
UTRECHT UNIVERSITY

Deep Learning of Hierarchical Skills for

Dynamic Tasks in Minecraft

by

Paolo Bernardo Umberto Luigi de Heer

A thesis submitted in partial fulfilment for the

degrees of Master of Science

ICA-3743683

in

Artificial Intelligence

and

Game & Media Technology

in the

Department of Information and Computing Sciences

Faculty of Science

July 2018

https://www.uu.nl/en
mailto:paolodhr@gmail.com?subject=Master Thesis
https://www.uu.nl/masters/en/artificial-intelligence
https://www.uu.nl/masters/en/game-and-media-technology
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences
https://www.uu.nl/en/organisation/faculty-of-science

Contents

1 Introduction 1

1.1 Aims . 2

1.2 Outline . 4

2 Background 5

2.1 Reinforcement Learning . 5

2.1.1 Framework . 6

2.1.2 Markov Decision Process . 7

2.1.3 Value Functions & the Bellman Equation 7

2.1.4 Monte Carlo . 9

2.1.5 Policy methods . 9

2.1.6 Hierarchical Reinforcement Learning 10

2.1.6.1 Options . 10

2.1.7 Limitations . 10

2.1.7.1 Curse of Dimensionality 11

2.1.7.2 Need for a Human Designer 12

2.1.7.3 Tabular Storage . 12

2.2 Deep Learning . 12

2.2.1 Neural Networks . 13

2.2.2 Recurrent Neural Networks . 14

2.2.3 Optimisation Algorithms . 15

2.2.4 Limitations . 15

2.3 Deep Reinforcement Learning . 16

2.3.1 Deep Q-Network . 16

2.3.2 (Asynchronous) Advantage Actor-Critic 19

2.4 Hierarchical Deep Reinforcement Learning Network 19

2.5 Summary & Objectives . 20

3 Methodology 22

3.1 Initial Parameter Exploration . 24

3.2 Experiment I: Algorithmic comparison . 24

3.3 Experiment II: (Dynamic) subskills compared 25

3.4 Experiment III: training and testing the H-DRLN 27

4 Results 29

4.1 Parameter tests . 29

4.1.1 Initial parameter tests . 29

i

Contents ii

4.1.2 Grayscale versus RGB state data 30

4.1.3 Evaluation frequency & length . 31

4.1.4 Success replay memory . 31

4.1.5 Conclusions . 32

4.2 Learning Algorithms Compared: DQN, QR and A2C 32

4.3 Domain specific performance in Malmo . 33

4.4 Subskill performance . 34

4.5 H-DRLN . 36

5 Conclusions 38

5.1 Conclusions . 38

5.1.1 Algorithmic Comparison . 38

5.1.2 Subskills performance with QR-DQN 39

5.1.3 H-DRLN . 40

5.2 Limitations . 40

5.3 Future Work . 41

Chapter 1

Introduction

Currently, many tasks that are easy for humans can be extraordinarily hard for machines,

such as driving on the road, recognising objects in unclear pictures, or playing complex

computer games. The benefits of enabling computers to perform tasks such as these are

endless. For example, if autonomous machines are able to drive perfectly on the road,

it could ease congestion and reduce collisions.

The research field of Machine Learning is occupied with, amongst many others, exactly

these types of tasks. An example of a learning paradigm from that field is Reinforce-

ment Learning, which from rewards and penalties from the environment, learns the best

behaviour from trial and error, in a restricted system [1]. This learning is somewhat

similar to how a human learns, by trying various actions, observing the effects, and

possibly trying again a different approach.

Recently, a new method coined Deep Reinforcement Learning (DRL) has emerged from

the field of Machine Learning, which combines several different Machine Learning paradigms,

one of which is Reinforcement Learning. It also uses Neural Networks (NN), a central

idea of Machine Learning which will be detailed in section 2.2. DRL proves to be very

successful in ’solving’ (i.e. learning the optimal behaviour) a wide spectrum of problems,

such as for the first time beating the world’s best human at the Japanese board game Go

[2], teaching robots how to walk efficiently [3] or, using a single learned model, achieving

super-human performance in dozens of Atari games [4].

An especially interesting computer game is Minecraft, where a player is free to roam an

unbounded computer-generated landscape complete with caves, animals and monsters.

It is interesting because it is highly dynamic and adaptable, presenting a real challenge

to agents, and can represent our real world. The player has to gather materials to craft

items and buildings from scratch in order to survive. As a result of this complex and

1

Introduction 2

open-ended nature, Minecraft is exceptionally well-suited for AI research in autonomous

behaviour. It has many challenges that are similar to human endeavours such as explo-

ration, exploitation, learning, and cooperation. These challenges are complex and varied

enough to pose a promising candidate for developing learning techniques for more gen-

eral AI, i.e. being able to use a single learning model to efficiently learn generic complex

behaviours for different domains.

Typically, the output of a DRL network is a single ’atomic’ action. Atomic in this context

means an action with the lowest level of complexity, instead of a composite action. In

the case of Minecraft it would be similar to the exact command a player would give

when playing the game (e.g. move my character forward one unit length). Tessler et

al. [5] recently implemented a DRL network in Minecraft, where they extended a DRL

network with so-called ’skills’ structured in a skill hierarchy, forming a Hierarchical Deep

Reinforcement Learning Network (H-DRLN). These skills are encoded in the network

as separate subnetworks. Each subnetwork represents a specific type of more complex

action, such as ’navigate to a location’ or ’pick up an object somewhere’. Tessler et al.

show that training the DRL network using these hierarchical skills reaches the desired

behaviour more quickly and is able to perform competently on more complex scenarios

compared to a ’regular’ DRL network, thanks to the prelearnt, decomposed skills.

However, only static scenarios and skills in a confined space were used in that study.

For example, there were no moving objects in the worlds tested with and no skills were

learned that were dependant on other dynamic objects. This more simpler, restricted

version of the game world is of course much easier to learn for a neural network since

introducing dynamics means an agent’s learned model of the world needs to be robust

to these changes, which is more difficult. However, it also heavily detracts from the

potential of training a general AI in the dynamic and intricate world of Minecraft, and

by extension the real world.

1.1 Aims

The aim of this thesis is to extend earlier work on Hierarchical Deep Reinforcement

Learning to support more realistic problem settings by extending the algorithm to sup-

port dynamic obstacles and tasks, and implement a newer and more efficient learning

algorithm.

The H-DRLN for Minecraft will be expanded with a Neural Network capable of learning

behaviour for more dynamic scenarios, such as avoiding, trapping, or destroying enemies,

gathering dynamic items, or interacting with non-player characters (NPCs) to achieve

Introduction 3

more complicated goals. New skills and skill-subnetworks will be defined that enable

learning these new behaviours. After first learning these skill networks independently,

they will be combined and the skills of the agent will be tested in dynamic scenarios. The

performance of the agent in these dynamic scenarios will be compared to the performance

of the H-DRLN trained with the static domains and a non-hierarchical Deep Q-Network

(DQN) trained on the dynamic domains. Additionally, a newer, more efficient learning

algorithm A3C will be implemented implemented and compared to the DQN algorithm

used by Tessler et al. [5]. The results will be a contribution to a more competent and

general AI, able to solve more complex and dynamic tasks.

The problems that will be adressed are the following:

1. The H-DRLN relies on some algorithms that have proven to be superseded in some

regards. That will be addressed by implementing newer, more efficient algorithms

such as QR-DQN and the A2C algorithm. To achieve this, the following will be

contributed:

(a) Implement A2C and QR-DQN next to DQN. A2C and QR-DQN might be

more efficient learning algorithms than DQN, and can help make the learning

problem more tractable in terms of required computational resources.

(b) Comparison of the A2C, QR-DQN and DQN learning performance in the

static scenarios. This will provide further insight of the performance of dif-

ferent algorithms in complex problem domains.

2. The previously learnt subskills are relatively simplistic, static subskills, which do

not adequately represent the complex and dynamic nature of the Minecraft world,

and analogously do not translate well to our dynamic real world. To address this,

the following will be contributed:

(a) A learning scenario in Minecraft with a dynamic element will be defined.

(b) The skills to competently deal with the dynamic element in the new scenario

will be developed and learned by an agent. This enables the agent to complete

goals with dynamic components in a Minecraft world.

(c) Learning performance of dynamic and static skills are compared.

3. The H-DRLN architecture is only tested with problems lacking any dynamic com-

ponents. Insights of the performance on variable domains are missing. That will

be solved by designing various domains that incorporate learning dynamic skills

and tasks, and testing the performance. To achieve this, the following will be

contributed:

Introduction 4

(a) Expand the H-DRLN with a dynamic learning component, forming a Dy-

namic H-DRLN (DH-DRLN). This enables learning behaviour for more re-

alistic and complex scenarios in Minecraft. This gives insight to the virtues

and shortcomings of the different paradigms and can further drive the field

towards more general AI.

1.2 Outline

First, some background will be given into the development, intuition, and theory of the

learning techniques. Next, the most relevant related works and open questions will be

highlighted to give an idea of the current frontier of AI research and a motivation for this

thesis. Thereafter, the experimental setup and implementation will be detailed. Using

this, the results of the tests will be showed and an interpretation of the behaviour and

results will be given. Lastly, the findings will be summarised and some insights to future

work will be given in the conclusion.

Chapter 2

Background

This section covers the techniques used in Reinforcement Learning, Deep Learning (using

Neural Networks), and the relatively novel combination of the two learning paradigms:

Deep Reinforcement Learning.

2.1 Reinforcement Learning

Machine Learning can be ’supervised’, where the algorithm can make use of pre-labelled

data, or ’unsupvervised’, where the algorithm is not provided with the desired outputs,

and has to make a model of the world on its own. Another paradigm within Machine

Learning is Reinforcement Learning, an approach stemming from behavioural and game

theory research. Reinforcement Learning is somewhere in between supervised and unsu-

pervised, since there is no explicit labelled data given of correct and incorrect outputs,

but there is some implicit knowledge passed to the algorithm in the form of rewards

(or penalties) from the environment. With Reinforcement Learning, instead of being

given a labelled data set, learning is done by finding an optimal policy from trial and

error without supervision. The agent does this by repeatedly (in discrete time steps)

perceiving a state and choosing an action following from some policy - for every state it

encounters. After the action, it perceives a new state and records the resulting reward

(or penalty, a negative reward) for ending up in this new state. The reward is used to

update its estimate of the expected value of the state and the state-action pair, which

is a measure of how desirable the state is to be in. An example of the Reinforcement

Learning perception-action-update loop is given in the figure 2.1.

