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Chapter 1

Introduction

Science has taken on an increasingly important role in our current society. It has been

incorporated in industry, health care, technology and has even influenced the way we

think over the past decades. With this entwinement of science and society it is easy to

see the pragmatic motivations of fundamental research. However, if particle physicists

are asked if they do what they do for the practical use they will almost definitely say no.

It is because of their curiosity for the fundamental workings of nature and passion for

exploring the unknown that makes particle physicists very driven scientists and brought

us to the point of understanding at which we are now.

The well-known philosophers of Ancient Greece such as Aristoteles, Plato and Archimedes

made one of the first attempts to describe the nature of the world around us. The many

different ideas and philosophies resulted in a broad variety of ”scientific” findings that

were not always accurate. However, a good basis for a scientific method was formed

which survived the intellectual low of the dark ages and continued its development again

during the Renaissance. In the 1700’s science became the systematic study based on

observation and experiment as we know it today and resulted in an outburst of scientific

discoveries.

Many of these scientific discoveries were made in physics but any form of particle physics

was still unknown to the scientific community. Even though the concept of the atom can

be traced back to 400 B.C., it is only in the early 1900’s that modern particle physics

took shape. Quantum theory emerged and together with an increase in technological

innovation gave access to a new view on the microscopic world. Particle accelerators

made it possible to probe further than the nuclei and eventually gave rise to the status

quo of modern particle physics, the Standard Model.

1
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During the second half of the 20th century the Standard Model gained support from

the scientific community after more measurements seemed to agree with it. Eventually

it showed to be an elegant and accurate description of nature on its smallest scales but

was incomplete up until only recently. Pressing problems of the Standard Model such

as the origin of mass were only solved with the introduction of a new particle, the Higgs

boson.[22, 23] It seems with the discovery(2012) and confirmation(2013) of a new parti-

cle fitting the Higgs profile that the last piece of the puzzle has been found.

However, as finalizing this may sound, the Standard Model including the Higgs boson

still leaves a lot of questions unanswered. The first denotes the clash between the very

small and the very large scale physics. General relativity(GR) describes how the funda-

mental interaction of gravity can be described by the geometric properties of space and

time. However, when one tries to reconcile the concepts of GR with quantum mechanics

the resulting theory becomes non-renormalizable, a necessity in quantum theories to get

physical predictions.[24] Several quantum gravity theories that pose a solution for this

problem are string theory[25] and loop quantum gravity[26] but remain experimentally

unproven until this day.

Another issue addresses the fact that from all the energy in our universe, less than

5% is ordinary matter. Roughly 27% of the universe is made up from dark matter and

about 68% from dark energy, two phenomena that are still as obscure as their names

indicate. The main evidence for dark matter is that the gravitational force of galax-

ies would not overcome the centrifugal force caused by their rotation if it was not for

additional unseen mass. Many dark matter particles have been postulated but remain

unobserved.[27, 28] A recent publicated theory even proposed a description of gravity

that removes this dark matter necessity.[29] Dark energy was proposed as a solution to

the unexpected accelerating expansion of the universe. The most accepted dark energy

explanation is the Einstein’s cosmological constant, Λ, which is physically equivalent to

the quantum vacuum energy. However, there are many other offered solutions.[30]

The incorporation of gravity, the origin of dark energy/matter and matter/anti-matter

asymmetry are some of the issues of the Standard Model that demand extensions. One

way of probing these new theories is by studying the properties of the Higgs boson.

Several new theories predict extensions of the Higgs sector that can be characterized

with certain Higgs properties. Measurements on these properties can therefore open the

door to new physics.
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To make such precision measurements particle physics research had to transform sub-

stantially in the past decades. One of the most characteristic developments is the in-

dispensability of computers. Especially within the scientific community of CERN many

computational resources are available for storage and analysis of data but more efficient

usage is always needed. This thesis therefore presents a modelling technique in the con-

text of Higgs properties measurement that reduces computational effort.

The thesis is structured as follows: Chapter 2 introduces the theoretical framework.

Chapter 3 presents the structure and workings of the Large Hadron Collider and the

ATLAS Experiment. Chapter 4 describes how observed and simulated data are recon-

structed to physical objects such as particles or jets. Chapter 5 presents an overview of

currently known Higgs properties and dominant Higgs production and decay modes at

the LHC. Chapter 6 presents the measurement of the signal strength and chapter 7 of

the effective Higgs coupling parameters. Chapter 8 summarizes the results and discusses

future study prospects.



Chapter 2

Theoretical Framework

Over the years many theorists have shown great creativity and effort in the development

of theories that describe the fundamental character of matter. The goal of these theories

is to model nature in a mathematical framework with calculable observable quantities

that can also be measured in experiment.

For a long time the Newtonian laws of motion and Maxwell’s theory of electromagnetism

dictated the dynamics of the world around us. However, in the early 20th century the

theory of quantum mechanics was introduced and gave new revelations on the subatomic

scale. The theory entails the quantization of physics in which system quantities such as

energy are not continuous but may be restricted to a discrete set of values. Additional

to that is the duality of particles which states that a particle can be described by a

wave function containing the probabilities of different states the particle might be in.

Measuring an observable quantity such as position or momentum will force the parti-

cle into one of these states corresponding to one of the possible discrete values for this

quantity. Together with the Heisenberg’s uncertainty principle, the principle that you

can not know certain quantities to an arbitrary precision simultaneously, these concepts

profoundly changed our deterministic view on nature but have shown great success in

describing non-relativistic subatomic physics.

Parallel to the development of quantum mechanics the theory of special relativity emerged.

The theory was postulated by Albert Einstein who described in his theory how time and

distance are affected by movement and included his famous mass-to-energy relation

E = mc2. The first combination theories of relativistic quantum mechanics were cre-

ated in the late 1920s and posed an improvement with respect to quantum mechanics

on handling subjects such as anti-matter and spin. However, the theories remained an

approximation as they did not describe how particles can be created or annihilated.

4
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Quantum Field Theory (QFT) was born in the necessity to improve the concepts of rel-

ativistic quantum mechanics. In the 1920s Paul Dirac took the first steps by quantizing

classical electromagnetic fields in an attempt to describe the creation and annihilation of

particles. However, it was only in the 1950s that Richard Feynman reformulated Diracs

theory of Quantum Electrodynamics (QED) into one with calculable quantities. This

resulted in the first complete QFT and laid the foundation for the Standard Model of

Particle Physics as we know it today.

This chapter will start with a brief superficial introduction on the Standard Model.

The subsequent section will continue with basic concepts in QFT and how it is used

to compute measurable quantities in particle physics. After that the different types of

QFT’s that make up the Standard Model are discussed with an extra focus on the Higgs

boson and how it plays a role in this picture. Additionally some concepts of Effective

Field Theory are introduced to facilitate a model for the effective coupling measurement

and the Effective Lagrangian Morphing technique that is used for this measurement.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the model that describes the most funda-

mental building blocks of the universe and the interactions between them. This section

will entail a simplified conceptual description to give a general but superficial idea of its

constituents and workings. After that the view is expanded with concepts on quantum

field theories and the mathematical machinery behind it all to give a more detailed and

complete description of the Standard Model.

In figure 2.1 you can find an overview of all the currently known elementary particles

along with their mass, color charge, electric charge and spin. The latter is a quality that

divides the elementary particles into the first two groups, the fermions with half integer

spin and bosons with integer spin. The fermions consist of the quarks and leptons which

make up all matter around us whilst the gluons, photons, Z0 and W± bosons mediate

resp. the strong, electromagnetic and the weak force. The Higgs boson does mediate

the interaction with the Higgs field but does not result in a new gauge symmetry like

the before mentioned bosons. Instead the Higgs field ”gives” particles mass through the

Higgs mechanism.
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At the bottom right of figure 2.1 a space is left blank for the hypothesized graviton

particle which should mediate the gravitational force. No particle with fitting charac-

teristics has yet been found to support a theory of quantum gravity. However, in the

upcoming sections the gravitational force can be neglected as its strength is negligible

on sub-nuclear scales.

Figure 2.1: The Standard Model of Particle Physics[2]

The Standard Model is described by a renormalizable quantum field theory. This is a

very effective mathematical framework in which particles are considered to be excita-

tions of fields and their dynamics are described by the Lagrangian formalism and gauge

symmetries.

2.2 Lagrangian formalism

The Lagrangian formalism initially was a reformulation of the Newtonian classical me-

chanics. However, in this section we will show how the concepts of this mathematical

framework can be used to describe particles with fields in a quantum field theory. There

are two different ways to generalize the classical Lagrangian formalism to a quantum

field theory: the path integral description and canonical quantization.

The latter is similar to the first quantization of classical mechanics to non-relativistic

quantum mechanics where coordinates are upgraded to operators, appropriate commu-

tation rules are applied and quantum states are introduced that describe a system.
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In the second quantization the classical fields are similarly upgraded to quantum operator

valued fields and the single-particle quantum mechanical states are replaced with the

Fock states that can describe a quantum mechanical many-body system. However, this

framework requires a very detailed and extenive description of quantum field theory. The

path integral description description might be a bit more obscure in its workings but in

the end gives an elegant and convenient approach to quantum field theory. It couples

easy to experimental observation and is therefore chosen over canonical quantization

to fit the theoretical needs of this thesis. Additional information on the Lagrangian

formalism can be found in the following references [31–34].

2.2.1 Principle of Least Action

The path integral description starts with the principle of least action. This is a vari-

ational principle that, when applied to the action, gives the equations of motion of a

system. The action is defined as

S[q(t)] =

∫ t2

t1

L(q(t), q̇(t))dt. (2.1)

The action is a time integral over the Lagrangian L(q(t), q̇(t)) which is a function of a

set of generalized coordinates q(t) and their time derivates q̇(t). The evolution from one

state at time t1 to another at t2 can go along different paths in configuration space. The

principle of least action states that the path taken by the system is the one for which

the action is stationary to the first order, i. e. δS = 0, as depicted in figure 2.2. From

this the Euler-Lagrange equation can be derived

d

dt

(∂L
∂q̇

)
− ∂L

∂q
= 0. (2.2)

The equations of motion of a system can be derived from the Euler-Lagrange equation

by defining an appropriate Lagrangian.

2.2.2 Path Integrals in Quantum Mechanics

The previous subsection shows that if the Lagrangian is known the system will choose

a definite path through configuration space and thus define the time evolution of the

system. The world of subatomic physics is however not deterministic but probabilistic

in nature. Each path that is possible between an initial to a final quantum state comes

with a probabilistic amplitude eiS , where S is the previously introduced action. The
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Figure 2.2: Different paths through configuration space. The red line indicates the
path for which δS = 0[3]

sum of these amplitudes results in the probability that this transition will occur. For an

initial |qi, ti〉 to a final quantum state |qf , tf 〉 this probability is defined as

P (qf , tf ; qi, ti) = |〈qf , tf |qi, ti〉|2 (2.3)

with the probability amplitude

〈qf , tf |qi, ti〉 =

∫
Dq(t)ei/h̄

∫ tf
ti

dtL(q,q̇) (2.4)

where Dq(t) denotes an integral taken over all possible paths between qf and qi. The

goal in the upcoming sections is to give a mathematical description of these probability

amplitudes as they can be used to relate the probability of these transitions to a mea-

surable quantity known as the cross section. (See section 2.5).

When studying a quantum mechanical system it is preferable to influence the system with

an external source and observe the impact. To this experimental end the Lagrangian is

adjusted accordingly with an additional term.

L(q, q̇)→ L(q, q̇) + J(t)q(t) (2.5)
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Here the time-dependent and coordinate independent source J(t) is introduced. The

result is a new functional also known as the generating functional that will show to be

a practical mathematical tool for computing probability amplitudes in QFT.

Z[J ] =

∫
Dq(t)ei/h̄

∫ tf
ti

dt(L(q,q̇)+J(t)q(t)) (2.6)

2.2.3 Free Scalar Field Theory

The idea of particles as point-like objects is perhaps easy to imagine and a good approxi-

mation for certain scenarios. However, this classical description is not the most profound

one and eventually breaks down on increasing smaller scales. The fundamental fabric of

nature are fields that permeate all space and excited states or quanta of these fields are

the particles that we observe. To generalize the Lagrangian formalism to field theory

the generalized coordinate q is replaced with a field at a certain point in space-time

φ(x, y, z, t) and the Lagrangian L with the Lagrangian density L. The principle of least

action, the action and Euler-Lagrange equations are resp. redefined as

δS
δφ

= 0 (2.7)

S[φ(x, y, z, t)] =

∫
L(φ, ∂µφ)d4x (2.8)

∂µ

( δL
δ(∂µφ)

)
− δL
δφ

= 0 (2.9)

which introduces the four-gradient ∂µ = (1
c
∂
∂t ,

~∇) and the scalar field φ. The simple

free scalar field is chosen for didactic purposes but particles can also be represented by

other fields such as vector or tensor fields and can added to the framework accordingly.

Recall, the functional of equation 2.6 which can be adjusted with the concepts of fields

to

Z[J ] =
1

Z0

∫
Dφei/h̄

∫
d4x(L(φ)+J(x)φ) (2.10)

where the source is dependent on space-time coordinate x but not on the field φ.
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The term Z0 is a normalization term and is defined as

Z0 =

∫
Dφei/h̄

∫
d4xL(φ). (2.11)

Note that just like in classical mechanics all the physics is still encoded in the La-

grangian. Thus, the first step in the construction of a quantum field theory is defining

the appropriate Lagrangian of which is expected to describe the physical system and

result in finite probability amplitudes. The Lagrangian of the Standard Model will be

handled in the upcoming sections. For now the free scalar field Lagrangian representing

a free, i. e. excluding any interactions, spin-0 particle is chosen for didactic purposes.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (2.12)

The Euler-Lagrange equations result in the homogeneous Klein-Gordon equation that is

defined as

(� +m2)φ = 0 (2.13)

where � = ∂µ∂µ is the d’Alembert operator. However, because the source term was

introduced the Euler-Lagrange equations result in the heterogeneous Klein-Gordon equa-

tion.

(� +m2)φ = J(x) (2.14)

This equation can be solved by introducing the Feynman propagator G(x, y) that satis-

fies,

(� +m2)G(x, y) = δ4(x− y). (2.15)

The Feynman propagator is a type of Green’s function and can be obtained by solving

equation 2.15 in Fourier space.

G(x, y) =

∫
d4k

(2π)4

eik·(x−y)

k2 −m2
(2.16)

By using equations 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16 in a formal derivation, which

can be found in appendix A.1, a final expression of the functional Z[J ] is obtained.
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Z[J ] = exp

[
− i

2

∫
J(x)G(x, y)J(y)d4xd4y

]
(2.17)

This expression is very useful for the calculation of time ordered products i. e. probability

amplitudes. Time ordered products, also known as n-point correlation functions, are

defined as,

〈0|T [φ(x1)...φ(xn)]|0〉 =
1

in
δnZ[J ]

δJ(x1)...J(xn)

∣∣∣∣∣
J=0

. (2.18)

By taking the second order functional derivative of Z[J ] evaluated at J = 0 the 2-point

correlation function can be calculated in terms of Feynman propagators.

〈0|T [φ(x1)φ(x2)]|0〉 =
1

i2
δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

= iG(x1, x2) (2.19)

The Feynman propagator can be depicted graphically through what is also known as a

Feynman diagram as shown in figure 2.3.

Figure 2.3: Feynman diagram of a Feynman propagator representing a particle cre-
ation and destruction

The Feynman diagrams give a simple visualization that prove to be helpful in the calcu-

lation of the probability amplitudes. The probability amplitude that it represents here

is of the creation of a particle at x1 and later destruction at x2. This can be extended

to a 4-point correlation function.

〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 =
1

i4
δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣∣
J=0

= iG(x1, x2)iG(x3, x4)

+iG(x1, x3)iG(x2, x4)

+iG(x2, x3)iG(x1, x4)

(2.20)
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Again these Feynman propagators can be depicted with Feynman diagrams as shown in

figure 2.4.

Figure 2.4: Feynman diagrams of a 4-point correlation function representing all pos-
sible particle creations and destructions

As expected is the probability amplitude the sum of all the permutations of particle cre-

ation and destruction with respect to space-time points x1, x2, x3 and x4. Correlation

functions give non-trivial results if n is even which means that each line in a Feynman

diagram is connected to a source(creation) and a sink(destruction). The previous corre-

lation functions show a pattern for an expression of which the derivation can be found

in Appendix A.2.

〈0|T [φ(x1)...φ(x2n)]|0〉 =
∑
σ

iG(xσ1 , xσ2)...G(xσ2n−1 , xσ2n) (2.21)

Here the sum runs over all possible pairings of 1, 2, ..., 2n. This formula is also known

as Wick’s theorem [33].

2.2.4 Perturbation Theory

In the previous section it is shown how the generating functional Z[J ] is an elegant

tool to calculate probability amplitudes in terms of Feynman propagators. To introduce

interactions the appropriate terms need to be added to the Lagrangian. The perturbation

theory adds a φ4-term that represents the self-interaction between scalar fields in one

point and is defined as

Lint(φ) = − λ
4!
φ4. (2.22)
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The additional interaction term makes the previous procedure in calculating n-point

correlation functions troublesome. The extra quartic interaction term makes the refor-

mulation of Z[J ] to equation 2.17 not possible. However, by assuming that the factor

λ remains small it is possible to construct a weak coupling perturbation theory. The

generating functional is redefined as

Z[J ] =
1

Z0

∫
Dφei/h̄

∫
d4x(L0(φ)+Lint(φ)+J(x)φ) (2.23)

where L0 is the previously introduced free scalar Lagrangian. It is possible to expand

the exponent in the interaction term Lint if λ is small enough.

Z[J ] =

∫
Dφei/h̄

∫
d4x(L0(φ)+J(x)φ)

[
1 + i

h̄

(
− λ

4!

) ∫
d4yφ(y)4 +O(λ2)

]
∫
Dφei/h̄

∫
d4xL0(φ)

[
1 + i

h̄

(
− λ

4!

) ∫
d4yφ4(y) +O(λ2)

] (2.24)

Again the n-point correlation function can be acquired by taking the functional derivative

of Z[J ] with respect to J and evaluating it at J = 0.

〈0|T [φ(x1)...φ(xn)]|0〉 =

∫
Dφei/h̄

∫
d4xL0(φ)φ(x1)...φ(xn)

[
1 + i

h̄

(
− λ

4!

) ∫
d4yφ4(y) +O(λ2)

]
∫
Dφei/h̄

∫
d4xL0(φ)

[
1 + i

h̄

(
− λ

4!

