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1 Preface

Traditional magnetic resonance (MR) image reconstruction is based on the (in-
verse) Fourier transform operation. This way of MR imaging, by filling the
k-space, is very time consuming and has to take into account effects caused by
the relaxation and such. Recently new approaches,[2][3], to MR imaging has
offered a possibility to achieve fast quantitative mapping. This technique is de-
pending heavily on numerical approximations and scientific computations. One
equation that has to be solved many times is the Bloch equation.[2]

In 2008 S. Balac and L. Chupin published an article[1] about a fast new way to
solve the Bloch equation given some radio-frequency(RF) field inhomogeneities.
The algorithm in this publication is much faster than any other widely used al-
gorithm for solving the Bloch equation by finite differences schemes. However,
in their algorithm they make use of a very basic RF-field with minor pertur-
bations. But what if we want to compute the magnetisation vector for a more
time-varying RF-field? Is it possible to do so by altering the given algorithm,
and will the computation time still be significantly lower?

This thesis was written during a ten weeks long internship at UMCU, Image di-
vision, 7-Tesla group. Here I worked under the supervision of Alessandro Sbrizzi.
It describes my steps towards creating an extended version of the Balac/Chupin
algorithm: from analysing the published algorithm and implementing it in MAT-
LAB to implementing the final algorithm into the work environment given by A.
Sbrizzi. Note that until chapter four all formulas and computations are derived
from the publication by Balac and Chupin[1].

In the results section I will compare my new algorithm with an old one and
finally I will discuss where there is room for more improvement, if any.
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2 Introduction

We want to solve the Bloch equation given a RF pulse (Bx + iBy)(t), a gradient
G(t), T1, T2, η0. Suppose the pulse (and gradient) functions can be approxi-
mated by four Fourier terms. Then we can alter our Bloch equation in a way
that it becomes an infinite set of differential equations. By truncating this
infitinte set we are goint to approach the solution to the Bloch equation.

3 Analysing the publication

In this section we will walk through the publication: Fast approximate solution
of Bloch equation for simulation of RF artifacts in Magnetic Resonance Imaging,
by Balac and Chupin[1].

We start with the Bloch equation:

dM

dt
= γ(M×B)− Mxx +Myy

T2
− Mz − η0

T1
z

This equation calculates the nuclear magnetisation M as a function depend-
ing on time given relaxation times T1, T2. In this equation M is the nuclear
magnetisation, B is a magnetic field with B = B0 + B1 where B0 is the main
magnetic field in the scanner and B1 is the magnetic field induced by the radio-
frequency(RF) pulse. The gyro-magnetic constant is given by γ and is 42.58Mhz
per tesla, T1 and T2 are the relaxation times in seconds and η0 is the value of
the equilibrium magnetisation. We rewrite this equation in matrix form:

d

dt
M(t) = A(t)M(t) + b.

Where

A(t) =

 −τ2 γB0 −γBy(t)
−γB0 −τ2 γBx(t)
γBy(t) −γBx(t) −τ1

 , b =

 0
0

τ1η0

 , τi = 1/Ti

Because it is more convenient to solve this differential system in the rotating
frame we apply a change of unknown. We substitute M(t) = R(t)m(t) with

R(t) =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 .

This substitution result in the following equation:

d

dt
M(t) = Ã(t)M(t) + b. (1)
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Where

Ã(t) =

 −τ2 0 −ωa(t)
0 −τ2 ωb(t)

ωa(t) −ωbx(t) −τ1

 , b =

 0
0

τ1η0

 .

with
ωa(t) = γBy(t) cos(ω0t) + γBx(t) sin(ω0t)

ωb(t) = γBx(t) cos(ω0t)− γBy(t) sin(ω0t)

Note that we assume that matrix components (1, 3) and (2, 3) are the real and
imaginary components respectively of the RF-pulse. in the rotational frame.
This differential system can be solved with numerical approximation. Now we
are going to solve this differential system with a new algorithm. We start by
noting that Ã(t) is continuous and has periodic coefficients with period ω0, this
can be seen by the elements ωa and ωb. Using techniques inspired by Floquet
theory we look for a formal solution of the following type:

m(t) =
∑
k∈Z

mk(t)e2ikω0t.

