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Abstract

In a recent experiment, it was found that mercury (Hg) flowing through a
pipe lined with platinum (Pt) strips generated electrical voltage across the
strips. This is thought to be due to spin hydrodynamic generation (shg)
from the coupling between the fluid vorticity and internal spins of the par-
ticles that make up the fluid, such as the electron’s spin. A theory for this
coupling is developed in a phenomenological manner from irreversible ther-
modynamics, and hydrodynamical modes and simple spin density solutions
for flows between plates and inside pipes are obtained. These spin density
solutions are then applied to the experimental setting motivating our re-
search in order to investigate interface effects. We find and confirm that
the spin current generated inside the viscous fluid induces spin transport
across the Hg-Pt interface, and, by means of the inverse spin Hall effect, an
electrical potential. We also discuss an alternative interpretation based on
momentum, rather than spin, transfer.
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Chapter 1

Introduction

One of the most prospective fields of research—both theoretical and
practical—in condensed matter physics is that of spintronics: the use of
the internal spin of the electron for data storage and transport [1,2]. It is
this manipulation and use of electron spins which allows for novel, efficient
computational devices, that has given the field of spintronics considerable
attention over the past years.

Among the several ways to detect the spin currents inside such devices,
the inverse spin Hall effect (ishe) is one of them, and conceptually fairly
simple. Whereas the spin Hall effect (she) lets an external electric field
induce spin currents [3,4], the ishe allows one to detect spin currents. In a
system of two or more layers of different layers exhibiting the she, a spin
current through one of the materials induces spin transport into the other
layer, generating electrical current by means of the ishe [5,6].

Figure 1.1: Set-up as used by Taka-
hashi et al. Image reference: ibid.

Recently, an experiment by
Takahashi et al. [7] found that a flow-
ing viscous fluid—in this case mer-
cury (Hg)—inside a pipe lined with
platinum (Pt)—a metal with size-
able she and ishe—induces an elec-
tric charge current; see Fig. 1.1 for
a schematic overview of the set-up.
Takahashi et al. have proposed that
a coupling between the fluid vortic-
ity and electron spins occurs inside
the mercury, which then generates a
spin current. At the Hg-Pt interface, this spin current is injected into the
platinum strips, where the ishe subsequently occurs, providing the measured
electric voltages. This observed effect has been named spin hydrodynamic
generation (shg) by Takahashi et al. due to its similarity to magnetohy-
drodynamic generation [8]; see Fig. 1.2 for an overview and comparison of
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Figure 1.2: Magnetohydrodynamic generation (l.) and shg (r.). Image
reference: Takahashi et al. [7]

both phenomena. The main difference between magnetohydrodynamic gen-
eration and shg, is that the latter does not require an external magnetic
field.

While several of the collaborators of Takahashi et al. have presented a
theory on this specific result based on quantum kinetic theory [9], it does not
take in account phenomena which might be present in viscous fluids, such as
advective currents or non-equilibrium thermodynamics. This motivates us
to present a phenomenological theory of shg, based on the non-equilibrium
thermodynamics of flowing viscous fluids with internal spin. The fluids in
particular do not necessarily need to consist of a mixture of nuclei and
their electrons such as mercury, but generally encompass fluids where spin-
vorticity coupling is present, such as viscous electron fluids [10].

The main idea of our phenomenological theory is that net average spin
is generated in the fluid flow by means of rotational viscosity, which is the
parameter coupling of the fluid vorticity to the internal fluid spin, in a mi-
croscopical setting by means of spin-orbit coupling. Next to the net spin,
this mechanism also provides a spin current inside the fluid, directed perpen-
dicular to the direction of the fluid’s proper velocity, in the same manner as
an electrical current through a conducting wire generates a magnetic field.
While this spin current is normally bounded by the outermost limits of the
fluid flow—i.e. no spins venture beyond the boundaries of the flow—we add
strips of metals with sizeable she and ishe, such that the generated spin
current acts as spin transport in the metal, which by means of the inverse
spin Hall effect (ishe) generate electrical current inside the metal strips,
and therefore electric potential.

Although this Thesis is mainly focused on a novel subject within con-
densed matter theory, the phenomenon of shg—and by extension, that of
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the coupling between fluid vorticity and spin-orbit coupling—is not neces-
sarily confined to table-top experiments at room temperature. In a recent
experiment [11], the star collaboration used the phenomenon of shg in the
hydrodynamic description of a type of fluid well-known in the field of high-
energy physics: quark-gluon plasmas, products of heavy nuclei collisions. It
was found that the quark-gluon plasma might possibly exhibit the largest
vorticity yet observed, opening up new regimes in hydrodynamic descrip-
tions of the quark-gluon plasma, whereas its vortical structure might aid
in developing new insights on quantum chromodynamics [11,12]. It is this
connection with high-energy physics, next to the obvious one with the con-
densed matter field of spintronics, that makes shg interesting to research.

In Chapter 2, we shall set up a phenomenological theory of spin in a fluid
flow based on a similar treatment for classical angular momentum given by
De Groot & Mazur [13], while enabling for spin flux in the system as per
Snider & Lewchuk [14]. This phenomenological theory is then modified by
the presence of electromagnetic fields, in order to create a proper theory of
spin hydrodynamics, where (internal) spin is generated by interaction with
the fluid vorticity through rotational viscosity. As a first application of this
theory, we extract hydrodynamic modes in Chapter 3, in order to deter-
mine the role of the fluid’s proper velocity, vorticity, and viscosity—both
of the bulk and rotational variants—in the aforementioned hydrodynamic
modes. Next, we consider simple, practical fluid flows, such as the Poiseuille
flow, in Chapter 4, where the spin per unit mass generated in these flows
is analytically determined. The boundary conditions to be used in such
systems—both for the spin itself as well as for the spin current—and systems
with external electromagnetic forces are also discussed. Finally, Chapter 5
mainly concerns with the inverse spin Hall effect generated at the interface
between the viscous spin fluid flow and metal strips along this flow, as a
means of simulating flowing mercury sidelined with platinum strips. The
generated voltage due to this effect is determined both analytically as well
as numerically, and compared in Chapter 6 with the findings by Takahashi et
al. and further discussed, with voltages due to electronic drag and materials,
other than platinum, with sizeable she and ishe.
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Chapter 2

Theory

In this Chapter, we reproduce the results given by De Groot & Mazur [13],
Chapters ii, xii, and xiii, with some alterations on the spin current by
Snider & Lewchuk [14] to account for the presence of spin diffusion in the spin
hydrodynamic generation system. In Section 2.1, we obtain a set of phe-
nomenological equations for hydrodynamic quantities under non-equilibrium
thermodynamics, for a viscous fluid possessing internal spin. We then add
electromagnetism to our viscous fluid in Section 2.2, and derive new phe-
nomenological equations in Section 2.3 for multi-component fluids.

In contrast to the notation used by De Groot & Mazur, we shall use a
tensorial index notation for vectors, tensors, and derivatives together with
the Einstein summation convention. Let a be a quantity, then we denote its
x̂-component as ax. For indices, we shall use Greek letters starting from α;
the indices always note one of the spatial dimensions, such that aα means
either ax, ay, or az in a Cartesian system. Likewise, the inner product of
two vectors a, b is denoted aαbα, and the vector product as εαβγa

αbα where
εαβγ is the Levi-Civita tensor.

2.1 Viscous fluid with spin

Let a—whether a scalar, a vector, or a tensor—be a given quantity per unit
mass; its total time derivative is defined as [13]:

ρ
da

dt
=

∂

∂t
(ρa) +

∂

∂xα
(ρavα) , (2.1)

where ρ is the fluid density, and vα the fluid velocity. The final term of the
right hand side of Eq. (2.1) denotes the divergence of the advective term for
the quantity density a. The mass density ρ is conserved, by means of the
continuity equation, as follows:

dρ

dt
=
∂ρ

∂t
+

∂

∂xα
(ρvα) = 0, (2.2)
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which is used together with the chain rule in order to yield Eq. (2.1). Let us
define the total system mass m as m = ρν, where ν is the system’s specific
volume. Plugging this into Eq. (2.1) and again using the chain rule, we
obtain a conservation law for mass:

ρ
dν

dt
=

∂

∂t
(ρν) +

∂

∂xα
(ρνvα) =

∂vα

∂xα
. (2.3)

For a fluid with uniform mass density ρ in the absence of external forces,
let the conservation laws of energy density ρe and momentum density ρvα

be:

∂

∂t
(ρe) = − ∂

∂xα
(jαe + ρevα) , (2.4)

∂

∂t
(ρvα) = − ∂

∂xβ

(
Pαβ + ρvαvβ

)
, (2.5)

where Pαβ is the pressure tensor—here considered to contain an anti-
symmetric part in addition to the symmetric part and the trace—and jαe
the fluid energy flow which itself is proportional to the fluid heat flow jαq .
The fluid also possesses an angular momentum per unit mass Jα, as an ax-
ial vector. This axial vector, along with other axial vectors present in this
discourse, can be written in terms of anti-symmetric tensors as

Jα = εαβγJβγ , (2.6)

such that J3 = J12 = −J21. Using this tensorial notation, the total angular
momentum can now be split into ‘external’ angular momentum per unit
mass Lαβ, and ‘internal’ angular momentum per unit mass Sαβ as Jαβ =
Lαβ +Sαβ. The ‘external’ component uses the classical definition of angular
momentum as the wedge product of distance and velocity:

Lαβ = rαvβ − rβvα, (2.7)

while the ‘internal’ component is, for our purposes, being equated with the
quantum-mechanical spin per unit mass Sαβ

From a classical definition of the total angular momentum per unit mass
and its conservation law, one might deduce the total time derivative of Sαβ
as being wholly dependent on the pressure tensor:

ρ
dSαβ

dt
= −2P a

αβ, i.e. ρ
dSα
dt

= −2P a
α, (2.8)

which De Groot & Mazur have obtained. However, as noted by Snider
& Lewchuk [14], this approach ignores the contribution of internal angular
momentum flux to the internal angular momentum’s conservation equation,
and therefore Eq. (2.8) is not an adequate equation for systems where the
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internal angular momentum is flowing. We therefore add an extra term, the
divergence of the spin flux tensor js,αβ, to Eq. (2.8):

ρ
dSα
dt

= −2P a
α −

∂

∂xβ
js,αβ, (2.9)

or written as the local time derivative of spin using Eq. (2.1):

∂

∂t
(ρSα) = −2P a

α −
∂

∂xβ
(js,αβ + ρSαvβ) . (2.10)

The total energy per unit mass e can be divided into three separate parts
as follows:

e =
1

2
vαv

α + ur + u, (2.11)

where the first term is (obviously) the kinetic term, while the second term,
ur denotes the ‘rotational energy per unit mass’, and the final term denotes
the internal energy per unit mass. As expected, the internal energy per unit
is quadratically proportional to the spin:

ur =
S2

2χs
=

1

2χs
SαSα, (2.12)

where χs is the spin susceptibility1. The (correct) balance equation for the
rotational energy can be obtained using Eq. (2.10) and the chain rule:

∂

∂t
(ρur) =

∂

∂t

(
ρ

2χs
SαS

α

)
=
Sα

χs

∂

∂t
(ρSα)

= − 2

χs
SαP a

α −
Sα

χs

∂

∂xβ
(js,αβ + ρSαvβ)

= − 2

χs
SαP a

α −
∂

∂xβ

(
Sα

χs
js,αβ

)
+
js,αβ
χs

∂Sα

∂xβ
− ∂

∂xβ

(
ρ

2χs
SαSαvβ

)
= − 2

χs
SαP a

α −
∂

∂xβ

(
Sα

χs
js,αβ

)
+
js,αβ
χs

∂Sα

∂xβ
− ∂

∂xα
(ρurv

α) .