) ∫
d4yφ4(y) +O(λ2)

]
(2.25)

Recall that the free scalar n-point correlation function is defined as

〈0|T [φ(x1)...φ(xn)]|0〉 =
1

in
δnZ[J ]

δJ(x1)...J(xn)

∣∣∣∣∣
J=0

. (2.26)

This results in the n-point correlation function

〈0|T [φ(x1)...φ(xn)]|0〉 = 〈0|T [φ(x1)...φ(xn)]|0〉0 +
i

h̄

(
− λ

4!

)∫
d4y〈0|T [φ(x1)...φ(xn)φ4(y)]|0〉0

−〈0|T [φ(x1)...φ(xn)]|0〉0
i

h̄

(
− λ

4!

)∫
d4y〈0|T [φ4(y)]|0〉0 +O(λ2).

(2.27)

The n-point correlation function is constructed from n-point correlation functions of the

free scalar theory which are denoted with a subscript zero. For illustration lets evaluate

the 4-point correlation function.
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〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 = 〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)]|0〉0

+
i

h̄

(
− λ

4!

)∫
d4y〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)]|0〉0

−〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)φ4(y)]|0〉0
i

h̄

(
− λ

4!

)∫
d4y〈0|T [φ4(y)]|0〉0 +O(λ2)

(2.28)

With the use of Wick’s theorem the free correlation functions can easily be evaluated.

Again for each term of the sum an associated Feynman diagram can be drawn as shown

in figure 2.5.

Figure 2.5: Feynman diagrams of a 4-point correlation function representing all pos-
sible particle creations and destructions including self-interactions. The first entails one
of the free scalar correlation functions, the second introduces a loop interaction and the

third a 4-point interaction

Even though the many permutations sum up to a lot of terms it is possible to use equation

2.16 and compute the 4-point correlation function. Lets consider the amplitude for a

4-point interaction i. e. the amplitude of the last diagram given in figure 2.5.

iλ

h̄

∫
d4yiG(x1, y)iG(x2, y)iG(x3, y)iG(x4, y)

=
iλ

h̄

∫
d4y

∫
d4k1

(2π)4

eik1·(x1−y)

k2
1 −m2

...

∫
d4k4

(2π)4

eik4·(x4−y)

k2
4 −m2

=
iλ

h̄

∫
d4k1

(2π)4
...

∫
d4k4

(2π)4
(2π)4δ4(k1 + k2 + k3 + k4)

× 1

k2
1 −m2

...
1

k2
4 −m2

eik1·x1 ...eik4·x4

(2.29)
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Here are k1, ..., k4 the momenta of the respective particles that interact. In a similar

way the contributions of the other diagrams can be calculated for an expansion up to an

arbitrary order of λ. In Monte Carlo simulations accuracy in cross section calculation

is therefore denoted as Leading Order (LO) for expansions up to the first order of λ or

Next-to-Leading Order (NLO) for up to λ2-terms.

The above framework shows how from first principles an expression for the amplitude

can be derived for simplistic scenarios, the free scalar and φ4-theory. Amplitude com-

putation can be expanded to other fields and types of interactions but is almost never

as straightforward as these examples. However, it is shown that the Lagrangian dictates

the physical theory you want to describe and results in a cross section that can be mea-

sured. The upcoming sections are therefore used for the structure and motivation of the

Lagrangian that makes up our Standard Model of Particle Physics.

2.3 Gauge Symmetries

Symmetries play a vital role in physics and are found whenever a system remains un-

changed under an applied transformation. In the classical sense this means a transfor-

mation in the general coordinates q that leaves the value of the Lagrangian unaffected.

Noether’s theorem states that if this is the case then such a symmetry corresponds

to a conservation law. In this section it is shown how the invariance of a Lagrangian

under certain groups of transformations results in the introduction of the fundamental

interactions between various fields that represent the particles in the Standard Model.

Additional information on gauge symmetries can be found in the following textbooks

[4, 35–38].

Quantum Electrodynamics

Quantum Electrodynamics was the first gauge theory constructed for the description

of particle physics. In this section it is used to show how a gauge symmetry results

in a gauge field that mediates a fundamental interaction, the electromagnetic interac-

tion. Quantum electrodynamics was a successful theory that described the interaction

between electrons, positrons and photons. Since electrons and positrons are fermions

the Lagrangian for a free spin-1
2 particle is introduced.

L = iψ̄γµ∂µψ −mψ̄ψ (2.30)
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Here γµ are the gamma matrices and ψ a four-component spinor field. Now lets apply

a U(1) local gauge transformation of which the Lagrangian is required to be invariant

under,

ψ → ψ′ = eiqξ(x)ψ. (2.31)

Note that the dependence of the phase ξ(x) on arbitrary space-time coordinates makes

the gauge transformation local. This results in the following transformed Lagrangian

L → L′ = ieiqξ(x)ψ̄γµ[eiqξ(x)∂µψ + iq(∂µξ(x))e−iqξ(x)ψ]−me−iqξ(x)ψ̄eiqξ(x)ψ (2.32)

or in terms of the original Lagrangian

= L − qψ̄γµ(∂µ)ψ. (2.33)

The Lagrangian is not invariant under this local gauge transformation. To restore the

local gauge invariance the derivative needs to be replaced with the covariant derivative,

∂µ → Dµ = ∂µ + iqAµ (2.34)

where a new four-component gauge field Aµ is introduced. The last addition to complete

the gauge invariance is by imposing that the new gauge field transforms in the following

way.

Aµ → A′µ = Aµ − ∂µξ(x) (2.35)

Only by introducing a new gauge field with very specific transformation properties can

the Lagrangian stay invariant under a local gauge transformation. The U(1) local gauge

invariant Lagrangian for a spin-1
2 fermion therefore reads,

L = ψ̄(iγµ∂µ −m)ψ − qψ̄γµAµψ (2.36)

which shows that the result of imposing a local gauge invariance is an additional inter-

action term between the fermionic field ψ and gauge field Aµ that can be interpreted as

a photon. To make this photon field physical the field strength tensor is defined as
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Fµν = ∂µAν − ∂νAµ (2.37)

The term FµνF
µν is already invariant under the U(1) local gauge transformation. By

adding this last kinematic term for a massless spin-1 field we get the final QED La-

grangian.

L = ψ̄(iγµ∂µ −m)ψ − qψ̄γµAµψ −
1

4
FµνF

µν (2.38)

The Standard Model Gauge Theory

Now that we saw how a gauge theory is constructed it is possible to extend it to the

complete gauge theory of the Standard Model. The Standard Model can be described

by the combination of three different gauge groups

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.39)

where we make the distinction between the SU(3)C group representing the strong inter-

actions and SU(2)L ⊗ U(1)Y group for the electroweak interactions, the unified theory

of electromagnetic and weak interactions. The subscripts refer to the color charge (C),

hyper charge (Y ) and left-handed fermions (L). The reason for these subscripts will be

addressed in the following sections.

Electroweak interaction

The gauge group SU(2)L⊗U(1)Y is also known as the Glashow-Salam-Weinberg model

of electroweak interactions. Again a local gauge transformation is applied, the appro-

priate gauge fields are added by introducing a covariant derivative and specific transfor-

mations are imposed for the corresponding gauge fields to acquire new interactions. A

more general form for a local gauge transformation can be defined as

U(x) = eiAj(x)Bj (2.40)

where Aj(x) is the space-time coordinate dependent phase parameter and Bj the gen-

erator of the gauge group. The number of generators per group equals to the number

of phase parameter and is also the same as the dimension of the gauge group. U(N) is

the group of unitary N ×N matrices and has dimension N2.
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The SU(N) is the group of special unitary traceless, i. e. with determinant D = 1, N×N
matrices and has the dimension of N2 − 1. A group is called abelian if the correspond-

ing generators commute and non-abelian if otherwise. SU(2)L is a non-abelian group

associated to the weak isospin (I3) with the Pauli matrices ~τ = (τ1, τ2, τ3) as generators.

Fermions with left-handed chirality have weak isospin I3 = ±1
2 and are SU(2)L dou-

blets while fermions with right-handed chirality have I3 = 0 and are SU(2)L singlets.

This means that the associated gauge fields ~W i
µ = (W 1

µ ,W
2
µ ,W

3
µ) only interact with

left-handed fermions. Hence the subscript L in the group notation.

The U(1)Y is an abelian group associated to the weak hypercharge YW with genera-

tor B = 1. It acts on fermions with all chiralities and generates a gauge field Bµ. The

weak hypercharge is linked to the electric charge Q and weak isospin I3 by the relation

Q = I3 + YW
2 . In table 2.1 you can find the SU(2)L representation of all the fermions in

the Standard Model.

Because the SU(2)L makes a distinction between right-handed ψR and left-handed ψL

fermion fields, two different gauge transformations need to be introduced.

ψR → e−iβ(x)
YW

2 ψR (2.41)

ψL → e−iαi(x)
τi
2
−iβ(x)

YW
2 ψL (2.42)

1st gen. 2nd gen. 3rd gen. I3 YW Q

Quarks

(
uL
dL

) (
cL
sL

) (
tL
bL

) (
1
2
−1

2

) (
1
3
1
3

) (
2
3
−1

3

)
uR cR tR 0 4

3
2
3

dR sR bR 0 −2
3 −1

3

Leptons

(
νe,L
eL

) (
νµ,L
µL

) (
ντ,L
τL

) (
1
2
−1

2

) (
−1
−1

) (
0
−1

)
eR µR τR 0 −2 1

Table 2.1: Classification and properties of the Standard Model fermions in the
SU(2)L-representation

These transformation give rise to two different covariant derivatives resp. defined as

Dµ = ∂µ + ig1
YW
2
Bµ (2.43)

Dµ = ~I(∂µ + g1
YW
2
Bµ) + ig2

~τ

2
~Wµ. (2.44)
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The gauge constants g1 and g2 define the coupling strength of the introduced interactions.

We now impose the following transformation on the new gauge fields

W i
µ →W i

µ + αj(x)εijkW k
µ +

1

g2
∂µα

i(x) (2.45)

Bµ → Bµ +
1

g1
∂µβ(x) (2.46)

where εijk is the Levi-civita function and originates from the generator commutation

rules [σi, σj ] = 2iεijkσk. Again field strength tensors for the new gauge fields are defined.

W i
µν = ∂µW

i
ν − ∂νW i

µ − g2ε
ijkW j

µW
k
ν (2.47)

Bµν = ∂µBν − ∂νBµ (2.48)

These give the kinematic terms and the final electroweak Lagrangian for the SU(2)L ⊗
U(1)Y group.

LEW =
∑
ψL

ψ̄Liγ
µDµψL +

∑
ψR

ψ̄Riγ
µDµψR −

1

4
Wµν
i W i

µν −
1

4
BµνB

µν (2.49)

Strong interaction

The SU(3)C group is the last part of the Standard Model gauge theory and describes

the strong interaction. The gauge group is non-abelian and is associated with the color

charge (C) which can take either the direction green, blue or red. The eight generators

of this SU(3)C symmetry are called the Gell-Mann matrices λi.

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 (2.50)

λ5 =


0 0 −i
0 0 0

0 0 i

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2


(2.51)

Quarks are the only fermions with color charge so the associated gauge fields Giµ do not

interact with leptons.
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The quarks are arranged in triplets in the SU(3)C representation and are transformed

in the following way.

qf → qfe−iαa(x)λa
2 (2.52)

These transformations give rise to a new covariant derivative

Dµ = ∂µ + ig3
λa
2
Gaµ (2.53)

where g3 is the strong coupling constant and the 8 gauge fields Giµ correspond to the

gluon gauge bosons. To reinstate the symmetry again the following gauge field trans-

formation is imposed.

Gaµ → Gaµ + αb(x)fabcGcµ +
1

g3
∂µα

a(x) (2.54)

Here fabc are the structure constants of the SU(3)C group which originate from the

generator commutation rules [λa, λb] = 2ifabcλc. We define the field strength tensors for

the new gauge fields as

Gaµν = ∂µG
a
ν − ∂aν − g3f

abcGbµG
c
ν (2.55)

which again results in the kinetic term and the final Quantum Chromodynamic (QCD)

Lagrangian.

LQCD =
∑
i

q̄fi (iγµD
µ −mf )qfi −

1

4
GaµνG

µν
a (2.56)

2.4 Brout-Englert-Higgs mechanism

The local gauge principle provides an elegant description of the interactions in the Stan-

dard Model and have many high-precision measurements that agree with it. But until

recently this picture of the subatomic world was not yet complete and dealt with some

serious problems.
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Particle masses

The fundamental interactions require that the Standard Model is invariant under trans-

formations of any of the before mentioned gauge groups. However, this symmetry is

broken when any mass terms are added to the Standard Model Lagrangian. Let us

consider a fermionic field mass term −mf ψ̄ψ and decompose the expression in helicity

states.

−mf ψ̄ψ = −mf (ψ̄RψL + ψ̄LψR) (2.57)

However, equation 2.41 and 2.42 state that the helicity states behave differently under

a SU(2)L ⊗ U(1)Y transformation.

−mf (ψ̄RψL + ψ̄LψR)→ −mf (ψ̄Re
iαi(x)

τi
2 ψL + ψ̄Le

−iαi(x)
τi
2 ψR) 6= −mf ψ̄ψ (2.58)

The mass terms show that an arbitrary fermionic field breaks the electroweak gauge in-

variance. This is a problem as it is experimentally proven that fermions such as electrons

or quarks have mass. A similar argument is made for the bosons. Consider a boson field

mass term 1
2m

2
γAµA

µ for the photon. The theory of Quantum Electrodynamics required

a local gauge invariance that imposed a specific gauge field transformation.

1

2
m2
γAµA

µ → 1

2
m2
γ(Aµ + ∂µξ(x))(Aµ + ∂µξ(x)) 6= 1

2
m2
γAµA

µ (2.59)

Of course it is known that the photon and gluon are massless but the broken symmetry

also holds for the massive Z0− and W±−bosons.

Violating unitarity

Violating unitarity refers to the divergence of a scattering amplitude with increasing

energy. The probability associated with the process the scattering amplitude represents

can become arbitrarily large. This is the case for longitudinal polarized weak bosons.

When bosons are longitudinal polarized their spin z-component is perpendicular to their

moving vector.
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A polarization four vector for longitudinal polarization can be defined as

εL =
1

mV


pz

0

0

E

 . (2.60)

This can be used to describe the scattering amplitude of a W+
LW

+
L →W+

LW
+
L process.

In lowest order, this process will depent on three processes, the four-point interaction and

the t-channel γ/Z exchanges. The Feynman diagrams of the leading order contributions

to the scattering amplitude are shown in figure 2.6.

Figure 2.6: The leading order contributions to the amplitude of the W±W∓ →
W±W∓[4]

The scattering amplitude of the four-point interaction is proportional to

M∼ εLεLεLεL ∼ E4. (2.61)

The scattering amplitude diverges and would violate unitarity for increasing energy. Ad-

ditional information on unitarity violation for longitudinal polarized W -bosons can be

found references [4, 39].

Spontaneous symmetry breaking

A solution for the above mentioned problems is to spontaneously break the electroweak

symmetry through the Brout-Englert-Higgs mechanism. To describe this procedure the

Higgs Lagrangian is introduced.

LHiggs = LHG + LHF (2.62)

where LHG and LHF contain couplings of the Higgs boson to resp. the gauge bosons

and fermions that will generate their masses and remove the violation of unitarity.



Symbols 23

The derivation starts with an introduction of a complex scalar field in the SU(2)L

representation

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ3

)
. (2.63)

of which φ0 represents a neutral scalar field and φ+ a charged scalar field. The La-

grangian for this doublet of complex scalar fields can be written as,

LH = (∂µΦ)†(∂µΦ)− V (Φ) (2.64)

with the Higgs potential defined as

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.65)

The λ-term describes the quartic self-interaction of the scalar field and is required to be

positive λ > 0 for vacuum stability. By minimising the potential the Higgs ground state

i. e. the vacuum expectation value(VEV) can be found. For µ2 > 0 the trivial VEV of

〈Φ〉0 = 0 is obtained and the symmetry will remain unbroken. However, for µ2 < 0 a

non-zero VEV is obtained.

〈Φ〉0 =

√
−µ2

2λ
=

v√
2
. (2.66)

The minimum at the origin is no longer stable but is accompanied by an infinite set of

degenerate vacuum states. These states all satisfy

Φ†Φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) =

v2

2
. (2.67)

By choosing an arbitrary minimum, eg. φ1 = φ2 = φ4 = 0 and φ3 = v, it is possible to

expand the field Φ around this minimum for small deviations h(x).

Φ(x) =
1√
2

(
χ1(x) + iχ2(x)

v + h(x) + iχ3(x)

)
. (2.68)

The spontaneously symmetry breaking introduced three massless Goldstone bosons χi

and one massive scalar boson h(x). By taking the scalar field Φ(x) in the appropriate



Symbols 24

basis the Goldstone boson components χi can be set to zero. This is also known as the

unitary gauge and results in the scalar field

Φ(x) =
1√
2

(
0

v + h(x)

)
. (2.69)

As a result the Higgs to gauge couplings become,

LHG =
1

2
(∂µh)(∂µh) +

g2

4
(v + h)2W+

µ W
−µ +

1

8

g2

cos2(θW )
(v + h)2ZµZ

µ

+
µ2

2
(v + h)2 − λ

4
(v + h)4.