We rewrite matrix Ã(t) into it’s Fourier decomposition and thus

Ã(t) =
∑1

k=−1A2ke
2ikω0t. In this sum we have:

A0 =

−τ2 0 −ω(0)
a

0 −τ2 ω
(0)
b

ω
(0)
a −ω(0)

b −τ1

 and A2 =

 0 0 −ω(2)
a

0 0 ω
(2)
b

ω
(2)
a −ω(2)

b 0


ω(0)
a =

1

2
γ(u2 + u1), ω(2)

a = −1

4
γ(v1 − u2 + i(u1 + v2)),

ω
(0)
b =

1

2
γ(2B1 + u1 − v2), ω

(2)
b =

1

4
γ(u1 + v2 + i(u2 − v1)),

with u1, u2, v1, v2 as the permutation factors, B1 the strength of B1 and A−2 =
Ā2 where Ā2 is the complex conjugate. Combining these two ideas into the
matrix differential system (1) gives us:

∑
k∈Z rk(t)e2ikω0t = 0 where

rk(t) =
d

dt
mk(t)−

1∑
j=−1

A2jmk−j(t)− 2ikω0mk(t)− δkb

With the sequence (δk)k∈Z, δ0 = 1 and δk = 0. Due to the fact that rk(t) is
not a standard Fourier expansion it cannot be deduced that rk = 0 for all k in
Z. However, when we can solve this for all k under appropriate condition so
that the series

∑
k∈Z mk(t)e2ikω0t converges then the formal solution m(t) will

be the solution to the differential system. If
∑

k∈Z m(0) = M0 then m(t) will
be the solution to the differential system given that m(0) = M0. We now have
the following infinite system of differential equations:

k ∈ Z =

{
d
dtmk(t) =

∑1
j=−1A2jmk−j(t) + 2ikω0mk(t) + δkb

mk(0) = δkM0
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An approximate solution of the infinite differential system can be obtained by
solving a truncation of the infinite differential system, making it a finite differ-
ential system. We represent this system by:

M[N ](t) = A[N ]M[N ](t) + B[N ]

Here in this equation we have:

A[N ] =



A0(N) A−2
A2 A0(N − 1) A−2

. . .
. . .

. . .

. . .
. . . A−2
A2 A0(−N)

 , B[N ] = (bk)k∈−N,...,N .

Where A0(k) = A0 + 2ikω0Id. To this system of differential equations we can
apply Duhamel’s formula stating that the solution is given by:

M[N ](t) = etA
[N]

M[N ](0) + (

∫ t

0

e(t−s)A
[N]

ds)B[N ]

If the matrix A[N ] is diagonalisable with A[N ] = PDP−1 then we have:

M[N ](t) = PetDP−1M[N ](0) + PS(t)P−1B[N ].

4 Implementation of the algorithm

In this chapter we are going to go through the algorithm step-by-step and imple-
ment it with MATLAB. The algorithm start with the option to choose the trun-
cation order N and then we give the variables given by our RF-pulse. These are
TRF , the Bx coefficients and the By coefficients. In the MATLAB file , appendix
A, seen as the variables N and T rf. The next step is to compute the eigen-
values and eigenvectors of A[N ], which is denoted with E. To do this we must
first create this matrix. We start with E = zeros(3*(2*N+1),3*(2*N+1));.
This gives us an empty matrix with the correct dimensions. With a loop we are
going to fill this matrix with the correct values.

for n = 0: 2*N
E(n*3+1:n*3+3,n*3+1:n*3+3) =ANUL INIT+2*1i*(N−n)*omega 0*eye(3,3);

if n < 2*N
E(n*3+1:n*3+3,(n+1)*3+1:(n+1)*3+3) = conj(A TWO);
E((n+1)*3+1:(n+1)*3+3,n*3+1:n*3+3) = A TWO;

end
end

Here we use the following matrices:

ANUL INIT = [−tau 2 0 gamma*−omega a 0;

5



0 −tau 2 gamma*omega b 0;
gamma*omega a 0 gamma*−omega b 0 −tau 1];

A TWO = [0 0 gamma*−omega a 2;
0 0 gamma*omega b 2;
gamma*omega a 2 gamma*−omega b 2 0];

Now we use [P,D] = eig(E); to compute the eigenvalues and the eigenvectors
of A[N ]. With P and D now known we create the diagonal matrix S consisting
of si’s through the following loop:

s = zeros(1,3*(2*N+1));
for n = 1:3*(2*N+1)

if D(n,n) == 0
s(n) = T rf;

else
s(n) = (exp(T rf*D(n,n)) − 1)/D(n,n);

end
end
S = diag(s);

With all the ingredients known there are only two computations left, note that
the etD is replaced by Dexp. Because by definition D is a diagonal matrix we
can simply create etD by diag(exp(T rf*diag(D)));.

