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Modelling appraised interest using eye 
tracking data 

 
In this project we use eye tracking data in order to predict implicit user feedback by                
predicting whether the text was interesting or not. We first study and visualize the              
data, then apply signal processing methods in order to then extract valuable features             
and build a classification model. We model appraised interest directly from a set of              
variables obtained from eye tracking signal. Next, we add to this model predictions of              
textual complexity and comprehensibility of the text, that are also predicted based on             
the eye movement features. We show that modelling interest through first predicting            
textual complexity and comprehension can lead to improved results if carried out            
properly. 

1. Introduction 
In the time of information overload, when people read through massive amount of information              

using digital devices, new research fields emerge in studying user’s interaction. Gathering feedback is              
a crucial part of assessment of any system, and with more advanced systems, gathering feedback               
can become significantly harder as well. Moreover, the need of user providing explicit feedback using               
polls and questionnaires is intrusive to the usual user’s behaviour and cannot be used at all times,                 
especially in uncontrolled environments. However, implicit feedback is provided naturally in the ways             
user is interacting, and the challenge is to recognize it and interpret properly. Developing such a                
system poses a challenge to Affective Computing, as described in [2] by van den Broek. We refer to                  
this study for the general method of capturing emotions using Affective Signal Processing (ASP)              
approach. 

In our study, we attempt to evaluate user’s implicit feedback for articles that were read by him                 
or her. In particular, we are interested in evaluating how interesting the text is. In order to facilitate                  
that, we also evaluate perceived textual complexity and level of comprehension of the text. The               
inspiration for this approach has been taken from the study [1] by van der Sluis et al., where authors                   
explored correlation between perceived interest, complexity and comprehension using text mining           
methods. In our study, we expand the problem to ASP by using eye tracking signal, recorded by a                  
device while users were reading articles. We apply signal processing techniques in order to process               
the signal and extract relevant features for the analysis.  

The potential application of this research is to develop a closed-loop system, where user’s              
feedback can be evaluated and accounted for naturally. Making the system ‘understand’ the needs              
and likes of the user excels human-computer interaction to a whole new level. Gathering and using                
implicit feedback can be of significant relevance to many use cases, such as news outlets, education,                
design evaluation and many others. This study shows how eye tracking signal can be used for an                 
unconventional classification process, but also show that the same processing routine can be applied              
to other signals as well. Despite implementational focus of the project is solely on eye tracking and                 
predicting implicit feedback, we analyze and structure the processing pipeline of the ASP application              
to the classification problem. 

To facilitate the task of modelling interest, we build a full framework for processing and               
analyzing the data. Although the data, that is used for the project, was acquired prior to the project                  
itself, we emphasise on studying the data and exploring its quality and features. For that, we develop                 
a program with Graphical User Interface (GUI), where the data can be interacted with by means of                 



visualisation and recording, as well as applying processing steps and evaluating the results right              
away. We focus on building the full framework for processing the signal in a modular way, where each                  
processing step can be skipped or evaluated separately. In particular, we apply preprocessing             
methods, detect noise in the signal and look into way of reducing it. Moreover, we classify the events                  
within the eye tracking signal and analyze the anomalies within the signal. Once features of the eye                 
tracking data are identified and their parameters are quantified with statistical values, we produce a               
dataset that is used for classification and regression models to predict user’s feedback.  

We will first discuss literature review that was conducted in order to obtain knowledge for               
conducting the research. We first present the baseline literature review, which is based on the books                
[3] and 4 by Holmqvist et al., to provide basic knowledge of eye tracking as a field. Next, we give                    
summary of the literature review that was conducted on a list of topics, defined for separate sections                 
of the project. This provides us with understanding of the field and lets us then define the methods                  
that are used, based on the findings from the literature. Method descriptions starts with data               
exploration methods, where we discuss all the analysis that was conducted before and during the               
framework development. Implementation methods are then described step by step from           
preprocessing until the construction of the final model of interest. After the project development is               
discussed, we present the results, acquired from the described methods. Separate discussions of             
individual results are then summarized in the general discussion in the end of the thesis. 

2. Baseline literature review 
When doing literature research to learn about the material required for this project, it was               

discovered that a handbook [3] by Holmqvist et al provides a well structured and reliable information                
about a majority of basic knowledge for various fields of research. Hence, this section will focus on                 
providing a summary of all relevant information acquired from the book [3].  

First of all, let us define what the eye tracking signal (ETS) is - it is a sequence of gaze points                     
measuring the eye movement. Each sample contains information about a single eye such as position               
of the eye, pupil size, stimulus that was displayed etc. The samples are taken at a sampling rate with                   
an eye tracking device (eye tracker) turning the eye movement into a digital signal. This signal is what                  
we will further refer to as the raw data. Although majority of eye trackers do include some                 
preprocessing steps before the data can be saved, we still consider the earliest obtainable output as                
the raw version of the data. 

Now we can look into the properties of the signal and what can we learn from it. The most                   
commonly used entry from the raw data is the gaze positions: (x,y) - coordinates on the screen where                  
the person is looking, with which we can analyze eye movement. First event that is recognized from                 
the gaze positions is a fixation. It does not represent eye movement, but on the contrary to an event                   
when the gaze position stays relatively stationary e.g. when being focus on a word and reading it.                 
Such events occur both for texts or other stimuli and are core of how humans use the eyes to                   
perceive information. Average fixation duration is reported to be 200-300 ms. The rapid motion of the                
eye from one fixation to another (e.g. from word to word) is called a saccade. Saccades are very fast -                    
typically taking 30-80 ms to complete. It should also be noted, that blinks are important events that                 
can happen at any point in ETS resulting in missing or corrupted samples. Depending on the timing of                  
the sampling within the blinking event, the eye tracker may or may not recognize the data entry as a                   
blink. Therefore, additional processing could be required. Smooth pursuit is another type of eye              
movement, which refers to eyes tracking a moving target, e.g. while watching a video. However, this                
type of event is not relevant when analyzing eye tracking data acquired during the reading of a text.                  
On the other hand, there are several types of micro-movement that happen within fixations: tremor,               
microsaccades and drifts. Tremor is a small movement of frequency of around 90 Hz, whose role is                 
unclear, but it is referred to as imprecise muscle control. Drifts are slow eye movements away from                 
the fixation centre, while the role of microsaccades is to quickly bring the eye back to its original                  



position. These intra-fixational eye movements are mostly studied to understand human neurology            
and are beyond the scope of this project. Microsaccades are small and fast eye movements that                
happen during prolonged visual fixations. 

The eye tracking device that is used to record the data also influences quality and properties of                 
the data. Besides accuracy and precision of the device, that are tested empirically, a significant device                
property is the sampling rate (sampling frequency). Devices nowadays cover a spectrum of sampling              
frequencies from 25 Hz up to 500 Hz and higher. Using Nyquist-Shannon sampling theorem, we can                
argue that microsaccadic and intra-fixational eye movements with frequencies of at least 150 Hz              
would require an eye tracking system with sampling rate of detection to be at least 300 Hz. Accuracy                  
is a measure that quantitatively represents how close the recorded samples are to the true values.                
Whereas precision represents reproducibility of the recording: how close the recorded samples are to              
each other over the period of time where the true value is constant. Speaking of which, the quality of                   
the data overall and the values of accuracy and precision in particular can be influenced by the                 
experimental setup and other factors during the recording. User’s head movement, initial distance             
between the device and the user or between the device and the screen, lighting - all these factors                  
could cause noise and inaccuracy in the produced signal. 

As the authors of [3] point out, data exploration is an important part of the analysis that is often                   
overlooked. The main purpose of it is to get to know the data for further analysis, as well as, check for                     
possible errors and anomalies in the data before they are fed into the data analysis. The goals of data                   
exploration can be summed up into three main ones: check whether data quality is sufficient, look at                 
the distribution of the variables and identify outliers. All of these can be achieved by analyzing various                 
visualizations of the data, such as heat maps of gaze positions, scan path visualization, histograms               
and box-and-whiskers plots of eye tracking measures etc. It should be noted, that although normal               
distribution is a regular requirement for statistical tests, eye tracking measures including fixation             
duration and most saccade measures tend to have skewed distributions, as reported by the authors               
and other researchers [7,29]. As for identifying the outliers, there are no strict guidelines that are                
accepted in the field and it leans to case-by-case analysis, where the outliers are attempted to be                 
classified based on their origin. Therefore, the decision on whether to leave them, modify/smooth or               
drop out also needs to be taken for each case individually. For instance, one of the strategies                 
proposed by Tabachnick and Fidell in [38] and discussed in [3] would be to exclude values that are                  
more than 3.29 standard deviations above or below the mean. Although rare values are not outliers by                 
definition, they may cause undesired effect on the analysis or point to an error of an outside cause. 

Filtering and denoising of eye tracking data is an issue that has been becoming addressed               
more and more within the recent years. This is an essential part of the analysis process as it affects                   
all the subsequent analysis. Some amount of filtering is typically filtered directly by eye tracking device                
before the signal is being output. However, noise and artefacts still make it through into the signal and                  
they need to be addressed. Optic artefacts are a type of noise among the data samples that derive                  
from recording imperfections due to e.g. eyelash movement, erroneously detect the pupil or corneal              
reflection. These subconscious movements often appear as sudden spikes in the data and can be               
identified and removed. A study by Stampe [5] proposes a heuristic filter for detecting and replacing                
such artifactual samples with neighbouring samples. Another type of noise that can occur in the ETS                
is low-amplitude high-frequency noise is a cause by impricision of the eye-tracker, as well as the ‘jitter’                 
or oculomotor noise of the human eye. However, applying filters to account for that hold the risk of                  
removing authentic eye movements. Lastly, filters can be applying when calculating velocity and             
acceleration values. If these values are used for event detection algorithm, applying an appropriate              
filter accommodates a smoother velocity/acceleration signal and easier segmentation of it into the             
events using thresholding.  

Up until this point we have been discussing ETS and its underlying structure consisting of               
fixations, saccades and other events without going into the details of how those events are detected                
from the raw data. In general, two common approaches are: identification using dispersion threshold              
(i-DT) and velocity threshold (i-VT). These two approaches are the opposite of each other in that i-DT                 



essentially defines fixations as groups of points within the area with allowed dispersion and minimum               
number of data points, and data entries connecting fixations are considered to be saccades.              
Meanwhile, i-VT uses velocity of eye-movement at a point of each sample identifying saccades by               
having velocities above the threshold and saccades having the velocity below it. Dispersion based              
fixation detection algorithms were presented by multiple researchers, and the algorithm described in             
the work by Salvucci and Goldberg [6] is used in the project. It should be noted, that velocity and                   
acceleration algorithms are commonly used in packages provided by the eye tracker suppliers,             
although this class of algorithms typically requires data collected at higher sampling rates (>200Hz) to               
facilitate precise speed measurements.  

3.  Literature review summary 
In this section we present summaries of literature reviews done on each specific topic. We go                

into more details regarding the methods we think could be relevant for the project. The scope of our                  
study is quite broad and this section illustrates particularly how many studies are done on just some                 
specific steps from the whole of the processing framework and analysis. The general overview is               
provided, while for more details on a specific method, please refer to the citations in line. 

Here we present a list of 7 topics that were reviewed in a structured literature review. We                 
specify search entries that were used for retrieving relevant papers. Search engine that was used is                
Google Scholar, and the date of access: 11.07.2018. The period of search from 2011 is used on order                  
to look for more advanced and specific works to build on top of the baseline literature review, since                  
the book that is used for it ([3]) was published in 2011 and summarized the field state at that time. 

 

Topic Search entry Period # results 

1. Visualizations of ETS "eye tracking" AND overview AND 
"Visualization techniques"  

2011- 971 

2. Influences on ETS.   "eye tracking" AND calibration AND influence 
AND "data quality"AND ("sampling frequency" 

OR "sampling rate") 

2011- 362 

3. Preprocessing of ETS "eye tracking" AND ("gap-fill" OR "gap fill-in") 
AND interpolation 

2011- 31 

4. Noise detection and 
reduction 

"eye tracking" AND ("noise detection" OR 
"denoising" OR cleaning OR "noise reduction") 

AND (technique OR method OR algorithm) 

2011- 3800 

5. Event detection   "eye tracking" AND ("event detection" OR 
"fixation detection") AND ("sampling frequency" 

OR "sampling rate") -"head mounted" 
-wearable -"smooth pursuit" 

2011- 204 

6. Feature extraction "eye tracking" AND "feature extraction" 2011- 4130 

7. Anomaly detection "eye tracking" AND ("anomaly detection" OR 
"outlier detection") 

- 1020 

 
 



3.1. Visualizations of ETS 
 

To suffice the need of data exploration, the signal needs to be visualized appropriately.              
Therefore, literature study on visualization techniques of ETS has been conducted. However, the             
results from the field could not be narrowed down to more than 1000 search result entries without                 
excluding potentially relevant studies. Due to immense saturation of the field, we refer to the survey                
papers published by Blascheck et al in 2014 [39] and 2017 [8] that summarize the methods used in                  
more than 100 research papers each. Authors classify visualization methods into multiple categories             
depending on both of the visualization types and stimulus types. The categories are inclusive and the                
methods are categorized across all of them accordingly. 

Visualization-related categories start by the explored dimension being temporal, spatial or a            
combination of both. Furthermore, visualizations can be animated or static, 2D or 3D and interactive               
or non-interactive. Besides these self-explanatory categories, authors also distinguish between          
in-context and not in-context visualizations. In former, stimulus and visualization are linked with each              
other, such that the data is shown with the context it was gathered in. Lastly, the visualized data can                   
refer to a single user or multiple users. 

Stimulus-related categories correlate with major differences in stimuli types. Firstly, stimuli are            
either static (picture, text etc) or dynamic (video, game etc). Eye tracking data and applied methods                
differ significantly whether stimulus used is static or dynamic. Next category divides stimuli based on               
user’s interaction into having either active or passive content. Lastly, the content of stimulus can be                
either 2D or 3D.  

Authors describe that the most commonly used visualization techniques for eye tracking data             
are statistical diagrams such as bar charts, line charts, box plots or scatter plots. Statistical graphics                
are relevant for descriptive statistics, and therefore, important and widely used for eye tracking data.               
However, visualization techniques of statistical graphics are typically generic methods that were not             
specifically designed for eye tracking. While statistical analysis provides quantitative results,           
visualization techniques allow researchers to consider other aspects of recorded eye tracking data in              
an exploratory and qualitative way. Visualization techniques help understand spatiotemporal aspects           
of eye tracking data and complex relationships within the data. 