While the agent initially knows nothing (or only some heuristic estimate) about the

values of states and state-action pairs, through repeated exploration, eventually the

5

Background 6

Figure 2.1: The general Reinforcement Learning agent-environment interaction loop.
Based on the current perceived state, the agent chooses an action to perform. Hereafter,
it perceives the new state and reward from the environment. Image adapted from [1].

estimated expected value of all states and state-action pairs should stabilise to the actual

expected value, assuming the world (and reward distribution) does not change. When,

after enough exploration, the value of all states and state-action pairs has stabilised

enough, some new policy can be formed by simply selecting the most promising action

for each state-action pair in the set, which gives the most optimal policy to achieve

success, given that the initial rewards and penalties were chosen satisfactory.

The first practical research in Reinforcement Learning already stems from the early 90s,

when it was mostly used for basic one- or two-dimensional problems such as theoretical

grid-world scenarios [6, 7, 8]. However, it also has a much wider practical applicability,

such as efficient robotic navigation [3], negotiating economic deals or network traffic

[9], simulating emergence of social conventions in groups [10] and intelligently playing

complex computer games [4].

2.1.1 Framework

The Reinforcement Learning framework comprises an agent that perceives a state st

from an environment at timestep t. The agent interacts with the environment by taking

an action at in state st. After taking such an action, the environment transitions to a

new state st+1 based on the current state and the action executed by the agent. The

state should contain all relevant features of the environment and should, together with

the chosen action, be enough to determine the next state, satisfying the Markov property

[1].

The optimal sequence of actions the agent can take arises from the reward distribution

in the environment. After taking an action, the agent receives a scalar reward rt+1

from the environment. The purpose of the agent if to learn a policy π that maximises

Background 7

the cumulative, discounted reward, called the expected return. The policy is a function

mapping a state to an action distribution, which can be stochastic. An optimal policy

is any policy that maximises the expected return in an environment.

2.1.2 Markov Decision Process

Defined as a Markov decision process (MDP) [11, 12], Reinforcement Learning consists

of:

• A set of states S, including a subset of starting states.

• A set of actions A

• A transition function T (st+1|s + t, at) mapping state-action pairs at time t to a

distribution of states at time t+ 1.

• A reward function R(st, at, st+1).

• The discount factor γ ∈ [0, 1] where a lower value gives more weight to more

immediate rewards.

The policy π maps states to a probability distribution over actions: π : S → p(A = a|S).

In an episodic setting, the state is reset after T timesteps. One such run is called

an episode and the sequence of states, actions and rewards constitutes a trajectory

of the policy. Every trajectory results in the return R =
∑T−1

t=0 γ
trt+1. The goal of

Reinforcement learning is to find an optimal policy π∗ such that it achieves the maximum

expected return over an entire trajectory: π∗ = arg max
π

E[R|π]. For non-episodic MDPs

where T = inf setting γ < 1 prevents a diverging sum.

The Markov property, stating that a transition to st+1 only depends on the past state s

and action a, is often unrealistic since the environment is usually not fully observable. It

is often generalised to partially observable MPDs (POMDPs), where the agent observes

what it believes is the environment from the current state and previous action. A

recurrent neural network (RNNs) is usually used to formulate the observation of the

environment.

2.1.3 Value Functions & the Bellman Equation

Solving a Reinforcement Learning problem is done by iteratively updating the estimated

values, using a value function. The following state-value function V π(s) gives the ex-

pected return given by starting in state s and following policy π hereafter:

Background 8

V π(s) = E [R|s, π] (2.1)

Translated to the optimal policy π∗ gives the optimal state-value function:

V ∗(s) = arg max
π

V π(s) ∀s ∈ S (2.2)

If the optimal state-value function was known, the optimal policy is simply selecting

from all actions at st the one that maximises the expected return. However, since that

is unavailable, an extra function is used that gives the state-action value called the

quality function Qπ(s, a) which is analogous to V π with the first action already decided:

Qπ(s, a) = E [R|s, a, π] (2.3)

Given this quality function, the optimal policy can be retrieved by choosing the next

action greedily at every state: arg maxaQ
π(s, a). V π(s) can then also be expressed as

V π(s) = maxaQ
π(s, a).

To actually learn Qπ, the function is defined as a Bellman equation [13]:

Qπ(st, at) = Est+1 [rt+1 + γQπ(st+1, π(st+1))] (2.4)

Using Dynamic Programming and the recursive nature of this function, the estimate of

Qπ can be iteratively improved by bootstrapping with the current estimate of Qπ, as

used by the Q-learning [14] and the SARSA algorithms [15]:

Q′(st, at) = Qπ(st, at) + αδ, (2.5)

where α is the learning rate and δ = Y − Qπ(st, at) is the temporal difference (TD)

error. Y is a target as in a regression problem. Since SARSA is on-policy, it seeks to

directly improve the active policy Qπ so that Y = rt + γ ∗ Qπ(st+1, at+1). In contrast,

Q-learning is off-policy, meaning that it updates the current active policy using the most

promising transition value, resulting in Y = rt+]gammamaxaQ
π(st+1, a) which directly

approximates Q∗.

Background 9

2.1.4 Monte Carlo

Rather than using dynamic programming to improve the value functions, Monte Carlo

methods can be used to estimate the expected return of a state by averaging the return

from multiple runs of a policy [16]. However, this method can only be used in episodic

MDPs, since the function needs to terminate to calculate the return of that run. Monte

Carlo methods and TD learning can also be combined as in the TDλ algorithm [1]. The

λ here defines an interpolation between Monte Carlo and bootstrapping.

Another method learns the advantage function Aπ(s, a) [17]. Instead of giving an ab-

solute state-action value function Qπ, Aπ uses relative state-action values, defined as

follows:

Aπ = V π −Qπ (2.6)

Learning relative values removes the baseline value, and can be thought of as that it

is easier to learn that one action is better than another than it is to learn the actual

returns for all actions.

2.1.5 Policy methods

Instead of relying on value functions to learn the optimal policy, Policy methods aim

to directly learn an optimal policy by means of a parametrised policy πθ. The pa-

rameters are updated, usually using a gradient-based method in Deep Reinforcement

Learning. Gradients can give an effective learning signal as to how to update the policy

parametrisation.

To compute the expected return, trajectories of the current policy parametrisation are

averaged using a sampling method, such as Monte Carlo sampling. An estimation of

the gradient is needed in the form of the REINFORCE rule [18]. This rule increases

the selection probability of the sampled action weighted by the return. However, this

computation relies on the empirical return of policy run, and has a high variance as

a result. One way reduce this variance, the average return can be taken over several

episodes.

Value functions can be combined with this form of policy parametrisation in actor-

critic methods [19]. Here, the actor learns by using feedback from the critic, using

two seperate policies. This way, the methods mediate between variance reduction from

policy gradients and bias introduction from value functions.

Background 10

2.1.6 Hierarchical Reinforcement Learning

Another way to combat the curse of dimensionality is by introducing a Hierarchy in the

learning structure, where the complex task is recursively divided into smaller subtasks,

creating a task tree. This is actually quite similar to how humans would break down

a complex task into smaller simpler ones, and solve those in succession. When using

a task hierarchy, the agent first learns the simpler (lower level) tasks. When those are

learnt, it starts learning the next, higher level of tasks, all the way up to the root of

the hierarchy. This way, the agent can filter out variables that are irrelevant to the

current subtask. As a result, many different states are abstracted to a single state for

the purpose of that subtask, and as such are much quicker to learn. A second way

this hierarchy benefits the learning process is that the same lower-level subtask can

be used by multiple different higher-level tasks, further relieving the need to learn the

same functionality in different settings, supporting the transfer learning capabilities of

the agent. Some research has already been done in this area, such as MAX-Q [20] and

Options [21]. Research has shown Options to be capable of speeding up convergence of

RL agents both in theoretical [21, 22] and practical approaches [23, 24].

2.1.6.1 Options

The concept of Options within Reinforcement Learning was first developed by Sutton,

Precup and Sing in 1999 [21]. It extends the Reinforcement Learning framework by

allowing a policy to not only select primitive actions, but also invoke other policies, also

called options, or (sub)tasks. These options are temporally extended actions (TEAs),

meaning a selected option continues executing its policy for multiple timesteps. With

this framework, a policy hierarchy can be constructed, where the policies closer to the

root focus on higher-level goals, and sub-policies deeper in the tree deal with more

specialised directives. Usually these sub-policies and hierarchy are defined in advance

by a designer [25, 26]. However, research is also being done in generating these options

from the data itself, which remains an open research problem [27, 28, 29]. Usually these

sub-policies are first learnt individually, in specialised environments to help learn that

specific skill. Afterwards, these options are combined in the task hierarchy for use in

the actual, more complex tasks.

2.1.7 Limitations

However, Reinforcement Learning also suffers from some glaring limitations, as detailed

below. These issues unfortunately still greatly restrain the practical applicability of

Background 11

Reinforcement Learning in more complex settings.

2.1.7.1 Curse of Dimensionality

Due to the nature of Reinforcement Learning, every extra variable in an environment

constitutes a new dimension in the set of states, meaning that as the problem task grows

more complex, the state space grows exponentially, and with it the time it takes to learn

an optimal policy. This is coined the curse of dimensionality by Richard E. Bellman

[30], and is one of the major obstacles of Reinforcement Learning. This is a significant

problem for single-agent systems, and doubly so for multi-agent systems (MASs). This

is because not only does the state space grow exponentially for every variable that

exists, but it also adds that many dimensions for every extra agent introduced to the

system, further constituting a significant increase in computing power required to find

the optimal policies.

Another difficulty of applying Reinforcement Learning to multi-agent systems or dynam-

ically changing environments is the fact that multiple actors now perceive and influence

the world instead of a single one. Instead of a single actor influencing the world and

perceiving the result of its own actions, with a multi-agent system, there are multiple

actors influencing and changing the very same world. Multiple agents can either act in

parallel, or in sequence, and as they change the world, what they previously learnt about

the world might no longer be true. As every agent tries to learn the optimal policy, they

also change the world for others, requiring others to adapt, which might change what

the optimal policy is, requiring others to adapt again, and so on. This makes it more

difficult to converge to a global optimal policy, but bears interesting resemblances to

human social interactions [31, 32]. This effect is present in different ways in different

scenarios, such as collaborative versus competitive agents, global learning versus indi-

vidual learning, with or without (possibly noisy) communication, etc. These problems

are analogous for dynamic environments.