Dexp = diag(exp(T rf*diag(D)));
M NEAT = (P*Dexp*(P\M 0')) + (P*S*(P\B neat'));
m small = zeros(3,1);

for k = −N : N
m small = m small +
M NEAT(3*(N+k)+1:3*(N+k)+3)*exp(2*1i*k*omega 0*T rf);

end

Note thate here we use (P\B neat') instead of inv(P). This option is chosen
because it is faster and more accurate. We can observe that in the calculation
of M[N ](TRF ) is just applying the given formula. For m(TRF ) we use a small
loop to sum. Because we are intrested in the rotating frame solution the last
step of the algorithm is superfluous and we have already have the desired solu-
tion. In Figure 1 we see our plotted solution. We plot the solution throughout
the interval. This is just for visual effect. The algorithm can solve the Bloch
equation for a given time without using the time interval starting with zero.
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Figure 1: The solution of the algorithm
M(Trf) = (0, 0.9999996, 2.505088e−7) on TRF

with MT
0 = (0, 0, 1)

5 Expansion of the algorithm

In this chapter we are goin to expand the algorithm so that the algorithm is
able to accept more time-varying RF-pulses. To do so we first assume that

B̃y = ωa

B̃x = ωb

Where B̃x and B̃y are the real and imaginary part of the RF-pulse, RF =

γB̃x + iγB̃y, in the rotation frame respectively. With B̃x and B̃y in R. For our
expansion we start with the following equation:

R(t)
d

dt
m(t) = Ãm(t) + b

where

Ã(t) =

−τ2 0 −γBy

0 −τ2 γBx

γBy −γBx −τ1


Where By and Bx are our RF-pulse components. We can rewrite Ã into a sum:

Ã(t) =
∑1

i=−1A2ke
2ikω0t = A−2e

−2ikω0t +A0 +A2e
2ikω0t with

A0 =

−τ2 0 −ω(0)
a

0 −τ2 ω
(0)
b

ω
(0)
a −ω(0)

b −τ1

 en A2 =

 0 0 −ω(2)
a

0 0 ω
(2)
b

ω
(2)
a −ω(2)

b 0


and A−2 = Ā2 is the complex conjugate matrix of A2. For the expansion
of the algorithm we would like to add more terms of e2ikω0t. This can be
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done by adding more terms in the sum and thus more matrices. If we want
to add two matrices A−4 and A4 we expand the sum with two terms: Ã∗(t) =∑2

i=−2A2ke
2ikω0t. This gives us:

Ã∗ = Ã+

 0 0 −γm̄a

0 0 γm̄b

γm̄a −γm̄b 0

 e−4iω0t +

 0 0 −γma

0 0 γmb

γma −γmb 0

 e4iω0t.

Here we have ma = ma1 + ma2i en mb = mb1 + mb2i as components of the
matrices A−4 and A4. If we simplify this equation we can do this in general by
the following equality:

−m̄ae
−4iω0t −mae

4iω0t = 2ma2
sin(4ω0t)− 2ma1

cos(4ω0t)

Applying this results in the following matrix:

Ã∗ =

−τ2 0 a
0 −τ2 b
c d −τ1


a = −γBy + 2ma2

sin(4ω0t)− 2ma1
cos(4ω0t)

b = γBx + 2mb1 cos(4ω0t)− 2mb2 sin(4ω0t)

c = γBy + 2ma1
cos(4ω0t)− 2ma2

sin(4ω0t)

d = −γBx + 2mb2 sin(4ω0t)− 2mb1 cos(4ω0t)

We see that we now know how to add terms of sin(4ω0t) and cos(4ω0t) to our
RF-pulse. We can apply the same technique to the coefficients of A−2 and A2.
This gives us the complete freedom to represent RF-pulses which is in the form
of:

γBy = −c1+2(m2a2
sin(2ω0t)−m2a1

cos(2ω0t))+2(m4a2
sin(4ω0t)−m4a1

cos(4ω0t))

γBx = c2+2(m2b1
cos(2ω0t)−m2b2

sin(2ω0t))+2(m4b1
cos(4ω0t)−m4b2

sin(4ω0t))