(2.70)

The full procedure of ”gauging-away” the Goldstone bosons and constructing the above

terms for the gauge bosons can be found in Appendix A.3. The new terms introduce

the W±- and Z0-bosons as superpositions of the W i
µ- and Bµ-fields. The Higgs-Gauge

Lagrangian generates the mass terms of the W±- and Z0-bosons with the v2-factors but

leaves the photon field (Aµ) massless. The new masses are defined as

mW =
vg

2
,mZ =

mW

cos(θW )
,mh =

√
−µ2. (2.71)

Similar to the Higgs to gauge couplings one can use the concepts of spontaneous symme-

try breaking to generate mass terms for the fermions. The Higgs to fermion couplings

can be written as

LHF = −
∑

u−type

guQ̄LΦ̃uR −
∑

d−type

gdQ̄LΦdR −
∑
l−type

(gνL̄LΦ̃νl,R + glL̄LΦlR) (2.72)

with

Φ̃ = iτ2Φ∗ =
1√
2

(v + h(x), 0). (2.73)

This gives the following fermion mass contributions

LHF = −v + h(x)√
2

( ∑
u−type

guūu+
∑
d−type

gdd̄d+
∑
l−type

gl l̄l
)
. (2.74)
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The introduction of the Higgs boson also solves the unitarity violation. Recall that

the scattering amplitude of longitudinally polarized W±-bosons is dependent on the

contribution of the 4-point interaction diagram. However, the Higgs boson introduces

a new scattering process with the Higgs as mediator which adds new terms to the

scattering amplitude. At large energies beyond the Higgs boson mass the result is,

MW +MH = g2 m
2
H

4m2
W

. (2.75)

TheMW is the amplitude contribution of the 4-point interaction andMH of the Higgs

mediated interaction. The energy dependence has been canceled out by the Higgs con-

tribution and the unitarity requirement has been restored.[4, 39]

2.5 Cross section and Luminosity

The concepts of Lagrangian formalism and gauge theories give a detailed description on

modelling amplitudes. However, the quantum mechanical processes are not measured in

amplitudes but cross sections. Quantum mechanical processes at the LHC are transitions

of an initial to a final state that has a specific probability of occurring. As a proxy for

the probability, particle physicists measure transition rates for interesting processes in

controlled environments, for example using particle colliders. The number of transitions

N in a definite time interval T can be defined as,

N = σ

∫ T

0
L(t)dt (2.76)

with the cross section σ and the instantaneous luminosity L(t) i. e. the instantaneous

rate of collisions. The amount of accumulated observed data that is used in an analysis

is expressed in integrated luminosity, the integral of the instantaneous luminosity over

time. The cross section gives a experiment agnostic measurement of probability and is

defined as,

σi→j =

∫
Pi→fdΩ ∝

∫
dΩ|M|2 (2.77)

whereM denotes the previously introduced scattering amplitude of the process and Pi→f

its probability. One of the most important dependencies of the cross section is the centre-

of-mass energy (CoM) denoted by
√
s. The CoM energy is the total available energy
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in the Centre-of-Mass frame and is stated at the beginning of any collider experiment

analysis.

2.6 Effective Field Theory

The goal of the modern physicist is to expand the current theories that are known and

combine them to one universal theory of everything that works on every scale. Particle

physicists try to go higher in energy and therefore smaller in scale to find new physics

beyond the status quo that is the Standard Model. However, it is not always necessary

or even feasible to take all the regimes into account. For example, in chemistry the

laws are governed by the electromagnetic interaction that makes chemical bonds and

reaction between atoms possible. The fundamental theory that lies at the basis of these

processes is the previously introduced Quantum Electrodynamics. However, an attempt

to describe the chemistry processes with QFT would be unnecessarily complex. A more

simple and non-relativistic description of a classical atom with a Coulomb potential

and electrons orbiting it would fit this regime better and give a more effective analysis.

This example illustrates how neglecting effects outside the regime of analysis as an

approximation can be a powerful tool. An effective field theory is exactly this. Any

additional information on effective field theories can be found in the following references

[40–42].

Effective field theories (EFT) give descriptions of physics in an energy regime defined

by a cutoff scale Λ. Particles that can not be produced at these low energies, i. e. states

with m � Λ, will not result in additional fields in the Lagrangian but will modify

the couplings between lighter fields through higher-order loop effects involving the new

particles. This process of removing the heavier fields from the Lagrangian is called

integrating out the fields. There are two approaches to utilize an EFT:

• Top-down - The QFT beyond Λ is known. By integrating out the heavy fields

theoretical calculations are simplified and the EFT can be used as an educational

tool for the low energy regime.

• Bottom-up - The QFT beyond Λ is not known. We assume that the current

accepted theory is the EFT and try to explore beyond this model by looking for

deviations in the low energy regime that might infer new physics.

In this thesis the bottom-up approach is used to search for new physics beyond the

energies of our current experiment. Signs for BSM physics can be found by studying

deviations in Higgs couplings with other SM particles that can be produced in the
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energy regime of the LHC. However, it serves educational ends well to give a well-known

example that visualizes the concepts of an effective field theory well.

2.6.1 Fermi theory

The textbook example of an EFT is Fermi theory. This theory illustrates how an ef-

fective field theory can be used to simplify the full underlying theory if we look at its

respective low-energy regime. Fermi theory describes the charged current weak inter-

actions between fermions and was first formulated by Enrico Fermi in 1934. In the

Standard Model this type of interaction is mediated by the exchange of a W -boson and

is described by the electroweak theory.

The process under study was the β-decay n → p+e−ν̄e which is an interaction of a

down to an up quark, an electron and an anti-electron neutrino. The Feynman diagram

of this process is depicted in figure 2.7. The amplitude of this process has the following

dependency.

Mfull ∼
g2

2

q2 −m2
W

(2.78)

Here mW is the mass of the W -boson, g2 is the previously introduced coupling constant

of the SU(2)L × U(1)Y gauge symmetry and q2 is the transferred momentum.

W

d

u

e

ν̄e

g2 g2

Figure 2.7: β-decay mediated by a W -boson as described by electroweak theory

Even though the W and Z bosons were not discovered until the 1980s Fermi was still

able to give a good theoretical prediction by, unknowingly, constructing an EFT. In

Fermi theory the energy cut-off scale is defined by the mass of the W -boson

Λ = mW = 80.385 GeV which is well above the characteristic β-decay energies of a few

hundred keV.
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This means that the W -boson is deeply virtual, i. e. m2
W � q2, and the matrix element

reduces to

MEFT ∼ GF ∝ −
g2

m2
W

(2.79)

where GF = 1.6637 · 10−5 GeV−2 is the Fermi constant. The W -boson propagator has

been contracted to a four-point interaction vertex as depicted in figure 2.8.

u

d

e

ν̄e

GF

Figure 2.8: β-decay contracted to a 4-point interaction as described by Fermi theory

The accuracy of the EFT with respect to the full theory can be quantified by the EFT

error. With an energy scale of a few hundred keV for the β-decay and with the mass of

the W -boson functioning as cut-off scale the following error is obtained[41].

∆ =
σEFT

σfull
∼ E2

Λ2
∼ 10−5 (2.80)

Here it is shown that the error on the calculation in Fermi theory increases with E2

which means that the validity of this effective field theory will remain as long as the

W -boson is deeply virtual. This example shows that the Fermi theory is a good effective

top-down approach for the electroweak theory as long as the energy regime is several

orders below the mass of the mediating boson.

The illustration of Fermi theory with respect to the Standard Model gives a good idea

of resp. an effective and underlying model. However, one can argue that the Standard

Model is also only valid up to a certain energy level as it does not give explanations for

several phenomena such as dark matter or the matter-antimatter asymmetry. So the

Standard Model would be an effective field theory in the energy regime of E � Λ ≤ EP
and it is possible to say that all theories can be viewed as a never ending series of EFTs

along the ladder of energy. In any case, computational efforts can substantially be re-

duced and out of reach energy regimes can be studied by dividing the phase space into

regions and choosing the right effective approach.
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2.6.2 Higgs Characterization Model

The Higgs Characterization model is an effective field theory that is used to model Higgs

properties. The Lagrangian is constructed from a Standard Model Lagrangian excluding

a Higgs sector and part describing a boson X(JP ) where J and P denote resp. the spin

and parity of the boson. The model does not assume any definite CP-properties and

therefore allows for CP-mixing between the X(J+) and X(J−) states. In this study the

spin-0 scalar model is chosen as previous studies have indicated that this is the most

compatible with the found Higgs boson[43]. Any additional information on the Higgs

Characterization Model can be found in the following reference[21]. The fermionic part

of the Lagrangian is defined as

Lf0 =
∑

f=t,b,τ

ψ̄f (cακHffgHff + isακAffgAffγ5)ψfX0 (2.81)

with

cα ≡ cosα, sα ≡ sinα (2.82)

that parametrize the CP-mixing with the angle α. The SM coupling strength of the

even and uneven parity scalar are denoted resp. by gHff = mf/v and gAff = mf/v.

The effective Lagrangian part that covers the interaction of the spin-0 boson with the

vector bosons is defined as,

LV0 ={
cακSM [

1

2
gHZZZµZ

µ + gHWWW
+
µ W

−µ]

− 1

4
[cακHγγgHγγAµνA

µν + sακAγγgAγγAµνÃ
µν ]

− 1

2
[cακHZγgHZγZµνA

µν + sακAZγgAZγZµνÃ
µν ]

− 1

4
[cακHgggHggG

a
µνG

a,µν + sακAgggAggG
a
µνÃ

a,µν ]

− 1

4

1

Λ
[cακHZZgHZZZµνZ

µν + sακAZZgAZZZµνZ̃
µν ]

− 1

2

1

Λ
[cακHWW gHWWW

+
µνW

−µν + sακAWW gAWWW
+
µνW̃

−µν ]

− 1

Λ
cα[κH∂γZν∂µA

µν + κH∂ZZν∂µZ
µν + (κH∂WW

+
ν ∂µW

−µν + h.c.)]
}
X0

(2.83)

with the (reduced) field strength tensors defined as,
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Vµν = ∂µVν − ∂νVµ

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν

(2.84)

with V = A,Z,W± and the dual tensor as,

Ṽµν =
1

2
εµνρσV

ρσ. (2.85)

The variable parameters are the CP-mixing terms cα and sα and the Wilson coefficients

κi. All other terms are fixed to their SM value, see Table 2.2, such that the SM is

retreived if cα = 1, κSM and all other coefficients set to κi = 0. Any deviation of these

values gives us information on the CP-mixing and indication of new physics.

gXyy′ × v ff ZZ/WW γγ Zγ gg

H mf 2m2
Z/W 47αEM/18π C(94cos2θW − 13)/9π −αs/3π

A mf 0 4αEM/3π 2C(8cos2θW − 5)/3π αs/2π

Table 2.2: Values in units of v taken in by the couplings gXyy′ with

C =
√

αEMGFm2
Z

8
√
2π

[21]

2.6.3 Effective Lagrangian Morphing

In the previous sections it is shown what the characteristics of an Effective Field theory

are. This section shows a derivation [18] that facilitates a theoretical basis for the

morphing technique used in this thesis. In general the effective Lagrangian of such a

theory can be assumed to be of the form

L =
∑
i

giOi. (2.86)

The process of interest in this thesis has at tree level a scattering amplitude of the form

M =
∏
V

∑
i∈V

giMi (2.87)

Here V denotes the set of vertices that occur in the Feynman diagram of the process,

gi are couplings that characterize the particles and their interactions partaking in the

vertex and Mi the partial matrix elements.
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In this analysis the focus is on a Higgs boson that is produced by two gluons and decays

into two W -bosons i. e. one production and one decay vertex. So 2.87 becomes

M =
∑
i∈prod

giMi

∑
j∈dec

gjMj . (2.88)

By combining equation 2.77 with 2.88 one obtains

σi→f = a ·
∫
dΩ|

∑
i∈prod

giMi

∑
j∈dec

gjMj |2 (2.89)

By expanding the product of sums in a sum of products the cross section can be defined

as a function of a set of coupling parameters ~g = (g1, ..., gn).

σ(~g) =

∫
dΩ
∑
i

Pi(~g)Pi( ~M)

=
∑
i

ciPi(~g)

∫
dΩPi( ~M)

(2.90)

Here Pi denote polynomials of the form

P (~x) = <
(∏

α

xα

)
. (2.91)

The integral term forms the basis of a vector space for σ(~g). Because it is a linear vector

space a change of basis can be used to span the space with respect to a different set of

base vectors ξi

∫
dΩPi( ~M) =

∑
j

bijξj (2.92)

for some set of coefficients bij . This redefines the cross section as

σ(~g) =
∑
i

ciPi(~g)
∑
j

bijξj

=
∑
i,j

Pi(~g)Aijξj
(2.93)
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If ξj is an element of the vector space it spans, i. e. can be expressed as a physical cross

section σj , then it is possible to create the following set of linear equations.

ξk = σ(~gk) =
∑
i,j

Pi(~gk)Aijξj (2.94)

This can be rewritten as,

δjk =
∑
i

Pi(~gk)Aij (2.95)

or in matrix notation,

A ·M = 1 (2.96)

with Mik = Pi(~gk). A solution can be found for these linear equations if the matrix M

is invertible. The sample set that satisfies this condition qualifies as a morphing basis.

The solution is the set of coefficients Aij that together with the base sample set can be

used to interpolate to obtain cross section predictions for an arbitrary parameter set.

2.7 Beyond the Standard Model

The goal of the EFT coupling parameter measurement is to probe new physics beyond

the Standard Model that solve the current unanswered questions. Theories that propose

extensions on the Standard Model Higgs sector infer certain coupling strength modifiers,

the same adjusting factors that are used in the Higgs Characterization model. Any non-

zero value for coupling strength modifiers other then κSM implies deviation from SM

and can be compared with the predictions proposed by Higgs BSM theories.

2.7.1 Issues of the Standard Model

In this section a few issues of the Standard Model are given as an example for the

shortcomings and to illustrate the necessity of extensions. One of the most prominent

and obscure problems in particle physics is dark matter. Dark matter is matter that

does not interact via the electromagnetic interaction, barely interacts with other baryonic

matter and has only been observed via its gravitational effects. It accounts for 85% of the

matter content in the universe and was first proposed as a solution for the imbalance in
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rotational speed of galaxies and the gravitational force needed for such speeds. Current

searches for an undiscovered new particle as a dark matter candidate, eg. a weakly

interacting massive particle (WIMP), are still ongoing. A WIMP would be a good dark

matter candidate as it would only interact with other particles through the weak or

gravitation force. More information on dark matter can be found in references [27, 28].

Another issue is the naturalness problem. Because many questions are left unanswered

by the Standard Model, it is believed that there lies a more fundamental theory at

higher energies and that the Standard Model is an effective field theory. This means

that natural coefficients in the Lagrangian terms must have the form

cd = αdΛ
4−d. (2.97)

where d denotes the dimension of the field operator, Λ is the cut-off scale and αd is a

parameter that should be of the order one. The natural coefficients cd can be measurable

quantities such as masses of gauge coupling constants. To reconcile the measured coef-

ficient cd and the cut-off scale Λ4−d the parameter αd sometimes needs to be adjusted

to very large or small values. As an example, lets see what this means for the Higgs

mass if one assumes the cut-off energy of the Standard Model to be at the Planck scale

MP ∼ 1019 GeV. The Higgs mass is roughly,

mH ∼ α2M
2
P . (2.98)

However, experiments revealed a Higgs mass of mH ≈ 125.7 GeV. The parameter α2

needs to be fine-tuned to a very low value which seems unnatural. Other coefficients in

the Standard Model need to be fine-tuned in a similar and unnatural way. Additional

information on naturalness can be found in references [44, 45].

Lastly, one of the most pursued problems of all is the unification of interactions. In

section 2.3 the unification of the weak and electromagnetic interaction was introduced.

A Grand Unified Theory (GUT) in general refers to the additional unification of the

strong interaction and a Theory of Everything (TOE) also includes a gauge theory of

gravity. However, the masses of particles that would support a GUT are a few orders

below the Planck scale EP ≈ 1.2209×1019 GeV i. e. well beyond the power of our current

particle accelerators. Quantum gravity theories such as string theory are also expected

to show direct effects only when approaching the Planck scale. Any inferences made on

both matters need to be done with indirect measurements eg. in the framework of an

EFT.
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2.7.2 Higgs Sector Extensions

In this section a summary of the most popular Higgs sector extensions is presented.

These are just a few of many and the description is very superficial. For a more detailed

discussion on the matter can be found in references [46, 47].

Two-Higgs Doublet Model

The Two-Higgs Doublet Model (2HDM) states that the Standard Model should be ex-

tended with an additional electroweak doublet. The 2HDM results in two CP-even

neutral h and H, a CP-odd neutral psuedoscalar A and two charged H± Higgs bosons.

The 2HDM can be categorized in several versions depending on which fermions couple to

which electroweak doublet and would provide a solution for the naturalness and strong

CP problem i. e. the missing of CP-violation in strong interactions.[48]

Higgs-Portal Model

The Higgs-Portal Model states that the Higgs boson mediates the interaction between

the dark matter sector. A Weakly Interacting Massive Particle (WIMP) strongly cou-

ples to the Higgs boson but weakly with the Standard Model. This makes dark matter

detection possible in either a direct (decay to WIMP’s) and indirect (Higgs produced

by WIMP’s but with SM decay products) way.[49, 50]

Minimal Composite Higgs Model

The Minimal Composite Higgs Model (MCHM) states that the Higgs boson is not a

point-like particle but is a bound state of smaller constituents. The Higgs boson emerges

as a composite psuedo-Goldstone boson (PGB), a bound state of a new strong interac-

tion. The comparison with the original strong interaction denotes the similarity between

the bound state of a composite Higgs and a pion, also a scalar particle.[51] Certain states

of the psuedo-Goldstone boson can be a dark matter candidate and proposes a solution

for the hierarchy problem i. e. the prediction that new physics will occur only near the

Planck scale.

Minimal Supersymmetric Standard Model

The theory of supersymmetry proposes an additional supersymmetric particle for each

particle of the Standard Model. This additional partner has the exact same mass and

quantum numbers except for a spin difference of 1/2. The Minimal Supersymmetric

Standard Model (MSSM) results in four additional Higgs bosons, provides dark matter

candidates and would propose a solution for the naturalness and hierarchy problem.

However, current observed data largely excludes MSSM and hints to other extensions
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that include more supersymmetric fields than the minimal amount of the MSSM. Addi-

tional information can be found in references [52, 53]



Chapter 3

Large Hadron Collider and

ATLAS detector

In the past years enormous progression has been made in particle physics. The commu-

nity of theoretical particle physics showed great creativity and effort in the construction

of new theories that allowed us to calculate and compare with experiment. But these

theories will remain nothing more then an idea if they are not supported by experimental

evidence. However, the evidence of many theories, eg. a hypothesized particle, is only

observable in higher energy scales that often require a rigorous experimental strategy

and a lot of technical innovation.

With the awareness of this thought the Conseil Européen pour la Recherche Nucléaire

(CERN) was founded in 1954 as an international organization that combines the intel-

lectual power and resources to increase our scientific achievements in particle physics.

Since then CERN has shown that collider experiments are very effective in the search for

new physics and have made incredible discoveries thus far. The Large Hadron Collider

is largest and most advanced collider experiment ever built.

The LHC is operated by a worldwide collaboration of physicists and is located in Geneva,

Switzerland. The LHC hosts many different experiments that all have their own specific

goals in high-energy physics. The ATLAS detector is the biggest detector and operates

at one of the interaction points of the LHC to investigate a varying number of subjects

such as new exotic particles or high accuracy measurements of known objects. The Higgs

boson discovery was one of the major subjects of the ATLAS and CMS experiment. In

this chapter an overview of the design and functionality of the ATLAS detector is given.

Additional information can be found in references [6–9, 54, 55].

36
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3.1 Large Hadron Collider

The Large Hadron Collider is a circular hadron collider build in a 27km long tunnel

located 100 meters underground and has been operational since 2008. The accelerator

is able to reach centre-of-mass energies of
√
s = 14 TeV for proton-proton collisions,

√
s = 2.76 TeV for heavy ion collisions and instantaneous luminosities of L = 1034

cm−2s−1 in proton-proton collisions.

