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Abstract

SMT problems form an extensive collection of satisfiability problems. Deter-
mining the satisfiability of a Boolean expression lies at the basis of this set and
forms the backbone of the P versus NP problem. We study several existing
algorithms that solve satisfiability. Another common SMT problem are systems
of linear integer inequalities. We look at a few ways these can be solved. Finally,
we show how Liquid Haskell uses an SMT solver to verify refinement types.
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1 Introduction

In this thesis we look at a two type of problems of the satisfiability modulo theories (SMT).
The first one is the set of Boolean satisfiability problems. In general, these problems all express
whether we can find values for the variables in a Boolean expression such that it evaluates
to true. The second type consists of problems involving linear arithmetic. We discuss a few
algorithms that solve these types of problems and we look at an application of solvers in Liquid
Haskell.

In Section 3 we will do some housekeeping regarding satisfiability. We give a definition of the
exact problem and define some tools and theorems to measure the length of expressions. Then
we look at an important conversion of expressions that is essential for solving the satisfiability
problem. We discuss two ways this conversion can be done and argue which one is used more
commonly.

Section 4 discusses the advancements made in solving the satisfiability problem. First we fo-
cus on some general rules to simplify expressions. Then we look at the Davis-Putnam-Logemann-
Loveland algorithm (DPLL) that takes an important place in solving satisfiability. Over the
years several algorithms have been developed that are based on this algorithm [10, 14]. We will
focus on the GRASP algorithm [13] that also heavily relies on DPLL and some improvements
on it.

In Section 5 we introduce SMT-LIB2, a standard that all current SMT solvers follow, and we
explain the overal structure of it. We then study two algorithms that solve systems of (integer)
linear inequality. The first one, Gomory’s cut, extends the simplex algorithm to integers. The
second algorithm uses the Fourier-Motzkin elimination to resolve variables from our system,
but does not work for integer systems (with integer variables). The Omega test extends the
elimination to integer.

Lastly, we look at an application of SMT solvers in Liquid Haskell, a tool to verify
properties of functions in Haskell. We will use a concept called refinement types to describe
these properties and see in an example how Liquid Haskell translates them to code that an
SMT solver can verify.
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2 Preliminaries

In this thesis we will often use Boolean expression, an expression that is composed of Boolean
operations and variables. This includes the operations ¬ (negation), ∧ (and), ∨ (or),→ (implica-
tion) and↔ (equivalence) as well as the quantifiers ∀ (for all) and ∃ (there exists). Furthermore,
since ∧ and ∨ are both commutative and associative, we use the iterated binary operations

∧
and∨

respectively. We denote the set of variables in an expression as X = {x1, . . . , xn}. Further-
more, we call an expression ψ a subexpression of an expression φ if ψ occurs somewhere in φ. As
an example we take ψ = x1∧x2 and see that this is a subexpression of φ = (x1∧x2)↔ (x2 → x3).

We will also use the symbol (`) to denote inference. That is, a ` b means that b can be
derived from a. For example, the rule of contraposition can be described as p→ q ` ¬q → ¬p.

For convenience, we define a Boolean variable x as element of {0, 1} instead of the usual
{FALSE, TRUE}. Since we will often use Boolean variables in this thesis, we will not define
them every time. Similarly, an expression is a Boolean expression unless specified otherwise.

We use the Big O notation to denote asymptotic upper bounds for functions. We use the
following definition for this:

Definition 2.0.1. We write f(n) = O(g(n)) to denote that there exist constants C and N such
that for all n ≥ N , f(n) ≤ Cg(n). Intuitively, this means that g is an upperbound of f for large
values of n.

In some places, we use the SMT-LIB2 syntax of SMT solvers. Although the syntax will
be explained and is not too complicated, the syntax uses s-expressions. This means that all
functions, including binary operators, are exclusively in prefix notation. This means that the
conjunction between two Boolean variables x and y is written as ‘and x y’ instead of ‘x and

y’. Although the semantics is exactly the same, it may decrease the readability of an expression.
Moreover, there is no difference between normal and iterated binary operators. A conjunction
of three variables is simply written as ‘and x y z’.
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3 Satisfiability

The satisfiability problem (SAT) is a well known problem in computer science. Given a Boolean
expression, it describes whether the expression is satisfiable. The problem can be formulated
formally as follows:

Definition 3.0.1. (Satisfiability). Given a Boolean expression with X as the set of variables,
we say that the expression is satisfiable, if there exist assignments to the variables such that the
expression evaluates to 1.

Remark 3.0.2. We only allow expressions of propositional logic as opposed to predicate logic.
This means that we do not include the universal and existential quantifiers ∀ and ∃. If we would
introduce them in an expression, it would greatly increase the complexity of the satisfiability
problem. Therefore expressions with quantifiers are often classified as quantified Boolean for-
mulas (QBF). Evaluating if such an expression is true (a decision problem that is called TQBF),
is a problem that is PSPACE complete [12]. This complexity class contains all problems that
can be solved with a polynomial amount of space and unlimited time.

3.1 Definitions and conventions

Before we look at ways to solve SAT, we need to introduce a few definitions.

Definition 3.1.1. (Literal). Let x be a Boolean variable. A literal in an expression is defined
as a variable x or its negation ¬x.

Definition 3.1.2. (Size) We define the size of an expression φ as the number of binary operators
in φ. Notation: |φ|. For example, |¬(x1 ∧ x2)| = 1 and |(x1 ↔ (¬x2 ∨ x3))| = 2. We also define
the extended size as the total number of operations in φ notated as |φ|2.

Theorem 3.1.3. For an expression φ, we define fL(φ) as the number of literals in φ. Note
that the same literal can occur multiple times in an expression, but we count them separately. It
holds that |φ|+ 1 = fL(φ).

Proof. We present a proof by induction. For a single literal l, it is evident that |l|+1 = 1 = fL(l).
We already saw that adding negation does not increase the size and the number of literals. We
now look at an expression of the form ψ1 � ψ2 where � is an arbitrary binary operator. We
presume that the theorem holds for ψ1 and ψ2. We see that |ψ1| + 1 = n1 + 1 = fL(ψ1)
and |ψ2| + 1 = n2 + 1 = fL(ψ2). Then it holds that |ψ1 � ψ2| + 1 = (n1 + n2 + 1) + 1 =
(n1 + 1) + (n2 + 1) = fL(ψ1) + fL(ψ2) = fL(ψ1 � ψ2). We can write this as fL(φ) = O(|φ|).

There are several arguments for why we do not include negation in the size. The first one is
that we want to measure the complexity of an expression. Negation does not combine multiple
subexpressions together. Also the number of literals in the expression does not increase with a
negation. Secondly, we could theoretically define an arbitrary number of negations after another
like this:

¬ . . .¬︸ ︷︷ ︸
2n

x ≡ x

Since we can clearly remove these negations, including them has a counterintuitive consequence
for the definition of the size. Since we can only add one negation to every subexpression and
variable, it follows from Theorem 3.1.3 that the number of negations that we can add, is linear
in the size of an expression.
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Lastly, most SAT solvers work with CNF (Section 3.3). We will see that the only negations
that occur in such an expression are in literals.