(2.13)

Finally, the conservation law equation for the kinetic term 1
2vαv

α follows
from using the chain rule in Eq. (2.5):

∂

∂t

(ρ
2
vαv

α
)

= vα
∂

∂t
(ρvα)

= −vα
∂

∂xβ

(
Pαβ + ρvαvβ

)
= − ∂

∂xα

(
Pαβvβ

)
+ Pαβ

∂vα
∂xβ

− ∂

∂xα

(ρ
2
v2vα

)
. (2.14)

1Note that for Eq. (2.12) to remain dimensionally correct as energy per unit mass on
both sides, we require χs to possess the dimension of [length]2. A practical calculation of
χs can be seen in the Appendix, Section A.2, where the precise nature of χs is also further
discussed.
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The balance equation for the internal energy per unit mass can then be
obtained by subtracting Eqs. (2.13) and (2.14) from Eq. (2.4):

∂

∂t
(ρu) =

∂

∂t
(ρe)− ∂

∂t

(ρ
2
vαv

α
)
− ∂

∂t
(ρur)

= − ∂

∂xα
(jαe + ρevα) +

∂

∂xα

(
Pαβvβ

)
− Pαβ ∂vα

∂xβ
+

∂

∂xα

(ρ
2
v2vα

)
+

2

χs
SαP a

α +
∂

∂xα

(
Sβ
χs
jαβs

)
−
js,αβ
χs

∂Sα

∂xβ
+

∂

∂xα
(ρurv

α)

= − ∂

∂xα

(
jαq + ρuvα

)
− Pαβ ∂vα

∂xβ
+

2

χs
SαP a

α −
js,αβ
χs

∂Sα

∂xβ
, (2.15)

where we have defined the thermal energy flow jαq as:

jαq = jαe − Pαβvβ −
Sβ
χs
jαβs , (2.16)

and used Eq. (2.11) to rewrite various divergent terms into the divergence
of the advective term ρuvα. In the total time derivative form of Eq. (2.1),
Eq. (2.15) becomes:

ρ
du

dt
=

∂

∂t
(ρu) +

∂

∂xα
(ρuvα)

= − ∂

∂xα
jαq − Pαβ

∂vα
∂xβ

+
2

χs
SαP a

α −
js,αβ
χs

∂Sα

∂xβ
(2.17)

It is now possible to exploit the degrees of freedom contained within the
pressure tensor Pαβ: it can be split into a scalar equilibrium pressure p and
a viscous pressure tensor Παβ by writing Pαβ = pδαβ + Παβ, where δαβ is
a Kronecker delta. The viscous pressure tensor Παβ can then be further
split into a scalar part Π = 1

3Tr(Παβ), a symmetric part with zero trace(
Παβ

)s,0
, and an anti-symmetric part

(
Παβ

)a
. The pressure tensor can then

be rewritten into scalar, symmetric, and anti-symmetric components:

Pαβ = (p+ Π)δαβ +
(

Παβ
)s,0

+
(

Παβ
)a
. (2.18)

Since the axial vector P a
α is the pressure tensor’s anti-symmetric component,

we can use P a
α = Πa

α. A similar decomposition into scalar, symmetric,
and anti-symmetric components may also be performed onto the velocity
gradient term present in the right-hand side of Eq. (2.15):

∂vα

∂xβ
=

1

3

∂vγ

∂xγ
δαβ +

(
∂vα

∂xβ

)s,0

+

(
∂vα

∂xβ

)a

. (2.19)

Using Eqs. (2.18) and (2.19), and noting that cross products between two
different types of decomposition (i.e. symmetric with scalar) yield zero, the
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internal energy balance equation (2.15) is rewritten as:

∂

∂t
(ρu) = − ∂

∂xα

(
jαq + ρuvα

)
−
js,αβ
χs

∂Sα

∂xβ
+

1

2χs
εαβγεαδεSβγ

(
Πδε
)a

− (p+ Π)
∂vα

∂xα
−
(

Παβ
)s,0

(
∂vα
∂xβ

)s,0

−
(

Παβ
)a
(
∂vα
∂xβ

)a

= − ∂

∂xα

(
jαq + ρuvα

)
−
js,αβ
χs

∂Sα

∂xβ
− (p+ Π)

∂vα

∂xα

−Πs,0
αβ

(
∂vα

∂xβ

)s,0

−Πa
α

(
εαβγ

∂vβ
∂xγ
− Sα

χs

)
. (2.20)

Using Eq. (2.3), Eq. (2.20) is rewritten as

∂

∂t
(ρu) + p

∂

∂t
(ρν) = − ∂

∂xα

(
jαq + ρ (u+ pν) vα

)
−
js,αβ
χs

∂Sα

∂xβ
−Π

∂vα

∂xα

−Πs,0
αβ

(
∂vα

∂xβ

)s,0

−Πa
α

(
εαβγ

∂vβ
∂xγ
− Sα

χs

)
. (2.21)

We are now ready to set up equations for the entropy production inside
the system. For monocomponent systems, the Gibbs relation states that2:

T
dσ

dt
=

du

dt
+ p

dν

dt
, (2.22)

where T is the system’s temperature and σ the system’s entropy per unit
mass. Using Eq. (2.1), Eq. (2.22) is readily rewritten as a local time
derivative of the entropy density as:

T
∂

∂t
(ρσ) =

∂

∂t
(ρu) + p

∂

∂t
(ρν) +

∂

∂xα
[ρ(u+ pν − Tσ)vα] , (2.23)

such that the entropy balance equation is obtained with use of Eqs. (2.21)
and (2.23) as:

∂

∂t
(ρσ) = − ∂

∂xα
jασ + ζ, (2.24)

where

jασ =
jαq
T
− ρσvα, (2.25)

is the entropy flow and

ζ = −
jαq − ρTσvα

T 2

∂T

∂xα
− Π

T

∂vα

∂xα
−

Πs,0
αβ

T

(
∂vα

∂xβ

)s,0

− Πa
α

T

(
εαβγ

∂vβ
∂xγ
− Sα

χs

)
−
js,αβ
Tχs

∂Sα

∂xβ
, (2.26)

2In systems or fluids with only one mass component, the balance equation for the
chemical potential energy equals zero, and thus does not need to be considered in this
case. For multi-component systems, as we shall see in Section 2.3, the Gibbs relation
requires another term to account for the (electro)chemical potential balance equation.

11



the entropy production, for which ζ ≥ 0.
In Eq. (2.26), the tensorial decompositions done in the previous para-

graph show their use: one clearly distinguishes scalar, polar vector, symmet-
ric and anti-symmetric terms in the right-hand side. For each of these terms,
we derive phenomenological equations for the quantities which contribute to
entropy production:

jαq = −λ ∂T
∂xα

+ ρTσvα; (2.27)

Π = −ηv
∂vα

∂xα
; (2.28)

Πs,0
αβ = −2η

(
∂vα
∂xβ

)s,0

; (2.29)

Πa
α = −ηr

(
εαβγ

∂vβ

∂xγ
− Sα
χs

)
; (2.30)

js,αβ = −Ds

χs

∂Sα
∂xβ

, (2.31)

where λ is the heat conductivity, ηv the volume viscosity, η the shear viscos-
ity, ηr the spin (‘rotational’) viscosity, and Ds a spin diffusion constant3. As
one would intuitively expect, the thermal flow of Eq. (2.27), the fluid’s pres-
sure of Eqs. (2.28) to (2.30), and the spin diffusion of Eq. (2.31) contribute
to the spin fluid’s entropy production.

2.2 Viscous fluid with spin in an electromagnetic
field

Up until now, we considered a viscous fluid with spin and its entropy produc-
tion and how the spin diffusion contributes to the entropy production. The
preceding treatment omitted the presence of electromagnetic fields—and by
extension the electromagnetic forces acting on the spin fluid—and therefore
yields an incomplete theoretical background for the experimental set-up as
used by Takahashi et al. [7], and its immediate results. We shall assume the
fluid to be polarized under the presence of such external electromagnetic
fields, such that next to the electric field Eα and the magnetic field Bα, we
also gain the electric and magnetic polarization fields, Zα and Mα respec-
tively. The addition of these fields in our motion and balance equations for
the viscous fluid discussed in Section 2.1 alters these equations in various
manners.

3The quantity of ‘spin diffusion constant’ as measured and cited usually possesses the
dimension of [length]2[time]−1; a quick dimensional analysis shows that Ds possesses the
dimension of [mass][length][time]−1. This dimensional problem is overcome if we regard
the ratio Ds/χs as the mass density ρ times the ‘true’ spin diffusion constant D̂s, viz. the
Appendix, Section A.1 for an elaboration on the ‘true’ spin diffusion constant.

12



The viscous fluid is primarily being polarized and magnetized by the elec-
tromagnetic fields, such that next to the electromagnetic fields themselves
one has the polarization and magnetization fields, Zα and Mα respectively.
The electric and magnetic displacement fields, Dα and Hα respectively, are
defined as:

Dα = Zα + Eα;

Hα = Bα −Mα. (2.32)

With the displacement fields of Eq. (2.32), the Maxwell equations relevant
to our general inquiry are:

∂Dα

∂xα
= ρz; (2.33)

∂Bα

∂xα
= 0; (2.34)

∂Dα

∂t
= cεαβγ

∂Hβ

∂xγ
− Iα; (2.35)

∂Bα

∂t
= −cεαβγ

∂Eβ
∂xγ

, (2.36)

where z is the charge per unit mass, c the speed of light, and

Iα = ρzvα + jαc , (2.37)

the electric current density, where jαc is the charge flow.
We define the magnetization field Mα as

Mα = −γmρSα, (2.38)

i.e. the gyromagnetic ratio γm times the spin density. Physically, the gy-
romagnetic ratio consists of two parts: the orbital gyromagnetic ratio γo,
which is considered as the ‘classical’ magnetization, and the spin gyromag-
netic ratio γs, due to the spin magnetic moment coupling to the magnetic
field, such that we have γ = γo +γs. Microscopically, the spin gyromagnetic
ratio is defined as

γs =
gz

2m
, (2.39)

where g is a particle-dependent number, z the electric charge of the particle,
and m the mass of the charged particle. The spin magnetic moment ef-
fectively creates another energy term in the system’s Hamiltonian [15]; more
precisely, the spin magnetic interaction induces a magnetization to the Pauli
equation [16]. For now, we shall consider the spin gyromagnetic ratio γs as
a constant — such that the time derivative of the magnetization field is
proportional to that of the spin density — postponing the use of Eq. (2.39)
until necessary for our balance equations.

