
Facial Animation Retargeting using Recurrent Neural Networks

TEUS VAN OOSTEROM∗, Utrecht University, The Netherlands
PROJECT SUPERVISOR: DR. ZERRIN YUMAK, Utrecht University, The Netherlands
SECOND SUPERVISOR: PROF. DR. REMCO VELTKAMP, Utrecht University, The Netherlands

Fig. 1. These screenshots are the visual result of frame 400 of the angry testing set. The left side of the figure shows the RBFN results. The right side shows the
RNN results. The motion capture used is the middle images. It is colour-coded, red are the eyes, green is the lower face (tip of the nose and below), blue is the
upper face.

ABSTRACT
Games and movies use fully animated characters more and more. Animating
these characters manually is a lot of work, and subtle expressions can be
missed. Accurate automated mapping of the actor’s face to a virtual character
is essential to have. To be able to do this, the mapping between an actor’s face
and the corresponding virtual character needs to be calculated. In a previous
paper, an artificial neural network was used, which led to the suggestion to
try deep neural networks. No paper has been published using deep neural
networks for this problem yet. The usage of a convolutional neural network
(CNN), deep belief network (DBN), and recurrent neural network (RNN) is
discussed to conclude that RNN shows the most promise of the three. The
reason behind this is that RNN can use the prior and future frames to predict
the current, which in theory would be helpful for this problem. A radial
basis function network or RBFN with Hardy multi-quadric kernel is used as
a comparison against RNN. Figure 1 shows a comparison for all characters
used for a frame in the angry test set. In that figure, RBFN has the eyes and
mouth more closed than RNN has. To determine how RNN compares to RBF
a survey was held, and a cost function was made for machine learning results.
The survey results show that RBFN is significantly better for three out of the
five expressions, all the characters, and in general. The machine learning
results show that RBFN performs better as well, with the most significant
difference in the mouth area. However, only part of the possibilities of RNN
is explored. Various options to improve the results of RNN are listed in
the future work section. It is likely that with future research RNN can be
improved to be equal or better than RBFN.

CCS Concepts: • Computing methodologies → Animation; Machine
learning;

Additional Key Words and Phrases: Facial Animation Retargeting, Deep
Neural Networks, Recurrent Neural Networks

∗3897095

Authors’ addresses: Teus van Oosterom, Utrecht University, Princetonlaan 6, Utrecht,
Utrecht, 3584 CB, The Netherlands, teusvanoosterom@hotmail.com; Project supervisor:
dr. Zerrin Yumak, Utrecht University, The Netherlands, z.yumak@uu.nl; Second supervi-
sor: prof. dr. Remco Veltkamp, Utrecht University, The Netherlands, r.c.veltkamp@uu.nl.

1 INTRODUCTION
Facial expressions are an essential part of communication. When
using just audio or text, people can misinterpret the meaning of
words. When using digital characters in movies and games, it is
essential that the facial expression delivers that extra bit of infor-
mation. Animators can give virtual characters facial expressions
manually. However, this task is time-consuming, and the animator
will probably miss subtle expressions.

Using facial motion capture to capture expressions from an actor
and transforming them into a digital character solves these issues.
For this transformation, the motion capture data mapping to the
blendshape weights is learned. The conventional approach is using
RBFN or radial basis function network. RBFN can map non-linear
functions linearly by using a kernel function and can be used with
a variety of input and output formats. However, RBFN has its disad-
vantages as well. Two observations were done after implementing
RBFN. Looking purely at the eyes, RBFN can result in a blendshape
weight that is too low, which leads to the character eyes not closing
entirely. For a character with cartoon eyes, it is more noticeable if
the eyes do not close properly. Besides this, it looks like the eyes
are overreacting to changes of the motion capture data. The over-
reacting leads to frequent movement of the eyelids, which are not
present in the video of the actor. It can also lead to overfitting arte-
facts [46]. Furthermore, in theory, the representation can be outdone
[14]. A proposed approach which on paper should be outperforming
RBFN is an artificial neural network or ANN. However, ANN does
not result in better representation [14]. It did, however, lead to the
suggestion of using deep learning approaches.
In the future work section of Costigan et al. [14] there is a sug-

gestion to use deep neural networks for this problem. No research
has been published using deep neural networks for facial animation
retargeting. This research first compares different deep neural net-
works before exploring the possibilities of the best option, which is
using a recurrent neural network. Therefore, the research question

of this research is: "Does a recurrent neural network to learn the
mapping from an actor’s face to a virtual model result in a better
result than radial basis functions?". To answer this research question
a cost function is made, and a user experiment is done. Researching
a deep neural network, in this case, a recurrent neural network,
for this problem is a proof of concept type of research. Not all pos-
sible parameter settings can be evaluated. However, this research
gives insight into what does work. Besides this, future work options
which have a good chance of providing improvements are found.

The structure of the paper is as follows. First, related work is
presented in section 2. Motivations for the presented research are
listed in section 3. Specifics about the dataset and processing the data
are in section 4. Subsequently, different facial animation retargeting
methods are explained in section 5. Results are shown in section
6. The discussion will be in section 7 and the conclusion will be in
section 8.

2 RELATED WORK
Research into virtual faces and facial animation goes back for decades.
The origins of facial animation lay in 1972 with the first 3D facial
animation created [36]. At the 12th SIGGRAPH in July 1985, the
first computer animated film was presented [3]. This film was an
8-minute long and was made by four programmers in about four
years. The first full-length feature film produced entirely using
the technology of computer animation was Toy Story in 1995 [23].
Another significant milestone was in Lord of the Rings: The Two
Towers. A system of sculpted faces was created to cover the range of
expressions of the character Gollum [45]. There was not any facial
motion capture data on Gollum, so animators had to do it all by hand,
which was a lot of work. Gollum was the first computer-generated
character to be put in a movie with human actors. Over the last
decade, more and more research has been done in this field. The
progress made resulted in that using facial motion capture became
widely applied in games and animation movies.

In sections 2.1, 2.2, 2.3 and 2.4 different facial animation retar-
geting techniques are presented, which are cross-mapping, parallel
parametrisation, manifold-based techniques and expression regu-
larisation respectively. This catergorisation is based on the related
work section of Zell et al. [57]. In section 2.5 three neutral net-
works, deep belief networks, convolutional neural networks, and
recurrent neural networks, are explained, with their advantages and
disadvantages.

2.1 Cross-mapping
Cross-mapping uses training examples of corresponding facial ex-
pressions of the captured actor and the virtual character to learn the
mapping. Different techniques can be used to learn this mapping.
From basic mappings like piece-wise linear mapping [10] and locally
linear embedding [54] to advanced machine learning methods like
RBFN [17]. In Song et al. [46] a hybrid retargeting model is made
with kernel canonical correlation analysis or kCCa and RBFN to
take away the disadvantage that RBFN can overfit. In Kholgade et al.
[28] simplicial basis is used. A simplicial basis maps every input ex-
pressions as a combination of three expressions using non-negative
barycentric coordinates. Bouaziz and Pauly [6] use shared Gaussian

process latent variable models or GPLVM. This method can also use
frames without knowing the corresponding blendshape weights to
train with, which is an advantage.

An advantage of using cross-mapping is that it can work for any
character, even non-human like characters, and any facial rig. How-
ever, this method highly depends on good and numerous training
examples. All expressions used need to be in the training exam-
ples for it to work correctly. If one of the testing expression is too
different from the training examples, then it probably leads to an
inaccurate result.

2.2 Parallel Parametrisation
If two facial rigs are semantically equivalent, transferring an ani-
mation is easy. This process copies the control parameters of one
facial rig to another. However, having semantically similar facial
rigs is not that easy. Doing this manually costs much time, requires
excellent modelling skills and a good knowledge of the anatomy of
the face. Several approaches have been proposed to automatically
transfer blendshapes from a generic face model to a neutral target.
Noh and Neumann [33] use a source blendshape rig and the

targets neutral face. Between the source and target, a dense surface
corresponds is established. Then for each expression, the per-vertex
displacement is transferred. This approach is not perfect, andmanual
improvement is required, but this requires less time than doing
it manually from the start. Sumner and Popović [47] is based on
this approach. It requires a manually created correspondence map
between the triangles of the source and target, which requires less
manual labour than Noh and Neumann [33]. RBFN in Orvalho et
al. [34], Seol et al. [42], and Seol et al. [44] are approaches based on
Noh and Neumann [33].

Various improvements on RBFN have been suggested. Li et al. [31]
uses a set of example poses of a target character to generate facial
blendshape rigs. This set of examples have to be created manually
which requires some work. Saito [39] uses contact and smoothness
constraints to prevents penetrations or separations. Xu et al. [56]
decomposes high-fidelity facial performances into high-level facial
feature lines, large-scale facial deformation and fine-scale motion
details. The final result is easily editable for the final touches. Bouaziz
et al. [7], Ichim et al. [25], and Seol et al. [43] have a different
approach, which is to use iterative refinement schemes for real
humans. This approach only works for targets with a human-like
structure.
Parallel parametrisation approaches all require the target and

source model to be semantically equivalent. When this is not the
case, these approaches will often fail to preserve the facial expres-
sion. This failure can lead to unnatural face deformations if the
target needs smaller weights than the source. Seol et al. [42] uses
velocities over a sequence of captured frames to prevent artefacts.
In Zell et al. [57] the transferred blendshapes automatically adapt
to the actor’s range of motion. This approach requires a motion
sequence of an actor and the sparse correspondences between the
source and the target.

2

2.3 Manifold-based Techniques
The current progress on transfer learning for classification, regres-
sion and clustering problems in categorised and reviewed in Pan
and Yang [35]. Aligning the ranges of motion between the source
and the target in Zell et al. [57] is based on this. Using this, transfer
results are improved while preserving the geometric structure.