Due to the fact that it can take an agent thousands of episodes (an episode is a single,

complete ’play’ through a problem) to learn and converge to an optimal policy, the

computational needs are excessively high. It is thus severely constrained by the available

processing power of the computers at the time of research and as a result, it was an

infeasible method for most practical tasks when Reinforcement Learning was initially

developed.

These limitations often invoke the need for multiple assumptions and simplifications, for

example concerning the state abstraction and the possibility of communicating between

agents (for MASs), especially when providing guarantees on convergence and optimality.

Background 12

2.1.7.2 Need for a Human Designer

Another issue is the design effort required. In addition to the parameters that need

to be set, there are also some very domain dependant variable elements in RL: the

state abstraction, reward distribution and - in the case of Hierarchical RL - the skill

hierarchy all need to be defined by a human designer. Such a designer is required to

have sufficient domain knowledge to efficiently encapsulate all relevant features, rewards

and recursively decompose the overall task into a collection of subtasks. Having a human

design the hierarchy can quickly become infeasible or incomprehensible for more complex

task structures.

2.1.7.3 Tabular Storage

Additionally, classical reinforcement learning stores Q-values in a tabular fashion. For

more intricate and complex domains, such an implementation would need unrealistically

large tables to store all the Q-values. For example, to store a value for each possible

combination of pixel brightness values for even a very small computer screen would take

more entries in the table than there are atoms in the universe. Even though the space

required can be optimised for some settings, there are many environments where either

further optimisation becomes infeasible or the initial space required to store the tables

is already impossibly big.

However, thanks to significant improvements of processing power in recent years, more

complex problems can be learnt. As a result, RL is undergoing something of a revival in

terms of popularity and feasibility. Learning the optimal policy for complex tasks that

seemed nigh unsolvable before, suddenly enters the realms of possibility. This increase in

computing power also enables more MAS applications of RL. As a result of this increase

in power, there is also a resurgence of research being conducted on the various forms

of RL, further establishing this learning paradigm as one of the most interesting and

valuable learning algorithms. Still, the part where feasibility of RL consistently falls

short is on the fact that the states are stored in a tabular way, still accompanied by the

curse of dimensionality.

2.2 Deep Learning

A different paradigm of Machine Learning is ’Supervised learning’, where an algorithm

is designed to predict the value of certain properties of an input item [33]. To learn the

correct output, it has access to a data set that is already classified, i.e. for every data

Background 13

point, the desired resulting output is known for the algorithm. The purpose is to be

able to generalise to unseen data points, predicting the (now unknown) desired output

as correctly as possible.

This type of Machine Learning can be used for image classification, patient diagnostics,

predictions of stock behaviour based on past events, etc. The output can range from a

codified single value (e.g. the expected value of a property), to a range of values (e.g.

the certainty that a picture is of a horse, a house, or a human, respectively).

The input and desired outputs are codified as a single value or a multidimensional

vector of values, called a tensor, where every value of the vector is a feature. As such, a

relatively straightforward polynomial can be specified that calculates a specific output

directly dependent on the inputs. This polynomial manipulates each feature with a

separate weight parameter, and adds a bias parameter.

To measure how accurate such a learning model is for a specific input or data point, the

error between the output resulting from the function, and the ’real’ value that was given

for that data point is calculated. Usually the average error is calculated for a lot of data

points at the same time for more accurate results. The global task of deep learning is

to minimise this average error, specifically for the test data. Since these calculations are

performed on a lot of data points using the same parameters at the same time, the data

can be structured in multidimensional vectors and matrices, resulting in more efficient

computation and solving of the task.

In Deep Learning, each unit processes the input using its so called activation function,

where unique weight and bias parameters influence the output. This output is forwarded

to the next layer of units, until the end. Using training data, it adapts the activation

functions to eventually produce correct responses to as many of the (training) input

data as possible. It is a very powerful tool to help learn and parametrize.

2.2.1 Neural Networks

Neural networks are a group of non-linear, parametric learning functions. They are

called networks since they are a collection of functions (nodes) that together form an

acyclic graph. They are hierarchical in nature, in the sense that it internally first learns

to discern small, atomic, features, and using a composite of those atomic features to

iteratively discern more complex features. Given a dataset D, a neural network’s purpose

is to find the optimal parameters θ∗ that minimizes a loss function [33]. The network is

separated into layers, where each layer represents a computation of the form:

Background 14

h1 = f1(W1 · x+ b1) (2.7)

Where f1 maps the multidimensional input x of the model to the hidden unit - or the

next layer - h1 using weights W1 ∈ θ and biases b1 ∈ θ. f1 is called an activation

function. The output (of this function) of one layer can be the input (x) for another

layer, forming the hierarchical aspect of neural networks. More layers enable to learn

more complex features, and as such Deep Learning methods often employ networks with

a large number of layers. However, with more layers, parameters, and higher-dimensional

input features, the model becomes harder to train. Much current research focusses on

methods that are capable of efficiently training deep neural networks.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are able to process sequential data. To make use of

information incorporated in a sequence, such as data changing over time, an RNN uses

a memory to understand the context of the data. Using hidden states, information from

the past is passed through the network [33]. The RNN function is as follows:

ht = f(xt, ht−1|θ) (2.8)

Here, xt and θt are the input and parameters at this timestep. ht−1 is the hidden state

of the network at the previous timestep. The parameters θ are shared over all timesteps,

and assists in generalising to variable sequence lengths.

An important feature of an RNN is backpropagation through time. Since the result at

time t depend on all previous timesteps, the loss, or error, from this result needs to be

propagated back through all these timesteps. For an episodic (finite) task, it could be

propagated through all steps. However, it is computationally expensive to go very far

back in time. Instead, the number of timesteps it propagates back through is set to a

finite number τ .

One version of a RNN is the Long Short-Term Memory Network (LSTM). While most

basic RNNs have difficulties with long-term dependencies in a sequence, the LSTM are

able to learn these long-term relations without overlooking the short-term dependencies

and have proven very successful in various domains [34]. The main component of a

LSTM is the cell state Ct, which is sparsely updated and can be seen as a separate

’long-term memory’. It also still employs a short-term memory in the form of ht. Given

input xt and hidden state ht−1, the cell state Ct−1 is updated to Ct. The new cell state

is then combined with xt and ht−1 to return the new output ht.

Background 15

2.2.3 Optimisation Algorithms

As stated, to actually learn with a neural network some loss or error should be minimized.

This is done using an optimisation algorithm. The most common used optimisation

algorithm is gradient descent [33]:

θt+1 = θt + α∇θL (2.9)

Here, ∇θL is the vector containing all partial derivatives, called the gradient of L, with

respect to θ. Intuitively, this updates the parameters by computing the direction to move

the function in. Since the direction is based on the partial derivatives, it can always be

chosen such that it moves downhill (i.e. closer to a minimum), given that the learning

rate α is chosen sufficiently small as not to overshoot the minimum. Usually, to speed up

learning and avoid indefinite overshooting, the learning rate starts out relatively large

and shrinks over time to ensure an accurate approach to the minimum. The computation

of the gradients through the neural network is called backpropagation.

Stochastic gradient descent is a common adaptation where the gradients are updated

using only parts of the dataset to reduce the computational costs. This is done by

stochastically sampling so called mini-batches from the dataset D. The parameters are

updated as follows:

θt+1 = θt +
α

|B|
∑
i∈B
∇θLi (2.10)

Where B ∈ D is a mini-batch. The size of the mini-batches determines the variance of

the gradients: setting it too small might steer it in the wrong direction due to skewed

samples, but setting it too large might prevent getting out of a local minimum.

2.2.4 Limitations

While neural networks, both shallow and deep, have already proven their practical effec-

tiveness long ago, there are still some limitations inherent in this paradigm of learning.

Most importantly, neural networks require a lot of training data, which also need to be

pre-annotated by humans. This is a heavy reliance on supervision that is not practical.

It would be beneficial to progress towards more unsupervised learning and to be able

to do away with the necessity for annotation data altogether. Combining reinforcement

learning with neural networks enables just that, if at least in part. The input data no

Background 16

longer needs to be annotated, as the rewards - which may be received delayed in time -

provide feedback necessary for learning.

2.3 Deep Reinforcement Learning

Most recently, research has been focused on combining the novel Deep Learning tech-

niques with the well-established Reinforcement Learning to constitute so-called Deep

Reinforcement Learning (DRL) [35].

Also, the mentioned effect of the curse of dimensionality in reinforcement learning is

such that the basic, tabular way to structure the values of state-action pairs becomes

unusable: the number of states - and subsequently the size of the tables - simply becomes

too large to store digitally. This is another way where the Deep Learning paradigm can

help solve the problem. Instead of saving the Q-values in a tabular structure, the values

are stored inherent in the structure and functions of the many neurons of the network.

This helps to make learning over very complex states and inputs feasible.

In DRL, the basic learning loop is still the same as in reinforcement learning: based on

a received state, an agent uses a policy to choose an action to perform (based on the

Q-values of the possibilities), after which it receives a new state and reward. That new

reward is used to update the current Q-value of the new state, using the Q-function. The

major difference is that now, a neural network is used to represent the action value (Q-

value) function. Instead of finding the Q-value in a table Q(s, a) , the network encodes

the Q-values in a non-linear function Q(s, a|θ) where θ are the weights and biases of the

neurons, the parameters of the network. Also, instead of using the value-iteration update

rule of Q-learning, every learning update now changes the parameters θ according to the

chosen error minimization function, such as gradient descent.

The pioneering work in DRL was prone to unstable or even diverging learning behaviour

when using non-linear function approximators such as neural networks to represent the

Q-function. In addition, the learning process could take too long, requiring very many

samples. Recent work such as the Deep Q-Network detailed below have been able to

produce much more stable parametrisations that can also learn much quicker using fewer

samples.

2.3.1 Deep Q-Network

One of the most recent big breakthrough Deep Reinforcement Learning algorithms was

the Deep Q-Network (DQN) [4, 36]. It was able to play a large number of Atari 2600

Background 17

video games from the Arcade Learning Environment (ALE) [37] on par with a profes-

sional video game player, with only a single model. The structure of the DQN can be

seen in Image 2.2. As input, it takes the latest four greyscale frames from the game.

These frames are processed by several convolution layers that extract spatiotemporal

features, such as movement of the ball or enemies. Next, multiple fully connected layers

process the feature map that more explicitly encode the effects of the actions. The final

fully connected layer outputs Qπ(s, a) for all action values in a discrete set of actions.

