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Introduction

An assumption which is made often in economic theory is the no-arbitrage principle or the law of
one price. This assumption states that when two goods are equivalent they should have the same
price. This is the basis for option pricing.

An option gives the buyer the right to buy or sell a stock at a certain price K sometime in
the future. If the buyer wants to exercise the option at a time T than the profit depends on the
value of the underlying stock ST . However, the future value of the stock is uncertain and therefore
probability theory is needed. In this thesis we will give a strategy to apply the law of one price in
order to determine the right price for an option. We will focus on European options.

This thesis is divided in three parts. The first part gives the mathematical background needed for
the later chapters. In chapter 1 we will shortly discuss concepts from measure theory. In chapter
2 we will give a measure theoretic approach to conditional expectation and introduce stochastic
processes and some of their properties.

The second part gives an introduction to stochastic calculus. This will be our toolkit for the
option pricing problem. In chapter 3 we introduce the Brownian motion and discuss some proper-
ties, using reference [2] chapters 7 and 8 as our guideline. In chapter 4 we introduce the Itô-integral
and discuss the martingale property. This chapter is is based on [2] chapter 10, and [9] chapter 3.
In chapter 5 we introduce the Itô formula and give an outline for the proof. In chapter 6 we will
give an introduction to stochastic differential equations. In which we will focus on the existence
and uniqueness theorem. This chapter is based on [2] section 12.1.

The third part we will discuss the option pricing problem. In chapter 7 we will shortly intro-
duce terms from finance and explain the law of one price in more detail. Then we will construct a
portfolio such that becomes risk free and then use the law of one price to derive a general solution
for the option pricing problem. This chapter is based on [2] section 16.2. In chapter 8 we will
give an explicit solution for the option pricing formula for a European call option. This chapter
is based on [2] section 16.3
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Part I

Measure theory and probability
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Chapter 1

Results from measure theory

In this chapter we will shortly discuss some definitions and theorems from measure theory which
will be used during this paper. We will discuss the notion of a measure space, measurable functions
and integrals. We will also translate these notions to the language of probability. For a more in
depth analysis see for example [1]. If one is already familiar with these topics he/she can skip this
chapter and move to chapter 2.

1.1 Measure spaces

In this section we will let X be an arbitrary set.

Definition 1.1.1: Let X be a set. A σ-algebra is a collection F ⊂ P(X) of subsets of X which
satisfies the following conditions

(i) X ∈ F

(ii) If A ∈ F then Ac ∈ F

(iii) If {An}n∈N is a sequence of sets in F then
⋃
n∈NAn ∈ F .

The pair (X,F) is called a measurable space. The sets A ∈ F are often called measurable sets.
We will ‘measure’ these sets in definition 1.1.3.

In probability theory the notion of a Borel measurable set is often used.

Definition 1.1.2: Let τEucl be the topology induced by the Euclidean metric on R. Let O
be the collection of all open sets generated by τEucl. Then the Borel-σ-algebra is the smallest
σ-algebra on X which contains the collection O. The Borel-σ-algebra is denoted by B(R) = σ(O).

Example 1.1.1:
For every x ∈ R the set (−∞,x] belongs to B(R). To show this we begin by noting that for
every n ∈ N≥1 we have (−∞,x−1/n) ∈ O ⊂ B(R). Then by (ii) in definition 1.1.1 we must have
[x−1/n,∞) ∈ B(R) for all n≥ 1. Now we can complete our argument

(−∞,x] =
∞⋂
n=1

(
−∞,x− 1

n

)
=
( ∞⋃
n=1

[
x− 1

n
,∞
))c

(ii)/(iii)
∈ B(R)

�
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10 CHAPTER 1. RESULTS FROM MEASURE THEORY

Definition 1.1.3: Let (X,F) be a measurable space. A measure on F is a function µ :F → [0,∞]
which satisfies the following conditions

(i) µ(∅) = 0

(ii) Let (An)n∈N be a sequence of disjoint sets. Then

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An)

The triple (X,F ,µ) is called a measure space.

Example 1.1.2:
Consider the measurable space (N,P(N)). On this space we can for example define the counting
measure µ which is defined as

µ(A) = |A|

Clearly |∅|= 0 therefore µ(∅) = 0 and thus µ satisfies (i) from definition 1.1.3. Now let {Aj}j∈N
be a sequence of disjoint sets. Then

µ

⋃
j∈N

Aj

=

∣∣∣∣∣∣
⋃
j∈N

Aj

∣∣∣∣∣∣=
∑
j∈N
|Aj |=

∑
j∈N

µ(Aj)

Thus µ also satisfies (ii) and therefore we conclude µ defines a measure.

�

For this thesis we will mostly consider probability spaces. A probability space is a measure space
(Ω,F ,P) with P a probability measure i.e. P(Ω) = 1. The elements A ∈ F are called events.

1.2 Measurable functions and Integrals

In this section we will give a short introduction to measurable functions and integrals of these
functions.

Definition 1.2.1: Let (Ω,F ,P) be a probability space. A function X : Ω→ R is called meas-
urable if for every B ∈ B(R) we have X−1(B) ∈ F . In the language of probability we call a
measurable function a random variable.

Theorem 1.2.1: Let (Ω,F ,P) be a probability space and let X : Ω→ R be a random variable
defined on this probability space. Then the function

PX(B) := P({ω ∈ Ω | X(ω) ∈B}) ∀B ∈ B(R)

defines a probability measure.

Proof : See for example [1] theorem 7.6. �

From definition 1.2.1 it follows that the value a random variable will take is uncertain. In many
situations one may want to know what value to expect. This value is called the expected value
of the random variable and is denoted by E[X]. In elementary probability courses a distinction
is made between continuous and discrete random variables. However, a more general definition
exists.
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Definition 1.2.2: Let (Ω,F ,P) be a probability space. Let {Ai}ni=1 be a sequence of disjoint
subsets of Ω and let {ai}ni=1 be a sequence of real valued non-negative numbers. Define X :=∑n
i=1 ai1Ai . Then the integral of X with respect to the probability measure P equals

E[X] =
∫

Ω
XdP :=

n∑
i=1

aiP(Ai) =
n∑
i=1

aiP({ω ∈ Ω | X(ω) = ai}) =
n∑
i=1

aiPX({ai})

Note that this definition equals the well known definition for the expected value of a discrete ran-
dom variable. Now we will look at how this will generalize the expected value. A random variable
which is a linear combination of indicator functions is called a simple function. It can easily
been shown that every simple function is measurable. Now let X : Ω→ [0,∞] be a non-negative
function on a probability space (Ω,F ,P). Now we will define the integral, hence the expected value.

Definition 1.2.3: The expected value of a non-negative function

E[X] =
∫

Ω
XdP := sup

{∫
Ω
ϕdP | ϕ a simple function ,ϕ≤X

}
Theorem 1.2.2: Let X → [0,∞] be a simple random variable. Then definition 1.2.2 and 1.2.3
are equivalent.

Proof : See for example [4] corollary 2.22

�

Now we can define the expected value for a random variable X : Ω→ R. Define X+ := max(X,0)
and X− := max(−X,0). It can be shown that these are measurable functions. See for example [4]
proposition 2.18

Definition 1.2.4: Let (Ω,F ,P) be a probability space and let X : Ω→ R be a random vari-
able. The expected value of X exists if and only if∫

Ω
X+dP<∞ or

∫
Ω
X−dP<∞

In which case we define the expected value of X as

E[X] =
∫

Ω
XdP :=

∫
Ω
X+dP−

∫
Ω
X−dP

A random variable X is said to be integrable if E[|X|]<∞.

Definition 1.2.5: The set Lp(Ω,F ,P) with p∈ [1,∞) is the set of all random variables X : Ω→R
such that

E[|X|p] =
∫

Ω
|X|pdP<∞

On this set we define the semi-norm

||X||p := p
√
E[|X|p]

To see that this is indeed a semi-norm see for example [1] remark 13.5(ii)

Remark 1.2.1: Suppose we have a sequence of random variables {Xj}j∈N on a probability
space (Ω,F ,P). We say that {Xj}j∈N converges to a random variable X in the Lp sense if
limj→∞ ||Xj−X||p = 0.
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1.3 Theorems

In this section we will state some important theorems from measure theory which will be used
during this thesis.

Definition 1.3.1: Let (X,F) be a measurable space. Let µ,ν be measures defined on this
space. If for every A ∈ F we have ν(A) = 0 if µ(A) = 0 then ν is called absolutely continuous with
respect to µ. The notation for this is ν� µ

Definition 1.3.2: Let (X,F ,µ) be a measure space. The measure µ is called σ-finite if there
exists a sequence {Aj}j∈N ⊂F such that µ(Aj)<∞ for every j ∈ N and

⋃
j∈NAj =X.

Theorem 1.3.1 (Radon-Nikodym): Let (X,F) be a measurable space and let µ,ν be σ-finite
measures on this space such that ν� µ. Then there exist a F-measurable function f :X→ [0,∞)
such that

ν(A) =
∫
A
fdµ, ∀A ∈ F

Proof : See for example [4] theorem 5.11

�

The function f is called the Radon-Nikodym theorem of ν with respect to µ. The Radon-Nikodym
derivative is often notated as dν

dµ .