The protons that are supplied for injection are created by stripping the electrons of

hydrogen atoms with an electric field. The protons are first injected in the linear ac-

celerator 2 (LINAC2) and then subsequently in the Booster, Proton Synchrotron (PS)

and the Super Proton Synchrotron (SPS) to gradually ramp up to an energy of 450

GeV. With this energy the protons are injected into the LHC in bunches of 1.15× 1011

protons per bunch and ramped up to energies of up to
√
s = 13 TeV. A beam is created

by injecting the bunches 25 ns apart and can hold up to 2808 bunches per beam. To

bend, focus and collide the beam the LHC is equiped with superconducting Niobium-

Titanium magnets which create magnetic fields of up to 8.33 T when cooled down to a

temperature of 1.9 K with the use of liquid Helium. The beams collide at one of the

four interaction points where the following experiments will perform the data taking:

• ATLAS is a general purpose detector that focuses on the discovery of new par-

ticles, interactions beyond the Standard Model and precision measurements in

electroweak physics.

• CMS is also a general purpose detector that focuses on the same scientific goals as

ATLAS. However, it has a very different magnet system and uses other technical

solutions.

• ALICE is a detector designed for heavy-ion collisions to study the physics of

strongly interacting matter.

• LHCb is a detector designed to investigate the difference between matter and

antimatter by studying the beauty quark.

In addition to these there is a whole collection of smaller experiments located in the

interaction point caverns or on the above ground sites of CERN. When terminating and

refilling with a new beam needs less effort and energy the beam is safely dumped at one

of the dumping caverns. The beam dump absorber consists of a 7 m long segmented

carbon cylinder, water cooled and surrounded by tonnes of iron and concrete shielding

to safely stop the beam. A overview of the Large Hadron Collider and CERN complex

is given in figure 3.1.
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Figure 3.1: The CERN accelerator complex[5]

3.2 The ATLAS detector

The ATLAS (A Toroidal LHC Apparatus) detector is a general purpose detector of 44 m

long, 25 m in diameter and a weight of about 7.000.000 kg. It is the largest detector at the

LHC and is mainly focused on physics at the TeV scale. The detector has a cylindrical

layer structure of subdetectors that each have their own specific task in particle detection

and identification. A schematic representation of the detector is given on the previous

page. Because of the geometry of the detector a cylindrical coordinate system is more

practical than the more general cartesian coordinate system. The interaction point of

the particle beams is located in the centre of the detector and is used as the origin of

the cylindrical coordinate system:

• Parameter z - The z-coordinate is defined along the beam axis.

• Parameter θ - The polar angle, θ ∈ [0, π], is the angle from the beam axis.

• Parameter φ - The azimuthal angle, φ ∈ [−π, π], is the angle around the beam

axis.
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Figure 3.2: Schematic of the ATLAS detector[6]

As an addition it is common to use the psuedorapidity η = − ln
[

tan( θ2)
]

instead of

the polar angle θ and the resulting distance coordinate ∆R =
√

∆η2 + ∆φ2. It is also

possible to define a Cartesian coordinate system where z is still along the beam axis, x

points to the center of the ring and y points upwards.

3.2.1 Inner Detector

The purpose of the Inner Detector (ID) is to reconstruct the tracks and vertices of the

particles that occur in the event and is located closest to the interaction point of all the

subdetectors. Because of the strong magnetic field created by the magnet system the

traversing charged particles experience a Lorentz force. By studying the curve of the

trajectories a measurement can be made of the tranverse momentum pT of the traversing

particle. The Inner Detector has an outer radius of 115 cm, a total length of 7 m and

is divided into four systems of which each uses a different but complementary technol-

ogy. Schematics of the Inner Detector and its cross section are given in figure 3.3 and ??.

Insertable B-layer (IBL)

This is the silicon tracker layer that is the closest to the interaction point with a ra-

dial extension of 31.0 < r <40.0 mm and a length of 332 mm. When charged particles

traverse the active silicon material, electron-hole pairs will be created and will create a

current under an applied bias voltage.
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It was added to the Inner Detector during Long Shutdown 1 (2013-2015) to improve the

vertex reconstruction and thus increase b tagging efficiency (See sections 4.1.2 and 4.4

for definitions). The IBL consists of 14 staves parallel to the beam line, each with up to

32 modules and a pixel size(φ× z) of 50× 250 µm×µm.[7]

Pixel Detector (PD)

The Pixel Detector consists out of three concentric cylindrical layers and three end-cap

disks of silicon pixel detectors at each side. The PD uses the same particle detection

technology as the IBL but has a smaller pixel size of 50× 400(φ× z) µm×µm.[56]

Semiconductor Tracker (SCT)

The SCT consists out of four concentric cylindrical layers and two end-caps with silicon

strip modules. Instead of independent pixels the active silicon material has rectangular

strips with a 80 µm pitch mounted on them to read-out the charge signal.[57]

Transition Radiation Tracker (TRT)

The TRT consists out of 370,000 straws that have a conductive outer coating, a golden

plated tungsten sense wire in the centre and is filled with a gas mixture of xenon, car-

bondioxide and oxygen. It is the outer most part of the ID and additional to the tracking

capabilities it also has a particle identification function based on transition radiation.

A charged particle emits electromagnetic radiation proportional to its Lorentz factor γ

when it crosses from one material to another. When the momentum of the particle is

known one can calculate its mass and make a distinction between electrons and charged

pions. This differentiation is one of the primary functions of the TRT.[58]

Figure 3.3: Schematic of the Inner Detector[6]
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Figure 3.4: Schematic of the Inner Detector cross section[7]

3.2.2 Calorimeters

The goal of the calorimeter system of ATLAS is to measure the energy an incoming

particle loses by triggering and absorbing particle showers. The calorimeter system

consists out of an electromagnetic and hadronic calorimeter, where the former focuses

on electromagnetic particles and the latter on hadronic particles. Both are a sampling

calorimeter which means that they consist out of alternating layers of a passive and

active medium. The passive medium is a high density material to trigger the showers

and completely absorb the incoming particles while the active medium actually creates

a detectable signal proportional to the input energy. A schematic of the calorimeter

system is depicted in figure 3.5.

Electromagnetic Calorimeter (ECAL)

The main functionality of the ECAL is to measure the energies of electrons and photons.

The ECAL consists of a barrel with an end-cap on either side. Both components have

a accordion-like structure with layers of electrodes to read-out the electric signal, layers

of lead as passive material and with the gaps in between filled with liquid argon to act

as active material. With this geometry any cracks in the plates will have no influence

on the measurements and will decrease the signal rise time i. e. the time for a signal to

rise past a set threshold[59]. The ECAL is further segmented into cells with varying size

∆η ×∆φ depending on its location in the calorimeter.
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Figure 3.5: Schematic of the calorimeter system[8]

Hadronic Calorimeter (HCAL)

The main functionality of the HCAL is to measure the energies of hadrons and con-

sists of a tile calorimeter, end-cap and forward calorimeter. The end-cap and forward

calorimeter also use liquid argon as active material but have either copper or tungsten

as passive material. The outer barrel however uses tiles of iron as passive and scintil-

lating plastic as active material which are placed in the direction η = 0. This structure

allows for good hermiticity and for the fibers to easily deliver the light signals to the

photo-multiplier tubes (PMT) at the outside of the calorimeter.

3.2.3 Muon Spectrometer

The goal of the Muon Spectrometer (MS) is to detect muons and determine their tracks.

Because most muons are not yet decayed, detected or stopped in the rest of the de-

tector, the MS was added to perform stand-alone muon measurement capability. It is

the outermost and largest part of the ATLAS detector and consists of three cylindrical

layers and four vertical placed layers on each side that function as end-cap. The layers

can be constructed from one of four chamber technologies, two for triggering and two

for tracking (See section 3.3 and 4.1.2 for triggerering and tracking explanations). A

schematic of the Muon Spectrometer is given in figure 3.6.

Monitored Drift Tube chambers

The MDT chambers are used for the precision measurement of muon tracks in all the

layers except for the most inner end-cap layer. The detection element MDT is an alu-

minium tube with a tungsten-rhenium (W-Re) wire in the center and is filled with a
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argon-methane (Ar-CH4) gas mixture. At the ends of the tubes there are oppositely

charged electrodes that measure the drifting charges created by a gas ionizing muon.

Figure 3.6: Schematic of the Muon spectrometer[9]

Cathode Strip chambers

The Cathode Strip (CS) chambers are also used for muon tracking but are only present

in the end-cap layer closest to interaction point and pseudorapidities η > 2. The CS

chambers are multiwire proportional chambers with a cathode strip and anode wire

read-out of charges created by ionizing muons. The same wire material and gas is used

but the resolution is higher compared to the MDT chambers.

Resistive Plate chambers

The Resistive Plate (RP) chambers are wireless gas-chambers filled with a mixture of

tetrafluoroethane (C2H2F4) and isobutane (C4H10) and with metal plates on either side

for read-out. The RP chambers are only placed in the barrel with two on either side of

the middle MDT chamber layer and one on the outside of the outer MDT chamber layer.

Thin Gap chambers

The Thin Gap (TG) chambers are only used in the end-cap and are all located near

the first and second end-cap layer. The TG chambers have a similar structure as the

Cathode Strip chambers but have a anode-wire pitch and anode-cathode distance that

are not the same and use a gas mixture of CO2 and n-pentane (n-C5H12).
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3.2.4 Magnet System

The goal of the magnet system is to create a magnetic field can bend the trajectory of

the created charged particles to make the measurement of transverse momenta possible.

The magnet system consists out of the Barrel Toroid, Central Solenoid Magnet and the

End-cap Toroids. A schematic of the magnet system is given in figure 3.7.

Figure 3.7: Schematic of the magnet system of the ATLAS detector[10]

Barrel and End-cap Toroids

The Barrel Toroid and End-cap Toroids consist each out of 8 superconducting coil mag-

nets that provide a magnetic field for the Muon spectrometer. The superconducting

wires are made from a NbTi/Cu alloid that is cooled to a temperature of 4.5 K by a

cryostat system with liquid helium. The magnetic system can deliver a magnetic field

of up to 4 T.

Central Solenoid Magnet

The Central Solenoid Magnet is a 2.4 diameter coil that provides a magnetic field for the

Inner Detector. The superconducting wires are made from NbTi/Cu with a aluminium

stabilizer to minimize the thickness of the solenoid for the calorimeter system but keep

electrical stability. Because of its vicinity to the ECAL it is integrated with the LAr

cryostat system to keep the solenoid at a temperature of 4.5 K. The solenoid can deliver

a magnetic field of up to 2 T.

3.3 Trigger system of ATLAS

The goal of the trigger system is to select the events of interest, acquire the data of

these events and discard the rest of the signals created in the sub detector. The rate of

events during pp collisions is roughly 30 million per second and one event amounts up

to about 1 Mb of data. However, only a fraction of the events are interesting for our
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physics analysis. To make a selection the ATLAS detector has a trigger system that

contains two levels.

Level 1 Trigger

L1 is hardware-based trigger of custom made electronics which reduces the event rate

from approximately 30 MHz to 100 kHz. Cones of space originating from the interaction

point into the detector are selected as Regions of Interest (RoIs) by using information

from the calorimeter and muon spectrometer. This level acts on an event in a decision

time of 2.5 µs

High-Level Trigger

The HLT is a software-based trigger which uses the information gathered in L1 and

sophisticated selection algorithms to reduces the event rate from 100 kHz to approxi-

mately 1 kHz. These selections are made in a processing time of 200 ms.

The criteria that are imposed on the events in these trigger levels can vary from kine-

matic thresholds to geometry or track selection. After the HLT has selected the final

events of interests the data is saved on disk at the computer facilities of CERN for later

retrieval, reconstruction and analysis.

3.4 Monte Carlo Generators & Simulation

Monte Carlo data has become an indispensable part of almost every analysis in high

energy physics. Both experimentalists and theorists use them to make predictions and

develop strategies for the collider experiments to search for new physics and make pre-

cision measurements. This section gives an general description of Monte Carlo event

generation and ATLAS detector simulation.

3.4.1 Monte Carlo Event Generation

The Monte Carlo Event Generators are used to simulate the proton-proton collisions at

the LHC before any interaction with the detector. There are many different types of

event generators but in general their process can be divided in the following steps:

1. Hard process

2. Parton shower

3. Underlying event
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4. Hadronization

5. Unstable particle decays

Hard process

The first step in the generation of Monte Carlo data is simulating the hard scattering

on parton-level and computing the matrix elements up to a chosen perturbation order

of accuracy. In case of proton-proton collisions it is assumed that only one of the incom-

ing partons, i. e. gluons or quarks, take part in the hard scattering with the remaining

partons as spectators. Parton Distribution Functions(PDFs)[60] are used to describe

the incoming partons and lowest order perturbation theory is then used to calculate

the probability distribution of outgoing partons. Next-to-leading order corrections are

often needed for e. g. multi-jet final states and can be applied with additional dedicated

algorithms which are implemented in various matrix-element generators. The most

widely used generators nowadays are ALPGEN, AMEGIC[61], Comix[62], CompHEP[63],

HELAC[64], MadGraph[65] and O’Mega[66].

Parton shower

The final state particles generated in the hard scattering process may proceed into ad-

ditional hard scattering processes. Similar to electrons radiating photons in case of

Bremsstrahlung can the partons emerging from the collision both radiate gluons. The

highly energetic particles cascade in a shower of partons and evolve to lower momentum

scales until perturbation theory breaks down. The simulation of these processes and

their cross sections are performed by programs such as HERWIG[67], Pythia[68] and

Sherpa[69].

Hadronization

Quarks and gluons cannot move freely because of color confinement, the concept that

color charged particles cannot be isolated. After perturbation theory breaks down the

partons hadronize into final state hadrons. The processes fall into what is called the soft

regime of QCD and cannot be derived from first principles. Instead, it is modeled by

fragmentation functions that are obtained from observed data.

Underlying event

The event generation process starts with a single parton extraction from each of the

hadrons. However, the remaining spectator partons also evolve, hadronize and end up

among the final state hadrons. These processes are referred to as underlying events(UE)

and must be modelled to accurately measure the high momentum-transfer processes.

Perturbative QCD no longer holds here as well and brings the need for alternative
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modelling techniques. Generators such as HERWIG 7[70], Pythia 8[71] and Sherpa

contain models for the UE.

Unstable particle decays

Many of the final state particles that are created during and after the hadronization are

stable enough to reach the detector. However, some have insufficient long life-time so

that they decay before they can be detected. Additional dedicated programs are used

to model particles such as b-hadrons and τ -leptons.

3.4.2 ATLAS Detector Simulation

Just like with any other measurement apparatus does the ATLAS detector also have

its characteristics and limitations. An accurate simulation of the detector response is

therefore important to give a realistic benchmark for the observed data. The ATLAS

simulation software is based on a Geant 4 simulation toolkit[72] and is integrated in

the ATLAS common analysis framework Athena. To reduce computational requirements

for detector simulation, several fast simulation approaches have been developed under

shared name ATLFAST[73] and FAST-G4[74]. However, as one can see in figure 3.8, the

majority of computational resources is still reserved for the generation and simulation of

Monte Carlo data samples. This limitation motivates the usage of alternative methods

that require less computation and storage such as used in this thesis, Effective Lagrangian

Morphing.

Figure 3.8: Overview of ATLAS LHC Computing Grid CPU[left] and disk[right]
usage.[11]



Chapter 4

Object Reconstruction and

Particle Identification

In the previous chapter it is shown that the ATLAS detector is a vast and complex

machine. By segmenting the functionality over different parts it tries to capture all the

information that is generated during the particle collisions with the highest accuracy

possible. The next step is to take all these observations and use it to make a physical

and coherent picture. Each particle leaves a different trace in the detector and can

therefore be reconstructed based on characteristic detector signals. This is done with

the ATLAS reconstruction software framework that is used for both the observed data

that passed the online trigger levels and Monte Carlo data that has been processed by

the Geant4 ATLAS simulation framework.

4.1 Tracks and Vertices

A proton-proton collision creates many different particles and accompanying interac-

tions. It is therefore important to distinguish all the charged-particle trajectories (tracks)

and their origins (vertices) to avoid ambiguity in the physical processes. Any additional

information on track and vertex reconstruction can be found in the following references

[12, 13, 75].

4.1.1 Track Reconstruction

The tracks are reconstructed by the New Tracking software framework (NEWT) which

is made up from two main sequences, an inside-out and an outside-in tracking algo-

rithm. The inside-out sequence uses the hits in the inner silicon pixel layers as seed for

48
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the track searching algorithm while the outside-in sequence starts at the TRT. Addi-

tionally to NEWT, a second stage pattern recognition is deployed to find decay points

and tracks of long-lived neutral strange particles i. e. V0 vertices and kink objects due

to brehmsstrahlung. Any additional information on track reconstruction can be found

in reference [76].

The inside-out sequence starts in the Pixel detector and SCT with a connected com-

ponent analysis (CCA) that groups the pixels and strips in the same sensor with a

deposited energy above a certain threshold and with a common edge or corner. Each

of these clusters gets a three-dimensional coordinate referred to as a space-point that

represents the traversing of a charged particle.

Figure 4.1: Illustration of (left) single-particle pixel clusters and (right) a merged
pixel cluster due to very collimated charged particles. The colours indicate energy

deposits of different charged particles.[12]

Combinations of three space-points are made called track seeds using a helicoidal fit. A

combinatorial Kalman filter is then used to extend the space-point combinations with

additional space points in the remaining layers of the Pixel detector and SCT.

The created track candidates get a track score assigned based on the amount of holes,

an expected but missing space-point w.r.t. the track, the χ2 of a preliminary fit and

the logarithm of the momentum. The latter is to suppress tracks with low momentum

that correlates to wrongly assigned clusters. The ambiguity solver algorithm then cuts

away tracks based on that score and several other quality criteria. The remaining track

candidates are subject to a high-resolution fit which is used one more time in the am-

biguity solver algorithm to apply another cut in tracks. A dedicated tool then extends

the remaining tracks to the TRT.
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The outside-in sequence is an complementary reverse procedure for tracks that the inside-

out sequence might have missed. New tracks are identified by a dedicated tool that

recognizes and rejects tracks from the inside-out sequence. By backtracking track seg-

ments of the TRT that were not used in the inside-out sequence additional tracks are

reconstructed.

