
Reconstructing families - Bachelor
Thesis

C.W. Joosse

4158407

July 24, 2018

UTRECHT UNIVERSITY
Artificial Intelligence

Supervisor: dr. ir. Gerrit Bloothooft
Second supervisor: dr. Marijn Schraagen

Bachelor thesis - 15 ECTS

Abstract

Edit distance is often used in record linkage for real persons to express the similarity of two names. In
historical data names often have high spelling variance. This study investigates a method to deal with
high name spelling variance by using overlinking and filtering in order to generate matches on a dataset
of historical civil registrations. The method tries to build sets of registrations of persons that belong
to the same family by applying real world knowledge to the generated matches. When using the four
names of the parents mentioned on the registrations and an edit distance of 4 and 5, 80% to 85% of the
generated matches are consistent with real world knowledge.

Contents

1 Introduction 3
1.1 Overview of research on record linkage . 4
1.2 The Genlias project . 4
1.3 An overview of the method . 5

2 Data 6
2.1 Description of the records . 6
2.2 Preprocessing . 9

2.2.1 Initial Matching . 9

3 Method 10
3.1 String matching . 11

3.1.1 Building the vectortree . 11
3.1.2 Matching the candidates . 12

3.2 Matching with higher thresholds . 13
3.2.1 Name pair matching . 13
3.2.2 Allowing more distance . 13

3.3 Assessment of birth certificate matches . 14

4 Results and discussion 16
4.1 Initial matching results . 16

4.1.1 Vectortree matching . 16
4.1.2 Overlinking and underlinking . 18

4.2 Named Pair based matching results . 19
4.3 Filtering birth certificates . 20
4.4 Discussion . 23

5 Conclusion 25
5.1 Further Research . 25

Appendices 26

A Edit distance 27

2

Chapter 1

Introduction

In the last decades, technological progress has given rise to new developments in the field of data science.
Computers are used extensively in our daily lives, and the amount of information available on the internet
is ever increasing. This data can be used by universities, companies and governments to find patterns
in human behaviour. Due to increased computing power of processors, increased storage capacities and
programming techniques that are focussed around distributed computing, organizations more capable
then ever to analyse this data.
This data is often stored in data warehouses, where each unit of data is stored in a structured way.
Although data architecture practices describe some form of data normalization, most data warehouses
are not necessarily compatible with each other and therefore most data concerning the same entity is
often stored in a slightly different way across different data warehouses. More than ever, analysis of data
often requires that different data sources should be joined in order to create more enriched data sets and
to discover new links between data.

In order to link data sources with each other these data sources should be able to identify which entity
in one data source can be coupled to the same entity in the other data source. However, data is not saved
according to a universal standard and because of this, each source could save the same information in a
different format, making it harder to link this data.
Humans usually are capable of deciding whether two data records refer to the same entity, because they
have knowledge about the context and have acquired knowledge about the world. However, matching
data using humans will often require too much time and is therefore expensive, and it is often left to
computers to do this task. The problem of combining records from the same data source, or from different
data sources and finding data that are about the same entity is called Record Linkage.

When the keys in two data sources do not correspond with each other, alternatives must be used
to identify entities, and very often, the task of linking records becomes non-trivial. In the case of en-
tity resolution of persons, this often boils down to personal information such as date of birth, addresses
and names. These data are often prone to errors, such as typographical errors or variations, outdated
information or the fact that some databases are not allowed to store certain information due to legislation.

Given these problems, record linkage techniques often use knowledge from several research fields. For
example: in order to cope with typographical variations and errors, method developed by linguistics can
be used, whereas the computer sciences can provide techniques to deal with large amounts of data in
an efficient way. When a link has been established, statistical methods can be used to provide a certain
degree of certainty about the correctness of a link. This places the field of record linkage in the domain
of artificial intelligence, which aims to combine these reseach fields to provide a comprehensive method
to model intelligent behaviour which, for instance, can be applied in computer software.

This report will focus on applying record linkage techniques on historical data. Historical data often
brings an extra set of problems: most of the modern data modeling techniques where not applied, and
often data is missing or stored in an incoherent method.

3

1.1 Overview of research on record linkage

The term record linkage was introduced by Dunn [Dunn, 1946], who wanted to assemble a ‘book of life’
for each person which would describe the person’s interaction with health and social security systems,
and which would also contain the birth-, death- and marriage-certificates of that person. In 1969 Ivan
Fellegi and Alan Sunter [Fellegi and Sunter, 1969] proved that, when the attributes that are used in the
comparison are independent of each other, a optimal probabilistic decision rule can be found. This work
has been the cornerstone of much of the data matching systems that are used today. Their model classifies
two records a and b as either a match, non-match or possible match, based on a decision function that
computes the probabilities for each class. They suggested that the set of possible matches should be held
under clerical review, in order to classify the records in that class as either a match or as non-match.
Since this involves human decision making, which is not fail-safe.

[Newcombe and Kennedy, 1962] introduces the concept of blocking to the field of record linkage, by
showing how to reduce the number of pairs to link to consider only those pairs that agree on some char-
acteristics. [Levenshtein, 1966], [Jaro, 1989] and [Winkler, 1990] introduced methods to calculate string
similarity. These techniques are widely used in automated matching algorithms.

In more recent years a lot of research has focused on using machine-learning algorithms for record
linkage. [Sarawagi et al., 2002] described a method to use an active learning algorithm that minimizes
human input when constructing similarity functions. [Winkler, 2002] used the Expectation-maximization
algorithm and a bayesian network for record linkage in a unsupervised learning setting.

Examples of research that specifies on string matching for person names can be found in [Zobel and Dart, 1996],
who showed that more efficient matching on person names can be achieved when using phonetic forms of
names. They introduced improvements on the standard Soundex ([Russell and Odell, 1918]) to rewrite
person names. [Bloothooft and Schraagen, 2014] also introduced rules to improve person name matching,
based on the edit distance of the names when the names have been rewriten in semi-phonetic form. These
rules to rewrite names into semi-phonetic form have been introduces by [Bloothooft, 1995]

In [Schraagen, 2014] a method was proposed in order to link registration certificates of the life events
from the Genlias project. Since the persons in this data set are not provided with an unique id, matching
of records is done by matching the names that appear on the certificates. This approach groups the
certificates where the names of the persons that are similar to each other in an efficient way. Matches
are found by calculating the edit distance between the names that occur on both certificates.

1.2 The Genlias project

Throughout history, governments held censi and civil status to identify civilians and keep records about
them, in order to register taxations and the people that are allowed to vote, for example. So did the
government of The Netherlands in the 18th and 19th century. During that time, The Netherlands was
occupied by the Frence empire of Napolean Bonaparte. The French introduced the ‘Burgerlijke stand’;
the civil status in the Netherlands, which was responsible for recording births, marriages and deaths of
the inhabitants of the Netherlands.

Census are often a very valuable source of information, as they show the state of the population at a
given point in time. Civil registrations however provide more information about the development of the
population, such as migration patterns and health statistics.

The Genlias project is a project that has started in the last decade of the 20th century with the aim
to collect all the certificates that where produced into a single database. This database is available via
http://www.wiewaswie.nl.