Theorem 1.3.2 (Tonelli): Let (X,F ,µ) and (Y,B,ν) be σ-finite measure spaces and let
(X×Y,F ⊗B,(µ×ν)) be the product measure space. Now let u :X×Y → [0,∞] be F ⊗B meas-
urable. Then ∫

Y

∫
X
u(x,y)µ(dx)ν(dy) =

∫
X

∫
Y
u(x,y)ν(dy)µ(dx)

Proof : See for example [1] theorem 13.8.

�

Theorem 1.3.3 Dominated convergence theorem:
Let (X,F ,µ) be a measure space and let g :X→ [0,∞] be a function. Let f and (fn) be [−∞,∞]-
valued F measurable functions on X such that

f(x) = lim
n→∞

fn(x) and |fn(x)| ≤ g(x)

for all n ∈ N and µ almost every x ∈X then∫
fdµ= lim

n→∞

∫
fndµ

Proof :
See for example [10] theorem 2.4.5.

�



Chapter 2

Results from probability theory

In this chapter we will discuss some results from probability theory which will be used during this
paper. In the first section we will discuss the notion of conditional expectation in a more abstract
way. Then we will discuss the notion of a stochastic process in which we will mainly focus on
martingales.

2.1 Conditional expectation

In this section we will define the notion of conditional expectation. We will expand on the known
definition. We will discuss the conditional expectation with respect to an event and with respect
to a σ-algebra. Then we will discuss conditional expectation with respect to a random variable
and the connection between the definitions.

Definition 2.1.1: Let (Ω,F ,P) be a probability space and let A ∈ F be an event with posit-
ive measure. Let X : Ω→ R be a random variable. Then the conditional expectation of X given
A is defined by

E[X|A] =
∫
AXdP
P(A) = E[1AX]

P(A)
Definition 2.1.2: Let (Ω,F ,P) be a probability space and letX : Ω→R be a measurable function.
Let G ⊂ F be a sub-σ-algebra. Then the conditional expectation of X given G is defined by a G
measurable function Y such that ∫

B
Y dP =

∫
B
XdP ∀B ∈ G

The conditional expectation is denoted by E[X|G].

Theorem 2.1.1: The conditional expectation Y in definition 2.1.2 exists and is unique almost
surely.

Proof :
We have the following proof from [2] theorem 5.2. Let X be a random variable. Next we will
define X+ := max(X,0) and X− := max(−X,0). Then X =X+−X−. Then for a sub-σ-algebra
G we define Q : G → [0,∞) by

Q(A) =
∫
A
X+dP ∀A ∈ G

13



14 CHAPTER 2. RESULTS FROM PROBABILITY THEORY

Then Q defines a measure on G. It is obvious that Q� P|G hence by the Radon-Nikodym theorem
there exists a G-measurable function Y + which satisfies∫

A
X+dP = Q(A) =

∫
A
Y +dP, ∀A ∈ G

In a similar way we can find a G-measurable function Y − such that∫
A
X−dP =

∫
A
Y −dP, ∀A ∈ G

Next we define Y := Y +−Y −. Then Y is a measurable function and satisfies∫
A
XdP =

∫
A
Y dP, ∀A ∈ G

Finally we must prove that Y is unique. Suppose that Y1,Y2 are random variables which satisfy∫
A
XdP =

∫
A
Y1dP =

∫
A
Y2dP, ∀A ∈ G

Then ∫
A

(Y1−Y2)dP = 0, ∀A ∈ G

Hence Y1 = Y2 almost surely.

�

Example 2.1.1:
Suppose we toss a coin three times. Then the sample space is given by Ω = {(ω1,ω2,ω3) | ωi ∈ {0,1}},
where ωi is the result of the i-th toss and 1 denotes heads and 0 tails. On this sample space we
define the discrete σ-algebra F = P(Ω). On the measurable space (Ω,F) we define the following
probability measure:

P(A) := |A|8
Let the random variable X : Ω→R model the number of times we toss heads. Consider the event
A ∈ F where the first toss results in heads. Then we define the sub-σ-algebra G as G := σ(A) =
{∅,A,Ac,Ω}. Now we will determine the conditional expectation of X with respect to G. We
begin by noting that

X1A =


3 if (ω1,ω2,ω3) ∈ {(1,1,1)}
2 if (ω1,ω2,ω3) ∈ {(1,1,0),(1,0,1)}
1 if (ω1,ω2,ω3) ∈ {(1,0,0)}
0 else

X1Ac =

2 if (ω1,ω2,ω3) ∈ {(0,1,1)}
1 if (ω1,ω2,ω3) ∈ {(0,1,0),(0,0,1)}
0 else

Hence E[X1∅] = 0, E[X1Ω] = 3
2 , E[X1A] = 1 and E[X1Ac ] = 1

2 . Now we will define the random
variable E[X|G] as

E[X|G] = 21A+1Ac

This is a simple function hence its integral is well defined. One can easily check that
∫
BE[X|G]dP=∫

BXdP for all B ∈ G. Hence by theorem 2.1.1 E[X|G] is the conditional expectation and is unique
almost surely.

�
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Now we will consider the conditional expectation of a random variable X given another random
variable Y .

Definition 2.1.3: Let (Ω,F ,P) be a probability space. Let X : Ω→ R be a random variable.
Then we define the σ-algebra generated by X σ(X) as the smallest σ-algebra such that X : Ω→R
is measurable.

Definition 2.1.4: Let (Ω,F ,P) be a probability space and let X,Y : Ω→ R be random vari-
ables defined on this probability space. The conditional expectation of X given Y is defined
as

E[X|Y ] = E[X|σ(Y )]

We will now state and prove some important properties of conditional expectation which will be
used in this thesis.

Theorem 2.1.2: Let (Ω,F ,P) be a probability space and X,Y : Ω→ R be a random variables.
Let H,G ⊂ F be sub-σ-algebras. Then the following properties hold.

P1 : Law of total expectation: E[E[X|H]] = E[X]

P2 : Taking out what is known: If X is H-measurable then E[XY |H] =XE[Y |H].

P3 : Tower property: If H⊂ G then E[E[X|G]|H] = E[X|H]

Proof :
For P1 note that Ω∈H then the statement follows by definition. For P2 see for example [3] theorem
8.7(ii). For P3 note that

∫
H E[X|G]dP=

∫
HXdP for allH ∈H becauseH⊂G the statement follows

from theorem 2.1.1.

�

2.2 Stochastic processes

In this section we will shortly discuss the notion of a stochastic process. We will give the definition
of a filtration and a stochastic process. Then we will focus on a special kind of stochastic process:
a martingale

Definition 2.2.1: Let (Ω,F) be a measurable space. Let {Fs}s∈I with I ⊂ R be a collection
of sub-σ-algebras of F . If Fs ⊂Ft ⊂F for s, t∈ I such that s≤ t then {Fs}s∈I is called a filtration.

A filtration can be considered as the increment of information over time. Suppose we have a
measurable space (Ω,F). We want to know which ω ∈ Ω is the event that happened. We will
illustrate the increment of information in the following example.

Example 2.2.1:
Suppose we toss a coin three times. Then the sample space is given by Ω = {0,1}3. The σ-algebra
on this sample space is given by F = P(Ω). Before we toss the coin all we know is something in
Ω will happen, hence we have

F0 = {∅,Ω}

Now suppose we have tossed the coin one time. Then there are two possibilities. If head comes
up, the final outcome of the experiment will be in the set AH = {(1,0,0),(1,0,1),(1,1,0),(1,1,1)}.
If tale comes up than the final outcome will be in the set AT = Ω/AH . Therefore we have

F1 = {∅,AH ,AT ,Ω}
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After the second toss there are four possible outcomes: HH,HT,TH,TT. These outcomes imply
that the final outcome of the experiment will be in one of the sets AHH = {(1,1,0),(1,1,1)} ,AHT =
{(1,0,0),(1,0,1)} ,ATH = {(0,1,0),(0,1,1)} ,ATT = {(0,0,0),(0,0,1)}. Therefore we have

F2 = {∅,AH ,AT ,AHH ,AHT ,ATH ,ATT ,Ω}

Finally after the third toss all information is available, hence F3 = F . We note that F0 ⊂ F1 ⊂
F2 ⊂F3 ⊂F hence this is a filtration.

�

Definition 2.2.2: A stochastic process is a sequence of random variablesXt : Ω→R parameterized
by t ∈ I ⊂ R. The parameter t is often interpreted as time.

(i) If I is a discrete set, the process is called a discrete stochastic process. If I is an interval the
process is called a continuous time stochastic process.

(ii) For each ω ∈ Ω the mapping t 7→Xt(ω) is called a sample path.

(iii) The filtration {Ft}t∈I generated by the process Xt, Ft := σ({Xs | 0≤ s≤ t}) is called a
natural filtration of Xt.

Definition 2.2.3: Let {Ft}t∈I be a filtration and let {Xt}t∈A be a stochastic process. If for
every t ∈ I the random variable Xt is measurable with respect to Ft. Then the stochastic process
{Xt}t∈I is said to be adapted to the filtration {Ft}t∈I .

Definition 2.2.4: Let {Xt}t∈I be a stochastic process and let Ft = σ(Xu | 0≤ u≤ t) be a sub-σ-
algebra generated by the history of the process up to time t. The stochastic process {Xt}t∈I has
the Markov property if for every 0≤ s≤ t we have

P(Xt ≤ y |Fs) = P(Xt ≤ y | Xs)

This means that if we know Xs the future movements of the process will be independent from
what happened in the past of the process.