13



The electromagnetic fields and their polarization and displacement coun-
terparts give rise to the Maxwell stress tensor Tαβ, which is defined as:

Tαβ = DαEβ +BαHβ +
vαεβγδ

c
(ZγBδ −MγEδ)

−
(

1

2
EγE

γ +
1

2
BγB

γ −MγB
γ

)
δαβ, (2.40)

where we define the diagonal terms as the electromagnetic field energy den-
sity ρψ:

ρψ =
1

2
(EαEα +BαBα)−MαBα, (2.41)

which is added to the total energy budget ρe of Eq. (2.11), such that the
total energy budget becomes:

e =
1

2
vαv

α + ur + u+ ψ, (2.42)

The Maxwell stress tensor itself acts as a radiative pressure term, and
therefore terms containing the mechanical pressure tensor term Pαβ should
be corrected to account for the presence of the radiative pressure. The
first affected balance equation is that of the conservation of momentum of
Eq. (2.5), which is therefore no longer valid, instead being replaced by the
following balance equation:

∂

∂t
(ρvα) = − ∂

∂xβ

(
Pαβ − Tαβ + ρvαvβ

)
= − ∂

∂xβ

(
Pαβ + ρvαvβ

)
+ Fα, (2.43)

where the force term Fα is defined as:

Fα =
∂

∂xβ
Tαβ = FαL + FαR , (2.44)

where

FαL = ρz

(
Eα +

1

c
εαβγvβBγ

)
(2.45)

is the Lorentz force, and

FαR = Zβ
∂Eα

∂xβ
+Mβ

∂Bα

∂xβ

+
εαβγ

c

[
∂

∂t
(ZβBγ −MβEγ) +

∂

∂xδ
(ZβBγvδ −MβEγvδ)

]
(2.46)

are the remaining force terms. In the non-polarized case, Eq. (2.44) yields
the Lorentz force terms only. As one might imagine, the force term of Eq.
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(2.44) profoundly alters the balance equation for the kinetic term in Eq.
(2.14) which now becomes:

∂

∂t

(ρ
2
vαv

α
)

= − ∂

∂xα

(
Pαβvβ +

ρ

2
v2vα

)
+ Pαβ

∂vα
∂xβ

+ vαF
α. (2.47)

The second balance equation affected by the addition of radiative pres-
sure is Eq. (2.10), the spin balance equation. Analogous to the anti-
symmetric pressure term, the additional term in the balance equation for
the spin is proportional to the anti-symmetric component of the Maxwell
stress tensor T a

α, defined as

T a
α =

εαβγ
2
T βγ =

εαβγ
2

(
DβEγ +BβHγ

)
. (2.48)

With the addition of the anti-symmetric part of the Maxwell stress tensor
as an additional pressure-like term, Eq. (2.10) becomes:

∂

∂t
(ρSα) = −2 (P a

α − T a
α)− ∂

∂xβ
(js,αβ + ρSαvβ) . (2.49)

Using Eq. (2.49) instead of Eq. (2.10) necessarily alters the rotational
energy balance equation:

∂

∂t
(ρur) = − 2

χs
Sα (P a

α − T a
α)− ∂

∂xα

(
Sβ
χs
jαβs + ρurv

α

)
+
js,αβ
χs

∂Sα

∂xβ
. (2.50)

For the electromagnetic energy density balance equation, the partial time
derivative (or Poynting equation) of Eq. (2.41) is readily calculated using
Eqs. (2.35) and (2.36), and Eq. (2.32):

∂

∂t
(ρψ) = Eα

∂Eα

∂t
+ (Bα −Mα)

∂Bα

∂t
−Bα

∂Mα

∂t

= cεαβγEα
∂Hβ

∂xγ
− cεαβγ (−Hα)

∂Eβ
∂xγ

− Eα
∂Zα

∂t
−Bα

∂Mα

∂t
− EαIα

= cεαβγ
∂

∂xα
(EβHγ)− Eα

(
∂Zα

∂t
+ Iα

)
−Bα

∂Mα

∂t
. (2.51)

As anticipated earlier, the use of Eq. (2.38) allows us rewrite the term
−Bα∂tMα after using Eqs. (2.38) and (2.49) as:

−Bα
∂Mα

∂t
= γmB

α ∂

∂t
(ρSα)

= 2γmB
α (P a

α − T a
α) + γm

∂

∂xα

[
Bβ

(
jαβs + ρSβvα

)]
− γm (js,αβ + ρSαvβ)

∂Bα

∂xβ
, (2.52)
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which lets us rewrite Eq. (2.51) as:

∂

∂t
(ρψ) = 2γmB

α (P a
α − T a

α) + γm
∂

∂xα

[
Bβ

(
jαβs + ρSβvα

)]
− γm (js,αβ + ρSαvβ)

∂Bα

∂xβ
+ cεαβγ

∂

∂xα
(EβHγ)

− Eα
(
∂Zα

∂t
+ Iα

)
. (2.53)

Analogous to the previous Section, the balance equation for the internal
energy is obtained by means of using Eq. (2.42); subtracting Eqs. (2.47),
(2.50), and (2.53) from Eq. (2.4) yields:

∂

∂t
(ρu) =

∂

∂t
(ρe)− ∂

∂t

(ρ
2
v2
)
− ∂

∂t
(ρur)−

∂

∂t
(−ρψ)

= − ∂

∂xα
(jαe + ρevα) +

∂

∂xα

(
Pαβvβ +

ρ

2
v2vα

)
− Pαβ ∂vα

∂xβ

− vαFα −
js,αβ
χs

∂Sα

∂xβ
+ 2

(
Sα

χs
− γmB

α

)
(P a

α − T a
α)

+
∂

∂xα

(
Sβ
χs
jαβs + ρurv

α

)
− γm

∂

∂xα

[
Bβ

(
jαβs + ρSβs v

α
)]

+ γm (js,αβ + ρSαvβ)
∂Bα

∂xβ
− cεαβγ ∂

∂xα
(EβHγ)

+ Eα

(
∂Zα

∂t
+ Iα

)
. (2.54)

Defining the heat flow jαq in this case as:

jαq = jαe − Pαβvβ −
(
Sβ
χs
− γmBβ

)
jαβs + cεαβγEβHγ . (2.55)

permits us to rewrite Eq. (2.54) as:

∂

∂t
(ρu) = − ∂

∂xα

[
jαq + ρ (u− ψ) vα

]
− Pαβ ∂vα

∂xβ
− vαFα

−
[
js,αβ

∂

∂xβ
− 2 (P a

α − T a
α)

](
Sα

χs
− γmB

α

)
+ Eα

(
∂Zα

∂t
+ Iα

)
+ γmBα

∂

∂xβ

(
ρSαvβ

)
. (2.56)

Performing the same tensorial decompositions of Eqs. (2.18) and (2.19)
done in Subsection 2.1, and using Eq. (2.3), the internal energy balance
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Equation (2.56) is rewritten as:

∂

∂t
(ρu) + p

∂

∂t
(ρν) = − ∂

∂xα

[
jαq + ρ (u+ pν − ψ) vα

]
− vαFα

−Π
∂vα

∂xα
−
(

Παβ
)s,0

(
∂vα
∂xβ

)s,0

−Πa
α

[
εαβγ

∂vβ
∂xγ
−
(
Sα

χs
− γmB

α

)]
−
(
js,αβ

∂

∂xβ
+ 2T a

α

)(
Sα

χs
− γmB

α

)
+ Eα

(
∂Zα

∂t
+ Iα

)
+ γmBα

∂

∂xβ

(
ρSαvβ

)
. (2.57)

2.3 Multi-component fluid entropy production
with electromagnetism

If we would consider our fluid to be monocomponent, the Gibbs energy
balance Equation (2.57), used in the Gibbs relation Equation (2.22) yields
us the entropy balance equation and subsequently the entropy production,
which in this case would contain much more terms than our previous case
in Section 2.1. This assumption, however, implies that our fluid consists
purely of particles of the same mass, and of the same electric charge, thus
making it unusable for our purposes.

Fortunately, the only required modifications of Eq. (2.57) are rewriting
terms containing the charge z as terms with particle-dependent charges zk
for fluid component k, and then changing the other quantities in terms
containing zk accordingly4. The first, rather obvious, change is using the
component-dependent form of the Lorentz force of Eq. (2.45):

FαL =
∑
k

ρkzk

(
Eα +

1

c
εαβγvk,βBγ

)
. (2.58)

The second change, a multi-component form of the electric current density
of Eq. (2.37), is equally trivial as well:

Iα = vα
∑
k

ρkzk + jαc . (2.59)

The third and most profound change involves the spin gyromagnetic

4That only terms containing the average charge z are rewritten to accommodate particle
charges zk is a consequence of a deliberate choice to regard the ‘chargeless’ fluid of Section
2.1 as being a component-averaged fluid, i.e. the quantities present in the fluid of Section
2.1, including spin per unit mass Sα, are averages among the components.
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ratio γs as introduced in Eq. (2.39), which at first is rewritten as:

γs =
∑
k

gkzk
2mk

, (2.60)

where gk and mk are the gyromagnetic factor and mass, respectively, for
particles of fluid component k. While Eq. (2.60) is valid for any fluid with
multiple charged particle components, we are able to further rewrite this in
a more sophisticated and aesthetically pleasing manner: since we consider
our fluid to consist of nuclei and (free) electrons, we only need to consider
the electron contribution to Eq. (2.60). This is due to the heavy nuclei
masses—nuclei masses are at least three order of magnitudes higher than
the electron mass, even more so for mercury nuclei—which render the nuclei
contributions to the spin magnetic moment energy to become relatively small
compared to that of the electrons. In short, we simply replace Eq. (2.60)
with

γs = γe, (2.61)

where γe = geze/2me is the electron gyromagnetic ratio.
With these changes in mind, and ignoring the orbital contribution γo to

the gyromagnetic ratio γm, the multi-component form of the internal energy
balance equation Eq. (2.57) is written as:

∂

∂t
(ρu) + p

∂

∂t
(ρν) = − ∂

∂xα

[
jαq + ρ (u+ pν + ψ) vα

]
− vαFαR − εαβγ

vα
c

∑
k

ρkzkvk,βBγ

−Π
∂vα

∂xα
−
(

Παβ
)s,0

(
∂vα
∂xβ

)s,0

−Πa
α

[
εαβγ

∂vβ
∂xγ
−
(
Sα

χs
− γeB

α

)]
−
(
js,αβ

∂

∂xβ
+ 2T a

α

)(
Sα

χs
− γeB

α

)
+ Eα

(
∂Zα

∂t
+ jαc

)
+ γeBα

∂

∂xβ

(
ρSαvβ

)
. (2.62)

With our internal energy balance equation rewritten for a multi-
component fluid, we shall use the multi-component form of the Gibbs equa-
tion which includes the contribution of the (electro-)chemical potential en-
ergy:5

T
dσ

dt
=

du

dt
+ p

dν

dt
−
∑
k

µk
dck
dt
, (2.63)

5The derivation and motivation of using Eq. (2.63) is based on the absence of equilib-
rium values for Eα and Bα; for non-negligible equilibrium values, one has to substitute
Eα with Eα − Eeq,α and similar for Bα in the relevant Equations in this Section, cf. De
Groot and Mazur. [13]
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where µk is the chemical potential for component k, and ck the component’s
mass fraction. Similar to our previous treatment in Section 2.1, we rewrite
Eq. (2.63) using Eq. (2.1) as a local time derivative of the entropy density:

T
∂

∂t
(ρσ) =

∂

∂t
(ρu) + p

∂

∂t
(ρν)−

∑
k

µk
∂

∂t
(ρck)

+
∂

∂xα

[
ρ

(
u+ pν − Tσ −

∑
k

µkck

)
vα

]
. (2.64)

Unsurprisingly, using Eq. (2.64) into Eq. (2.62) yields us the entropy bal-
ance equation of Eq. (2.24), but now we have for the entropy flow jασ :

jασ =
1

T

[
jαq − ρ

(
Tσ +

∑
k

µkck − ψ

)
vα

]
, (2.65)

while the entropy production ζ becomes:

ζ = − 1

T 2

[
jαq − ρ

(
Tσ +

∑
k

µkck − ψ

)
vα

]
∂T

∂xα

− Π

T

∂vα

∂xα
−

Πs,0
αβ

T

(
∂vα

∂xβ

)s,0

− Πa
α

T

[
εαβγ

∂vβ
∂xγ
−
(
Sα

χs
− γeB

α

)]
− 1

T

(
js,αβ

∂

∂xβ
+ 2T a

α

)(
Sα

χs
− γeB

α

)
+
Eα
T

(
∂Zα

∂t
+ jαc

)
+ γe

Bα
T

∂

∂xβ

(
ρSαvβ

)
. (2.66)

Since we assume the system to be in mechanical equilibrium, the force
term vαF

α
R is omitted from the entropy production; similarly, the term

εαβγvα(cT )−1
∑

k ρkzkvk,βBγ is also omitted for this reason, with the ad-
ditional argument of the Prigogine theorem [17] being applied such that one
is free to choose vk,β = 0.6

6cf. De Groot and Mazur, Sections V.2 and XIII.4 [13]
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The resulting phenomenological equations are then:

jαq = −λ ∂T
∂xα

+ ρ

(
Tσ +

∑
k

µkck − ψ

)
vα; (2.67)

Π = −ηv
∂vα

∂xα
; (2.68)

Πs,0
αβ = −2η

(
∂vα
∂xβ

)s,0

; (2.69)

Πa
α = −ηr

[
εαβγ

∂vβ

∂xγ
−
(
Sα
χs
− γeBα

)]
; (2.70)

js,αβ = −
(
Ds

∂

∂xβ
+ 2T a

β

)(
Sα
χs
− γeBα

)
; (2.71)

jαc +
∂Zα

∂t
= σeE

α; (2.72)

γe
∂

∂xβ
(ρSαvβ) = µmBα. (2.73)

where—as in the conclusion of Section 2.1—λ is the heat conductivity, ηv
the volume viscosity, η the shear viscosity, ηr the spin (‘rotational’) viscosity,
and Ds a spin diffusion constant. An additional phenomenological equation,
(2.72), results in Ohm’s law of electrical resistance, where σe is the electrical
conductivity, whereas another additional equation, (2.73), yields an analo-
gous equation for the magnetic field, where µm is the magnetic permeability.
Compared to their counterparts (2.27)–(2.31), Eqs. (2.67) to (2.69) remain
the same, while Eqs. (2.70) and (2.71) are redefined to accommodate the
presence of electromagnetic fields; setting T a

α = Eα = Bα = 0 in (2.70) and
(2.71) yields their non-electromagnetic counterparts, Eqs. (2.30) and (2.31).