Although this is the result for only five terms in the sum, we can apply this
technique to create even more terms. In MATLAB code this means we add
another matrix AFOUR:

omega a 0 = B y(1);
omega a 2 = B y(2);
omega a 4 = B y(4);

omega b 0 = B x(1);
omega b 2 = B x(2);
omega b 4 = B x(4);

8



ANUL INIT = [−tau 2 gamma*G*x gamma*−omega a 0;
−gamma*G*x −tau 2 gamma*omega b 0;
gamma*omega a 0 gamma*−omega b 0 −tau 1];

A TWO = [0 0 gamma*−omega a 2;
0 0 gamma*omega b 2;
gamma*omega a 2 gamma*−omega b 2 0];

A FOUR = [0 0 gamma*−omega a 4;
0 0 gamma*omega b 4;
gamma*omega a 4 gamma*−omega b 4 0];

Note that in matrix ANUL INIT there are new terms: ±gamma*G*x. These terms
represent the gradient field present in the domain. This gradient is spatial de-
pendent and not time dependent. This means that it is constant for each voxel
and thus the corresponding matrix elements remain constant.

6 Results

With the extended algorithm implemented we would like to see some results.
First we check if the algorithm is functioning correctly and we test the algorithm
versus the ode45 algorithm. Next we will implement the algorithm so that it
can be spatially dependent. To do so we will loop over the field of view(FOV).
The field of view is a given length in centimeters. The MATLAB of the new
expanded algorithm is given in appendix A.

To check whether the extended algorithm is an accurate approximation of the
solution we use the standard ordinary differential equation given by MATLAB:
the ode45. The MATLAB code we use to compare the two methods is given in
appendix B. We let the ode45 solve the differential equation given by (9) in [1].
The MATLAB code for the function called by ode45 is given in appendix C.

The RF-pulse seen in Figure 2 is constructed by:

B x(1) = 1;
B x(2) = 1/2;
B x(4) = 1/2;
B x(6) = 1;
B x(8) = 1;

In Figure 3 we see the changes of the magnetisation vector during the RF-pulse.
In this figure it is the ode45 solution is the line and the new algorithm solutions
are the circles. The computation time of the ode45 = 0.364 seconds.The compu-
tation time of the new algorithm = 0.0123 seconds, the difference is measured
between the two magnetisation solutions at time TRF . This is almost thirty
times faster, and this is a comparison of a highly optimised ode45 algorithm
versus a new, not yet optimised, for instance we could use a faster eigenvalue
calculation, algorithm. The maximum absolute difference between the two so-
lutions equals: 1.272 ∗ 10−4. If we leave all parameters the same but increase
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N to 30. The difference between the two solutions equals: 6.67 ∗ 10−10 and the
computation times for ode45 and the algorithm are 0.47 and 0.041 respectively.
This means that for nine digits accuracy we are almost ten times faster.
We now create a spatial plot of the magnetisation and let the gradient be spatial
dependent with G(x) = Gx. For this experiment we used the same RF-pulse
as the in the previous experiment, Figure 2.The MATLAB code for creating
this is given in appendix D. In Figure 5 we see the magnetisation with a field
of view of 10 centimeters. In Table 1 we compare the computation times of
the algorithm with different truncation orders. In the third column we take the
maximum difference between the spatial solution computed by the algorithm
with N terms given by the first column and the reference solution computed by
the algorithm with N = 100.

0 0.5 1 1.5 2 2.5 3 3.5
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−3

−3

−2

−1

0

1
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4

5
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7
x 10

−5

R
F
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u
ls

e

Time in seconds

Figure 2: RF pulse
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Figure 3: magnetisation

N Difference
with N = 100
algorithm

Computiation
time of the
algorithm in
seconds

Computation
time of
ode45 in
seconds

10 0.0185 0.699 3.377
15 0.00125 1.376 4.284
20 4.262e-05 2.407 6.727
25 4.014e-07 3.848 15.188
30 1.265e-08 5.693 23.398
35 1.280e-10 9.544 56.390
40 2.898e-12 15.626 139.387
45 9.5034e-14 22.622 356.507
50 1.0603e-13 29.563 567.469