We defined the extended size, because in some cases we want to identify the number of
subexpressions in an expression. Nevertheless, we need a relation between the two sizes. There-
fore, we now prove that the extended size is at most a constant factor larger than the normal
size (the extended size of an expression grows linear in its normal size).

Theorem 3.1.4. For every expression φ without double negations it holds that |φ|2 ≤ 3 |φ|+ 1.

Proof. By definition, we know that |φ|2 = |φ|+ fN (φ) where fN (φ) is the number of negations
in φ. Since we assumed that there are no multiple negations after another, there is at most
one negation for every variable and subexpression of binary variables. From Theorem 3.1.3 it
follows that fN (φ) ≤ |φ|+ (|φ|+ 1). Therefore, we see that

|φ|2 = |φ|+ fN (φ) ≤ 3 |φ|+ 1

Thus we see that |φ|2 = O(|φ|)

It is fairly obvious that checking whether a given assignment to the variables yields an
expression that evaluates to 1 is an easy task. The difficulty of SAT however becomes clear in
the next example.

Example 3.1.5. We consider the following expression:

((x1 → x2) ∨ (¬x2 ∧ x3))↔ (x1 ∧ ¬x2 ∧ ¬x3). (1)

It is not immediately evident that there do not exist any values for x1, x2 and x3 to satisfy 1.
The most simple way is to generate the truth table to check all possibilities. For expressions
that are easily satisfiable, this method will probably suffice. But unsatisfiable expressions with
n variables require us to look at all 2n combinations. 4

3.2 Relevance

The satisfiability problem takes a crucial place in the P versus NP problem. Intuitively, if this
last problem is true, it means that many problems that now only have exponential algorithms,
could be solved in polynomial time. In 1971 Stephen Cook proved that any such problem
can be reduced to the satisfiability problem [5]. As a consequence, all these problems can be
solved in polynomial time, if we were to prove that SAT is. This makes it a key element in
a major problem in computer science. Although it is currently not known whether there exist
a polynomial algorithm to solve this problem, we can improve substantially on the brute-force
algorithm. In the next section we will discuss a few algorithms that solve SAT much faster
than the brute-force method. That is, in practice it is much more efficient, but worst-case the
algorithm still has an exponential time performance.

3.3 CNF

The first step in all algorithms is converting the expression to conjunctive normal form (CNF).
The problem that remains is checking satisfiability for an expression in CNF, a problem that is
called CNF-SAT.

Definition 3.3.1. (Clause). An expression is called a clause, if it is disjunction (∨) of literals.

Definition 3.3.2. (Conjunctive Normal Form, CNF) We say that an expression is in CNF, if
it is a conjunction (∧) of clauses.
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Example 3.3.3. Here are some examples of expressions in CNF:

• x1 ∧ x2 ∧ ¬x3
• (x1 ∨ ¬x2) ∧ x3
• ¬x1

and a few examples that are not in CNF:

• ¬(x1 ∧ x2)

• x1 ∧ (x2 ∨ (x3 ∧ x4))

4

The reason behind this transformation is that we can make more assumptions about an
expression, when it is in CNF. It is also easier to determine the value of an expression. When
one of the clauses evaluates to 0, the whole expression is 0. The algorithms discussed in Section
4 highly depend on this property.

There are other forms in which satisfiability can be solved much quicker than CNF. For
example, the disjunctive normal form (DNF), a disjunction of conjunctions of literals. If one of
the conjuctions is 1, then the whole expression is 1. Checking of a conjunction of literals can
be satisfiable is also a very easy task. As long as the conjunction does not contain a variable
x and its negation, it is satisfiable. Thus we can verify linearly whether an expression in DNF
is satisfiable. The problem here is that there is no (known) algorithm to convert an arbitrary
expression to DNF where the size of the expression grows polynomially.

3.3.1 Conversion to CNF

But how do we convert an arbitrary expression to CNF? The first step we need is to remove
the implication and the equivalence, since they are not allowed in CNF. We can replace an
implication as follows:

x1 → x2 ≡ ¬x1 ∨ x2 (2)

and we can replace an equivalence like this:

x1 ↔ x2 ≡ (x1 → x2) ∧ (x2 → x1)

≡ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2)
(3)

The next step is moving all negations inward, until the only negations are in literals. This
can easily be done using De Morgan’s laws and double negations:

¬(x1 ∧ x2) ≡ ¬x1 ∨ ¬x2
¬(x1 ∨ x2) ≡ ¬x1 ∧ ¬x2

¬¬x1 ≡ x1
(4)

At this point we only have conjunctions and disjunctions of subexpressions. The only differ-
ence with CNF is a conjunction in a disjunction. Therefore we need to move all conjunctions
outward. This can be done using the distributive property of disjunction over conjunction:

(x1 ∧ x2) ∨ x3 ≡ (x1 ∨ x3) ∧ (x2 ∨ x3) (5)

If we apply this step iteratively, we eventually obtain an expression in CNF that is equivalent
to the original statement. For an expression φ we define C(φ) as the expression in CNF after
the transformation described above.



3 SATISFIABILITY 6

Remark 3.3.4. We notice that the size of an expression remains the same during steps 2 and
4 and increases in steps 3 and 5. Thus we see that the size of an expression does not decrease
at any point during the transformation.

We can now transform every Boolean expression to CNF. If we have an algorithm that can
efficiently solve the satisfiability problem for expressions in CNF, we should be able to solve
every Boolean expression efficiently. This is however not the case. We already saw that the
size of an expression can increase during a transformation. In fact, there exist expressions that
increase exponentially in size when transformed to CNF.

Theorem 3.3.5. Let φn = (. . . ((x1 ↔ x2)↔ x3) . . .↔ xn). Then |C(φn)| grows exponentially
in terms of n. That is, we can present an exponential function f : N→ N, for which there exists
an N ∈ N such that f(n) ≤ |C(φn)| for all n ≥ N .

Proof. We present a proof by induction. Define the function f(n) = 2n−1 and let N = 2. We
already saw that |C(φ2)| = 3 ≥ 2 = f(2). Now we take an arbitrary k ≥ N and assume that
the theorem holds for this value. Thus, it holds that 2k−1 ≤ |C(φk)|. Now we look at n = k+ 1.
The conversion steps taken are the following:

φk+1 ≡ φk ↔ xk+1

≡ C(φk)↔ xk+1

≡ (¬C(φk) ∨ xk+1) ∧ (C(φk) ∨ ¬xk+1) (6)

≡ C(φk+1) (7)

We know that the size 7 is not smaller than that of 6. Therefore, we can conclude the following:

|C(φk+1)| ≥ |(¬C(φk) ∨ xk+1) ∧ (C(φk) ∨ ¬xk+1)|
= 2 |C(φk)|+ 3

≥ 2 · 2k−1 + 3

≥ 2(k+1)−1

By induction, this conludes the proof.