Using the phenomenological equations (2.67)–(2.72), the conservation
laws used for our system is rewritten in terms of known, measurable quan-
tities. To begin with, let us rewrite the current density of Eq. (2.37) using
Eq. (2.72):

Iα = ρzvα + σeE
α − ∂Zα

∂t
. (2.74)

With the phenomenological pressure equations (2.68)–(2.70), the momentum
balance equation (2.43) is rewritten as a Navier-Stokes equation:

∂

∂t
(ρvα) = − ∂

∂xβ

[
(p+ Π) δαβ + (Παβ)s,0 + 2εαβγΠa,γ + ρvαvβ

]
+ Fα

= − ∂p

∂xα
+ η

∂2vα
∂xβ∂xβ

+

(
1

3
η + ηv

)
∂2vβ

∂xα∂xβ

− ∂

∂xβ

[
2ηrεαβγ

(
Sγ

χs
− γeB

γ

)
+ ρvαvβ

]
+ Fα. (2.75)
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Rewriting the spin balance equation (2.49) using Eqs. (2.70) and (2.71) then
yields:

∂

∂t
(ρSα) = 2

{
ηr

[
εαβγ

∂vβ

∂xγ
−
(
Sα
χs
− γeBα

)]
+ T a

α

}
+

∂

∂xβ

[(
Ds

∂

∂xβ
+ 2T a

β

)(
Sα
χs
− γeBα

)
− ρSαvβ

]
. (2.76)

Finally, the conservation law of energy, Eq. (2.4), is rewritten using Eqs.
(2.55), (2.67)–(2.71) as:

∂

∂t
(ρe) = − ∂

∂xα

(
jαq + Pαβvβ +

(
Sβ
χs
− γeBβ

)
jαβs − cεαβγEβHγ + ρevα

)
=

∂

∂xα

{
λ
∂T

∂xα
+

[
ηv
∂vα

∂xβ
+ 2η

(
∂vα

∂xβ

)s,0

− 2ηrε
αβγ

(
Sγ
χs
− γeBγ

)]
vβ

+

(
Sβ
χs
− γeBβ

)(
Ds

∂

∂xβ
+ 2T a,β

)(
Sα
χs
− γeBα

)
+cεαβγEβHγ − ρ

(
e+

p

ρ
+ Tσ +

∑
k

µkck − ψ

)
vα

}
. (2.77)
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Chapter 3

Hydrodynamic modes

The balance equations and conservation laws obtained in Chapter 2—
specifically Eqs. (2.2), (2.75), (2.76), and (2.77)—form a coherent, phe-
nomenological description of the spin fluid, its properties, and its behaviour
under both internal and external forces. Before we put these equations into
practice, we shall regard the hydrodynamic modes of such spin fluids in this
Chapter. In Section 3.1 we linearize the equations as average values with
small perturbations, such that we are able to extract hydrodynamic modes
from these linearizations in Section 3.2.

3.1 Linearizing the balance equations

In order to obtain the hydrodynamic modes, the aforementioned equations
ought to be linearized first, i.e. the hydrodynamic variables are to be treated
as the sum of an averaged value and of a small, linear fluctuation. In order
to establish the notation used in this Chapter and onwards, let a be (again)
a quantity to be linearized; then, we write a as the average value of a, and
ã(xα, t) as its fluctuation, such that

a(xα, t) = a+ ã(xα, t), (3.1)

and subsequently

∂a

∂t
=

∂a

∂xα
= 0; O

[
(ã(xα, t))

2
]

= ã(xα, t)̃b(xα, t) = 0,

where b̃(xα, t) is the fluctuation of a different quantity, in this case b.
Now that the linearization formalism to be used is set, let us turn our

attention to the present hydrodynamic variables: these are the mass density
ρ, the velocity vα, the spin Sα and the temperature T . Important to note
is that the system’s energy e is not a fundamental quantity; rather, it is
dependent on the four variables mentioned. Furthermore, we assume the
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average velocity and spin of the fluid to be zero, i.e.

vα = Sα = 0α, (3.2)

since these quantities are balanced. In general, Eq. (3.2) combined with the
linear nature of the fluctuations yield

v2 = S2 = vαSβ = 0. (3.3)

With these considerations in mind, the fundamental hydrodynamic variables
of our system are linearized as:

ρ(xα, t) = ρ+ ρ̃(xα, t); vα(xβ, t) = ṽα(xβ, t);

Sα(xβ, t) = S̃α(xβ, t); T (xα, t) = T + T̃ (xα, t).
(3.4)

From here on, we shall drop the explicit spatiotemporal dependence of the
fluctuations for the sake of readability.

The first equation to undergo the linearization procedure is the continu-
ity equation, as cited in Eq. (2.2):

∂ρ

∂t
= − ∂

∂xα
(ρvα) , (3.5)

which after using the linearizations of Eq. (3.9) becomes:

∂ρ̃

∂t
= −ρ∂ṽ

α

∂xα
. (3.6)

The second equation to be linearized is the momentum balance equa-
tion (2.75), and for this Equation two points have to be addressed be-
fore any meaningful linearization might occur. Firstly, the advective term
−∂/∂xβ(ρvαvβ) of the right hand side vanishes due to Eq. (3.3). Secondly,
the pressure p is not a fundamental hydrodynamic variable in itself, since
it effectively depends on the mass density ρ and the temperature T . The
pressure gradient term of Eq. (2.75) therefore needs to be rewritten using
the ρ and T dependencies and the chain rule:

∂p̃

∂xα
= K

(
∂ρ̃

∂xα
+ α

∂T̃

∂xα

)
, (3.7)

where K = ∂p̃/∂ρ is the bulk modulus density per unit mass [18], and α =
∂ρ̃/∂T the thermal expansion coefficient of the spin fluid. Using Eq. (3.7),
the momentum balance equation (2.75) is linearized as:

ρ
∂ṽα
∂t

= −K

(
∂ρ̃

∂xα
+ α

∂T̃

∂xα

)
+ η

∂2ṽα
∂xβ∂xβ

+

(
1

3
η + ηv

)
∂2ṽβ

∂xα∂xβ

− 2ηrεαβγ
∂

∂xβ

(
S̃γ

χs
− γeB

γ

)
+ Fα, (3.8)
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Compared to the momentum balance equation (2.75), the third equation
to be linearized, Eq. (2.76), is relatively simple to linearize: Eq. (3.3) lets
the advective term −∂/∂xβ(ρSαvβ) vanish, such that linearization yields:

ρ
∂S̃α
∂t

= 2ηr

[
εαβγ

∂ṽβ

∂xγ
−

(
S̃α
χs
− γBα

)]
+ 2T a

α

+
∂

∂xβ

[(
Ds

∂

∂xβ
+ 2T a

β

)(
S̃α
χs
− γeBα

)]
. (3.9)

As one would expect, the fourth and last equation in our linearization
procedure, the energy balance equation (2.77), is the most laborious one
to linearize. This is due to the aforementioned fact that energy per unit
mass, e, is not a proper fundamental hydrodynamic variable; rather, it is
dependent on quantities mentioned in Eq. (3.9), such that one would naively
be tempted to write e(vα, Sα, T ). However, kinetic energy is proportional to
the square of velocity, and Eq. (2.12) tells us the same with rotational energy
and the square of the fluid spin. Eq. (3.3) lets us ignore the dependence
on v2 and S2 of a linearized energy e, such that the left hand term of Eq.
(2.77) is easily rewritten using Eq. (3.5), the chain rule and temperature as
the variable:

∂

∂t
(ρe) = e

∂ρ̃

∂t
+ ρ

∂ẽ

∂t
= ρ

∂T

∂t

∂ẽ

∂T
− ρe∂ṽ

α

∂xα
= ρcV

∂T̃

∂t
− ρ̄ē ∂ṽ

α

∂xα
, (3.10)

where cV = ∂ẽ/∂T is the fluid’s specific heat density. Note that the final
(advective) term on the right hand side of Eq. (3.10) cancels a similar advec-
tive term on the right hand side of Eq. (2.77), such that the energy balance
equation is completely rewritten as a temperature balance equation. After
performing the necessary linearizations, the temperature balance equation
thus becomes:

ρ
∂T̃

∂t
=

1

cV

∂

∂xα

{
λ
∂T̃

∂xα
+ 2ηrγeε

αβγ ṽβBγ + γ2
eBβ

(
Ds

∂

∂xβ
+ 2T a,β

)
Bα

− γe

χs
S̃β

(
Ds

∂

∂xβ
+ 2T a,β

)
Bα − γe

χs
Bβ

(
Ds

∂

∂xβ
+ 2T a,β

)
S̃α

+cεαβγEβHγ − pṽα −

(
Tσ +

∑
k

µkck − ψ

)
ρṽα

}
. (3.11)

3.2 Obtaining the hydrodynamic modes

Compared to their counterparts in Chapter 2, the linearized equations ob-
tained in Section 3.1 possess the distinct advantages of being differential
equations of the thermodynamical variables at work in the fluid system,
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having no superfluous advective terms present, and depending only on the
external electromagnetic forces next to the thermodynamic variables them-
selves. This invites us to consider plane waves for these variables in order to
obtain the hydrodynamic modes of the system as dispersion relations of the
set of equations. Since hydrodynamic modes form an internal property of
the fluid irrespective of outside influences, the external electromagnetic force
and field terms may be safely ignored in obtaining the dispersion relations,
further simplifying the equations substantially.