4.1.2 Primary Vertex Reconstruction

The collection of final tracks are used as input for the reconstruction of the interac-

tion points also known as vertices. Here we make a distinction between primary and

secondary vertices, the former being the point of a hard inelastic collision between two

protons and the latter being any interaction subsequent to the first collision eg. in a jet,

decay chain, photon conversion or V0-decay. But the hard collisions are superimposed

with several minimum bias events, events that pass the minimum bias trigger. It is

expected that in the current high luminosity regime soft inelastic scattering interactions

the same and surrounding bunch-crossings will overlap with the hard scattering processes

of interest, forming so called pile-up. To model these pile-up events triggers need to be

used that introduce minimum bias in the event selection with respect to the bias that

the normal trigger system introduces.[77] The process of primary vertex reconstruction

starts with the selection of trajectories according to the following requirements:

• pT > 400 MeV and |η|< 2.5

• Number of hits ≥ 9 for |η|< 1.65 and ≥ 11 for |η|> 1.65

• Hits in the first two layers ≥ 1

• A maximum of 1 shared pixel and 2 shared SCT hits

• Holes in pixel detector = 0

• Holes in SCT ≤ 1

After the tracks have been chosen an initial vertex position set as seed to a fitting

procedure. Each iteration assigns a weight to each tracks according to how compatible

they are with the chosen vertex. The vertex is then refitted to the tracks with the new

weights. These iterations continue until the vertex converges to a position at which

moment the tracks that are incompatible with the vertex are removed from the vertex.

The algorithm is repeated until either no unassociated tracks are left or no new vertices

can be found. The vertex with the highest sum of squared transverse momenta is chosen

as the primary vertex and the rest are labelled as pile-up vertex. Secondary vertex

reconstruction is performed in a similar way but with a constrained vertex fit.
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Figure 4.2: Schematic of vertex topologies during a proton-proton bunch crossing.[13]

4.2 Electrons and Photons

The next step after determining the tracks and vertices is to identify the particle assigned

to each track and to make the first implications about the physical processes occuring

at the vertices. The first types of physical objects that are identified and are crucial for

many analyses are the electrons and photons. Electrons and photons play a vital role for

both precision measurements, BSM searches and many Higgs analyses. Any additional

information on electron and photon reconstruction and identification can be found in

the following references [78, 79].

The first encounter of the reconstructed tracks the calorimeter system of which the

electromagnetic calorimeter is specifically build to measure the energy of electrons and

photons. Electron and photon reconstruction starts with building seed clusters out of

the energy deposits in the EM calorimeter. Calorimeter signals created by photons and

electrons are indistinguishable except for the fact that photons won’t show any associ-

ated track. The EM-calorimeter system is divided into a grid of ∆η×∆φ = 0.025×0.025

towers in which the energy of all layers is summed. A sliding-window algorithm then

scans for seed clusters of 3 × 5 towers with a total transverse energy higher than 2.5

GeV. An additional duplicate-removal algorithm is applied to nearby seed clusters to

avoid multiple cluster assignment per photon or electron.

A Region of Interest (RoI) in the form of a cone is defined for seed clusters that pass

loose requirements on lateral shower shape Rη > 0.65 and hadronic leakage RHad < 0.1.

Standard track pattern reconstruction is performed using a pion hypothesis. If no track

seed can be found for the RoI, an electron hypothesis is assumed that allows for up to

30% energy loss at each material surface. A global χ2 fitter is then used to fit the tracks,

initially with the pion hypothesis and the electron hypothesis in case of failure of the

fit. The extrapolated tracks are then compared in (η,φ)-coordinates with the barycenter
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of the cluster, which is the energy equivalent of a center of mass. Passed tracks are

then refitted with a Gaussian Sum Filter (GSF). In case of multiple track assignment to

one cluster, tracks with more silicon pixel hits and closer to the cluster will get preference.

To accommodate different analyses needs the reconstructed electrons are identified by

different likelihood-based identification criteria. The electrons are divided in three dif-

ferent classes based on the resulting identification efficiency:

• LooseLH - 95%

• MediumLH - 90%

• TightLH - 80%

The efficiencies are measured with data from
√
s = 13 TeV pp-collisions in 2015.[80].

A EM cluster without an associated track indicates an unconverted photon. A con-

verted photon can be classified as a single- or double-track conversion and will give a

indirect signal in the calorimeter system through the electrons and positrons originating

from the conversion point. A single-track conversion occurs when either of the tracks

has a very low pT and therefore does not reach the calorimeter or the photon energy is

sufficiently high that we can not distinguish the two tracks.

4.3 Muons

Muons are key to some of the most important results of the ATLAS experiment such as

the discovery of the Higgs boson, measurement of its properties, other precision mea-

surements and BSM searches. The muon reconstruction is performed based on signals

in the Inner Detector, Muon Spectrometer and the calorimeters. They are not stopped

but do leave small energy deposits in the calorimeter system. Additional information on

the reconstruction and identification of muons can be found in the following reference

[81].

The muon reconstruction starts by searching for hit patterns in the Monitored Drift

Tube (MDT) chambers of the Muon Spectrometer. The hits are fitted with a straight

line fit to create segments which are combined to create track candidates. This com-

binatorial search is seeded with segments from the middle layer of the MS and is then

extended to the inner and outer layer. Tracks are formed by applying a global χ2 fit on

the added hits in the inner and outer layer and pass if a χ2 threshold is exceeded. Fits
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are improved by removing hits with a large χ2-contribution and adding new hits. The

tracks reconstructed in the MS are extended with one of four algorithms depending on

which subdetectors are used:

• Combined (CB) muons: Tracks are reconstructed independently in the ID and MS

and a global fit combines the hits from both. An outside-in approach extrapolates

the tracks form the MS to match a track in the ID. A complementary inside-out

approach starts with a ID-track and extrapolated outwards. The global fit allows

addition and removal of hits in the MS to improve the fit quality.

• Segment-tagged (ST) muons: Tracks of the ID are extrapolated to the MS and

tagged as muons if it can be combined with at least one track segment in the MS.

• Calorimeter tagged (CT) muons: Tracks of the ID are extrapolated to the calorime-

ter systems and tagged as muons if an energy deposit can be associated to the muon

track. This is mainly to recover for the uncovered spectrometry region of the MS.

• Extrapolated (ME) muons: Tracks of the MS are extrapolated to the beam region

and accepted if it is compatible with the interaction point.

In case more than one algorithm assigns a muon to the same ID track the preference

is first given to CB muons, then ST and lastly CT muons. In case of overlap with ME

muons the track with the better fit quality and larger amount of hits is chosen.

4.4 Jets

Jets are collimated showers of hadrons that are a result of hadronized quarks and gluons

created in the collisions. They play an important role in a variety of subjects and the

energy measurement has a direct effect on the missing transverse energy measurement.

The jets are reconstructed from energy deposits in the calorimeter system and tracks re-

constructed in the ID. The reconstruction is mainly done by the anti-kt algorithm where

the input can either be ID tracks(track jets), calorimeter clusters(calorimeter jets) or a

combination of both. Additional information on the reconstruction and identification of

jets can be found in the reference [82].

The first step in the reconstruction of jets is clustering calorimeter cells based on their

energy deposit. The clustering algorithm is seeded with cells with an energy deposit of

at least 4σ and expanded with cells of at least 2σ, where σ is the measured electronic

and pile-up noise of the cells. Finally, a cluster-splitting algorithm is used to compare
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local energy maxima to distinguish between overlapping clusters.

The calorimeter cell clusters are used as input for the anti-kt algorithm. The algo-

rithm groups the clusters together based on the distance between them dij and their

distance to the beamline diB.

dij = min((kiT )2p, (kjT )2p)
∆R2

ij

R2
(4.1)

diB = (kiT )2p (4.2)

kiT and kjT are the transverse momenta of the clusters i and j, p is a parameter set to -1

and R is a parameter set to 0.4. The ∆Rij is defined as,

∆R2
ij = (yi − yj)2 + (φi − φj)2, (4.3)

with yi and yj the rapidity and φi and φj the azimuthal angle of the clusters i and j. If

dij < diB the two clusters are combined to an object k and otherwise cluster i is defined

as a jet. Special algorithms are applied to distinguish jets that originate from a b-quark

based on impact parameters or secondary vertices.

4.5 Taus

The tau lepton is an important particle for both Standard Model processed and BSM

searches. With a mass of 1.777 GeV, the tau is the heaviest of all the leptons has there-

fore a very short lifetime. The tau lepton decays before reaching the Inner Detector and

has to be identified by its decay products. Because of its large mass is the tau the only

lepton that can decay hadronically and generates most commonly one or three charged

pions along with some neutral pions. The signal from these pions is very similar to a par-

ton jet but can be distinguished based on some characteristics. Additional information

on the reconstruction and identification of taus can be found in the following reference

[83].

The decay products are first tagged as a calorimeter jet because of their similar sig-

nal. To distinguish the tau leptons from the parton jets a minimum transverse energy

for tau lepton candidates is set to 10 GeV. Secondly, the tau decay modes give a colli-

mated energy deposit in the calorimeter systems so a selection on jet cone width is set

to ∆R =
√

(∆φ)2 + (∆)2 < 0.4. Taus can be classified into single- or multiple-prong

decays where the prong label states how many charged particles occur in the decay
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mode. The single-prong taus are selected based on the number of tracks within a cone

∆R < 0.2. Dedicated identification of taus is done with a Boosted Decision Tree that

is trained separately on single- and multiple-prong taus with a set of discriminating

variables.

4.6 Missing Transverse Energy

In the laboratory frame the sum of momenta for all the physical objects should equal to

zero. However, the ATLAS detector is not able to detect every particle that is created

in the proton-proton collisions. This results in an imbalance in the transverse momenta

also known as the missing transverse energy (MET) and plays a crucial role in Higgs

properties measurement and the search for dark matter or supersymmetric particles.

Because many collision products are lost down the beam pipe a restriction is made to

the missing transverse components. Additional information on the reconstruction of the

missing transverse energy can be found in the following references [82, 84].

The missing transverse energy is primarily reconstructed from the signals in the calorime-

ter system. Because the calorimeter cells are organized in towers that point to the col-

lision point, it is possible to define transverse components of the incoming energy. The

EmissT of an event is a vectorial energy sum of the reconstructed physical objects. The

EmissT is defined as

EmissT =
√

(Emissx )2 + (Emissy )2 (4.4)

with

Emissx,y = Emiss,ex,y + Emiss,γx,y + Emiss,τx,y + Emiss,jetsx,y + Emiss,µx,y + Emiss,softx,y (4.5)

where the components are calorimeter deposits for electrons(e), photons(γ), hadroni-

cally decaying tau-leptons(τ), jets, muons(µ) and soft objects. Soft objects represent

calorimeter signals that are not associated to any of the previously defined reconstructed

objects. Additional to the calorimeter MET reconstruction a complementary track MET

reconstruction is applied. The missing transverse energy equals the negative vectorial

sum of the missing transverse momenta in the relativistic limit E =
√
m2c4 + p2c2 ≈ pc.

The missing transverse momentum is defined as
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pmissT =
√

(pmissx )2 + (pmissy )2 (4.6)

with the vectorial sum

px,y = −
( ∑
electrons

px,y +
∑
muons

px,y +
∑
jets

px,y +
∑

soft objects

px,y

)
. (4.7)

The tracks of the soft objects must satisfy a set of requirements to be added to the MET

reconstruction.

• pT > 500 MeV

• |η|< 2.5

• At least 1 pixel detector hit

• At least 6 pixels SCT hits

• Transverse impact parameter with respect to the primary vertex |d0|< 1.5 mm

• Longitudinal impact parameter with repect to the primary vertex |z0× sinθ|< 1.5

mm

These are imposed to ensure the quality of the pT measurement. The selection conditions

are not a requirement for the tracks of leptons or jets.



Chapter 5

Higgs Physics at the LHC

One of the main motivations for the construction of the LHC was finding the long-

sought Higgs boson. More than five years after the first observation of a Higgs-like

particle[22, 23, 85] and many verifications later[86] many properties still remain unclear.

In this chapter a short overview is given on dominant production and decay modes of

the Higgs boson at the LHC and a summary of the latest results on signal strength and

effective field theory coupling measurements by the ATLAS and CMS experiment.

5.1 Production Modes

The LHC can produce the Higgs boson in various ways. The dominant production modes

are gluon fusion, vector boson fusion, Higgs strahlung, associated production with top

or bottom quarks.

Each production mode has a corresponding expected cross section in proton-proton

collisions depending on the centre of mass energy. In figure 5.2 the largest Higgs cross

section contributions including order of accuracy (see section 2.2.4) are given. with

Monte Carlo generators that can calculate matrix elements up to a certain order of

accuracy. The calculations are different for each process and therefore computational

effort differs resulting in a varying higher-order precision.

The largest contribution in Higgs production is the gluon fusion(ggF) process. The

gluon fusion process contributes to almost 90% of the Higgs production and plays

a central role in this thesis. Even though gluons are massless, the interaction is made

possible through a virtual top loop as shown in the Feynmann diagram. The cross section

has been calculated up to next-to-next-to-next-to-leading order (N3LO) QCD and next-

to-leading order (NLO) electroweak corrections. The vector boson fusion(VBF)
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Figure 5.1: Leading order Feynmann diagrams for the dominant production modes
at the LHC. a) Gluon fusion b) Vector boson fusion c) Higgs-strahlung d-f) Associated

production with top or bottom quarks [14].

process is the second largest contribution to the production of Higgs bosons for a proton-

proton collisions. A quark and antiquark both radiate off a vector boson of one type(W -

or Z-boson). These vector bosons fuse into a Higgs accompanied by two highly energetic

jets from the initiating quarks. The Higgs strahlung(VH) process is the next major

production mode but its contribution is almost a factor 5 lower than the VBF process

and is therefore substantially smaller. Two quarks produce a W - or Z-boson which

then radiates of a Higgs boson. The last major contributions are from the quark

associated production(ttH/bbH). These channels give a direct probe to the Higgs

to top/bottom couplings but have substantially lower production rates compared to the

previous production modes.
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Figure 5.2: Theoretical predictions on Standard Model Higgs boson production cross
sections including uncertainty [14].

5.2 Decay Modes

The Standard Model Higgs boson has a predicted life time of 1.6 × 10−22 s and there-

fore decays, just like many other heavy particles, before it exits the beam pipe. The

understanding of the decay modes is therefore crucial for studies on the Higgs boson.

However, a Higgs mass of 125 GeV makes decays possible to many different particles.

The abundance of a specific decay process is quantified in a branching ratio, the fraction

of Higgs bosons that decay through that process. A branching ratio for a decay to a

final state A is defined as

BR(H → A) =
Γ(H → A)∑
i Γ(H → Xi)

(5.1)

where Γ is the partial width of the process and the denominator is a sum over all possible

decay modes. The partial width is proportional to the masses of the particles the Higgs

boson decays to. The dominant decay modes from largest branching ratio to lowest are

H → bb̄, H → WW , H → gg, H → ττ , H → cc̄, H → ZZ, H → γγ, H → Zγ and

H → µµ.
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Figure 5.3: Theoretical predictions branching ratios for Standard Model Higgs boson
decay modes including uncertainty [14].

The decay mode with the largest contribution is to two (anti-)bottom quarks. However,

this channel is difficult to study because of the large QCD background caused by other

jets. The channel can be made feasible with a Higgs strahlung production and first

evidences have recently been found [87]. A Higgs boson produced by vector bosons and

decaying leptonically gives a clean signal relative to the other channels. Decay modes

to two gluons or two charm quarks are difficult as their occurrence is even rarer and are

also associated with a big QCD background. The second most predominant decay mode

is to two W -bosons and gives with its leptonic decay products a signature that is easier

to distinguish from background. In this thesis the muons and electrons are selected

as decay products as they are both sufficiently stable to be measured with respect to

the taus which in general decay further into hadrons or other leptons before they reach

the detector. The decays to two Z-bosons and photons also give plenty experimental

possibilities because of the low background. Some first studies are performed with a

decay to two taus and to two muons [88]. The contribution of the Z-boson and a photon

decay is very rare and research is still in development.
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5.3 Higgs Properties

The goal of the study on Higgs properties is to improve our understanding of the Higgs

boson and look for effects beyond the Standard Model. According to the Standard

Model, the Higgs boson is a CP-even scalar particle. Previous studies excluded the

spin-1 hypotheses up to 99.999% confidence level and spin-2 hypotheses up to 99%

[89]. The Higgs boson mass is measured as mH ≈ 125.7 GeV and implies a Higgs self-

coupling constant of λ ≈ 0.13.[90]. Other parametrizations that are valuable in the

search for deviations from the Standard Model are the signal strength parameter and

EFT couplings.

5.3.1 Signal Strength

In section 2.7 an impression is given on a few theories that could extend the Standard

Model. In reality there is a large variety of such theories which can make theory specific

tests cumbersome. However, a common method is to search for a new particle predicted

by a theory. The observation of such a particle can be quantified with the signal strength

parameter

µ =
σobs.

σtheo.
(5.2)

with σobs. the observed cross section and σtheo. its theoretical prediction. Any devia-

tion from unity would indicate an observed deviation from the Standard Model. Signal

strength measurements on the before mentioned production and decay modes have al-

ready been performed with Run 1 data taken at the ATLAS and CMS experiment.

Figure 5.4: Results for the production (left) and decay (right) signal strengths from
the combination of ATLAS and CMS. The results for each experiment are superimposed.

The error bars indicate the 1σ (thick lines) and 2σ (thin lines) intervals. [15].
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All the different production and decay modes are be combined in a global signal strength

of µ = 1.09±0.07(stat.)±0.04(exp.syst.)±0.03(th.bkg.)+0.07
−0.06(th.sig.) which states no sig-

nificant deviation from the Standard Model.

The increased total integrated luminosity of Run 2 results in an improved measurement

sensitivity. This does not only improve low-background analyses concerning diphoton[91]

and double vector boson decay[1, 92] but also makes analyses possible that are more

background dominated such as the recently measured bb̄[93] or τ τ̄ [94] decay mode. The

gluon fusion production to W±W∓∗ → l−µ̄ll
′+µl′ decay mode was also recently mea-

sured with a signal strength of µ = 1.21±+0.12
−0.11(stat.)+0.18

−0.17(syst.).[1] Again no significant

deviation from the Standard Model was observed.

5.3.2 EFT Couplings

The signal strength measurement is a good approach to test a single theory that predicts

the existence of a particle, the Higgs boson. However, any deviation from the bench-

mark theory, e. g. the Standard Model including the Higgs boson, comes without any

suggestion or hint on which alternative theory could be the right answer. Preferably

one would like a model-independent approach that can be coupled to predictions of as

many different BSM theories as possible. An effective field theory coupling measure-

ment provides exactly this. Additionally, effective coupling parameters does not only

include total signal rate, like the signal strength does, but also the shapes of differential

distributions.