3.3.2 Tseitin transformation

An exponential growth in size is a big problem, if we wish to solve SAT via this transformation.
Even if we find a linear algorithm to solve this for an expression in CNF, there exist expres-
sions in which case this algorithm is not better than checking all possibilities. This is the point
where the Tseitin transformation gives us a solution. This transformation does not preserve
equivalence, but that property is not necessary. It is sufficient if we preserve equisatisfiability.
Two expressions φ and ψ are equisatisfiable if φ is satisfiable if and only if ψ is. The following
definition of the Tseitin transformation is taken from [9]:

Definition 3.3.6. (Tseitin transformation). Given an expression φ, for every subexpression ψ
we define a variable pψ. The Tseitin transformation of φ begins with a conjunction of:

• the single literal pφ;

• the CNF of pψ ↔ (pψ1
� pψ2

) for every subexpression ψ of φ of the form ψ = ψ1 � ψ2 with
� a binary operator;
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• the CNF of pψ ↔ ¬pψ1
for every subexpression ψ of φ of the form ψ = ¬ψ1.

Then we convert all equivalences to CNF with the same process as described in 3.3.1. We define
T (φ) as the Tseitin transformation of an expression φ.

Example 3.3.7. Let φ = (x1 ∧ x2)→ (x3 ∨ x4). We have the following subexpressions:

• x1 ∧ x2
• x3 ∨ x4
• (x1 ∧ x2)→ (x3 ∨ x4)

We introduce new variables and the following equivalences:

• p1 ↔ (x1 ∧ x2)

• p2 ↔ (x3 ∨ x4)

• p3 ↔ (p1 → p2)

The conjunction is then p3 ∧ (p3 ↔ (p1 → p2)) ∧ (p2 ↔ (x3 ∨ x4)) ∧ (p1 ↔ (x1 ∧ x2)). Now we
only need to convert every subexpression to CNF. This does become a rather large expression,
especially when there exists a much shorter equivalent expression in CNF: φ ≡ ¬x1 ∨¬x2 ∨x3 ∨
x4. 4

It seems we have found an even less efficient transformation, but this is not true. In fact, we
can prove that this transformation grows linear in the size of an expression.

Theorem 3.3.8. The Tseitin transformation of an expression φ grows linear in the size of φ.
Thus, it holds that |T (φ)| = O(|φ|).

Proof. We need to show that there exists a C such that for every expression φ the following
holds:

|T (φ)| ≤ C |φ|
We define Aφ = {ψi | i ∈ I} as the set of newly introduced equivalence subexpressions for some
index set I in the Tseitin transformation of φ. Since we introduce an equivalence for every
subexpression, we see that |Aφ| is equal to the number of operations in φ. From Theorem 3.1.4
it follows that |Aφ| = |φ|2 ≤ K1 |φ| for some constant K1. Then the size of the conjunction

pφ ∧
∧
a∈Aφ

a

is also equal to |φ|.
Next we look at the size of an arbitrary equivalence subexpression a. As shown in Example

3.3.7, this subexpression consists of an equivalence between a variable and either a subexpression
with two variables or a negation. We conclude that |a| ≤ 2. Since there is only a finite number
of subexpressions with size 2, it is obvious that there exists some K2 such that |C(a)| ≤ K2.
Now the following holds:

|T (φ)| =

∣∣∣∣∣∣pφ ∧
∧
a∈Aφ

a

∣∣∣∣∣∣+
∑
a∈Aφ

|C(a)|

≤ K1 |φ|+
∑
a∈Aφ

K2

≤ K1 |φ|+K1 |φ| ·K2

= K1(K2 + 1) |φ|
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This concludes the proof.

A drawback of an equisatisfiable transformation is that it is not always possible to reconstruct
the original solution, if we find a solution for the transformation. With Tseitin, we do know the
original solution, because we only need to remove all pψ.

4 Solving the satisfiability problem

We can now convert every expression to CNF, while still maintaining the same order of size as
the original expression. In this chapter we describe two algorithms that use CNF, the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm and conflict-driven clause learning (CDCL). For
both algorithms we will assume that an expression is in CNF. However, although Tseitin gives
us an expression in CNF with a rather specific structure, we will not make any assumptions
about the form of the expression, other than it being in CNF. It is possible that our original
expression was already in CNF or that we used an algorithm different from Tseitin.

4.1 Resolution

Before we look at algorithms that can solve SAT, we want to simplify an expression if possible.
This can potentially reduce the number of variables and clauses significantly. The easiest sim-
plification is removing duplicate clauses. However, this will not happen often, especially after
the Tseitin transformation, since we introduce a new variable in every clause.

Next we look at the clauses individually. It is possible that some of them contain the same
variable multiple times. If a clause contains both the variable and its negation, it will always
evaluate to 1. Therefore, we can safely remove this clause, while still preserving equisatisfiability.
If a literal appears multiple times in a clause, we can remove the duplicates.

Furthermore, we call a literal pure if its negation does not occur in the expression. Every
pure literal can be assigned the value 1. Since every clause that contains this literal will be 1,
they can all be removed.

Next, if an expression contains two clauses of the form:

ψ1 ∨ x, ψ2 ∨ ¬x

with ψ1 and ψ2 subexpressions and these are the only two instances of x in the expression, we
can reduce these two clauses to ψ1∨ψ2. If only one of ψ1 and ψ2 has the value 1, we can choose
x accordingly to ensure that both clauses are 1. Note that the assertion that x does not appear
anywhere else in the expression, is essential, since we need to choose x without restrictions.

Lastly, single literal clauses can be assigned immediately, since their value must be 1. This
step allows us to assume that our first step in every algorithm is a decision. This will be a useful
property.

We can do all these simplifications, because we only try to solve the decision problem. As
long as the expressions are equisatisfiable, this method works fine. However, a lot of SAT solvers
can also produce the solution of the original expression (if it is satisfiable of course). In that
case we need to remember all the variables that we have removed. This is generally not very
difficult, yet noteworthy.

4.2 DPLL

One of the earlier algorithms for CNF-SAT is the Davis–Putnam–Logemann–Loveland (DPLL)
algorithm, published in 1962 [7]. Intuitively, this algorithm checks for all variables if it can
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derive its value directly. Otherwise, it makes a decision for a random variable and looks if it can
derive more variables. If it finds a contradiction (or conflict), it backtracks to the last decision
and chooses the opposite value. In the end we either have a solution (satisfiable) or a conflict
without decisions (unsatisfiable).

During the algorithm we want to make a distinction between a variable xi and its value,
so we define ν(xi) ∈ {0, u, 1} as the assigned value of variable xi, where u means that xi is
unassigned. We denote an assignment of xi with value ν(xi) as (xi, ν(xi)). We also define a
stack S that keeps track of our assignments, both for decisions and derived variables. Whenever
we change the stack, we write this as S → T , where S is the old stack and T the new one. For
example, when assigning a value ν(xi) to a variable xi, we write: S → S(xi, ν(xi)).

Given an expression φ, we define an empty initial stack S = ε. The algorithm takes the
following steps:

1. Check whether it holds that S ` φ. Then φ is satisfiable.

2. Check whether there exists a clause ψ such that S ` ¬ψ and S does not contain any chosen
variables. In that case φ is unsatisfiable.

3a. Check iteratively if there exists a literal l /∈ S such that there is a clause of the form l ∨ψ
for which S ` ¬ψ. Then we know {S, φ} ` l. If l = x, we define ν(x) = 1 and if l = ¬x,
we define ν(x) = 0. We call this step unit propagation and the corresponding variable an
implied variable. Notation: S → S(x, ν(x)).