Let ã(xα, t) be the fluctuation of a given quantity a as defined in Eq.
(3.1), and suppose it is a plane wave which is written as:

ã(xα, t) = a0 exp {i (kαxα − ωt)} , (3.12)

where a0 is the plane wave amplitude, kα the wavenumber, and ω the wave
frequency. Applying the plane wave form of Eq. (3.12) to the fluctuations
ρ̃, ṽα, S̃α, T̃ and ignoring external electromagnetic forces then yields for the
linearized equations Eqs. (3.5), (3.8), (3.9), (3.11):

ωρρ̃ = ρ2kαṽα; (3.13)

ωρṽα = Kkαρ̃− iηk2ṽα − i
(

1

3
η + ηv

)
kαkβ ṽ

β

+ 2
ηr
χs
εαβγk

βS̃γ + αKkαT̃ ; (3.14)

ωρS̃α = 2ηrεαβγk
β ṽγ − i

χs

(
2ηr +Dsk

2
)
S̃α; (3.15)

ωρT̃ =
1

cV

[
pkα + ρkα

(
Tσ + µkck

)]
ṽα −

iλ

cV
k2T̃ . (3.16)

Eqs. (3.13)–(3.16) describe a set of linear equations which is written as:

ωρξ = Aξ, (3.17)

where ξ = (ρ̃, ṽx, ṽy, ṽz, S̃x, S̃y, S̃z, T̃ )T is an eight-vector of the eight degrees
of freedom for the quantities1, and A an 8 × 8 matrix, whose eigenvalues
describe the hydrodynamic dispersion relations ωρ of the system.

Note that the term proportional to kαk
β ṽβ would allow for ‘cross-

wavenumber’ terms where α 6= β to exist, yet we practically shall ignore
these contributions to the matrix A. This is primarily because we consider
our fluid, mercury, to be incompressible, where ∂tρ̃ = 0 such that ∂αṽ

α = 0
according to Eq. (3.6), and therefore the velocity divergence term in Eq.
(3.8) . Furthermore, we expect the motion in fluid not directed along the
main flow to be the result of rotational viscosity coupling with the fluid spins,
as evidenced by terms proportional to ηr. Finally, the main goal of this Sec-
tion is to obtain dispersion relations for the fluid in order to establish the

1Each of the three Cartesian components of ṽα and S̃α form a degree of freedom.
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properties sound waves and similar phenomena in the fluid might have—a
task vastly made more difficult if we were to include the ‘cross-wavenumber’
terms, since it would inhibit calculating the necessary eigenvalues.2

The simplest case considered is when only the diagonal elements of A
contribute to the dispersion relations. Since the mass density equation does
not possess such a diagonal element, we obtain three dispersion relations for
three distinct modes originating from different physical properties3:

ωvα =
−i
ρ

(
4

3
η + ηv

)
k2; (3.18)

ωSα =
−i
ρχs

(2ηr +Dsk
2); (3.19)

ωT =
−iλ
ρcV

k2, (3.20)

which are the dispersion relations for the diffusive momentum, diffusive spin,
and diffusive heat modes respectively [19]. We identify the ratio (4

3η+ηv)/ρ of

Eq. (3.18) as the kinematic version of the second coefficient of viscosity [19,20];
in an incompressible fluid, Eq (3.18) simplifies to

ωvα = −iηkk2, (3.21)

where ηk = η/ρ is the kinematic viscosity [19,20]. The ratio λ/ρcV can be re-
garded as the thermal diffusion constant DT . Furthermore, the diffusive spin
relation (3.19) has a term independent of the wavenumber which originates
from the spins’ proper orbital angular momentum, indicating the fluid’s ro-
tational viscosity ηr provides a wavenumber-independent damping term to
the spin’s proper dispersion relations.

More interesting results obviously occur when one allows non-diagonal
matrix elements to be considered. As a first, simple example, let the fluid’s
dispersion depend on mass density and velocity only; the set of plane wave
equations (3.13)–(3.16) then simplifies to:

ωρρ̃ = ρ2kαṽα;

ωρṽα = Kkαρ̃− iρηkk2ṽα,

which yields the following dispersion relations for diffusive momentum
modes:

ω1 = −iηkk2; (3.22)

ω2,3 =
−i
2
ηkk

2 ±
√
Kk2 − 1

4
(ηkk2)2. (3.23)

2We were not able to find any sensible eigenvalues for the simplest non-trivial example,
i.e. the dispersion relations Eqs. (3.22)–(3.23).

3Here, we include compressible fluids for the sake of completeness.
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Since mercury as an incompressible fluid possesses a large bulk modulus4

and low kinematic viscosity in part due to its heavy density, expanding the
square root in the right hand side of Eq. (3.23) for small ηk yields us:

ω2,3 '
−i
2
ηkk

2 ±
√
K|k|

(
1− 1

8K
η2
kk

2

)
. (3.24)

Note that Eq. (3.22), equal to the diagonal-only result Eq. (3.18), is a
special non-zero case of Eq. (3.23) (and Eq. (3.24)) if K → 0, i.e. if the
fluid is infinitely compressible. Alternatively, using ηk → 0 in Eq. (3.23)
for a non-viscous fluid results in a real solution ω = ±

√
K|k|, i.e. a sound

wave. Dividing this result with the wavenumber vector length yields us the
familiar result of the speed of sound waves in a fluid as the square root of
the bulk modulus [18]:

vs =
∣∣∣ω
k

∣∣∣ =
√
K (3.25)

From this we observe (and confirm) that both compressibility and viscosity
influence the fluid’s dispersion relations — and therefore the fluid’s sound
velocity — in the manner observed in classical fluid dynamics: compressibil-
ity (or its inverse, the bulk modulus) determines the speed of sound waves,
while the fluid’s viscosity — an imaginary term to the dispersion relations
— regulates the damping of such sound waves.

Next we add the rotational viscosity term ηr to the system, effectively
(partially) adding the fluid spin S̃α to the set of equations, which become:

ωρρ̃ = ρ2kαṽα;

ωρṽα = Kkαρ̃− iρηkk2ṽα +
2ηr
χs

εαβγk
βS̃γ ;

ωρS̃α = 2ηrεαβγk
β ṽγ − i

χs

(
2ηr +Dsk

2
)
S̃α.

Since the equations for both ṽα and S̃α are related to each other by an anti-
symmetric term proportional to ηr, the Cartesian components of ṽα and S̃α
need to be considered separately5. This yields us a 7 × 7 matrix of which

4The bulk modulus is inversely proportional to the compressibility, cf. Marder [27]

5In the previous case, the Cartesian components of ṽα also had been treated sepa-
rately. However, the absence of anti-symmetric, cross-Cartesian terms radically simplifies
calculations.
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the eigenvalues are:

ω1 = − i

ρχs

(
2ηr +Dsk

2
)

(3.26)

ω2,3 =
−i
2
ηkk

2 ±
√
Kk2 − 1

4
(ηkk2)2; (3.27)

ω4,5 =
−i
2

[
1

ρχs

(
2ηr +Dsk

2
)

+ ηkk
2

]

±

√√√√[(2ηr
ρ

)2

− 2ηr
ρ
ηk −Dsηkk2

]
k2

χs
−
[

1

ρχs
(2ηr +Dsk2) + ηkk2

]2

,

(3.28)

where ω4,5 are each double degenerate values. While Eq. (3.26) is the
diagonal-only result for spin and Eq. (3.27) describes the general dispersion
relation (3.23) of the previous case, Eq. (3.28) describes a new mode with
both types of fluid viscosities present. Furthermore, one might interpret
the spin diffusion constant Ds occurring in Eqs. (3.26) & (3.28) as a new
pseudo-viscosity term for the spin dispersion modes.
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Chapter 4

Non-turbulent fluid flows

With the theory of spin hydrodynamics set up in Chapter 2 and its hydro-
dynamic modes investigated in Chapter 3, we are now ready to consider
simple fluid flows, before dealing with the actual spin hydrodynamic gener-
ation. This is firstly done to obtain an overview of the fluid’s spin behaviour
in a fluid flow, and secondly as another means of testing the results of Ch.
2. In this Chapter, we investigate simple fluid flows in the absence of any
electromagnetic fields in Section 4.1, while in Section 4.2 we consider the
presence of an effective magnetic field generated by the fluid’s proper flow.

4.1 Fluid flows and spin, without electromagnetic
fields

As a first, simple application, we consider a laminar fluid flowing unidirec-
tionally and steadily between two parallel plates, known as the Poiseuille
flow [9,20]. Let x̂ be the Cartesian direction of the fluid current, and the
plates be positioned at ±y0 on the xz−plane, such that the distance be-
tween them equals y0. Choosing vx(y = ±y0) = 0, vx(y = 0) = v0 as our
boundary conditions, we obtain for the fluid’s velocity:

vx(y) = v0

[
1−

(
y

y0

)2
]

; vy = vz = 0, (4.1)

i.e. the fluid velocity adheres to a parabolic profile. Since we consider our
fluid to be incompressible, the fluid velocity to be constant—i.e. ∂t(ρvα) =
0—and ignore external (electromagnetic) forces in this case, conservation
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laws and balance equations (2.75)–(2.77) become:

0 = −∂p
∂x

+ η
∂2vx
∂y2

− 2ηr
χs

∂Sz
∂y

; (4.2)

0 =

(
Ds

χs

∂2

∂xα∂xα
− 2ηr

χs

)
Sz + 2ηr

∂vx
∂y

; (4.3)

0 =

(
Ds

χs

∂2

∂xα∂xα
− 2ηr

χs

)
Sx,y. (4.4)

By using symmetry arguments, we expect the spin density Sα to depend
solely on the y coordinate, since the system is physically bounded by the
xz−planes formed by the two plates. By these same arguments, we expect
Sx,y to be non-existent. Altogether, using the symmetry arguments and Eq.
(4.1) allows us to simplify Eq. (4.3) as:

0 =

(
∂2

∂y2
− 1

`2s

)
Sz + ξyy, (4.5)

where
1

`2s
=

2ηr
Ds

ξy = −4ηrχsv0

Dsy2
0

. (4.6)

We identify the quantity `s as the spin diffusion length for fluids.
The spin density equation (4.5) is obviously to be recognized as an in-

homogeneous second-order differential equation. To solve it, let us consider
the homogeneous case ξy = 0; the general solution is then:

Sh
z (y) = Aey/`s +Be−y/`s ,

where A,B are constants. Since we require

Sz(y = −y0) = −Sz(y = y0); Sz(y = 0) = 0 (4.7)

as the boundary conditions for our spin density, we obtain B = −A such
that

Sh
z (y) = 2A sinh

(
y

`s

)
. (4.8)

For the general, inhomogeneous case, we simply add an inhomogeneous term
Cy—where C is a constant—to our homogeneous solution (4.8); plugging
this into Eq. (4.5) yields C = ξy`

2
s , i.e. we obtain as general solution:

Sz(y) = 2A sinh

(
y

`s

)
− 2χsv0

y2
0

y, (4.9)

such that the boundary conditions (4.7) are satisfied. Note that for either
1/`s → 0 or y0 � `s, Sz depends solely on the linear term as:

Sz(y)|1/`s→0 = −2χsv0

y2
0

y. (4.10)
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The constant A present in Eq. (4.9) is also determined using suitable
boundary conditions, in this case those pertaining to the spin current. Using
Eq. (2.71), the relevant z-polarized spin current js,zy is:

js,zy = −Ds

χs

∂Sz
∂y

= −2DsA

χs`s
cosh

(
y

`s

)
+

2Dsv0

y2
0

. (4.11)

With the boundary condition that js,zy(y = ±y0) = 0, i.e. the spins cannot
venture beyond the plates, we obtain for A:

A =
`sχsv0

y2
0 cosh (y0/`s)

such that the spin density (4.9) is written as:

Sz(y) = −2χsv0

y2
0

[
y − `s

sinh (y/`s)

cosh (y0/`s)

]
. (4.12)

A plot of this spin density is given in Figure 4.1, for y0/`s = 1 and y0/`s =
100; note that the latter case yields the linear approximation of Eq. (4.10).

-y0 -y0/2 0 y0/2 y0
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Sz , in χsv0y0
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y0/Ls = 100

y0/Ls = 1

Figure 4.1: Plot for the spin density solution of Eq. (4.12) inside Poiseuille
flows, for two different values of y0/`s.