Fan et al. [19], andWang andMahadevan [52] use another transfer
learning approach. This approach uses unsupervised learning to be
able to use frames without the corresponding blendshape weights
as well. A different approach is using automatic translation or image
set matching in Cui et al. [15] and Pei et al. [37]. While not directly
related to facial animation retargeting, the methods proposed in
both papers can be used in the transferring stage. Fan et al. [19], and
Wang and Mahadevan [52; 53] solve the eigendecomposition of the
graph Laplacian to transfer between embedding spaces. Combining
dimensionality reduction can optimise these embedding, which is
the crucial aspect of manifold-based techniques, with additional
constraints.
The main advantage of using dimensionality reduction is that

when reduced to a low enough dimensional space Euclidean distance
can be used to describe the similarities between the data sets. When
manifold-based techniques are used to transfer blendshapes from
source to target, the proportions and ranges of motion of the source
should match.

2.4 Expression Regularisation
Different approaches are used to reduce the number of artefacts in
blendshape animation. Restricting blendshape weights to a fixed
interval is used in Bregler et al. [8], and Chuan and Bregler [12]. In
Seo et al. [41] large weights get penalized. However, the downside
of using these approaches is that a valid combination of blendshape
weights is not possible anymore because of these restrictions Seol
et al. [44]. It can also lead to an invalid combination of blendshape
weights being allowed.

Principal component analysis or PCA is used to reduce the num-
ber of features. PCA-based priors are used in Anjyo et al [1], and
Lau et al. [30] for direct blendshape manipulation and in Seol et al.
[42] for retargeting. Lau et al. [30] uses PCA to learn a statistical
model. This model defines the prior term and creates a constraint
that the generated facial expressions are natural. Seol et al. [42]
uses PCA to create an eigenvector basis and corresponding eigen-
values. Multivariate normal distribution is done on the PCA data to
construct a prior model.

A different approach is using smooth skin deformation. For this,
a prior can be used to penalise surface deformations. Comparable
approaches are proposed in Barrielle et al. [2], Bicket et al. [4], and
Ichem et al. [26].

2.5 Neural Networks
In Costigan et al. [14] ANN is compared to RBFN. The testing errors
were similar while ANN is harder to use. In the future work section
is a suggestion to use deep learning methods and compare it to
RBFN. Three methods are compared to choose which one to use.
CNN or convolutional neural network is a deep, feed-forward

artificial neural network. It is used for image and video recognition

[29], recommendation systems [49] and natural language processing
[13] among other things. An advantage of using CNN is that it needs
minimal preprocessing. However, the computation cost is relatively
high.
DBN or deep belief network is a deep neural network. The top

layers have undirected, symmetric connections and the lower layers
have top-down directed connections. It is used for EEGs [32] and
drug discovery [21] among other things. DBN was one of the first
effective deep learning algorithms when it is trained greedily [24].
An advantage of DBN is that it can do unsupervised learning to
become a feature detector. However, the effect of unsupervised
learning is not yet known.

RNN or recurrent neural network is an artificial neural network.
It is composed of LSTM, long short-term memory, units. An LSTM
unit has a cell, forget gate, input gate, and the output gate. It is
used for handwriting recognition [22], speech recognition [40] and
speech animation [38; 48] among other things. An advantage of is
that it uses multiple time steps, so it uses one or more prior frames
to predict the current frame. RNN can also use bidirectional LSTM or
BLSTM like done in Sadoughi and Busso [38]. Bidirectional uses the
future besides the past to predict the current frame. A disadvantage
of RNN is that the more time steps used, the longer the computation
time is.

3 MOTIVATION
Facial animation retargeting uses the actor’s facial motion capture
data to manipulate the face of a virtual character. This manipulation
is done by calculating a mapping to go from the motion capture
data to blendshape weights. Numerous approaches are listed in
the related work section, section 2. Of those solutions, RBFN with
the Hardu multi-quadric kernel is the current standard [18; 46].
Machine learning technics have been used for this problem. Like
Costigan et al. [14], which uses an ANN. The results were similar
to RBFN while it requires a lot more work. The future work section
of Costigan et al. [14] suggested using a deep neural network. This
research is exploring that suggestion. In section 2.5, the advantages
and disadvantages of CNN, DBN, and RNN are listed. Of those three
RNN has the most potential in theory. The contributions of this
research are as follows:

• No papers could be found using a deep neural network for
facial animation retargeting. The results of using RNN do not
indicate if another deep neural network could be better than
RBFN. However, the shortcomings of RNN can be used to
theorise if another deep neural network could be better than
RNN.

• Since no paper using a deep neural network could be found,
a paper using a recurrent neural network for facial animation
retargeting has not been found. This research is just a start
of researching if RNN could be better than RBFN. Many pa-
rameter settings could not be evaluated in this research due
to time constraints. This research shows the parameters and
range of those parameters explored, which combination is
the best. A lot of future work options are found which could
improve the results from RNN. These options are listed in
section 7.2.

3

4 DATA
A facial motion-captured dataset needs to be picked for this research.
To choose a dataset a comparison paper [55] was used. In table 1
of that paper, fourteen datasets are listed. A requirement of the
dataset for this research is that the person getting recorded needs
to speak. The person needs to talk English. Also, a single person
needs to have plenty of data. Using different people in one training
set is a complect problem which is not explored in this paper. Also,
the dataset has to contain different expressions. Selecting a dataset
which is equally divided over all the expressions can quickly be done
then. Multiple datasets have these requirements. The IEMOCAP
dataset [11] was picked, since it has over an hour of data at 120
fps for each actor on average. This dataset should contain enough
data for RNN. Another advantage of the IEMOCAP dataset is that
the videos are manually evaluated to list the timestamps for each
expression in all the videos.
The IEMOCAP dataset uses Facial action parameters or FAPs.

This dataset has 53 facial markers, as shown in 22 in appendix C.
The RHD and LHD are used to determine the rotation and position
of the head. It does not influence the face. The hand coordinates are
not used. The expressions listed in the manual evaluation are limited
to angry, frustrated, happy, neutral, sad and other. The dataset has
five sessions. Each session has a male and a female talking to each
other. Each recording has one person being motion captured, so
each session happens twice. The data of the female from the first
session is used throughout this research. In theory, the optimised
parameters should also give good results using another person its
motion capture data. However, this has not been tested.

The dataset has some not a number values, and some values which
are not humanly possible. Therefore the dataset was first prepro-
cessed. This is explained in section 4.1. The results of RNN have a
lot of plateaus and sudden jumps. To smooth this out postprocessing
is used. This is explained in section 4.2 respectively.

4.1 Preprocessing
Some markers could not be captured resulting in not a number or
NaN values in the dataset. To fix this issue for a NaN value linear
interpolation is used between the previously known value and the
next known value to replace the NaN value. Besides this problem,
some positions of the markers are not possible. For example, having
an eyelid marker lower than the RC8 or LC8 marker from figure 22
in appendix C. It is not possible that a marker moves a lot in a single
time step, so for that reason if a value changes more than 0.5 in a
time step it is altered similarly as the NaN problem. The value of
0.5 is defined as a maximum of normal movement by looking at the
dataset and the resulting picture of the motion capture values. Here
it takes the previous value and finds the next value which differs
less than 0.5 times the time steps taken from the last value to this
value. This approach might not fix consistent outliers. If there are
enough frames with similar outliers, this approach will smooth out
the transitions towards the outliers and back to a normal range.

4.2 Post-processing
The changes of the test results of RNN are jumping up and down
between values. The current frame may have the minimum value

and the next frame the maximal value. The results are the same for
a couple of frames, and then it changes a lot in a single frame. The
significant changes resulted in videos where the face was changing
abruptly. For example, the right eye in the angry results has for frame
191 the value 0.18 and for frame 192 the value 0.52. This sudden
jump in blendshape weight results in non-human-like behaviour.
This issue is solved by post-processing. Given the current frame, it
looks to the tenth frame ahead. The current frame new value is the
old value plus the difference of the previous frame and the tenth
frame ahead divided by 11. This value is capped at ±0.05 to smooth
out the outliers. The result loses some predictions of the model, but
the video shows smooth transitions, which is more important.

5 APPROACH
This research compares RNN with RBFN. Fourteen blendshapes are
used for both approaches. These are: angry, frown, smile, surprised,
mouth open, mouth narrow, right eye squint, left eye squint, right
eye closed, left eye closed, right brow up, left brow up, mouth smile,
and mouth frown. Throughout this section, the cost is used to deter-
mine which option is better. To calculate this, predicted blendshape
weights are translated back to motion capture values. The Euclidean
distances between these values and the actual values are used to
determine the cost.
In section 5.1, the method which calculates the blendshapes

weights of the training data for both RBFN and RNN is explained.
Then in section 5.2, RBFN is explained. Five training set selection
approaches are evaluated to determine which one to use as a com-
parison. At last in section 5.3 RNN is explained. RNN has many
parameters. In section 5.3.1 reducing the number of possible blend-
shape weights predicted by a single model is tested. In sections 5.3.2,
and 5.3.3, the number of hidden layers and the reduction of the di-
mensions of the input are evaluated. Then in section 5.3.4 increasing
the timesteps is tested. Using the future frames besides the previous
frames using a bidirectional LSTM or BLSTM is evaluated with and
without regions. In sections 5.3.5, 5.3.6, and 5.3.7 using a dropout
layer, decreasing the batch size and increasing the iterations are
tested. Then in section 5.3.8 using multiple LSTM cells is evaluated.
The last section, section 5.3.9, combining multiple LSTM cells in
combination with using more iterations is tested. Besides this, the
best setup found is listed.