Definition 2.2.5: Let {Xt}t∈I be a stochastic process adapted to a filtration {Ft}t∈I such
that Xt is integrable for every t ∈ I. The process {Xt}t∈I is said to be a martingale with respect
to {Ft}t∈I if for every 0≤ s≤ t we have

Xs = E[Xt|Fs]

Definition 2.2.6: Let {Xt}0≤t≤T be a stochastic process. Let P := {t0, t1, ..., tn} be a partition
of [0,T ] and let ∆(P) be the mesh of this partition. Define

Q(P,Xt) =
n∑
i=1
|Xti −Xti−1 |

2

Then the quadratic variation of the stochastic process {Xt}0≤t≤T is defined as

[X,X]T := lim
∆(P)→0

Q(P,Xt)

With convergence in the L2 sense.

Lemma 2.2.1:
The quadratic variation of the deterministic function f(t) = t equals 0 with probability 1.
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Proof :
We have by definition

[f(t),f(t)]T := lim
∆(P)→0

n−1∑
j=0

(tj+1− tj)2)≤ lim
∆(P)→0

∆(P)
n−1∑
j=0

tj+1− tj = lim
∆(P)→0

∆(P)T = 0

Note [(f(t),f(t)]T ≥ 0 hence the statement follows from the squeeze theorem.

�
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Part II

Stochastic calculus
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Chapter 3

Brownian motion

In this chapter we will introduce the Brownian motion. We will discuss the definition and element-
ary properties of the Brownian motion. We will also discuss the relation between the Brownian
motion and martingales. The main goal of this chapter is to prove Girsanov’s theorem.

3.1 Brownian motion: a stochastic process

In this section we will give the definition of the Brownian motion. Then we will derive the Brownian
motion in such a way that will be useful for simulation. We will begin by giving the definition
of the one-dimensional Brownian motion. In this section we follow the treatment as given by [2]
section 7.2

Definition 3.1.1: A stochastic process {Wt}t≥0 is called a Brownian motion if it has the following
properties:

(i) W0 = 0 and t 7→Wt is continuous with probability 1

(ii) For 0≤ s≤ t we have Wt−Ws ∼N (0, t−s)

(iii) For 0≤ t1 < t2≤ t3 < t4≤ ·· · ≤ t2n−1 < t2n. The incrementsWt2−Wt1 ,Wt4−Wt3 , ...,Wt2n−
Wt2n−1 are independent.

With this definition in mind we will now give a proper motivation for the existence of this stochastic
process. Let Ω be the set of all continuous functions ω : [0,∞)→ R such that ω(0) = 0. On this
space we want to define a σ-algebra F such that we can define a probability measure on this space.
In order to do this [2] considers cylinder subsets of Ω.

Definition 3.1.2: Consider the space Ω. For arbitrary time points 0 = t0 < t1 < · · · < tn = t
and arbitrary intervals I1, ..., In ⊂ R we define the cylinder subset as

C(t1, ..., tn, I1, ..., In) = {ω ∈ Ω | ω(t1) ∈ I1, ...,ω(tn) ∈ In}

Next we define the σ-algebra Ft as the σ-algebra generated by the cylinder subsets C(t1, ..., tn, I1, ..., In)
where n≥ 1 and 0 = t0 < t1 < · · ·< tn ≤ t. Because we are considering more cylinder subsets as t
becomes larger we can conclude that {Ft}t≥0 is a filtration. We can now define the σ-algebra F
on Ω by

F := σ

⋃
t≥0
Ft


21



22 CHAPTER 3. BROWNIAN MOTION

The filtered measurable space (Ω,{Ft}t≥0 ,F) is called the sample space of the Brownian motion.
Finally we will construct a probability measure P.

Definition 3.1.3: Let ∆tj = tt− tj−1 and define P̃(C(t1, ..., tn, I1, ..., In) by∫
I1

· · ·
∫
In

p(∆t1 ;0;x1)p(∆t2 ;x1;x2)...p(∆tn : xn−1;xn)dxn...dx1

where p(∆tj ;x;y) denotes the density function of a N (x,∆tj) random variable. Then by the
Kolmogorov extension theorem P̃ can be extended to a probability measure P on (Ω,F).

We have now constructed a probability space (Ω,F ,P). On this probability space we will construct
a stochastic process {Wt}t≥0 for which we will show that this satisfies the conditions in definition
3.1.1 and therefore is a Brownian motion.

Figure 3.1: Simulation: 30 sample paths of a Brownian motion

Definition 3.1.4: Consider the probability space (Ω,F ,P). Define the stochastic process {Wt}t≥0
on this probability space byWt(ω) =ω(t). Note thatW−1

t (I) = C(t,I) for a Borel set I ⊂R. There-
fore σ(Wt)⊂Ft for all t and thus {Wt}t≥0 is adapted to {Ft}t≥0.

Theorem 3.1.1: The process {Wt}≥0 from definition 3.1.4 is a Brownian motion.

Proof : See for example [2] theorem 7.8.

�

Theorem 3.1.2: Let {Wt}t≥0 be a Brownian motion then we have [Wt,Wt]T = T .

Proof :
Let Z ∼N (0,1) then it can be shown that E[Z4] = 3 for example by using the moment generating
function.
Let tT > 0 and consider the interval [0,T ]. Let 0 = t0 < t1 < t2 < · · · < tn = T be a partition P
of [0,T ]. Define ∆(P) := max1≤i≤n |ti− ti−1|. Now let Ii = (Wti −Wti−1)2− (ti− ti−1). By the
independent increment property of a Brownian motion and using the normal distribution property
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we have E[Ii] = 0 for i= 1, ...,n. Next we note that

n∑
i=1
Ii =Q(P)−T

Next we determine the second moment of this random variable

E
[
(Q(P)−T )2]=

n∑
i=1

E[I2
i ] =

n∑
i=1

E[(Wti −Wti−1)4−2(Wti −Wti−1)2(ti− ti−1) + (ti− ti−1)2]

=
n∑
i=1

E[(Wti −Wti−1)4]−2
n∑
i=1

(ti− ti−1)2 +
n∑
i=1

(ti− ti−1)2

Then by using the E[Z4] = 3 property we obtain the following estimation.

E
[
(Q(P)−T )2]= 3

n∑
i=1

E(ti− ti−1)2−2
n∑
i=1

(ti− ti−1)2 +
n∑
i=1

(ti− ti−1)2 = 2
n∑
i=1

(ti− ti−1)2

≤ 2∆(P)
n∑
i=1

(ti− ti−1) = 2∆(P)T

Now suppose we have a sequence {Pj}j∈N of partitions of [0,T ] such that limj→∞∆(Pj) = 0. For
every j ∈ N we have

0≤ E[|Q(Pj)−T |2]≤ 2∆(Pj)T

Then applying the squeeze theorem gives us

lim
j→∞

E[|Q(Pj)−T |2] = 0

From which we conclude that Q(Pj) converges to T in the L2-sense.

�

3.2 Brownian motion and martingales

In this section we will discuss the relation between the Brownian motion and martingales. We will
give examples of martingales which come from the Brownian motion.

Lemma 3.2.1: Let {Wt}t≥0 be a Brownian motion and let θ be a real constant. Then the
stochastic process {Lt}t≥0 defined by

Lt = e−
1
2θ

2t−θWt

is a martingale.
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Proof : Let 0≤ s≤ t.

E[Lt|Fs] = E[e−
1
2θ

2t−θWt |Fs]

= e−
1
2θ

2tE[e−θ(Wt−Ws)e−θWs |Fs]

= e−
1
2θ

2tE[e−θ(Wt−Ws)|Fs]E[e−θWs |Fs] Wt−Ws are Ws =Ws−W0 are independent

= e−
1
2θ

2tE[e−θ(Wt−Ws)]E[e−θWs |Fs]

= e−
1
2θ

2te
1
2θ

2(t−s)e−θWs

= e−
1
2θ

2s−θWs

= Ls

�

We will now give some examples of a martingale which come from the Brownian motion.

Theorem 3.2.1: Let {Wt}t≥0 be a Brownian motion. Then the following stochastic processes
are martingales:

(i) {Wt}t≥0

(ii)
{
eWt− 1

2 t
}
t≥0

.

Proof :
We will first prove (i). Let 0≤ s≤ t then by (iii) from definition 3.1.1 we haveWt−Ws independent
from Fs. Hence

E[Wt|Fs] = E[Wt−Ws+Ws|Fs] = E[Wt−Ws|Fs] +E[Ws|Fs] = E[Wt−Ws] +Ws =Ws

this proves (i). For (ii) note that we can apply lemma 3.2.1 with θ =−1.

�

We will finish this section with a theorem which will be used in proving Girsanov’s theorem in the
next section.

Theorem 3.2.2: Let {Mt}t≥0 be a martingale with respect to a filtration {Ft}t≥0 and a probab-
ility measure Q. IfMt is continuous, M0 = 0 and [M,M ]t = t then {Mt}t≥0 is a Brownian motion.

Proof : This is theorem 7.13 from [2]

�

3.3 Girsanov’s Theorem

Suppose we have a Brownian motion {Wt}≥0 on a measurable space (Ω,{Ft}t≥0 ,F) with re-
spect to a probability measure P. Let θ be a real constant and consider the stochastic process
Xt =Wt+ tθ which is called a Brownian motion with drift. In this section we want to find a prob-
ability measure Q such that the process {Xt}0≤t≤T for some T > 0 is a Brownian motion with
respect to the probability measure Q. An additional requirement is that the probability measures
P and Q must be equivalent.