Using the general spin density solution (4.9) into Eq. (4.2) yields for the
pressure gradient along the direction of the flow:

∂p

∂x
= −2v0

y2
0

{
η − 2ηr

[
1− cosh (y/`s)

cosh (y0/`s)

]}
. (4.13)
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Since cosh(y/`s) ≥ 1 for y 6= 0, Eq. (4.13) implies the pressure gradient is
smaller along the plates than in the middle of the flow; for 1/`s → 0 however,
the pressure gradient becomes constant between the plates.

Next, we consider a more realistic approach to the Poiseuille flow de-
scribed earlier; instead of two infinitely large plates along the xz−plane, we
now consider a flow through an infinitely long, circular pipe of radius r0,
known as the Poiseuille-Hagen flow [9,20]. Instead of Cartesian coordinates,
it is more natural to use cylindrical coordinates to describe the system, in
this case radius r, angle θ, and length x. The fluid’s velocity profile is then
analogous to Eq. (4.1):

vx(r) = v0

[
1−

(
r

r0

)2
]

; vr = vθ = 0. (4.14)

In cylindrical coordinates, and using symmetric arguments similar to the
Cartesian case—Sr = Sx = 0 and Sθ only depends on r, since the system is
physically bounded by the x̂-aligned pipe—Eqs. (4.2) and (4.5) effectively
become:

0 = −∂p
∂x

+ η

(
∂2

∂r2
+

1

r

∂

∂r

)
vx −

2ηr
χsr

[
∂

∂r
(rSθ)

]
; (4.15)

0 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
− 1

`2s

)
Sθ + ξrr, (4.16)

where `−2
s is as defined in Eq. (4.6), and ξr is similar to ξy as described in

Eq. (4.6), but with the pipe radius r0 instead of the center-to-plate distance
y0. The solution to the homogeneous version of Eq. (4.16)—i.e. when
ξr = 0—is given by a linear combination of modified Bessel functions:

Sh
θ (r) = AI1

(
r

`s

)
+BK1

(
r

`s

)
, (4.17)

where A,B are constants to be determined by means of boundary condi-
tions, and I1,K1 the modified Bessel functions of the first and second kind,
respectively. Since we require Sθ(r = 0) = 0 as an essential boundary condi-
tion and K1(z) exhibits asymptotic behaviour for z → 0, we obtain B = 0.
Similar to the laminar flow case, we now add an inhomogeneous term Cr to
the homogeneous solution (4.17); plugging this back into the inhomogeneous
equation (4.16) then yields C = ξr`

2
s = −2χsv0r

−2
0 . The general solution for

Sθ then becomes:

Sθ(r) = AI1

(
r

`s

)
− 2χsv0

r2
0

r. (4.18)

Rather unsurprisingly, we use the θ-polarized spin current js,θr to deter-
mine the constant A in Eq. (4.18) in the manner similar to the laminar flow
case:

js,θr(r) = − ADs

2`sχs

[
I0

(
r

`s

)
+ I2

(
r

`s

)]
+

2Dsv0

r2
0

(4.19)
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yields us for the boundary condition js,θr(r = r0) = 0:

A =
4`sχsv0

r2
0

[
I0

(
r0

`s

)
+ I2

(
r0

`s

)]−1

,

such that the spin density inside a viscous fluid flowing through a pipe of
radius r0 is as follows:

Sθ(r) = −2χsv0

r2
0

[
r − 2`s

I1 (r/`s)

I0 (r0/`s) + I2 (r0/`s)

]
. (4.20)

Note that we obtain a result similar to the laminar flow case for 1/ν → 0:

Sθ(r)|1/`s→0 = −2χsv0

r2
0

r.

The similarities with the laminar flow case become even more apparent when
the solution of Eq. (4.20) is plotted in Figure 4.2; again we use two different
values of r0/`s, and the resulting plot is near-indistinguishable from that of
Figure 4.1.
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Figure 4.2: Plot for the spin density solution of Eq. (4.20) inside Poiseuille-
Hagen flows, for two different values of r0/`s.

To close this Section on non-turbulent flows, let us put Eqs. (4.14) and
(4.20) into Eq. (4.15) to yield the pressure gradient inside the pipe:

∂p

∂x
= −4v0

r2
0

{
η − ηr

[
2− I0(r/`s) + I2(r/`s) + 2`sr

−1I1(r/`s)

I0(r0/`s) + I2(r0/`s)

]}
, (4.21)

which as in the laminar flow case becomes constant over the whole pipe for
1/`s → 0.
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4.2 Fluid flows, spin, and effective magnetism

We now consider a monocomponent fluid of spins, which generate an effective
magnetic field Bα internally, flowing through a circular pipe with circum-
stances similar to the latter part of Section 4.1. Since the spins themselves
generate the magnetic field, we may utilize for the magnetic field the same
symmetry arguments used for the spins, such that we have Bθ(r) as the
effective magnetic field, i.e. the magnetic field is polarized in the θ direction
and is dependent only on the radius r. In this situation, Eqs. (4.15) and
(4.16) become:

0 = −∂p
∂x

+ η

(
∂2

∂r2
+

1

r

∂

∂r

)
vx −

2ηr
χsr

[
∂

∂r
(rSθ − rγeχsBθ)

]
; (4.22)

0 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
− 1

`2s

)
[Sθ − γmχsBθ] + ξrr, (4.23)

where `s and ξr are as defined in Eq. (4.6), with in the latter case y0 substi-
tuted for r0. We note that we may choose to regard the term [Sθ − γeχsBθ]
in the right hand side of Eq. (4.23) as a ‘pseudo-quantity’ adhering to a
linear differential equation with an inhomogeneous term, similar to how Sθ
was treated in Section 4.1. Using the same arguments which lead to Eq.
(4.18), the general solution for this pseudo-quantity is:

Sθ(r)− γmχsBθ(r) = AI1

(
r

`s

)
− 2χsv0

r2
0

r, (4.24)

where A is again a constant yet to be determined.
The most notable unknown quantity in Eq. (4.24) is obviously the θ-

polarized magnetic field Bθ(r). The Maxwell equations relevant in deter-
mining Bθ are Eqs. (2.35) and (2.36), which after using Eq. (2.74) become:

∂Bα
∂t

= −cεαβγ
∂Eβ

∂xγ
= 0; (4.25)

σeEα = cεαβγ
∂Bβ

∂xγ
− ρzvα, (4.26)

where we assumed ∂tEα = ∂tBα = 0 since our fluid is flowing with constant
speed. In cylindrical coordinates, Eq. (4.26) becomes

σeEx = − c
r

∂(rBθ)

∂r
− ρzvx, (4.27)

which differentiated with respect to r and after using Eq. (4.25) becomes

1

r

∂(rEx)

∂r︸ ︷︷ ︸
∝∂tBθ=0

= − ρz

σer

∂(rvx)

∂r
− c

σer

∂

∂r

[
1

r

∂

∂r
(rBθ)

]

⇒ 0 =
3ρzv0

r2
0

r − c
(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
Bθ. (4.28)
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Integrating Eq. (4.28) twice over the radius r, and setting Bθ(r = 0) =
0 as our boundary condition, we obtain as a first result for the effective
magnetic field:

Bθ(r) =
3ρzv0

8cr2
0

r3 + Cr, (4.29)

where C is an integration constant yet to be determined. Plugging in Eq.
(4.29) into Eq. (4.24) then yields for the spin density:

Sθ(r) = AI1

(
r

`s

)
− 2χsv0

r2
0

r +
3γmχsρzv0

8cr2
0

r3 + γeχsCr, (4.30)

such that the (relevant) spin current js,θr is as follows:

js,θr(r) = − DsA

2χs`s

[
I0

(
r

`s

)
+ I2

(
r

`s

)]
+

2Dsv0

r2
0

− 9γmDsρzv0

8c

(
r

r0

)2

− γmDsC. (4.31)

Similar to the cases considered in Section 4.1, setting js,θr(r = r0) = 0
yields us the exact values of the integration constants present; in this case,
we obtain the values for A and C simultaneously:

A = 4`s
χsv0

r2
0

[
I0

(
r0

`s

)
+ I2

(
r0

`s

)]−1

; C = −9ρzv0

8c
, (4.32)

which then yields for our effective magnetic field and spin density:

Bθ(r) = −3ρzv0

8c

[
3−

(
r

r0

)2
]
r; (4.33)

Sθ(r) = −χsv0

r2
0

[
r − 2`s

I1(r/`s)

I0(r0/`s) + I2(r0/`s)

]
− 3γmχsρzv0

8c

[
3−

(
r

r0

)2
]
r. (4.34)

For the Poiseuille case in the first half of Section 4.1, it is sufficient to redo
the above calculations in a Cartesian system. This yields for the effective
magnetic field Bz and spin per unit mass Sz:

Bz(y) = −ρzv0

3c

[
3−

(
y

y0

)2
]
y; (4.35)

Sz(y) = −2χsv0

y2
0

[
y − `s

sinh (y/`s)

cosh (y0/`s)

]
− ρzγmχsv0

3c

[
3−

(
y

y0

)2
]
y. (4.36)
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Chapter 5

The Inverse Spin Hall Effect

In Chapter 4, we have seen the spins’ behaviour in a fluid flow, and how
the spin current is affected by it. In this Chapter, we shall now consider a
setup similar to the one used by Takahashi et al. [7], i.e. a Poiseuille flow-like
system as considered in the first half of Section 4.1, where both plates are
externally lined with a platinum (Pt) strip of thickness yp. These strips are
then situated parallel along the fluid flow, for a system length L. Section
5.1 deals with deriving the altered spins per unit masses and spin currents
for a system with an Hg-Pt interface, while in Section 5.2 an expression for
the resulting voltage is analytically determined. We then close this Chapter
in Section 5.3 with a numerical calculation of this voltage.

5.1 The ishe and the Hg-Pt Interface

An electric field transversally applied to a collection of spins, yields a spin
current perpendicular to the electric field [3], exhibiting what is now com-
monly known as the spin Hall effect, often abbreviated as she. In the ab-
sence of (effective) magnetic fields, the spin current of Eq. (2.71) is rewritten
to accommodate the she as [3,5]:

js,αβ = −Ds

χs

∂Sα
∂xβ

− h̄

2e
θshσeεαβγE

γ , (5.1)

where h̄ is the reduced Planck’s constant, e the electron charge, and θsh
the so-called spin Hall angle. The value of the spin Hall angle depends on
the material used; for platinum, we have θsh,Pt ' 0.05 as an experimentally
deduced minimal value for bulk materials [21], while for interfaces under ishe
conditions a value of θsh,Pt ' 0.026 was obtained [22]. Next to the regular
she, a spin current is also able to induce a charge current under specific
circumstances; this effect is then known as the inverse spin Hall effect [6],
abbreviated ishe. Rewriting the charge current of Eq. (2.72) to include the
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ishe then yields [5,6]:

jαc = σeE
α − 2e

h̄

Ds

χs
θshε

αβγ ∂Sβ
∂xγ

. (5.2)

In our setup, the electrical circuit is closed such that the total charge
current due to the ishe is zero-valued. Eq. (5.2) then yields us an equation
for the effective electric field:

Eeff
α =

2e

h̄σe

Ds

χs
θshεαβγ

∂Sβ

∂xγ
. (5.3)

Plugging in Eq. (5.3) into Eq. (5.1) yields a spin current equation for closed
electrical circuits as ishe systems:

js,αβ = −Ds

χs
(1 + θ2

sh)
∂Sα
∂xβ

. (5.4)

Since the mercury fluid spin per unit mass SHg
z (y) is polarized in the ẑ-

direction, and dependent on y transversal to the x̂-aligned fluid velocity, we
expect the platinum strip spin density SPt

z (y) to adhere to the same polar-
ization, with a dependence on y transversal to the direction of the expected
x̂-aligned ishe electric current. We expect the platinum strip density to
adhere to the Valet-Fert equation [23], i.e.(

∂2

∂y2
− 1

(`Pt
s )2

)
SHg
z (y) = 0, (5.5)

where `Pt
s is the experimentally deduced spin diffusion length of platinum.