5.1 Motion Capture Driven
Both RBFN and deep neural networks need to have motion capture
data with the corresponding blendshape weights. Determining those
weights manually is a labour intensive job. The following formula,
inspired from Joshi et al. [27], estimates the blendshape weights
automatically by minimising the difference between the motion
capture data and the data created by the blendshape weights:

min
k∑
j=1

(mj − (neutralj − (

n∑
i=1

αiVi j)))
2

Where m is a single motion capture row and k is the amount
of markers times three, since each marker has xyz coordinates.
neutral is a motion capture data row corresponding to a virtual
face with all the blendshapes weights at 0. In the formula, n is the

4

Fig. 2. The pipeline used for RBFN. The number of hidden layers is the same as the number of training examples. The first digit of the weight is the blendshape,
the second digit is the hidden layer. The setup used in this paper has 100 hidden layers and 14 summations and blendshape weights. Two types of arrows are
used for visualisation reasons only.

number of blendshapes, and αi the blendshapes weight. The formula
calculates the blendshapes weights of blendshape i . The range of
the weight value is between 0 and 1. Vi j is the displacement of
point pj compared to neutralj when blendshape i its weight is set
at 1. For each motion capture row, this formula is used separately,
since they do not influence one another. This formula minimises
with a best improvement hill climbing algorithm. Due to the nature
of the problem, it is not likely that the optimum found is only
a local optimum since blendshapes do not contradict each other.
This formula is used to create training examples for RBFN, which
is explained in section 5.2, and for RNN, which is explained in
section 5.3. The frames which need corresponding blendshapes is
then the input, and the output is those blendshape weights. The
cost calculation is the reverse of this function. Using this function
only will have a low-cost function and can be lowest possible. It
is the lowest if the results of the hill climber for each frame are
global optima. However, in the dataset even after pre-processing,
there is still noise. If a video is made with these results, it will
sometimes show a shaking mouth, eyelids, and brows. There is also
a synchronisation issue with the eyes, where the left eye is halfway
closed while the right eye is fully open. This behaviour is unnatural.

Therefore, the cost function can not only be used to compare RBFN
and RNN. A survey with video results needs to be used.

This formula does differ a bit from Joshi et al. [27] since they do
not use neutralj . It is used there in combination with RBFN. The
formula presented above needs to have this term, without it, the
eyes never open. For example, the y coordinate of the left eye closed
is closer to the displacement then open. Without using the neutral,
the function will always return a blendshape weight of 1. Using
neutral prevents this issue.

5.2 Radial Basis Function Network
Radial basis function network or RBFN was first proposed in Broom-
head and Lowe [9]. Originally RBFNwas invented for military usage.
However, it is used in a lot more fields including but not limited
to facial animation retargeting. The following formula is used to
calculate a single blendshape weight:

f (xi) =
N∑
n=1

wnϕn (xi)

Where xi is the input motion capture row and ϕn (xi) is the kernel
function. The training data is used to learn wn is a linear weight.

5

This linear weight is not the same as a blendshape weight. Each
blendshape has its own linear weights. N is the amount of training
data used to get the weight vector. The testing process is shown in
figure 2. The input is the testing set. Each hidden layer calculates
its kernel. The number of hidden layers is the same as the number
of training examples. This result is multiplied by the linear weights,
which are different for each blendshape. The linear weights are
calculated in the training phase. For each blendshape, a summation
of the results of the multiplication is done. The outcome is a single
weight for each blendshape.

The kernel function used is the Hardy multi-quadric from Song
et al. [46]. For facial animation retargeting, RBFN with the Hardy
multi-quadric kernel is the current standard [18; 46]. Therefore,
comparing the results of RNN with this combination is the best
way to see how good RNN is. The following formula is the hardy
multi-quadric kernel:

ϕ j (xi) =
√
|xi − x j |2 + s2j

Where the square root of the distance between the xi and x j plus
sj term, which is the distance between x j and the closest point. This
can be calculated in the following formula:

sj = min
j,i

(x j − xi)

To be able to calculate blendshape weights the linear weights
vectorw needs to be calculated first. For this, the blendshapeweights
calculated in the previous section is used. Let t be a vector of the
blendshape weights of one blendshape and H be a matrix with
Hi j = ϕ j (xi). The previous section, section 5.1, explains how t is
calculated. The following formula shows the relation between the
variables:

t = Hw

Sincew is the variable that needs to be learned, the formula needs
to be rewritten. Taking the inverse of H solves this issue. Then the
following formula can be used to calculatew :

H−1t = w

Having determined the value of w this RBFN can be used to
calculate the value of the blendshape weight for input xi .

Different papers use a different amount of training data for RBFN.
Dutreve et al. [18] uses a training set of size 25. However, in that
paper, only 24 motion capture markers are used. Costigan et al. [14]
uses a training set of size 33. The dataset of that paper consists of
59 motion capture markers. If a training set is too small compared
to the dimension of the tracking data, the model might underfit [5].
For that reason, Costigan et al. [14] uses PCA with a variance of
85% and three regions to reduce 177-dimensional tracking data to
16 principal components. The three regions used are the lower face,
upper face, and eyes.
Using all the possible training data is not an option. The reason

is that both the training and testing phase will take too much time.
Inversing theH matrix is the biggest issue for the training phase. The
big O notation of inverting a matrix is O(n2.373). If all the possible
training data is used, the training phase will probably take months.

The testing phase will also be slow since for each training example
the kernel needs to be calculated. Therefore, two main approaches
were evaluated, picking at random equally divided over the five
expressions and picking the min and max values. Picking the min
and max values was divided in picking for each of the coordinates
of each marker and picking for each marker. A formula calculates
the distance from the marker to the origin to find the min and max.
If a row is multiple times a min or max, it will be selected only once.
Picking at random was done for 100 to 300 rows in steps of 100. The
results can be seen in figure 3. The values used to create this figure
can be found in table 6 in appendix B. The figure shows that picking
100, 200, and 300 training frames at random result in about the same
result. The data in the table shows that picking 300 training frames
at random is the best. However, using more training data results in
a slow training and testing phase. The training phase only happens
once, so that can be neglected, but having a slow testing phase is
not desirable. Besides this, Dutreve et al. [18] and Costigan et al.
[14] do not use that many training frames. Therefore, picking 100
training frames at random was chosen to have it run fast, but still,
have good results.

Fig. 3. Picking the dataset random or picking the min and max of each
value are about the same in the results. However, the training and testing
time increases rapidly. Therefore, the best option is random 100, since it is a
good balance between training and testing time and the result.

5.3 Recurrent Neural Network
A recurrent neural network or RNN uses motion capture data of
multiple frames to predict one frame. For an LSTM usually the
current and previous frames are used. For a BLSTM the future frames
can be used as well. This is explained in section 5.3.4. The training
set used has sequences of motion capture data of the same length.
In this section, two training sets are used. One for the sections 5.3.1,
5.3.2, and 5.3.3 and one for the sections 5.3.4, 5.3.5, 5.3.6, 5.3.7, 5.3.8,
and 5.3.9. The first training set has the corresponding blendshape
weights of the last frame of each sequence since it uses only the
previous frames. The second training set has the blendshape weights
of the middle frame of each sequence so that each sequence has the
same amount of previous and future frames. To test this approach
and to test if multiple previous and future frames help a new test set
was drawn for the section 5.3.4 and beyond. The calculation of these
blendshape weights is explained in section 5.1. The training set used
for the first three experiments only has a time step value of 2. Both
training sets consist of 100000 training examples, equally divided

6

Fig. 4. The pipeline of predictions. Two types of arrows are used for visualisation reasons only. This image illustrates that each of the fourteen blendshape
weight, which are listed in 5.

over the angry, frustrated, happy, neutral, and sad expression. Each
blendshape has its own model because the RNN implementation
of tensorflow expects one value as the weight. Multiple models are
used for each blendshape, the reason and how it works is explained
in section 5.3.1. The output of each model is an array of odds for
each possible predictions. The highest odd is used as the prediction.
For BLSTM this is slightly different, which is explained in 5.3.4. At
last, the predictions for each blendshape are combined in an array
and written away to a text file. This process is shown in figure 4.
In this section, five-fold cross-validation is used for all the ex-

periments. Cross-validation is used to optimise the parameters in
general, not just for the testing set. The folds are picked random,
but using the same training set for different experiments always
results in the same folds being used. To be able to find the optimal
parameters, all tests in this section are run on the CPU because
running it on the GPU is not deterministic. Running on the GPU
could lead to parameter settings suddenly performing good or bad,
while if it is repeated it could yield the opposite result. Running
tests on CPU does, however, run a lot slower than on the GPU.

First splitting up one prediction for all the possible weights is eval-
uated. This is done in section 5.3.1. Then in section 5.3.2 the hidden
layer parameter is evaluated for the values 400 up to and including
800 in steps of 100. Reducing the dimensions of the motion capture
data input is explored in section 5.3.3. Reducing the dimensions
is done by defining region-specific and blendshape-specific input.
Besides the previous frames, the future frames can be used as well.

Using the future frame and time step values, which is the number
of frames backwards and forwards, from 2 up to and including 6 are
evaluated in section 5.3.4. A dropout layer randomly drops input
data each in each training iterations. Using a dropout layer prevents
overfitting. The results of using a dropout chance of 25% and 50%
are shown in section 5.3.5. The batch size parameter is set to 200
for all these experiments. Lowering this parameter to 20 and 100
is tested in section 5.3.6. In section 5.3.7 the iterations for the first
prediction is increased to 100000 and evaluated. The number of basic
LSTM cells used is explored in section 5.3.8. The number of basic
LSTM cells is tested for up to four cells. The last section, section
5.3.9 combining the results from sections 5.3.7 and 5.3.8 is evaluated.
In this section, the final parameter values are listed as well.