The dataset gives us great insight into the population of the Netherlands in the 19th century. However,
unlike more modern registration practices, the original records form the civil status are not provided with
unique identification numbers, which makes it harder to do research. Another complicating factor is that
it was not uncommon for officials to write different names for the same person on different registrations.
When people married, for example, the persons involved would be registered with the official names.
However, when a person passed away, it could happen that the neighbors of that person had to report

4

http://www.wiewaswie.nl

this event to the civil registration. These neighbors didn’t always know the full official birth names of
the person deceased.

Using record linkage to resolve the life events of the persons recorded in the Genlias dataset could give
researchers invaluable information about the population of the Netherlands in the 19th century. Examples
of interest are infant mortality rates for health research or migration patterns and (social) mobility for
economical and social research.

1.3 An overview of the method

The subject of this thesis is to find a method for matching names that have a high chance of spelling varia-
tions in the absence of a golden standard. In particular, by using the method proposed by [Schraagen, 2014]
and increasing the allowed edit distance, applying a set of rules on names of the generated matches and
by applying checks that are generated from domain knowledge, this thesis will test if it is possible to
be resistant to spelling variance in names and still generate reliable matches by checking if the resulting
matches do correspond to knowledge about the real world.

The linkage of registrations is done in three phases. First, for each marriage certificate a set of po-
tential matching certificates (targets) is build by matching the names of the bride and groom on each
target certificate to the names of the parents on the candidate certificates, using the method that was
described by [Schraagen, 2014]. The candidate certificates consists of all the known certificates: all the
birth, marriage and death certificates in the Genlias project for the province of Zeeland. In the case of
a marriage registration, both the parent couples for the groom and bride are checked against a target
certificate. The (levenshtein) edit distance can be used to regulate how strict the names should match
each other.
Since the candidate registrations are always checked against the same target registrations of parents, the
resulting links can be seen as a set of events in the lifes of the children of the parents that are mentioned
on the target registration to which they are matched. The linking procedure will result in a mapping
from a target registration to a set of candidate registrations. This set of registrations will be refered to
as a ‘family’.

In the second phase, the four individual names on the links generated in the first phase are compared to
each other. Links where the names differ too much are removed from the set. The third phase is to check
the resulting matches against a set of rules, which are based on domain knowledge, in order to determine
how well the registrations in the set of families can correspond to actual life events. For instance, it is
very unlikely (if not impossible) for a child to be born fifty years after the father and mother have been
married. The set of rules will filter out these links that are not consistent with a normal flow of life events.

The quality of the matching results will be evaluated based on the acceptance rate in the third phase.
Since there is no golden standard available of true matches on the Genlias dataset, it is not possible to
compute the regular performance standards, such as precision, recall or reduction ratio, as it is not clear
what the matches and non-matches should be.

5

Chapter 2

Data

2.1 Description of the records

The dataset we use is a subset of the dataset provided by the Genlias project and consists of all historical
population certificates from the province of Zeeland. This subset is used, because the digitalization of the
registrations is almost complete for the province of Zeeland. This means that the set of the registrations
for the province of Zeeland will include most of the life events of it’s inhabitants, and this will be of
benefit when evaluating the result of the matching procedures.

The dataset that we use contains 1.558.205 distinct registrations, which are split out into 698.285 birth-
certificates, 193.921 marriage-certificates (this type also includes some divorce-certificates) and 665.999
death-certificates. Due to privacy regulations, birth certificates are available until 1913, marriage regis-
trations are available until 1938 and death registrations are available until 1963.

Figure 2.1 shows the number of certificates per year. A sharp increase in the number of registrations
can be seen by the year 1811. This is due to the fact that between 1795 and 1811, only in the southern
part of the province of Zeeland population records were kept. In 1811, when The Netherlands was for-
mally part of France, the northern parts of the province of Zeeland also started to take civil records.

The original documents consists of books with preprinted pages on which an official filled in the
specific details of the event. In earlier versions, the entire document were completely handwritten. These
books eventually became preprinted book for which only the personal details and details of the event
needed to be filled in. An example of a preprinted birth-certificate can be seen in figure 2.2.

The digitalized certificates are stored in the database as the following entities:

1. Persons, which contains data concerning the people and events mentioned on a registration, where
each record annotates a single person,

Figure 2.1: The number of registrations per year, split by certificate-type. Birth-certificates are available
until 1913, marriage-certificates until 1938 and death-certificates until 1963

6

Figure 2.2: An example of a birth-certificate. Source: Zeeuws Archief, http://www.archieven.nl

2. Registrations, containing meta-data (such as dates of the registration and the location id),

3. Locations, containing a mapping from location id to names of locations

The Persons table contains records for each person mentioned in a certificate. The number of per-
sons mentioned on a certificate depends on the type of certificate. On birth-certificates, there are three
persons mentioned: child, the mother and the father, where the latter can be absent. Six persons are
mentioned on marriage-certificates: the bride and groom, and the mothers and fathers of the bride and
groom. On death-certificates at least the deceased and his/her parents are mentioned. In the case
that the deceased had a partner, this partner could also be mentioned, but this is not necessarily the
case. Each ’role’ that a person has is also specified (e.g. bride, groom, father of the bride, mother of
the groom, etc). The name of each person is split into the first name, surname with, if applicable, a prefix.

In table 2.1, an example of how a single birth-certificate is stored is shown. For the sake of brevity,
only the relevant values are displayed. For each person that was born, at least the day, month and year
of the birth has been recorded. The same pattern is also valid for both marriage- and death-certificates,
but then the date is stored in mar day, mar month, mar year and their respective death-counterparts, as
shown in table 2.2 and table 2.3.

Other information that is also recorded in the database include the place of the event and the date.
In the next sections, we will ignore most of the meta data and locations of the registrations, and focus
only on the names provided on the registrations, and we will use the dates of the registrations.

7

Table 2.1: An overview of the fields in a birth certificate

id person id registration firstnames prefix familyname sex role birth day birth month birth year

15405 5136 maria cornelia van oorsel f 1 17 9 1864
15406 5136 willem hendrik van oorsel m 3
15407 5136 neeltje johanna christiaanse f 2

Table 2.2: An overview of the fields in a marriage certificate

id person id registration firstnames prefix familyname sex role mar day mar month mar year

2095765 698592 cornelis jan dogger m 7 16 8 1916
2095766 698592 jacob dogger m 9
2095767 698592 pietertje eelman f 8
2095768 698592 dina maria de rijke f 4 16 8 1916
2095769 698592 josua de rijke m 6
2095770 698592 sara van de wege f 8

Table 2.3: An overview of the fields in a death certificate

id person id registration firstnames prefix familyname sex role death day death month death year

3258901 892601 izaak lampers m 10 9 8 1878
3258901 892602 izaak lampers m 3
3258901 892603 catharina dourleijn f 2

8

Table 2.4: The number of parent pairs per candidate set. A candidate set contains the names of the
parents mentioned on a registration, while the target set contains the names of the bride and groom on
the marriage certificates.