Attention maps are a type of spatial visualization techniques, marking fixation positions as an              
overlay on a stimulus. This is one of the simplest yet effective strategies applied as early as 1958 by                   
Mackworth and Mackworth. Nowadays, for 2D stimuli the heatmap is the commonly used approach,              
where the areas of the stimulus are colored differently based on the density of fixations in the region.                  
These visualizations can display Areas of Interest (AOI) to be determined and provide an overview of                
the dataset overall in a single figure. 

Spatio-temporal visualization scanpaths is constructed by reproducing consecutive fixations         
through saccade lines on the stimulus. A scanpath shows the the order of the events and provide a                  
good basis for the underlying structure analysis. Different approaches exist to highlight fixations, e.g.              
varying the size of the circles are used to depict them and also convey information on their duration or                   
dispersion. Likewise, saccades can be highlighted differently to add more data to the scanpath e.g.               
saccade velocity, direction or sequential order (timestamp).  

AOI-based visualization techniques employ additional information of the recorded fixation data.           
AOIs annotate regions or objects of interest on a stimulus. The annotation of AOIs in a static stimulus                  
is often performed by defining bounding shapes around an area, commonly done by automatic fixation               
clustering algorithms. With information about AOIs, various metrics can be applied to the data              
depending on the analyst’s research questions. Different visualization techniques highlight temporal           
aspects of the data or relations between AOIs. 



3.2. Influences on ETS 
The validity of research results based on eye movement analysis are clearly dependent on the               

quality of eye movement data. Recently, a growing number of researches have been conducted with               
the goal of formalizing and structuring the knowledge about data quality and potential influences on               
ETS. When conducting the literature survey, it was found that majority of the recent works quote                
Holmqvist et al [9] for the industry standard for reporting the data quality. Authors conducted their                
work in 2012 where they compiled common quality measures, how they are measured, what they               
reflect and how they can be tested and reproduced in both human experiments and using an artificial                 
eye. Later research in the field mostly focuses on some specific features of data quality and studies it                  
in more depth. 

While values of accuracy and precision are generally reported by the manufacturers and the              
reference values are used by the researchers, recently, some studies have conducted their own              
evaluations in various experimental setups [11,12]. However, in [9] Holmqvist et al discuss some of               
the examples how accuracy and precision can influence the recorded data. They discuss how              
accuracy affects dwell time measures, which is calculated as the total fixation duration within an AOI.                
This example showed that adding a small offset of 0.5° ​to the data leads to drastically different                 
measures, where highest dwell time in one of the AOI can reduce by half. Not only this influences the                   
values, but also the distribution of the total dwell time and the measures for the different areas                 
respectively. For the reference, inaccuracy of 0.5° is a value that was reported by most developed                
eye trackers at that time, that are still used to this date. Two other examples provided in the work,                   
refer to precision and data loss influencing the number and duration of fixations. The data that was                 
recorded from the same eye movement using different precision can vary in its distribution.              
Inconsistencies in recorded gaze positions lead to detecting short saccades, short fixations or             
contrary, larger and longer fixations depending on the specific case and the event detection method               
that is used. Authors show the simulation of adding noise to the data recorded using an artificial eye                  
to explore the consequences in the data and prove the hypothesis. 

A number of factors influencing data quality are defined in [9]: 
1. Participants can have different eye physiology, varying neurology and psychology. Moreover,           

wearing glasses or contact lenses can influence the recording as much as having long              
eyelashes or droopy eyelids. All these factors interfere with the eye image that is processed               
by the recording device. Blignaut et al study the participants’ factor in more detail in [10],                
where they conduct an experiment with participants from three races, that have different facial              
features: Asian, Caucasian and African. The study has shown that some factors such as              
operating distance are equally relevant for all of the participants, while gaze angle, stimulus              
background color and head movement have led to different trackability,accuracy and/or           
precision for participants of different races. 

2. Operator skill and experience with the device results in recording data with higher quality. The               
skill set includes adjusting eye to camera angles and mirrors, monitoring the data quality to               
detect when re-calibration is needed. Moreover, operators can provide clear instructions to            
the participants and use previous experience in order to eliminate potential problems. 

3. The stimulus that is provided for the participant can cause them to behave differently, e.g.               
move more, blink more often or do an unnatural eye movement pattern. All these factors need                
to be accounted for when recording and evaluating the data, in order to keep the data quality                 
high. 

4. The recording environment is proved to have a strong influence on data quality. One of the                
most discussed aspects of it being lighting and whether it is high or low, constant or dynamic,                 
natural or artificial etc.  

5. The geometric, or experimental setup of relative positions of eye camera, participant and the              
stimulus has a major influence of the data as well. A number of studies have been conducted                 



to research experimental setup in more detail, for instance in [11] a mobile eye tracker ‘Eye                
Tribe’ is evaluated using different setups and then compared to a more advanced eye              
tracking system. The results of the study show that ‘correct set-up and selection of software to                
record and process the data are of utmost importance to obtain acceptable results with the               
low-cost device’ Ooms et al report. Moreover, even if the device is set-up optimally, user’s               
head movement can influence recorded data as well. Although many manufacturers claim            
that the devices provide reported accuracy and precision for any accepted head positions, in              
a recent study [12] Niehorster et al evaluate how different eye trackers perform for              
unrestrained user behaviour. The following scenarios are tested: rotating head along all three             
axis, covering an eye or both with patches to study tracking recovering and rotating the head                
360° and discovering whether the signal properly discontinues and continues again. The            
results of the study showed that devices have performed differently, even when values             
reported by manufacturers were the same. The study was not focused on finding the best               
device or proving manufacturer numbers wrong, but it showed that further care about the              
device selection and data quality assumptions should be made in researches where            
movement in unrestrained, e.g. participant groups of infants. 

6. The eye tracking device itself obviously has a large impact on the quality of the recorded data.                 
Many different factors exist in both hardware and software of the eye trackers. Camera              
resolution, illumination, image analysis algorithms, calibration method etc - all these factors            
are important and are hard to evaluate separately from the other. In [13] Gibaldi et al evaluate                 
the calibration process of Tobii EyeX eye tracker, by proposing their own calibration process              
and comparing the resulting data quality. This research shows that improvements could be             
done even to the steps in the processing pipeline, that are taken care of by the eye tracker. A                   
number of researches have been carried out to compare the performance of different eye              
trackers, such as [14, 15]. 

  



3.3. Preprocessing of ETS 
Before analyzing the ETS it is important to make sure that the data quality is sufficient and                 

check if the signal can be curated before it is processed in order to provide better results. In this and                    
following chapters we provide summary of methods applied in the field in order to detect common                
patterns that change the data and what can be done to restore the signal. 

One of the issues with eye tracking data is that in digital measurement systems it is almost                 
unavoidable that some data loss occurs, when a sample cannot be collected for each occasion when                
the measurement is done. In the context of eye tracking, data loss can be caused by the participant                  
blinking, looking away or when something is put between the eye tracker and the participant [16].                
Olsen in [16] reports that these kinds of data losses usually result in larger gaps (>100 ms), whereas                  
shorter gaps can be formed due to abrupt data loss in eye detection and tracking. These types of                  
gaps can cause the signal to result in different outcome of the experiment, report Komogortsev et al in                  
[19]. However, these gaps can be identified and filled-in using present neighbouring samples, in order               
to restore the lost signal. 

Interpolation is a method used widely used in the field, e.g [16,17,18,19] report using linear               
interpolation in order to fill in detected gaps. The samples before and after the signal was lost are                  
used in order to linearly scale the missing samples. Interpolation is applied for gaps of particular size,                 
typically between one sample and not larger than 100ms. The exceptions to this rule are made in                 
some cases, e.g. in [17] all the gaps were filled in using interpolation regardless of their size, but                  
authors took additional care in order to examine the data to be filled-in correctly and they apply                 
median filter in order to avoid spikes in position changes from the noise. 

The other part of preprocessing that is often overlooked and not even reported, is eye selection.                
The majority of eye trackers are producing binocular data, where the data for both eyes is recorded                 
independently. However, the data can be combined from two signals for each eye into one in different                 
ways. Obvious ways to do it, would be to use data collected from a single chosen eye. Otherwise, the                   
samples can be averaged under different conditions. Special attention is paid to the cases when the                
data is present only for one eye [16]. Authors, present ‘strict average’, that discards all samples where                 
only one eye has been detected. This approach is also used by [18], since authors report that these                  
samples upon visual inspection were more likely to be inaccurate.  

3.4. Noise detection and reduction 
Noise in ETS is something that has been studied since first works were published in the field.                 

Previously we generalized the nature of noise and in [3] Homlqvist et al concluded that noise                
detection and reduction is something that requires case by case nature of solution. However, there               
are some generalizations that can be made across the field. Therefore, we summarize common              
techniques in state-of-art research. 

In his book [20] Duchowski listed some of the possible causes of noise in the eye tracking data.                  
He proposed that data outside of the given rectangular range of stimulus can be considered noise and                 
eliminated. This also addresses another limitation of eye tracking devices: accuracy degradation in             
extreme peripheral regions. This approach is used in some researches, such as [34], when data               
quality suggests that this type of noise is prevalent. 

An interesting research [32] done by Medero, where eye tracking data was used in combination               
with audio data from oral reading were used to predict textual complexity, and more importantly,               
difficult words and sentences. Medero quotes [33] by Hyrkskykari, where he discusses influence of              
noise on the eye tracking data. Specifically, the statement that vertical noise is more detrimental to                
reading analysis than horizontal noise. This refers to AOI-related measures, for example fixations per              
word, total dwell time per sentence etc. Although horizontal noise may influence the measures,              



horizontal noise can cause eye tracking data to switch lines and cause confusion and errors in related                 
measurements. To combat that, [32] and [33] propose identifying line to line saccades by using a                
sliding window of 6 fixations and identifying a long horizontal saccade towards the beginning of the                
next line, as well as having at least 2 fixations within a threshold from the right side of the text and at                      
least 3 fixations within a threshold from the left side of the text. Thresholds and window size are to be                    
determined empirically, but this type of measures can be used to access the noise level, as well as,                  
keeping track of where the user is actually reading.  

Another type of denoising that is often applied is smoothing. In [16] Olsen introduces two noise                
reduction functions: moving average and median. Used functions are typically a type of a low pass                
filter that aims at smoothing out the noise while still preserving the features of the sampled data                 
needed for fixations classification. Another example is presented by Nyström et al in [7], where               
Savitzky-Golay (SG) smoothing filter is used. This is another type of smoothing filter using moving               
window that was presented in [21] and is used in the field. Other types of smoothing filters have been                   
developed that are used in eye tracking researches, e.g. [22] introduced a bilateral filtering algorithm               
written by Ed Vul that was used in [18] by Wass et al. 

3.5. Event detection 
Event detection is a crucial part of eye tracking data analysis and it is present in the majority of                   

the studies in the field. Moreover, dedicated works have been done to analyze existing methods [6,23]                
and introduce new improved algorithms[7,26,27]. Below we summarize the state-of-art event           
detection algorithms and what the optimal conditions for their use are . 

The first large family of algorithms use velocity and/or acceleration for event detection.             
Introduced as early as 1976 by Anliker, velocity was was used to detect saccades, when the velocity                 
within a sample window is above a threshold. However, with the development of both hardware and                
software for eye-tracking purposes, the data of higher quality became available. Moreover, more             
research on intrafixational events such as glissades, drift and jitter was done. Velocity-based methods              
rely on identifying signal at high frequency (mostly >100 Hz [24]) in order to gage velocities and                 
acceleration with higher accuracy. A study [24] was conducted to evaluate influence of sampling              
frequency on velocity profiles, fixation durations, latency and other measures. Such methods as [16]              
introduced by Olsen and [19] by Komogortsev et al use same principal of velocity-threshold for event                
detection, but incorporate it into a more advanced pipeline with preprocessing, noise detection and              
post-analysis. Moreover, using velocity profiles allows for detection of smaller eye movements such             
as glissades, as introduced in [7]. 

The second category of methods of event detection is based on dispersion and dwell-time.              
Overviewed in [3] and [6], algorithms using Dispersion Threshold (i-DT) and Hidden Markov Model              
(i-HMM) were evaluated recently in [23]. This approach has seen more recent studies conducted in               
order to upgrade these event detection algorithms, as summarized by Falkmer et al in [30]. In their                 
work, authors compared and evaluated performance of two dispersion-based algorithms that were            
using the centroid mode and the start-point mode respectively. 

In contrast, area-based algorithms cannot identify fixations at any specific location within            
stimulus. This fixation-identification method only identifies fixations that occur within specified target            
areas, i.e., an area-of-interest fixation identification. This method is very basic and was employed              
back in 1981 by Den Buurman et al in [31], when there was not as much research as there is                    
nowadays. With higher quality of data and more research done in the field, this method is barely used                  
at all. There were found no state-of-art researches that employed AOI-only based fixation detection. 

Alternative to all previous techniques, another approach to perform event detection is to use              
machine learning techniques to classify the events. Recently, there has been more research done              
using this approach, such as [26] and [27]. In [27] , Zemblys et al present a model that is using a                     
Random Forest (RF) machine machine learning technique for the detection of fixations, saccades and              
post-saccadic oscillations. The classifier is trained and tested using a vector of features compiled from               



the eye tracking data. This research followed their work [26], where similar training data was fed to 10                  
machine learning algorithms and results were evaluated. The algorithms that authors tested were: K              
nearest Neighbors (K=3), Linear (LDA) and Quadratic (QDA) Discriminant Analysis, Naive Bayes,            
SVM with linear and RBF kernels, Decision Tree and RF (32 trees), Ada Boost (with 64 Decision Tree                  
estimators) and Gradient Boosting (with 128 estimators) classifier. The results were compared with             
specialist data gathered from experts and RF performed the best out of the tested algorithms. The                
main drawback that Zemblys et al mention is that RF and similar classifiers still require hand crafted                 
features to be extracted first, and postprocessing is required to build meaningful eye-movement             
events. 

3.6. Feature extraction 
In this section we provide a summary of different features extracted from the eye tracking data,                

that are obtained from both raw and aggregated data for further analysis. In section 6.4 we introduce                 
a list of features and measures that we think are of possible use for our case.  

In order to quantify ETS using measurements, first events are defined, then their features are               
evaluated and represented using a number of measurements. The events are defined in the event               
detection section of the analysis, with fixations, saccades, glissades, smooth pursuits or other events              
being possible candidates depending on the research and the technique. Features differ for each              
event, but they can be categorized into movement measures, position measures, count measures and              
latency and distance measures [3] . For example, fixation count and fixation dispersion are different               
features of the same event; fixation duration and saccade duration are the same features of different                
events.  