5.3.1 Multiple predictions. Using one model to predict all possible
101 weights, 0 up to and including 100, 80% of the predictions is 0.
This is way too much 0 predictions, which results in a high cost.
The reason why there are so many 0 predictions might be because
the training set has 0 as a blendshape weight 39% of the time. Other
blendshape weights do not have the same amount of representation.
The differences in the amount of representation for each possible
blendshape weight is most likely the reason for this. Therefore,
splitting the prediction up into multiple smaller predictions might
result in an improvement. For this, three methods of dividing the
prediction up are explored. These are ceil, floor or round the number
to dozens for the first prediction. These methods reduce the number
of possible predictions to 11. Almost all possible predictions get a

7

Regions Markers
Eyes RC3, RC7, RC8, RLID, LC3, LC7, LC8 and LLID
Mouth CH1, CH2, CH3, MOU1, MOU5, MOU6, MOU7 and MOU8
Brow RBM0, RBM3, RBRO1, RBRO2, RBRO3, RBRO4,

LBM0, LBM3, LBRO1, LBRO2, LBRO3 and LBRO4
Table 1. Markers used for specific regions.

higher amount of representation, which is the major advantage. This
can prevent the issue of too much 0 predictions. However, this could
prevent an optimal prediction. If the training data of the optimal
blendshape weight is weakened by the motion capture data it is
combined with, another of the 11 possible blendshape weights can
be predicted. The first and second prediction combined is the final
result then. The reason to use any of those function to reduce it to 11
possible predictions is to balance the number of possible predictions
for the first prediction and the second prediction. Using any of
those methods will result in second predictions with 10 possible
predictions, except for the first and last possible prediction for the
first prediction using the round function. Those have 5 and 6 possible
predictions respectively. The results can be seen in figure 5. The
values used to create this figure can be found in table 7 in appendix B.
These results are found using 10000 iterations for the first prediction
with a batch size of 200, a time step value of 2, 400 hidden layers and
a learning rate of 0.001. For the second prediction 1000 iterations and
a batch size of 100 is used. The figure shows predicting all possible
blendshape weights in one model, which is basic, is a lot worst
compared the other options, so having multiple smaller predictions
does help. From the three options for splitting the data, using ceil is
the best option. Table 5 in appendix B shows the prediction of the
blendshape weights 0 up to and including 9. This range is specifically
looked at since 0 does have the biggest representation, so the biggest
impact is expected in this range. The table shows that after basic,
ceiling has the most 0 predictions. The round function combines
blendshapes 0 up to and including 4 together for the first prediction.
This combination has more data than just blendshape weight 0
which is used with the ceil function. However, the first prediction
results in a lower total than the prediction for 0 using ceil. The
floor function combines blendshape weights 0 up to and including
9. This combination has even more data. Using the floor function
results in a higher total than the prediction for only blendshape
weight 0 with the ceil function, however, the second prediction
spreads it out resulting in a lower number of 0 predictions than
the round function. The reason the ceil function is the best is that
other data do not weaken the data of blendshape weight 0, and other
blendshape weights combined have enough representation to get
more predictions.
These findings are all done with selecting random training ex-

amples equal divided over the five expressions. However, the issue
with all possible blendshape weights in one model not having equal
representation could be solved differently. A possible option would
be to calculate the blendshape weights of all the possible training
data and pick each blendshape weight the same amount of times.
This idea is listed in the future work section, section 7.2.

Fig. 5. Predicting all possible blendshape weights in one model, which in
this picture is basic, is not a good option. From the three options to split it
up in smaller predictions, ceiling advanced is the best one.

5.3.2 Hidden layers. The number of hidden layers is representing
the learning capability of the model. Increasing this value could
learn valuable features. However, it could also learn bad features
which are counterproductive. Hidden layers are used to be able to
express a non-linear function, which helps because the mapping of
the actor’s face to a virtual character is non-linear. This evaluation
is done for 400 to 800 hidden layers with steps of 100. The rest of the
setup is the same as used for ceiling in section 5.3.1. The results are
shown in figure 6. The values used to create this figure can be found
in table 8 in appendix B. It shows that using 700 hidden layers is
optimal. However, as shown in figure results from each fold vary a
lot. There is not a clear trend visible in the figure, so there could be
a different number of hidden layers which results in a better result.
However, looking at different parameters was prioritised since there
is not much difference between using 500, 600, 700, or 800 hidden
layers.

Fig. 6. The best option, determined by the total sum, is 700. For fold 3 and
4 it is the best option, for fold 1 and 5 the second best and for fold 2 the
second worst. This shows that there is not a clear pattern.

8

Blendshape Markers
Left eye closed LLID
Right eye closed RLID
Left eye squint LC3, LC7 and LC8
Right eye squint RC3, RC7 and RC8
Mouth open CH1, CH2, CH3, MOU1, MOU5, MOU6, MOU7 and MOU8
Mouth narrow X coordinate of MOU1 and MOU5
Mouth smile and mouth frown MOU1, MOU2, MOU4, MOU5, MOU6 and MOU8
Left brow up LBM0, LBM3, LBRO1, LBRO2, LBRO3 and LBRO4
Right brow up RBM0, RBM3, RBRO1, RBRO2, RBRO3 and RBRO4

Table 2. Markers used for specific blendshapes.

5.3.3 Reducing the dimensions of the input. 53 facial markers were
used to create the dataset, as explained in section 4. The dimensions
of a frame,159, is multiplied by the time step value. An idea from
Sadoughi and Busso [38] is to use part of the data from some of
the blendshapes. For example, the mouth does not influence the
eyes, so the model should not suddenly find such a link. Besides
this advantage, both the training and testing phase will be quicker.
An evaluation is done for two approaches. The first one is using
regions. Regions divide the blendshapes into four regions, whole
face, mouth, eyes, and brows. The blendshapes angry, frustrated,
smile and surprised are part of the whole face. For this region,
nothing changes. Eyes closed and squint both left and right are
part of the eyes region. Mouth open, mouth narrow, mouth smile,
and mouth frown are part of the mouth region. The last region is
brows which contain left brow up and right brow up. The markers
used for each category are listed in table 1. In figure 22 in appendix
C these marker codes are explained. Using these regions prevent
markers which have nothing to dowith a blendshape to influence the
outcome of the prediction. The second approach is to use blendshape
specific markers. This approach reduces the number of markers even
further. For each blendshape, the markers used are listed in table 2.
The parameters are the same as in section 5.3.2 except for the

parameter hidden layers, which is set at 500. The results of this
experiment are shown in 7. The values used to create this figure can
be found in table 9 in appendix B. Overall regions is the best option.
Blendshape-specific might not work because small features which
influence the prediction are removed.

Fig. 7. The best option, determined by the sum, is regions. While it can be
outscored on specific folds, the cost is relatively stable.

5.3.4 BLSTM and time steps. The previous tests were all done with
a time step of 2. The time step value indicates how many frames
are used. A time step value of 1 will only use the current frame. To
test if different values for this parameter will improve the results a
new training sample was drawn picking 11 consecutive frames. The
blendshape weights of the middle frame of those 11 are calculated.
This calculation is explained in section 5.1. An experiment was done
changing the time step value up to 6 with steps of 1. An advantage
of having a higher time step is that it can find a trend between time
steps. The computation time does increase, however, as explained
in section 5.3.3. In figure 9 the results of the experiment are shown.
The values used to create this figure can be found in table 10 in
appendix B. The rest of the parameters used in this experiment are
the same as section 5.3.1. Using a time step value of 3 is the best
option. However, no clear pattern is visible in the results.

Fig. 9. A time step of three is the best of these five. However, a time step of
six is better than five, so this might be a local optimum.

This approach has the preceding frames predict the current frame,
while the future frames can help the prediction. Bidirectional LSTM
uses the preceding and future frames. This process using BLSTM
with a time step value 3 is shown in figure 8. Two frames backwards
are used with the current frame in the backwards dataset, and two
frames forwards are used with the current frame in the forwards
dataset. The forwards and backwards data both predict the first
prediction. Those predictions are multiplied. The idea of multiplying
them comes from the f-score [51]. The first prediction is used for a
second prediction for both the forwards and backwards data. Again
these predictions aremultiplied.With the result of themultiplication,
the end prediction is made. The results can be found in figure 10.
The values used to create this figure can be found in table 11 in

9

Fig. 8. The pipeline used for BLSTM with time step value 3. LSTM has the backwards prediction as frame t prediction.

appendix B. The rest of the parameters used in this experiment
are the same as section 5.3.1. This figure shows the same pattern
as in table 10 with the time step value of 3 being the best, but no
clear pattern is present in the data. The results show that BLSTM
outperforms LSTM.

Fig. 10. Similar to figure 9 a time step of three is the best option. However,
a time step of six is better than a time step of five, which leaves the question
again if a time step of three is a local or global optimum.

Both regions and BLSTM have proven that separately the result
in improvements. However, combining them also needs to be tested.
The result of using both together is shown in figure 11. The values
used to create this figure can be found in table 12 in appendix B. The
rest of the parameters used in this experiment are the same as section
5.3.1. Unlike the previous two tests, the time step value 2 is the best.
However, like BLSTM and LSTM without using regions, time step

value 6 is better than time step value 5. Exploring if increasing the
time steps result in a better result is listed as future work in section
7.2. It was not explored in this research because a new dataset had
to be drawn with more consecutive frames for each training sample.
Due to this, time step value 2 up to and including 6 need to be
reevaluated as well for that dataset. Timewise this would prevent
this research looking into other parameters as well.

Fig. 11. A time step of two is the best option. However, like figure 9 and
figure 10 there is not a pattern which proves that increasing the time step
further will not yield a better result.

5.3.5 Dropout layer. To improve this results different adjustments
have been explored, such as adding a dropout layer. A dropout
layer randomly drops input training data from each training batch
used, which helps prevent overfitting. Multiple papers [38; 48] use
a dropout layer. A dropout chance of 0.2 and 0.5 is used in those

10

papers respectively. However, with a dropout layer with the chance
of 0.25, a single fold had the value 15190723, 0155825, which is a little
less than three times the best result. A dropout layer with a chance
of 0.5, the result of a single fold was 10451954, 0207968, which is a
little less than two times the best results. Both tests use the same
parameters as used for BLSTM with regions in section 5.3.4. Using
a dropout layer does not work according to these results, therefore
running the rest of the fold is a waste of time. The model might
simply not have been trained enough for a positive effect using a
dropout layer. Increasing the iterations purely for the dropout layer
to have a positive effect would not be a good idea. Because then the
model is overfitted to have a dropout layer work, instead of using a
dropout layer when the model is overfitted.