Table 1: Computation time and difference, in Figure 7 we see a plot of this
table.
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Figure 4: Magnetisation at Trf = 0.0037 over the FOV, 10cm wide, computed
with the new algorithm
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Figure 5: Magnetisation at Trf = 0.0037 over the FOV, 10cm wide, computed
with the ode45 algorithm
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Figure 6: The left axis is the computation time in seconds and the horizontal
axis is the truncation order N

Figure 7: Difference between N and N=100, the left axis is the difference and
the horizontal axis is the truncation order N
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7 Discussion and Conclusion

The test results as we have seen in the previous chapter are quite positive. With
the new algorithm we are able to approach a solution faster than the ode45, and
with realistic precision. For instance if the required precision is only three digits
we see from Table 1 that the algorithm is only three times faster. However if
we should need a precision of say eleven digits we see that the new algorithm
can be almost ten times faster. We’ve seen that the new approach to the Bloch
equation, explained by Balac and Chupin[1], is indeed a successful approach.
And by expanding their algorithm we’ve created a new algorithm to handle
time varying RF pulses.

There is room for even more expansion. For instance we could imagine adding
a time dependent gradient in the same way we’ve added the time dependent
RF-pulse, which we could integrate in the terms of A0, A2, and so on.

The bottleneck for our algorithm remains the same as in the original algorithm.
The time it takes to calculate the eigenvalues of the matrix A[N ]. Further
examination and optimisation of this part of the algorithm could mean a vast
step forward in gaining an even faster version of the algorithm. However the
main skeleton we’ve created in this thesis would remain the same.
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8 Appendix

8.1 Appendix A

function sol = solver(x,T rf,T 1,T 2,omega 0,gamma,G,B y,B x,N
,offsetcoeff,offsetparam)

format long

tau 1 = (T 1)ˆ(−1);
tau 2 = (T 2)ˆ(−1);

eta 0 = 1;
B neat = zeros(1,3*(2*N+1));
B neat(3*N+1:3*N+3) = [0 0 tau 1*eta 0];

M 0 = zeros(1,3*(2*N+1));
M 0(3*N+1) = 0;
M 0(3*N+2) = 0;
M 0(3*N+3) = 1;

omega a 0 = B y(1);
omega a 2 = B y(2);
omega a 4 = B y(4);
omega a 6 = B y(6);
omega a 8 = B y(8);

omega b 0 = B x(1);
omega b 2 = B x(2);
omega b 4 = B x(4);
omega b 6 = B x(6);
omega b 8 = B x(8);

ANUL INIT = [−tau 2 gamma*G*x gamma*−omega a 0;
−gamma*G*x −tau 2 gamma*omega b 0;
gamma*omega a 0 gamma*−omega b 0 −tau 1];

A TWO = [0 0 gamma*−omega a 2;
0 0 gamma*omega b 2;
gamma*omega a 2 gamma*−omega b 2 0];

A FOUR = [0 0 gamma*−omega a 4;
0 0 gamma*omega b 4;
gamma*omega a 4 gamma*−omega b 4 0];

A SIX = [0 0 gamma*−omega a 6;
0 0 gamma*omega b 6;
gamma*omega a 6 gamma*−omega b 6 0];

A EIGHT = [0 0 gamma*−omega a 8;
0 0 gamma*omega b 8;
gamma*omega a 8 gamma*−omega b 8 0];

E = zeros(3*(2*N+1),3*(2*N+1));

for n = 0: 2*N
E(n*3+1:n*3+3,n*3+1:n*3+3) = ANUL INIT+2*1i*(N−n)*omega 0*eye(3,3);
if n < 2*N

E(n*3+1:n*3+3,(n+1)*3+1:(n+1)*3+3) = conj(A TWO);
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E((n+1)*3+1:(n+1)*3+3,n*3+1:n*3+3) = A TWO;
end
if n < 2*N−1

E(n*3+1:n*3+3,(n+2)*3+1:(n+2)*3+3) = conj(A FOUR);
E((n+2)*3+1:(n+2)*3+3,n*3+1:n*3+3) = A FOUR;

end
if n < 2*N−2

E(n*3+1:n*3+3,(n+3)*3+1:(n+3)*3+3) = conj(A SIX);
E((n+3)*3+1:(n+3)*3+3,n*3+1:n*3+3) = A SIX;

end
if n < 2*N−3

E(n*3+1:n*3+3,(n+4)*3+1:(n+4)*3+3) = conj(A EIGHT);
E((n+4)*3+1:(n+4)*3+3,n*3+1:n*3+3) = A EIGHT;