This allows the best action arg max
a

Qπ(s, a) to be chosen from only a single forward pass

through the network, and allows better encoding of action-independent knowledge in

the lower, convolutional layers.

The number of the states needed to represent this in a tabular storage would be |A| ×
|S| = 18× 2563×210×160. It would be impossible to create a table of that size, and even

if it was, it would be sparsely updated.

The DQN is used as a function approximation for the Q-function, similar to regular

Q-learning. The parameters θ of the network can be trained using gradient descent by

minimizing the Mean Squared Error (MSE). For Q-learning, this is the TD-error:

MSE(θ) = E(s,a,r,s′)[(r + γmax
a′
Q(s′, a′|θ)−Q(s, a|θ))2] (2.11)

Figure 2.2: The DQN gets the state as a set of greyscale frames and processes it
with convolutional and fully connected layers. The final layer of the network outputs a
discrete action that corresponds to one of the possible inputs for the game. Based on
the current state and chosen action, the game returns a new score. The DQN interprets
the reward as the difference between the new score and the previous one. This is done
by updating the estimates of Q, and the error between the previous estimate and the

new estimate is backpropagated through the network. Image adapted from [35].

While neural networks often induce some instability, Mnih et al. [4] introduced two

techniques to combat this issue: experience replay and target networks.

Experience replay stores transitions as tuples of (st, at, s1+1, rt+1) in a cyclic buffer,

which can be sampled from to train the network with previously observed data [38].

The benefits are that it can significantly reduce the amount of interactions needed, and

experiences can be sampled in batches to reduce the variance of the learning updates.

Stochastically sampling also reduces the effect of temporal correlations that can hinder

Background 18

the learning process. Lastly, sampling batches can be more efficiently processed thanks

to parallel computations on the data, increasing the throughput. An extension of the

experience replay memory is prioritized replay. Using prioritization, instead of uniformly

sampling from the experience replay, trajectories with more important transitions (a

higher priority) are replayed more frequently. This results in more efficient learning,

and is also applied in the DQN [39].

A frozen target network is the other technique used with the DQN. This network

helps combat the instability arising from updating the parameters θ at every timestep,

which affects the entire network and can lead to oscillations or obstructions in learning.

To prevent this, Mnih et al. introduce a secondary network that initially contains the

weights of the network enacting the policy, but it is kept frozen for a large number of

timesteps. Instead of having to calculate the TD error based on the heavily fluctuating

estimates of the Q-values, the policy network uses this fixed target network. During

training, the weights of the target network are only updated to match the policy network

once per a set amount of timesteps, called the freeze interval.

The algorithm for the DQN including these adaptions can be seen in Algorithm 1.

Algorithm 1 The Deep Q-Network with Experience replay and a Frozen target network

1: Initialize replay memory D with capacity N .
2: Initialize action-value function parameters θ0 with random weights.
3: Set target action-value function parameters θ− ← θ0.
4: i⇐ 0
5: while i < max iterations do s← s0
6: while s 6= terminal do
7: With probability ε select random action a
8: Otherwise a = arg max

a′
Q(s, a′|θi)

9: Take action a
10: Observe next state and reward (s′, r)
11: Store transition (s, a, r, s′) in D
12: s← s′

13: if i%freezeinterval == 0 then
14: θ− ← θi
15: end if
16: B = (sj , aj , rj , s

′
j)
batchsize

j=1
⊆ D

17: for each (sj , aj , rj , s
′
j) ∈ B do

18: yj = rj + γmax
a′
Q(s′j , a

′|θ−)

19: Lj = (yi −Q(si, ai|θi))2
20: end for
21: θi+1 = θi + α

|B|
∑batchsize

j=1 ∇θiLj
22: i = i+ 1
23: end while
24: end while

Background 19

Double DQN is an adaptation of DQN that prevents overly optimistic estimates of the

value function. This is done by executing the action selection with the current network

θ and evaluating the action with the target network [40].

2.3.2 (Asynchronous) Advantage Actor-Critic

A significant recent improvement over DQN comes in the form of the asynchronous

advantage actor-critic (A3C) algorithm [41]. A3C combines advantage updates with

the actor-critic method, and uses asynchronously updated policy and value function

networks trained in parallel with multiple processing threads. Training using multiple

agents in their own separate environments not only stabilises parameter updates, but

also allows for more exploration. A3C is used a lot in current DRL projects and is also

being adapted and improved. One such adaptation is the inclusion of experience replay

in the algorithm [42].

More recently, a synchronous, deterministic variant of A3C has been introduced coined

A2C [43]. A2C waits for each agent to finish its episode before updating the policy

and value function network. The benefit of this variant is that it can more effectively

make use of GPUs parallel computation capabilities, especially benefiting from large

batch sizes. A2C is reported to be more cost-effective than A3C when using single-GPU

machines, and to be faster than a CPU-only A3C implementation [44].

2.4 Hierarchical Deep Reinforcement Learning Network

Recently, Tessler et al. were one of the first to implement a DRL network with a

hierarchical structure [5]. Their goal is to develop an agent capable of lifelong learning

- using knowledge transfer - in a complex game environment such as Minecraft. Their

architecture uses a modified version of the DQN, extended with the Options framework

for RL. It was implemented and tested in Malmo, Microsoft’s AI research platform built

with Minecraft [45].

The overarching architecture is the Hierarchical Deep Reinforcement Learning Network

(H-DRLN). This is a deep neural network, based on a modified DQN, that as input

receives downscaled pixel images from Minecraft, and outputs either one of six atomic

actions (move forward, rotate left or right, pick up or drop an item, and break a block)

or the identifier of a specific subskill. If it selects a specific subskill, it forwards control

of the agent’s inputs and outputs for K = 5 steps to the neural network of that specific

subskill. After that number of steps, control returns to the H-DRLN to select the next

action(s).

Background 20

The agent first independently learns four different subskills (navigating, picking objects

up, destroying blocks, placing objects) in separate scenarios. The skills are learnt using

separate Deep Skill Networks (DSNs), which is mostly like a DQN. After learning, the

DSNs managed to solve their sub-domains in nearly 100% of the episodes.

These DSNs are then combined in their H-DRLN architecture, by means of either a DSN

Array, or a Multi-Skill Distillation (MSD). The MSD is a novel technique developed by

Tessler et al. It is a single neural network that combines the features of the different

skill DQNs into one. It performs slightly better than a DQN Array and can scale better

to more skills since it is a single distilled network.

The H-DRLN is first tested with a single skill (navigation) in a different, more complex

scenario than what the skill was trained with. Here, it performs better than both a

vanilla DQN, and the individual DSN. Next, the H-DRLN is tested with a more complex

scenario where it must combine all the subskills it has previously learnt. This scenario

was tested with a baseline double DQN (DDQN) network, a H-DRLN with DQN and

DSN array, a H-DRLN with a DDQN and DSN array, and a H-DRLN with a DDQN

and a MSD. The simple baseline DDQN was unable to solve the task after more than

240 epochs. One epoch here means the one cycle of training for some amount of steps

or episodes, and evaluating (testing) for some other amount of steps or episodes. Of

the H-DRLN implementations, the H-DRLN with a DDQN and the MSD performed

best, scoring a 94% success rate and variance of 4%, compared to 10% for the simple

H-DRLN.

It shows the effectiveness of distilling a task into subtasks, with related subskills to

learn, enabling ever more complex behaviour to be learnt. However, skills have to do

with relatively simple tasks, as they remain static. This architecture will be extended to

deal with tasks that have dynamic elements, such as avoiding and defeating monsters.

2.5 Summary & Objectives

Each of the techniques shown above provide features that are beneficial - some even

critical - to creating an intricate and general learning system. Reinforcement Learning

provides the basis in the form of the action selecting policy and the learning algorithm,

which continually updates and improves the policy while exploring the environment.

The (deep) Neural Network provides a way to store the state space, resulting in a more

dense and generic abstraction. The effects of this are that the state space can be of a

much higher dimension, that the transfer learning ability is enhanced and that fewer

training steps are usually needed, compared to regular RL. Using a deep neural network

Background 21

allows more complicated patterns and connections to be learned in the input data. The

learning algorithm provided by the Reinforcement Learning component is the driving

factor changing the weights and biases of the neural network. Lastly, training skills

hierarchically - where an agent trains using multiple separately pre-trained subskills -

can significantly increase learning performance for complicated tasks.

By combining these techniques in a Hierarchical Deep Reinforcement Learning network,

it is possible to train an agent in more detailed 3D environments, using more complex

and generic tasks. This can lead to more effective use of these techniques in real-world

situations, such as robotic exploration and assistance in disaster areas, or agents that

have to be able to do a multitude of different tasks. Due to the generic nature of

the examined algorithms, these techniques can provide a stepping stone towards more

general AI.

However, one limitation of this architecture is that learning can still take a prohibitively

long time to learn a given task. Since the previous research, multiple newer deep re-

inforcement learning algorithms have been developed, that boast better performance.

These might severely shorten the amount of learning required for adequate results. Ad-

ditionally, one of the aspects not fully explored in the original research is that no skills

or tasks bore dynamic elements. This is often encountered in real-world tasks, and is ex-

pected to possibly further complicate learning. As such, it is highly relevant to research

these types of tasks if deep reinforcement learning is ever to be used in real-world tasks

as part of a general AI system.

Therefore, the scope of this study is to explore the effectiveness of these methods in

the static and dynamic domain in Minecraft. Specifically, some parameter settings will

be explored, new algorithms will be compared, and lastly the static subskills will be

compared to a dynamic subskill. These experiments are detailed in the next chapter.

Chapter 3

Methodology

Since this study aims to contribute to more capable and general AI agents that can oper-

ate in our complicated real world, several experiments will be done to explore the perfor-

mance of state-of-the-art deep reinforcement learning algorithms in a three-dimensional

environment, learning static, dynamic and hierarchical skills. In order to study this, a

set-up similar to H-DRLN was used [5].

The goal here is to explore the efficacy of the methods in more dynamic environments in

order to see how well they might scale to more complex settings. The rationale behind

this is that simulating a world in Minecraft, and having an agent train from pixels as

input, is not all too different from a robot interacting in our real world, and testing

these improvements will show how suited these methods are to operate in our world.