Number of registrations

target set (Marriages) 193,040

Birth certificates 698,199
Marriage certificates 386,080
Death certificates 665,903

Table 2.5: Exerpts of the target and candidate files, containing the names of the bride and groom on
marriage certificates (targets) and the pairs of the parents (candidates)

Target entries Candidate entries

698558 cornelis nijssen anna huijssen 698558 jan nijssen johanna pleijte
698558 cornelis huijssen elizabeth gouwe

698565 adriaan heijnsdijk neeltje hamer 698565 geleijn heijnsdijk pieternella verpoorte
698565 cornelis hamer janneke wege

698612 adriaan verpoorte pieternella poorter 698612 adriaan verpoorte janna hoeve
698612 michiel pooter pieternella oppeneer

698616 aarnoud heynsdijk cornelia bokx 698616 jaspert heynsdijk cornelia galle
698616 gilles bokx adriana dieleman

2.2 Preprocessing

2.2.1 Initial Matching

The first step is to extract the data that is needed to match the certificates using the method used in
[Schraagen, 2014]. Since the names of parents are present on each of the certificates, we can extract these
names as strings to match.

The set of certificates are separated into three sets, based on the nature of the certificates: a set of
marriage certificates, a set of birth certificates and a set of death certificates. For each certificate, the
first name and family name of the parents are extracted and stored with the certificate id. When multiple
names of a person are present for a specific type of name, only the first name is used. For instance: in
the case of the first name bernardus franciscus, only the name bernardus will be used. In the case of
marriage certificates, two pairs of parents are present on a single certificate (the names of the parents of
the bride and groom). These two pairs are both extracted using the role descriptor in the Person table,
which indicates the role of the person. The two parent pairs are stored on a seperate line.
After this procedure, we have three files that contain the names of the parents mentioned on the regis-
trations. These files will be used as candidate sets when matching the names to the target set.

The target set consists of the names of the bride and groom on the marriage certificates. These names
are extracted in the same way as the names of the candidate sets by looking at the role of the person.
Whenever a person has multiple names, only the first name is used. This way, we can couple the birth,
marriage and death certificates of the children of the groom and bride to the marriage event of the groom
and bride, by matching the names of the groom and bride, and create sets of families: the life events of
all the children are coupled to the marriage events of the parents.

Table 2.4 shows the number of resulting pairs of parents per set, and table 2.5 shows the result of the
extraction of the names for four of the marriage certificats. The target entries in this table are the groom
and bride mentioned on these four registrations, and the entries in the candidate rows are the names of
the parents of the groom and bride.

9

Chapter 3

Method

As mentioned in the introduction, the goal is to create sets of registrations that can be seen as families.
This is done in three phases: the matching of individual registrations based on the names of the persons
that are mentioned on the registrations. The second phase is to check these matches for complience on
extra constraints on the names and on the distance between the names and to filter out the matches with
an undesired distance. In the third phase, we will filter out the matches that do not comply with the
extra constraints on internal consistency.

The first step will create a set of matches between the candidate sets, one for each type of registration,
and the target set. For each target entry, the matched candidate entries can be seen as a family: these
candidate entries are the registrations for which the names of both the parents are similar to the target
entry, within a allowed error over all the names. Matches in this step will be made using the Levenshtein
distance. The distance is calculated over the entire string of all four names. For a detailed description of
the Levenshtein distance, see appendix A. We assume that all the candidate entries that are matched to
the same target entry are registrations of life events of childern that have the same parents, as the names
of the candidate entries are the names of the parents for the person that the registration was made for.
These names are matched to the same names of a target entry: the names of the groom and bride on a
marriage certificate. In order to generate overlinking, the matching is done with an allowed distance of
3, 4 and 5 over the entire string of names.

In the second step, the results from the first step are checked for complience on extra constraints in
order to filter out those matches that are accepted in the first step where the (allowed) error is too much
concentrated in a single name. In the first step, we calculated the edit distance over the entire string
of all names, and accepted a match when the distance did not exceed the threshold. This means that
the entire allowed error could be concentrated in a single name. This could be acceptable, given that
the length of the name is sufficient to justify such an error, but it might also mean that the names differ
completely when the names are shorter, or of equal length to the allowed error. The second step will
introduce rules to rule out such unwanted matches.

The third step is to check if the resulting sets of families of the second step are consistent with a set
of constrains, filtering out those that are not. The set of constraints are based on knowledge about the
real world. For instance: it is impossible for a person to be born after his/her mother has passed away.
These (simple) rules will filter out matches that have slipped past the checks in both step one and two.

The accuracy of the matching in the first phase will have a large impact on the size of the families.
Since matching in the first phase is done on the Levenshtein distance, the maximum allowed distance
will determine the extend to which overlinking (or underlinking, if the allowed distance is too strict)
will occur. From a computational point of view, the first step should be as close to the real situation
as possible. However, allowing overlinking in this step might not be considered a bad choice. Since the
results in the first phase will be filtered in the second phase, the degree of overlinking will be smaller after
the filtering in the second step. Another consideration is that underlinking could result in true matches
being missed. Matches that have been missed in the first step can not be retrieved in the later steps of
the process.

10

Ideally, a family will include the birth certificates, marriage and death certificates of all the children.
However, this will not always be the case. For instance, problems with matching will arise when trying to
match death certificates to the target entries. For some of the death certificate registrations, the parents
are not mentioned on the death certificate and there are other cases where the father or mother has
remarried. In the latter case the new partner of the father is mentioned on the certificate in stead of the
mother of the person who has died, creating a new pair of parents, or no second parent is mentioned.
This obviously will pose a problem when matching against the target entries. In case one of the parents
has remarried, another entry with the names of the new parent pair will also be present in the target set
(as the new marriage will have it’s own marriage registration). This will lead to a mismatch: the birth
certificate will be matched to the correct pair of parents, whereas the death certificate will be matched
to the second pair of parents, or, in the case that one of the parents are missing, will not be matched at
all since the error is too large.

Another possiblity is that the same certificate will be matched to two different pairs of parents when
the names of both pairs of parents are identical. When two set of parents have exact matching names,
the same certificate will be added to both the families of these pairs. Since it was common practice that
children were named after members of their family, the chances of identical names for the four parents
are not negligible. However, since there are 4 different persons involved there is still a small chance that
this occurs. We will refer to the fact that a single certificate is matched to more than one parent pair as
overlinking.

3.1 String matching

In the first step, the matching is done by using the approach as described in [Schraagen, 2014]. This
approach is used to create the set of families in an efficient way, in order to avoid matching all the
candidate registrations to each of the target registrations. The approach uses a tree sorting algorithm to
filter out the registrations that, given some maximum Levenshtein distance, are not to be considered as
a match and mapping the target registrations to the candidate registrations that are considered as viable
matches. The registrations that are left after filtering are compared to the target registration using the
Levenshtein distance.
The target registrations are used to build the tree. For each candidate registration, a tree traversal is done.
All the target registrations of the vectors in leaf nodes that can be reached with a certain edit distance
are considered a potential match for the candidate registration. As a result from the tree traversal, each
candidate registration is mapped to one or more target registrations, and each target registration has a
set of candidate registrations. Two registrations are considered a match when the Levenshtein distance
is below the predefined threshold.
The approach is to use the registrations of the children (that is: birth, marriage and death certificates)
as the candidate certificates, and the certificates of the marriages of the parents as the target certificates.