However, even the same features can differ in the way they are defined and how they are                 
described with measures. For example, saccade velocity can be extracted using average velocity             
throughout the saccade or using peak velocity during the saccade. Although both representing             
arguably the same feature, they should be analyzed separately and compared to respective values of               
the same feature. Using the same example of average saccade velocity, we can describe it using only                 
mean value. However, using standard deviation and skewness gives more insight into the distribution              
of values across the dataset. It was generally found, that mean and standard deviation values are                
vastly used in the related researches [3,7], but skewness and kurtosis are rarely used and reported. 

Some features and their influence have been explored in their own studies. For example, in               
[32] Medero studies pupil dilation as a predictor of self-explanation. Although authors report that this               
feature may not be appropriate as the only predictor to differ between two cognitive states, [32] and                 
other sources [3,7] report correlation between pupil dilation and cognitive workload and state. For              
reference on correlation previously reported by the researches, please refer to sections of [3] and [4]                
for respective feature and/or measurement. 

3.7. Feature selection 
After we acquired and analyzed the features of the ETS, we need to feed them to the classifier                  

and obtain the best results possible. In order to achieve greater results, careful feature selection               
needs to be applied, that determines which features are useful and relevant. Feature selection              
depends on the model, and more importantly on the problem: supervised vs unsupervised learning.              
For supervised learning, useful features are the priority, in order to achieve the best accuracy in the                 
testing. However, for unsupervised learning, relevant features that generalize the best are desirable.             
These generalizations are provided by Guyon and Elisseeff in their work [25], where they describe               
basics and state-of-art feature selection methods as of 2003. However, their work is proven to be                
relevant by the recent survey paper [36] by Chandrashekar and Sahin, therefore we will start by                
generalizing the field as introduced in [25]. 



Once we established what feature selection is, let's argue for why it is beneficial to use it.                 
Obviously, having a small number of features may not yield better results than having more features.                
On the other hand, feeding too many features can be as detrimental to the classifier performance. The                 
simplest way to perform feature selection is to rank features based on their usefulness by correlating                
feature values to the classifier performance, e.g. Pearson correlation coefficient can be used [25].              
However, authors argue and exemplify that a variable that is useless on is own can be useful with                  
others. Also, they prove that using variables that are presumably redundant, may reduce noise and               
consequently provide better classification. And although perfectly correlated variables are truly           
redundant in the sense that they provide no additional information gain, very highly correlated              
variables (or anti-correlated) can complement each other. All these statements can be generalized             
into the need to evaluate features and their combinations at once, rather than apart. 

Variable subset selection is an approach in which a subset of variables is selected, that has the                 
best predictive power, rather than ranking individual predictive power of the variables used. Main              
directions of variable subset selection can be divided into wrappers, filters and embedded methods.              
Wrappers treat the learning machine as a black box to score subsets of variables in order to achieve                  
the greatest predictive power. Whereas filters select subsets of variables as preprocessing,            
independently of the chosen predictor. Embedded methods perform variable selection in the process             
of training and are generally specific to the models. A distinction in methods is made depending on                 
the number of features that are available. For some applications, like text classifications where              
number of features can be several thousands or even more, exhaustive testing of all possible               
combination of features is not feasible. In these cases, optimal solution is traded for more               
time-efficient solutions. Authors of [25] provide examples of computational methods that are used in              
the field, that belong to the families of methods described above. 

A recent feature selection method survey [37] also reports usage of heuristic search algorithms,              
such as Genetic Algorithms (GA) for finding a subset of features. Although GA was introduced before                
the research of [37] was conducted, it was not mentioned among feature selection methods. It is one                 
of the possible heuristic based methods, which are essentially another type of wrapper methods,              
where feature set selection requires a number of computations to be obtained, which is considered its                
drawback. However, given a small enough set of features, proper wrapper method can yield the best                
results in combination with a suitable model. Authors of [37] also give state-of-art implementations of               
feature selection algorithms and compare results of different methods coupled with Support Vector             
Machine (SVM) and Radial Basis Function Network (BSF). An implementation of a filter method and a                
GA modification were tested for both SVM and BSF and where SVM obtained comparable accuracy               
for both feature selection methods, the filter method was outclassed with RBF as the wrapper.               
Although these results do not reflect advantages of families of methods, authors give practical              
information about the implementations of the methods and evaluation platform for comparing feature             
selection techniques. 

3.8. Modelling interest 
All the work that has been done to the ETS signal since the moment it was recorded needs to                   

be finalized by using its final form to predict user’s implicit feedback. In order to do that, we model                   
user’s interest and build a predictor that could classify a text to be interesting or not. For that we                   
reference [1] by van der Sluis et al and [2] by van den Broek et al in order to tackle this problem of                       
affective computing. In our study we use the same dataset, as van der Sluis et al in [1], where authors                    
predicted text complexity as well as evaluate the influence of the text complexity and perceived               
complexity to the perceived interest. By using text mining methods, features were extracted to build a                
regression model to predict complexity. Afterwards, the second study was carried out, where             
correlations between interest, textual complexity, appraised complexity and appraised         
comprehensibility were evaluated (see Figure 1). The results of the study report that textual              
complexity and appraised comprehensibility seemingly captured the influential aspects of appraised           



complexity on interest, and it was not a significant determinant for reported interest. Overall, the               
hypothesis was supported, that more complex stimuli are more interesting, if within the “sweet spot” of                
being novel-complex, yet comprehensible. The study assesses interest as a measure of perceived             
relevance of the texts and serves as a good basis for our project to be continued upon. The intention                   
of capturing emotional response and predicting it follows the affective computing principles, and even              
more so, Affective Signal Processing (ASP) that is described in [2] by van den Broek et al.  

Besides providing guidelines and examples on carrying out studies regarding ASP, authors            
provide general approaches that can be used for classification techniques, applicable in our study.              
Due to machine learning not being the center focus of our study, we use [2] as a reference for                   
machine learning techniques that can be used as a model for our data. Also, we consult [40] by                  
Holland et al as an eye tracking specific study, that uses a number of machine learning models.  

 
Figure 1. A path diagram, adapted from van der Sluis et al [1]. It shows objective variables                 

(squared boxes) and subjective variables (rounded boxes). Together these explain interest. Legend:            
O - no significant relation,⃞ - significant relation, Δ - highly significant relation. 

  



4. Data exploration  
In this section we provide information about the dataset we were working with. Next, we discuss                

methods that were used in order to study the data. It is important to note that development of the                   
framework with GUI (see Appendix A) helped a lot with exploration of the data throughout the project.                 
In the beginning, it facilitated the view of the eye tracking data in the context of visual stimulus. As                   
data processing was advancing further, we could visualize step-by-step improvements due to the             
integration of methods together into one framework. Besides using the program we developed for              
studying the data, we also conducted two statistical studies in order to analyze and compare               
distributions of the recordings that will also be discussed in this section. 

4.1. Dataset summary 
First, the data set of texts was selected by taking a collection of 14,856 articles from The                 

Guardian. The collection consisted of articles from the following news feeds: culture, environment,             
financial, market and economics, commentary, life and style, science and technology. To reduce             
variation caused by differences in article length, all articles were truncated after 1200 characters,              
followed by three dots to indicate that the story would continue. Next, articles of lower, middle and                 
higher textual complexity were preselected and the final selection of 18 articles was performed based               
on suitability. The selected news items differed in topics to ensure variation in topical familiarity. 

The eye tracking data was recorded while 29 participants were reading a document on the               
screen. Their average age was 28.60 with standard deviation of 6.06. They voluntarily took part in the                 
experiment. None of the participants was a native English speaker, but all graded their reading               
literacy as high (mean grade of 4.63, standard deviation of 0.62 within range 1–5, where 5 is the                  
highest). All participants were well-educated; they either had a university degree or were enrolled as a                
student at a university. A remote SMI RED120 fixed eye tracking device at 60Hz sampling rate was                 
used to track the participants’ gaze on a standard TFT monitor with 1280 x 1024 resolution. Software                 
has been used to process and record eye movement signals from the eye tracking device. Viewing                
was binocular and reported gaze positions are from conjugate gaze: unison gaze with both eyes,               
meaning the eyes focus in the same direction at the same time. The eye tracking data was analyzed                  
and segmented into following events: saccades, fixation and blinks. The event detection was done              
with the software provided by the manufacturer. When processing data we do our own event detection                
after processing the signal, however we do not redo blink detections, since the process was done by                 
the eye tracker and the raw data is not reported prior to blink detection. 

After a participant read a text, he or she filled out a questionnaire ranking novelty-complexity,               
interest and comprehensibility on a Likert scale of 1 to 7. These values are used as perceived novelty                  
and comprehensibility, and the interest estimation that we will try to match in our prediction.  

4.2. Visualization methods 
In order to study the data we want to visualize the data using methods proposed in the                 

literature. After reading and parsing the data we want to visualize both ‘raw data’: gaze positions of                 
individual samples and ‘aggregated data’ of fixations and saccades as classified by the eye tracker.               
We use a combination of temporal, spatial and spectral visualizations to study different aspects of the                
data. In order to do that, we developed a Graphic User Interface (GUI) for the project to interact with                   
the data, and after parsing the data, we implemented visualization techniques to inspect the signal. In                
addition to that, R was used for visualizations of statistical distributions of ETS features.  

Firstly, one of the most intuitive visualizations is to reproduce the experiment and see the data                
in context. For that we visualize the data in 2D space on top of the image of the text, for which the                      



recording was made, sharing the same local coordinate system in order to see where the gaze                
positions are located within the text image. However, instead of displaying all samples at once, we                
can reproduce delays between the samples, since the gap durations are known. Playing back the               
recording at the same or higher speed gives us the insight into the ordering of the samples and                  
unveils the reading pattern. The same approach was used for both the raw gaze positions data and                 
the aggregated data. 

Next, we want to analyze the features of raw ETS, by plotting temporal graphs of x- and                 
y-positions, velocity and acceleration. By looking at how these values are changing over time we can                
analyze the distributions of the values and detect patterns. We compare plotted data with values               
expected for the reading pattern recorded for the experiment. Visualizations also provide valuable             
insight into noise that is present in the data and what preprocessing and denoising needs to be                 
applied in order to account for that. 

The same temporal visualizations can be used to gage aggregated data of fixations and              
saccades. Additionally, we can analyze distributions of key values, such as fixation duration, fixation              
dispersion and saccade velocity. Further study of statistical features of these distributions can help us               
evaluate and analyze the data.  

4.3. Statistical studies 
In this chapter we provide description of the methodology used for conducting two statistical              

studies. We use this analysis in order to evaluate data distribution and data quality. In particular, the                 
study regarding Central Limit Theorem is conducted for evaluating credibility of the aggregated data              
reported by the eye tracker. The design choice was made to analyse the raw data ourselves and                 
produce different aggregated data, that could then be compared to the original data. The statistical               
similarity test is used in order to evaluate correlation between recordings for the same users and                
same texts. This unveils general correlation in data, but also points out whether normalization may be                
required in order to compensate for the personal bias. Results of this statistical study may also be                 
used as argumentation for or against personalized models of interest, trained per person. It also               
shows how well ETS generalizes across different people. 

4.3.1. Central Limit Theorem (CLT) analysis 
 

Central Limit Theorem establishes that, in most situations, when values of independent random             
variables are added, their normalized sum tends towards a normal distribution, even if the variables               
are not normally distributed. In the case of our data, we want to analyze whether sample means for                  
fixation duration are normally distributed, even if fixation duration is not normally distributed. The              
fixation duration is chosen to be the test variable as it is as independent random variable in the test                   
context. In case mean fixation duration distribution does not approach normal distribution, it would be               
an indication of a possible bias or calibration error that have occured in the process of data collection. 
 
Experimental setup: 
 

1. For N, where N is a number of tested files, we randomly draw N files from the dataset. 
2. From each file, we randomly draw a set F consisting of S samples.  
3. For each set F, we calculate mean fixation duration and store it in a list M 
4. After we calculate it for all files, we plot list M as histogram to see the mean fixation 

distribution  
5. We calculate variance of mean fixation durations from values in list M and add it to list V 
6. Reset list M and repeat steps 1-5 for all values of N in the test set 



7. Plot list V as scatter plot to analyze the change in variance for different N values. 

4.3.2. Statistical similarity test or Kolmogorov-Smirnov test 
 
Kolmogorov-Smirnov test (KS test) is a nonparametric test of equality of continuous            

one-dimensional probability distributions. Two-sample KS test is used to compare two distributions            
and analyze how they differ. The test results indicate how like is it that two compared samples come                  
from the same distribution. 

We use KS test in order to analyze distribution of fixation durations for the same users and the                  
same texts. To do that, we run two experiments, one for users and one for texts. In both cases we use                     
two-sample KS test to pairwise analyze all the recordings for each user for the first study, or each text                   
for the second study. The results of KS tests are used to determine influence of user and text features                   
on fixation duration and ETS features in general. The results of statistical similarity test are important                
for identifying influences on the ETS and how the normalization should be performed. 

 
Experimental setup: 
Test A: per user analysis 

1. Define collections C​1​,C​2​...C​n​, where each collection consists of all samples from a single file 
that contains recording for the user. 

2. For each pair i and j, where 1 <= i <=n and 1 <= j <= n, perform two-sample 
Kolmogorov-Smirnov test for collections C​i​ and C​j​. Store p-value and d-statistic at (i,j) position 
in respective matrices P and D. 

3. After all the pairs of collections are evaluated, the matrices P and D are complete and can be 
printed to have complete set of evaluations. 

4. Reset matrices P and D and repeat steps 1-3 for all users.  
 
Test B: per text analysis 

1. Define collections C​1​,C​2​...C​n​, where each collection consists of all samples from a single file 
that contains recording for the text. 

2. For each pair i and j, where 1 <= i <=n and 1 <= j <= n, perform two-sample 
Kolmogorov-Smirnov test for collections C​i​ and C​j​. Store p-value and d-statistic at (i,j) position 
in respective matrices P and D. 

3. After all the pairs of collections are evaluated, the matrices P and D are complete and can be 
printed to have complete set of evaluations. 

4. Reset matrices P and D and repeat steps 1-3 for all texts.  
 

  



5. Implementation methods  
In this section we discuss implementation methods that are used at different stages of the               

project. In order to provide a general overview of the full ensemble of methods, we present the                 
processing pipeline, and then discuss every step of the process in detail. Signal processing module               
takes as raw data as an input, provided by the eye tracker as it is. After the outlier detection,                   
interpolation and filtering are applied, the event detection is run to obtain processed aggregated data.               
It should be noted, that all processing steps are implemented in the same framework with GUI (see                 
Appendix A) in a modular fashion. This means, that we can try and test different combinations of                 
processing steps, as well as different parameter values, where those apply. In this section we go into                 
more details on the implementation of each particular module with the design choices that were made                
and the parameters that were chosen. 