Remark 3.3.1: If X is a random variable and P is a probability measure we will denote the
expectation of X with respect to this probability measure as EP[X].
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Definition 3.3.1: Let {Lt}t≥0 be the stochastic process as defined in lemma 3.2.1. We know
that Lt is a martingale and we note that E[Lt] = E[L0] = 1. Let T > 0 then we can define the
probability measure Q on (Ω,FT ) by dQ = LT dP. which means that for every A ∈ FT we have

Q(A) =
∫
A
LT dP

Theorem 3.3.1: Let 0≤ s≤ t and let Yt be an Ft measurable random variable. Then we have

EQ[Yt|Fs] = EP
[
Yt
Lt
Ls
|Fs
]

Proof : See for example [2] lemma 8.1

�

Lemma 3.3.1: Let {Wt}t≥0 be a Brownian motion and let θ be a real constant, then

E[Wte
θWt ] = θte

1
2θ

2t and E[W 2
t e
θWt ] = (t+θ2t2)e

1
2θ

2t

Proof :
We note that Wt ∼N (0, t). Let k ∈ {1,2} then

E[W k
t e

θWt ] =
∫
R

1√
2πt

wkeθwe−
1
2
w2
t dw = e

1
2θ

2t
∫
R

wk√
2πt

e
− 1

2

(
w−θt√

t

)2

dw

The last integral equals the k-th moment of a N (θt, t) distribution. For k = 1 this equals θt and
for k = 2 this equals t+θ2t2 proving the lemma.

�

Lemma 3.3.2: Let {Wt}t≥0 be a Brownian motion and let 0≤ s < t and θ a real constant. Then

E[Wte
θWt |Fs] = [Ws+θ(t−s)]e

1
2θ

2(t−s)+θWs

Proof :
By using linearity of expectation we can write

E[Wte
θWt | Fs] = E[(Wt−Ws)eθ(Wt−Ws)eθWs |Fs] +E[Wse

θ(Wt−Ws)eθWs |Fs]

Taking out what is known then gives us

E[(Wt−Ws)eθ(Wt−Ws)|Fs]eθWs +Wse
θWsE[eθ(Wt−Ws)|Fs]

Now we can use that Wt−Ws is independent from Fs ,Wt−Ws ∼ N (0, t− s) and apply lemma
3.3.1 to obtain the following expression

θ(t−s)e
1
2θ

2(t−s)eθWs +Wse
θWse

1
2θ

2(t−s)

Rewriting this expression gives us the desired result.

�
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Theorem 3.3.2: Let Q be the probability measure from definition 3.3.1 and let Xt = Wt + tθ
with Wt a Brownian motion with respect to P. Then Xt is a martingale with respect to Q.

Proof :
Let 0≤ s≤ t then from lemma 3.3.2 we can conclude

EP[WtLt|Fs] = e−
1
2θ

2tEP[Wte
−θWt |Fs] = [Ws−θ(t−s)]Ls

Then by using theorem 3.3.1

EQ[Xt|Fs] = EP[XtLtL−1
s |Fs] = EP[(Wt+ tθ)LtL−1

s |Fs]

Taking out what is known and applying the definition of Lt gives us

L−1
s EP[WtLt|Fs] +L−1

s tθEP[Lt|Fs]

Using that Lt is a martingale with respect to P and using the first comment in this proof we obtain
the desired result.

L−1
s ([Ws−θ(t−s)]Ls) +L−1

s tθLs =Ws+θs=Xs

�

Theorem 3.3.3: Girsanov’s theorem:
Let {Wt}0≤t≤T be a Brownian motion with respect to the probability measure P and the filtration
{Ft}0≤t≤T on a probability space (Ω,F ,P). Let θ be a real constant and let Xt =Wt+ tθ. Let Q
be the probability measure from definition 3.3.1. Then Xt is a Brownian motion with respect to Q.

Proof :
Because Lt is non-negative it is obvious that P and Q are equivalent probability measures. From
theorem 3.3.2 we know that Xt is a martingale with respect to Q. BecauseWt is almost surely con-
tinuous we have Xt =Wt+ tθ continuous almost surely. It is obvious that X0 = 0 and [X,X]t = t
from lemma 2.2.1. We see that Xt satisfies the conditions from theorem 3.2.2 and thus we conclude
that Xt is a Brownian motion with respect to Q

�

Figure 3.2: Simulation: 30 sample paths of a Brownian motion with drift θ = 1
2



Chapter 4

The Itô integral

In this chapter we will construct the Itô integral and discuss important properties such as Itô
isometry and the martingale property.

4.1 Definition of the Itô integral

In this section we will construct the Itô integral. We begin by introducing a class of functions as
defined in [9] definition 3.4

Definition 4.1.1: Let V = V(S,T ) be the class of functions f : [0,∞)×Ω→ R such that

(i) (t,ω) 7→ f(t,ω) is B([0,∞))⊗F measurable

(ii) f(t,ω) is Ft adapted

(iii)

E

[∫ T

S
|ft(ω)|2dt

]
<∞

Definition 4.1.2: Let T > 0 and consider the interval [0,T ]. Let = 0 = t0 < t1 < t2 < · · ·< tn = T
be a partition of this interval. Suppose that for every i∈ {0, ...,n−1} there exist a Fti measurable
random variable ξti ∈ L2(Ω,F ,P). Then a stochastic process of the form

ft(ω) =
n−1∑
i=0

ξti1[t1,ti−1)(t)

is called a simple process.

Corollary 4.1.1: The set H2
0 of all simple processes is a subset of V.

Proof :
Because ξti ∈ L2(Ω,F ,P) we have by definition E[|ξti |2]<∞. Hence we have

n−1∑
i=0

E[|ξti |
2](ti+1− ti)<∞

�

27
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Definition 4.1.3: Itô integral of a simple process:
Let {ft(ω)} be a simple process and let {Wt}t≥0 be a Brownian motion. Then the Itô integral is
defined as

I(f) =
n−1∑
i=0

ξti(ω)(Wti+1(ω)−Wti(ω))

We can now begin by deriving some important properties of the Itô integral.

Theorem 4.1.1: Itô isometry:
Let f ∈H2

0. Then I(f) ∈ L2(Ω,F ,P) and the map I :H2
0→L2(Ω,F ,P) is a norm preserving map.

Proof :
In this proof we will use the notation ∆Wti :=Wti+1 −Wti . Let f ∈H2

0.

E|I(f)|2] = E

(n−1∑
i=0

ξti(Wti+1 −Wti)
)2= E

(n−1∑
i=0

ξti∆Wti

)2
Rewriting this expression gives us

E

[
n−1∑
i=0

ξ2
ti

(∆Wti)
2

]
+ 2E

∑
j<i

ξtiξtj∆Wti∆Wtj


Note that because ξt and ∆Wt are independent we can take the product of the expectations. Fur-
thermore we have by the independent increment property of the Brownian motion that E[∆Wti∆Wtj ] =
E[∆Wti ]E[∆Wtj ] = 0. Also we have E[(∆Wti)2] = ti+1− ti. Using these arguments we can finish
our expression

E[I(f)2] =
n−1∑
i=0

E[|ξti |
2](ti+1− ti)<∞

Thus we have I(f) ∈ L2(Ω,F ,P). We will now consider the norm of f ∈H2
0. We have

|ft(ω)|2 =
(
n−1∑
i=0

ξti(ω)1[ti,ti+1)(t)
)2

=
n−1∑
i=0
|ξti |

21[ti,ti+1) + 2
∑
j<i

ξtiξtj1[ti,ti+1)(t)1[tj ,tj+1)

=
n−1∑
i=0
|ξti(ω)|21[ti,ti+1)(t)

Hence ∫ ∞
0
|ft(ω)|dt=

n−1∑
i=0
|ξti(ω)|2(ti+1− ti)

From which we can see

E
[∫ ∞

0
|ft(ω)|2dt

]
=
n−1∑
i=0

E[|ξti |
2](ti+1− ti)

Which proves the theorem.

�

With this theorem we can expand the notion of the Itô integral to a bigger set of stochastic
processes. We present the arguments of [9]. Let f ∈ V then there exists a sequence of simple
processes (fn) that converges to f see appendix B theorem B.2. Because this is a convergent



4.1. DEFINITION OF THE ITÔ INTEGRAL 29

sequence this is a Cauchy-sequence. Because the Itô integral is norm preserving the sequence
I(fn) ∈ L2(Ω,F ,P) is a Cauchy-sequence as well. Because the space L2(Ω,F ,P) is complete there
exists an almost surely unique limit I(f) ∈ L2(Ω,F ,P) i.e.

lim
n→∞

E[|I(f)− I(fn)|2] = 0

Therefore we have the following definition.

Definition 4.1.3: Let f ∈ V and let (fn) be a sequence of simple processes converging to f .
Then we define the Itô integral of f to be

I(f) = lim
n→∞

I(fn)

Before we will look at an example we will first give a new definition.