3.1.1 Building the vectortree

Each name on the target registrations will be transformed into a bit vector of eight bits. Each posi-
tion in the bit vector represents a set of letters, as shown in table 3.1. For each position in the bit
vector, the letters corresponding to that position will be searched in the name. If at least one of those
letters is found in the name, the position in the bit vector will be true, otherwise that position will be false.

In the case of the target registrations, the resulting bit vector will be used to build the vectortree.
The tree starts with a single node, representing the first position in the bit vector. Nodes and edges are
added when iterating over the bit vector, by checking for each position in the bitvector if there is an
edge from the previous node corresponding with the previous position in the bitvector to a node that
correspond to the value of the current position. If this is not the case, a new child node and edge are
inserted in the tree. If such edge and node exists, this edge is followed and the next position is evaluated.
When the last position of the bit vector is evaluated, the certificate is added to the leave node. This leaf
node contains all the certificates with the same bit vector, generating a set of potential target certificates
for a candidate certificate.

11

Table 3.1: The positions in the bit vector represent certain letters. For each name, eight positions are
available and if a letter occurs in the name, the corresponding bit is ‘activated’. For example: using the
sets of letters in table 3.1 the name Jobse will be converted to the vector 〈1, 1, 0, 0, 0, 0, 1, 1〉

letters position

{e, g} 0
{a, l, q, h, j, x, comma} 1
{r, p, v} 2
{n, space} 3
{i, u, w} 4
{d, f, c,m, z} 5
{t, s, y} 6
{o, b, k, other} 7

Figure 3.1: A (partial) vectortree when build on words from the alphabet a, b, c. Adding the word abbab
will add the dotted edge and node to the tree.

a

b

c

abc, bacacc, cbcaabbab

0

1

c

ac, acacc, cca

1

0 1

b

c

cbc, bcbb, cbcbcb, bbbbc

1

c

ccc, c, cc

1

0 1

0 1

In order to make this procedure more clear, consider the following example. We are building a
vectortree for words that consists of the alphabet a, b, c, and the bit vectors are of length 3, encoding
occurrences of these three letters. The word aaa will therefore be converted to 〈1, 0, 0〉 and the word abc
will be converted to 〈1, 1, 1〉.
In figure 3.1 a partial tree is shown. We would like to add the word abbab to the tree. The bit vector
will be 〈1, 1, 0〉. Since the first position in the bit vector has a value of 1, the edge with label 1 will be
taken in the first node. The same holds for the second position. However, for the third position a new
edge and node will be added to the three, since none of the previous words have created this edge.

3.1.2 Matching the candidates

The bit vectors of the candidate set are matched by traversing the vectortree, based on the values of the
bit vector generated for that candidate. If a path to a leaf node exists, all the target registrations in the
leaf node are considered a match, and if no such leaf node can be reached, the candidate is discarded.
Tree-traversal is done by exploring all the possible branches in the tree, but a branch is pruned if the
difference between the current path and path corresponding to the bit vector (that is, all the paths which
labels correspond to the values of the bits in the bit vector) exceeds some predefined threshold.

Since the matches are based on the values of the bit vectors, the strings of the matches do not nec-
essarily need to be exactly the same. Therefore, the Levenshtein distance is used to calculate the exact
distance. However, since the bit vector groups certain letters into a single group, potential matches that
are within the Levenshtein distance could be missed when only taking the leaf node on the direct path
into account. For example, when matches with an edit distance of 1, the legitimate match between the
names Zegers and Segers will not be in the same leaf node and therefore are not considered to be a match
when only taking the matches into account that are in the same leaf node. For example: the bitvector

12

Table 3.2: The set of extra rules when matching is done on single names. The rules are more strict when
the Levenshtein distance increases.

Levenshtein distance length length matching prefix

1 shortest > 4 1
2 shortest > 4 2
3 longest > 5 3
4 longest > 7 4
5 longest > 8 4

total length of pair minus Levenshtein distance > 16 1

of the names Zegers and Segers are 〈1, 0, 1, 0, 0, 1, 0, 0〉 and 〈1, 0, 1, 0, 0, 0, 1, 0〉, respectively. Upto bit 5,
these vectors are completely the same, and therefore follow the same path.

In order to compensate for this, the paths that are accessible within the maximum error are also
considered, and the registrations in the corresponding leaf nodes are added to the set of potential matches.

3.2 Matching with higher thresholds

3.2.1 Name pair matching

In the method described above, the edit distance is calculated over the strings of all four names. This
could lead to false negatives: the maximum edit distance is exceeded and the match is rejected, but the
match should have been accepted. There are many names in the Dutch language that have alternative
writing styles. Examples are first names like Cornelis / Kornelis and Lourens / Laurens or surnames like
Huizen / Huijzen or Belsen / Belzen. The similarity between these name variants is that the variants
share the same semi-phonetic form, although the spelling is different. This adds at least a cost of 1 to
the (levenshtein) edit distance, where there is a good reason to ignore these kinds of name variants.

In [Bloothooft and Schraagen, 2014] a set of decision rules was proposed to accept matches based
on the edit distance per name. Matching was done not only based on edit distance, but also on the
additional constraint that matches must share the same prefix. This was done in order to accept matches
for name pairs with higher Levenshtein distances. The constraint on the length of the shared prefix is
determined by the edit distance between the two matches, as shown in table 3.2. The constraint on the
length demands that, for a given length, either the shortest or the longest name in the name pair is of a
certain length (depending on the length of the distance), and the constraint on the prefix demands that
both names start with the same sequence of characters. There is also an additional rule, demanding that
if the the length of the concatenation of both names minus the edit distance is greater than 16 and the
names start with the same letter, the match is also accepted.

3.2.2 Allowing more distance

Although [Bloothooft and Schraagen, 2014] applied these rules to name pairs for which the names have
been converted into semi-phonetical form, we can use these rules to see if any matches that were rejected
while using the vectortree technique, which matches on the entire string, can be accepted when looking
at the distribution of the Levenshtein distance over the four names in the strings. We will focus on the
matches with Levenshtein distance 4 and 5, where we accept matches with an Levenshtein distance of 4
or 5 if and only if all of the names of these matches are accepted by the rules in table 3.2. These rules
will give some certainty about the extent to which the names match and therefore can be used to make a
more informed decision about the gravity of the mismatch of the strings. When a name pair passes the
tests in table 3.2 there is at least some overlap in that name pair, and the names are of sufficient length
to make sure that the edit distance is in some proportion to the length of the names.

Figure 3.2 shows the distribution of the length of the names in the matches generated by the set of
marriage candidates, categorized by the type of name (first name, surname) and the sex of the person,
which shows that for most categories, 75% of the names have a length of 8 or less. This means that, when

13

looking at matches with Levenshtein distance 4 and 5, the constraint on the length of the matching prefix
is a sensible constraint in order to make sure that the error is in proportion to the length of the name.
In order to check this, we have created two sets of matches for the matches of the birth-certificates: a
set where this constraint was dropped and a set where this constraint was applied. By comparing the
number of matches that are dropped when the filtering is applied as described in the next section, the
effectiveness of the constraint on the prefix can be tested.