After signal processing is concluded and aggregated data is produced, we proceed with feature              
engineering to calculation of measurements that describe the ETS. After feature extraction,            
normalization and selection, we use these variables for machine learning models in order to predict               
user’s feedback. 

 

Figure 2​. The structure of implemented methods 
 
 

  



5.1. Signal processing 
In this chapter we discuss steps of signal processing that we use for processing the data. All of                  

the following steps were implemented in the same framework, that is described in Appendix A. We                
start by taking raw data, containing gaze positions, pupil dilation and timestamps. We apply              
preprocessing of removing outliers and filling-in the gaps, apply smoothing filter to denoise the data               
and then we aggregate the data to produce a dataset containing fixations and saccades. This dataset                
of ‘processed data’ is then used throughout the project as the aggregated data acquired from the                
ETS. 

5.1.1. Preprocessing  
After the signal is acquired and studied, the processing pipeline starts with preprocessing. We              

want to make sure that relevant and proper data is passed along the pipeline. In order to achieve that,                   
we apply techniques discovered from the literature review.  

Since the texts that were read by the participants were all located at the same place, we can                  
define a bounding box, within which all samples correspond to a user reading the text, while samples                 
outside of the bounding box can be discarded [20,34]. Samples found outside of the bounding box                
were observed at the start and the end of the recording, possibly before and after the user was                  
reading the text. Also, throughout the reading process, there were samples that occured at random               
positions outside of the text, which we treat as noise, as majority of the samples do not even comprise                   
full fixations that could be classified as user distraction or loss of focus. 

Next up, we identify gaps where data is missing and which should be filled in. In order to do                   
that, we are looking for pairs of samples that are more than x milliseconds apart, where x is the                   
minimum gap size. Values of x being 100ms and 150ms are tested, as those values are reported in                  
[16] and [18]. These gaps are filled in using linear interpolation by determining the scaling factor                
based on the gap duration and interpolating the missing samples using formula introduced by Olsen in                
[16]. 

Since the data we are using provides conjugate gaze data, the positions of unison gaze with                
both eyes are reported. Therefore there is no need for implementation of eye selection algorithm,               
when reported gaze positions of both eyes are identical. 

5.1.2. Denoising 
After the signal is preprocessed, we apply noise detection and reduction techniques. The first              

denoising step has already being explained, as it involves discarding data which does not relate to the                 
experiment itself: samples outside of the text image. Next, we want to apply a low-pass or a                 
smoothing filter in order to reduce high frequency noise. By applying Shannon-Hartley theorem, we              
can identify that the highest frequency signal that can be captured without aliasing at 30 Hz for                 
sampling rate of 60 Hz. However, the noise that is introduced in ETS due to jitter is reported to have a                     
frequency of around 150 Hz or higher [4]. Therefore, we can only use a smoothing filter in order to                   
combat this, since the signal cannot be excluded explicitly.  

We apply Savitzky-Golay filter [21] of window size 5 and filter order 2 in order to smooth the                  
data, as proposed and used in [7]. Although authors of [7] base filter length on minimum saccade                 
duration of 20 ms, due to low sampling rage, we use the minimum saccade duration of 50 ms, or                   
roughly 2.5 samples. Original value of 20 ms is equivalent to slightly more than a single sample, and                  
we need to provide window size that is large enough for smoothing, while retaining the nature of the                  
signal. Additional denoising is applied after the anomaly detection is performed with the extracted              
features of the ETS, that will be discussed in Section 6.5. 



5.1.3. Event detection 
After preprocessing and denoising we acquire ‘clean’ signal comprising of gaze positions that             

can be used for event detection, in order to identify fixations and saccades. The dataset that was                 
provided already had labeling from event detection algorithm applied in the eye tracking software,              
however we do our own event detections after manipulating the data and obtaining a ‘clean’ signal.                
Moreover, the original events reported by the eye tracker can be used as a reference in order to                  
evaluate the performance of implemented event detection. 

In order to choose an event detection algorithm to apply, we used key data features. First of all,                  
presented stimuli were all texts, static images and we are interested in fixations and saccades.               
Secondly, low sampling frequency does not allow for detection of itrafixational events such as              
glissades and jitter, as explained in the literature summary.  

A choice was made in favor of a dispersion-based event detection algorithm, since it should               
perform well for the given data, as reported by Salvucci and Goldberg in [6]. Although more recent                 
velocity-based algorithms were introduced, we believe that the quality of data is not sufficient for               
modern sophisticated i-VT algorithms. The implementation of i-DT from ​emov ​R package is used, with               
parameters being: maximal dispersion of 30 px (or about 0.5° for the experimental setup) and minimal                
fixation duration of 6 samples (or ~100ms at 60 Hz). These parameters are applied based on                
recommendations from [6] and are adapted for the experimental setup. 

5.2. Feature engineering 
Although the resulting signal may seem high quality and relevance, we need to define a set of                 

features and their parameters that define and describe the signal. Moreover, analysis of these              
features may be used for anomaly detection within the dataset. Some of the features are reported by                 
related literature, so we can compare our findings. Otherwise, in order to adequately analyze the data                
ourselves, but also to produce comparable results that can be related to, we apply feature               
normalizations to construct a separate dataset where variables of akk features are normalized per              
participant. 

5.2.1. Feature extraction 
After the events are defined within the ETS, we need to define the features that describe                

valuable properties of it. In this section we describe features that we extract from the events, due to                  
their potential significance in predicting the interest in the end model. The literature survey described               
in Section 4.6 covers works, such as [3] and [4] that mention reported correlations of these features in                  
other researches.  

Some features are common for both fixations and saccades, such as their count and duration.               
Count is measured in the total number and rate per second, with the latter being a normalized value.                  
In addition, we measure the mean number of fixations per line, as it has been reported to be a                   
potential indicator of the text comprehensibility or complexity [4]. Another common feature for both              
fixations and saccades in the duration and its distribution has been researched in a number of                
researches [3,4,17]. Measurements, such as the mean duration, duration standard deviation,           
variance and skewness are used in these works. We also add kurtosis as an additional representation                
of the distribution of the duration. All these statistical measures are commonly used for assessing the                
raw data quality [9] and the event detection quality [29]. These measures are also used for the final                  
model, e.g. [40] by Holland et al. An additional measure for the fixation duration is the mean reading                  
time per line, as proposed and used in [4] and [17]. 

We extract the same set of statistical measurements for distributions of fixation dispersion,             
saccade amplitude, saccade velocity and saccade acceleration. Although not all of these features             



have been only quantified with mean and standard deviation values in the literature, we believe that                
additional feature statistics can be of use for the machine learning models. Fixation duration is               
calculated as a radius of the fixation, measured in º. Saccade amplitude is first calculated in pixels on                  
screen and then in º, since the distance between the participant and the screen is known. Saccade                 
velocity can be described by two different values: mean saccade velocity and the peak saccade               
velocity throughout the saccade duration. We use statistics for distributions of mean saccade velocity,              
measured at º/s. Peak saccade velocity and likewise, mean and peak saccade acceleration cannot be               
adequately evaluated due to the low sampling frequency and therefore excluded. Namely, a saccade              
can be represented with no samples, when it takes place between two fixations in less than 1/60 s.                  
This leads to inability to evaluate peak velocity and acceleration throughout the saccade. 

To complement statistical measurements, we use other features of the eye tracking data, that              
are extracted using the data context. In particular, regressions (or backward saccades) are reported to               
be correlated with the textual complexity [42]. Regressions are defined as saccades with amplitude              
larger than 2º [4] directed towards the part of the text, that was already read. Regression count is                  
measured by the total number of regressions, their rate per second and the mean number of                
regressions per line. Also, measures of pupil dilation are represented with mean pupil dilation and               
Pupillary Unrest Index, introduced in [41] and argued to be a reliable pupil measure. This feature                
might be useful, due to known correlation between cognitive workload and pupil dilation [4].  
 
Table 1​. All the measurements which are calculated from the features of the ETS. The table defines 
event and feature that the measure describes and whether or not it is normalized. Also, we provide 
references to the related literature. Below the table we define what comprises ​Distribution metrics. 
 

Feature Measure Statistic norm. ref. 

Fixation 

Count 
Number ✘ [3, 7] 
Rate ✔ [3, 7] 
Mean number per line ✘ [3, 7] 

Duration 
Distribution metrics ✔ [3, 7] 
Mean reading time per line ✔ [4,32] 

Dispersion Distribution metrics ✔ [3, 7] 

Saccade 

Count Number ✘ [3, 7] 
Rate ✔ [3, 7] 

Regression count 
Number ✘ [3, 7] 
Rate ✔ [3, 7] 
Mean number per line ✘ [4,32] 

Duration Distribution metrics ✔ [3, 7] 
Amplitude Distribution metrics ✔ [3, 7] 

 Mean velocity Distribution metrics ✔ [3, 7] 

Scanpath Length Length ✘ [4,36] 
Duration Total reading time ✘ [3, 7] 

Pupil Dilation 
Mean ✔ [3, 7] 
Pupillary Unrest Index ✔ [4, 41] 

 

Distribution metrics: 

Mean ✔ [3, 7] 
Standard deviation ✔ [3, 7] 
Variance ✔ [3, 7] 
Skewness ✔ [4, 17] 
Kurtosis ✔  
Mean reading time per line ✔ [4,32] 



5.2.2. Anomaly detection 
It is important to ensure that the data is adequate and relevant early on before processing it, as                  

well as making sure that any other anomalies that can occur later down the pipeline can be caught,                  
studied and taken care of. Therefore, we describe our strategy of anomaly detection that we first apply                 
at raw data level and after event detection. 

When analyzing raw data, we only want to keep the samples that refer to reading the text.                 
Therefore, we are looking to exclude data that is either noise and has random nature, or samples that                  
were simply taken when not reading the text or refer to person being distracted. Also, we want to                  
exclude recordings that do not carry enough adequate data. However, given a large dataset, we need                
to automate this process after studying the data tendencies. After analyzing the dataset by visualizing               
gaze positions on top of the text images, different classes of outliers were identified: 

● Recordings with large data loss - recordings with less than 1000 samples were discarded,              
since average number of samples is more than 30000 samples for a fully read article. 

● Recordings with samples not following the pattern of reading the text - recordings with less               
than 10 line-to-line saccades are discarded, since all displayed articles had at least 12 lines in                
them. 

● Recordings with an offset - large offset is detected with the number of line-to-line saccades,               
since it heavily affects the samples near the edges. 

Therefore, for the first class of abnormal recordings can be classified by calculating amount of               
data loss: total gap duration, a number of missing samples and proportion of samples missing. Based                
on these values, we can define a threshold after which the recordings can be considered having too                 
little data. 

For the second class, we mean that a large portion of gaze positions do not follow the text                  
along, but the eye movement is recorded to happen in a random fashion, no matter within the text                  
image, or outside of it. The issue with this class, is that all the samples may seem to have quite similar                     
statistical properties regarding their positions, but the pattern of reading is not apparent. Therefore,              
fixations and saccades that are identified from this type of dataset will not make sense and lead to                  
meaningful results in the analysis. This class is extremely difficult to identify automatically based on               
some features, so we developed a measure of a number of line-to-line saccades. Namely, these are                
long horizontal saccades starting at the end of a line and ending at the start of the next line. We used                     
the implementation method introduced in [32] by Medero, where line-to-line saccades are identified             
over a window size of 6 fixations, where at least 2 fixations are located at the end of the previous line,                     
and at least 3 fixations are located and the beginning of the next line. The end and the beginning of a                     
line are defined by the distance to the edge of the displayed text. These saccades were found only in                   
the recordings where data points did follow the text reading pattern. In case the number of saccades                 
is much lower than number of lines in the displayed text, we can consider this text to not follow the                    
pattern. Certain properties of the scanpath could be used for this classification as well, but due to                 
inconsistencies in the data, we were not able to identify a feature that would be a great indicator.  

Another type of anomalies, that happens in the eye tracking data is caused by the presence of                 
an offset. This happens due to poor calibration or unexpected head movement that was not               
accounted for by the processing algorithms in the eye tracker software. Recordings with offset have a                
consistent spacing between the actual gaze position and the recorded samples. For example, due to               
an offset, one of the corners of the text is never read, but instead all the samples on the side of the                      
corner are shifted by this offset. Nevertheless, if the reading pattern is still clear, we do accept this                  
type of data if it will pass tests for the previous types of anomalies. Offset would be detrimental to                   
features based on Area Of Interest (AOI) and positional features, but we are not using them in this                  
project. 



5.2.3. Feature normalization 
In order to produce commensurate quantifications of the features, that are extracted from the              

signal, we need to normalize the values to exclude influence of personal and textual features on the                 
measurements. For adequate analysis of the values, that are recorded for different people, we need               
to normalize measures, that are collected each single participant. For example, if a person takes on                
average significantly longer to read the text, we should account for that, so that it can be compared                  
with a recording for a person who reads significantly faster. If normalization is done adequately, the                
same patterns can be found in recordings for both of these participants. On the other hand,                
normalization of all values, that are collected during the experiments, allows for a more appropriate               
comparison of these values, to values that are obtained using different experimental setup, e.g.              
stimulus, screen etc. 

In Table 1 we noted which values are normalized once they are calculated, meaning they are                
commensurate within the dataset. However, all these values are, to different extent, influenced by the               
personal features and the reading pattern. Therefore, all the values are normalized within their              
distributions per person. We refer to common normalization methods, as summarized by van den              
Broek in [2], where normalization for human biosignal was proposed and argued for. We apply               
baseline correction, also known as standardization, where a value is replace with a difference              
between the value and the mean of distribution, divided by the standard deviation of the distribution.                
This method is not too sensitive to outliers, suits the purpose and easy to reproduce and relate to.  

5.2.4. Feature selection 
Previously, we described and listed 38 statistical measurements that are calculated from event             

and their features of the ETS, next we need to narrow down which of these measurements, or in the                   
context of machine learning - named features or variables, will be selected and used for modelling the                 
interest. In order to do that, we apply feature selection method to select a set of features that results in                    
the best performance for the final model. After analyzing the related literature, summary for which we                
provided in Section 4.7, we chose the methods we use for this project. 