5.3.6 Batch size. Another adjustment was to use smaller batch sizes.
Each iteration only learns from a batch with the size of the batch
size parameter. A smaller batch size might result in better features
within the motion capture data being learned. The total values over
all five folds is shown in figure 12. The values used to create this
figure can be found in table 13 in appendix B. These experiments
are done with the same parameters as used for BLSTM with regions
in section 5.3.4. Lowering the batch size resulted in worse results.
The lower batch size does result in less data being used overall since
the number of iterations is still the same. Countering this effect
by increasing the number of iterations so that the iterations times
batch size is the same could yield interesting results. Then the effect
of using the same amount of data but in smaller batches can be seen.
This idea is listed as a future work option in section 7.2.

Fig. 12. Decreasing the batch size leads to a worse result. This is probably
due to underfitting it a bit at 100 and severely underfitting it at 20.

5.3.7 Increasing the iterations. The model is trained with different
batched for the number of iterations used. The iterations for the
first prediction were set at 10000 at the start not to be low enough
to prevent underfitting, but also not be too high which results in
longer computational times. Increasing the iterations for the first
prediction to 100000 was explored. These results are shown in figure
13. The values used to create this figure can be found in table 14 in
appendix B. The same parameters as used for BLSTM with regions
in section 5.3.4 are used. It shows that in four out of the five cases
100000 iterations is a lot better. Increasing this further might result
in even a better result. The training phase will need more time to
be completed. However, it does not impact the speed of the testing
phase. The extra time that the training phase cost can be neglected

because all the models used need to be trained only once. The
number of iterations should not be increased to the point that the
model is overfitted. Increasing the iterations is listed as one of the
future work options in section 7.2.

Fig. 13. Increasing the iterations to determine the dozens is in four out of
the five folds a lot better.

5.3.8 Layers of cells. Sadoughi and Busso [38] use different cells
and multiple cells of the same type. This paper researches speech
animation, but the same concept can work for facial animation retar-
geting. Evaluating different types of cells was too time-consuming.
Therefore, using a different amount of layers of basic lstm cells were
explored. The results are visible in figure 14. The values used to
create this figure can be found in table 15 in appendix B. This figure
shows that using two layers of basic lstm cells is the best option. It
also shows that using four cells is far worse than using three cells.
Using more would probably not result in a better result than using
two cells behind each other. Exploring this further with different
cells as well listed as a future work option in section 7.2.

Fig. 14. The best option is using two basic LSTM cells. Increasing it above
four most likely will not improve the results, since using four is much worse
than three.

5.3.9 Best setup. Both experiments, increasing the iterations and
increasing the number of cells, were evaluated separately. In theory,
combining them should result in an even better result. Those results
are in table 16 in appendix B. This test uses the same parameters as
used in section 5.3.8.

Combining all the findings result in the following setup. Predict-
ing the dozens and units both use two cell BLSTM with regions with
a time step of 2, 700 hidden layers and a learning rate of 0.001. The
prediction of the dozens also uses 100000 iterations and a batch size

11

Angry Frustrated Happy Neutral Sad
RBFN Eyes 77673,33863 51652,93689 69361,02799 29421,32481 70910,79507
RNN Eyes 102449,1128 58550,80988 72916,66126 35702,55761 73517,10054
RBFN Brows 170830,4391 76997,38767 69607,44765 33422,32102 48029,61052
RNN Brows 171840,3323 78221,13787 80079,22977 35572,32923 38656,77095
RBFN Mouth 452220,7416 223114,6833 389144,2244 315032,8154 99563,35595
RNN Mouth 627923,4478 319158,947 506471,5337 486950,6468 190990,3878
RBFN Total 1093599,338 597898,5932 766585,6658 565946,5197 409199,4966
RNN Total 1340017,353 744407,1802 918582,3056 761780,5744 492076,3114

Table 3. A comparison of the testing results. These results are broken down in regions.

of 200. The unit prediction uses only 1000 iterations and a batch
size of 100. Every combination of parameters has not been tested
since this would take to much time. Therefore, parameters such
as hidden layers were not reevaluated again. Besides this, most of
the test done did not use hidden layer value of 700, just because it
would cost to much time. Reassessing previously found parameters
might be worthwhile. Therefore, it is listed as a future work option
in section 7.2. To limit the time this idea costs some experiments
can be skipped if it is obvious what happens. For example, reducing
the batch size, which is done in section 5.3.6.

6 RESULTS
The best setting for RNN found is using the ceiling function to first
predict the dozens. Predicting the dozens and units both use two cell
BLSTM with regions with a time step of 2, 700 hidden layers and a
learning rate of 0.001. The prediction of the dozens also uses 100000
iterations and a batch size of 200. The unit prediction uses only 1000
iterations and a batch size of 100. The experiments from this section
are all run on Intel XEON E5-1620 3.50GHz computer with 16gb
RAM and an NVIDIA Quadro K2200 4gb running Windows 7. The
RNN experiments in this section are all run on the GPU since it
is not realistic to run on the CPU for a movie or game due to the
speedup running it on a GPU gives. Therefore, the RNN results used
to create videos for the survey and to calculate cost this section
are nondeterministic. Repeating these test will result in different
results.
The cost function is used in section 5.3 to determine which pa-

rameter setup is best. This evaluation is also done for the results of
RBFN and RNN. This is shown in section 6.1. Besides the cost results,
a survey was held to determine how good the visual results are. The
results are used to perform a student’s t-test and determine if RBFN
or RNN is significantly better or equal. This is done in section 6.2.

6.1 Cost results
The cost function used throughout this research first translates the
blendshape weights back to motion capture data. The Euclidean
distance between this and the actual motion capture data of the
frame is calculated. This is done for each frame. The results of RBFN
and RNN are in table 3. To compare RBFN and RNN the first and last
predictions of RBFN are skipped because those are not predicted
with RNN since a time step value of 2 was used to create these
results. The results are split up in eyes, brows, mouth and total.
These regions are the same as used in section 5.3.3. The markers

used for each region can be found in table 1. The results of the eyes
are in figure 15. These results show that for angry the eyes with
RNN are a lot off compared to RBFN. The other four expressions are
close but always in favour of RBFN. Looking closely at the visual
results of RBFN, the eyelids move a tiny bit up and down rapidly.
However, this is also in the motion capture data. RNN does not show
this behaviour, which does lead to a higher cost calculated in this
section. RNN has between 3.7%, for sad, and 31.6%, for angry, more
cost for the eyes than RBFN.

Fig. 15. A comparison of the eye region.

The results of the brows are in figure 16. Those results are close,
RBFN is better for all the expressions except sad, there RNN is better.
RNN has between 19.4% less cost, for sad, and 15.0%, for happy, more
cost for the brows than RBFN.

Fig. 16. A comparison of the brows region.

The results of the mouth are in figure 17. RNN is a lot off com-
pared to RBFN in this area. A possible reason can be that for the
blendshapes mouth smile, and mouth frown RBFN barely predicted

12

Average Standard deviation n T p=5%
Angry 3,182795699 1,327510699 93 -5,936549425 RBFN significantly better
Frustrated 2,903225806 1,218711784 93 -8,67876017 RBFN significantly better
Happy 3,548387097 1,517144817 93 -2,870653526 RBFN significantly better
Neutral 3,836956522 1,40090944 92 -1,116316345 No significance
Sad 3,860215054 1,083516754 93 -1,244131388 No significance
Beast 3,477419355 1,50840862 155 -4,313205637 RBFN significantly better
Cartoon 3,561290323 1,315338156 155 -4,152461793 RBFN significantly better
Female 3,279220779 1,261295733 154 -7,091623851 RBFN significantly better
Total 3,439655172 1,371123332 464 -8,803144619 RBFN significantly better

Table 4. The results of a student’s t-test for each expression and each character separately.

above 0, while RNN has the value almost always above 0. The mouth
has the most significant difference of all the regions. This difference
was also mentioned by one of the participants in the survey. RNN
has between 29.8%, for happy, and 91.6%, for sad, more cost for the
mouth than RBFN.

Fig. 17. A comparison of the mouth region.

In figure 18 the total cost is shown. The mouth can explain the
majority of the difference between RBFN and RNN. All expressions
show that RBFN is a lot lower in cost compared to RNN. RNN has
between 19.6%, for happy, and 34.6%, for neutral, more cost for the
whole face than RBFN.

Fig. 18. A comparison of the whole face.

The time it takes to train all RNN models serial is so much more
than RBFN. This is shown in table 17 in appendix B. The training
time, however, can be optimised by training each blendshape parallel
and each split model parallel as well. However, RNN is a lot quicker
in the testing phase. With 100 seconds of testing data, RNN can close

to real time. RNNneeds a buffer because the current frame also needs
the next frame to predict. RBFN is not in real time. However, again
this process can be done parallel, and the normal frame rate of a
movie is 24fps, while the testing set has 120 fps. Without optimising
RBFN, it can do it real time as well, as long as the testing set is at 24
fps.

6.2 User experiment
A survey [50] was held to evaluate the visual results. A screenshot
of the survey is shown in figure 23 in appendix D. This survey has 15
comparisons. Each comparison uses the visual results of RBFN and
RNN of the same character with the same expression. The testing
sets used have a sequence of 20 seconds of data and contain the
extremes of the expression it represents. A seven-point Likert scale
is used to determine which option is better and howmuch better it is.
It was randomly decided if RNN was option 1 or option 2, RBFN was
the other option. 31 people filled in the survey. One of the entries
had a single question, female with the neutral test sequence, not
filled in. The filled in part of that entry is still used in the evaluation
part. Since it was randomly decided if RNN was option 1 or option
2, the results were adjusted so that for all the comparisons 7 means
that RNN is a lot better, and 1 means that RBFN is a lot better. A
one-sided student’s t-test was done with p = 0.05. The resulting
statistics can be found in table 4. The expressions angry, frustrated,
and happy, showed that RBFN is significantly better. For neutral
and sad, the difference is not significant. The averages are shown in
figure 19.