Using Eqs. (4.9) and (5.5), the Ansätze for the spins per unit masses are

SHg
z (y) = 2A1 sinh

(
y0

`Hg
s

)
− 2χHg

s v0

y2
0

y; (5.6)

SPt
z (y) = A2e

y/`Pt
s +A3e

−y/`Pt
s , (5.7)

where A1, A2, A3 are constants to be determined from boundary conditions.
For the respective spin currents, Eqs. (4.11) and (5.4) yield us:

jHg
s,zy = −D

Hg
s

χHg
s

∂SHg
z

∂y
; (5.8)

jPt
s,zy = −D

Pt
s

χPt
s

(1 + θ2
sh)

∂SPt
z

∂y
, (5.9)

where θSH from now on refers to the platinum spin Hall angle.
Equations (5.6) and (5.7) provide us with three unknown constants; for-

tunately, we may use three reasonable boundary conditions in order to de-
duce these constants. Since the system extends from −y0 − yp to y0 + yp,
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we shall first give the boundary conditions for the ‘upper half’ y ≥ 0 and
the resulting values for the constant, and then translate these for the ‘lower
half’ y ≤ 0. Firstly, we expect that no spins venture beyond the system, in
this case beyond the exterior of the platinum strip at y = y0 + yp, i.e. for
the spin current we have:

jPt
s,zy(y = y0 + yp) = 0. (5.10)

Secondly, we expect the spin current on the mercury-platinum interface at
y = y0 to be continuous, such that

jPt
s,zy(y = y0) = jHg

s,zy(y = y0). (5.11)

From this a third boundary condition equating the mercury and platinum
spins per unit masses at the interface naturally arises:

SHg
z (y = y0) = SPt

z (y = y0). (5.12)

The boundary conditions (5.10)–(5.12) then yield us for A1, A2, A3 in
the region y ≥ 0:

A1 = − χHg
s `Hg

s v0

y2
0 sinh

(
y0/`

Hg
s

)
×

 (1 + θ2
sh)(e2yp/`Pt

s − 1)y0D
Pt
s χHg

s − (e2yp/`Pt
s + 1)DHg

s `Pt
s χPt

s

(1 + θ2
sh)(e2yp/`Pt

s − 1)DPt
s `Hg

s χHg
s + (e2yp/`Pt

s + 1) DHg
s `Pt

s χPt
s

tanh(y0/`
Hg
s )

 ;

(5.13)

A2 = −2v0χ
Hg
s

y2
0

e−y0/`
Pt
s
[
y0 − `Hg

s tanh(y0/`
Hg
s )
]

×

[
(1 + θ2

sh)(e2yp/`Pt
s − 1) tanh

(
y0

`Hg
s

)
DPt

s `Hg
s χHg

s

DHg
s `Pt

s χPt
s

+ e2yp/`Pt
s + 1

]−1

;

(5.14)

A3 = A2 exp

{
2(y0 + yp)

`Pt
s

}
. (5.15)

For the region y ≤ 0, the boundary conditions (5.10)–(5.12) become

jPt
s,zy(y = −y0 − yp) = 0;

jPt
s,zy(y = −y0) = jHg

s,zy(y = −y0);

SHg
z (y = −y0) = SPt

z (y = −y0), (5.16)
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which yield the same value for A1 as in Eq. (5.13), yet A2 and A3 switch
places, and reverse signs:

A3|y≤0 = +
2v0χ

Hg
s

y2
0

e−y0/`
Pt
s
[
y0 − `Hg

s tanh(y0/`
Hg
s )
]

×

[
(1 + θ2

sh)(e2yp/`Pt
s − 1) tanh

(
y0

`Hg
s

)
DPt

s `Hg
s χHg

s

DHg
s `Pt

s χPt
s

+ e2yp/`Pt
s + 1

]−1

(5.17)

A2|y≤0 = A3|y≤0 exp

{
2(y0 + yp)

`Pt
s

}
. (5.18)

In general, the solution for the platinum spin per unit mass is described
using Eqs. (5.7) and (5.14) as:

SPt
z (y) = sgn(y)A2

[
exp

{
|y|
`Pt
s

}
+ exp

{
2
y0 + yp

`Pt
s

}
exp

{
− |y|
`Pt
s

}]
. (5.19)

Figure 5.1 shows the spins per unit masses Sz for two different ratios of
y0/`

Hg
s and yp/`

Pt
s as a function of y; one might observe that a higher ratio

between plate thickness or flow diameter and spin diffusion lengths results
in a more sawtooth-like distribution of Sz.

-y0 y0-y0/2 y0/2

2

-2

1

0

-1

y

Sz , in χs
Hg v0 y0

-1

y0/Ls
Hg, yp/Ls

Pt ≃ 100

y0/Ls
Hg, yp/Ls

Pt ≃ 10

Figure 5.1: Comparison of spins per unit masses Sz for two different ratios
between plate thickness or flow diameter, and spin diffusion lengths.

5.2 The ishe Voltage

In Section 5.1, we used jαc = 0 for a closed electrical circuit in Eq. (5.2), in
order to substitute the term proportional to the electric field in Eq. (5.1)
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and subsequently derive Eq. (5.4). Now that the spins per unit masses for
both the mercury flow and the platinum strip have been derived, we proceed
to the derivation of the ishe voltage Vishe. For jαc = 0, Eq. (5.3) yields us
the effective electric field Eeff

α , which in the case of our platinum strip is x̂-
polarized and must be evaluated in the ‘upper half’ strip for y0+yp ≥ y ≥ y0:

Eeff
x =

2eDPt
s θsh

h̄χPt
s σPt

e

[
∂SPt

z

∂y

∣∣∣∣
y=y0+yp

− ∂SPt
z

∂y

∣∣∣∣
y=y0

]
. (5.20)

The resulting ishe voltage Vishe is then calculated in the usual manner,
i.e. as a line integral of the electric field:

Vishe =

∫
dlαE

eff
α

=
2eDPt

s θsh
h̄σPt

e χPt
s

∫ L

0
dx

[
∂SPt

s

∂y

∣∣∣∣
y=y0+yp

− ∂SPt
s

∂y

∣∣∣∣
y=y0

]

=
2eDPt

s θshL

h̄σPt
e χPt

s

A2

`Pt
s

[
e(y0+yp)/`Pt

s − e2(y0+yp)/`Pt
s e−(y0+yp)/`Pt

s

−ey0/`Pt
s + e2(y0+yp)/`Pt

s e−y0/`
Pt
s

]
=

2eDPt
s θshL

h̄σPt
e χPt

s

A2e
y0/`Pt

s

[
e2yp/`Pt

s − 1
]
. (5.21)

Writing out the constant A2 using Eq. (5.14) allows us to rewrite Eq.
(5.21) as:

Vishe = −4ev0D
Pt
s DHg

s χHg
s Lθsh

h̄σPt
e y2

0

·

 y0 − `Hg
s tanh

(
y0/`

Hg
s

)
(
e2yp/`

Pt
s +1

e2yp/`
Pt
s −1

)
DHg

s `Pt
s χPt

s + (1 + θ2
sh)DPt

s `Hg
s χHg

s

 . (5.22)

Under the reasonable limit of y0 � `Hg
s , Eq. (5.22) yields:

lim
y0/`

Hg
s →0

Vishe = −4ev0D
Pt
s χHg

s Lθsh
h̄σPt

e y0`Pt
s χPt

s

(
e2yp/`Pt

s − 1

e2yp/`Pt
s + 1

)
. (5.23)

For large x, the function (e2x−1)/(e2x+1) quickly reaches its asymptotic
value of 1; for yp > `Pt

s we then obtain for the limit ishe voltage V lim
ishe:

V lim
ishe = lim

y0/`
Hg
s →0

yp/`Pt
s →0

Vishe = −4ev0D
Pt
s χHg

s Lθsh
h̄σPt

e y0`Pt
s χPt

s

. (5.24)
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Figure 5.2 shows Vishe for various values of the ratios y0/`
Hg
s and yp/`

Pt
s ;

one might observe that the ratio y0/`
Hg
s is of much greater importance on

the resulting ishe voltage than yp/`
Pt
s . Furthermore, Figure 5.2 shows the

accuracy of V lim
ishe of Eq. (5.24) compared to Vishe of Eq. (5.22) for yp/`

Pt
s ≥ 5

and y0/`
Hg
s ≥ 100. Since yP ' 10−4 m in usual experimental settings [7], and

`Pt
s ' 3.7 · 10−9 m under ishe conditions [22], the condition yP /`

Pt
s ≥ 5 is

easily satisfied. Similarly, we have y0 ' 10−4 m for our pipe half-diameter [7],
and we may also estimate the mercury spin diffusion length `Hg

s to be of the
order of nanometers, such that y0/`

Hg
s ≥ 1000 also applies to our situation.

Therefore, we may use V lim
ishe as an appropriate approximation for Vishe.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8
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yP /Ls
Pt

VISHE , in VISHE
lim

y0/Ls
Hg = 1

y0/Ls
Hg = 10

y0/Ls
Hg = 100

y0/Ls
Hg = 1000

Figure 5.2: Vishe compared to V lim
ishe for various values of y0/`

Hg
s , yp/`

Pt
s .

From Eq. (A.15), we have

DPt
s χHg

s

χPt
s

=
h̄2σPt

e

4e2

(
nPt

e

nHg
e

)2/3

, (5.25)

such that we obtain as the final expression for the ishe voltage:

Vishe = − h̄v0Lθsh
ey0`Pt

s

(
nPt

e

nHg
e

)2/3

(5.26)
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5.3 Numerical value of the ishe Voltage

The conduction electron number density of an element X, nX
e , is obtained

using the element’s basic physical properties as:

nX
e =

zXρXNA

mX
u · 10−3

, (5.27)

where zX is the element’s primary valency, ρX the element’s mass density,
NA the Avogadro constant, and mX

u the element’s atomic weight; the factor
10−3 is used to convert the atomic weight from its usual unit of grams per
mole to the more suitable kilograms per mole. The valencies, mass densities,
and atomic weights of platinum and mercury are [24]:

zPt
e = zHg

e = 2;

ρPt
e = 21.5 kg m−3; mPt

u = 195.084 g mol−1;

ρHg
e = 13.534 kg m−3; mHg

u = 200.592 g mol−1,

which putting into Eq. (5.27) yields:

nPt
e = 13.27 · 1028 m−3; nHg

e = 8.126 · 1028 m−3. (5.28)

For the properties of the fluid flow as used by Takahashi et al., we use:

v0 = 2.7 m s−1; L = 8 · 10−2 m; y0 = 4 · 10−4 m. (5.29)

while for the spin diffusion length and spin Hall angle of platinum, we use [7]:

`Pt
s ' 3.7 · 10−9 m; θsh,Pt ' 0.026, (5.30)

respectively, as estimated under spin-pumping ishe conditions [22].
Finally, we shall respectively use as numerical values for the natural

constants h̄, e,me
[25]:

h̄ = 1.054571800 · 10−34 Js; e = −1.6021766208 · 10−19 C;

me = 9.10938356 · 10−31 kg. (5.31)

Plugging in the numerical values of Eqs. (5.28)–(5.31) into Eq. (5.26)
then yields for the numerical value of the ishe voltage:

Vishe = 3.464 · 10−6 V (5.32)
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Chapter 6

Conclusion, Discussion, and
Outlook

In this Thesis, we have set up a phenomenological theory of shg from the
irreversible thermodynamics of the coupling between fluid vorticity and in-
ternal spin. After verifying the theory using the hydrodynamic modes inside
the fluid, solutions for the spin density and spin current generated inside the
flowing viscous fluid were obtained. This was followed by obtaining solu-
tions for interfaces between solid metal and viscous fluid, and from this an
expression for the electrical potential—i.e. voltage—due to the ishe. The
calculated ishe voltage of Eq. (5.32) is approximately 3.5 microvolts, which
is two orders of magnitude higher than the approximately 50 nanovolts mea-
sured by Takahashi et al. [7] under similar circumstances for fluid velocity,
diameter, and length. The Vishe value calculated in Section 5.3 could pri-
marily explain the voltages measured by Takahashi et al., especially when
we consider two possibilities to account for this discrepancy.