There are many different effective field theories that map the character of the Higgs

boson. However, the effective Lagrangian approach is relatively new and therefore only

few comparable studies have been conducted before this thesis. Previous studies in terms

of the Higgs Characterization Model have mostly focused on the Higgs couplings to vec-

tor bosons. Expected and observed confidence intervals were set on these couplings with

likelihood scans with an effective Lagrangian implementation.[16, 17] All parameters κi

that are not explicitly mentioned are considered to be 0.

Coupling parameter Observed Expected

κAgg ±0.43 0
κAV V ±2.9 0
κHV V 2.9 0

Table 5.1: Best fit values for the coupling parameters κAgg, κAV V and κHV V as
obtained from the negative log likelihood scans performed with 36.1 fb−1 of data at√

s = 13 TeV collected at the ATLAS experiment.[16]



Symbols 63

Figure 5.5: Observed (solid black line) and SM expected (dashed blue line) negative
log-likelihood scans for (a) κAgg, (b) κHV V and (c) κAV V coupling parameters using
36.1 fb1 of data at

√
s = 13 TeV. The horizontal lines indicate the value of the profile

likelihood ratio corresponding to the 68% and 95% CL intervals for the parameter of
interest[16].

Figure 5.6: Observed (black) and SM expected (blue) contours of the two-dimensional
negative log-likelihood at 95% CL for the κHV V and κAV V coupling parameters with
36.1 fb1 of data at

√
s = 13 TeV. The coupling κHgg is fixed to the SM value of one

in the fit. The coupling κSM is (a) fixed to the SM value of one or (b) left as a free
parameter of the fit (b).[16].

Figure 5.5, 5.7 and table 5.1 show the results of vector boson effective coupling measure-

ments in the H → ZZ∗ → 4l decay channel with the ATLAS detector. The constraints

and best-fit values show no significant deviation from the Standard Model.
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A sensitivity study was performed for a likelihood scan of cosα and the ratio
κAgg
κHgg

tanα

on an Asimov dataset. The study targeted the ggF-2j production, H → W±W∓∗ →
l−ν̄ll

′+νl′ decay mode and also used the likelihood scan approach with an effective la-

grangian implementation.

Figure 5.7: The sensitivity obtained in this analysis for the parameter scan of (a)
cosα with an Asimov dataset created for the SM CP even Higgs boson, (b) cosα with
an Asimov dataset created for a CP mixed Higgs boson and (c) the ratio

κAgg

κHgg
tanα for

an Asimov dataset created for the SM CP even Higgs boson. The green lines indicate
the 1σ confidence interval and the blue lines indicate the 2σ confidence interval.[17]

The Asimov data set for a SM CP even Higgs boson corresponds to κHgg = 1, κAgg = 0

and cosα = 1 and for a SM CP mixed Higgs boson to κHgg = 1, κAgg = 1 and cosα = 1√
2
.

The results indicate that a precision measurement of these effective coupling parameters

can be achieved with a comparable precision to previous measurement methods.[17]

Another effective field theory framework used to probe the properties of the Higgs boson

is the Standard Model Effective Field Theory (SMEFT). The operators and therefore

coefficients are defined in two different bases, the strongly-interacting light Higgs (SILH)

and the Warsaw basis.[95] Both have an implementation in Madgraph and constraints

placed on their effective coupling parameters by previous studies.[96, 97]



Chapter 6

Signal Strength Analysis

As mentioned in the previous chapter, the first line of attack in the search for deviation

from the Standard Model is measuring the signal strength. This chapter describes

the precision measurement of the signal strength for a Higgs boson in the gluon fusion

H →W±W∓∗ → l−ν̄ll
′+νl′ channel. After selecting the decay topology, cuts are applied

to reject as many background events as possible and increase the signal-to-background

ratio. A profile likelihood method is used to extract the observed signal strength µ and

its significance expressed in a p-value.

6.1 Data and Monte Carlo Samples

The data that is used for analysis is from the 2015 and 2016 data taking period and

corresponds to a total integrated luminosity of 36.07 fb−1. The data is collected by the

ATLAS detector during proton-proton collisions at a centre of mass energy of
√
s =

13 TeV. To interpret the data, theoretical predictions of both signal and background

events are simulated with Monte Carlo techniques that model hard scattering, parton

showering, hadronisation, underlying events and pile-up. After the events are generated

on truth level they are passed through a full simulation of the ATLAS detector and

are subsequently reconstructed and digitized with the software frameworks discussed in

Chapter 4.

6.1.1 Signal Samples

Monte Carlo samples have been generated to simulate the ggF + 0/1 jets signal. The

events were generated at next-to-next-to-leading order with POWHEG[98] and subse-

quently showered with Pythia8[71]. Other signal samples that are included are the
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vector boson fusion process(VBF) and an additional signal for ggF and VBF processes

of which the Higgs decays into two taus(Htt). Higgs production processes such as Higgs

strahlung(VH) and quark associated production(ttH, bbH and tHx) are not included as

their contributions are quite small.

6.1.2 Background Samples

The background processes that are included consist of other production processes that

decay with a similar leptonic decay. The primary backgrounds are productions of V/γ∗,

top quarks and electroweak bosons. The background samples are simulated with different

Monte Carlo generators and varying precision. Both the signal and background samples

are listed in table 6.1.

Process Generator σ[pb] Precision

ggF H →WW POWHEG+Pythia8 1.102 NNLO
V BF H →WW POWHEG+Pythia8 0.0808 NNLO

gg → ZZ → 4l Sherpa 0.021 NLO
qq̄/g →WZ → lνll Sherpa 13.1 NLO
qq̄ → ZZ → 4l POWHEG+Pythia8 1.26 NLO
qq̄ → ZZ → llqq POWHEG+Pythia8 2.27 NLO
qq̄ → ZZ → llνν POWHEG+Pythia8 0.92 NLO
qq̄ →WW → lνlν Sherpa 4.58 NNLO
gg →WW → lνlν Sherpa 0.38 NNLO
Wt leptonic POWHEG+Pythia 3.58 NLO
tt̄ leptonic POWHEG+Pythia 76.9 NNLO + NNLL
(W → lν)γ Sherpa 1.065 · 103 NLO
(Z → ll)γ Sherpa 0.297 · 103 NLO

Table 6.1: Included signal and background processes, corresponding Monte Carlo
generators, cross sections and precisions

6.2 Object Selection

The required physical objects in the final state are two charged leptons, two neutrinos

and a maximum of one jet. Events with these objects should have at least one pri-

mary vertex and two associated tracks with a transverse momenta of pT > 400 MeV.

In case of multiple primary vertices, the one with the largest sum of transverse mo-

menta squared of the tracks will get preference. The technical implementation of sam-

ple processing, event selection and plotting is handled with the ROOT-based Common

Analysis Framework (CAFCore). Any additional information on the framework

can be found in reference [99].
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6.2.1 Electrons

The analysis requires exactly one electron and one muon in an event. The electrons

must have a minimum transverse energy of ET > 15 GeV and must pass additional

identification efficiency criteria based several discriminating variables depending on its

transverse energy. Electrons must pass either the TightLH or a MediumLH identification

efficiency criterium depending on if the transverse energy is resp. lower or higher than

25 GeV. The psuedorapidity of the tracks must be in the range |η|< 2.47 excluding the

gap 1.37 < |η|< 1.52 between the barrel and end caps of the liquid argon calorimeter.

6.2.2 Muons

The muons are reconstructed with the combined muon algorithm and are required to

pass a Medium identification criterium that is designed to minimize the systematic

uncertainties of muon reconstruction and calibration and avoid muons coming from

pions and kaons. Similar to the electrons, a minimum transverse energy of 15 GeV

and maximum track psuedorapidity of 2.5 is required. To ensure that the electrons and

muons originate from the primary vertex the longitudinal impact parameter z0 must

satisfy |z0sinθ|< 0.5 mm, where θ is the polar angle of the track with respect to the

beam line.

6.2.3 Jets

In case the event contains one reconstructed jet it is required to be in the rapidity range

|η|< 4.5 and have a minimum total transverse momentum of 25 GeV. This requirement

changes to a minimum of 30 GeV for jets in the range 2.4 < |η|< 4.5. Jets that approach

an electron within a cone size of ∆R < 0.2 are removed to avoid double counting as

both have a chance to be mistaken for each other in the reconstruction. In case the jet

approach is within a cone of 0.2 < ∆R < 0.4 the electron is discarded instead. In case

of a muon and a cone of ∆R < 0.2 the jet is discarded only if the jet has less then three

associated tracks and for a cone of 0.2 < ∆R < 0.4 the muon is only discarded if the jet

has at least two associated tracks.
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6.3 Event Selection

To optimise the seperation between signal and background events and between different

Higgs EFT scenarios a set of cuts is applied on the events. Orthogonal signal(SR),

control(CR) and validation(VR) regions are defined to resp. apply the fit, estimate

background and subsequently validate the background estimation.

6.3.1 Pre-selection

The pre-selection is a set of general cuts that aim to improve the overall quality of the

events as well as select the decay channel of choice.

• Good Run List Selection (GRL) Select events from a list of runs that satisfy

quality constraints. ”Bad” runs can be because of unstable beams, faulty magnet

system or a switched-off subdetector.

• Trigger Selection Select events based on the lepton identification efficiencies as

stated in the previous section.

• Jet Cleaning Select jets that satisfy quality constraints as stated in the previous

previous section.

• Vγ/Vjets overlap removal Remove events that are tagged with a photon and

a jet.

• ≥ 2 leptons Select events with at least two leptons of which the leading leptons

must have opposite flavor and sign.

• pleadT > 22 GeV Select events where the leading lepton, the lepton with the highest

pT , has a transverse energy of pT > 22 GeV.

• psubleadT > 15 GeV Select events where the subleading lepton, the lepton with the

second highest pT , has a transverse energy of pT > 15 GeV.

• mll > 10 GeV Select events with a the dilepton invariant mass of mll > 10 GeV.

• pmissT > 20 GeV Select events with a missing transverse momentum of pmissT > 20

GeV.

• Fake factor A factor is applied to remove jets that faked a lepton. This fac-

tor is calculated by a data-driven method that models events with fake leptons.

Additional information on the fake factor method can be found in reference [100].
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6.3.2 Signal Region

The signal region is selected by applying cuts additional to the pre-selection. This region

will be used to apply the likelihood fit to extract the signal strength. Events are selected

requiring at most one jet which defines the first two categories signal regions, Njet = 0

and Njet = 1. The two jet multiplicities result in different background compositions so

two categories require two sets of event selections.

Njet = 0: Njet = 1:

∆φll,EmissT
> 1.57 Nb−jet = 0

pllT > 30 GeV maxim
li
T > 50 GeV

mττ < mZ − 25 GeV
mll < 55 GeV

∆φll < 1.8

Table 6.2: Event selection criteria for the two signal region categories

In the Njet = 0 category, the Higgs boson is not boosted[18] i. e. has a low momen-

tum along the beam line but a large momentum perpendicular to the beam line. This

motivates the selection of events with a relatively high transverse momentum pllT . Addi-

tionally does the high transverse momentum results in a large angular difference between

the dilepton and missing transverse momentum vector. The discriminating variable is

the transverse mass mT defined as

mT =

√
(EllT + EmissT )2 − |~pllT + ~EmissT |2. (6.1)

The kinematic distributions of the discriminating variable are eventually used in the

likelihood fit to extract the signal strength. The distributions of mT for both Njet = 0

and Njet = 1 after applying the full cut selection can be seen in figure 6.1. Each

distribution is again split up in 8 distinct signal regions according to the following cuts.

The corresponding fit distributions can be found in appendix C.

Signal Region mll [GeV] pl2T [GeV] l2 [e/µ]

1 10 < mll < 30 10 < pl2T < 20 e

2 10 < mll < 30 10 < pl2T < 20 µ

3 10 < mll < 30 20 < pl2T e

4 10 < mll < 30 20 < pl2T µ

5 30 < mll < 55 10 < pl2T < 20 e

6 30 < mll < 55 10 < pl2T < 20 µ

7 30 < mll < 55 20 < pl2T e

8 30 < mll < 55 20 < pl2T µ

Table 6.3: Signal regions for both jet categories that are used in the likelihood fit.
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6.3.3 Control and Validation

The control(CR) regions are defined to normalize simulated background processes. The

normalization factor is extracted from kinematic distributions where the observed events

are expected to have negligible signal events and an abundance of background events

of a specific process. The normalization factor is then applied in the signal region to

normalize the background and improve the MC prediction. There are several methods

to extract and apply a normalization factor but the most common one is by performing

a likelihood fit to the observed data with the normalization factor as a free parameter.

Additional validation regions(VR) can be applied to validate the normalization extracted

from the control regions. The control regions are separately defined for Njet = 0 and

Njet = 1 as shown in table 6.4. The corresponding distributions used in the likelihood

fit are shown in figures 6.2, 6.3 and 6.4. The cut flow for all the signal and background

samples for the signal strength measurement can be found in appendix E.1.

Background Njet = 0: Njet = 1:

qq̄/gg →WW → lνlν 55 < mll < 110 GeV mll > 80 GeV
∆φll < 2.6 |mττ −mZ |> 25 GeV

b-jet veto

Z → ττ mll < 80 GeV no pmissT > 20 GeV requirement
∆φll > 2.8 mll < 80 GeV

mττ > mZ − 25 GeV
b-jet veto

tt̄ leptonic no Njet requirement Nb−jet = 1
∆φll < 2.8 GeV mττ < mZ − 25 GeV
pllT > 30 GeV

Table 6.4: Event selection criteria used to define the control regions

Figure 6.1: Distributions of the transverse mass for Njet = 0(left) and Njet = 1(right)
after signal selection criteria are applied (See table 6.2).
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Figure 6.2: Distributions of the transverse mass for Njet = 0(left) and Njet = 1(right)
after control selection criteria are applied (See table 6.4) for qq̄/gg → WW → lνlν

background normalization.
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Figure 6.3: Distributions of the transverse mass for Njet = 0(left) and Njet = 1(right)
after control selection criteria are applied (See table 6.4) for Z → ττ background

normalization.
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Figure 6.4: Distributions of the transverse mass for Njet = 0(left) and Njet = 1(right)
after control selection criteria are applied (See table 6.4) for tt̄ leptonic background

normalization.
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Name Description Type

Muon resolution
Track momentum smearing in the Inner Detector and muon spectrom-
eter

P4

Muon scale Variations in muon momentum scale P4

Muon identification Statistical and systematic variation in identification efficiency SF

Muon isolation Statistical and systematic variation in isolation efficiency SF
Muon trigger Statistical and systematic variation in trigger efficiency SF

Jet resolution Track momentum smearing in the Inner Detector P4

Jet scale Variations in momentum scale P4

Jet identification Statistical and systematic variation in identification efficiency SF

Jet isolation Statistical and systematic variation in isolation efficiency SF

Jet reconstruction Statistical and systematic variation in reconstruction efficiency SF
Jet trigger Statistical and systematic variation in trigger efficiency SF

Jet resolution nuisance parameter Single nuisance parameter covering jet energy resolution uncertainties P4

Jet simulation framework
Uncertainty arising from the use of the ATLFast-II fast simulation
framework

P4

Jet scale Heavy-flavour jet energy scale uncertainty P4

Jet scale Linear decomposition of jet energy scale uncertainties P4

Jet scale Uncertainties covering η-dependence of the jet energy scale P4

Jet scale Uncertainties covering flavour-dependence of the jet energy scale P4

Jet scale High pT jet energy scale uncertainty P4

Jet scale Uncertainties covering the effects of pile-up on the jet energy scale P4

Calorimeter size
Uncertainty covering effects of the calorimeter not covering the whole
shower

P4

Jet vertex tagging Uncertainty on jet vertex tagging SF
b-tagging Eigen-vector decomposition of b-tagging uncertainties SF
c-tagging Eigen-vector decomposition of c-tagging uncertainties SF

light flavour-tagging Eigen-vector decomposition of light-flavour tagging uncertainties SF
Run extrapolation Uncertainty covering extrapolation from Run 1 to Run 2 SF

Charm extrapolation Charm quark specific extrapolation uncertainty SF

MET resolution Uncertainty of the missing transverse energy resolution SF

MET scale Uncertainty of the missing transverse scale SF
Lepton fake factor Uncertainty arising from the subtraction of fake leptons DD

Lepton fake factor
Uncertainty arising from the sample decomposition variance for the fake
leptons

DD

Lepton fake factor
Uncertainty arising from the sample decomposition variance for the fake
leptons

DD

Lepton fake factor
Uncertainty arising from the charge dependency of the fake composition
for fake leptons

DD

Lepton fake factor Statistical uncertainty on the fake factor DD

Table 6.5: Summary of experimental systematic uncertainties used in this analysis

Process Uncertainty Description

ggF Jet veto Uncertainty associated with the categorization in the number of jets

Matching
Uncertainty associated with the matching of matrix elements and parton
showers

PS/UE
Uncertainty associated with the modelling of parton showers (PS) and
underlying events (UE)

PDF Uncertainty associated with the chosen parton distribution function (PDF)

QCD scale
Uncertainty associated with the choice of renormalization and factorization
scales

VBF PDF Uncertainty associated with the chosen parton distribution function (PDF)

QCD scale
Uncertainty associated with the choice of renormalization and factorization
scales

WW Generator Uncertainty associated with the Monte Carlo generator

Matching
Uncertainty associated with the matching of matrix elements and parton
showers

PS/UE
Uncertainty associated with the modelling of parton showers (PS) and
underlying events (UE)

PDF Uncertainty associated with the chosen parton distribution function (PDF)

QCD scale
Uncertainty associated with the choice of renormalization and factorization
scales

EW correction Uncertainty associated with the EW corrections used on matrix elements

CKKW Matching
Uncertainty associated with the CKKW matching of matrix elements and
parton showers

WZ/Wγ∗ QCD scales
Uncertainty associated with the choice of renormalization and factorization
scales

Merging scales
Uncertainty associated with the merging scale that is used to cut-off
divergencies in matrix element calculations

CKKW Matching
Uncertainty associated with the CKKW matching of matrix elements and
parton showers

A14 tune
Uncertainty associated with the A14 parameter tune used in the Sherpa
generator

Wγ NLO correction
Uncertainty associated to the next-to-leading order corrections in matrix
element calculations

QCD scale
Uncertainty associated with the choice of renormalization and factorization
scales

Merging scales
Uncertainty associated with the merging scale that is used to cut-off
divergencies in matrix element calculations

PDF Uncertainty associated with the chosen parton distribution function (PDF)

top QCD Radiation Uncertainty associated with parton radiation

PS/UE
Uncertainty associated with the modelling of parton showers (PS) and
underlying events (UE)

Matching
Uncertainty associated with the matching of matrix elements and parton
showers

Generator Uncertainty associated with the Monte Carlo generator

DSDR
Uncertainty associated with the Dislocation Supressing Determinant Ratio
gauge actions

Table 6.6: Summary of theoretical systematic uncertainties used in this analysis
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6.4 Uncertainty Treatment

Just like with any other measurement, the accuracy of both the signal extraction and

coupling modifier measurement is quantified with uncertainty. This uncertainty can

originate from several sources but can be globally categorized as either experimental or

theoretical. Lets consider a set of observations xi, i = 0, 1, ...N , a parameter θ to be

estimated, also known as a parameter of interest(POI), and a corresponding probability

function p(xi|θ). These probability distributions can be used to perform a profile likeli-

hood fit to extract the parameter of interest. More information on this process is given in

the upcoming section. In general, however, the probability distributions depend on many

more additional unknown parameters ~λ, also known as nuisance parameters(NPs). The

value of these parameters can be determined in the same way the parameter of interest

θ can be determined. But additionally, one needs to take into account the uncertainties

that these NPs bring into the estimation of the POI. These uncertainties are systematic

uncertainties.