3b. If no such literal exists, we choose an unassigned variable x randomly and give it a value
ν(x) ∈ {0, 1}. To remember that this assignment was a decision we mark it. Notation:
S → S(x̂, ν(x)). Go back to step 1.

4. If the stack is of the form S = T (x̂, ν(x))N such that N does not contain any chosen
variables and there exists a clause ψ such that S ` ¬ψ, we then have encountered a
contradiction. We remove N from the stack and replace (x̂, ν(x)) with (x,¬ν(x)). We
no longer have to mark x, since we know already that x = ν(x) yields a contradiction.
Notation: S → T (x,¬ν(x)).

5. Go back to step 1.

Example 4.2.1. Let us look at an example. Consider the following expression:

φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6

= (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x4 ∨ x5) ∧
(¬x3 ∨ x4) ∧ (x1 ∨ ¬x5) ∧ (x2 ∨ ¬x4)

Although we could resolve a few clauses, we just want to look at the algorithm directly. We
start with an empty stack ε. It is clear that both ε ` φ and ε ` ¬φ do not hold. Therefore, we
make a decision: x1 = 0. Clause C5 implies that x5 = 0. Now we must make a decision again.
We could make the not so smart decision x2 = 1. From C2 and C3 we conclude that x3 = 1 and
x4 = 0 respectively. We see now that S ` ¬C4, so we apply step 4 on x2. From C6 it follows
that x4 = 0 and then we see that x3 = 0 to satisfy C4. We have taken the following steps in our
stack:

ε→ ε(x̂1, 0)→ ε(x̂1, 0)(x5, 0)→ ε(x̂1, 0)(x5, 0)(x̂2, 1)→
ε(x̂1, 0)(x5, 0)(x̂2, 1)(x3, 1)(x4, 0)→ ε(x̂1, 0)(x5, 0)(x2, 0)→
ε(x̂1, 0)(x5, 0)(x2, 0)(x4, 0)(x3, 0)
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We now go back to step 1 and see that all clauses are true. We have found a solution and φ is
satisfiable. 4

4.2.1 Performance

In many instances the DPLL algorithm will perform better than determining the truth table.
If a choice leads to a contradiction and there are still m variables unassigned, we safe ourselves
2m possibilities to check. But of course, this algorithm is in the worst-case not polynomial.
Otherwise we would have solved the P versus NP problem. Unfortunately, worst case the run
time of DPLL is still exponential [1].

4.3 CDCL

The DPLL algorithm has already an average performance that exceeds the truth table method.
However, that does not mean that there are no improvements possible. From the mid-90’s a
new technique based on DPLL was developed, called conflict-driven clause learning (CDCL) [4].
It works similar to DPLL, but it allows us to add new clauses to prevent us from encountering
the same conflict. It also uses non-chronological backtracking, backtracking to variables other
than the last decision.

4.3.1 Housekeeping

Before we begin we must do some housekeeping. That way we can refer more easily to certain
notions. We use the following definitions from [4], since they use the same concepts. We define
a decision level δ(x) as the iteration index at which we assign a value to x, either by unit
propagation or decision. For unassigned variables, we define δ(x) = −1. If a variable is assigned
via unit propagation in clause C, we define

δ(x) = max({0} ∪ {δ(y) | y ∈ C, y 6= x}).

For a decision variable the decision level is given by

δ(x) = max({δ(y) | y ∈ X, y 6= x}) + 1.

As a consequence, all decision variables have a different decision level and all implied variables
have a decision level equal to that of the decision variable that implied them.

The second addition to DPLL is a decision graph G, a directed graph that we use to keep
track of our decisions. Whenever we make a decision for a literal, we add a decision node
without incoming arrows. If we apply unit propagation on a literal l, we have found a clause
C = l ∨ l1 ∨ . . . ∨ ln such that S ` ¬(l1 ∨ . . . ∨ ln). We then add an implied node for l and an
arrow from l1, . . . , ln to l to remember the dependencies of l. The result is a directed acyclic
graph. Because we assumed previously that we cannot apply unit propagation at the beginning,
all nodes without incoming arrows (roots) are decision nodes.

When we encounter a conflict, we apparently found a clause C = l1 ∨ . . . ∨ ln that is false
under the current variable assignment. We add an extra conflict node κ and draw arrows from
l1, . . . , ln to κ. The graph of Example 4.2.1 in the moment of conflict can be seen in Figure 1.
With this node we will define an additional clause to prevent us from encountering the same
conflict again. We will discuss how this is done using the GRASP algorithm and we look at
some improvements.
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x1 = 0

x5 = 0

x2 = 1

x4 = 0

x3 = 1

κ

Figure 1: Implication graph of Example 4.2.1

4.3.2 GRASP

The GRASP algorithm (Generic seaRch Algorithm for the Satisfiability Problem) was intro-
duced in the late 90’s [13]. We start in the conflict node and determine the nodes of all incoming
arrows. We execute this step iteratively, until we have a set of nodes without incoming arrows.
Since we know that these are all decision nodes, we come to the conclusion that this set of
decisions will eventually lead to a contradiction. We define the implication set D1(κ) as the set
of these assignments. It is sufficient if we negate at least one of the assignments. We can write
this in an additional clause:

C ′1 =
∨

(x,ν(x))∈D1(κ)

xν(x)

where x0 = x and x1 = ¬x. We add the conflict-induced clause, while retaining equisatisfiability.
By adding this clause, we prevent reassigning the same values to the variables in our implication
set. In Example 4.2.1 we get the clause C ′1 = (x1 ∨ ¬x2). We determine the variable x with
the highest decision level in the implication set D1(κ). In our implication graph we add arrows
from the other decision nodes in D1(κ) to x. If it were to happen that D1(κ) = {(x, ν(x))} (see
Example 4.3.1), we know the value of x for certain. In that case we resolve x by substituting
its value in the expression. We remove all decision nodes with a larger decision level, because
it is possible that one of these decisions is implied by changing the value of x. Then we remove
all implied nodes. On our stack we also jump back to x and take the negation. An important
notice is that x is not necessarily the last decision made, in contrary to the DPLL algorithm. It
is true that the implication set of the first conflict we encounter contains the last decision, but
this does not hold for later conflicts.

Example 4.3.1. We perform GRASP and have made the decisions x1 = 1, x2 = 0 and x3 = 0
consecutively. This causes a conflict κ with D1(κ) = {(x1, 1), (x3, 0)}. We then assign x3 = 1.
If this also leads to another conflict κ′ with only D1(κ′) = {(x1, 1)}, we see the assignment
x1 = 1 will always lead to a conflict. The DPLL algorithm now backtracks to x2 even though
the conflict and x2 have no connection. If it makes a decision for x3, we encounter one of the
conflicts again. It then negates the value of x3 and we encounter the other conflict. Only then
will we change the value of x1 (assuming that we have not made any other decisions in the
meantime). 4

The GRASP algorithm does give us some overhead. We introduce new clauses that we need
to keep track of and that we need to check during our algorithm. We also generate a clause with
every backtrack. This potentially increases the number of clauses exponentially. A solution,
proposed in [13], is the deletion of large conflict-induced clauses. A clause with 20 literals will
not cause a conflict as fast as one with only 5. We define a maximum clause length k. Every time
we introduce a new clause with a size larger than k, we mark it. Initially, the clause will evaluate
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to 1, but it is possible that after a few more backtracks the clause has some unassigned literals
and the other literals are 0. We call a clause then unresolved. We delete a marked clause, if it
becomes unresolved with at least two unassigned literals. By deleting conflict-induced clauses,
we lose known information, but in the worst case the number of clauses grows polynomial [13].