The first possible cause of the discrepancy is due to electron mechanical
drag, in which the electrons are ‘dragged along’ with the moving fluid, and
subsequent momentum transfer on the solid metal. Put into practice, we
consider the mercury electrons to move at the same velocity as the mercury
itself—i.e. with velocity v0—up to the outer bounds y0 of the fluid. There,
at the Hg-Pt interface, the mercury electrons then transfer their momentum
to the platinum electrons, thus causing an electrical current without any
involvement of the ishe. Let the charge current due to this mechanical drag
and momentum transfer, jc,md be defined as

jc,md = enev0, (6.1)

where e is the electron charge and ne the electronic density. From Eq. (2.72)
we then have, for zero polarization, Emd,z = jc,md/σe. For a platinum strip
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of length L, we then obtain for the resulting mechanical drag voltage:

Vmd =
enPt

e v0L

σPt
e

, (6.2)

which with Eqs. (5.28), (5.29), (5.31), and the electrical conductance of
platinum given as [24]:

σPt
e = 9.259 · 106 S m−1, (6.3)

yields the numerical result of:

Vmd = −496 V. (6.4)

While this momentum transfer voltage is 8 orders higher than the calculated
ishe voltage of Eq. (5.32), it should be noted that the assumptions leading
to Eq. (6.4)—-unbounded electrons—are vastly exaggerated, in part due
to the fluid viscosity, the fluid velocity being zero at the interface, and the
electrons being electrically attracted to their respective nuclei. However, the
momentum transfer should not be completely dismissed, on grounds that the
result of Eq. (6.4) is of opposite sign compared to Eq. (5.32), thus giving a
possible cause of the discrepancy with Takahashi et al.

A second possible cause of the discrepancy—which as the first one is
based on the coupling between fluid velocity and spins—involves viscous
boundary layers near the Hg-Pt interface and the presence of turbulent flows.
Both Takahashi et al. and Matsuo et al. [9] have considered such turbulent
boundary layers with friction velocities, such that the fluid possesses two ve-
locity profiles across its diameter. It is their expectation that this turbulent
boundary layer plays a key role in spin current generation, since the intersec-
tion of the two velocity profiles would yield the largest vorticity gradient [9].
We did not include such turbulent boundary layers for the velocity profiles
in Chapter 4, because the relevant Navier-Stokes equations (4.2), (4.15),
and (4.22)—and their direct predecessor, Eq. (2.75)—contain a spin gradi-
ent term proportional to the fluid’s rotational viscosity ηr. While globally
addressing the cause of the viscous sublayer (viscosity), this ηr-proportional
gradient term cannot simulate a dual velocity profile. The effect of turbu-
lent boundary layers on the spin current profiles obtained in Ch. 4 is left
for future investigation.

While unrelated to the discrepancy, another point to be addressed here is
the spin Hall angle and spin diffusion length of the solid metal—in our case
platinum—used in shg experiments. An alternative to platinum is tantalum
(Ta), since its spin Hall angle is roughly of the same order of magnitude of
θsh,Pt, but of opposite sign. The valency, mass density, and atomic weight
of tantalum are, respectively [24]:

zTa
e = 5; ρTa

e = 16.4 kg m−3; mTa
u = 180.95 g mol−1,
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which plugged into Eq. (5.27) yields for the electron number density of
tantalum:

nTa
e = 27.290 · 1028 m−3. (6.5)

From measurements performed under ishe conditions [26], we have for the
spin Hall angle and spin diffusion length of β-tantalum:

θsh,Ta ' −0.0062; `Ta
s ' 5.1 · 10−9 m. (6.6)

Using the tantalum-specific quantities of Eqs. (6.5) & (6.6) in Eq.(5.26)
instead of the platinum-specific quantities then yields for the ishe voltage:

V Hg-Ta
ishe = −9.69 · 10−7 V, (6.7)

i.e. a factor −0.28 of that found for the Hg-Pt interface. Were the exper-
iment of Takahashi et al. to be repeated with β-tantalum substituting the
platinum in the original set-up, one would therefore expect a measured volt-
age of reverse sign, and a quarter of the voltage magnitude, if this measured
voltage was indeed primarily due to the ishe.

Based on the considerations in the preceding paragraphs, future research
on shg should accommodate for the presence of momentum transfer as a
‘correction’ to Vishe, turbulent layers inside the fluid, and various substitutes
for platinum with different spin Hall angles and spin diffusion lengths under
ishe circumstances.
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Appendix A

Determination of spin
diffusion and susceptibility

In this Appendix, we shall attempt to give an alternate expression to the
ratio DPt

s χHg
s /χPt

s as found in the ishe voltage expression of Eq. (5.24); in
particular, we shall see that this specific ratio, the product of the electron
mass density in platinum times the true spin diffusion constant in platinum
on one hand, and of the spin susceptibility in mercury on the other hand,
can be written in terms of natural constants, a ratio of electron number
densities, and electrical conductivity of (solid) platinum.

A.1 The spin diffusion constant

As noted in Section 2.1 for Eq. (2.31), the ratioDs/χs can be (dimensionally)
thought of as the mass density ρ times the ‘true’ spin diffusion constant
D̂s. For free electrons inside a Drude-model metal, the true spin diffusion
constant is defined as [27]

D̂s =
λ2

mfp

dτs
, (A.1)

where d is the dimension of the system and λmfp = vF τs is the electron
mean free path, where vF is the Fermi velocity for electrons and τs the spin
diffusion time. For a three-dimensional metal with d = 3 we then obtain
from Eq. (A.1):

D̂s =
v2
F τs

3
. (A.2)

The Fermi velocity is easily obtained using EF = mev
2
F /2 such that

vF =
h̄kF
me

=
h̄

me

(
3π2ne

)1/3
, (A.3)

where kF = (3π2ne)
1/3 is the Fermi wavenumber written in terms of the

electron number density ne
[27]. The spin diffusion time τs is equated to the
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Drude model electron collision time, such that it is written in terms of the
electron charge e, the electron mass me, the electron number density ne, and
electrical conductivity σe as:

τs =
meσe

e2ne
. (A.4)

Combining Eqs. (A.2)–(A.4) then yields for the ratio Ds/χs:

Ds

χs
= ρev

2
F τs

= mene ·
h̄2

m2
e

(
3π2ne

)2/3 · meσe

e2ne

=
h̄2σe

3e2

(
3π2ne

)2/3
. (A.5)

A.2 The spin susceptibility

The rotational energy per unit mass ur, as defined in Eq. (2.12), is inversely
proportional to the square of a quantity χs which we have named the spin
susceptibility. Similar to its magnetic counterpart, the spin susceptibility
is the ratio of change in the (total) average spin, 〈Sα〉 to the change in an
external quantity, in this case the external magnetic field Bα. Since our main
focus, in Chapter 5, is on electrons in metals approximated as Fermi gases,
we shall mainly concern ourselves with the spin susceptibility of electrons.

The rotational energy of Eq. (2.12) for an electron changes in the pres-
ence of an external magnetic field as:

ur =
S2

2χs
− γeBαS

α, (A.6)

where γe is the electron gyromagnetic ratio, as defined in Eq. (2.39). For a
system with zero internal average spin, such as ours in Chapter 2, we then
have:

〈Sα〉 = ρeχsγeBα. (A.7)

Note that the electron (mass) density ρe = mene is added to the right-hand
side to ease the use of Eq. (A.7) in hydrodynamic units. In the presence of
a ẑ-polarized external magnetic field Bz, the Fermi-Dirac distribution for an
electron with energy E(k) = h̄2k2/(2m) and spin σ = ±h̄/2 is written as:

nF (E(k), σ) =

[
exp

{
β

(
h̄2(k2 − k2

F )

2m
+ σγeBz

)}
+ 1

]−1

, (A.8)

where β−1 = kBT , kB being the Boltzmann constant and T the temperature.
Eq. (A.8) lets us calculate the average spin by means of an integral in
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reciprocal space as:

〈Sz〉 =
h̄

2

∫
dk

(2π)3
[nF (E(k),+)− nF (E(k),−)] , (A.9)

i.e. an integral of the difference of the Fermi-Dirac distributions for the two
possible spin levels, times a factor h̄/2 to account for the electron’s native
spin.

While the integral of Eq. (A.9) might be evaluated numerically, an
analytical approach is both preferable and feasible. Since we are only in-
terested in the change of the average spin under an infinitesimal change of
the magnetic field, a series expansion of the difference of the Fermi-Dirac
distributions nF (E(k),+) − nF (E(k),−) around σγeBz = 0 would yield a
first approximation; up to first order in σγeBz, we then obtain:s

[nF (E(k),+)− nF (E(k),−)] ' −2
h̄

2
γeBz

β exp {β(E(k)− EF )}
[exp {β(E(k)− EF )}+ 1]2

= h̄γeBz

(
∂nF (E(k))

∂E(k)

)
. (A.10)

The second approximation is based on the Fermi temperature TF : since
metals often possess Fermi temperatures of the order of 104 to 105 kelvin,
we may use T → 0 for room temperature conditions. The Fermi-Dirac
distribution function nF (E(k)) can be approximated by the Heaviside step
function Θ(E(k)−EF ) for the limit T → 0; since the derivative of the step
function Θ(x) yields the Dirac delta function δ(x), we obtain

lim
T→0

(
∂nF (E(k))

∂E(k)

)
= δ(E(k)− EF ). (A.11)

Applying Eq. (A.10) and (A.11) to Eq. (A.9) yields us:

lim
T→0
〈Sz〉 =

h̄2γeBz
2

∫
dk

(2π)3
δ(E(k)− EF ). (A.12)

The remaining integral is then properly dealt with using spherical coor-
dinates, and subsequently k2 dk = me

√
2meh̄

−3
√
E dE as a substitution of

integration variables:

〈Sz〉 =
h̄2γeBz

4π2

∫
dk k2δ(E(k)− EF )

=
h̄2γeBz

4π2
· me
√

2me

h̄3

∫
dE
√
Eδ(E(k)− EF )

=
me
√

2me

4π2h̄
· h̄kF√

2me
γeBz

=
me(3π

2ne)
1/3

4π2
γeBz, (A.13)
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where we have used kF = (3π2ne)
1/3 to write the Fermi wavenumber in

terms of the electron number density ne. Comparing Eqs. (A.7) and (A.13)
then yields us for the spin susceptibility of a metal for (room) temperatures
well below the Fermi temperature:

χs =
31/3

4

(
1

π2ne

)2/3

. (A.14)

A.3 Diffusion and susceptibility combined

In the case of the ishe voltage of Eq. (5.24), we find that the ratio DX
s /χ

X
s

of a metal X is multiplied with the spin susceptibility χYs of a different metal
Y . For the product DX

s χ
Y
s /χ

X
s , we find using Eqs. (A.5) and (A.14):

DX
s χ

Y
s

χXs
=
h̄2σXe
3e2

(
3π2nXe

)2/3 · 31/3

4

(
1

π2nYe

)2/3

=
h̄2σXe
4e2

(
nXe
nYe

)2/3

, (A.15)

i.e. we obtain an expression which largely depends on the ratio between the
electron number densities of both metals.
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