6.4.1 Experimental Uncertainty

Experimental systematic uncertainties in this analysis are estimated by varying either

the four momenta, particle or event weight of an object with ±σ variations and define

the variations of the parameter of interest as systematic uncertainty. These types of

systematics are known as resp. four momenta (P4-) and scale factor (SF-)systematics.

An additional Data-driven (DD-)method is used to take into account the systematic

uncertainties related to the fake factor estimation.

6.4.2 Theoretical Uncertainty

The signal and background samples are generated with varying models and Monte Carlo

techniques. The theoretical predictions can have both similar as well as process specific

systematic uncertainties. A summary of all the theoretical systematic uncertainties is

shown in table 6.6.

6.5 Signal Measurement

The measurement of the signal is done with the profile likelihood method. Any additional

information on this method can be found in references [101, 102].
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6.5.1 Maximum-likelihood estimator µ̂

The goal of the signal measurement is to quantify how well the observed data agrees

with the observation of a Standard Model Higgs boson. The measurement is made by

applying a profile likelihood fit on the observed data to extract the signal strength µ

for which a value deviating from unity indicates the observation of a Higgs boson with

the specified production and decay mode. A likelihood in general states how likely it is

to find a certain event in a part of phase space i. e. a bin of a kinematic distributions.

Lets assume that a signal sample is used to measure a kinematic variable k for each

event. These measurements are used to construct a histogram which after the previously

introduced cut analysis has an amount of observed oi and expected ni events per bin.

The expectation value is defined as

ni = µsi + bi (6.2)

with µ the signal strength that represents a background-only hypothesis for µ = 0 and

µ = 1 the signal hypothesis eg. including the Higgs boson. The parameters si and bi

are the expected signal and background events and are defined as

si = stot

∫
f(k; ~θs)dk (6.3)

bi = btot

∫
f(k; ~θb)dk. (6.4)

The parameters stot/btot are the sums of the expected events over all bins and f(k; ~θs)/f(k; ~θb)

the probability distribution functions (PDFs). The PDFs are defined by the underlying

theoretical model and are dependant on the kinematic variable k and a set of parameters

~θ defining this model. The signal strength µ is noted as the parameter of interest and the

remaining set θ = (θs, θb, btot) are noted as nuisance parameters (NP). The parameter

stot remains fixed to the value of the signal model. Because the chance for an event to be

found in bin i is Poisson distributed the likelihood function can be defined as a product

of these Poisson distributions.

L(µ, ~θ) =
N∏
i=1

(µsi + bi)
oi

oi!
e−(µsi+bi) (6.5)



Symbols 75

By maximizing the likelihood function with respect to ~θ and µ the unconditional maximum-

likelihood(ML) estimator µ̂ can be obtained as measurement of the signal strength on

the observed data.

6.5.2 Significance

Because the processes studied are quantum mechanical the measurements are proba-

bilistic of nature. An observation might be more likely in one model but can still occur

in a different one. To determine the significance of an observed signal strength one needs

to quantify what is the probability to observe a signal strength µ̂ under the assumption

of no observed signal(µ = 0). To quantify this the profile likelihood ratio is defined as

λ(µ) =
L(µ,

ˆ̂
~θ)

L(µ̂, ~̂θ)
. (6.6)

The denominator is the unconditional likelihood function that was maximized to obtain

the observed signal strength µ̂. The numerator is the conditional likelihood function

maximized with respect to ~θ for a conditional value of µ. With the profile likelihood

ratio a test statistic can be defined as

t(µ) = −2lnλ(µ). (6.7)

The test statistic can be used to quantify the agreement of the observed µ̂ with a hy-

pothesized µ. This can be related to a significance Z that states the exclusion confidence

levels in terms of σ.

Z(µ) =
√
−2lnλ(µ) (6.8)

p(µ) =

∫ ∞
t(µ̂)

f(t(µ))dt (6.9)

Here is f(t(µ)) the PDF of the test statistic t(µ) under the assumption of a signal

strength µ which. Under the assumption that the signal strength ML estimator µ̂

follows a Gaussian distribution and given a large data set the PDF of t(µ) will be a

non-central chi-square distribution[101]. When assuming µ = 0 one obtains what is

called the p0-value which quantifies the probability to obtain a higher value for the test
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statistic λ(µ) than the observed λ(µ̂). In particle physics a common conventional value

for p0 that justifies a discovery is one that is smaller then 2.87 · 10−7.

6.5.3 Results

The results are based on data collected from
√
s = 13 TeV pp collisions by the ATLAS

experiment and present the measurement of gluon fusion Higgs boson production in the

H → W±W∓∗ → l−ν̄ll
′+νl′ decay mode. Additionally, a measurement on an Asimov

data set was made that represents the expected SM case.

The signal strengths and corresponding significances were measured as

µobs. = 1.258+0.208
−0.200(tot.) Zobs. = 6.6σ (6.10)

µexp. = 1.000+0.206
−0.197(tot.) Zexp. = 5.3σ (6.11)

where the total uncertainty given consists of experimental systematic uncertainties, the-

oretical systematic uncertainties and statistical uncertainties. The measurement agrees

with the signal strength measured in reference [1]. The significances state the exclusion

confidence level of the background-only hypothesis. The significances correspond to an

observed and expected p-value of resp. p0,obs. = 1.483 · 10−11 and p0,exp. = 6.586 · 10−8

which are well below the standard 2.87 · 10−7 threshold. Additionally a profile likelihood

scan of the signal strength µ was made with the test statistic defined in equation 6.7

and with corresponding significance exclusion levels.

Figure 6.5: Scan of the logarithmic difference between a fixed signal strength value(x-
axis) and the unconditional likelihood fit value. Shown are the curves corresponding to
fits on the observed data (red) and the expected asimov data(green) representing the

Standard Model prediction of µ = 1.



Chapter 7

EFT Coupling Analysis

As mentioned in chapter 5, do the measurements of effective coupling parameters not

only give a model-independent approach but can also be coupled to BSM predictions

and model shape differences in addition to the total signal rate. The goal of this chapter

is to present a precise measurement on the coupling parameters κHWW and κAWW as

introduced in section 2.6.2 in the gluon fusion H →W±W∓∗ → l−ν̄ll
′+νl′ channel. The

selected decay topology and applied cuts are the same as introduced in sections 6.2 and

6.3. The coupling parameters are measured with a profile likelihood fit with an Effective

Lagrangian Morphing implementation.

7.1 Modeling at the LHC

In the Chapter 3 and 4 it is shown that the creation of fully reconstructed Monte Carlo

samples is a long and precise process that takes up a major part of the LHC computing

grid resources. The development of new techniques are therefore always needed. For

example, the measurement of the signal strength as presented in the previous chapter

requires the generation, simulation and reconstruction of dedicated Monte Carlo samples

with specific parameter settings. By evaluating the likelihood for different values for the

signal strength the likelihood can be minimized and the most likely value with respect

to the data can be measured. However, in case of physics parameters that function as

input at the beginning of the sample creation process, eg. coupling parameters such as

κHWW and κAWW , a likelihood fit would quickly become unfeasible as a new sample

production chain must be initiated for each parameter space point at which the likelihood

is evaluated. In this section some of the most common techniques are introduced that

try to circumvent these computational efforts but still accurately model the underlying

physics.

77
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7.1.1 Matrix Element Reweighting

When Monte Carlo samples are generated the size is determined by requesting a certain

number of events while the cross section is kept fixed relative to the calculated matrix

element. However, in section 2.5 it is shown that the number of events depends on the

cross section and total integrated luminosity. Because observed data is taken at a known

luminosity the Monte Carlo events are weighted to correspond this luminosity.

If any parameters that determine the matrix element are changed the change in ma-

trix element would correspond to a change in the event weights. If the matrix elements

of the initial and target samples are calculated the weights can be defined as

wt = wi ·
|Mt|2

|Mi|2
, (7.1)

with the initial matrix element Mi, the matrix element with the target parameter set

Mt and the initial event weights wi. This can be applied at any stage of the Monte

Carlo sample creation and can therefore reweight the events of the initial fully simulated

and reconstructed sample to avoid some computational heavy modeling steps. However,

these event weights can become very large for new parameter sets that differ a lot

from the initial one. If these events are located in kinematic distribution areas with a

low number of events the statistical power can be reduced significantly. Additionally,

it can be difficult to take into account the statistical dependency of samples created

from the same initial sample and the method is not fast enough to be used in between

minimization steps in case of a profile likelihood fit.

Figure 7.1: A likelihood function for two parameters of interest gSM and gBSM . The
likelihood can be minimized by evaluating it for a discrete set of samples (left) or with

a continuous likelihood function based on a discrete set of samples (right). [18].
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7.1.2 Vertical Morphing

Another alternative would be to interpolate between an initial set of generated Monte

Carlo samples to a new point in parameter space in between likelihood minimization

steps. This procedure is called morphing and one variety is vertical morphing [19]. Lets

assume a set of n samples that depend on a parameter m and result in a corresponding

PDF f(x|mi) for some observable x. The Taylor expansion around a certain reference

value m0 for this function reads,

f(x|mi) ≈
n−1∑
j=0

(mi −m0)j
1

j!

d(j)

dm(j)
f(m0) (7.2)

By redefining in matrix notation

Mij = (mi −m0)j (7.3)

and

f ′j(x|m0) =
1

j!

d(j)

dm(j)
f(m0) (7.4)

gives the new definition

f ′j(x|m0) ≈M−1
ij f(x|mi). (7.5)

The new PDF to an arbitrary parameter m′ is then given as

p(x|m′) =

n−1∑
i,j=0

(m′ −m0)jm−1
ij f(x|mi). (7.6)

However, when the mean of the initial PDFs differ to much the vertical morphing can

give an inaccurate result. An example is given in figure 7.2. Vertical morphing is still

suitable for eg. the interpolating between probability distribution functions for different

nuisance parameters. The vertical morphing can accurately model the shape and rate

variations to measure the impact of systematic uncertainties.
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Figure 7.2: An example of morphing between two samples of which the PDF is
a normal distribution. The statistical moments change for different values for some
parameter m. The morphing result is given for both the vertical and the moment

morphing [19].

7.1.3 Moment Morphing

To take the differences of the mean and standard deviation into account, also known

as statistical moments, an additional coordinate transformation can be made[19]. The

mean and standard deviation for a target PDF are resp. defined as

ν(m′) =
n−1∑
i,j=0

(m′ −m0)jM−1
ij µ(mi) (7.7)

η(m′) =
n−1∑
i,j=0

(m′ −m0)jM−1
ij σ(mi) (7.8)

where µ(mi and σ(mi) are resp. the mean and and standard deviation of the PDFs of

the initial samples. With these a coordinate transformation can be made defined as,

ξi(x|m′) =
x− ν(m′)

η(m′)
· σ(mi) + µ(mi) (7.9)

Using this coordinate transformation the new morphing result for a PDF at an arbitrary

parameter m′ is redefined as,

h(x|m′) =
n−1∑
i,j=0

(m′ −m0)jMijf(ξi(x|m′)|mi). (7.10)



Symbols 81

In figure 7.2 it is shown that the moment morphing results in a more satisfactory output

than the vertical morphing. The additional advantages are that moment morphing can

be used for both binned and continuous templates, is not restricted to the number of

model parameter, input observables or input templates and can also morph horizontally.

Moment morphing is also widely used in analyses to take systematic uncertainties into

account.

However, both morphing techniques are empirical and agnostic of the underlying physics.

This means that both techniques can not model any effects of the QFT that lies at the

hart of a PDF such as interference or cancellation effects. A technique that does take

into account these effects and is much faster than matrix element reweighting is Effective

Lagrangian Morphing.

7.2 Effective Lagrangian Morphing

In the previous section some of the most well-known interpolation techniques are pre-

sented. Effective Lagrangian Morphing is a technique that can interpolate between a

discrete set of fully simulated signal samples that are described by an Effective Field

Theory as introduced in section 2.6. In section 2.6.3 a theoretical description is given

how such an interpolation can be used to calculate the cross section at an arbitrary

point in coupling parameter space. Here a more practical description is given for the

interpolation between histograms. The interpolation technique only requires kinematic

distributions and parameters of the initial samples as input and results in kinematic dis-

tributions that represent the arbitrary point in coupling parameter space. The morphing

is fast enough such that the output distributions can be used to form a new likelihood

function in between minimization steps of a profile likelihood fit.

Lets assume some kinematic distribution T that depends on an arbitrary set of non-SM

Higgs boson couplings to which one wants morph to. Effective Lagrangian Morphing

defines a morphing function as

Tout(~gt) =
∑
i

wi(~gt;~gi)Ti(~gi) (7.11)

with the target couplings ~gt, parameters of the input samples ~gi, the distributions of

the input samples Ti(~gi) and weights wi(~gt;~gi). The calculation of the weights can be

illustrated with a simple example.
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7.2.1 A Simple Showcase

Let us consider a 2 → 2 s-channel Higgs process with a single non-SM Higgs boson

coupling gBSM in the vertex in addition to one SM Higgs boson coupling gSM . As

introduced in section 2.6.3 can the matrix element of such a EFT scenario be described

by the sum

M(gSM , gBSM ) = gSM · OSM + gBSM · OBSM . (7.12)

Under the assumption that an observable T is proportional to |M|2 one can state

T (gSM , gBSM ) ∝ g2
SM · O2

SM + g2
BSM · O2

BSM + 2gSM · gBSM · <(O∗SMOBSM ) (7.13)

Now in general the couplings gSM and gBSM can have any value. For educational

purposes a pure SM ~gin,1 = (1, 0), a pure BSM ~gin,2 = (0, 1) and a mixed ~gin,3 = (1, 1)

sample with resp. input distributions Tin(1, 0), Tin(0, 1) and Tin(1, 1) are chosen. This

gives the following proportionalities.

Tin(1, 0) ∝ |OSM |2 (7.14)

Tin(0, 1) ∝ |OBSM |2 (7.15)

Tin(1, 0) ∝ |OSM |2+|OBSM |2+2<(O∗SMOBSM ) (7.16)

This results in the morphing function

Tout(gSM , gBSM ) = (g2
SM − gSMgBSM )︸ ︷︷ ︸

w1

Tin(1, 0)

+ (g2
BSM − gSMgBSM )︸ ︷︷ ︸

w2

Tin(0, 1)

+ gSMgBSM︸ ︷︷ ︸
w3

Tin(1, 1).

(7.17)

Here it is shown how the earlier introduced weights wi are only dependant on the target

coupling parameters. A graphic depiction is given in figure 7.3 that illustrates the

derivation and how it takes interference effects into account. To generalize this to initial
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samples with arbitrary values for their coupling parameters one can make the following

ansatz

Tout(gSM , gBSM ) =(a11g
2
SM + a12g

2
BSM + a13gSMgBSM )Tin(gSM,1, gBSM,1)

(a21g
2
SM + a22g

2
BSM + a23gSMgBSM )Tin(gSM,2, gBSM,2)

(a13g
2
SM + a32g

2
BSM + a33gSMgBSM )Tin(gSM,3, gBSM,3)

(7.18)

Figure 7.3: A graphical depiction of Effective Lagrangian Morphing in a simple show-
case [20].

The morphing function requires that when morphing to an input parameter set the out-

put distribution should be equal to the input distribution. This results in the constraints

Tout = Tin (7.19)

~gt = ~gi (7.20)

and thus a set of linear equations in matrix form.


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·


g2
SM,1 g2

SM,2 g2
SM3

g2
BSM,1 g2

BSM,2 g2
BSM,3

gSM,1gBSM,1 gSM,2gBSM,2 gSM,3gBSM3

 = A ·G = 1 (7.21)
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This gives an unique solution if the input parameters fulfill the condition det(G) 6= 0.

A generalization to more coupling parameters is straightforward and can be found in

reference [20].

7.3 Experimental Strategy

The Effective Lagrangian Morphing technique is implemented within the RooFit package[103].

To use the morphing implementation to measure the coupling parameters κHWW and

κAWW the following experimental strategy is set.

1. Choose the number of input samples, also known as base samples, and their cou-

pling parameter configuration.

2. Choose addition validation samples that will be used to morph to and validate the

morphing technique.

3. Fully simulate and reconstruct the base and validation samples.

4. Choose the kinematic distribution that will be used in the morphing.

5. Apply kinematic cuts to increase the signal to background ratio in this kinematic

distribution.

6. Optimize the coupling parameter configuration of the base samples with a dedi-

cated algorithm.

7. Use the optimized base samples to morph to the validation samples and compare

the kinematic distributions to determine any discrepancies.

8. Build a RooFit workspace with the morphing implementation and use the workspace

to measure the coupling modifier parameters κHWW and κAWW with a profile like-

lihood fit.

7.4 Base and Validation Samples

As illustrated in section 7.2 is the number of base samples determined by the couplings

that play part in the process under study. In case of a 2→ 2 s-channel process at leading

order with np couplings exclusively in the production vertex, nd couplings exclusively

in the decay vertex and ns shared couplings, the number of samples needed to form a

basis for Effective Lagrangian Morphing is
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N =
np(np + 1)

2
· nd(nd + 1)

2
+

(
4 + ns − 1

4

)

+

(
np · ns +

ns(ns + 1)

2

)
·

(
nd(nd + 1)

2

)

+

(
nd · ns +

ns(ns + 1)

2

)
·

(
np(np + 1)

2

)
ns(ns + 1)

2
· np · nd + (np + nd)

((
3 + ns − 1

3

))
.