One of the feature selection methods of choice is the implementation from ​EFS ​R package,               
introduced in [43] by Neumann et al. Authors proposed and developed a normalized quantitative              
score of all relevant features by using multiple techniques. The following values are averaged and the                
mean is taken as the score:  

● Median: p-values from Wilcoxon signed-rank test;  
● Spearman’s rank correlation test;  
● Pearson’s product moment correlation test;  
● Beta-Values of logistic regression. 

For more details on each score refer to [43] on specifics of implementation.  
We use this score in order to rank the variables and select a set of features above a certain                   

threshold of correlation. 
Another feature selection method that we use is embedded in RF model. Authors of [43] also                

introduce using RF as a feature selection method, but we use the model for classification, as well as                  
feature selection, as it will be discussed below. However, we can also use the feature selection of RF                  
for the second model that we use for predicting the interest. For example, R package ​randomForest                
provides cross-validation feature selection algorithms that evaluates model performance using          
different number of features and different sets of features. This can be used both for producing the                 
final set of features and for evaluating the influence of the number of variables on the performance of                  
the classifier. 

As we previously summarized in the literature survey on feature selection, a number of              
techniques of different kind can be applied. As such, we use ​FSelector package from R to evaluate                 



the performance of search algorithms: best first search, greedy search and exhaustive search.             
Combining multiple feature selection techniques can yield the best result, and applying search             
algorithms on a reduced set of features is a common way to determine the optimal set of features for                   
the classification process.  

 

5.3. Modelling the user’s feedback 
The ultimate goal of our research is to model interest and predict it using measurements               

obtained from the eye tracking data. In order to do so, machine learning classification model is used                 
to predict whether a text is interesting, based on a vector consisting of a number of measurements                 
that were preselected. We conduct two studies for predicting interest, where in the first study we                
estimate it directly from all the measures, while in the second study we apply a model proposed by                  
van der Sluis et al in [1], where we predict complexity and comprehensibility and use obtained values                 
to model the interest, alongside the ETS features.  

Due to Machine Learning (ML) not being the primary focus of our study, we use several                
commonly used approaches to model the interest, with implementations from R libraries. The             
selection of ML models was based on literature research [3,1,2] and we chose SVM and RF to be                  
used. SVM is a commonly used classifier that has shown both good performance and decent               
interpretability of the results. Although the goal of the research is to build a model with the highest                  
success rate in testing, we believe that understanding the impact of different eye tracking              
measurements can be helpful for further research on this topic. For similar reasons, RF model has                
been chosen, that on top of performance and transparency, provides embedded feature selection.             
This lets us compare the feature selection that is performed by search methods and the results of                 
embedded feature selection. In all cases, models are tested using 10-fold Cross-Validation (CV)             
executed 10 times, leading to a total of 100 tests per model. This is done in order to produce                   
consistent results that do not fluctuate depending on the sampling process. 

We use SVM implementation from ​e1071 R package with radial kernel function, as it showed               
the best results in preliminary testing, as well as optimization of the parameters using ​tune.svm()               
function from ​e1071 package in R. This method allows us to use grid search in order to find the best                    
performing parameters for SVM. As for RF, we use the implementation from R package ​randomForest               
with number of grown trees being 500. 

5.3.1. Classification model of interest from ETS 
In our first study, we use a vector of feature parameters comprised of all of the measurements,                 

as described in 6.4. Then, this vector is reduced using feature selection method. The same approach                
is used for training both SVM and RF models. In this study we aim to evaluate how well can the                    
perceived interest of a text be predicted from eye movements during the reading.  

Since we treat interest classification as a binary classification problem, balance between            
classes is important. Therefore we also analyze the influence of how we label the data to be                 
‘interesting’ or ‘not interesting’ as a balancing method. To do so we modify a ‘Threshold of interest’ t​i -                   
a grade, above which all grades of interest classify respective texts as interesting. To add onto that,                 
we apply resampling methods in order to artificially balance the data and model the training set with                 
balanced distribution of the classes. More details and results will be discussed in the following section. 

5.3.2. Regression model of interest, complexity and 
comprehension 

To model the interest through complexity and comprehension, as proposed by van der Sluis et               
al in [1], we need to predict the values of these feedback values from the training set. In the dataset,                    



all feedback values were evaluated on the 1 to 7 semantic-differential scale. We use these values to                 
train a regression model to predict one of these values and analyze the performance of the model. We                  
evaluate performance of the regression models using Mean Squared Error (MSE) and relative             
accuracy, standing for the percentage of predictions that can be considered accurate. Considering the              
grade scale being from 1 through 7, if the distance between the predicted and true value is less or                   
equal to 1, we consider prediction to be accurate. 

5.3.3. Classification model of interest from ETS and predicted 
feedback values 

 
In the second study, we train additional models for comprehensibility and complexity of the text,               

using the same approach, as in the first study. We combine all of the original measurements for                 
predicting the interest with the predicted complexity and comprehensibility of the text. We employ the               
approach proposed by van der Sluis et al in [1] and apply it to the eye tracking data. This study lets us                      
evaluate the performance of this advanced model of interest with the results obtained from the               
previous study and get an insight into the correlation between interest and            
comprehensibility-complexity. To add to that, we evaluate performance of the classification model with             
and without ETS features, to evaluate whether eye tracking data does provide valuable insight to the                
classification process. We also compare results achieved when using grades provided by the users              
(true values), and grades predicted by the trained regression models (predicted values). 

6. Results 
In this section we discuss results obtained from implementing methods, that were just             

described. We provide short context for the experimental setup and parameters, that were not              
previously defined in the method section. After that, we use results that are indicative and relevant in                 
our opinion and provide brief interpretation of the results. For tables of complete results, refer to                
Appendix B. 

6.1. Statistical studies 
Two statistical studies were first conducted before the implementation of the processing            

framework started. The goal was to learn more about the data distribution and the patterns within the                 
dataset. Also, during the analysis process, we could gage the quality of the data when processing it.                 
After the processing pipeline was implemented and we acquired what we consider to be a clean,                
processed signal, we repeated both statistical studies to evaluate whether the outcome changed.             
Therefore, in this chapter we present results for both the original dataset - aggregated data of fixations                 
and saccades reported by the eye tracker, and the processed dataset - aggregated data acquired               
from preprocessed raw data, using the developed processing framework. 

 
Results of CLT-test 
 
We test Central Limit Theorem in order to analyze whether its hypothesis is met for eye tracking                 

data, that we use for the project. In particular, we analyze fixation duration distribution from both the                 
original aggregated data, reported by the eye tracker, and the aggregated data produced by the signal                
processing pipeline. Although fixation duration itself is not normally distributed [3,7], aggregated data,             
such as mean fixation duration should follow normal distribution. In Figures 3 and 4 we can see the                  
histograms of mean fixation durations for original and processed aggregated data respectively. Mean             
fixation duration for aggregated data reported by the eye tracker is distributed in a quadratic or                



triangle shape. This is caused by the wide range of values and the bins containing outliers are more                  
populated than the normal distribution suggests. However, distribution of mean fixation durations for             
processed data tends towards normal distribution. Although notably fixations have minimum duration            
threshold in the event detection. The difference in distributions may be caused by the outlier and                
anomaly detection that we apply. Therefore, the resulting data is significantly more consistent and              
follows our expectations. 

 
Figure 3. Histogram of mean fixation duration in the original aggregated data reported by the               

eye tracker. Number of bins = 8 

 
Figure 4. Histogram of mean fixation duration in the processed aggregated data produced by              

the signal processing pipeline. Number of bins = 8 

Results of KS-test 
 
The statistical similarity test, in particular Kolmogorov-Smirnov (KS) test, was used to compare             

distributions of fixation durations. All of the recordings for the same text or user were compared in                 
pairs and the test results describe whether the data belongs to the same distribution. 

H​0​-hypothesis: two samples belong to the same distribution 
H​1​-hypothesis: two samples do not belong to the same distribution 
 



For significance level , null hypothesis is rejected when . The tests were conducted for   α       p < α       
all texts and users using both the original aggregated data, as reported by the eye tracker, and the                  
processed data, obtained using full pipeline, as implemented for the project. Table 2 shows the results                
by summarizing it with the total percentage of the pairs, for which the null hypothesis is rejected at                  

..05α = 0  
 
Table 2.​ Percentage of pairs with  at .p < α .05α = 0  

Dataset Texts Users 

Original data 87.07% 37.57% 

Processed data 69.14% 25.00% 

 
Overall, no significant correlation between recordings for the same texts was found. It was              

expected, as all the displayed texts were truncated to be the same length and overall as visual stimuli                  
were extremely similar. However, the rejection rate is more than twice lower for the tests done per                 
user. At 37.5% for the original data and 25% for the processed data, we can make a strong                  
assumption that there is stronger correlation between recordings done for the same participants. This              
is supported by the observations from the data visualization, as data quality was influenced by the                
experimental setup for each participant. This also caused data from a number of participants to be                
excluded from the final data selection. 

Results of KS-test also illustrate the general influence of pre- and post-processing on the data.               
The first cause for higher correlation in data is excluding of the outliers both within and between                 
recordings. The second reason, is the smoothing, filtering and denoising that make for more              
consistent data, hence resulting in higher correlation in such features as fixation duration, that was               
compared in this statistical study. 

6.2. Modelling interest from ETS features 
In this chapter we discuss results achieved in modelling interest using features extracted from              

the eye tracking data. Two models: Random Forest (RF) and Support Vector Machine (SVM) were               
used, as described previously in Section 5.3. Tests were conducted on two datasets: the processed               
dataset constructed from applying full signal processing pipeline and calculating all the statistical             
measures, and the same dataset, where all measurements are normalized per participant. We call              
these two sets ‘processed’ and ‘normalized’ respectively. Some of the parameters were defined in              
preliminary testing: e.g. number of trees in RF, SVM parameter grid search parameter tuning, etc. On                
the other hand, a number of testing parameters were used in the testing process in order to evaluate                  
their impact and find the best set of testing parameters. Refer to Appendix B for the original tables of                   
the test results. 

6.2.1. Description of baseline results 
 
Results for both datasets using both models, feature filtering, feature selection and scoring             

functions were obtained and evaluated. Test results are reported with 5 values, averaged across all               
the tests performed for the experimental setup. Training and testing was performed using 10-fold              
cross validation and repeating the process 10 times. Therefore, overall 100 tests were done to               
evaluate each set of parameters in order to produce results that are consistent over time. When using                 
smaller number of tests, the mean accuracy of a model could fluctuate by more than 1%, while 100                  



was found to produce results that are comparable, with the mean difference in accuracy of less than                 
1%. 

When evaluating performance of the models when using two different functions, it was found              
that accuracy led to higher or equal resulting accuracy in overwhelming portion of the tests (all but                 
one instance). Although using Negative Predictive Value as the scoring function resulted in more              
instances of correctly classified negative values, the trade-off of False Negatives influenced the             
accuracy too much, and the accuracy did not recover. 

Results for both feature selection methods: best-first search and forward-search were identical            
in the majority of the cases due to a very similar approach. Therefore, the use of just one of these for                     
further tests is possible. Due to high computational demands of backward search and exhaustive              
search, these techniques can only be applied on the most promising test setups and with the reduced                 
feature space.  

Regarding reducing the feature space, applying feature filtering based on 8 ensembled            
relevancy rankings performed reasonably well, leading to a drop in performance for some test setups.               
However, the best performing setups with the original feature space showed comparable results with              
the reduced feature space too. In one such case, reducing the feature space led to improved results                 
even for forward-search. This suggests that using this method of feature filtering can be applied for                
some of the setups in order to reduce computational complexity and allow more efficient feature               
selection methods to be applied. 

 
As for the results for different models, Random Forest outperformed both linear SVM and radial               

SVM in the majority of the tests. Moreover, SVM suffered more from the imbalance in the data. All the                   
tests with linear SVM lead to 100% prediction rate of the prevalent class of interesting articles.                
Therefore, the accuracy of linear SVM was equal to the True Positive Rate and portion of positives in                  
the input data. Therefore, linear SVM was excluded from further tests. However, SVM with radial               
kernel function showed similar behaviour to RF. It is unclear whether it generalizes minor class better                
or worse than RF, due to mixed results. However, performance of the RF and radial SVM should be                  
evaluated further with more advanced experimental setups. 

6.2.2. Description of results for balanced data 
 

Another domain of interest in the results is the influence of imbalance in the data. Namely, the                 
fact that class of interesting articles comprises above 80% of the dataset. This leads to higher                
accuracy trade-off for the models that aim to identify both classes, rather than ‘follow the trend’ of                 
mostly modelling the prevalent class. The problem of imbalanced data is discussed in [44,45,46] and               
possible solutions are proposed. Due to machine learning not being the primary focus of the study, we                 
did not apply advanced strategies, such as boosting, cost-sensitive learning or adapting existing             
machine learning methods to account for data imbalance [44]. We tackle data imbalance issue on the                
data-level, firstly by using a different ‘threshold’ for the interest grades, that determines what user’s               
feedback can label the article to be interesting or not interesting. Besides that, we use resampling                
methods to model the distribution of the imbalanced dataset by undersampling the prevalent class,              
oversampling the minor class or combination of both. For that we an established technique ROSE, a                
successor of SMOTE[45,46,47], to produce balanced dataset and use it for training and testing of the                
model.  

 
  



Table 3. The highest classification accuracy obtained for the original two datasets and their              
resampled versions using ROSE, using different threshold of interest t​i​. 

Dataset Results for t​i​=3.5 Results for t​i​=4 Results for t​i​=4.5 

Processed 83.51% 73.48% 66.29% 

Normalized 83.67% 70.78% 65.64% 

ROSE processed 74.84% 65.39% 62.85% 

ROSE normalized 70.26% 64.22% 59.48% 

 

6.2.3. Final discussion of the results 
 
We tested a number of classification models that aim to identify whether text was interesting or                

not, based on the eye tracking measurements. Overall, results are promising and they show that eye                
movement features can be used for such prediction of implicit user feedback. The average accuracy               
achieved by 10-fold cross validation repeated 10 times was up to 85% We also discussed the problem                 
of imbalance distribution in class labels and how it can be approached. Although there was a drop in                  
performance when applying majority of the balancing methods, different methods could provide better             
results. We also achieved 100% accuracy when using ROSE re-sampling method on the full dataset               
and using resampled data for cross-validation. Although, we believe that perfect result is caused by               
synthetic data generation of the method, it is indicative that if the measures had similar distributions                
with larger sample size and balanced ratio between class sizes, high accuracy can be achieved. 