4.3.3 Unique implication points

The last improvement that we will discuss is the use of unique implication points (UIPs). With
these UIPs we can decrease the size of the conflict-induced clauses. As stated earlier, a smaller
clause gives us more information.

We define a set U(x) = {(x1, ν(x1)), . . . , (xn, ν(xn))} as the set of dominators of κ with
respect to a decision variable x. In graph theory a dominator of w with respect to u is a node
v such that every path from u to w passes v. Note that it holds that (x, ν(x)) ∈ U(x). Finding
dominators can be done in almost linear time in terms of the number of edges with the algorithm
of Thomas Lengauer and Robert Endre Tarjan [11]. This algorithm runs in O(m · α(m,n))
where m is the number of edges in a graph, n is the number of vertices and α(m,n) is the
inverse Ackermann’s function with two parameters. This function grows extremely slowly and
in practice we can consider it a constant.

Now we define the set of UIPs as

U =
⋃

(x,ν(x))∈D1(κ)

U(x).

If two decisions have a dominator in common, we can add that to the clause instead of the
decision variables. We can determine the new clause as follows. We begin again in the conflict
node and determine all nodes of incoming arrows. But rather than walking all the way back
until we found a decision variable, we also stop, when we encounter a UIP. We define the set of
these variables as D2(κ) and the conflict-induced clause as

C ′2 =
∨

(x,ν(x))∈D2(κ)

xν(x).

Theorem 4.3.2. For a conflict κ in the implication graph, it holds that |D2(κ)| ≤ |D1(κ)|.

Proof. For every (x, ν(x)) ∈ D2(κ) there is at least one decision variable yx in D1(κ) such that
there is a path from yx to x, because we have an acyclic directed graph and by definition there
exist no roots (z, ν(z)) /∈ D1(κ) such that there is a path from z to κ. Furthermore, all yx
are distinct. If we have x1 and x2 such that y := yx1

= yx2
, then we see that x1 and x2 are

elements of U(y). Then there must be a path from x1 to x2 or the other way around. Otherwise
they cannot be dominators of κ, because we have found two paths from y to κ. Without loss of
generality we assume that there is a path from x1 to x2. But that means that there is another
path from x1 to κ that does not pass through x2, because x1 is an element of D2(κ). This is a
contradiction, because we have found a path from y to κ that does not pass through x2. Because
all yx are distinct, we know that D1(κ) is at least as big as D2(κ).

We now have a clause that is not bigger than the clause of D1(κ). In fact, it is quite likely
that there exists an x in D2(κ) that is the dominator of multiple decisions. In that case C ′2 is
strictly smaller than C ′1.

Example 4.3.3. Let us slightly modify Example 4.2.1:
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φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7

= (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x4 ∨ x5) ∧
(¬x3 ∨ x4 ∨ x7) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (x2 ∨ ¬x4) ∧ (x5 ∨ ¬x7)

We also assume that we made the decision x6 = 0 at the beginning. In Figure 2 the new
implication graph can be seen. Without UIPs we would get the clause (x1∨¬x2∨x6). If we look
at the UIPs, we see that x5 ∈ U(x1) ⊂ U . It also obvious that x3, x4 and x7 are no dominators
of any decision variable. Thus we conclude that C ′2 = (x5 ∨ ¬x2). This is a smaller clause and
still prevents us from encountering the same conflict. 4

x1 = 0

x5 = 0

x2 = 1

x4 = 0

x3 = 1

κ

x6 = 0

x7 = 0

Figure 2: Implication graph of Example 4.3.3

Now we must determine to which point we backtrack. We cannot just backtrack to the
variable in D2(κ) with the highest decision level and negate its value. If this is an implied node,
we would immediately generate a new conflict. This would happen in Example 4.3.3 if we define
x5 = 1. If we jump to the decision variable with the highest decision level, we might miss a
part of our search space, possibly getting the wrong answer. It is even possible that there are
no decision variables in the conflict-induced clause. Instead, we find the variable x in D2(κ)
with the highest decision level and determine the decision variable y with the same decision
level. This was the decision that eventually leads to the conflict. We remove again a part of
the implication graph in the same way as before. We do know however that we can negate the
value y. In the implication graph we add arrows from the other nodes in C ′2 to y.

5 Satisfiability Modulo Theories

In the last section we saw SAT and algorithms to solve it. Now it is time to look at satisfiability
modulo theories (SMT). As the name suggests it is closely related to SAT. SMT can be looked
at as a generalization of SAT. It allows expressions with data types other than Booleans such
as integers, real numbers, bitvectors, uninterpreted functions and functional arrays [3]. For this
thesis, we will only look at a few types of expressions with integers and real numbers, since SMT
is an extensive problem set with many different theories and logics.

5.1 SMT solvers

To standardize all the different types listed above, an international initiative came to be, the
SMT-LIB [2]. It is a standardization with many different types, separated in theories and logics.
It also defines a standard syntax that all SMT solvers should follow.
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5.1.1 Theories

A theory describes the behavior of a specific data type. Examples are the Core theory, which
defines Booleans and all operators used in the last section, the Ints theory, which defines the
integers and a few arithmetic operators as well as the comparison operators, and the Reals, which
defines the real numbers and the same operators as the Ints theory apart from the modulo and
absolute value. It also defines a different division than the Ints. A theory does not define any
kind of allowed expressions. It only formulates some axioms for the operations that must hold.
As an example, the commutativity axiom of the multiplication is defined as

(forall ((x Real) (y Real)) (= (* x y) (* y x)))

in the theory of real numbers [17].

5.1.2 Logics

A logic tells us which types and expressions should be supported by a solver. The list of logics
is still growing. An incomplete overview of the most common logics is shown in Figure 3. An
arrow from L1 to L2 means that all expressions of L1 are included in L2. Many logics build on
other logics and extend the formulas included.

For example, the logic QF LIA describes all quantifier-free linear integer arithmetic. This
includes expressions like 3x + 4y < 20 ∧ 4x − 6y > 3 with x, y ∈ N. This expression is easily
satisfiable with x = 3, y = 1. An extension on this logic is LIA that does allow quantifiers. This
logic lets us define expressions like

∀x ∈ N,∃y ∈ N, 3x+ 4y < 20 ∧ 4x− 6y > 3. (8)

This statement is obviously not true, because when x = 7, it follows that 3x+ 4y > 20 for every
y ∈ N. Statements like the one in 8 are much more complicated to verify than quantifier-free
expressions.