To this end, three different experiments will be performed. The first tests new Deep

Reinforcement Learning algorithms that have not yet been performed in a Minecraft-

like three-dimensional environment. The second experiment tests five subskills, including

the dynamic task, and the third experiment tests a H-DRLN that uses the trained

dynamic task. These experiments provide new insights as to the performance of those

algorithms in environments more like our own complex world, instead of 2-dimensional

arcade games, and how well they perform on more complicated, dynamic tasks.

The experiments are implemented using Malmo, Microsoft’s AI research project built

on Minecraft [45]. The Malmo framework can provide direct state information from

the game to the agent as input to the neural network, and the agent can give direct

actions to perform back to the game. Part of Tessler’s code is used for the domain-,

agent- and learning algorithm-interactions [46]. To construct the neural networks, the

deep learning library PyTorch is used [47]. The resulting code is hosted on the following

github repository: https://github.com/Phantomb/malmo_rl.

22

https://github.com/Phantomb/malmo_rl

Methodology 23

The previous research used a different Minecraft research platform named BurlapCraft

[48], which has been discontinued. There are some substantial differences in the plat-

forms, most notably leading to a different form of action execution in Malmo. As a

result, the agent’s available actions in this study differ slightly from the original ex-

periments (the agent can only turn 90° instead of 30°), possibly leading to differing

results in learning efficiency and efficacy. This is an implementation difference that is

unfortunately unavoidable, and will be taken into account when discussing the results.

In spite of the limitation stated above, the intention is to deviate as little as possible

from the original research. Staying as close as possible to the source is important,

since every alteration can have severe impact on the performance of the agent. In this

pursuit, all parameters are modelled after the values as stated in the original research in

[5]. Unfortunately, not all parameters are (unambiguously) stated in the paper, nor do

the ones that are stated provide the expected results in preliminary exploratory tests.

In these preliminary tests performed on the relatively simple single room domain for

example, the agent was not able to reach a stable success rate above 50%. Because

of this, a parameter exploration is performed in order to find a set of parameters and

settings that provides positive and workable results. This provides a significant hurdle

to the experiment, because it constitutes further deviation from the original, hindering

the ability to compare results.

Additionally, due to the way the Minecraft platform is coded, the number of steps

that can be taken per second is relatively limited. On average, an agent made in this

implementation, using a high-end PC, executes 2-3 steps per second. That means that,

for a test running for 60 epochs with the settings as described below, it takes around four

days of simulation. This is another prohibiting factor in performing an full exhaustive

search for the best parameters. Therefore, some most likely candidates for the most

promising improvements are empirically selected and tested with, as described below.

Before performing the experiments, some parameters and implementation-related con-

figurations are explored in order to find the optimal settings. Next, three different

experiments are performed. The first experiment tests new, promising adaptations to

the learning algorithm. The second experiment implements five subskills, including the

dynamic task and skill in the domain for the architecture to learn. The third exper-

iment will be expanding the H-DRLN with a dynamic task. The following sections

further specify how the tests are performed.

Methodology 24

3.1 Initial Parameter Exploration

Before performing the main experiments, it is important to have an effective baseline to

compare against. Since this implementation in Malmo differs from the original imple-

mentation in BurlapCraft, some elements and parameters might have a different effect

on the learning performance of the agent. Preliminary tests confirmed this expecta-

tion, where domains such as navigate and pickup were initially unable to reach success

rates above 20%. As mentioned above, due to the prohibitive training time required

in Minecraft, it is not possible to perform an exhaustive search of the most optimal

parameters and settings. The optimal parameters also cannot easily be deduced from

logic, since due to the nature of the used methods and algorithms, a small change in

settings can have a large effect on the resulting behaviour, as also stated by Mnih et

al. in [36]. In order to improve the performance in spite of this limitation, this initial

parameter exploration is performed. This exploration is done in an empirical fashion,

by searching for ’low hanging fruit’, i.e. changes that might have the largest positive

effect.

Specifically, the effects of the following parameters are explored: reward normalisation

and a zero-based reward distribution are implemented. These should help learning by

learning rewards on a smaller scale, and ensures the Q-value is negative for any state-

action pair which prevents any positive feedback loops, respectively. Next, the effects of

reducing the action set are explored, which could help the agent converge faster since

the state space is smaller. Another thing that is looked at is using grayscale versus

RGB state data. This further condenses the state space, which either makes it easier to

learn, or could make it more difficult to discern differences in states since information

is lost. Lastly, the evaluation frequency & length are changed, and the use of a success

replay memory is implemented. These changes should allow for more stable, averaged

performance monitoring and result in more effective experience replay, respectively.

These parameters are explored for the single room domain, using QR-DQN as a baseline.

To measure the effectiveness of these separate adaptations, the success rate of the agent

over time is used.

3.2 Experiment I: Algorithmic comparison

In the first experiment, the algorithms DQN, QR-DQN and A2C are compared. This

is done for multiple purposes. Firstly, this provides a reference point of the DQN per-

formance compared to the initial H-DRLN study. Secondly, it provides insight into the

performance of the newer algorithms compared to each other and compared to simpler

Methodology 25

games such as the ALE arcade games they are usually tested with. Thirdly, it acts as

the deciding factor for which learning algorithm to use to train the individual subskills

for the subsequent tests.

The three algorithms are tested in the single room domain. This single room domain

consists of an area in which the agent can move is slightly smaller (8*8 tiles), and a

gold block is placed in the middle, acting as the goal. The agent can turn 90° left,

right, or move forward. The agent succeeds if it reaches (and faces) the goal block, upon

which the episode resets. The episode also resets upon reaching the maximum number

of actions, set to 30.

The DQN and QR-DQN are implemented with one agent. A2C makes use of multiple

asynchronous agents (called actors) for training, sharing the same model. In the paper

where A2C was first introduced, 16 actors on separate threads were employed to train

on the ALE games [41]. Due to the more demanding resource requirements of Minecraft

as a simulator, it is unfortunately not possible to train with that many actors in this

setup. Therefore, only 4 actors will be used to train asynchronously.

Because prior research has found that the more recent QR-DQN and A2C appear to be

more stable and efficient in training networks compared to DQN, it is expected that QR-

DQN and A2C are more efficient learning algorithms. In order to study the effectiveness

of the algorithms, the success rate over time is compared. If QR-DQN or the A2C version

of the network is able to converge faster than the DQN version on the same tests, the

conclusion can safely be made that the agent learning skills is made more competitive

by using these state-of-the-art algorithms.

3.3 Experiment II: (Dynamic) subskills compared

This second experiment is the key contribution from this study and aims to provide an

answer to the second research question: the ability of the networks to generalise to more

dynamic domains in Minecraft. To do this, after the algorithmic comparison tests have

been performed, five separate subskills, including a dynamic subskill, will be trained

using the best performing learning algorithm from the previous section.

The four static subskill domains can be seen in Figure 3.1. Each goal is visible in

a different way, and different conditions determine the success of the agent. For the

navigation skill, the agent simply needs to reach the goal blocks and stand on them. For

the pickup skill, the agent needs to reach the goal block similarly to the test domain,

and pick up the item. For the break skill, the agent needs to move to the blue blocks,

and perform the ‘break’ action, destroying at least one of the blocks. For the place

Methodology 26

skill, the agent needs to move to the final goal location (looking similar to the initial

navigation goal block) and use the ‘place’ action. If the agent takes longer than 30

steps, the domain and agent are reset and a new episode starts. These subskills are

directly modelled after those in the initial H-DRLN study [5], with as little alterations

as possible. This is a crucial part of the research since both: (1) control tests like

these contribute to more reliable conclusions and a more cemented research community,

and (2) these tests provide the basis for the further experiments and improvements put

forward in this study.

(a) Navigate (b) Pickup (c) Break

(d) Place (e) Attack

Figure 3.1: The five separate subskills domains in Minecraft which the agent has to
learn. Figure (e) is the dynamic task with a monster randomly walking in the space,

which is able to hit and kill the player.

For the purpose of this study, dynamic skills are defined as skills that rely on interaction

with an NPC (enemy or friendly) or item that can have a variable state, e.g. a friendly

NPC can be helpful or indifferent, an enemy NPC can be in different places, and attack

or be passive, or an item can depend on other states before it can be used. For this

experiment, the following skill and corresponding training domain is chosen: The skill

of avoiding and hitting enemies. This will be trained in a room of the same size

as the other subdomains. In this room, a single monster (a ‘ZombiePigMan’) is present

that tries to attack the agent. If the agent is hit three times, the episode ends and the

domain and agent are reset. If the agent manages to hit the ZombiePigMan, the episode

ends successfully and the agent recieves a reward. Similarly to the other skills, a small

negative reward is given for every action the agent takes, and the episode ends if the

agent takes more than 30 actions. The skill is properly learnt when it is consistently able

Methodology 27

to hit the monster before the end of the episode, translating to a success rate percentage

of 80%.

1. The agent has to avoid and hit an enemy that is trying to attack the agent. The

enemy can move and hit the agent if it is facing the agent. The episode will fail

and start over if the agent loses all its lives, next to running into the limit of the

number of steps per episode.

This is a compelling dynamic task, since the skill it conveys can apply to a wide range

of situations in more complex and realistic problem domains. An example of how the

enemy avoidance is relevant is learning to avoid collisions with other moving entities

in the real world. Together with the more static skills previously learnt, learning these

skills provides an answer to the first research question, and they are an important step

towards more general, capable AI.

The four static subskills and the dynamic subskill are trained separately, using the best

performing learning algorithm as decided by the previous section. The episode length

for these subskills is 30 steps, the evaluation frequency is initially set to 1k steps, and

the evaluation duration is set to 100 steps. The learning rate α = 0.0025 and the replay

memory size = 100k states. The success rate is the percentage of episodes the agent

successfully completed during evaluation.

The training (and testing) of a subskill will be run for over 350k steps. After training,

these variations are evaluated and compared to the performance of the framework as

reported in [5]. If the results found here match the results reported in that paper

within a small error margin, it provides further consolidation as a stable and reliable

architecture. If the agent will not have been able to attain a consistent success rate of

80% after training for at most 350k steps, it will be deemed not to have learnt to execute

the skill successfully enough.

3.4 Experiment III: training and testing the H-DRLN

After training the subskills individually, if the dynamic skill and at least three of the four

static skills that were learnt in the previous experiment each achieve a success perfor-

mance of at least 80%, a new H-DRLN is trained and tested with both the dynamic and

static skills. They are combined in the H-DRLN by use of the Multi-Skilled Distillation.