Definition 4.1.4: Let {ft}t≥0 be a stochastic process adapted to the filtration {Ft}t≥0. Then
the process

{
1[0,T ](t)ft

}
t≥0 is adapted to {Ft}t≥0 as well. Then for some T > 0 we define the Itô

integral of {ft}t≥0 on [0,T ] by ∫ T

0
ftdWt :=

∫ ∞
0

1[0,T ](t)ftdWt

Example 4.1.1:
We will show that ∫ T

0
WtdWt = 1

2W
2
T −

1
2T

We will begin by introducing the sequence of simple processes (fn) by

fn(t,ω) :=
n−1∑
i=0

Wti1[ti,ti+1)(t)

Note that the sequence (fn) converges to Wt1[0,T ](t) because

E
[∫ ∞

0
|Wt1[0,T ](t)−fn(t)|2dt

]
=
n−1∑
i=0

(∫ ti+1

ti

E[(Wt−Wti)
2]dt

)

=
n−1∑
i=0

(∫ ti+1

ti

(t− ti)dt
)

= 1
2

n−1∑
i=0

(ti+1− ti)2

≤ 1
2 max

0≤i≤n−1
|ti+1− ti|

n−1∑
i=0

(ti+1− ti) = 1
2T max

0≤i≤n−1
|ti+1− ti|

Note that we may interchange the expectation and the integral because of Tonelli’s theorem. Let
max0≤i≤n−1 |ti+1− ti| → 0 if n→ 0. Therefore we have convergence in V. Note that the Itô
integral of this process is given by

I(fn) =
n−1∑
i=0

Wti(Wti+1 −Wti) = 1
2

n−1∑
i=0

(W 2
ti+1 −W

2
ti

)− 1
2

n−1∑
i=0

(Wti+1 −Wti)
2

Note that the first part of the last expression equals 1
2W (T )2. In the last part of the expression

we recognize the formula for the quadratic variation. Hence by theorem 3.1.2 if we take the limit
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Figure 4.1: Simulation: 30 sample paths of the stochastic process
(∫ t

0 WsdWs

)
0≤t≤3

this will converge to −1
2T in the L2-sense. Hence we conclude∫ T

0
WtdWt = 1

2W
2
T −

1
2T

4.2 The martingale property of the Itô integral

In this section we will prove the martingale property of the Itô integral.

Theorem 4.2.1: Let (Ω,{Ft}t≥0 ,P) be a probability space with a filtration. Let {Wt}t≥0
be a (P,{Ft}t≥0)-Brownian motion and let {gt(ω)}t≥0 be a Ft predictable process such that
E[|g(t,ω)|2]<∞. Then the stochastic process

Mt :=
∫ t

0
g(s,ω)dWs

is a martingale.

Lemma 4.2.1: Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra. Then
the map E[·|G] : L2(Ω,F ,P)→L2(Ω,F ,P) maps convergent sequences to convergent sequences.

Proof of the lemma:
This proof is lemma 6.11 from [7]. Note that x 7→ x2 is convex hence we can use Jensen’s inequality
to obtain the following inequality

E[|Xn−X||G]2 ≤ E[|Xn−X|2|G]

Then the result is obtained by taking the expectation on both sides and raising to the power 1
2 .

�

Proof of theorem 4.2.1:
Let us first assume g(s,ω)∈H2

0. Let 0≤ r≤ t. Let 0 = t0 < t1 < · · ·< tn = t be the partition of [0, t]
for which g is defined. We then rewrite the partition 0 = t0 < t1 < · · ·< tj ≤ r < tj+1 < · · ·< tn = t
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such that

g(s,ω) =
j−1∑
i=0

ξti1[ti,ti+1)(s) + ξtj

(
1[tj ,r)(s) +1[r,tj+1)(s)

)
+

n−1∑
i=j+1

ξti1[ti,ti+1)(s)

From this we see

E[Mt|Fr] = E
[∫ t

0
g(s,ω)dWs|Fr

]
= E

[∫ t

r
g(s,ω)dWs+

∫ r

0
g(s,ω)dWs|Fr

]
= E

[∫ t

r
g(s,ω)dWs|Fr

]
+E

[∫ r

0
g(s,ω)dWs|Fr

]
= E

[∫ t

r
g(s,ω)dWs

]
+E

[∫ r

0
g(s,ω)dWs|Fr

]
The last step comes from the fact thatWti+1−Wti is independent of Fr if ti ≥ r. We will continue
with the expression

= E[ξtj (ω)]E[Wtj+1 −Wr] +
n−1∑
i=j+1

E[ξti(ω)]E[∆Wtj ] +
∫ r

0
g(s,ω)dWs

Note that E[∆Wtj ] = 0 for all j hence the sum will be cancelled. This leaves us with

E[Mt|Fr] =
∫ r

0
g(s,ω)dWs =Mr

Thus if g(s,ω)∈H2
0 the process {Mt} is a martingale. Now assume g(s,ω)∈V. Then there exists a

sequence (gn)⊂H2
0 converging to g. The conditional expectation map maps convergent sequences

to convergent sequences by lemma 4.2.1 hence

E
[∫ t

0
g(s,ω)dWs|Fr

]
= lim
n→∞

E
[∫ t

0
gn(s,ω)dWs|Fr

]
= lim
n→∞

∫ r

0
gn(s,ω)dWs =

∫ r

0
g(s,ω)dWs

Where we used the definition of the Itô integral.

lim
n→∞

∫ r

0
gn(s,ω)dWs =

∫ r

0
g(s,ω)dWs

�

Corollary 4.2.1:

E
[∫ t

0
f(s,ω)dWs

]
= 0

Proof :
By theorem 4.2.1 we know that the Itô integral is a martingale. Next we note that

E[M0] := E
[∫ 0

0
f(s,ω)dWs

]
= E[0] = 0

Then using the martingale property

E
[∫ t

0
f(s,ω)dWs

]
= E[Mt] = E[M0] = 0

�
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Chapter 5

The Itô formula

In this chapter we will discuss the Itô formula. We will begin by stating the formula and discussing
some examples. In the second part of this chapter we will give an intuitive derivation of the Itô
formula.

5.1 The formula and examples

Theorem 5.1.1: Let f ∈ C2([0,∞)×R) and let T > 0 then the following equality holds a.s.

f(T,WT )−f(0,W0) =
∫ T

0
ft(s,Ws)ds+

∫ T

0
fx(s,Ws)dWs+ 1

2

∫ T

0
fxx(s,Ws)ds (5.1)

We will next consider some examples.

Example 5.1.1:
Suppose we have f(t,x) = x. Then we obviously have f ∈ C2([0,∞)×R). Therefore the partial
derivatives exist and are continuous. We can now apply the Itô formula

WT =WT −W0 =
∫ T

0
dWs

�

Example 5.1.2:
Suppose we want to evaluate the stochastic integral∫ T

0
eWsdWs

To do this we will consider the function f(t,x) = ex. We have f ∈ C2([0,∞)×R) hence we can
apply the Itô formula. This gives us

eWT −1 = eWt −e0 =
∫ T

0
0ds+

∫ T

0
eWsdWs+ 1

2

∫ T

0
eWsds

Then rewriting this expression gives us the following result.∫ T

0
eWsdWs = eWT −1− 1

2

∫ T

0
eWsds

33



34 CHAPTER 5. THE ITÔ FORMULA

5.2 Proof of the Itô formula

In this section we will give an outline of the proof. For an in depth treatment of the proof see for
example [2] theorem 11.1. We will begin with a lemma which will be useful in the proof for the
Itô formula.

Lemma 5.2.1: Cross-variation
Let T > 0 and consider the interval [0,T ]. Let t0 < t1 < · · ·< tn be a partition of this interval and
let ∆(P) denote the mesh of this interval. We then have for the cross-variation of Wt with t

lim
∆(P)→0

n−1∑
j=0

(Wtj+1 −Wtj )(tj+1− tj) = 0

Proof
We begin by noting that [tj , tj+1] are compact sets for all j and that Wtj+1 −Wtj are continuous
paths hence a maximum exists. Therefore we can estimate the limit by

lim
∆(P)→0

n−1∑
j=0

(Wtj+1 −Wtj )(tj+1− tj)≤ lim
∆(P)→0

max
1≤u≤n−1

|Wtu+1 −Wtu |
n−1∑
j=0

(tj+1− tj)

= lim
∆(P)→0

max
1≤u≤n−1

|Wtu+1 −Wtu |T = 0

Where the last step comes from the fact that {Wt} is continuous on [0,T ].