Figure 3: An overview of logics

In this section we will focus on QF LIA and QF LRA, quantifier free linear real arithmetic.
More precisely, we look at systems of (integer) linear inequalities (SO(I)LI). There are many
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ways to solve these kind of equations. We will first discuss the so called ‘eager’ method for
solving integer linear equations.

5.2 The eager method

The eager method is a relatively easy way of solving SOILIs. It is based on the idea of translating
the problem to SAT. We translate the problem to an expression the same way a computer does.
That is, we write every integer as a bit string where every bit is represented by a Boolean in the
expression. An advantage of this method is that it does not limit us to linear equations. We
could in fact extend this method to polynomial, exponential and even modular equations. This
method works in fact for a lot of data types, including floating point numbers. We will analyze
solving a SOILI. We follow the steps taken from [19] partially. Here they solve linear equations
with binary variables. We will extend this to non-negative integer variables. This method can
be extended further to include negative integers by adding a sign bit to each number, but we
limit ourselves to non-negative integers for the sake of simplicity.

5.2.1 Integer linear inequalities

The first step is defining the exact problem. A system of non-negative integer linear inequalities
is a set of inequalities of the form:

Ax ≤ b

Here A is a matrix in Zm×n≥0 , x is vector in Zn≥0 and b is a vector in Zm≥0. We can also write the
system as follows:

a11x1 + . . .+ a1nxn ≤ b1
...

...
...

am1x1 + . . .+ amnxn ≤ bm

(9)

Note that this is an integer problem, so we can assume that all inequalities are not strict.
Now we need to define a few things. Since we represent all expressions as bit strings, the size
of these bit strings is not necessarily a fixed number. However, all expressions will be finite.
Thus we can bound the number of bits by a large enough M . We will define the i-th bit of an
expression f as pfi with 0 ≤ i ≤M − 1. Furthermore, for a constant a, we define Ba as the set
of bit indices that have the value 1. For example, it holds that B13 = {0, 2, 3}.

The first step is transforming a constant a. We have defined the variables, but we need to
enforce that they all have the right value. We know that pai = 1 only if i ∈ Ba. Otherwise, it
should be 0. This can be done like this [19]:

trans(a) =
∧
k∈Ba

pak ∧
∧
k/∈Ba

¬pak (10)

We can only satisfy this expression by choosing the right value for each bit.

5.2.2 Addition

The second step is adding two expressions f and g together. This is not too complicated. We
do need to introduce an extra variable for each carry. We define the carry from the i-th to the
(i+ 1)-th bit as ci,i+1. Since we do not have a carry to the 0-th bit, we see that pf+g0 is 1 if and

only if exactly one of pf0 and pg0 has the value 1. We can express this as pf+g0 ↔ (pf0 ↔ pg0). For
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the other bits of f + g, it shows that pf+gi is 1 if an odd number of the pfi , pgi and ci−1,i has the
value 1. An interesting property of the bi-implication is that we can express this as

pf+gi ↔ (pfi ↔ pgi ↔ ci−1,i).

For the carries the first one is again slightly different. We see that c01 ↔ pf0 ∧ p
g
0. For the other

carry bits ci,i+1 is 1 if at least two of pfi , pgi and ci−1,i have the value 1. We can express this
simply as

ci,i+1 ↔
(

(pfi ∧ p
g
i ) ∨ (pfi ∧ ci−1,i) ∨ (pgi ∧ ci−1,i)

)
.1

Since we want to reuse the sum of f and g, we say that h = f + g and we define the total
transformation of the addition as follows [19]:

T (h, f, g) =
(
ph0 ↔ (pf0 ↔ pg0)

)
∧(

c01 ↔ pf0 ∧ p
g
0

)
∧

M−1∧
i=1

(
phi ↔ (pfi ↔ pgi ↔ ci−1,i)

)
∧

M−1∧
i=1

(
ci,i+1 ↔

(
(pfi ∧ p

g
i ) ∨ (pfi ∧ ci−1,i) ∨ (pgi ∧ ci−1,i)

))
(11)

Remark 5.2.1. Note that we defined M large enough to represent all expressions in the system.
Therefore, we can assume that cM−1,M = 0. Otherwise the consequence is that phM = 1, in which
case h needs M + 1 bits to represent. This is of course a contradiction.

5.2.3 Multiplication

The next step is multiplying a number a with a variable x. Since this will be a rather complicated
transformation, we start with a multiplication with a binary variable xi. If xi = 0, then axi = 0.
In that case all bits of axi will be 0. If xi = 1, then axi = a. So we see that the same bits of
axi are 1 as the bits in a. It follows easily that paxik only has the value 1 if and only if both xi
and pak are equal to 1. Thus we can write this transformation like this [19]:

trans(axi) =

M−1∧
k=0

paxik ↔ (xi ∧ pak) (12)

But in this case we only use a binary variable. To illustrate the complexity that we introduce
when multiplying two integers, we present the multiplication of 5 and 7.

1 0 1
1 1 1 ×

1 1 0 1
1 1 0 1

1 1 0 1 +
1 0 0 0 1 1

1This is wrongly formulated in [19], where this expression is based on. In this paper the last two conjunctions
are the same.
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Not only do we perform multiple binary multiplications, we also shift the results and add
them together. This process is too complicated to write it in one expression like 12. We define
new variables paxjk as shown below. The row paxj0 is the multiplication of x and pa0 and so on.

px2 px1 px0
pa2 pa1 pa0 ×

tax0 = pax50 pax40 pax30 pax20 pax10 pax00
tax1 = pax51 pax41 pax31 pax21 pax11 pax01
tax2 = pax52 pax42 pax32 pax22 pax12 pax02 +

pax5 pax4 pax3 pax2 pax1 pax0

Remark 5.2.2. Note that, just like with the addition, the length of ax is larger than both a
en x. Again this will not be a problem for the same reason. But since a most likely starts with
a number of leading zeros, we define the length of a without leading zeros as Ma.

Now we need to enforce that these newly introduced variables have the right values according
to our table. For example, we see that pax00 ↔ (px0 ∧ pa0) enforces the correct value of pax00 . If we
also take the shifts in account, we get the following general expression:

paxjk ↔ (pxj−k ∧ pak)

This is of course only a correct definition if j ≥ k. But we already saw in the example of 5 and
7 that paxjk = 0 if j < k. We can combine this expression with 10 and get a total expression:

trans1(ax) =
∧
k∈Ba

M−1∧
j=k

(
paxjk ↔ pxj−k

)
∧
k−1∧
j=0

¬paxjk

 ∧ ∧
k/∈Ba
k<Ma

M−1∧
j=0

¬paxjk (13)

Lastly we need to add the taxi together. This can be done using 11. We define the partial
sum faxk = tax0 + . . .+ taxk . We get the following expression:

trans2(ax) =

Ma−1∧
k=1

T (faxk , faxk−1, t
ax
k )

The total transformation of multiplication is then simply:

trans(ax) = trans1(ax) ∧ trans2(ax)