Figure 3.2: The distribution of the length of names on marriage registrations

When looking at the matches with a Levenshtein distance of 4 or 5, the distribution of the error over
the names is also a good factor to take into consideration. An error of 4 or 5 in a single name could mean
in some cases that more than half of the entire name of the candidate is different from the name of the
target. Although the other three names do match completely (since the error is concentrated in a single
name), the difference in that single name will render the match dubious. We will not take the type of
name the error is in into account, i.e. we will treat an error of 3 in the first name of a male the same as
an error of 3 in the last name of a female. We limit the matches we take from matches with a distance
of 4 and 5 to those where the error is distributed over more than 1 name. For matches with a distance
of 5, we will also ignore the matches which we have labeled ‘2,3‘ since these matches differ too much in
two names.

3.3 Assessment of birth certificate matches

Using the vectortree technique we will build sets of families. Using the name pairs and table 3.2 we
can extend these families with all matches that are matched with a Levenshtein distance of 4 or 5, as
described above. The next step is to assess the quality of the matching in the first step. Although the
assessment of the quality of the matches can be done on any arbitrary matching, we will only assess
the quality of the matches between the marriage certificates and the birth certificates here. The set of
matches of the birth certificates to the marriage certificates of the parents are the most important set of
matches to check for consistency, since these matches are directly related to the existence of a person: a
person cannot exist if it is not born, although it is good to note that it is possible that birth certificates
are missing or that a person migrated to the province of Zeeland before marrying.

There are four checks that can be carried out:

• Are the birth events after the marriage of the parents?
Although children can be born before the parents are married, we do not consider these cases.
Assuming that all birth events take place after the parents are married simplifies this check signif-
icantly.

• Are there at least 10 months between two consecutive birth events within the same family?
It is very unlikely that children will be born within 10 months from each other, since this is
biologically almost an impossibility.

• How long is the overall time span of birth events within the same family?

14

If there is a gap of 20 years between two consecutive certificates, the likelihood that those certificate
belong to the same family is smaller than when there is a gap of 5 years.

• How long is the time span between the marriage of the parents and the birth certificate? The time
span between the marriage and the birth events can not be greater than 25 years. Lowering this
range might make this check more discriminative between families of parents and children with the
same name, but it might also pose a problem when looking at large families.

In order to be accepted as a true match, the match must be compliant with all these four criteria.

15

Chapter 4

Results and discussion

4.1 Initial matching results

4.1.1 Vectortree matching

When applying the vectortree matching algorithm to the candidate sets and target set, three sets of
matchresults are generated. Table 4.2 shows some examples of matches made by matching the birth
certificates to the target set.

Table 4.1 shows the number of generated matches using the vector tree algorithm, per type of match
and per maximum edit distance, as well as the number of extra matches that are generated when using
a higher threshold compared to the number of matches with a threshold of 3. In total there are 130,277
extra matches with an edit distance of 4, and 317,287 extra matches with an edit distance of 5.
As expected, the number of matches increases strongly when increasing the threshold.

Table 4.1: The number of matches per maximum edit distance.

Number of matches Extra number of matches

Certificate type th ≤ 3 th ≤ 4 th ≤ 5 th ≤ 4 th ≤ 5

marriage v.s. birth 556,549 610,645 741,555 54,096 109.72% 185,006 133.24%
marriage v.s. marriage 247,494 276,097 348,051 28,603 111.58% 100,557 140.63%
marriage v.s. death 394,251 441,829 556,252 47,578 112.06% 162,001 141.09%

Total extra matches: 130,277 447,564

Figure 4.1 shows the distribution of the error over the names. The edit distance per name pair is
used as the labels for a match: if there are 4 names where the edit distance between the names on the
target registration and the candidate registration is 1, the label ‘1,1,1,1’ was assigned to that match, and
if there is a match with an edit distance of 3 in a name and a name with an edit distance of 1, the label
‘1,3’ is assigned to that match. The order in which the errors occur is not taken into account, as we treat
an error in a first name the same as an error in a last name.

The figure shows that a lot of matches have been generated where the error is concentrated in a single
name. 55.9% of all matches with a distance of 3 have the label 3, which means that the entire allowed
error of 3 is concentrated in a single name. The same pattern can be seen for matches with an error of 4
and 5. 62.1% of all matches with an error of 4 have a label of 4 and 46.1% of all matches with an error
of 5 have a label of 5.

In the vectortree matching, we assumed that all matches with an error of 3 can be accepted. Although
an edit distance of 3 over the entire string seems as a sensible measure, these figures show that a lot of
matches were generated where the error is concentrated in a single name. Since the average length of a
name is between 6 and 7 characters, an error of 3 in a single name means that, on average, the names on
the target and candidate registration differ in almost half of the number of characters. This suggests that
the assumption that matches where the error is concentrated in a single name should be ignored when

16

Table 4.2: Some matching results generated by the vectortree algorithm on birth certificates. The names of the groom and bride of the target registration are
listed first. The names of the parents mentioned on the registration are listed in the last four columns. The Distance column indicates the edit distance over the
two strings of all four names.

Distance Target ID Male first name Male last name Female first name Female last name Candidate ID Male first name Male last name Female first name Female last name

2 701331 cornelis jansen johanna ee 129230 cornelis jansen janna ee
2 701331 cornelis jansen johanna ee 161932 cornelis jansen janna ee
0 704975 francois orlebeke anna ee 92863 francois orlebeke anna ee
0 704975 francois orlebeke anna ee 347965 francois orlebeke anna ee
0 704975 francois orlebeke anna ee 373156 francois orlebeke anna ee
0 704975 francois orlebeke anna ee 439624 francois orlebeke anna ee
0 704975 francois orlebeke anna ee 480756 francois orlebeke anna ee
0 704975 francois orlebeke anna ee 524095 francois orlebeke anna ee
2 891300 jannis verbrugge johanna ee 71156 jannis verbrugge janna ee
2 891300 jannis verbrugge johanna ee 429783 jannis verbrugge janna ee
1 811218 jannis reu maria eggel 296559 jannis reu maria eggee

17

Figure 4.1: The distribution of the maximum allowed edit distance over the names for all the generated
matches, grouped by error per name.

looking at higher edit distances is valid, while matches where the error is spread over multiple names can
be considered as proper matches.

Figure 4.2 shows the number of matches where the maximum distance is concentrated in a single
name, broken down by the name type, for the set of matches where the candidate set is the set of
marriage registrations of the children. This shows that increasing the threshold will primarily generate
more matches in the family name, as discussed above and as indicated in chapter 3, since the number of
matches where the error is concentrated in a single first name does not increase as much as the number
of matches where the error is concentrated in the last name.

4.1.2 Overlinking and underlinking

Table 4.3: The degree of overlinking per maximum edit distance. The overlinking is expressed as the
number of parents linked per (unique) candidate certificate. The candidate certificates are the birth,
marriage and death certificates of the children.