�

Proof of the Itô formula:
Let f : [0,∞)×R→ R satisfy the conditions from theorem 5.1.1. We will also assume that all
partial derivatives are bounded. This will not change the final result, see for example [2] theorem
11.1. Consider a time interval [0,T ] and let 0 = t0 < t1 < · · ·< tn = T be a partition of this interval.
The mesh of this partition will be denoted by ∆(P). In this proof we write δtj = tj+1− tj and
δWtj =Wtj+1−Wtj . We will write fu for the partial derivative with respect to u evaluated in the
point (tj ,Wtj ). From this we note that for a point (tj ,Wtj ) the Taylor expansion of f without
the higher order terms is given by:

f(tj+1,Wtj+1) = f(tj ,Wtj ) +ftδtj +fxδWtj + 1
2
(
ftt(δtj)2 +fxtδtjδWtj +fxx(δWtj )

2)

f(T −Wt)−f(0,W0) =
n−1∑
i=0

{
f(tj+1,Wtj+1)−f(tj ,Wtj )

}
=
n−1∑
j=0

ftδtj +fxδWtj + 1
2
(
ftt(δtj)2 +fxtδtiδWtj +fxx(δWtj )

2)
We will now evaluate each sum as we take the limit for ∆(P)→ 0. We first consider the partial
derivative ft

lim
∆(P)→0

n−1∑
j=0

ft(tj+1− tj) =
∫ T

0
ft(s,Ws)ds
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which is a Riemann integral. Next we consider the partial derivative fx.

lim
∆(P)→0

n−1∑
j=0

fx(Wtj+1 −Wtj ) =
∫ T

0
fx(s,Ws)dWs

which follows from the definition of the Itô integral. We now consider the partial derivative fxx.
We note that this sum resembles theorem 3.1.2. Therefore we conclude

lim
∆(P)→0

n−1∑
j=0

1
2fxx(Wtj+1 −Wtj )

2 = 1
2

∫ T

0
fxx(s,Ws)ds

for a more rigorous argument of this statement see for example [2] theorem 11.1. Finally we will
show the remaining sums converge to 0. We then have

lim
∆(P)→0

n−1∑
j=0

fttδt
2
j ≤ lim

∆(P)→0
∆(P)

n−1∑
j=0

ftδtj = 0

and

lim
∆(P)→0

n−1∑
j=0

fxtδtjδWtj ≤ lim
∆(P)→0

max |Wtj+1 −Wtj |
n−1∑
j=0

fxtδtj = 0

We have that the sums converge to finite integrals. We have ∆(P) converging to 0 by definition
and max |Wtj+1 −Wtj | converging to 0 because of the continuity of {Wt}. In [9] theorem 4.2 it
is stated that the higher terms are given by O(|δtj |2 + |δWtj |2). Therefore the total remainder
equals

O

(∑
i

δt2j + δW 2
tj

)
We will now show that the remainder converges to 0 in the L2 sense. We have

E

(O(∑
i

δt2j + δW 2
tj

))2
=

∑
j

E[O(δt4j + 2δt2jδW 2
tj

+ δW 4
tj

)] +
∑
i,j

E[O(δt2j + δW 2
tj

)(δt2i + δW 2
ti

)]

We note that these terms converge to 0 as δtj → 0 because of lemma 2.2.1 and 5.2.1 and because
E[δW 4

tj
] = 3δt2j .

�

Remark 5.2.1: It can be shown that is is sufficient to state that only fx,fxx and fxt exist and
are continuous. Because this propery will not be used in this thesis and because we only give an
outline for the proof we only consider the case for f ∈ C2([0,∞)×R).

5.3 The general Itô formula

Definition 5.3.1: Itô process:
A stochastic process {Xt}t≥0 of the form

Xt =X0 +
∫ t

0
asds+

∫ t

0
bsdWs (5.2)
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is called an Itô process if {at} ,{bt} are adapted to {Ft}t≥0 such that

P

(∫ T

0
|as|ds <∞

)
= 1

and
{
bt1[0,T ](t)

}
t≥0 ∈ V for all T > 0.

Remark 5.3.1: We will often write (5.2) as dXt = atdt+ btdWt

Theorem 5.3.1: General Itô formula
Consider an Itô process {Xt}t≥0 such that dXt = atdt+ btdWt and let f : [0,∞)×R→ R be a
function whose partial derivatives ft,fx and fxx exist and are continuous. We further assume
fx(t,Xt)bt1[0,T ](t) ∈ V for all T > 0. Then f(t,Xt) is an Itô process and we have

f(t,Xt)−f(0,X0) =
∫ t

0

(
ft(s,Xs) +fx(s,Xs)as+ 1

2fxx(s,Xs)b2s
)
ds+

∫ t

0
fx(s,Xs)dWs (5.3)

almost surely.

Proof
See for example [9] theorem 4.2.

�

Remark 5.3.2: We will keep the notation as introduced in remark 5.3.1. Then we can rewrite
(5.3) as

df(t,Xt) =
(
∂f

∂t
+ ∂f

∂x
at+ 1

2
∂2f

∂x2 b
2
t

)
dt+ ∂f

∂x
btdWt

Remark 5.3.3: In theorem 4.2 from [9] it is noted that (5.3) is equivalent to the expression

df(t,Xt) = ∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt+ 1

2
∂2f

∂x2 (t,Xt)(dXt)2



Chapter 6

Stochastic differential equations

In this chapter we will give an introduction to the theory of stochastic differential equations (SDE).
We will give the definition of a SDE and give some examples on how to solve them. Then we will
give the conditions for which there exists a unique solution to the SDE.

6.1 Definition and example

Let (Ω,F ,P) be a probability space and let {Wt}t≥0 be a P-Brownian motion defined on this
probability space. Let µ : [0,∞)×R→R, σ : [0,∞)×R→R be continuous functions. Suppose we
are given the following SDE

dXt = µ(t,Xt)dt+σ(t,Xt)dWt, X0 = x0 (6.1)

Definition 6.1.1: Let {Xt} be a stochastic process which satisfies (6.1). Then {Xt} is called a
solution to the SDE.

We will now give a theorem for the uniqueness of the solution. This theorem will be proved
in the next section.

Theorem 6.1.1: Existence and uniqueness
We are given (6.1) with µ,σ : [0,∞)×R→R continuous functions such that |µ(t,x)−µ(t,y)|, |σ(t,x)−
σ(t,y)| ≤K|x−y| for some constant K ≥ 0. Then there exists a unique solution {Xt} that is con-
tinuous and adapted.

Example 6.1.1: The geometric Brownian motion
The geometric Brownian {St} motion is used to model the behaviour of a stock. It’s SDE is given
by dSt = µStdt+σStdWt. We also have the initial value condition S0 = s0. We will now solve this
equation. Assume St = f(t,Wt) then by the Itô-formula we have

dSt =
(
∂f

∂t
+ 1

2
∂2f

∂x2

)
dt+ ∂f

∂x
dWt

From this we obtain the following set of partial differential equations{
∂f
∂t + 1

2
∂2f
∂x2 = µf(t,x)

∂f
∂x = σf(t,x)

37
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From the second equation we note that f(t,x) = φ(t)eσx with φ(t) a function depending only on
t. Then by the first equation we can see

φ′(t) + 1
2σ

2φ(t) = µφ(t)

From which we deduce φ(t) = Ce(µ− 1
2σ

2)t with C a constant. We want f(0,0) = s0 hence the
solution for the SDE is given by f(t,x) = s0e

σx+(µ− 1
2σ

2)t.

To show that this solution is unique we rewrite the SDE as

dSt
St

= µdt+σdWt if St 6= 0, ∀t

which is equivalent to the original SDE according to [9] example 5.1 Now note that µ(t,x) = µ and
σ(t,x) = σ are constant hence Lipschitz-continuous functions hence by theorem 6.1.1 the solution
is unique a.s.

�

6.2 Proof of the existence and uniqueness theorem

In this section we will prove theorem 6.1.1. We present the arguments as given by [2] theorem
12.1. We differ in naming the solution from [2]. In [2] the solution is called a strong solution, we
call it a solution.

Proof :
We will first prove the existence of a solution. We will begin with X0

t := x0 and then define Xn
t

inductively for n≥ 0 by

Xn+1
t = x0 +

∫ t

0
µ(s,Xn

s )ds+
∫ t

0
σ(s,Xn

s )dWs

For n≥ 1 define

µn(t) := E

[
sup

0≤s≤t
|Xn
s −Xn−1

s |2
]

Now let T ≥ 1 then for 0≤ t≤ T we have

µ1(t) := E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
µ(0,x0)dr+

∫ s

0
σ(0,x0)dWr

∣∣∣∣2
]

≤ 2E
[

sup
0≤s≤t

∣∣∣∣∫ s

0
µ(0,x0)dr

∣∣∣∣2
]

+ 2E
[

sup
0≤s≤t

∣∣∣∣∫ s

0
σ(0,x0)dWr

∣∣∣∣2
]

≤ 2tE
[∫ t

0
|µ(0,x0)|2dr

]
+ 8E

[∫ t

0
|σ(0,x0)|2dr

]
≤ 2t2|µ(0,x0)|2 + 8t|σ(0,x0)|2

≤ 10Tt(|µ(0,x0)|2 + |σ(0,x0)|2)

Where the first inequality comes from (a+ b)2 ≤ 2(a2 + b2) and the second inequality comes from
Doob’s L2-inequality (theorem B.4) because we have a martingale by theorem 4.2.1. We also apply
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the Cauchy-Schwartz inequality (theorem B.5). Using the same arguments for n≥ 1 we have

µn+1(t)≤ 2E
[

sup
0≤s≤t

∣∣∣∣∫ s

0
(µ(r,Xn

r )−µ(r,Xn−1
r ))dr

∣∣∣∣2
]

+ 2E
[

sup
0≤s≤t

∣∣∣∣∫ s

0
(σ(r,Xn

r )−σ(r,Xn−1
r ))dr

∣∣∣∣2
]

≤ 10K2T

∫ t

0
µn(r)dr

Then we can show by using an induction argument that for 0≤ t≤ T we have

µn(t)≤ C (10TKt)n

n!

For some constant C. Therefore we have

E

[ ∞∑
n=1

sup
0≤s≤T

|Xn
s −Xn−1

s |2
] 1

2

≤
∞∑
n=1

E

[
sup

0≤s≤T
|Xn
s −Xn−1

s |2
] 1

2

<∞

Thus we can see that the sequence (Xn
t )n≥0 is almost surely uniformly convergent on [0,T ]. From

this we conclude there exists a continuous adapted process {Xt} such that

P

(
lim
n→∞

sup
0≤s≤t

|Xn
s −Xs|= 0

)
= 1

Therefore we have

lim
n→∞

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
µ(r,Xn

r )dr−
∫ s

0
µ(r,Xr)dr

∣∣∣∣2
]

= 0

lim
n→∞

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
σ(r,Xn

r )dr−
∫ s

0
σ(r,Xr)dr

∣∣∣∣2
]

= 0

Therefore we conclude that the process {Xt} must satisfy the SDE.