5.2.4 Inequality

The last part is the inequality. Again we define a partial sum fij = ai1x1 + . . .+aijxj . We want
to find the transformation of fin ≤ bi. What happens if fin 6= bi? Then there exists a largest
(most significant) k such that pfink 6= pbik . If pfink = 1 and pbik = 0, then we see that fin > bi.
Thus if we want to enforce that fin ≤ bi, no such k may exist. Therefore we need to check this
property for every k such that pbik = 0. This is of course if k /∈ Bbi . The property we need to

check is that if pfink = 1, then for all j > k it holds that pfinj = pbij . However, it is sufficient to

only check the j ∈ Bbi , since pbij = 0 ∧ pfinj = 1 implies that we have found a larger k with the
property. We can now transform the inequality in the following expression [19]:

trans(fin ≤ bi) =
∧

k/∈Bbi

pfink → ¬
∧

j>k,j∈Bbi

pfinj
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5.2.5 The full equation

We now have a transformation for all operations separately. The only thing left to do is com-
bining them into one expression. Since we want all inequalities to hold, we take the conjunction
of the individual transformation:

trans(Ax ≤ b) =

m∧
i=1

trans(yi)

Here we define yi as the i-th inequality. The transformation of yi is the conjunction of all
multiplications, the sum and the inequality. We no longer have to include 10, since this is
already combined in the multiplication. We can write the transformation of yi as follows:

trans(yi) =

n∧
j=1

trans (aijxj)∧

n∧
j=2

T (fij , fi,j−1, aijxj)∧

trans(fin ≤ bi)

5.2.6 Result

This method gives us a SAT problem that is equisatisfiable to the original system of inequalities.
If we have a satisfiable system and we asked the SMT solver to give us the corresponding
assignments, we could calculate the values of all xi’s.

5.3 The lazy method

Although the eager method is direct and to the point, we introduce many redundant variables.
Many terms aijxj will be quite small, so a lot of the leading bits will be zero. The lazy method
does less superfluous work as opposed to the eager method, hence the name. In fact, the lazy
method is not a name for one specific algorithm, but rather a collective name for all methods
that use integer logic to solve the problem instead of a translation to SAT. In general, they are
much more efficient than the eager method. We look at two algorithms, Gomory’s cut and the
Fourier-Motzkin elimination method and how they can be used for both SOLIs and SOILIs.

5.3.1 Gomory’s cut

One method to solve SOILIs is to look at algorithms that solve integer linear programming
(ILP) problems. Not only do we need to find a vector that satisfies the constraints, we also have
an objective function cT · x that we want to minimize (or maximize). However, ILPs require us
to add an additional constraint, which is that all variables are non-negative (the constants can
still be negative). One of the earliest methods was Gomory’s cut, proposed by Ralph Gomory
in 1958 [8]. The general idea is that we solve the LP relaxation with the simplex method [15].
This means that we drop the integrality constraint. If our solution is not integer, we add an
extra linear constraint to reduce our search space. We will not go into detail how this algorithm
generates new constraints, but the constraint removes a part of the search space that does not
contain any integer solutions. Interestingly, this algorithm uses the same principle as CDCL
by adding constraints during the process of solving, even though CDCL was developed in the
mid-90’s.



5 SATISFIABILITY MODULO THEORIES 19

Assuming that our SOILI defines a non-empty region, this n-dimensional space is a convex
polytope. The simplex method uses the fact that a minimum (if it exists) always occurs in a
vertex of our space. Initially, we search for one of the vertices, called the initial feasible solution.
From this point we walk over one of the connecting edges that decreases our objective function
the most. The algorithm states that if we execute this step iteratively, we find a minimal solution
or we come to the conclusion that the minimum is unbounded.

However, Gomory’s cut is used to solve ILPs. But since we are only interested if our SOILI
has a solution, we can make some shortcuts. For example, if we choose an objective function
randomly, we need to invest time in solving the LP relaxation. But for determining an initial
feasible solution and Gomory’s cut, we do not need the objective function. Therefore, we can
apply Gomory’s cut immediately after we have found a feasible solution.

5.3.2 Fourier-Motzkin elimination

The second method we discuss is the Fourier-Motzkin elimination (FME) [6]. With this method
we can remove a variable of our system. If we excute this elimination repeatedly, we eventually
have only one variable left. This can easily be solved.

We assume that we have SOLI of the form 9. We partition the system based on whether
the coefficients of x1 are positive, negative or zero. Then we can write get three sets of linear
equations: 

x1 ≥ D1(x̄)
...

x1 ≥ Dp(x̄)

,


x1 ≤ E1(x̄)
...

x1 ≤ Eq(x̄)

,


0 ≤ F1(x̄)
...

0 ≤ Fr(x̄)

where Di(x̄), Ej(x̄) and Fk(x̄) are linear functions in x̄ = (x2, . . . , xn) [6]. If we solve x̄ such
that Di(x̄) ≤ Ej(x̄) and 0 ≤ Fk(x̄) for all values of i,j and k, we have found a solution for our
original system. For the value of x1 we know that

max
1≤i≤p

Di(x̄) ≤ x1 ≤ min
1≤j≤q

Ej(x̄).

Since we know that Di(x̄) ≤ Ej(x̄), we can always find a real x1 that suffices. One major draw-
back of this method is the increase in inequalities. Since we pair up at most n/2 inequalities,
we get an upperbound of n2/4 new inequalities.

Although this algorithm can greatly increase the number of inequalities, it will always pro-
duce a correct solution if all xi’s can be real numbers. This is no longer the case if we look at
SOILIs. Even if we find a x̄ ∈ Zn−1 such that all inequalities hold, it is still possible that there
is no integer between max1≤i≤pDi(x̄) and min1≤j≤q Ej(x̄). But that does not automatically
mean that there is no integer solution to our SOILI. We could find a different x̄ such that there
is a corresponding integer x1.

In 1991 William Pugh extended the FME method to integers with the Omega test [16]. With
the FME method we get a new set of inequalities P ′ from our original problem P . The Omega
test gives us a second set of inequalities P ′′ that is stricter than P ′. If we can find an integer
solution x̄ to P ′′, it guarantees that there is an integer solution for P . We already know that
there is no integer solution to P , if there is no integer solution to P ′. The only case left is
when we find a solution for P ′ and not for P ′′. Pugh presents a rather complicated method to
check this case, so we will not explain it any further. Pugh acknowledges that this last case is
expensive and that there are SOILIs that are a “nightmare” for the Omega test. But he also
states that this last case does not occur very often in practice.
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6 Liquid Haskell

In this section we look at an application of SMT solvers, Liquid Haskell. It is a tool that can
be used to prove certain properties of Haskell functions by using refinement types.

6.1 Refinement types

Refinement types form a concept in the area of type theory. They endow a certain type with
a predicate. For example, we can define the even numbers as a refinement type of the set of
integers: {x : Z | x ≡ 0 ( mod 2)}. The set of even numbers is a refinement of the original type.
In mathematical terms, a type can be seen as a set T , and the refinement as a subset R of T .
We now present a formal definition of a refinement.

Definition 6.1.1. (Refinement). Given a set T and a propositional function P : T → B where
B is the Boolean domain, we define a refinement:

R := {t ∈ T | P (t)}

Remark 6.1.2. This definition also allows us to define a refinement on a refinement itself.

We will only use this definition in a Liquid Haskell context. Therefore we give an equiv-
alent definition of a refinement type for Haskell.