Fig. 19. A comparison of the ratings given by the participants for each
expression. In contrast, the average of all the data is provided as well.

13

The results of each character show that RBFN is significantly
better. The t-scores of beast and cartoon are about the same, while
female differs a lot. So which character is used does influence the
results. However, all character have the same outcome that RBFN is
significantly better. The averages are shown in figure 20. Using all
the data also indicates that RBFN is significantly better.

Fig. 20. A comparison of the ratings given by the participants for each
character. In contrast, the average of all the data is provided as well.

7 DISCUSSION
RNN has its limitations. Even if it gets improved further, the limita-
tions listed in section 7.1 will most likely still hold. The results in
section 6 indicate that RBFN is significantly better. RNN has a lot
to improve. However, in the present research not all improvements
could be explored due to time limitations. Possible improvements
are listed and discussed in section 7.2.

7.1 Limitations
The reason post-processing is necessary is that multiple frames have
the same prediction and then there is a significant change to another
sequence of the same predictions. The reason can be that with a
time step of two, too many frames are too similar. Therefore the
models used cannot differentiate between them. The training and
testing input needs to be changed so the model can learn these subtle
differences. Ideally, RNN should work without post-processing.
Another limitation is the time it takes. In the machine learning

section, section 6.1, the time it takes to test it is discussed. The train-
ing time is not an issue, the time finding the optimal parameters is.
CPU calculations are a lot slower and multiple, in this research five-
fold cross-validation is used to evaluate each parameter adequately.
Due to time constraints, not every combination was tested in this
research. For example, the number of hidden units was evaluated at
the beginning of the RNN section, section 5.3, but after changing
to BLSTM and using more cells it was not reevaluated again. A dif-
ferent number of hidden units between 400 and 800 could be better
than picking 700. RBFN only has one parameter, which is the kernel
function. Finding the best kernel function is done a lot quicker than
finding the best parameters for RNN. Continuing this research will
require lots of time and CPUs.

7.2 Future Work
Testing different timesteps for LSTM, BLSTM and BLSTM with
regions has been done in section 5.3.4. There the time step value 2

up to and including 6 were evaluated. An improvement with possible
a huge impact is to increase the time step value above 6. BLSTM
with a time step value of 11 is used in [48] for speech animation.
If it works for speech animation, it is not a guarantee that it also
works for facial animation retargeting. However, as shown in tables
10, 11 and 12 in appendix B and in figures 9, 10 and 11, time step 6
is better than time step 5. This observation could suggest that the
current optima are just local and not global. Which is likely since a
time step value of 2 only uses the previous frame and the next frame
while using a bigger sequence should lead to bigger differences in
the training data, which should help to learn better features.
A different setup of the cells could also lead to a better result.

Using multiple basic LSTM cells has been evaluated in section 5.3.8.
For example, [38] proposes two joint models with different types
of cells. This research did only use basic lstm cells to experiment
with to limit the number of parameters. However, there are a lot of
different types of cells which can be used. Using different types of
cells together could lead to significant improvements.
Changing the input to a lower dimension could also help the

results. Using regions and blendshape-specific input has been evalu-
ated in section 5.3.3. A possible approach which has not been tested
is principal component analysis or PCA. PCA can change the input
to a lower dimensional one while still preserving data which dif-
ferentiates different frames. A previous experiment done for this
research showed that PCA and RBFN did not outperform RBFN
without PCA. However, it might be worth exploring for RNN. [20]
first encodes the input and then decodes the output of RNN, which
is a similar approach to using PCA. Encoding and decoding could
also yield an improvement.

The RNN mouth region losses the most compared RBFN. This is
shown in figure 17 in section 6.1. Having region specific or even
blendshape specific parameters can lead to improvements. However,
this is time-consuming since the number of parameters to optimise
is multiplied by the number of regions or the number of blendshapes
respectively.
In section 5.3.1, the predictions are split up to prevent certain

blendshape weights not to be picked due to a low amount of repre-
sentation. This problem could be solved by drawing the training set
differently. Now each expression gets the same amount of training
examples, while this does not represent necessarily cover all the
possible blendshape weight values for each blendshape. Creating
different training sets for each blendshape in which each blend-
shape weight value has the same amount of representation could
fix the issue. Using all of the 101 possible blendshape weights in
one prediction might be doable then. The problem of combining
the optimal prediction with weak data, which can result in a less
optimal prediction is then fixed. However, the amount of training
data to pick from should be big enough for this to work. The training
data without one of the five expressions could not be selected in
the training sets used for this research, but with this idea, it can be
used. However, predicting 101 possible blendshape weights in one
model might be too much, but this idea gives it the best chance.

In this research, the cross-validation folds are drawn at random as
described in section 5.3. Picking it random could, in theory, lead to an
over or under-representation of an expression, which could lead to
less optimal parameters. If each expression has 20% representation

14

in each fold, then this issue could be solved. The impact of this
change is not known, but it might results in a more stable result for
each fold for different values. For example, in figure 7 in section 5.3.3,
using regions is the best for three of the five folds and second for
two out of the five folds. Using folds which are equally divided over
the expressions might result in all five folds showing that regions is
better than the alternatives.

Lowering the batch size, which was explored in section 5.3.6 did
not yield a better result. The reason might be because reducing the
batch size without increasing the iterations might lead to overfitting.
It would be interesting to see what the results are when increasing
the iterations enough, so that batch size times number of iterations
is the same for each setup.
Some small improvement might be changing the learning rate,

increasing the iterations for both the digit, which is done in section
5.3.7, and unit prediction and increasing the batch size.

8 CONCLUSION
The visual results in section 6.2 showed that RBFN performs sig-
nificantly better, except for neutral or sad expressions. Machine
learning results in section 6.1 show that RBFN has a lower cost in
all regions, with the most significant difference being in the mouth
region. So RBFN is better than the best RNN setup in this research.
However, there are no papers published using RNN for facial ani-
mation retargeting. And thus this research is just finding out if it
has potential. While the best RNN setup discussed in this research
is not sufficient for daily practice with improvements, it might be.
The suggestions in section 7.2 work in other fields, which does not
necessarily mean that they do work for facial animation retargeting,
but there is enough overlap to assume that it has potential. The
research question, which is: "Does a recurrent neural network to
learn the mapping from an actor’s face to a virtual model result in a
better result than radial basis functions?", could not be disproven by
these results because of the amount of possible parameter options
to try out. I do believe that with future research RNN has enormous
potential. The training time will most likely increase. However, each
model only needs to be trained once, which means that the training
time can be neglected. If the results improve enough, RNN could be
used in movies and games.

ACKNOWLEDGMENTS
I want to thank my supervisor, dr. Zerrin Yumak, for her guidance
and feedback during this thesis project. Also, I would like to thank
my second supervisor, prof. dr. Remco Veltkamp, for his time, to
evaluate this thesis project.
I want to thank Cas van Cooten for proofreading this thesis.

Furthermore, I want to thank tofusan for the "anime head" slider
used to create the cartoon character. Last but not least, I would
like to thank the participants in my survey for there time and the
valuable data they provided me.

REFERENCES
[1] Ken Anjyo, Hideki Todo, and JP Lewis. 2012. A practical approach to direct

manipulation blendshapes. Journal of Graphics Tools 16, 3 (2012), 160–176.
[2] Vincent Barrielle, Nicolas Stoiber, and Cédric Cagniart. 2016. Blendforces: A

dynamic framework for facial animation. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 341–352.

[3] Philippe Bergeron and Pierre Lachapelle. 1985. Controlling facial expressions and
body movements in the computer generated animated short\’Tony de Peltrie\’.
(1985).

[4] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy,
Hanspeter Pfister, and Markus Gross. 2007. Multi-scale capture of facial geometry
and motion. In ACM Transactions on Graphics (TOG), Vol. 26. ACM, 33.

[5] Christopher M Bishop. 2006. Machine learning and pattern recognition. Informa-
tion Science and Statistics. Springer, Heidelberg (2006).

[6] Sofien Bouaziz and Mark Pauly. 2014. Semi-Supervised Facial Animation Retarget-
ing. Technical Report.

[7] Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online modeling for
realtime facial animation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 40.

[8] Christoph Bregler, Lorie Loeb, Erika Chuang, andHrishi Deshpande. 2002. Turning
to the masters: motion capturing cartoons. InACMTransactions on Graphics (TOG),
Vol. 21. ACM, 399–407.

[9] David S Broomhead and David Lowe. 1988. Radial basis functions, multi-variable
functional interpolation and adaptive networks. Technical Report. Royal Signals
and Radar Establishment Malvern (United Kingdom).

[10] Ian Buck, Adam Finkelstein, Charles Jacobs, Allison Klein, David H Salesin,
Joshua Seims, Richard Szeliski, and Kentaro Toyama. 2000. Performance-driven
hand-drawn animation. In Proceedings of the 1st international symposium on Non-
photorealistic animation and rendering. ACM, 101–108.

[11] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower,
Samuel Kim, Jeannette N Chang, Sungbok Lee, and Shrikanth S Narayanan. 2008.
IEMOCAP: Interactive emotional dyadic motion capture database. Language
resources and evaluation 42, 4 (2008), 335.

[12] Erika Chuang and Chris Bregler. 2002. Performance driven facial animation using
blendshape interpolation. Computer Science Technical Report, Stanford University
2, 2 (2002), 3.

[13] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: Deep neural networkswithmultitask learning. In Proceedings
of the 25th international conference on Machine learning. ACM, 160–167.