Number of unique candidates Average match per candidate

Certificate type th ≤ 3 th ≤ 4 th ≤ 5 th ≤ 3 th ≤ 4 th ≤ 5

marriage v.s. birth 540,401 557,647 573,730 1.03 1.10 1.29
marriage v.s. marriage 142,414 147,218 154,033 1.74 1.88 2.26
marriage v.s. death 390,960 401,082 422,082 1.01 1.10 1.32

Table 4.3 shows the average number of matches generated per unique candidate certificate. This is a
measure on the overlinking results of the matching algorithm, as this table shows the (average) number of
target certificate that each unique candidate certificate is matched to. For instance: with a threshold of
5, on average, each birth certificate is matched to 1.29 marriage certificate. To make this more concrete:
on average, the matching algorthm found 1.29 pair of parents for each birth certificate when matching
with a threshold of 5.

The average number of matches per candidate certificate for the birth- and death certificates for the
matches with a maximum threshold of 3 is close to 1, which indicates that, on average, each candi-
date certificate is matched to a target certificate. This shows that, overall, the vectortree algorithm is
able to match the candidate certificates very precisely to the target certificates for this type of certificates.

For marriage certificates, the expected average number of matches per candidate certificate should
be around 2, as there are 2 pairs of parents present on each unique candidate certificate. However, the

18

Figure 4.2: Breakdown of the number of matches where the maximum allowed edit distance is concen-
trated in a single name for the matches generated on the marriage certificates.

average number of matched target certificate is 1.74. This means that for these certificates there are
actually matches missing, and the results from the vectortree algorithm show that there is a situation of
underlinking.

As can be seen in table 4.1 the vectortree algorithm generates 11% more matches on marriages, when
the threshold is increased to 4, but uses only 3.4% more unique candidates (table 4.3), and creates 41%
more matches when the threshold is increased to 5 and uses 8% more unique candidates, compared to a
threshold of 3. This shows that increasing the threshold will result in overlinking, as can be expected.
This leads to an increase in the average number of match per unique candidate. Because this might not
be a situation that is normally acceptable, we will filter out these results in the second and third phase.

4.2 Named Pair based matching results

In total, there are 556,549 matches on birth certificates with a Levenshtein distance of 3 or lower and
54,096 and 130,910 extra matches on Levenshtein distance 4 and 5, respectively. Ignoring the matches
with a distance of 4 and 5 as described in section 3.2.1, 20,681 matches remain with a distance of 4, and
34,952 matches remain with an edit distance of 5.
There are 247,494 matches for marriage certificates with an error of 3 or lower, and 28,603 and 71,954
matches with an error of 4 and 5, respectively. From the matches with an error of 4, we drop 18,201
matches as the error is concentrated in a single name. This results in 10,402 matches with an error of 4
that we accept. For the matches with error 5 we drop the matches with labels ’5‘ and ‘2,3’. This means
that we drop 52,645 matches and retain the remaining 19,226 matches.
Regarding the matches on the death certificates, we have 394,251 matches with a distance of 3 or smaller,
47,578 matches with an error of 4 and 114,423 matches with an error of 5. From the matches with edit
distance 4 we drop 29,277 matches and retain 18,301 matches and from the matches with edit distance
5 we drop 83,808 matches and retain 30,615 matches. Table 4.4 shows the breakdown of the matches
that we have retained per label as well as the average number of matched target registrations per unique
certificate.

The remaining matches with edit distance 4 and 5 are checked for compliance with the rules as de-
scribed in table 3.2. The acceptance rate for these matches is shown in table 4.5. The acceptance rate,
which is the ratio of matches that meet all the constraints as described in section 3.2.1, is shown for
matches where the additional prefix constraint is not applied (in the ‘Loose’ column) and where the ad-
ditional constraint is applied (in the ‘Strict’ column). When comparing the acceptance rate for matches
with edit distance 4 and 5, the matches with a distance of 5 are clearly less precise. This is expected, as
the edit distance itself is a measure of certainty about the correspondence of two strings. Matches where

19

Figure 4.3: Percentage of rejected and accepted matches by the extra checks on consistency. The matches
that are checked are the matches that are accepted when name pair based matching is performed without
the extra constraint on the matching prefixes. (Loose)

Figure 4.4: Percentage of rejected and accepted matches by the extra checks on consistency. These
matches are the matches that are accepted when name pair based matching is performed with the extra
constraint on matching prefixes. (Strict)

the edit distance is distributed over more than two names seem to be more precise than matches where
the error is concentrated on one or two names. This seems to support our assumption that matches with
label ‘4’, ‘1,4’, ‘2,3’ and ‘5’ should not be accepted.

4.3 Filtering birth certificates

The matches on birth certificates that are accepted as described in the previous section are checked for
consistency. Figures 4.4 and 4.3 show the percentages of accepted and rejected matches for the matches
with and without the additional matching starting characters constraint, respectively. The name pair
matching constraints are only checked for matches with Levenshtein distance 4 and 5.
The left plot in both figures shows the number of rejected and accepted matches when the maximum
number of years between the first and last birth match is 15 at most, and the right plot shows the same
percentages, but when the maximum number of years is 20. In both figures, the number of accepted
matches is higher when the maximum allowed years is 20 years. This is expected, as this requirement is
less restrictive on the matches.

Since matches with a distance of 3 where assumed to be correct matches it is of interest to note that
the number of rejected matches increases significantly at edit distance 3. Table 4.6 shows that this is

20

Table 4.4: A breakdown of matches per type of match. The labels represent the distribution of the
error over the names of the matches. The average number of matches shows the degree of overlinking:
the average number of target certificate (parent marriage certificates) that are linked to unique candidate
certificates.

Birth certificates

Threshold: ≤3 Threshold: 4 Threshold: 5
Label # matches avg. match Label # matches avg. match Label # matches avg. match

0 374,474 1.00 1,1,1,1 119 1.01 1,1,1,2 224 1.04
1 101,556 1.00 1,1,2 2,554 1.01 1,1,3 3,546 1.04

1,1 19,218 1.00 1,3 12,821 1.05 1,2,2 2,606 1.03
2 27,656 1.00 2,2 5,187 1.04

1,1,1 2,148 1.00
1,2 12,777 1.01
3 18,720 1.06

Total: 556,549 1.03 20,681 1.04 6,376 1.04

Marriage certificates

Threshold: ≤ 3 Threshold: 4 Threshold: 5
Label # matches avg. match Label # matches avg. match Label # matches avg. match

0 166,849 1.47 1,1,1,1 61 1.00 1,1,1,2 111 1.00
1 44,785 1.10 1,1,2 1,221 1.03 1,1,3 1,907 1.04

1,1 8,234 1.03 1,3 6,538 1.07 1,2,2 1,351 1.03
2 12,027 1.03 2,2 2,582 1.05

1,1,1 980 1.01
1,2 5,608 1.03
3 9,011 1.08

Total: 247,494 1.74 10,402 1.06 3,369 1.04

Death certificates

Threshold: ≤ 3 Threshold: 4 Threshold: 5
Label # matches avg. match Label # matches avg. match Label # matches avg. match

0 246,288 1.00 1,1,1,1 135 1.02 1,1,1,2 202 1.03
1 80,103 1.00 1,1,2 2,387 1.01 1,1,3 3,106 1.03

1,1 16,209 1.00 1,3 11,297 1.05 1,2,2 2,229 1.03
2 22,743 1.00 2,2 4,482 1.03

1,1,1 1,910 1.00
1,2 11,007 1.00
3 15,921 1.05

Total: 394,181 1.01 18,301 1.04 5,537 1.03

21

Table 4.5: The acceptance rates for edit distance 4 and 5 on the ruleset in table 3.2. The acceptance
rate describes the percentage of generated matches per label that comply with these rules. The ’Loose’
columns show the acceptance rate of matches when the constraint on matching starting characters is not
applied, whereas the ’Strict’ columns show the rates where this constraint is applied.