Finally we will show the uniqueness. Assume Xt and Yt are solutions to the SDE. Now we
define the function

g(t) := E

[
sup

0≤s≤t
|Xs−Ys|2

]
Using the same arguments as before we obtain:

g(t)≤ 10K2T

∫ t

0
g(s)ds, 0≤ t≤ T

Then by Gronwall’s inequality (theorem B.3) we conclude g(t) = 0 hence Xt = Yt almost surely.

�
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Part III

Option pricing
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Chapter 7

Basics of finance

In this chapter we will give a short introduction to financial terms. We will cover the time value
of money, the law of one price and we will give the definition of an option.

7.1 The time value of money

In this section we will give a short introduction to the notion of time value of money. For a more
in depth analysis one can for example see [5] chapter 4 or [6] chapter 2.

Suppose you are given the option to get 10 euro today or 11 euro next year, what should you
do? Now assume the interest rate equals r = 0.2. If you take the 10 euro today next year you will
have 12 euros. Therefore you have made a profit. This gives us an idea that money has different
values at different points in time.

More generally assume we currently have a value V0 and that the interest rate for a period equals
r. Then in T periods we will have VT = (1 + r)TV0. This implies that the present value of VT
equals

PV (VT ) = VT
(1 + r)T

Now suppose the interest rate in a period equals r and the interest is compounded inm sub-periods.
Then the amount we will have at the end of T periods

VT =
(

1 + r

m

)mT
V0

In this case we call r the nominal interest and r′ := (1 + r/m)m−1 the effective interest. If we
now let m go to infinity we will have continuous compounding. This gives us a familiar limit from
calculus

lim
m→∞

(
1 + r

m

)m
= er

Thus with continuous compounding the present value of VT equals

PV (VT ) = e−rTVT

In this thesis we will look at payments in continuous time and therefore we will use e−rT as the
discount factor.
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7.2 Options and arbitrage

In this section we will shortly discuss what options are and how we can use the principle of no
arbitrage to determine the price of an option. This will be done with a very simple model: the
one-period binomial model.

In a market we say there is arbitrage if it is possible to take advantage of a price difference
between equivalent goods. If there is an arbitrage opportunity one can expect investors to buy
the cheaper product and sell it at the higher price. This is assumed to happen very fast hence
the price difference between the goods will disappear. As a result the arbitrage opportunity will
disappear as well. Because it is assumed that any price difference between equivalent goods will
disappear very fast we will assume the price of equivalent goods will be the same. This is called
the law of one price and this will be an assumption when pricing options.

An option gives the buyer the right to buy or sell a stock at a certain price K which is called the
strike price of the option at a predetermined time T called the expiry date. An option that gives
the right to buy is called a call option and an option that gives the right to sell is called a put option.

Let ST denote the price of the stock at time T . Then the payoff of a call option equals (St−K)+ :=
max(ST −K,0) and the payoff of a put option equals (K−S)+ := max(K−ST ,0). In general we
will denote CT for the payoff of an option at time T .

Option pricing with the one-period binomial tree

We will now illustrate the principle of option pricing with the law of one price. Assume a stock
currently has price S0. The next period the stock can be either Su = uS0 or Sd = dS0 with
u > d > 0. Let r > 0 be the risk free interest rate. Note that we must have u > 1 + r > d or else
there would be arbitrage. To see why consider the following situations:

Case 1: 1 + r < d
If you borrow S0 from the bank at time t = 0 and buy the asset. At time t = 1 you will have
made dS0 or uS0 and the amount you owe is (1+r)S0 <uS0,dS0 hence you will have made a profit.

Case 2: 1 + r > u
If you short sell the asset for S0 and deposit this amount in the bank. At time t= 1 you will have
(1 + r)S0 > uS0 hence you will have made a profit.

With this in mind we will continue with deriving the right price for an option. Now assume
there is an option with strike price K. Let Cd be the payoff of the option if the stock goes down
and Cu be the payoff if the stock goes up. We want to replicate the payoff of this option by
investing some money B0 in a risk free bond and buying ∆ shares of the stock. Then we want

B0(1 + r) + ∆uS0 = Cu

B0(1 + r) + ∆dS0 = Cd

Because the portfolio (B0,∆) has the same payoff as the option it is equivalent, hence by the law
of one price it must have the same value as the option. Therefore the value of the option is given
by

C0 =B0 + ∆S0
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Solving the equations gives us

B0 = 1
1 + r

(
−dCu+uCd

u−d

)
∆ = Cu−Cd

S0(u−d)

Therefore the price of the option equals

C0 = 1
1 + r

(
1 + r−d
u−d

Cu+ u− (1 + r)
u−d

Cd

)
= 1

1 + r
EQ[C1]

where the probability measure Q defined by q := 1+r−d
u−d , the probability that the price goes up, is

called the risk neutral probability. Note that the discounted expectation of the option price with
respect to Q is a martingale. This will be the central idea in the next section.

7.3 Option pricing by hedging

In this section we will use the the principle of hedging to get an expression for the value of a
European option. A European option is an option for which the owner can exercise the right to
buy or sell the stock at time T > 0 which is called the expiration time of the option. The option
can be bought at any time t ∈ [0,T ].

The discounted price of an asset

Let {Wt}t≥0 be a P-Brownian motion. We assume that the price of a stock {St}t≥0 follows a
geometric Browian motion, i.e.

dSt = µStdt+σStdWt (7.1)

with µ ∈ R,σ > 0 constants. The unique solution to (7.1) is given by

St = S0e
σWt+(µ− 1

2σ
2)t

by example 6.1.1.

Now let r > 0 be the risk free interest rate and let θ = µ−r
σ . Define Xt :=Wt+θt and let Q be the

probability measure from definition 3.3.1. Then by theorem 3.3.3 (Girsanov’s theorem) P and Q
are equivalent and Xt is a Q-Brownian motion (hence a Q-martingale as well). Let

{
S̃t
}
t≥0 with

S̃t := e−rtSt be a discounted asset price then

S̃t = e−rtSt = e−rtS0e
σWt+(µ− 1

2σ
2)t

= e−rtS0e
σ(Xt−θt+(µ− 1

2σ
2)t

= S0e
σXt− 1

2σ
2t

Then by using theorem 5.1.1 we conclude

dS̃t = σS̃tdXt
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Figure 7.1: Simulation: 30 sample paths of a geometric Brownian motion with µ = 0.15 and
σ = 0.25

Option pricing by hedging

We will construct a portfolio consisting of selling an option, buying a risk free bond B0 and ∆t

shares of the risky stock. Then the value of the portfolio at time t equals

Πt =−Vt+B0e
rt+ ∆tSt

If Yt is a stochastic process we define the discounted process by Ỹt := e−rtYt. Therefore the
discounted portfolio process is given by

Π̃t =−Ṽt+B0 + ∆tS̃t

Next we choose ∆t such that Πt becomes risk free, i.e. Πt = Π0e
rt, which we will denote by:

∆t = ∂V

∂S

A more rigorous explanation will be given in section 7.4. Note that ∆t depends on St and therefore
{∆t} is a stochastic process adapted to the filtration {Ft}t≥0. Note that we have Π̃t = Π0 for all
0 ≤ t ≤ T hence we have dΠ̃t = 0. Now let 0 = t0 < t1 < t2 < · · · < tN = T be a partition of the
interval [0,T ]. Because the processes Π̃t, Ṽt.S̃t are continuous with probability one we have

Π̃ti+1 − Π̃ti =−(Ṽti+1 − Ṽti) + ∆ti(S̃ti+1 − S̃ti) = 0

Hence
Ṽti+1 − Ṽti = ∆ti(S̃ti+1 − S̃ti)

From which we can see

ṼT − Ṽ0 =
n−1∑
i=0

∆ti((S̃ti+1 − S̃ti)

Then taking the limit for n→∞

ṼT = Ṽ0 +
∫ T

0
∆tdS̃t = Ṽ0 +

∫ T

0
∆tσS̃tdXt (7.2)
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And because Xt is a Q-Brownian motion we conclude by theorem 4.2.1 that Ṽt is a martingale.
Now consider the interval [t,T ] we then have

ṼT = Ṽt+
∫ T

t
∆sσdS̃s

From corollary 4.2.1 and by using that
{
Ṽt
}

0≤t≤T is a martingale we conclude that

Ṽt = EQ[Ṽt|Ft] = EQ[ṼT |Ft]

Then using the definition of the discounted process.

e−rtVt = EQ[e−rTVT |Ft]

Rewriting this expression then gives us

Vt = e−r(T−t)EQ[VT |Ft]

In particular we have
V0 = e−rTEQ[VT ]

We can now state a general solution for the option pricing problem.

