,30), 3 days 0.0048 0.0044 4.3117 3.6960

lstm (10,10,30), 10 days 0.0048 0.0043 4.2209 3.7233

lstm (20,20,30), 3 days 0.0048 0.0044 4.3010 3.7268

lstm (20,10,25), 3 days 0.0049 0.0045 4.4159 3.7436

lstm (25,20,30), 3 days 0.0052 0.0047 4.6244 3.7480

Table 69: Ten best performing next week return forecast results of LSTM models
trained on each Bund, ordered by mape (median). LSTM (x) stands for a LSTM
with one hidden layer and x units. LSTM (x,y) stands for a LSTM with two hidden
layers and x units in the first hidden layer and y in the second.

Next Week Return Forecast on Fused Data The table below (70) lists the

ten best performing next week return forecast results of LSTM models trained on

each Bund and fused data, ordered by mape (median).

155

10 Appendix

mse mse mape mape

model (mean) (median) (mean) (median)

lstm (30,10,30), 10 days, four ind. 0.013 0.004 5.483 3.496

lstm (20,30,30), 3 days, four ind. 0.013 0.004 5.604 3.531

lstm (10,25,25), 3 days, four ind. 0.009 0.004 4.857 3.546

lstm (10,25,30), 3 days, four ind. 0.007 0.004 4.554 3.587

lstm (30,10,30), 3 days, four ind. 0.013 0.004 5.479 3.598

lstm (20,10,30), 10 days, seven ind. 0.010 0.004 5.040 3.601

lstm (30,10,20), 10 days, seven ind. 0.010 0.004 5.069 3.608

lstm (20,20,30), 3 days, four ind. 0.013 0.004 5.533 3.612

lstm (20,20,30), 10 days, seven ind. 0.010 0.004 5.120 3.614

lstm (20,10,20), 3 days, four ind. 0.006 0.004 4.180 3.614

Table 70: Ten best performing next week return forecast results of LSTM models
trained on each Bund and fused data, ordered by mape (median). LSTM (x) stands
for a LSTM with one hidden layer and x units. LSTM (x,y) stands for a LSTM
with two hidden layers and x units in the first hidden layer and y in the second.

10.3 Development of R-Shiny-App

10.3.1 Motivation

The development of the R-Shiny-App was motivated by the difficulty, when trying

to quickly evaluate results of a certain forecast for a certain model. Since model

evaluation always needs to consider forecast for different Bunds, a comparison of

forecasting results for single Bunds between different models was missing. This

gap is closed by the R-Shiny-App, which by user selection, depicts certain Bund

performances for a certain task for a user selection of models. This helps the user

to quickly identify, what the user is searching for.

10.3.2 Components

The developed Shiny App constists of the following major components.

Start Page When opening the Shiny app, the user will be provided with this view

(51) of the start page. It displays the next day forecast (out of sample), the graph

of the next 50 days of the actual price development and many options to manipulate

the graph which can be found on the left. Each of the single components of the app

will be addressed next.

156

10 Appendix

Figure 51: Start Page Shiny App

Main Navigation Bar on the Left The following figure (52) depicts the major

part of the navigation bar on the left of the Shiny app. It can be used for various

purposes, like choosing the Bund, the model, exports et cetera. Detailed information

on each component can be found below.

157

10 Appendix

Figure 52: Shiny App Navigation Bar

Choosing the depicted forecasting horizon This figure (53), displaying a

dropdown menu, can be used to select the forecast horizon which is considered

for graphs and model performance for the selected models. The user can choose

between next day and next week as well as in sample and out of sample horizons.

Figure 53: Shiny App Choosing Forecast Horizon

Choosing the Bund to display This figure (54), displaying a dropdown menu,

can be used to select the Bund which is considered for graphs and model performance

for the selected models.

158

10 Appendix

Figure 54: Shiny App Choosing Bund

Choosing the Model(s) to display This figure (55), displaying a multi-check-

box, can be used to select the models which are considered for graphs and model

performance for the selected Bund.

Figure 55: Shiny App Choosing Model

Choosing the number of days to display The next image (56) shows the slider

which allows to specify the date range which is considered for the drawing of the

graphs as well as for the calculating model performance for the specified Bund and

time scope.