[14] Timothy Costigan, Mukta Prasad, and Rachel McDonnell. 2014. Facial retargeting
using neural networks. In Proceedings of the Seventh International Conference on
Motion in Games. ACM, 31–38.

[15] Zhen Cui, Shiguang Shan, Haihong Zhang, Shihong Lao, and Xilin Chen. 2012.
Image sets alignment for video-based face recognition. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2626–2633.

[16] Aymeric Damien. 2017. Recurrent neural network for the MNIST
dataset. https://github.com/aymericdamien/TensorFlow-Examples/blob/master/
examples/3_NeuralNetworks/recurrent_network.py

[17] Zhigang Deng, Pei-Ying Chiang, Pamela Fox, and Ulrich Neumann. 2006. Animat-
ing blendshape faces by cross-mapping motion capture data. In Proceedings of the
2006 symposium on Interactive 3D graphics and games. ACM, 43–48.

[18] Ludovic Dutreve, Alexandre Meyer, and Saïda Bouakaz. 2008. Feature points
based facial animation retargeting. In Proceedings of the 2008 ACM symposium on
Virtual reality software and technology. ACM, 197–200.

[19] Ke Fan, Ajmal Mian, Wanquan Liu, and Ling Li. 2016. Unsupervised manifold
alignment using soft-assign technique. Machine Vision and Applications 27, 6
(2016), 929–942.

[20] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015.
Recurrent network models for human dynamics. In Proceedings of the IEEE Inter-
national Conference on Computer Vision. 4346–4354.

[21] Fahimeh Ghasemi, Afshin Fassihi, Horacio Pérez-Sánchez, and Alireza
Mehri Dehnavi. 2017. The role of different sampling methods in improving
biological activity prediction using deep belief network. Journal of computational
chemistry 38, 4 (2017), 195–203.

[22] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke,
and Jürgen Schmidhuber. 2009. A novel connectionist system for unconstrained
handwriting recognition. IEEE transactions on pattern analysis and machine
intelligence 31, 5 (2009), 855–868.

[23] Mark Henne, Hal Hickel, Ewan Johnson, and Sonoko Konishi. 1996. The making
of toy story [computer animation]. In Compcon’96.’Technologies for the Information
Superhighway’Digest of Papers. IEEE, 463–468.

[24] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527–1554.

[25] Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. 2015. Dynamic 3D
avatar creation from hand-held video input. ACM Transactions on Graphics (ToG)
34, 4 (2015), 45.

[26] Alexandru Eugen Ichim, Ladislav Kavan, Merlin Nimier-David, and Mark Pauly.
2016. Building and animating user-specific volumetric face rigs.. In Symposium
on Computer Animation. 107–117.

[27] Pushkar Joshi, Wen C Tien, Mathieu Desbrun, and Frédéric Pighin. 2006. Learning
controls for blend shape based realistic facial animation. In ACM Siggraph 2006
Courses. ACM, 17.

15

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py

[28] Natasha Kholgade, Iain Matthews, and Yaser Sheikh. 2011. Content retarget-
ing using parameter-parallel facial layers. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM, 195–204.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[30] Manfred Lau, Jinxiang Chai, Ying-Qing Xu, and Heung-Yeung Shum. 2009. Face
poser: Interactive modeling of 3d facial expressions using facial priors. ACM
Transactions on Graphics (TOG) 29, 1 (2009), 3.

[31] Hao Li, Thibaut Weise, and Mark Pauly. 2010. Example-based facial rigging. In
Acm transactions on graphics (tog), Vol. 29. ACM, 32.

[32] Faezeh Movahedi, James L Coyle, and Ervin Sejdić. 2017. Deep belief networks
for electroencephalography: A review of recent contributions and future outlooks.
IEEE journal of biomedical and health informatics (2017).

[33] Jun-yong Noh and Ulrich Neumann. 2001. Expression cloning. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques. ACM,
277–288.

[34] Verónica Costa Orvalho, Ernesto Zacur, and Antonio Susin. 2008. Transferring
the rig and animations from a character to different face models. In Computer
Graphics Forum, Vol. 27. Wiley Online Library, 1997–2012.

[35] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2010), 1345–1359.

[36] Frederick I Parke. 1972. Computer generated animation of faces. In Proceedings of
the ACM annual conference-Volume 1. ACM, 451–457.

[37] Yuru Pei, Fengchun Huang, Fuhao Shi, and Hongbin Zha. 2012. Unsupervised
imagematching based onmanifold alignment. IEEE transactions on pattern analysis
and machine intelligence 34, 8 (2012), 1658–1664.

[38] Najmeh Sadoughi and Carlos Busso. 2017. Joint learning of speech-driven facial
motion with bidirectional long-short term memory. In International Conference
on Intelligent Virtual Agents. Springer, 389–402.

[39] Jun Saito. 2013. Smooth contact-aware facial blendshapes transfer. In Proceedings
of the Symposium on Digital Production. ACM, 7–12.

[40] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling. In
Fifteenth Annual Conference of the International Speech Communication Associa-
tion.

[41] Jaewoo Seo, Geoffrey Irving, JP Lewis, and Junyong Noh. 2011. Compression
and direct manipulation of complex blendshape models. In ACM Transactions on
Graphics (TOG), Vol. 30. ACM, 164.

[42] Yeongho Seol, JP Lewis, Jaewoo Seo, Byungkuk Choi, Ken Anjyo, and Junyong
Noh. 2012. Spacetime expression cloning for blendshapes. ACM Transactions on
Graphics (TOG) 31, 2 (2012), 14.

[43] Yeongho Seol, Wan-Chun Ma, and JP Lewis. 2016. Creating an actor-specific facial
rig from performance capture. In Proceedings of the 2016 Symposium on Digital
Production. ACM, 13–17.

[44] Yeongho Seol, Jaewoo Seo, Paul Hyunjin Kim, JP Lewis, and Junyong Noh. 2011.
Artist friendly facial animation retargeting. In ACM Transactions on Graphics
(TOG), Vol. 30. ACM, 162.

[45] Greg Singer. 2003. The two towers: Face to face with gollum. Animation World
Network 1, 2 (2003).

[46] Jaewon Song, Byungkuk Choi, Yeongho Seol, and Junyong Noh. 2011. Charac-
teristic facial retargeting. Computer Animation and Virtual Worlds 22, 2-3 (2011),
187–194.

[47] Robert W Sumner and Jovan Popović. 2004. Deformation transfer for triangle
meshes. ACM Transactions on Graphics (TOG) 23, 3 (2004), 399–405.

[48] Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anasta-
sio Garcia Rodriguez, Jessica Hodgins, and Iain Matthews. 2017. A deep learning
approach for generalized speech animation. ACM Transactions on Graphics (TOG)
36, 4 (2017), 93.

[49] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in neural information process-
ing systems. 2643–2651.

[50] Teus van Oosterom. 2018. Survey for Facial Animation Retargeting. https:
//formview.io/#/wzthkjcyxhlimdw/survey?header=1

[51] CJ Van Rijsbergen. 1979. Information retrieval. dept. of computer science, uni-
versity of glasgow. URL: citeseer. ist. psu. edu/vanrijsbergen79information. html 14
(1979).

[52] Chang Wang and Sridhar Mahadevan. 2009. Manifold Alignment without Corre-
spondence.. In IJCAI, Vol. 2. 3.

[53] Chang Wang and Sridhar Mahadevan. 2011. Heterogeneous domain adaptation
using manifold alignment. In IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, Vol. 22. 1541.

[54] Yang Wang, Xiaolei Huang, Chan-Su Lee, Song Zhang, Zhiguo Li, Dimitris Sama-
ras, Dimitris Metaxas, Ahmed Elgammal, and Peisen Huang. 2004. High Resolu-
tion Acquisition, Learning and Transfer of Dynamic 3-D Facial Expressions. In
Computer Graphics Forum, Vol. 23. Wiley Online Library, 677–686.

[55] Chung-Hsien Wu, Jen-Chun Lin, and Wen-Li Wei. 2014. Survey on audiovisual
emotion recognition: databases, features, and data fusion strategies. APSIPA
transactions on signal and information processing 3 (2014).

[56] Feng Xu, Jinxiang Chai, Yilong Liu, and Xin Tong. 2014. Controllable high-fidelity
facial performance transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014), 42.

[57] Eduard Zell, JP Lewis, Junyong Noh, Mario Botsch, et al. 2017. Facial retargeting
with automatic range of motion alignment. ACM Transactions on Graphics (TOG)
36, 4 (2017), 154.

16

https://formview.io/#/wzthkjcyxhlimdw/survey?header=1
https://formview.io/#/wzthkjcyxhlimdw/survey?header=1

A PIPELINE
The pipeline used is shown in figure 21. First, the dataset is preprocessed to remove outliers. Details of this process are written in section
4.1. Then 20 seconds testing sequences were found for each expression. The training sets may not include the testing data. The dataset,
therefore, removes the testing sets from its data. Both training sets pick their data from the remaining dataset. For RBFN 20 random frames
for each expression are selected, which results in a training set of 100 frames. For RNN 20000 sequences of 11 frames are randomly chosen for
each expression, which leads in a training set of 100000 frames. The 11 frames of the sequence all have the same expression given by the
human evaluation done for the IEMOCAP dataset. Both the RBFN and RNN model are trained with there training sets and then evaluated by
the testing sequences. The results of RNN are then post-processed. Details of this process are written in section 4.2. The visual results are
made with a unity script reading the blendshape weights in and returning the resulting images. For the machine learning results, predicted
blendshape weights are translated back to motion capture values. The Euclidian distance between those values and the actual values are used
to determine the cost.