Acceptance rate - Birth ↔ Marriage certificates

Threshold: 4 Threshold: 5

Label # matches Loose Strict Label # matches Loose Strict

1,1,1,1 119 43.70% 52 31.09% 37 1,1,1,2 224 50.00% 112 33.03% 74
1,1,2 2,554 59.71% 1,525 35.83% 915 1,1,3 3,546 36.91% 1,309 15.48% 549
1,3 12,821 47.35% 6,071 18.48% 2,369 1,2,2 2,606 35.03% 913 12.70% 331
2,2 5,187 47.27% 2,452 17.27% 896

20,681 48.84% 10,100 20.39% 4,217 6,376 36.6% 2,334 14.96% 954

Acceptance rate - Marriage ↔ Marriage certificates

Threshold: 4 Threshold: 5

Label # matches Loose Strict Label # matches Loose Strict

1,1,1,1 61 32.78% 20 18.03% 11 1,1,1,2 111 44.14% 49 31.53% 35
1,1,2 1,221 58.23% 711 34.46% 422 1,1,3 1,907 33.67% 642 15.21% 290
1,3 6,538 43.27% 2,829 16.20% 1,059 1,2,2 1,351 33.46% 452 12.06% 163
2,2 2,582 42.72% 1,103 12.59% 325

10,402 44.83% 4,667 17.48% 1,817 3,369 34.22% 1,153 14.49% 488

Acceptance rate - Death ↔ Marriage certificates

Threshold: 4 Threshold: 5

Label # matches Loose Strict Label # matches Loose Strict

1,1,1,1 135 43.70% 59 28.89% 39 1,1,1,2 202 49.00% 99 31.68% 64
1,1,2 2,387 60.20% 1,437 36.57% 873 1,1,3 3,106 37.54% 1,116 17.58% 546
1,3 11,297 47.48% 5,364 18.74% 2,117 1,2,2 2,229 34.99% 780 14.09% 314
2,2 4,482 46.63% 2,090 16.17% 725

18,301 48.96% 8,961 20.51% 3,754 5,537 36.03% 1,995 16.69% 924

22

Table 4.6: The rejection rate per label shows that the additional prefix constraint filters out a large
chunk of the inconsistent matches generated with edit distance 4 and 5 on matches where the maximum
difference between the first and last birth certificate in a family is 15 years.

Distance Label Loose Strict

3
1,1,1 0.057 0.057
1,2 0.132 0.132
3 0.433 0.433

4

1,1,1,1 0.115 0.162
1,1,2 0.087 0.079
1,3 0.281 0.084

5

1,1,1,2 0.116 0.135
1,1,3 0.256 0.082
1,2,2 0.383 0.121

mainly contributed by the matches where the distance is concentrated in a single name. Although the
majority is accepted by our consistency checks, the rise of the rejection rate suggests that the assumption
- that matches with edit distance 3 are safe to accept - must be adjusted and that matches with a distance
of 3 in a single name should be investigated further.
The effect of additional constraints on matches is clearly visible in the matches with edit distance 4 and
5. With no additional constraint on the prefix, the rejection rate of these matches is around 35% to 40%
for matches with a maximum of 15 year between the first and last birth certificate. With the additional
prefix constraint, the rejection rate drop to between 15% and 20%.

Table 4.6 shows the rejection rate per label. The rejection rate of matches without the additional
prefix constraint is lowest when the distance is distributed over all names (or over three in case of a
distance of 3), like we expected, and increases as the error is more concentrated in one name, as seen
in the previous section. The rejection rate for the matches that comply with the extra prefix constraint
seems to be evenly distributed. This is further evidence that the constraint on the prefix of the names
can be used in order to distinguish matches when there is a larger distance between the names.

4.4 Discussion

Since we do not have a set of matches that we know are correct, it is impossible to compute objective
measures of performance for the matching results. However, it is possible to evaluate the performance of
the matches on the rule set introduced in the third step of the matching process.

The distribution of the error over the names for matches with an error of 3 showed that for 55.9%
of these matches the error was concentrated in a single name. This suggest that the assumption that
matches with an edit distance of 3 over the entire string of four names are acceptable might be reeval-
uated, or that the results with an edit distance of 3 should be tested further. The threshold of 3 seems
sensible if the error is distributed over all four names. When the error is concentrated in a single name
the rejection rate of the consistency check increases, and therefore further analysis is needed for matches
with an edit distance of 3.

When increasing the threshold for the initial matching algorithm to 4 or 5 in order to be more lenient
towards spelling variantions, a lot of extra matches will be generated. As with the matches with an error
of 3, care should be taken to accept these extra matches. The vast majority of extra matches will be
generated by matches where there is a distance of 3 in a single name. When choosing to filter these
extra matches on name pairs, the rules as desribed in table 3.2 can be used to filter out these unwanted
matches. We have tested the ruleset on matches with a maximum edit distance of 4 and 5. The ruleset
seems to perform well on both the matches made with distance 4 and 5, as the rejection rate of the
matches with these distances that are accepted by this ruleset in the second step of the procedure, and
accepted by the consistency checks in the third step of the procedure does not increase significantly when

23

matched with distance 5, compared to matches with distance 4.

As can be seen in table 4.5, the rules in the second step can filter out a great deal of extra generated
matches and are effective in filtering matches that are made with a large distance concentrated in a single
name.

As mentioned before, there is no way to be certain that the generated matches are actually correct. It
is therefore difficult to assess the effectiveness and performance of the approach in this thesis in a coherent,
objective way. However, when using edit distance, one can be fairly certain that, with a low edit distance
and if consistent with domain knowledge, these matches are indeed proper matches. Whenever the edit
distance increases, the matches that are made with a more distributed error are more safe to accept than
matches where the error is concentrated in fewer names.

24

Chapter 5

Conclusion
This thesis tried to find a method for matching life events taken from historical civil records by looking
at the names present on these records.

A tree-search algorithm was used to generate matches based on the edit distance of the names on the
registrations, where the edit distance varied in order to see if it is possible to account for the high level
of spelling variations of these names. The matches where filtered by applying rules to the matches and
to filter out those matches where the distance was too much concentrated in a single name.
After this filtering, the resulting matches where checked for internal consistency by applying real world
logic to the generated matches.

When increasing the edit distance, the importance of extra checks on the distribution of the edit
distance over the names becomes more important. This can be seen in the number of matches that are
dropped in the second step of the method, because of the distribution of the edit distance over the names.