Then they are tested and further trained in a complex domain consisting of three rooms:

Methodology 28

1. The first room contains the item that needs to be collected, and has an object

break task analogous to that task of the static tests;

2. The second room consists of a navigation task where an enemy needs to be avoided

(and hit) to go to the next room;

3. The last room has the exit, where the previously collected item needs to be placed.

Then, the H-DRLN will have all trained DSNs implemented into the architecture and it

will be trained and tested using the complex (three-room) domain requiring all subskills

to solve it.

If the H-DRLN achieves a succes rate of at least 80% within 750k steps, the architecture

will be regarded to be capable of achieving complex goals including learning dynamic

tasks.

Chapter 4

Results

4.1 Parameter tests

4.1.1 Initial parameter tests

To explore the possible effects of certain (learning) parameters on the agent, the test

domain (single-room) was used where the goal is to perform a specific action when

touching the goal block in the room. First, a baseline was trained using QR-DDQN, 200

atoms, an ε-decay of 20.000, a replay memory size of 10.000 and an additional success-

replay memory. The result of this was an agent slowly performing slightly better and,

after around 150K steps, plateauing with a success rate of 53% as can be seen in Table

4.1. This and every subsequent test was ran multiple times and the results are averaged

as seen in Figure 4.1.

Next, the effect of reward normalisation was explored by applying a scaling to ensure

all rewards lie within the [−1, 1] range. All other hyperparameters were kept the same.

Research suggests this can benefit the convergence of the network by learning values on

a smaller (error derivation) scale, especially helping transfer learning, by enabling using

the same learning rate across multiple domains or games [4, 49]. Results on the ‘single

room’ domain indicate a somewhat steeper learning curve (indicating more efficient

learning) reaching a plateau of 72% success rate after around 70K steps.

Lastly, related to the reward normalisation mentioned above, the reward distribution

was changed to be zero-based. This means that on success, instead of sending a positive

reward signal (of 20), a signal of zero is returned. The negative reward signals (minus

one for every action) still remains intact. This ensures the Q-values are strictly negative

for any state-action pair, preventing any positive feedback loops that might occur from

29

Results 30

Model
Final success
rate

Steps until
plateau

Steps needed for
50% success rate

Baseline 53% 160.000 180.000
Normalized rewards 71% 100.000 40.000-60.000
Reduced action set 95% 100.000 50.000-60.000

Table 4.1: Results of varying hyperparameters on the ’single room’ test domain.

Q-value estimation. The results of this show an increase in performance. In signifi-

cantly fewer epochs, the success rate peaks higher and more frequently, and the negative

fluctuation is less pronounced as well.

Figure 4.1: The success rate of QR-DDQN in the single-room domain for various
parameter settings.

Another important factor in the performance of the learning algorithm is the complexity

of the explorable state-action space. To test the effect of a reduced action set on the

learning performance, the ’move 1’ was removed from the agent’s available actions. In

addition, the rewards are normalised as above. All other hyperparameters were kept the

same. Results indicate a similar learning curve as above, but a higher plateau of around

95% success after 100k steps as can be seen in Figure 4.1

4.1.2 Grayscale versus RGB state data

The world state of the agent can be represented with either single-channel (i.e. grayscale)

pixel data or full RGB pixel data. Using grayscale results in smaller state sizes, enabling

larger replay memories. However, this might cause relevant visual details of the domain

that depend on other colours to get lost, impeding learning.

After testing with multiple domains in Malmo, there seems to be a significant difference

in the learning effectiveness between grayscale- and RGB-based state data. The results

of this for the single room domain can be seen in Figure 4.2. Grayscale state data appears

to be much more effective for learning. This might be due to the course resolution of

Results 31

Minecraft, where visual details are very explicit, even without a higher colour definition.

It would be interesting to test the effects in a setting with more realistic graphics (which

excludes Minecraft).

Figure 4.2: The success rate of QR-DDQN in the single-room domain with full RGB
state data compared to grayscale state data.

4.1.3 Evaluation frequency & length

The evaluation frequency determines for how many steps the agent trains before testing

the performance. The evaluation length denotes for how many steps the agent is tested.

One such training and evaluation cycle together constitutes one epoch. While not di-

rectly influencing the network’s ability to learn, it does affect the resulting measured

performance. A smaller evaluation length, resulting in fewer episodes played during

evaluation, causes more erratic and fluctuating results due to the smaller sample size.

After testing with multiple domains in Malmo, a lower evaluation frequency (10.000

steps instead of 1.000) and longer evaluation length (1.000 steps instead of 100) lead to

a more stable learning curve. Consequently, to gain clearer insights in the performance

of the agent over many epochs, using a lower evaluation frequency and longer evaluation

length is recommended.

4.1.4 Success replay memory

The success replay memory is - next to the experience replay memory used in DQN -

an extra memory that stores only the replays of successful episodes. When minibatches

are sampled from the experience replay memory to train from, it has a chance to sample

from the success replay memory instead. As a result, experience replay from success-

ful episodes helps focus on the more important transitions. This can benefit learning

especially in a sparse-reward environment such as the ones from this paper.

Results 32

4.1.5 Conclusions

To conclude the parameters tests, the following settings have been identified to lead

to the best performance, and subsequently have been used for the comparison of the

learning algorithms and the further learning of the subskills:

1. The rewards are be normalized. This should help convergence of the algorithm.

2. The reward distribution are be zero-based. This should help avoid positive feed-

back loops.

3. The state data is converted to grayscale, resulting in more efficient memory usage.

4. The evaluation frequency is set to 10.000. The evaluation length is set to 1.000.

This leads to a less volatile learning curve.

5. The success replay memory is added to lay more focus on the important transitions

when sampling from the replay memory.

4.2 Learning Algorithms Compared: DQN, QR and A2C

The three main different learning algorithms tested with are a ‘vanilla’ (D)DQN, the

more novel QR-(D)DQN, and the parallel learning A2C algorithm. The results can be

seen in figure 4.3. In the single room test domain, the DDQN was able to learn the

optimal way to the goal, albeit relatively slowly. It took DDQN 10 epochs before it

visibly started making progress, and needed 80 epochs to reach a 100% success rate.

In a much shorter time frame, QR-DDQN showed a lot more potential, picking up

performance after around 5 epochs and reaching a success rate of near-100% after around

10 epochs. Lastly, A2C - which was tested with four parallel agents - proved able to

very quickly achieve some level of success, having a success percentage of around 25%

in the first epochs already. However in these tests, A2C was not able to achieve a

better performance than that initial score, let alone converge to a success rate of 100%.

Even after 35 epochs, it only fluctuated in the very low ranges of success, which might

be ascribed in part to random chance, and indicates little to no learning taking place.

With QR-DDQN clearly performing best, that algorithm was used to further train the

separate subskills. Those results are detailed in the next section.

Results 33

Figure 4.3: The success rate of the different learning algorithms (DDQN, QR and
A2C) in the single-room domain. They were initially run for 35 epochs, but the DQN
was allowed to continue training to explore if and when it would converge, which it did

after 80 epochs.

4.3 Domain specific performance in Malmo

The individual subskill domains tests initially show a distinct lack of learning compared

to the single-room domain as can be seen from table. Apart from being a more difficult

domain, some factors that might contribute to this discrepancy (and for which possible

solutions were explored) are the following:

1. The agent has limited guidance from the visuals. Two related elements are iden-

tified that influence the network:

(a) The other element entails the visibility of the goal. Initially even when stand-

ing next to the goal in any of the subskills, the goal is hardly visible, being

only a gold block in or on the floor. To address this, the subskills pickup

and navigation were also tested with more gold blocks placed at the goal’s

location. The learning progress, compared to the original versions, did not

seem to have improved after running the training for 30 epochs, as shown in

Figure 4.4 where its effect on the navigation domain can be seen.

Figure 4.4: The success rate of the navigation domain with the goal location varying
in visibility.

Results 34

(b) Secondly, the direction the agent initially faces is fully horizontal. This means

blocks close to the agent that are on the floor are hardly visible. This is

counter productive, since especially blocks close to the agent are relevant. To

counter this, the agent’s pitch is tilted downwards by 25°. This way, it can

see more details of the lower blocks near the agent, and still sufficiently see

blocks at it’s own height further off. The results of this after 30 epochs are a

slightly more stable and better performing agent, as can be seen from figure

4.5.

Figure 4.5: The success rate of QR-DDQN in the pickup domain with a straight
facing compared to a tilted facing.

2. The other contributing factor is specific to the integration with the Malmo plat-

form. Letting the agent itself check if the goal is reached - as used for the pickup,

break, and place tasks - provides more control to the agent rather than letting the

simulator handle the checks. However, giving the control to the simulator instead

seems to provide more stable learning results from empirical analysis. To enable

the simulator to take control of the pickup, break, and place tasks, the domains

are slightly modified to be more in line with Minecraft’s representation of items.

4.4 Subskill performance

The results of the previous section indicate QR-DDQN as performing significantly better

than a simple DQN and A2C. Consequently, it was expected that training subskills

with QR-DDQN would result in the highest performance. Therefore, the five separate

subskills have been trained with QR-DDQN. The results of training both the static

subskills (navigate, pickup, place and break) as well as the dynamic subskill (attack)

can be seen in Figure 4.6.

The results in the original H-DRLN research for training the static subskills reported

attaining success rates of near 100% in around 22 epochs [5]. Based on these results,

Results 35

Figure 4.6: The success rate of the separate subskills trained with QR-DDQN.

it was expected that the four static subskills trained here would achieve a success rate

of above 80% relatively quickly, especially since this study makes use of an improved

learning algorithm: QR-DDQN instead of the ‘vanilla’ DQN (as shown in Section 4.2).

However, in this study, the static subskills did not attain that targeted success rate. The

separate subskills have been trained for over 66 epochs (almost twice as long as originally

planned), which took around 4.5 days per subskill measured in real time. Some subskills

were even trained for over 100 epochs, unfortunately yielding no better results.

The place and break subskills performed the worst of all the trained subskills, never

showing any learning progress in the more than 66 epochs of simulation. A poorer result

compared to the other subskills was not unexpected since these two skills were also the

skills that took one of the largest number of epochs to train in the original H-DRLN

study, taking around 22 epochs each [5]. However, the fact that no learning improvement

is shown at all over 66 epochs is surprising. Possible causes for this conflicting result

can be the differently behaving turn action playing a larger role than initially suspected,

or that there were more timesteps per episode needed to initially discover the successful

actions for the skill. However, since the rest of the learning parameters are identical for

as far as possible, this result was surprising. No other tests have been performed with

these subskills. For future research, it is recommended to explore testing these subskills

both with longer episode length and in a continuous action space.