After analyzing of all the sets of input variables, we can identify most promising test setups for                 
our next study and for the future work as well. Namely, best-first search and exhaustive search on a                  
reduced feature space, with both searches using accuracy as scoring function. We propose using              
ensemble of feature selection methods to evaluate relevancy of all features and use resulting              
normalized importance values for feature filtering and reducing feature space[48]. 

6.3. Modelling interest from textual complexity,     
comprehension and ETS features 

In the second study, we investigated how perceived interest can be modeled from eye tracking               
measures incorporated into the model proposed by van der Sluis et al in [1], where correlation                
between interest, textual complexity and comprehension was studied. The main premise of this study              
is namely: interest can be predicted with higher accuracy if perception of textual complexity and               
comprehension is known. In order to test this premise, we add the grades for complexity and                
comprehension provided by the users as another input variable and evaluate the performance of the               
resulting models. Then we evaluate to what extent ETS predicts interest, complexity and             
comprehension by analyzing performance of regression models that predict respective scores. And            
finally we test whether using predicted feedback values improves interest classification model. It             
should be noted, that we also use reduced set of testing parameters, based on the conclusions made                 
from the previous study, in order to focus on more optimal setups. 



6.3.1. Description of results using perceived 
complexity/comprehension 

 
In table 4 we present the best results achieved for data with and without normalization from the                 

first study and compare them with the best results when adding as input variables the grades for                 
complexity, comprehension and both at the same time. The best performing models were the ones               
achieved from all the eye tracking measures with feature selection applied to them combined with               
both complexity and comprehension estimates, provided by the users. Notably, the highest accuracy             
was achieved when only comprehension was used for the classification. Modelling interest through             
textual complexity and comprehension significantly improves results across the board, judging by the             
higher achieved accuracy. Since the premise is held true, next we aim to model comprehension and                
complexity separately, and use predicted values for the same approach. This way, by applying              
supervised learning using explicit feedback, we can predict implicit feedback the same way solely              
from the eye tracking signal. 

 
Table 4​. The highest classification accuracy obtained for the two datasets with and without              

complexity and comprehension grades provided by participants. Bold cells represent highest values            
per variable set. 

Dataset Results from 
ETS 

ETS + complexity ETS + 
comprehension 

ETS + complexity + 
comprehension 

No ETS 81.96% 82.48% 79.97% 

Processed 83.51% 84.35% 86.47% 85.83% 

Normalized 83.67% 83.54% 86.07% 85.85% 

 
 

6.3.2. Description of results in predicting 
complexity/comprehension using regression models 

 
After we established the relevance of complexity and comprehension grades, we aim to model              

these values using the ETS and the features we extracted from it. In order to do that, we train and test                     
two separate regression models: complexity model and comprehension model. User provided grades            
are on the scale of 1 to 7 and we use the same scale for the regression. We evaluate the performance                     
of the regression models using Mean Squared Error (MSE). Also, we evaluate the relative accuracy,               
by counting portion of the test cases, where the predicted value is no more than 1 point away from the                    
true value, e.g. predicting 2 or 3.5 for the true value of 3 would be considered a success, while 1.9 or                     
5 would be considered failures. Values of the MSE and relative accuracy are presented in Table 5                 
and 6. Despite the fact, that more than half of the values are predicted relatively accurately, we can                  
suggest that regression of a variable of subjective nature with a fairly small samples size does not                 
lead the perfect model. However, modelling complexity and comprehension is not the primary goal of               
this research, and we aim to use these predicted values for the final interest model and see whether                  
they do lead to the improvement of the results. 

 
  



Table 5. The smallest Mean Squared Error for regression models for complexity and             
comprehension for both datasets.  

Dataset Complexity Comprehension Interest 

Processed 1.96 1.34 1.76 

Normalized 1.92 1.38 1.63 

 
Table 6​. Relative accuracy for regression models for complexity and comprehension for both             

datasets. Whenever prediction error is less or equal to 1, the prediction is considered successful.  

Dataset Complexity Comprehension Interest 

Processed 52.91% 66.76% 57.56% 

Normalized 52.74% 67.58% 58.54% 

 

6.3.3. Description of results using predicted 
complexity/comprehension 

The final model is constructed by combining complexity and comprehension regression models,            
that predict respective values based on the eye tracking variables. Next, complexity and             
comprehension estimates are added to the variables that are fed to the interest classification models.               
It should be noted, that the data is split for cross validation for the full pipeline of the modelling                   
process. Meaning that whenever complexity, comprehension or interest grade provided by the user is              
in the training set, so are all of the ‘true’ values, provided by the user. This is done to ensure                    
consistency and simulate real-world scenarios, where none of the true values are known for the test                
cases. 

Firstly, we test feeding the regression models the same set of variables that are used for                
classification model of interest. Since feature selection is implemented as a wrapper method of              
best-first search, adding nested feature selection for complexity/comprehension is not computationally           
feasible. In Table 7 we present the highest classification accuracy that was achieved using predicted               
values of complexity and/or comprehension obtain with this method. Overall, the only improvement in              
accuracy was observed when predicting comprehension for the texts in the normalized dataset. Due              
to inaccuracy in the regression models using identical variable subset, results did not improve as               
much, as when using the complexity/comprehension grades reported by participants. 

 
Table 7​. The highest classification accuracy obtained for the two datasets with and without              

complexity and comprehension grades predicted by the regression models. Regression and           
classification is done using the same ETS variables, found from feature selection search methods.              
Bold cells represent highest values per variable set. 

Dataset Results from 
ETS 

ETS + complexity ETS + 
comprehension 

ETS + complexity + 
comprehension 

Processed 83.51% 83.66% 83.49% 83.34% 

Normalized 83.67% 82.34% 84.34% 83.36% 

 
However, we can chose the regression models for complexity and comprehension to use a              

selected variable subset at all times. After evaluating performance of the regression models using              



exact same feature filtering and feature selection, as for the classification model, we find models that                
lead to the smallest MSE in the regression. It is also notable, that although RF overwhelmingly                
performed better than SVM for classification, both complexity and comprehension best performing            
models turned out to be SVM. Results of the models, using this implementation of regression models,                
can be found in Table 8. Overall, the results improve from adding both complexity and comprehension                
estimates, however using both prediction at once does not yield accuracy improvement. Nevertheless,             
the highest classification accuracy for predicting perceived interest using solely Eye Tracking            
Measurements is achieved by constructing a regression model for comprehension and using            
predicted value in combination with ETS features for the final classification model. 

 
Table 8​. The highest classification accuracy obtained for the two datasets with and without              

complexity and comprehension grades predicted by the regression models. Prediction is done using             
best performing set of variables, classification variable selection is done through feature selection             
search methods. Bold cells represent highest values per variable set. 

Dataset Results from 
ETS 

ETS + complexity ETS + 
comprehension 

ETS + complexity + 
comprehension 

Processed 83.51% 83.94% 84.35% 82.94% 

Normalized 83.67% 83.04% 84.09% 83.61% 

 

7. General discussion 
Results of the classification process can be considered somewhat successful, though there are             

a lot of caveats to that. Firstly, the nature of uncertainty what can be considered interesting or not                  
interesting, influences the balance of the data. The best accuracy was achieved using the cut-off               
between interesting and not interesting in the middle of the grading scale. Meanwhile splitting the               
classes in a more balanced way only reduced the performance of the models. The fact that applying                 
commonly used resampling method ROSE reduced the performance of the model even further, we              
question whether the set of measurements acquired from ETS can accomodate for precise             
classification between interesting and not interesting texts that are read. In the dataset where 81.88%               
text readings are classified as interesting, the models that yield the best accuracy predict roughly 90%                
of the texts to be interesting (for exact values refer to Appendix B). We think that given a larger                   
sample size and a clearer indication of the feedback by the participants, the proposed models can be                 
improved and capture the implicit feedback of perceived interest. Also, the quality of data is very                
influential on the analysis that it can be used for. Not all the features of the eye tracking signal could                    
be studied in our case, and the accuracy of the data could influence all the measures that were                  
calculated and used for the modelling process. 

Importantly, the results improved when we incorporated the approach proposed by van der             
Sluis et al in [1] of modelling interest through complexity and comprehension. Although predicting the               
values of complexity and comprehension was not precise, the predicted values did improve the              
performance of the interest classification model. We believe that this approach can be further studied               
using eye tracking data or combining eye tracking with other approaches, such as text mining. Our                
project shows that eye tracking data can be effectively used on its own for modelling perceived                
interest and this may help overcome the challenge of affective computing in overcoming the barrier               
between emotions and computer recognition of them. Although, eye tracking data was previously             
used for estimating complexity (e.g.[32]) or cognitive load in general, our study proposes using              
modelling aggregated features from eye tracking data, that in our case were complexity and              
comprehension, and later use these values for another model.  



Despite not achieving stellar accuracy rates, we believe that the study is still relevant and useful                
for further applications. For instance, the framework with GUI that was developed, can be used for                
another set of the eye tracking data, or even adapted to work on-the-fly with a device to record the                   
signal. The original intent for the project was to use a mobile eye tracker and compare recorded                 
results to the dataset, that was provided earlier. However, it ended up being out of the scope for the                   
project and it remains to be seen what can be achieved when the data is acquired in the controlled                   
environment where it can be studied and evaluated straightaway with our framework. 

However, even for the data that was used, we believe that our structured approach to use                
feature engineering can prove to be useful. In particular, in our tests, such variables as fixation                
duration kurtosis and saccade duration kurtosis ended up being widely selected by the feature              
selection methods despite not being recommended in any related literature we found. In our opinion,               
even the variable set that is produced for this particular dataset can be used for building models with                  
higher accuracy with better knowledge and implementation of machine learning methods. Due to the              
fact, that building of the models was just a part of the project, rather than its focus, we did not realize                     
the potential that our approach can facilitate for. As a takeaway for future studies we may provide is                  
that sometimes using less obvious and well-documented features of the studied data can turn out to                
be beneficial if no measurements are ignored. Much like ​Guyon and Elisseeff mention in [25],               
sometimes combination of correlated or seemingly redundant variables may lead to an improvement             
in results. 

 

8. Conclusion 
In this study, we explored application of eye tracking signal to the approach of affective               

computing in the problem of predicting user’s implicit feedback in a form of perceived interest. We                
provided a structured approach towards processing the signal and extracting valuable features from it.              
Next, these features were quantified using statistical measurements and used for the classification             
model, that would predict whether an article was interesting or not. We reached mean classification               
accuracy of 84.35% by modelling interest through first evaluating comprehension of the text. By              
adopting the approach from [1] and applying it to the eye tracking data, we propose potential                
applications for using eye movements for affective signal processing. We developed a framework with              
an interface in order to process and analyze the data. Where we implemented methods that are                
described in this thesis.  
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10. Appendix A. GUI implementation 
Over the course of this project, we developed and improved a framework with Graphical User               

Interface (GUI), that lets users interact with the data and manipulate it using all of the implemented                 
processing and visualization methods. Firstly, the program was designed to visualize the data,             
reported by the eye tracker, in order to evaluate the data in the context of the visual stimulus (the text                    
image). However, once the processing pipeline started being implemented, the ability to directly             
compare the influence of a certain processing step on the data, helped with instant feedback on all of                  
the methods that were implemented. Throughout the course of the project, using one big framework               
for all the data processing, helped with comparison and evaluation at every step. 

Moreover, the data could be studied at the feature parameter level once feature engineering              
was implemented. This let us get even more insight into the influence of individual signal processing                
blocks that were executed. Getting results in line with expectations and literature would mean that               
everything is working properly, but sometimes getting unexpected results could unveil new features of              
the eye tracking signal. For example, visualizing outliers defined to be outside of the bounding box                
and adding up the total portion of the samples being outliers, help in evaluating the data quality of                  
specific participants and the dataset overall. Also, when implementing line-to-line saccades, as            
proposed by Medero in [32], GUI helped by using different colors to label fixations that are used in the                   
moving-window detection approach. 

 
Figure 5​. Screenshot of the GUI with the framework, where user can choose: data to be read;                 

replay speed; outlier removal; interpolation and its parameters; Savitzky-Golay filter and its            
parameters; i-DT and its parameters. 

 
 



Implementation of the framework was done in Java with the use of JavaFX as the primary GUI,                 
and integration with R using rJava and JRI (Java-R Interface) to feed the data directly from the                 
program to R and back for processing. Source code for the implementation can be found at ​GitHub ​as                  
a ‘Mockup’ together with other tools that were used throughout the project. 

11. Appendix B. Test results 
P  True Positives, FP  False Positives  T =   =   
N  True Negatives, FN  alse Negatives  T =   = F  

 
 of  P  Portion of  Positives in predictions  % =  = TP  + FP

TP  + FP  + TN  + FN   
 of  N  Portion of  Negatives in predictions  % =  = TN  + FN