Although this thesis provides some judgement on the quality of the matches, it does not evaluate the
matches using objective measurements. It is therefore difficult to make a sound conclusion about the
effectiveness of the approach.

5.1 Further Research

For a proper evaluation of the matches generated with a higher edit distance, it might be interesting
to conduct clerical review of the generated matches, in order to provide a golden standard for further
research. Machine learning algorithmes like active learning might also be used to generate true matches.

In order to improve the filtering, the name pair comparison can also be done using name variants, in
order make a more informed decision about the nature of the error. Extra rules might be set up for the
nature of the error, such as probability rules based on name variants. It also might be interesting to see
if name variants evolved throughout time.

In the third phase the consistency of the generated sets of families was checked in a fairly basic
manner. More thorough checks could be done; for instance by checking the following criteria:

• Life course consistency: when the matches on marriage and death registrations are also considered,
are there registrations that are inconsistent with the previous matched registrations. For instance:
a marriage registration is matched with a event date that is later then a death certificate of that
person.

• Location / Sex consistency: In the case of two competing registrations, to what extend can the
locations on those registration be used to rule out a registration? This could also be checked for
the sex of the persons on the registrations.

• Name variant consistency: If there are life events missing, are there registrations in the family set
where the name of the ego/ega is a name variant of the name for which a certificate is missing?
For instance: if the birth and death certificate of Cornelis are consistent, but we have a missing
marriage certificate and we have a single marriage certificate for a Cor, what are the conditions
that allow us to accept the marriage certificate of Cor to be accepted as the marriage certificate of
Cornelis?

25

Appendices

26

Appendix A

Edit distance

The method that is used to compare a candidate record to a target record is the Levenshtein distance,
which is a function to calculate the distance between two strings. The method was introduced by
[Levenshtein, 1966]. Given two strings a and b, the distance between a and b can be defined as the
number of operations that need to be executed in order to convert string a into string b (or b into a,
since the operations are symmetric).
The original Levenshtein function assumes three operations: deletion, insertion and substitution of char-
acters in a string, where each operation has a cost of 1. This results in an Levenshtein distance that
represents the number of operations. Several variations of the Levenshtein distance exists, where either
the cost associated with an operation varies, or the set of operations is altered to allow different opera-
tions (such as swapping to characters, also known as transposition) or to disallow certain operations. In
our approach, we use the original Levenshtein distance.

The Levenshtein distance is calculated in O(|a| × |b|) time, where | · | denotes the length of a string.
This is done by using a dynamic programming algorithm, that uses a matrix with |a| + 1 columns and
|b|+1 rows. Each letter in a is associated with a column, and the first column is used for an empty space.
An example can be seen in table A.1, where the strings Peter and Pieter are compared to each other. In
order to calculate the Levenshtein distance, the value 0 is assigned to the cell d[0, 0] (corresponding to
the empty spaces). Then, in a recursive manner, the remaining cells are filled according to the following
function:

d[i, j] =

d[i− 1, j − 1] if a[i] = b[j]

minimum

d[i− 1, j] (deletion)

d[i, j − 1] (insertion)

d[i− 1, j − 1] + 1 (substitution)

 if a[i] 6= b[j]
(A.1)

with 0 ≤ i ≤ |a| and 0 ≤ j ≤ |b|. The resulting value in cell d[|a|, |b|] is the final value for the Levenshtein
distance between string a and string b.

Table A.1: The Levenshtein edit distance for the strings. The bold digits represent the path to the final
result. Peter and Pieter

0 1 2 3 4 5
P e t e r

0 0 1 2 3 4 5
1 P 1 0 1 2 3 4
2 i 2 1 1 2 3 4
3 e 3 2 1 2 3 4
4 t 4 3 2 1 2 3
5 e 5 4 3 2 1 2
6 r 6 5 4 3 2 1

27

List of Figures

2.1 The number of registrations per year, split by type . 6
2.2 An example of a birth-certificate. Source: Zeeuws Archief, http://www.archieven.nl . . . 7

3.1 A partial vectortree . 12
3.2 Distribution of the length of names . 14

4.1 Distribution of the maximum error over the names . 18
4.2 Count max error per name . 19
4.3 Consistency check acceptance rate (no prefix constraint) 20
4.4 Consistency check acceptance rate (with prefix constraint) 20

28

List of Tables

2.1 Overview of a birth-certificate . 8
2.2 Overview of a marriage-certificate . 8
2.3 Overview of a death-certificate . 8
2.4 Number of registration in matching sets . 9
2.5 Example of target and candidate files . 9

3.1 Position of letters in a bitvector . 12
3.2 Extra rules for name based matching . 13

4.1 Number of matches of vectortree per maximum edit distance 16
4.2 Example of vectortree output . 17
4.3 Degree of overlinking per maximum edit distance . 18
4.4 Breakdown of all matches . 21
4.5 Acceptance rate . 22
4.6 Rejection rate per label . 23

A.1 Example of Levenshtein edit distance . 27

29

Bibliography

[Bloothooft, 1995] Bloothooft, G. (1995). Rules for semi-phonetic conversion of first names and family
names. Uil-OTS internal report (in Dutch).

[Bloothooft and Schraagen, 2014] Bloothooft, G. and Schraagen, M. (2014). Learning name variants from
true person resolution. Proceedings of the International Workshop of Population Reconstruction.

[Dunn, 1946] Dunn, H. L. (1946). Record linkage. American Journal of Public Health and the Nations
Health, 36(12):1412–1426.

[Fellegi and Sunter, 1969] Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of
the American Statistical Association, 64(328):1183–1210.

[Jaro, 1989] Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710.

[Newcombe and Kennedy, 1962] Newcombe, H. B. and Kennedy, J. M. (1962). Record linkage: making
maximum use of the discriminating power of identifying information. Communications of the ACM,
5(11):563–566.

[Russell and Odell, 1918] Russell, R. and Odell, M. (1918). Soundex. US patent, 1:88.

[Sarawagi et al., 2002] Sarawagi, S., Bhamidipaty, A., Kirpal, A., and Mouli, C. (2002). Alias: An active
learning led interactive deduplication system. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pages 1103–1106. Elsevier.

[Schraagen, 2014] Schraagen, M. (2014). Aspects of Record Linkage. PhD thesis, Universiteit Leiden.

[Winkler, 1990] Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage.

[Winkler, 2002] Winkler, W. E. (2002). Methods for record linkage and bayesian networks. Technical
report, Technical report, Statistical Research Division, US Census Bureau, Washington, DC.

[Zobel and Dart, 1996] Zobel, J. and Dart, P. (1996). Phonetic string matching: Lessons from informa-
tion retrieval. In Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 166–172. ACM.

30

	Introduction
	Overview of research on record linkage
	The Genlias project
	An overview of the method

	Data
	Description of the records
	Preprocessing
	Initial Matching

	Method
	String matching
	Building the vectortree
	Matching the candidates

	Matching with higher thresholds
	Name pair matching
	Allowing more distance

	Assessment of birth certificate matches

	Results and discussion
	Initial matching results
	Vectortree matching
	Overlinking and underlinking

	Named Pair based matching results
	Filtering birth certificates
	Discussion

	Conclusion
	Further Research

	Appendices
	Edit distance