The pickup skill quickly reaches a success rate of around 20%, but stagnates after that,

showing no further learning over 66 epochs. This result is surprising, since the H-DRLN

paper reports this skill reaching a 100% success rate after only two epochs [5], which

is very quick. This difference in result may be caused by the different behaviour of the

turn action.

Of the static subskills, the navigate skill attained the highest success rate, averaging

around 50% near the end. This is surprising, since the goal in that skill domain is often

visually obstructed, whereas in the other skills the goal is visible from almost all angles.

Results 36

This created the expectation that the navigate skill would be more difficult to learn since

it hampers the ability to determine the best move towards the goal. This would be in

line with the results from the H-DRLN study, where the navigate skill takes relatively

long as well to learn correctly, requiring 20 epochs [5]. An explanation for the superior

performance to the other subskills might be that the other skills each require a specific

action to be performed at the goal area, whereas the navigation skill only required the

agent to find its way to the goal.

Multiple tests have been performed with the pickup skill, but this study has not been

able to replicate the results from the H-DRLN study. Different setups tested with include

other algorithms (regular DQN, QR-DQN (both with and without Double DQN), and

A2C), and different domain setups (with and without tilted agent pitch, more visual

cues added around goal block). Of those runs, the result shown here was the best

resulting consistent performance found. For future work, it is recommended to test with

a continuous action space to emulate the differing turn behaviour.

Surprisingly, the dynamic attack subskill performs better than all the other subskills.

After 66 epochs, it reached an average success score of near 80%, which was the original

goal for the subskills. Since the learning performance seemed not yet to have plateaued,

the subskill might be able to attain an even higher success rate, if the simulation had

continued to run sufficiently longer. This was not further explored due to time con-

straints. It was expected to perform in line with the pickup, place, and break subskills

which were hampered in their performance by the specific extra action required to at-

tain success. A possible explanation for the attack subskill performing better compared

to those is that the monster also moves in addition to the agent. While there are no

locations in the state space where the goal is guaranteed to be achievable (in contrast

to the static subskills), there now is a chance for all the other locations to be a possible

goal-achievable-state. This might have resulted in much more situations where the agent

encounters the enemy, accelerating the learning process. Still, this is a promising result

for incorporating more dynamic tasks in a Deep Reinforcement Learning application.

For future work, it is recommended to train for a higher number of epochs, and explore

other dynamic subskills.

4.5 H-DRLN

As discussed in the previous section, after training for over 66 epochs, three of the four

static subskills did not reach an average success percentage of 80% or higher, although

the dynamic subskill did manage to attain a high enough success percentage. As a

result, the H-DRLN as described in Section 3.4 can not properly be trained, since not

Results 37

all subskills will reliantly be able to perform their task. This would result in the H-

DRLN agent failing to train which subskill to activate, since the subskills themselves

would not result in successes.

However, an exploratory experiment was attempted using a subset of the skills that were

able to reach the highest success percentage. Specifically the following subskills were

used: the simple single room domain, which is used as a trained skill for the purpose

of this experiment, and the dynamic attack skill. These skills reached a success rate of

100% and around 80% respectively. The goal for the agent is to learn to first attack the

monster, and then reach goal block from the single room domain.

To perform this adapted experiment, three options for the complex domain layout were

considered. With the first option, the domain consists of two connected rooms, one

for each of the skills. However, this would require the agent to be able to competently

navigate from one room to another. This is one of the skills that was not adequately

learnt in the prior experiment. Including this skill would impair the agent’s ability to

reach the other room and complete the task. Another option was to incorporate both

skills in one room. While this does not require other subskill knowledge (avoiding the

problem of the first option), it involves non-trivial changes to the skill domains compared

to the prior experiments. Specifically, block and monster types other than both skills

trained with would be present, resulting in a domain differing from those used for the

separate subskills. Because of this change, it effectively also tests the transfer learning

ability of the skill at the same time. As an effect, it would be difficult to determine

to which of the two changed aspects (i.e. transfer learning versus the skill hierarchy)

results of this experiment should be ascribed. The last option was to keep both domains

in separate rooms, and teleport the agent from one to the other as soon as the first

skill had been achieved. This way, both domains can remain unchanged (avoiding the

problems of the first and second option). Also, this method is more in line with both the

previous experiments and the original H-DRLN research where the agent is teleported

between some rooms of the complex domain as well [5].

To perform this experiment, the last option was chosen to implement and test with, as it

was the most promising option for the reasons outlined above. Unfortunately, while the

teleportation action used to instantiate the agent in the next room is normally possible

within Malmo, it resulted in missing state data for the agent, crashing the simulator. It

should be possible to overcome this bug by implementing further checks and a buffer to

make sure that state data is available for the agent after teleporting. However, due to the

constrained scope of this study, further exploration of the possibilities of the H-DRLN,

future research can implement this experiment more in depth.

Chapter 5

Conclusions

5.1 Conclusions

Because of the importance of working towards an Artificial General Intelligence, this

study researched the possibilities of learning hierarchical skill structures in Minecraft, a

complex open world simulator. The individual skills that would comprise the encompass-

ing H-DRLN skill hierarchy unfortunately were not able to attain adequate performance

in the given domains, with the present hyperparameters and algorithms used. As a

result, the agent’s performance on the complex three-room domain using a hierarchical

H-DRLN could not be tested.

This research showcases the effectiveness of DQN, QR-DQN and A2C in a complex

simulated world, which is more alike our real world than the traditional ALE simulations.

Furthermore, it shows the possibilities of learning dynamic skills. It is a part of moving

to more general AI, capable of handling a multitude of complex tasks that can vary wildly

in the approach or knowledge required of an agent. This research is helpful for robotics

and simulations of agents moving and acting in dynamic environments, interacting with

dynamic elements, being able to learn more complex composite tasks.

5.1.1 Algorithmic Comparison

The results from the algorithmic comparison test show a distinct gap in learning per-

formance between the three algorithms. Results show that QR-DDQN clearly performs

best compared to the other algorithms. As was expected, QR-DDQN trumps the ‘vanilla’

DDQN by a large margin, converging to 100% success rate eight times as fast. However,

the poor performance of A2C is partly unexpected. The newer algorithm was touted as

38

Conclusions 39

a clear improvement over the other two [44], but was unable to deliver on its reputation

in these tests in Minecraft.

One hypothesis why A2C performs poorly in these tests, is that it’s due to the compu-

tational load running into the limits of what the set-up tested with can handle. In the

tests, it required much more computing power compared to the other algorithms. This

was especially visible in terms of RAM required for hosting the Minecraft simulator and

the experience replay data. This results in a higher potential for stalls and crashes, im-

peding the training from a practical perspective. During these tests, the computer was

continually at the limit of the available RAM and CPU power, and a hypothesis is that

this heavily influenced the learning performance seen in figure 4.3. For example, state-

or action data might be lost if there is no more RAM available or if the CPU encounters

some race condition from the parallelised agents, impeding the learning process.

Another hypothesis for the poor performance of A2C is that the number of actors was

insufficient for the task. The original study presenting A2C as a competitive alternative

to established algorithms used 16 concurrent actors. In contrast, in this study, only

4 actors were employed, due to memory constraints as described in the methodology.

Using more parallel actors reduces the autocorrelation of the collected (mini)batches by

A2C (and results in more exploration). It might be that a higher number of actors can

provide the autocorrelation reduction required to get out of learning plateaus for these

tests in Minecraft. Consequently, it would be interesting for future work to train with

A2C again using more actors - which is possible by using more powerful hardware - to

further study its potential compared to the other algorithms in Minecraft.

5.1.2 Subskills performance with QR-DQN

Next to the algorithmic comparison above, one other major contribution of this study is

the implementation and analysis of skills having dynamic components. This is relevant

since dynamic skills are usually more complex to learn compared to static skills. This is

especially the case for tabular Q-learning, since the added dimension severely explodes

the state space. To investigate the performance of dynamic Deep Reinforcement Learn-

ing skills, the original static subskills and a new dynamic subskill have been trained

using QR-DDQN since it was the best performing learning algorithm from the previous

test.

Surprisingly, the dynamic skill trained was learnt significantly faster and more effectively

than the four static skills, reaching a success rate of near 80% while most of the static

skills plateaued around 20%. The success curve did not necessarily indicate a plateau,

Conclusions 40

so if the agent had continued to train for more epochs, it might have reached even higher

levels of success.

These difference in results between the static and dynamic skill may be explained by the

fact that, since the NPC itself was moving around as well, it would more often clearly

be in the visual field of the agent, even if it was not yet visible from that location a

few timesteps ago. The effect of this might have been that the agent was able to act

upon the visual cue more often than with the static skills per episode, where in only one

specific area the goal could be achieved.

These positive results indicate that skills relying on dynamic components can very ef-

fectively be modelled in this framework using deep reinforcement learning. This has

major benefits as it shows an agent can train both in more complex environments and

using more complex actions. This shows that Deep Reinforcement Learning is a very

promising architecture for learning complicated tasks, and the results would translate

better to learning skills in the complex real world.

5.1.3 H-DRLN

While the Hierarchical Deep Reinforcement Learning Network was initially a large focus

of this research, the experiments were unable to support further analysis of the H-

DRLN architecture. The individual subskills did not all attain sufficient success rates to

steer and help train the H-DRLN. Nonetheless, some other very interesting results and

contributions have come from this study, as described in the above sections. As such,

training with an H-DRLN is left to Future Work, as it is a promising architecture to

further broaden the possible complexity of an agent’s skills.

5.2 Limitations

Intrinsic to Reinforcement Learning, and still the most limiting factor is the fact that

many training steps are needed to reach competent performance, even with the ad-

vantages of neural networks. To combat this, parallelisation is key. A prime manner

to achieve parallelisation is by using a distributed learning algorithm, where multiple

agents train towards the same model, such as employed by A2C or A3C. This would be

a relevant direction to explore for future developments.

Another inhibiting point of this research is the use of Minecraft as a simulator. Minecraft

boasts an extremely rich and diverse simulated world, enabling very dynamic and com-

plex problem domains. However, due to the software engine used and the fact that

Conclusions 41

Minecraft wasn’t developed with AI research in mind, it is unfortunately a very slow

simulator, compared to other platforms (such as ALE). Some of the experiments had to

run for up to a full week on a high-end PC before learning stagnated. There are only

limited ways to speed up or overclock the Minecraft engine. This is another factor that

limits efficient learning for an agent using Minecraft. It would be interesting if Minecraft

could be further developed to provide more support for AI research simulations.