Figure 56: Shiny App Choosing Days Range

159

10 Appendix

Exporting the current graph The following figure (57) shows the export func-

tion of the R-Shiny-App. The two buttons displayed allow to either export the

current, active graph for the chosen Bund or export the overall model performance

over all Bunds per model.

Figure 57: Shiny App Export Function

Current graph: prices The following figure (58) shows the actual return and

return forecasts for each model for the chosen ISIN and the chosen time frame

selected by the slider which allows to select the days for which the forecasts are

depicted.

Figure 58: Shiny App Price Graph

Current graph: returns The following figure (59) shows the actual return and

return forecasts for each model for the chosen ISIN and the chosen time frame

selected by the slider which allows to select the days for which the forecasts are

depicted.

160

10 Appendix

Figure 59: Shiny App Return Graph

Current performance The following table (60) reports performances for each

model for the chosen ISIN and the chosen time frame selected by the slider which

allows to select the days for which the forecasts are depicted.

Figure 60: Shiny App Current Performance

161

10 Appendix

10.4 MAPE per Model for a Selection of 10 Bunds

Figure 61: Mape per ISIN per Model for next week price forecasts

162

10 Appendix

Figure 62: Mape per ISIN per Model for next week return forecasts

163

	Introduction
	Motivation
	Applying Deep Learning Methods to Financial Time Series Data
	Applying Deep Learning to Bond Price Forecasting

	Thesis Objectives
	Thesis Outline

	Related Work
	Introduction to Deep Learning
	Recent Success of Deep Learning
	Fundamentals of Deep Learning
	Deep Feedforward Networks

	Deep Learning for Time Series Analysis
	Time Series Analysis
	Recurrent Neural Networks
	Long Short Term Memory

	Financial Data Forecasting
	Stock Price Forecasting
	Bond Price Forecasting

	Effects of Economic Indicators on Government Bond Prices
	Federal or Government Bonds
	Bond Price Influencing Indicators as Found in Related Work

	German Federal Bond (Bund) Data
	Choice for Bunds as Government Bonds
	Bund Data
	Exploratory Analysis of Bund Data

	Macro-Economic Data
	Economic Indicators with Relevance for Germany
	Feature Engineering: Economic Indicators as Additional Features
	Economic Indicators and Bond Price Correlations
	Correlations between Economic Indicators
	Ranking the Relevance of Economic Indicators

	Experimental Setup
	Training and Test Data
	Bund Data
	Macro-Economic Data
	Fusion of Bund Data and Economic Data

	Different Forecasting Setups
	Forecasting with Different Time Horizons
	Forecasting with Different Target
	Forecasting on Original and Fused Data

	Models for Forecasts
	Naive
	Median and Mean
	Linear Regression
	ARIMA
	Multi-Layer-Perceptron Regressor
	LSTM

	Features for different models
	Generalizability of different models
	Rolling Forecast vs Classical Forecast
	Evaluating model performance

	Experimental Results
	Next Day Forecast: Comparison of Model Classes
	Next Day Price Forecast: Best Performing Model Configurations of Each Class
	Next Day Return Forecast: Best Performing Model Configurations of Each Class

	Next Week Forecast: Comparison of Model Classes
	Next Week Price Forecast: Best Performing Model Configurations of Each Class
	Next Week Return Forecast: Best Performing Model Configurations of Each Class

	Discussion
	Evaluating Introductory Hypotheses
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4

	Open Questions

	Conclusion
	References
	Appendix
	Full Experimental Results: Next Day Forecasting
	Comparison of Less Complex Models
	Comparison of Performance of ARIMA Models
	Comparison of Performance of MLP Models, Trained on All Bunds
	Comparison of Performance of MLP Models, Trained on Each Bund
	Comparison of Best Performance of LSTM Models, Trained on All Bunds
	Comparison of Best Performance of LSTM Models, Trained on Each Bund

	Full Experimental Results: Next Week Forecasting
	Comparison of Less Complex Models
	Comparison of Performance of ARIMA Models
	Comparison of Performance of MLP Models, Trained on All Bunds
	Comparison of Performance of MLP Models, Trained on Each Bund
	Comparison of Performance of LSTM Models, Trained on All Bunds
	Comparison of Performance of LSTM Models, Trained on Each Bunds

	Development of R-Shiny-App
	Motivation
	Components

	MAPE per Model for a Selection of 10 Bunds