TP  + FP  + TN  + FN   
PR True Positive Rate  T =  = TP  

TP  + FP   
NR True Negative Rate  F =  = TN

 TN  + FN   
 
  Threshold of  Interest (see 5.3.1)  t i =   

No eye tracking signal 
1 - used, 0 - not used 

t​i Model Complexity Comprehension Accuracy % of P TPR % of N TNR 

3.5 RF 1 0 80.68 95.53 82.78 4.47 24.25 

3.5 SVM 1 0 81.96 98.51 82.4 1.49 18 

3.5 RF 0 1 81.69 93.13 84.23 6.87 42.1 

3.5 SVM 0 1 82.48 95.69 83.67 4.31 40.92 

3.5 RF 1 1 79.97 87.81 85.21 12.19 44.26 

3.5 SVM 1 1 78.83 86.88 85 13.12 38.68 

4 RF 1 0 69.09 92.39 70.4 7.61 49.92 

4 SVM 1 0 66.08 91.08 69.13 8.92 27.8 

4 RF 0 1 70.12 69.11 78.62 30.89 53.35 

4 SVM 0 1 69.96 70.36 78.65 29.64 53.81 

4 RF 1 1 72.07 71.16 78.54 28.24 56.38 

4 SVM 1 1 73.67 74.65 78.4 25.35 59.92 

4.5 RF 1 0 61.92 71.54 65.54 28.46 54.87 

4.5 SVM 1 0 57.8 73.24 62.6 26.76 49.77 

4.5 RF 0 1 73.87 59.69 78.46 40.31 68.12 

4.5 SVM 0 1 73.07 61.03 77.12 38.97 67.01 

4.5 RF 1 1 72.46 63.43 75.55 36.57 67.73 



4.5 SVM 1 1 71.15 64 74.35 36 66.5 
 

Processed dataset 

Dataset t​i Feature filter 
Feature 
selection Model Balancing Scoring function Accuracy % of P TPR % of N TNR 

processed 3.5 no best-first RF no accuracy 83.51 97.22 83.62 2.78 47.17 

processed 3.5 no forward RF no accuracy 83.51 97.22 83.62 2.78 47.17 

processed 3.5 no best-first RF no zeroes 81.55 91.75 84.58 8.25 51.06 

processed 3.5 no forward RF no zeroes 81.55 91.75 84.58 8.25 51.06 

processed 3.5 0.3 best-first RF no accuracy 83.8 95.24 84.49 4.76 61.08 

processed 3.5 0.3 forward RF no accuracy 83.8 95.24 84.49 4.76 61.08 

processed 3.5 0.3 best-first RF no zeroes 81.55 91.75 84.58 8.25 51.06 

processed 3.5 0.3 forward RF no zeroes 81.55 91.75 84.58 8.25 51.06 

processed 3.5 no best-first RF ROSE accuracy 74.84 81.57 84.88 18.43 29.84 

processed 3.5 no forward RF ROSE accuracy 74.84 81.57 84.88 18.43 29.84 

processed 3.5 no best-first RF ROSE zeroes 60.22 55.51 87.99 44.49 26.16 

processed 3.5 no forward RF ROSE zeroes 60.22 55.51 87.99 44.49 26.16 

processed 3.5 0.3 best-first RF ROSE accuracy 74.84 81.57 84.88 18.43 29.84 

processed 3.5 0.3 forward RF ROSE accuracy 74.84 81.57 84.88 18.43 29.84 

processed 3.5 0.3 best-first RF ROSE zeroes 60.22 55.51 87.99 44.49 26.16 

processed 3.5 0.3 forward RF ROSE zeroes 60.22 55.51 87.99 44.49 26.16 

processed 3.5 no best-first SVM no accuracy 82.63 97.12 83.19 2.88 37.95 

processed 3.5 no forward SVM no accuracy 82.63 97.12 83.19 2.88 37.95 

processed 3.5 no best-first SVM no zeroes 81.52 90.77 84.89 9.23 46.23 

processed 3.5 no forward SVM no zeroes 81.52 90.77 84.89 9.23 46.23 

processed 3.5 0.3 best-first SVM no accuracy 82.63 97.12 83.19 2.88 37.95 

processed 3.5 0.3 forward SVM no accuracy 82.63 97.12 83.19 2.88 37.95 

processed 3.5 0.3 best-first SVM no zeroes 82.15 93.09 84.34 6.91 42.32 

processed 3.5 0.3 forward SVM no zeroes 82.15 93.09 84.34 6.91 42.32 

processed 3.5 no best-first SVM ROSE accuracy 69.68 76.91 83.58 23.09 23.14 

processed 3.5 no forward SVM ROSE accuracy 69.68 76.91 83.58 23.09 23.14 

processed 3.5 no best-first SVM ROSE zeroes 64.13 65.89 84.93 34.11 28.05 

processed 3.5 no forward SVM ROSE zeroes 64.13 65.89 84.93 34.11 28.05 

processed 3.5 0.3 best-first SVM ROSE accuracy 69.68 76.91 83.58 23.09 23.14 

processed 3.5 0.3 forward SVM ROSE accuracy 69.68 76.91 83.58 23.09 23.14 

processed 3.5 0.3 best-first SVM ROSE zeroes 64.13 65.89 84.93 34.11 28.05 

processed 3.5 0.3 forward SVM ROSE zeroes 64.13 65.89 84.93 34.11 28.05 

processed 4 no best-first RF no accuracy 73.48 89.3 73.63 10.7 72.04 

processed 4 no forward RF no accuracy 73.48 89.3 73.63 10.7 72.04 

processed 4 no best-first RF no zeroes 71.81 88.16 73.02 11.84 67.06 



processed 4 no forward RF no zeroes 71.81 88.16 73.02 11.84 67.06 

processed 4 0.3 best-first RF no accuracy 73.66 88.33 74.04 11.67 69.61 

processed 4 0.3 forward RF no accuracy 73.66 88.33 74.04 11.67 69.61 

processed 4 0.3 best-first RF no zeroes 71.81 88.16 73.02 11.84 67.06 

processed 4 0.3 forward RF no zeroes 71.81 88.16 73.02 11.84 67.06 

processed 4 no best-first RF ROSE accuracy 65.39 83.46 67.76 16.54 37.11 

processed 4 no forward RF ROSE accuracy 65.39 83.46 67.76 16.54 37.11 

processed 4 no best-first RF ROSE zeroes 63.99 76.96 69.72 23.04 45.13 

processed 4 no forward RF ROSE zeroes 63.99 76.96 69.72 23.04 45.13 

processed 4 0.3 best-first RF ROSE accuracy 65.07 76.57 71.93 23.43 42.44 

processed 4 0.3 forward RF ROSE accuracy 65.07 76.57 71.93 23.43 42.44 

processed 4 0.3 best-first RF ROSE zeroes 61.9 71.5 71.74 28.2 41.25 

processed 4 0.3 forward RF ROSE zeroes 61.9 71.5 71.74 28.2 41.25 

processed 4 no best-first SVM no accuracy 71.66 82.67 74.37 17.33 59.6 

processed 4 no forward SVM no accuracy 71.66 82.67 74.37 17.33 59.6 

processed 4 no best-first SVM no zeroes 71.66 82.67 74.37 17.33 59.6 

processed 4 no forward SVM no zeroes 71.66 82.67 74.37 17.33 59.6 

processed 4 0.3 best-first SVM no accuracy 71.66 82.67 74.37 17.33 59.6 

processed 4 0.3 forward SVM no accuracy 71.66 82.67 74.37 17.33 59.6 

processed 4 0.3 best-first SVM no zeroes 71.66 82.67 74.37 17.33 59.6 

processed 4 0.3 forward SVM no zeroes 71.66 82.67 74.37 17.33 59.6 

processed 4 no best-first SVM ROSE accuracy 64.06 83.53 64.81 16.47 35.09 

processed 4 no forward SVM ROSE accuracy 64.06 83.53 64.81 16.47 35.09 

processed 4 no best-first SVM ROSE zeroes 59.93 63.17 72.79 36.83 42.91 

processed 4 no forward SVM ROSE zeroes 59.93 63.17 72.79 36.83 42.91 

processed 4 0.3 best-first SVM ROSE accuracy 62.48 85.26 62.4 14.74 18.9 

processed 4 0.3 forward SVM ROSE accuracy 62.48 85.26 62.4 14.74 18.9 

processed 4 0.3 best-first SVM ROSE zeroes 59.93 63.17 72.79 36.83 42.91 

processed 4 0.3 forward SVM ROSE zeroes 59.93 63.17 72.79 36.83 42.91 

processed 4.5 no best-first RF no accuracy 66.15 69.34 68.98 30.66 61.72 

processed 4.5 no forward RF no accuracy 66.15 69.34 68.98 30.66 61.72 

processed 4.5 no best-first RF no zeroes 62.29 74.47 67.58 25.53 64.85 

processed 4.5 no forward RF no zeroes 62.29 74.47 67.58 25.53 64.85 

processed 4.5 0.3 best-first RF no accuracy 66.15 69.34 68.98 30.66 61.72 

processed 4.5 0.3 forward RF no accuracy 66.15 69.34 68.98 30.66 61.72 

processed 4.5 0.3 best-first RF no zeroes 65.78 75.58 66.87 24.42 62.97 

processed 4.5 0.3 forward RF no zeroes 65.78 75.58 66.87 24.42 62.97 

processed 4.5 no best-first RF ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

processed 4.5 no forward RF ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

processed 4.5 no best-first RF ROSE zeroes 61.42 90.56 61.83 9.44 54 

processed 4.5 no forward RF ROSE zeroes 61.42 90.56 61.83 9.44 54 

processed 4.5 0.3 best-first RF ROSE accuracy 62.68 93.89 61.67 6.11 61.67 



processed 4.5 0.3 forward RF ROSE accuracy 62.68 93.89 61.67 6.11 61.67 

processed 4.5 0.3 best-first RF ROSE zeroes 61.89 90.75 61.87 9.25 61.97 

processed 4.5 0.3 forward RF ROSE zeroes 61.89 90.75 61.87 9.25 61.97 

processed 4.5 no best-first SVM no accuracy 65.11 80.23 65.51 19.77 65.17 

processed 4.5 no forward SVM no accuracy 65.11 80.23 65.51 19.77 65.17 

processed 4.5 no best-first SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

processed 4.5 no forward SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

processed 4.5 0.3 best-first SVM no accuracy 64.26 82.92 64.66 17.08 64.86 

processed 4.5 0.3 forward SVM no accuracy 64.26 82.92 64.66 17.08 64.86 

processed 4.5 0.3 best-first SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

processed 4.5 0.3 forward SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

processed 4.5 no best-first SVM ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

processed 4.5 no forward SVM ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

processed 4.5 no best-first SVM ROSE zeroes 61.42 90.56 61.83 9.44 54 

processed 4.5 no forward SVM ROSE zeroes 61.42 90.56 61.83 9.44 54 

processed 4.5 0.3 best-first SVM ROSE accuracy 62.85 92.52 62.19 7.48 58.4 

processed 4.5 0.3 forward SVM ROSE accuracy 62.85 92.52 62.19 7.48 58.4 

processed 4.5 0.3 best-first SVM ROSE zeroes 60.57 85.86 62.03 14.14 54.24 

processed 4.5 0.3 forward SVM ROSE zeroes 60.57 85.86 62.03 14.14 54.24 

 

Normalized dataset 

Dataset t​i 
Feature 
filter 

Feature 
selection Model Balancing Scoring function Accuracy % of P TPR % of N TNR 

normalized 3.5 no best-first RF no accuracy 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 no forward RF no accuracy 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 no best-first RF no zeroes 80.97 91.95 84.25 8.05 41.75 

normalized 3.5 no forward RF no zeroes 80.97 91.95 84.25 8.05 41.75 

normalized 3.5 0.3 best-first RF no accuracy 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 0.3 forward RF no accuracy 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 0.3 best-first RF no zeroes 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 0.3 forward RF no zeroes 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 no best-first RF ROSE accuracy 70.26 70.08 87.3 29.92 31.7 