Definition 6.1.3. Given a type T and a propositional function P :: T -> Bool, we define a
refinement type or subtype as

type R = {t:T | P t}.

Example 6.1.4. We will use the following refinement types in this section:

type TRUE = {v:Bool | v }
type FALSE = {v:Bool | not v }
type NAT = {v:Int | v >= 0 }
type POS = {v:Int | v > 0 }

It may seem odd to define TRUE and FALSE as a separate refinement type, since True and False

are already defined in Haskell. However, these keywords are values of the type Bool and not
types. 4

6.2 Purpose

One of the applications of refinement types is checking pre- and postconditions of functions.
They allow us to refine the parameters and return value of functions. We call this a contract.
We can ask Liquid Haskell to verify these types. It then checks whether the return value
always satisfies the refinement type and it verifies if the parameters of all calls to this function
also satisfy their refinement type. The next example was taken from [18].

Example 6.2.1. We declare the function

div :: Int -> Int -> Int

as the Euclidean (integer) division. This function is undefined if the second argument equals
0. Therefore we want it to be impossible to call this function with such an argument. This is
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where we use a contract. The main advantage with a contract is that we can check in advance,
if there is possibility of dividing by zero instead of getting a run-time error. This does not mean
that our program would have crashed. It only means that we cannot guarantee that the call is
valid.

Say, in this example we not only want to prevent dividing by zero, we also want the two
parameters to be non-negative and positive respectively. With the earlier defined refinement
types, the contract becomes:

div :: n:NAT -> d:POS -> {v:NAT | v <= n}

Note that a refinement type does not necessarily need to be defined separately. It can also be
defined in a contract, when using the parameters of the function. We require that div returns
a value that is less than or equal to the dividend, which is a trivial property with non-negative
integer division. This is of course a necessary but not sufficient condition for the division
function. However, we guarantee at least this one property. 4

An important aspect of contracts is that every argument in the function must have a refine-
ment type that is a subtype of its original type. In the example, we see that both NAT and POS

are subtypes of Int and the return type is subtype of NAT, so also a subtype of Int.

6.3 Example

Now let us study an example and how Liquid Haskell verifies it using an SMT solver. We are
going to look at one of De Morgan’s laws:

¬(x1 ∧ x2)↔ (¬x1 ∨ ¬x2)

We want to verify that this law always holds, indepently of x1 and x2. In (Liquid) Haskell
this becomes the following statement2:

{-@ DeMorgan :: Bool -> Bool -> TRUE @-}
DeMorgan :: Bool -> Bool -> Bool

DeMorgan x1 x2 = not (x1 && x2) <=> not x1 || not x2

(14)

To distinguish between Haskell and Liquid Haskell, we write Liquid Haskell code
between {-@ ... @-}. We see here the use of the refinement TRUE. If we ask Liquid Haskell to
verify this statement, it must check if our expression is true one way or another. The problem
here is that we do not have a normal satisfiability problem as in Section 3. We want to check if
the expression is a tautology. That is, the expression is true for all x1 en x2. So this is in fact
the quantified expression:

∀x1, x2 : ¬(x1 ∧ x2)↔ (¬x1 ∨ ¬x2). (15)

Although most SMT solvers are able to verify quantified expressions, they still form a harder set
of problems than unquantified expressions. Therefore, we attempt to solve this problem without
quantifiers. In this case, we cannot check 15, but we can check its negation. If we were to prove
that the negation is unsatisfiable, we know that the original expression is a tautology. This can
be done as follows:

¬ (∀x1, x2 : ¬(x1 ∧ x2)↔ (¬x1 ∨ ¬x2)) ≡ ∃x1, x2 : ¬ (¬(x1 ∧ x2)↔ (¬x1 ∨ ¬x2))

≡ ∃x1, x2 : (x1 ∧ x2)↔ (¬x1 ∨ ¬x2)

2We still have to define (<=>), since this is not a standard function in Haskell.
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We will not write this completely to CNF, but it is at this point already trivial that this
expression is unsatisfiable. A SAT or SMT solver will of course perform the algorithm completely.
We now have given a possibility how to tackle this problem. This does not necessarily mean
that Liquid Haskell also takes these steps.

Figure 4: Part of the .smt2 file

Although it is very difficult to look at the exact steps before and after the use of the SMT
solver, we can look at the .smt2 file that Liquid Haskell generates. A part of this file can
be seen in Figure 43. The command ‘assert’ presents an expression to the solver, but it does
not verify it directly. Only after the command ‘check-sat’ is executed, checks the solver all
assertions. If the expressions are satisfiable, it returns ‘sat’, otherwise it returns ‘unsat’. The
next line is a comment to tell us that Liquid Haskell expects that the solver gives us ‘unsat’.

We see that Liquid Haskell introduces new variables for every subexpression and enforces
the right values in the same way we did in Section 5.2. If we combine all subexpressions into
one, we get

¬ ((¬(x1 ∧ x2)→ (¬x1 ∨ ¬x2)) ∧ ((¬x1 ∨ ¬x2)→ ¬(x1 ∧ x2)))

which is equivalent to
¬(¬(x1 ∧ x2)↔ (¬x1 ∨ ¬x2)).

This expression occurred in our own method, but we see that Liquid Haskell also expanded
the equivalence. It also left the outer negation, instead of simplifying the expression. But apart
from these minor details it took the same approach that we proposed instead of using quantifiers.

3For readability, all variables have been renamed, all subexpressions of the conjunction have been put on
separate lines, and variable declarations have been omitted. Liquid Haskell also generates many other variables
and unrelated expressions. These also have been omitted.
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7 Conclusion

In conclusion, SMT solvers can be used for many types of problems. One of them is the
satisfiability problem, which is more or less the basis of SMT, hence its inclusion in the Core logic.
We studied a few algorithms that have been developed over the years that solve the problem.
In the early 60’s the DPLL algorithm was published [7]. The general idea of backtracking when
encountering a conflict still forms the basis of many newer algorithms that have been developed.
One of them was the concept of conflict-driven clause learning. This allowed us to add clauses
and to backtrack further on the stack to save time. GRASP applies this idea of adding clauses
and with UIPs we could keep the size of new clauses limited.

Another type of problem of SMT were system of (integer) linear equations. The eager
method provided a rather direct and extensive way of solving these systems by converting
integers to a sequence of bits and translating the operators into expressions. This gave a lot
of overhead and we had to introduce many new variables to keep track of intermediate values.
With Gomory’s cut and the Fourier-Motzkin elimination method we could solve this problem
with less additional work. The first algorithm one used a shortened version of Gomory’s cut, an
algorithm that extends simplex to integer linear programming problems. The second algorithm
gradually decreased the number of variables in our SOLI with the FME method, until we were
left with a trivial problem. Then we briefly saw the Omega test that extended this to integer
inequalities.

Lastly, SMT solvers can be used as application in Liquid Haskell. With Liquid Haskellwe
can use refinement types to check properties of functions. As an example, we took one of De
Morgan’s laws and saw how Liquid Haskell translated the function and the refinement types
to SMT code and how it utilizes an SMT solver to verify the statement.
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