A.1 RNN
The base of the code for the training and testing of an RNN is the tensorflow example to predict numbers out of the MNIST dataset. [16] is
that example. Multiple changes were made. In the function RNN, different models can be built with cells. For each blendshape first regional
data to use for the blendshape is defined. The blendshape weights corresponding to the dataset are multiplied by 100. Then the training set for
the first prediction is made. This set contains the motion capture data with the correct dozens prediction. A forward prediction and backwards
prediction is done which results in two lists of arrays with odds for each sequence used as testing set. The two lists are used to create one, by
multiplying the forwards predicted array with the corresponding backwards predicted array. For each array in the resulting list, the prediction
is the blendshape weight with the highest value. By using this prediction, the testing set is split up to predict units separated for each different
prediction. The dozen predictions times ten is written down as the blendshape weights. Predicting the units is similar to predicting the dozens,
only a smaller training and testing set is used. Therefore, the amount of iterations used is also lower. If the dozen prediction is 0, the unit
prediction does not have to happen because the only possible unit prediction is 0. The unit predictions minus nine is deducted from the
blendshape weights. In the end, the blendshape weights are divided by 100 and written away. The pseudocode is shown in algorithm 1.

The tensorflow library is used. This library is used for the predictions. Numpy is used to transform data to matrix or array shape. The math
library is used for the ceil function. The shuffle function from sklearn is used. Itertools is used to combine the four folds used as training set.
To for tensorflow to use the CPU os is used. The time calculation done in section 6.1 is done with the time library.
ALGORITHM 1: Algorithm used to create testing results.
Data: Training set, which contains motion capture data and blendshape weights of the "current" frame for each sequence. Testing set, which contains

motion capture data.
Result: The blendshape weights of the testing sets.
Read in the data
foreach Blendshape do

if Regional blendshape then
Reduce dimensions of the input

end
Ceil function to create first and second prediction training sets
Train model with current and future frames of the first prediction training set
Make forwards predictions for the testing set
Train model with current and previous frames of the first prediction training set
Make backwards predictions for the testing set
Multiply forwards and backwards predictions
Define prediction for each frame as argmax
Split the testing set up for the second prediction
foreach second prediction do

Train model with current and future frames of this second prediction training set
Make forwards predictions for this second prediction testing set
Train model with current and backwards frames of this second prediction training set
Make backwards predictions for this second prediction testing set
Multiply forwards and backwards predictions
Define prediction for each frame as argmax
Define final prediction as first prediction - (second prediction - 9)

end
end
Write blendshape weights away

17

A.2 Unity script
The Unity script expects blendshape weights between 0 and 1. The blendshapes in Unity have a range of 0 up to and including 100. So first the
script read the blendshape weights and multiplies them by 100. Then for each frame, the blendshape weights are set for each blendshape, and
an image of the face is written away.

18

Fig. 21. The pipeline used to get the visual and machine learning results of RBFN and RNN.
19

B TABLES

Blendshape weight Basic Ceil Floor Round
0 1048651 891802 730522 753237
1 5703 18280 75674 41483
2 6841 47399 29571 40208
3 6167 46042 3018 34635
4 10868 0 0 0
5 8768 55480 46268 35125
6 7062 0 0 3284
7 8390 55588 67027 4607
8 10663 0 0 0
9 6974 13159 8020 26881

Table 5. The number of predictions for blendshape weight 0 up to and including 9 for each RNN approach.

Min/max each value Min/max each xyz Random 100 Random 200 Random 300
Angry 1075853,125 1158106,016 1093600,197 1078826,853 1076569,469
Frustrated 614017,7993 638925,8708 597899,0464 592974,666 592989,3142
Happy 724800,8891 781465,8081 766586,2642 746980,7439 743279,3276
Neutral 566441,1547 627773,0563 565947,0097 560307,1253 562446,5585
Sad 433012,3712 508619,5069 409199,9949 404973,4897 406622,3582
Total 3414125,339 3714890,258 3433232,512 3384062,878 3381907,027

Table 6. A comparison of different training set selection methods.

Basic Ceiling Floor Round
Fold 1 7780604,13 5683466,318 5436843,346 5792150,725
Fold 2 7900003,796 5704089,709 6541804,502 5850025,553
Fold 3 7655038,127 5492787,199 6302987,448 5812551,238
Fold 4 6593696,139 5705279,616 6125270,35 5786614,26
Fold 5 7239392,751 5864771,671 5789465,367 5589391,962
Total 37168734,94 28450394,51 30196371,01 28830733,74

Table 7. A comparison of predicting 101 possible blendshape weights in one model and dividing it up into multiple predictions.

400 hidden layers 500 hidden layers 600 hidden layers 700 hidden layers 800 hidden layers
Fold 1 5683466,318 5562748,952 5436860,988 5482060,887 5556786,243
Fold 2 5704089,709 5615390,359 5640736,919 5688504,649 5496774,978
Fold 3 5492787,199 5349832,518 5358872,683 5290387,419 5393112,394
Fold 4 5705279,616 5507647,53 5571736,256 5419783,259 5442388,032
Fold 5 5864771,671 5620407,067 5851317,915 5713453,495 5925085,587
Total 28450394,51 27656026,43 27859524,76 27594189,71 27814147,23

Table 8. Tuning the hidden layer parameter.

20

Base Regions Blendshape specific
Fold 1 5562748,952 5403190,484 5410159,35
Fold 2 5615390,359 5517102,978 5610214,667
Fold 3 5349832,518 5375696,701 5397162,133
Fold 4 5507647,53 5417700,64 5344646,737
Fold 5 5620407,067 5463940,094 5484514,229
Total 27656026,43 27177630,9 27246697,12

Table 9. A comparison of using all the data, region specific data or blendshape specific data.

Time step=2 Time step=3 Time step=4 Time step=5 Time step=6
Fold 1 6016944,853 5895530,354 6007078,608 6602804,194 6263493,461
Fold 2 6232611,156 6321872,266 6503549,945 5827015,801 6241775,428
Fold 3 5948840,051 6049797,286 5974335,737 6596679,714 6130323,064
Fold 4 5694297,531 5894625,699 5914172,436 5962720,481 5815465,337
Fold 5 6776259,75 6451483,547 6271859,689 6710450,312 6507899,614
Total 30668953,34 30613309,15 30670996,41 31699670,5 30958956,9

Table 10. A comparison of different time steps with LSTM.

Time step=2 Time step=3 Time step=4 Time step=5 Time step=6
Fold 1 5634272,424 5678768,353 5721760,22 5802365,025 5977380,529
Fold 2 6201277,688 6226896,96 6519262,284 6144524,037 5950013,954
Fold 3 5873704,137 5776093,303 5947293,242 6169526,911 5729378,948
Fold 4 5968738,607 5702272,64 5935655,741 6051209,404 6219247,987
Fold 5 6414541,918 5871320,809 5850470,847 6420663,322 6049225,055
Total 30092534,77 29255352,06 29974442,33 30588288,7 29925246,47

Table 11. A comparison of different time steps with BLSTM.

Time step=2 Time step=3 Time step=4 Time step=5 Time step=6
Fold 1 5619324,528 6029933,583 5402269,82 5469583,799 5649189,306
Fold 2 5712948,795 5861367,583 5863302,891 5829533,647 5690808,113
Fold 3 5480201,69 5483060,62 5783544,931 5781741,041 5486707,529
Fold 4 5401026,976 5460180,882 5994428,755 5761764,554 5651617,831
Fold 5 5648212,773 5479994,216 5636433,633 5922353,468 5782499,657
Total 27861714,76 28314536,88 28679980,03 28764976,51 28260822,44

Table 12. A comparison of different time step with BLSTM and regions combined.

Timestep=2 Timestep=3 Timestep=4 Timestep=5 Timestep=6
20 33926263 34659612 34219423 34712443 33799697
100 28823660 29113616 28388691 29917383 29402264
200 27861715 28314537 28679980 28764977 28260822

Table 13. A comparison of different batch sizes with BLSTM and regions.

10000 iterations 100000 iterations
Fold 1 5619324,528 5302920,264
Fold 2 5712948,795 5438516,426
Fold 3 5480201,69 5322965,262
Fold 4 5401026,976 5229617,439
Fold 5 5648212,773 5684327,798
Total 27861714,76 26978347,19

Table 14. A comparison of using more iterations to determine the dozens with BLSTM and regions.

21

1 cell 2 cells 3 cells 4 cells
Fold 1 5619324,528 5348523,833 5275728,669 6251702,739
Fold 2 5712948,795 5555850,546 5277182,649 5848273,384
Fold 3 5480201,69 5048976,243 5718830,63 6154561,412
Fold 4 5401026,976 5328805,524 5195623,332 5953054,394
Fold 5 5648212,773 5570075,342 5562368,859 6603392,139
Total 27861714,76 26852231,49 27029734,14 30810984,07

Table 15. A comparison of different amount of basic LSTM cells.

Best
Fold 1 5308769,844
Fold 2 5422952,1
Fold 3 5424605,167
Fold 4 5310002,316
Fold 5 5532376,431
Total 26998705,86

Table 16. This is the best option found in this research.

Training time Testing time
RBFN 00:00:03.717 00:06:31.997
RNN 19:37:59.991 00:00:36.605

Table 17. A comparison of the amount of time needed to train and test each approach.

22

C MARKER PLACEMENTS

Fig. 22. The facial markers used for the IEMOCAP dataset.

23

D SURVEY SCREENSHOT

Fig. 23. A screenshot of the first two comparisons in the survey used for section 6.2.

24

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-mapping
	2.2 Parallel Parametrisation
	2.3 Manifold-based Techniques
	2.4 Expression Regularisation
	2.5 Neural Networks

	3 Motivation
	4 Data
	4.1 Preprocessing
	4.2 Post-processing

	5 Approach
	5.1 Motion Capture Driven
	5.2 Radial Basis Function Network
	5.3 Recurrent Neural Network

	6 Results
	6.1 Cost results
	6.2 User experiment

	7 Discussion
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	Acknowledgments
	References
	A Pipeline
	A.1 RNN
	A.2 Unity script

	B Tables
	C Marker placements
	D Survey screenshot