end
end

[P,D] = eig(E);
s = zeros(1,3*(2*N+1));

for n = 1:3*(2*N+1)
if D(n,n) == 0

s(n) = T rf;

else
s(n) = (exp(T rf*D(n,n)) − 1)/D(n,n);

end
end

S = diag(s);
Dexp = diag(exp(T rf*diag(D)));
M NEAT = (P*Dexp*(P\M 0')) + (P*S*(P\B neat'));
m small = zeros(3,1);

for k = −N : N
m small = m small + M NEAT(3*(N+k)+1:3*(N+k)+3)*exp(2*1i*k*omega 0*
T rf + 2*1i*k*offsetcoeff*pi/offsetparam);

end
sol = real(m small)';

8.2 Appendix B

clear all
profile on

B 1 = 10ˆ−5;
G = 3;
x = 0;
offsetcoeff = −1; offsetparam = 4; %offset in omega 0

%offsetcoeff*pi/offsetparam

T 1 = 0.750;
T 2 = 0.050;

gamma = 42.58*10ˆ6;
omega 0 = 10ˆ−5*gamma;
omega 1 = gamma*B 1;
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N = 15;
B 1 = 10ˆ−5;
B 0 = 1;

B y(1) = 0; B x(1) = 1;
B y(2) = 0; B x(2) = 1/2;
B y(4) = 0; B x(4) = 1/2;
B y(6) = 0; B x(6) = 1;
B y(8) = 0; B x(8) = 1;
B x = B x*B 1; %scaling to B 1

T rf = (pi)/(2*gamma*B 1);
eind = T rf;
options = odeset('RelTol',1e−5,'AbsTol',[1e−13 1e−13 1e−13]);
[T,Y] = ode45(@rigid,

[0 eind],
[0 0 1],
options,
T 1,T 2,
omega 0,
gamma,G,
B y,B x,
x,offsetcoeff,
offsetparam);

Tlong = 0: eind/100: 1*eind;
Z = zeros(numel(Tlong),3);

for g = 1:101 %numel(Tlong)
Z(g,:) = solver(x,Tlong(g),

T 1,T 2,
omega 0,gamma,
G,B y,B x,
N,offsetcoeff,
offsetparam);

end

figure(3)
plot3(Y(:,1),Y(:,2),Y(:,3),'r')
hold on
plot3(Z(:,1),Z(:,2),Z(:,3),'b')
grid on
axis([−1 1 −1 1 −1 1])

t = 0:eind/1000:eind ;
w = omega 0*t + offsetcoeff*pi/offsetparam;
rfwave = B x(1,1) + B x(1,2)*1i

+ 2*B x(2)*cos(2*w)
+ 2*B x(4)*cos(4*w)
+ 2*B x(6)*cos(6*w)
+ 2*B x(8)*cos(8*w);

profile off
p = profile('info');
time(1) = p.FunctionTable(12,1).TotalTime
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/ p.FunctionTable(12,1).NumCalls;
time(2) = p.FunctionTable(4,1).TotalTime;

str = sprintf('Algortihm with N = %i',N);

%reference = [0 0.910663572044444 −0.322602599458463];
%created with N=100
%difference = max(abs(Z(101,:)−reference));

figure(1)
subplot(2,3,1)
hold on
plot(T,Y(:,1),'r');xlabel('time');ylabel('Mx');title('ode45');

axis([T(1) eind −1.1 1.1]);
plot(0:eind/100:eind,Z(:,1),'o');xlabel('time');ylabel('Mx');

title(str);axis([0 eind −1.1 1.1]);
hold off
subplot(2,3,2)
hold on
plot(T,Y(:,2),'r');xlabel('time');ylabel('My');

axis([T(1) eind −1.1 1.1]);
plot(0:eind/100:eind,Z(:,2),'o');xlabel('time');ylabel('My');

axis([0 eind −1.1 1.1]);
hold off
subplot(2,3,3)
hold on
plot(T,Y(:,3),'r');xlabel('time');ylabel('Mz');

axis([T(1) eind −1.1 1.1]);
plot(0:eind/100:eind,Z(:,3),'o');xlabel('time');ylabel('Mz');

axis([0 eind −1.1 1.1]);
hold off
figure(2)
plot(t,rfwave);axis([0 eind −2*B 1 max(abs(rfwave))]);ylabel('RF Pulse');