normalized 3.5 no forward RF ROSE accuracy 70.26 70.08 87.3 29.92 31.7 

normalized 3.5 no best-first RF ROSE zeroes 68.38 65.96 88.19 34.04 31.64 

normalized 3.5 no forward RF ROSE zeroes 68.38 65.96 88.19 34.04 31.64 

normalized 3.5 0.3 best-first RF ROSE accuracy 68.24 67.26 87.16 32.74 29.31 

normalized 3.5 0.3 forward RF ROSE accuracy 68.24 67.26 87.16 32.74 29.31 

normalized 3.5 0.3 best-first RF ROSE zeroes 69.49 67.57 87.98 32.43 31.25 

normalized 3.5 0.3 forward RF ROSE zeroes 69.49 67.57 87.98 32.43 31.25 

normalized 3.5 no best-first SVM no accuracy 81.99 97.89 82.63 2.11 27.33 

normalized 3.5 no forward SVM no accuracy 81.99 97.89 82.63 2.11 27.33 



normalized 3.5 no best-first SVM no zeroes 79.66 92.54 83.21 7.46 35.56 

normalized 3.5 no forward SVM no zeroes 79.66 92.54 83.21 7.46 35.56 

normalized 3.5 0.3 best-first SVM no accuracy 81.99 97.89 82.63 2.11 27.33 

normalized 3.5 0.3 forward SVM no accuracy 81.99 97.89 82.63 2.11 27.33 

normalized 3.5 0.3 best-first SVM no zeroes 78.77 90.63 83.47 9.37 34.38 

normalized 3.5 0.3 forward SVM no zeroes 78.77 90.63 83.47 9.37 34.38 

normalized 3.5 no best-first SVM ROSE accuracy 64.3 64.01 86.31 35.99 26.2 

normalized 3.5 no forward SVM ROSE accuracy 64.3 64.01 86.31 35.99 26.2 

normalized 3.5 no best-first SVM ROSE zeroes 64.12 62.21 87.1 37.79 26.95 

normalized 3.5 no forward SVM ROSE zeroes 64.12 62.21 87.1 37.79 26.95 

normalized 3.5 0.3 best-first SVM ROSE accuracy 64.12 62.21 87.1 37.79 26.95 

normalized 3.5 0.3 forward SVM ROSE accuracy 64.12 62.21 87.1 37.79 26.95 

normalized 3.5 0.3 best-first SVM ROSE zeroes 64.12 62.21 87.1 37.79 26.95 

normalized 3.5 0.3 forward SVM ROSE zeroes 64.12 62.21 87.1 37.79 26.95 

normalized 4 no best-first RF no accuracy 69.86 79.16 74.43 20.84 52.61 

normalized 4 no forward RF no accuracy 69.86 79.16 74.43 20.84 52.61 

normalized 4 no best-first RF no zeroes 69.86 79.16 74.43 20.84 52.61 

normalized 4 no forward RF no zeroes 69.86 79.16 74.43 20.84 52.61 

normalized 4 0.3 best-first RF no accuracy 70.78 84.73 73.47 15.27 57.06 

normalized 4 0.3 forward RF no accuracy 70.78 84.73 73.47 15.27 57.06 

normalized 4 0.3 best-first RF no zeroes 67.47 79.02 73.12 20.98 49.71 

normalized 4 0.3 forward RF no zeroes 67.47 79.02 73.12 20.98 49.71 

normalized 4 no best-first RF ROSE accuracy 63.83 65.31 75.37 34.69 43.44 

normalized 4 no forward RF ROSE accuracy 63.83 65.31 75.37 34.69 43.44 

normalized 4 no best-first RF ROSE zeroes 64.22 60.28 77.63 39.72 44.59 

normalized 4 no forward RF ROSE zeroes 64.22 60.28 77.63 39.72 44.59 

normalized 4 0.3 best-first RF ROSE accuracy 63.99 61.42 76.57 38.58 43.8 

normalized 4 0.3 forward RF ROSE accuracy 63.99 61.42 76.57 38.58 43.8 

normalized 4 0.3 best-first RF ROSE zeroes 62.75 59.04 76.82 40.96 43.91 

normalized 4 0.3 forward RF ROSE zeroes 62.75 59.04 76.82 40.96 43.91 

normalized 4 no best-first SVM no accuracy 70.51 95.09 70.65 4.91 51.98 

normalized 4 no forward SVM no accuracy 70.51 95.09 70.65 4.91 51.98 

normalized 4 no best-first SVM no zeroes 70.1 91.64 71.23 8.36 57.25 

normalized 4 no forward SVM no zeroes 70.1 91.64 71.23 8.36 57.25 

normalized 4 0.3 best-first SVM no accuracy 69.22 97.64 69.49 2.36 33.14 

normalized 4 0.3 forward SVM no accuracy 69.22 97.64 69.49 2.36 33.14 

normalized 4 0.3 best-first SVM no zeroes 70.19 79.26 74.62 20.74 55.28 

normalized 4 0.3 forward SVM no zeroes 70.19 79.26 74.62 20.74 55.28 

normalized 4 no best-first SVM ROSE accuracy 59.93 62.55 72.84 37.45 41.47 

normalized 4 no forward SVM ROSE accuracy 59.93 62.55 72.84 37.45 41.47 

normalized 4 no best-first SVM ROSE zeroes 59.93 62.55 72.84 37.45 41.47 

normalized 4 no forward SVM ROSE zeroes 59.93 62.55 72.84 37.45 41.47 



normalized 4 0.3 best-first SVM ROSE accuracy 59.93 62.55 72.84 37.45 41.47 

normalized 4 0.3 forward SVM ROSE accuracy 59.93 62.55 72.84 37.45 41.47 

normalized 4 0.3 best-first SVM ROSE zeroes 59.93 62.55 72.84 37.45 41.47 

normalized 4 0.3 forward SVM ROSE zeroes 59.93 62.55 72.84 37.45 41.47 

normalized 4.5 no best-first RF no accuracy 66.15 69.34 68.98 30.66 61.72 

normalized 4.5 no forward RF no accuracy 66.15 69.34 68.98 30.66 61.72 

normalized 4.5 no best-first RF no zeroes 66.29 74.47 67.58 25.53 64.85 

normalized 4.5 no forward RF no zeroes 66.29 74.47 67.58 25.53 64.85 

normalized 4.5 0.3 best-first RF no accuracy 66.15 69.34 68.98 30.66 61.72 

normalized 4.5 0.3 forward RF no accuracy 66.15 69.34 68.98 30.66 61.72 

normalized 4.5 0.3 best-first RF no zeroes 65.78 75.58 66.87 24.42 62.94 

normalized 4.5 0.3 forward RF no zeroes 65.78 75.58 66.87 24.42 62.94 

normalized 4.5 no best-first RF ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

normalized 4.5 no forward RF ROSE accuracy 61.98 96.42 61.34 3.58 46.72 

normalized 4.5 no best-first RF ROSE zeroes 61.42 90.56 61.83 9.44 54 

normalized 4.5 no forward RF ROSE zeroes 61.42 90.56 61.83 9.44 54 

normalized 4.5 0.3 best-first RF ROSE accuracy 62.68 93.89 61.87 6.11 61.27 

normalized 4.5 0.3 forward RF ROSE accuracy 62.68 93.89 61.87 6.11 61.27 

normalized 4.5 0.3 best-first RF ROSE zeroes 61.89 90.75 61.87 9.25 61.97 

normalized 4.5 0.3 forward RF ROSE zeroes 61.89 90.75 61.87 9.25 61.97 

normalized 4.5 no best-first SVM no accuracy 65.11 80.23 65.51 19.77 65.17 

normalized 4.5 no forward SVM no accuracy 65.11 80.23 65.51 19.77 65.17 

normalized 4.5 no best-first SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

normalized 4.5 no forward SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

normalized 4.5 0.3 best-first SVM no accuracy 64.26 82.92 64.66 17.08 64.86 

normalized 4.5 0.3 forward SVM no accuracy 64.26 82.92 64.66 17.08 64.86 

normalized 4.5 0.3 best-first SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

normalized 4.5 0.3 forward SVM no zeroes 63.89 85.37 63.88 14.63 65.21 

normalized 4.5 no best-first SVM ROSE accuracy 62.09 84.92 63 15.08 59.3 

normalized 4.5 no forward SVM ROSE accuracy 62.09 84.92 63 15.08 59.3 

normalized 4.5 no best-first SVM ROSE zeroes 60.82 89.06 60.93 10.94 57.78 

normalized 4.5 no forward SVM ROSE zeroes 60.82 89.06 60.93 10.94 57.78 

normalized 4.5 0.3 best-first SVM ROSE accuracy 62.85 92.52 62.19 7.48 58.4 

normalized 4.5 0.3 forward SVM ROSE accuracy 62.85 92.52 62.19 7.48 58.4 

normalized 4.5 0.3 best-first SVM ROSE zeroes 60.57 85.86 62.03 14.14 54.24 

normalized 4.5 0.3 forward SVM ROSE zeroes 60.57 85.86 62.03 14.14 54.24 

 

Processed dataset combined with complexity and      
comprehension 
1 - original values (reported by participants) 
2 - predicted values with regression models using the same feature set as interest 



3 - predited values with regression models using optimized feature set 
Green cells represent values for which accuracy is higher than highest value obtained with ETS only (83.8% for the                   
case at line 2). 

 

Dataset t​i 
Feature 
selection 

Scoring 
function 

Feature 
filter Model Complexity Comprehension Accuracy % of P TPR % of N TNR 

processed 3.5 best-first accuracy 0 RF 0 0 83.51 97.22 83.62 2.78 47.17 

processed 3.5 best-first accuracy 0.3 RF 0 0 83.8 95.24 84.49 4.76 61.08 

processed 3.5 best-first accuracy 0 SVM 0 0 82.63 97.12 83.19 2.88 37.95 

processed 3.5 best-first accuracy 0.3 SVM 0 0 82.63 97.12 83.19 2.88 37.95 

processed 3.5 best-first accuracy 0 RF 1 0 84.35 93.13 85.54 6.87 65.27 

processed 3.5 best-first accuracy 0.3 RF 1 0 84.35 93.13 85.54 6.87 65.27 

processed 3.5 best-first accuracy 0 SVM 1 0 82.25 96.08 83.51 3.92 40.67 

processed 3.5 best-first accuracy 0.3 SVM 1 0 82.25 96.08 83.51 3.92 40.67 

processed 3.5 best-first accuracy 0 RF 2 0 83.66 96.26 84.02 3.74 52.67 

processed 3.5 best-first accuracy 0.3 RF 2 0 83.66 96.26 84.02 3.74 52.67 

processed 3.5 best-first accuracy 0 SVM 2 0 82.18 97.08 83 2.92 33.42 

processed 3.5 best-first accuracy 0.3 SVM 2 0 82.18 97.08 83 2.92 33.42 

processed 3.5 best-first accuracy 0 RF 3 0 83.94 96.9 83.97 3.1 53.08 

processed 3.5 best-first accuracy 0.3 RF 3 0 82.24 96.98 83.07 3.02 33.83 

processed 3.5 best-first accuracy 0 SVM 3 0 81.95 98.21 82.5 1.79 22.5 

processed 3.5 best-first accuracy 0.3 SVM 3 0 81.63 98.89 82.13 1.11 9.33 

processed 3.5 best-first accuracy 0 RF 0 1 86.39 91.55 87.33 8.45 75.5 

processed 3.5 best-first accuracy 0.3 RF 0 1 86.47 91.82 87.23 8.18 75.85 

processed 3.5 best-first accuracy 0 SVM 0 1 85.01 89.97 87.19 10.03 61.48 

processed 3.5 best-first accuracy 0.3 SVM 0 1 85.01 89.97 87.19 10.03 61.48 

processed 3.5 best-first accuracy 0 RF 1 1 85.83 92.17 86.69 7.83 72.98 

processed 3.5 best-first accuracy 0.3 RF 1 1 85.83 92.17 86.69 7.83 72.98 

processed 3.5 best-first accuracy 0 SVM 1 1 81.75 85.09 87.36 14.91 49.4 

processed 3.5 best-first accuracy 0.3 SVM 1 1 79.87 83.58 86.89 16.42 41.54 

processed 3.5 best-first accuracy 0 RF 0 2 83.49 96.15 84 3.85 52.42 

processed 3.5 best-first accuracy 0.3 RF 0 2 83.49 96.15 84 3.85 52.42 

processed 3.5 best-first accuracy 0 SVM 0 2 81.69 99.86 81.8 0.14 0 

processed 3.5 best-first accuracy 0.3 SVM 0 2 81.28 95.02 83.31 4.98 36.1 

processed 3.5 best-first accuracy 0 RF 2 2 83.34 97.45 83.44 2.55 41.33 

processed 3.5 best-first accuracy 0.3 RF 2 2 83.06 97.87 83.16 2.13 35 

processed 3.5 best-first accuracy 0 SVM 2 2 79 92.24 83.05 7.76 30.61 

processed 3.5 best-first accuracy 0.3 SVM 2 2 78.73 90.68 83.4 9.32 32.54 

processed 3.5 best-first accuracy 0 RF 0 3 84.35 93.13 85.54 6.87 65.27 

processed 3.5 best-first accuracy 0.3 RF 0 3 84.35 93.13 85.54 6.87 65.27 

processed 3.5 best-first accuracy 0 SVM 0 3 82.52 96.08 83.51 3.92 40.67 

processed 3.5 best-first accuracy 0.3 SVM 0 3 82.52 96.08 83.51 3.92 40.67 

processed 3.5 best-first accuracy 0 RF 3 3 82.94 98.51 82.91 1.49 32 



processed 3.5 best-first accuracy 0.3 RF 3 3 82.45 99.04 82.48 0.96 21.5 

processed 3.5 best-first accuracy 0 SVM 3 3 79.18 96.23 81.78 3.77 9.08 

processed 3.5 best-first accuracy 0.3 SVM 3 3 77.73 94.5 81.56 5.5 9.62 

Normalized dataset combined with complexity and      
comprehension 
1 - original values (reported by participants) 
2 - predicted values with regression models using the same feature set as interest 
3 - predited values with regression models using optimized feature set 
Green cells represent values for which accuracy is higher than highest value obtained with ETS only (83.67% for the                   
case at line 1 or 2). 

 

Dataset t​i 
Feature 
selection 

Scoring 
function 

Feature 
filter Model Complexity Comprehension Accuracy % of P TPR % of N TNR 

normalized 3.5 best-first accuracy 0 RF 0 0 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 best-first accuracy 0.3 RF 0 0 83.67 94.51 84.65 5.49 59.17 

normalized 3.5 best-first accuracy 0 SVM 0 0 81.99 97.89 82.63 2.11 27.33 

normalized 3.5 best-first accuracy 0.3 SVM 0 0 81.99 97.89 82.63 2.11 27.33 

normalized 3.5 best-first accuracy 0 RF 1 0 83.54 97.75 83.48 2.25 44.5 

normalized 3.5 best-first accuracy 0.3 RF 1 0 81.97 93.11 84.3 6.89 43.91 

normalized 3.5 best-first accuracy 0 SVM 1 0 80.01 90.8 84.03 9.2 36.65 

normalized 3.5 best-first accuracy 0.3 SVM 1 0 79.53 92.45 83.22 7.55 32.97 

normalized 3.5 best-first accuracy 0 RF 2 0 81.74 99.29 82.06 0.71 6.33 

normalized 3.5 best-first accuracy 0.3 RF 2 0 82.34 97.14 83.09 2.86 33.93 

normalized 3.5 best-first accuracy 0 SVM 2 0 81.17 97.76 82.24 2.24 15.17 

normalized 3.5 best-first accuracy 0.3 SVM 2 0 80.81 97.4 82.18 2.6 16.31 

normalized 3.5 best-first accuracy 0 RF 3 0 83.04 98.69 82.91 1.31 32 

normalized 3.5 best-first accuracy 0.3 RF 3 0 82.05 98.87 82.31 1.13 18.5 

normalized 3.5 best-first accuracy 0 SVM 3 0 81.34 98.61 82.08 1.39 11 

normalized 3.5 best-first accuracy 0.3 SVM 3 0 81.34 98.61 82.08 1.39 11 

normalized 3.5 best-first accuracy 0 RF 0 1 86.07 93.48 86.33 6.52 73.3 

normalized 3.5 best-first accuracy 0.3 RF 0 1 84.98 92.48 86.18 7.52 68.28 

normalized 3.5 best-first accuracy 0 SVM 0 1 83.76 90.58 86.24 9.42 58.15 

normalized 3.5 best-first accuracy 0.3 SVM 0 1 82.74 89.4 86.16 10.6 51.71 

normalized 3.5 best-first accuracy 0 RF 1 1 85.85 94.2 85.96 5.8 72.67 

normalized 3.5 best-first accuracy 0.3 RF 1 1 85.06 94.12 85.56 5.88 69.67 

normalized 3.5 best-first accuracy 0 SVM 1 1 81.22 98.43 82.05 1.57 9.5 

normalized 3.5 best-first accuracy 0.3 SVM 1 1 78.6 83.16 86.42 16.84 40.7 

normalized 3.5 best-first accuracy 0 RF 0 2 83.26 97.43 83.44 2.57 43.33 

normalized 3.5 best-first accuracy 0.3 RF 0 2 84.34 95.81 83.57 4.19 40.83 

normalized 3.5 best-first accuracy 0 SVM 0 2 81.08 95.91 82.78 4.09 28.73 

normalized 3.5 best-first accuracy 0.3 SVM 0 2 80.65 94.23 83.21 5.77 31.57 

normalized 3.5 best-first accuracy 0 RF 2 2 83.36 97.56 83.47 2.44 41.33 



normalized 3.5 best-first accuracy 0.3 RF 2 2 82.36 96.87 83.18 3.13 36.08 

normalized 3.5 best-first accuracy 0 SVM 2 2 82.58 98.75 82.63 1.25 21.83 

normalized 3.5 best-first accuracy 0.3 SVM 2 2 82.02 99.18 82.19 0.82 13 

normalized 3.5 best-first accuracy 0 RF 0 3 84.09 97.26 83.92 2.74 51.33 

normalized 3.5 best-first accuracy 0.3 RF 0 3 82.06 97.62 82.78 2.38 25 

normalized 3.5 best-first accuracy 0 SVM 0 3 81.7 95.69 83.22 4.31 37.75 

normalized 3.5 best-first accuracy 0.3 SVM 0 3 81.7 95.69 83.22 4.31 37.75 

normalized 3.5 best-first accuracy 0 RF 3 3 83.61 97.83 83.5 2.17 44.5 

normalized 3.5 best-first accuracy 0.3 RF 3 3 82.59 99.15 82.5 0.85 21.5 

normalized 3.5 best-first accuracy 0 SVM 3 3 82.26 98.33 82.55 1.67 24.08 

normalized 3.5 best-first accuracy 0.3 SVM 3 3 82.1 98.86 82.35 1.14 15 

 
 