Related to the previous point is the Malmo platform itself. Though very promising,

for now Malmo still has limited options and control through the available API. The

most notable example of this encountered during this study is the inability to accurately

reproduce the simulations of Tessler’s H-DRLN research [5], compared to which Malmo

misses options such as the agent making 30° discrete turns. However, Malmo is still in

active development and is open-source, making it very possible to extend the platform

with features such as these. Another option is to use continuous movement controls

instead of discrete movements.

Lastly, there are the inherent CPU/GPU requirements to using neural networks. To

be able to speed up training, the available libraries make use of GPU cores that are

optimised for tensor calculations, putting restrictions on which hardware is supported.

In the future, CPUs and GPUs will more widely support tensor calculations, but for

now (clusters of) high-end (workstation) GPUs are needed to adequately train a neural

network.

5.3 Future Work

Next to the discrete command set used by this research, Malmo also provides the option

of using a continuous command set. This provides more human-like input, with for

example ’moving forward’ resulting in the exact type of continuous movement as a human

player would experience, instead of immediately placing the character one discrete unit

forward. There are two interesting results of using the continuous command set: (1) it

enables more complex interactions in the Minecraft world with monsters and the like. (2)

It not only more accurately mimics a human player in Minecraft, but more importantly

it’s also more closely representative of a moving, interacting entity in our continuous

real world. The continuous command set was not used for this research in the pursuit to

initially have as few deviations from the original H-DRLN paper as possible. However

for the reasons named above, using continuous movement commands for future work

would make an important contribution towards more general AI adequately performing

in our real world.

Bibliography 42

Another thing that would be relevant to further develop is of course training more

dynamic skills, and actually training and testing the H-DRLN in a combined three-room

domain. Due to the disappointing results of the individual skills, this was not further

explored for the combined H-DRLN. An improved learning algorithm or adapted domain

interaction might change this.

Next, it would be very interesting to research more complex and realistic situations in

Minecraft, such as an open-ended domain world (instead of the enclosed domain space)

and less control over the entities that spawn, resulting in the agent encountering real

enemies, in varying conditions (of surrounding terrain, daylight, etc). This would provide

further insights in the capacity of transfer learning and the generalisation to differing

environments.

Lastly, further exploration of the state of the art in reinforcement learning algorithms is

necessary. Especially A2C proves very promising, yet challenging to practically execute

with such a resource demanding simulation as Minecraft. Future work should test A2C

with stronger hardware and more parallel actors. Another new reinforcement learning

algorithm with reportedly cutting edge performance is ACKTR, which combines some

of the characteristics of A2C with ‘distributed Kronecker factorisation’ - which should

improve scalability and sample efficiency - and with ‘trust region optimisation’ - which

should result in more consistent improvement [50].

Bibliography

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[2] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. Nature, 529(7587):484–489, 2016.

[3] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,

and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep rein-

forcement learning. In Robotics and Automation (ICRA), 2017 IEEE International

Conference on, pages 3357–3364. IEEE, 2017.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[5] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Mannor.

A Deep Hierarchical Approach to Lifelong Learning in Minecraft. In AAAI, pages

1553–1561, 2017.

[6] Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning:

Safely approximating the value function. In Advances in neural information pro-

cessing systems, pages 369–376, 1995.

[7] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.

In Proceedings of the tenth international conference on machine learning, pages

330–337, 1993.

[8] Sven Koenig and Reid G Simmons. Complexity analysis of real-time reinforce-

ment learning applied to finding shortest paths in deterministic domains. Techni-

cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COM-

PUTER SCIENCE, 1992.

43

Bibliography 44

[9] Itamar Arel, Cong Liu, T Urbanik, and AG Kohls. Reinforcement learning-based

multi-agent system for network traffic signal control. IET Intelligent Transport

Systems, 4(2):128–135, 2010.

[10] Vasily Klucharev, Kaisa Hytönen, Mark Rijpkema, Ale Smidts, and Guillén

Fernández. Reinforcement learning signal predicts social conformity. Neuron, 61

(1):140–151, 2009.

[11] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684,

1957. ISSN 0022-2518.

[12] Ronald A Howard. Dynamic programming and Markov processes. Wiley for The

Massachusetts Institute of Technology, 1964.

[13] Richard Bellman. On the theory of dynamic programming. Proceedings of the

National Academy of Sciences, 38(8):716–719, 1952.

[14] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

[15] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist

systems, volume 37. University of Cambridge, Department of Engineering, 1994.

[16] N Metropolis. Monte carlo method. From Cardinals to Chaos: Reflection on the

Life and Legacy of Stanislaw Ulam, page 125, 1989.

[17] Leemon C Baird III. Advantage updating. Technical report, WRIGHT LAB

WRIGHT-PATTERSON AFB OH, 1993.

[18] Ronald J Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[19] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.

[20] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value

function decomposition. Journal of Artificial Intelligence Research, 13:227–303,

2000.

[21] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

[22] Doina Precup and Richard S Sutton. Multi-time models for temporally abstract

planning. In Advances in neural information processing systems, pages 1050–1056,

1998.

Bibliography 45

[23] Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Time regularized inter-

rupting options. In Internation Conference on Machine Learning, 2014.

[24] Timothy Mann and Shie Mannor. Scaling up approximate value iteration with op-

tions: Better policies with fewer iterations. In International Conference on Machine

Learning, pages 127–135, 2014.

[25] Kai Arulkumaran, Nat Dilokthanakul, Murray Shanahan, and Anil Anthony

Bharath. Classifying options for deep reinforcement learning. arXiv preprint

arXiv:1604.08153, 2016.

[26] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.

Hierarchical deep reinforcement learning: Integrating temporal abstraction and in-

trinsic motivation. In Advances in Neural Information Processing Systems, pages

3675–3683, 2016.

[27] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.

In AAAI, pages 1726–1734, 2017.

[28] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical

reinforcement learning. arXiv preprint arXiv:1703.01161, 2017.

[29] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol

Vinyals, John Agapiou, et al. Strategic attentive writer for learning macro-actions.

In Advances in Neural Information Processing Systems, pages 3486–3494, 2016.

[30] R. Bellman, R.E. Bellman, and Karreman Mathematics Research Collection. Adap-

tive Control Processes: A Guided Tour. Princeton Legacy Library. Princeton Uni-

versity Press, 1961. URL https://books.google.nl/books?id=POAmAAAAMAAJ.

[31] Cristiano Castelfranchi. The theory of social functions: challenges for computa-

tional social science and multi-agent learning. Cognitive Systems Research, 2(1):

5–38, 2001.

[32] William Forster Lloyd. Two Lectures on the Checks to Population: Delivered Before

the University of Oxford, in Michaelmas Term 1832. JH Parker, 1833.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

https://books.google.nl/books?id=POAmAAAAMAAJ

Bibliography 46

[35] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. A Brief Survey of Deep Reinforcement Learning. arXiv preprint

arXiv:1708.05866, 2017.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[37] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. J. Artif. Intell.

Res.(JAIR), 47:253–279, 2013.

[38] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical

report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[39] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized expe-

rience replay. arXiv preprint arXiv:1511.05952, 2015.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In AAAI, pages 2094–2100, 2016.

[41] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International Conference on Machine

Learning, pages 1928–1937, 2016.

[42] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray

Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience

replay. arXiv preprint arXiv:1611.01224, 2016.

[43] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-

pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai base-

lines. https://github.com/openai/baselines, 2017.

[44] Yuhuai Wu, Elman Mansimov, Shun Liao, Alec Radford, and John Schulman.

OpenAI Baselines: ACKTR & A2C, 2017. URL https://blog.openai.com/

baselines-acktr-a2c/.

[45] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo

platform for artificial intelligence experimentation. In IJCAI, pages 4246–4247,

2016.

[46] Chen Tessler. Malmo reinforcement learning environment. https://github.com/

tesslerc/malmo_rl/, 2018.

https://github.com/openai/baselines
https://blog.openai.com/baselines-acktr-a2c/
https://blog.openai.com/baselines-acktr-a2c/
https://github.com/tesslerc/malmo_rl/
https://github.com/tesslerc/malmo_rl/

Bibliography 47

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

[48] Krishna Aluru, Stefanie Tellex, John Oberlin, and James MacGlashan. Minecraft

as an experimental world for ai in robotics. In AAAI Fall Symposium, 2015.

[49] Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David

Silver. Learning values across many orders of magnitude. In Advances in Neural

Information Processing Systems, pages 4287–4295, 2016.

[50] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scal-

able trust-region method for deep reinforcement learning using kronecker-factored

approximation. In Advances in neural information processing systems, pages 5285–

5294, 2017.

[51] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

https://www.tensorflow.org/

	1 Introduction
	1.1 Aims
	1.2 Outline

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Framework
	2.1.2 Markov Decision Process
	2.1.3 Value Functions & the Bellman Equation
	2.1.4 Monte Carlo
	2.1.5 Policy methods
	2.1.6 Hierarchical Reinforcement Learning
	2.1.6.1 Options

	2.1.7 Limitations
	2.1.7.1 Curse of Dimensionality
	2.1.7.2 Need for a Human Designer
	2.1.7.3 Tabular Storage

	2.2 Deep Learning
	2.2.1 Neural Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Optimisation Algorithms
	2.2.4 Limitations

	2.3 Deep Reinforcement Learning
	2.3.1 Deep Q-Network
	2.3.2 (Asynchronous) Advantage Actor-Critic

	2.4 Hierarchical Deep Reinforcement Learning Network
	2.5 Summary & Objectives

	3 Methodology
	3.1 Initial Parameter Exploration
	3.2 Experiment I: Algorithmic comparison
	3.3 Experiment II: (Dynamic) subskills compared
	3.4 Experiment III: training and testing the H-DRLN

	4 Results
	4.1 Parameter tests
	4.1.1 Initial parameter tests
	4.1.2 Grayscale versus RGB state data
	4.1.3 Evaluation frequency & length
	4.1.4 Success replay memory
	4.1.5 Conclusions

	4.2 Learning Algorithms Compared: DQN, QR and A2C
	4.3 Domain specific performance in Malmo
	4.4 Subskill performance
	4.5 H-DRLN

	5 Conclusions
	5.1 Conclusions
	5.1.1 Algorithmic Comparison
	5.1.2 Subskills performance with QR-DQN
	5.1.3 H-DRLN

	5.2 Limitations
	5.3 Future Work