8.3 Appendix C

function dy = rigid(t,y,B 0,B 1,T 1,T 2,omega 0,gamma,G,B y,B x,x)
eta 0 = 1;
tau 1 = (T 1)ˆ(−1);
tau 2 = (T 2)ˆ(−1);
dy = zeros(3,1);

w = omega 0*t;

omega tilda13 = −gamma*(B y(1) +
2*B y(2)*cos(2*w) + 2*B y(4)*cos(4*w));

omega tilda23 = gamma*(B x(1) +
2*B x(2)*cos(2*w) + 2*B x(4)*cos(4*w));

omega tilda31 = −omega tilda13;

omega tilda32 = −omega tilda23;
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dy(1) = −tau 2*y(1) + gamma*x*G*y(2)+ omega tilda13*y(3);
dy(2) = −gamma*x*G*y(1) −tau 2*y(2) + omega tilda23*y(3);
dy(3) = omega tilda31*y(1) + omega tilda32*y(2) − tau 1*y(3)

+ B 0*tau 1*eta 0;

8.4 Appendix D

clear all
%load z.mat %put reference solution here

totaltime = 0;
N = 15;
B 1 = 10ˆ−5;
B 0 = 1;

B y(1) = 0; B x(1) = 1;
B y(2) = 0; B x(2) = 1/2;
B y(4) = 0; B x(4) = 1/2;
B y(6) = 0; B x(6) = 1;
B y(8) = 0; B x(8) = 1;
B x = B x*B 1; %scaling to B 1

offsetcoeff = −1; offsetparam = 4; %offset in omega 0
%offsetcoeff*pi/offsetparam

T 1 = 1.750; %in seconds
T 2 = 0.050; %in seconds
gamma = 42.58*10ˆ6;

eind1 = (pi)/(2*gamma*B 1);
dt = eind1/512;
t = 0:dt:eind1;
omega 0 = B 1*gamma; w = omega 0*t + offsetcoeff*pi/offsetparam;

RF1 = B x(1,1) + B x(1,2)*1i
+ 2*B x(2)*cos(2*w)
+ 2*B x(4)*cos(4*w)
+ 2*B x(6)*cos(6*w)
+ 2*B x(8)*cos(8*w)

RF2 = sinc((−256:256)/128)/2*B 1*10;
%REFERENCE SINC FUNCTION PLOTTED IN BLUE

G = 3*B 1*10; % gradient value scaled to the force of B 1

FOV = 10; % spatial domain range
x = −FOV/2:FOV/100:FOV/2;

options = odeset('RelTol',1e−4,'AbsTol',[1e−4 1e−4 1e−4]);

for i = 1:numel(x)
Q = odesolve(x(i),T 1,T 2,

omega 0,gamma,
eind1,B y,B x,
G,N,offsetcoeff,
offsetparam);

ode(i,:) = Q(1,:);
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zn(i,:) = Q(2,:);
totaltime = totaltime + Q(3,1);

end

odeplot = abs(ode(:,1)+1i*ode(:,2));
algplot = abs(zn(:,1)+1i*zn(:,2));
alg80plot = abs(z(:,1)+1i*z(:,2));

%diff(n) = max(max(abs(z(:,:)−zn(:,:))));
diff = max(max(abs(zn(:,:)−z(:,:))));

%where z is the reference solution
T = totaltime;

figure(1);
%subplot(2,2,1)
%plot(x,odeplot,'r');xlabel('X [cm]');ylabel('|Mxy|');

%title('The ode45 algorithm');
%axis([−FOV/2 FOV/2 0 max(odeplot)]);

%subplot(2,2,2)
plot(x,algplot,'b');xlabel('X [cm]');ylabel(' |Mxy |');

title('The new algorithm');
axis([−FOV/2 FOV/2 0 max(algplot)]);

%figure(2);%subplot(2,2,3:4)
%hold on
%plot(t,RF1','r');ylabel('RF Pulse');

%axis([0 4*10ˆ−3 −10ˆ−5 10ˆ−5]);xlabel('time')
%plot(t,RF2');ylabel('RF Pulse');%axis('auto');xlabel('time')

%end

%iterations = 10:5:q*5 + 5; %used for the last figure, axis
%figure(1) %axis were set manually
%hold on;
%plotyy(iterations,diff,iterations,T)
%semilogy(n,diff,n,T)
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