(7.22)

In the section 2.6.2 the coupling parameters are introduced as scale factors to the SM

Higgs couplings. The SM couplings are constant so that the role of BSM couplings in

Effective Lagrangian Morphing is replaced with the coupling parameters. The morphing

concepts remain the same. The gluon fusion production vertex can contribute the cou-

pling parameters κHgg and κAgg through the top quark loop. However, in this analysis

we assume a CP-even SM Higgs to gluon coupling i. e. we only include the κHgg coeffi-

cient in the production vertex (np = 1). The decay vertex H → WW contributes the

two BSM coefficients κHWW and κAWW and the SM coefficient κSM (nd = 3). There

are no share coefficient that contribute to the process. The rest of the coefficients in the

Higgs Characterization Model (see section 2.6.2) do not contribute and are set to zero

throughout the analysis. With equation 7.4 it can be shown that this results in N = 6

base samples. The number of validation samples is trivial for the morphing process itself

and only plays a role in the optimization and validation of the base samples.

Samples κHWW κAWW

Input Sample 1 ”EFT 1” -4.07 -4.13
Input Sample 2 ”EFT 2” -4.03 4.11
Input Sample 3 ”EFT 3” 1.53 -7.24
Input Sample 4 ”EFT 4” 5.41 -0.07
Input Sample 5 ”EFT 5” -0.12 0.13
Input Sample 6 ”EFT 6” 1.66 7.37

Validation Sample 1 -2.47 -0.13
Validation Sample 2 -0.03 -3.89
Validation Sample 3 3.15 -2.42
Validation Sample 4 3.19 2.37
Validation Sample 5 2.42 -0.24
Validation Sample 6 -4.11 0.09
Validation Sample 7 4.32 -3.92
Validation Sample 8 4.22 4.64

Table 7.1: Values of the coupling parameters for the base and validation samples
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In the parameter configurations of both the base and validation samples the values

κSM =
√

2, κHgg =
√

2 and cosα = 1/
√

2 are kept constant. The values for coefficients

κHWW and κAWW are given in 7.1 and chosen to evenly span the range [−8, 8]. Based

on earlier investigations [18, 20, 89] this is the expected region of interest, i. e. the region

in which the coefficient measurement will lie. Additionally, a simple algorithm is used

before sample generation to check if the coefficients satisfy the constraint det(G) 6= 0

and can be used to construct a morphing function. The validation points are chosen

randomly in between the base samples.

Figure 7.4: Parameter configuration overview of the initial base and validation sam-
ples.

Just like with the signal strength extraction is the discriminating variable the transverse

mass mT because of the expected peak in the kinematic distribution. Also the same

kinematic cuts are applied to both the base and validation sample as the signal samples

in the signal strength analysis. The cut flow for all the signal and background samples

for the EFT coupling measurement can be found in appendix E.2.

7.5 Base Sample Optimization

To optimize the base sample parameter configuration is to find one that gives the best

morphing result, i. e. generates kinematic distributions that have minimal uncertainties.

Because we do not know a priori which steps the likelihood minimization will take

through parameter space we can optimize the base samples with respect validation

samples chosen in the expected region of measurement.
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To optimize the base sample a figure of merit needs to choosen that quantifies the

morphing performance of a set of base samples. In general this figure of merit for N

base samples can be chosen to be

f(~g1, ..., ~gN ) =
∑
v∈V

√
∆σ2(~gv|~g1, ..., ~gN ) (7.23)

where the sum runs over the uncertainty of the morphing result at the validation pa-

rameter points ~gv from N base samples with parameters ~gi. The uncertainty is defined

as

∆σ(~gv|~g1, ..., ~gN ) =

√√√√ N∑
i=1

w2
i σ

2
i (~gi · (∆σi)2 (7.24)

with wi the weights introduced in section 7.2, σi(~gi) the cross section of the base sample

and ∆σ2
i the relative uncertainty of the base samples [17]. However, one needs to take

into account that the validation parameter points are difficult to model for the used

Monte Carlo generator or implemented model which results in large uncertainties not

associated with the morphing. By normalizing to the validation uncertainties the figure

of merit becomes

f(~g1, ..., ~gN ) =
∑
v∈V

√
∆σ2(~gv|~g1, ..., ~gN )

∆σ2
v

· (σ(~gv|~g1, ..., ~gN )− σv)2. (7.25)

A dedicated algorithm is applied that morphs to a test basis and consecutively uses

this test basis to morph to the validation samples and calculate the uncertainty. The

algorithm repeats this process until uncertainty converges. Repeating the minimization

with the optimized samples can improve the base samples even further.

The optimization algorithm has been repeated for three iterations i. e. after each conver-

gence the new base parameter configuration is used to create new fully simulated and

reconstructed signal samples to repeat the optimization. To map the impact of the op-

timization algorithm the resulting base sample is used after each optimization to morph

to a range of parameter points to compare the result and uncertainty. The optimized

samples are used to morph over a range of [−8, 8] with steps of 0.1 for the coefficients

κAWW and κHWW . For each resulting histogram the cross section and rel. uncertainty

is calculated and plotted in figures 7.5,7.6,7.7 and 7.8. An overview of the optimization

impact is given in table 7.2.
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Figure 7.5: Morphing result and relative uncertainty before optimization

Figure 7.6: Morphing result and relative uncertainty after one optimization

Figure 7.7: Morphing result and relative uncertainty after two optimizations
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Figure 7.8: Morphing result and relative uncertainty after three optimizations

Optimization min. rel. uncert. av. rel. uncert.

0 0.740194 0.948051
1 0.727934 0.982931
2 0.658247 1.124754
3 0.731085 1.185848

Table 7.2: The impact of the optimization on the relative uncertainty in terms of the
average and the lowest of the whole parameter range.

The optimization shows no clear overall improvement in terms of minimal and average

relative uncertainty. This can be explained by the low Monte Carlo signal statistics in the

signal region histograms that are used as input for the Effective Lagrangian Morphing.

The chosen signal region for optimization was signal region 1 as defined in table 6.3.

However, each of the signal regions has a total raw event count in the order of a few

tens of events that are distributed over 50 bins. This results in a low to sometimes even

empty bin count which might result in an unrepresentative distribution shape i. e. a

shape that does not model the underlying physics well. This also means that the signal

samples are optimized to validation histograms that might have the same issue. In the

appendix D some signal region histograms are shown that contain the morphing result

and the validation histogram.

7.6 Results

The results are based on data collected from
√
s = 13 TeV pp collisions by the ATLAS

experiment and present the measurement of the coupling modifiers κHWW and κAWW

as introduced in section 2.6.2 in the gluon fusion H → W±W∓∗ → l−ν̄ll
′+νl′ channel.

Additionally, a measurement on an Asimov data set was made that represents the ex-

pected SM case of κHWW = 0 and κAWW = 0.
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A profile likelihood fit is performed to obtain the maximum likelihood estimator for both

coupling parameters of which the results are shown in table ??. The two-dimensional

likelihood scan probes both coupling parameters in the range [−6, 6] with a step size of

0.48. The results are plotted in both a surface plot as well as a contour plot in figures

7.9, 7.10, 7.11 and 7.12. Additionally, a one-dimensional likelihood scan is performed

for each coupling parameter in the range [−6, 6] with a step size of 0.24. The results are

plotted in figures 7.13 and 7.14.

Coupling parameter Observed Expected

κAWW 2.80481 -0.0627708
κHWW -4.46414 0.144603

Table 7.3: Maximum likelihood estimators of the two-dimensional likelihood scans
for the coupling parameters κAWW and κHWW for both observed and Asimov data.

For some coupling parameter values in the likelihood scans an abnormally large value

for the logarithmic likelihood ratio was obtained due to a non-convergent minimiza-

tion. These artifacts were removed and replaced with a value obtained from a nearest-

neighbour linear interpolation.

When the results are compared to the coupling parameter measurement results in figure

5.5 and 5.7 some similarities can be identified. The one-dimensional likelihood scan of

κHWW in figure 7.14 and κHV V in figure 5.5 both show an asymmetry in the observed

data while keeping a symmetry in the Asimov data. However, the symmetry in the

one-dimensional likelihood scan of κAWW in figure 7.13 does not show in figure 5.5. The

expected two-dimensional fit in figure 5.7 with the κSM as fixed parameter and figure ??

show a similar sensitivity. The observed two-dimensional fit in figure 5.7 with the κSM

as fixed parameter and figure 7.10 both have a double minimum structure though the

minima of the latter are located at different parameter values and have differing values

for the negative log-likelihood.
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Figure 7.9: Contour plot of the expected SM two-dimensional negative log-likelihood
scan for the κHWW and κAWW coupling parameters.
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Figure 7.10: Contour plot of the observed two-dimensional negative log-likelihood
scan for the κHWW and κAWW coupling parameters.
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Figure 7.11: Surface plot of the expected SM two-dimensional negative log-likelihood
scan for the κHWW and κAWW coupling parameters.
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Figure 7.12: Surface plot of the observed two-dimensional negative log-likelihood scan
for the κHWW and κAWW coupling parameters.
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Figure 7.13: Observed (red) and expected SM (green) one-dimensional negative log-
likelihood scan for the κAWW coupling parameter.
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Figure 7.14: Observed (red) and expected SM (green) one-dimensional negative log-
likelihood scan for the κHWW coupling parameter.



Chapter 8

Conclusions and Outlook

This thesis presents the measurement of the Higgs boson and the effective field theory

coupling parameters κHWW and κAWW . The measurements are performed on data from

pp collisions at
√
s = 13 TeV taken during 2015 and 2016 runs by the ATLAS detector

corresponding to a total integrated luminosity of 36.07 fb−1.

8.1 Signal Strength Analysis

Chapter 6 presents the analysis of data with the goal to identify Higgs bosons via gluon

fusion production and H → W±W∓∗ → l−ν̄ll
′+νl′ decay mode. The signal strength

extracted with a profile likelihood method and was measured as

µ = 1.253+0.219
−0.197(tot.) (8.1)

with an observed significance of p0 = 1.446 · 10−11 corresponding to 6.7 standard de-

viations. The observed signal strength is in good agreement with the Standard Model

prediction of µ = 1.

8.2 EFT Coupling Analysis

Chapter 7 presents the analysis of data with the goal to measure the CP-even κHWW and

CP-odd κAWW coupling parameters via gluon fusion production and H → W±W∓∗ →
l−ν̄ll

′+νl′ decay mode. The coupling parameters are extracted with a profile likelihood

method with an Effective Lagrangian Morphing technique implementation. The mea-

surement is still in agreement with previous studies and the Standard Model prediction.

94
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The analysis shows that a precision measurement is possible with the use of an Effective

Lagrangian Morphing technique and gives an indication of the precision of such a mea-

surement. However, the main take-away message is the proof of concept as the analysis

still shows a lot of room for improvement. The first and most straightforward improve-

ment would be the increase of simulated signal sample events. The signal samples could

provide additional improvement if the generation accuracy of the samples would be up-

graded to NLO level. Furthermore, the applied kinematic cuts are optimized for the

isolation of signal from background events. The measurement would however benefit

from an altered cut analysis that also takes the separation power of the EFT configura-

tion into account. Lastly, the measurement of the effective coupling parameters show a

large deviation from the Standard Model prediction which is acceptable with the current

sensitivity. However, future studies would profit greatly from a breakdown study of the

statistical and systematic uncertainties that impact the measurement.



Appendix A

Theoretical Derivations

A.1 Free Scalar Field Generating Functional

The starting expression is the generating functional with the free scalar field Lagrangian

plugged in.

Z[J ] =
1

Z0

∫
Dφei/h̄

∫
d4x( 1

2
∂µφ∂µφ− 1

2
m2φ2+J(x)φ) (A.1)

It is possible to integrate the term ∂µφ∂
µφ by parts and using Gauss’ theorem the

functional gives

Z[J ] =
1

Z0

∫
Dφe−i/h̄

∫
d4x( 1

2
φ(�+m2)φ−J(x)φ). (A.2)

It is possible to make the following change in variables.

φ(x)→ φ(x) + φ0(x) (A.3)

Including

∫
d4xφ�φ0 =

∫
d4xφ0�φ (A.4)

and demanding that φ0 → 0 at infinity this change in variables gives the functional

Z[J ] =
1

Z0

∫
Dφe−i/h̄

∫
d4x( 1

2
φ(�+m2)φ+φ(�+m2)φ0+ 1

2
φ0(�+m2)φ0−J(x)φ). (A.5)

96
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The heterogeneous Klein-Gordon equation demands that

(� +m2)φ = J(x). (A.6)

This equation can be solved by introducing the Feynman propagator G(x, y) that satis-

fies,

(� +m2)G(x, y) = δ4(x− y). (A.7)

and hence,

φ0 = −
∫
G(x, y)J(y)d4y. (A.8)

If this expression is plugged into the generating functional the new Z[J] reads

Z[J ] =
1

Z0
e−

i
2h̄

∫
J(x)G(x,y)J(y)d4xd4y

∫
Dφe−i/h̄

∫
d4x 1

2
φ(�+m2)φ. (A.9)

Recall that,

Z0 =

∫
Dφe−i/h̄

∫
d4x 1

2
φ(�+m2)φ (A.10)

so the final expression reads

Z[J ] = exp

[
− i

2

∫
J(x)G(x, y)J(y)d4xd4y

]
(A.11)

A.2 Wick’s Theorem

The starting expression is the result of Appendix A.1.

Z[J ] = exp

[
− i

2

∫
J(x)G(x, y)J(y)d4xd4y

]
(A.12)

This expression can be expanded in powers of J.
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Z[J ] =
∞∑
n=0

1

n!

(
− i

2

)n ∫
d4x1...d

4x2nJ(x1)...J(x2n)G(x1, x2)...G(x2n−1, x2n) (A.13)

Note that the 2n denotes that only even powers of J appear. If we use equation

〈0|T [φ(x1)...φ(xn)]|0〉 =
1

in
δnZ[J ]

δJ(x1)...J(xn)

∣∣∣∣∣
J=0

. (A.14)

we get the expression

〈0|T [φ(x1)...φ(xn)]|0〉 =
1

n!

( i

2h̄

)n∑
σ

G(σ1, σ2)...G(x2σ−1, x2σ) (A.15)

where the sum σ runs over (2n)! permutations of 1,...,2n. The final expression of Wick’s

theorem is obtained by taking into account the symmetry G(x, y) = G(y, x).

〈0|T [φ(x1)...φ(x2n)]|0〉 =
∑
σ

iG(xσ1 , xσ2)...G(xσ2n−1 , xσ2n) (A.16)

A.3 Vector Boson Masses

The starting expression is the Higgs Lagrangian 2.64 with the potential 2.65.

LH = (∂µΦ)†(∂µΦ)− V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 (A.17)

Lets impose the left-handed doublet covariant derivative of the SU(2)L ⊗ U(1)Y gauge

symmetry stated in equation 2.44 and include the complex scalar field in unitary gauge

stated in equation 2.69. The kinetic terms become

Dµ

(
0

v + h(x)

)
= (~I(∂µ +

g1

2
Bµ) + ig2

~τ

2
~Wµ

=

(
0

∂µh(x)

)
+ i

g2

2
(g1Bµ − g2W

3
µ)

(
v + h(x)

0

)
+ i

g2

2
(g1Bµ − g2W

3
µ)

(A.18)

and
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(
Dµ

(
0

v + h(x)

))†
= (0, ∂µh(x))− ig2

2
(W 1

µ + iW 2
µ)(0, v + h(x))

−i g2

2
√

2
(W 1

µ − iW 2
µ)(0, v + h(x)).

(A.19)

Note that the following definition

τ · ~Wµ =

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ W 3
µ

)
=

(
W 3
µ W+

µ

W−µ W 3
µ

)
(A.20)

and

If equations A.18, A.19 and A.20 are plugged into equation A.17 the Higgs-Gauge section

is redefined as

LHG =
1

2
∂µh(x)∂µh(x)− µ2

2
(v + h(x))2 − λ

4
(v + h(x))4

+
g2

2

2
(v + h(x))2W+

µ W
µ− +

1

8
(g1B

µ − g2W
3µ)(g1Bµ − g2W

3
µ)(v + h(x))2.

(A.21)

Additionally it is possible to redefine the fields as

(
W 3
µ

Bµ

)
=

(
cosθW sinθW

−sinθW cosθW

)(
Zµ

Aµ

)
(A.22)

with

sinθW =
g1

(g2
2 + g2

1)1/2
. (A.23)

This gives the final expression with the mass terms for the W and Z bosons but leaving

the photon massless.

LHG =
1

2
(∂µh)(∂µh) +

g2
2

4
(v + h)2W+

µ W
−µ +

1

8

g2
2

cos2(θW )
(v + h)2ZµZ

µ

+
µ2

2
(v + h)2 − λ

4
(v + h)4.

(A.24)
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Figure B.1: Morphing result and relative uncertainty after three optimizations
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Figure B.2: Morphing result and relative uncertainty after three optimizations
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Figure B.3: Morphing result and relative uncertainty after three optimizations
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Appendix C

Signal Region Fit Distributions
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Figure C.1: Fit distributions of signal region 1(left) and 2(right) as defined in table
6.3 for Njet = 0
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Figure C.2: Fit distributions of signal region 3(left) and 4(right) as defined in table
6.3 for Njet = 0
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Figure C.3: Fit distributions of signal region 5(left) and 6(right) as defined in table
6.3 for Njet = 0
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Figure C.4: Fit distributions of signal region 7(left) and 8(right) as defined in table
6.3 for Njet = 0
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Figure C.5: Fit distributions of signal region 1(left) and 2(right) as defined in table
6.3 for Njet = 1
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Figure C.6: Fit distributions of signal region 3(left) and 4(right) as defined in table
6.3 for Njet = 1
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Figure C.7: Fit distributions of signal region 5(left) and 6(right) as defined in table
6.3 for Njet = 1
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Figure C.8: Fit distributions of signal region 7(left) and 8(right) as defined in table
6.3 for Njet = 1
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Validation Plots

 [GeV]Tm
80 85 90 95 100 105 110 115 120 125 130

cr
os

s 
se

ct
io

n 
in

 a
.u

.

0

0.5

1

1.5

2

2.5

3
morphing

v1

 [GeV]Tm
80 85 90 95 100 105 110 115 120 125 130

cr
os

s 
se

ct
io

n 
in

 a
.u

.

0.5−

0

0.5

1

1.5

2

2.5

3 morphing

v2

Figure D.1: Validation plots for the base samples in signal region 3 as defined in table
6.3 for Njet = 1
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Figure D.2: Validation plots for the base samples in signal region 3 as defined in table
6.3 for Njet = 1
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Appendix E

Cut Flow

E.1 Signal Strength Signal Cut Flow

Figure E.1: Cut flow of the signal samples of the signal strength analysis

E.2 EFT Coupling Signal Cut Flow

E.3 Shared Background Cut Flow
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Figure E.2: Cut flow of the signal samples of the EFT coupling analysis

Figure E.3: Cut flow of the background samples
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