Theorem 7.3.1: For a European option with expiration date T and payoff CT the value at
t= 0 is given by

V0 = EP[e−rTCT (S0e
σWT+(r− 1

2σ
2)T )] (7.3)

Proof :

V0 = EQ[e−rTCT (ST )]
= EQ[e−rTCT (erT S̃T )]

= EQ[e−rTCT (erTS0e
σXT− 1

2σ
2T )]

= EQ[e−rTCT (S0e
σXT+(r− 1

2σ
2)T )]

= EP[e−rTCT (S0e
σWT+(r− 1

2σ
2)T )]

�

7.4 The Black-Scholes-Merton equation

In the previous section we stated that we chose ∆t to be ∂V
∂S without exactly stating what this

meant. A more rigorius explanation will be given in this section which is based on [8]. Let V (t,St)
denote the value of the option at time t. Note that this is a function of St which is an Itô process
hence we can apply theorem 5.3.1 to see

dV =
(
∂V

∂t
+ ∂V

∂S
µSt+ 1

2
∂2V

∂S2 σ
2S2

)
dt+ ∂V

∂S
σStdWt

Next like in the previous section we want to construct a portfolio Πt by longing the option and
shorting the risky stock. Let ∆t denote the number of stocks we have at time t. Then if we trade
at the time interval dt the change in value of the portfolio will equal dΠt = dV −∆tdSt. If we
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assume ∆t is fixed during the time-step we find

dΠt =
(
∂V

∂t
+ ∂V

∂S
µSt+ 1

2
∂2V

∂S2 σ
2S2−µSt∆t

)
dt+

(
∂V

∂S
−∆t

)
σStdWt

Then by choosing ∆t = ∂V
∂S the term with the Brownian motion is cancelled and we are left with

a deterministic expression. This leaves us with

dΠt =
(
∂V

∂t
+ 1

2
∂2V

∂S2 σ
2S2

)
dt

Now note that because Πt has become risk free the growth rate of this portfolio must equal
dΠt = rΠtdt because of the law of one price. This leaves us with the following equation:

rΠtdt=
(
∂V

∂t
+ 1

2
∂2V

∂S2 σ
2S2

)
dt

No we can replace Πt by Vt−∆tSt and ∆t = ∂V
∂S this gives us the following partial differential

equation.
∂V

∂t
+ rS

∂V

∂S
+ 1

2
∂2V

∂S2 σ
2S2 = rV

This is called the Black-Scholes-Merton equation.



Chapter 8

Solution to the option pricing
problem

In this chapter we will give the solution for the option pricing problem for a European call option.

8.1 The probability distribution of the asset price

In the previous chapter is was shown that the option price follows the geometric Brownian motion
i.e. ST = S0e

σWT+(µ− 1
2σ

2)T . This expression can be rewritten as

WT =
log(ST /S0)− (µ− 1

2σ
2)T

σ

Let y = y(x) be the realisation of WT then the pdf of WT can be written as

fWT
(y(x)) = 1√

2πT
exp

− 1
2T

(
log(x/S0)− (µ− 1

2σ
2)T

σ

)2


Therfore the price of the option is given by

e−rTE[CT (ST )] = e−rT
∫ ∞

0
CT (x)fST (x)dx

= e−rT
∫ ∞

0
CT (x)fWT

(y(x))dy
dx
dx

= e−rT
∫ ∞

0

CT (x)
σx
√

2πT
exp

− 1
2T

(
log(x/S0)− (µ− 1

2σ
2)T

σ

)2
dx

To apply the risk-neutral method we substitute µ= r giving us the following expression.

V0 = e−rT
∫ ∞

0

CT (x)
σx
√

2πT
exp

− 1
2T

(
log(x/S0)− (r− 1

2σ
2)T

σ

)2
dx
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8.2 Solution to the option pricing problem

In this section we will determine the value of a European call option with strike price K. The
payoff function in this case equals C(ST ) = (ST −K)+. By using the proof of theorem 7.3.1 we
have

V0 = e−rTEQ[(ST −K)+]
= e−rTEQ[(erT S̃T −K)+]

= e−rTEQ[(S0e
σXT+(r− 1

2σ
2)T −K)+]

= e−rTEQ[(S0e
σ
√
TZ+(r− 1

2σ
2)T −K)+]

= e−rT
∫
R

(S0e
σ
√
Tx+(r− 1

2σ
2)T −K)+ 1√

2π
e−

1
2x

2
dx

Note that (ST −K)+ ≥ 0 if ST ≥K therefore the integration region is given by{
x ∈ R | S0e

σ
√
Tx+(r− 1

2σ
2)T ≥K

}
We can see that this is equal to{

x ∈ R | x≥ x0 :=
log(K/S0)− (r− 1

2σ
2)T

σ
√
T

}

Therefore the price of the option equals

e−rT
∫ ∞
x0

(S0e
σ
√
Tx+(r− 1

2σ
2)T −K) 1√

2π
e−

1
2x

2
dx (8.1)

Now we define
d1,d2 =

log(S0/K) + (r± 1
2σ

2)T
σ
√
T

Let y =−x then dy =−dx hence we can see (8.1) equals

e−rT
∫ d2

−∞

S0√
2π
e−σ
√
Ty+(r− 1

2σ
2)T e−

1
2y

2
dy−e−rTK

∫ d2

−∞

1√
2π
e−

1
2y

2
dy (8.2)

This equation can then be rewritten as

V0 = S0

∫ d2

−∞

1√
2π
e−

1
2 (y−σ

√
T )2

dy−e−rTK
∫ d2

−∞

1√
2π
e−

1
2y

2
dy

= S0Φ(d2 +σ
√
T )−e−rTKΦ(d2)

= S0Φ(d1)−e−rTKΦ(d2)

Where Φ(.) denotes the CDF of a N (0,1) distribution.



Conclusion

Solution to the option pricing problem

Suppose we have an option regarding some risky stock St. We assumed that the risky stock follows
a geometric Brownian motion i.e.

dSt = µStst+σStdWt

For which we know there exists an almost surely unique solution by example 6.1.1. We then
constructed a portfolio by selling the option, investing B0 in a risk free bond and buying ∆t

shares of the risky stock.
Πt =−Vt+B0e

rt+ ∆tSt

where r > 0 denotes the risk free interest rate. By chosing ∆t in such a way that the portfolio
becomes risk free so that dΠ̃t = 0 hence we found,

ṼT = V0 +
∫ T

0
σ∆tS̃tdXt

We defined Xt :=Wt+ µ−r
σ t which was a Brownian motion with respect to the probability measure

Q by theorem 3.3.3. Now we can see that the integrand of the integral is a Q-Brownian motion
hence the integral is an Itô integral. Thus by theorem 4.2.1 we know that Ṽt is a martingale. In
particular we have

V0 = e−rTEQ[VT ] = EP[CT (S0e
σWT+(r− 1

2σ
2)T )]

In particular, for a European call option we have VT = (ST −K)+. Then using that ST follows a
geometric Brownian motion we obtain the particular solution:

V0 = S0Φ(d1)−e−rTKΦ(d2)

Further research

In this thesis we followed the assumption that the price of a risky stock kan be described by a
Geometric Brownian motion. However as mentioned by my supervisor Dr. K. Dajani one can
also use a Lévy process to describe the randomness of the stock instead of a Brownian motion.
An advantage of a Lévy process is that it allows jumps in its sample paths where the Brownian
motion does not. For more information once can see for example [11].

Furthermore we mainly focussed on the pricing of European options. There are however other
types of options such as American and Asian options. This is also an interesting topic to explore
further.
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Appendix A

Code for simulation

Here we will present the code used for the simulation in this thesis. The programme used for
simulation is R. For more information about this programe see for example

https://www.r-project.org

The codes are based on the codes presented by [2] which are written in Matlab.

The code for figure 3.1: [2] Simulation 7.1

# In this program we will simulate sample paths of the Brownian motion

N <- 200 # number of time steps
Y <- 20
dt <- Y/N
M <- 30 # number of sample paths

time <- seq(0,Y,by=dt)

W <- matrix(0,nrow=M,ncol=N+1)
dW <- sqrt(dt)*matrix(rnorm(N*M),M)

for(i in 1:N){
W[,i+1] <- W[,i]+dW[,i]

}

cl <- rainbow(M)
plot(time,W[1,],col=cl[1],type="l",ylab="W",

ylim=c(-15,15))
for(j in 2:M) lines(time,W[j,],col=cl[j])

The code for figure 3.2: [2] Simulation 8.1

# In this program we will simulate sample paths of a Brownian motion with drift

N <- 300 # Number of time steps
Y <- 50
dt <- Y/N
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theta <- 0.5

time <- seq(0,Y,by=dt)
M <- 30 # Number of sample paths
X <- matrix(0,ncol=N+1,nrow=M)
dW <- sqrt(dt)*matrix(rnorm(M*N),M)

for(j in 1:M){
for(i in 1:N){

X[j,i+1] <- X[j,i]+dW[j,i]+theta*dt
}

}

cl <- rainbow(M)
plot(time,X[1,],col=cl[1],type="l",ylab="W",ylim=c(-5,40),xlim=c(0,50))
for(u in 2:M) lines(time,X[u,],col=cl[u])
lines(time,theta*time)

Code for figure 4.1: [2] Simulation 10.2

# In this program we will simulate sample paths of a stochastic process
# defined by the Ito integral

Y <- 3
M <- 30 # number of sample paths
N <- 500 # number of time steps
dt <- Y/N
dW <- sqrt(dt)*matrix(rnorm(M*N),M)
time <- seq(0,Y,by=dt)

# We will first simulate the sample paths of the Brownian motion again.
W <- matrix(0,ncol=N+1,nrow=M)
for(i in 1:N){

W[,i+1] <- W[,i]+dW[,i]
}

# No we will use the saple paths to simulate the stochastic process
# defined by the Ito integral
Integral <- matrix(0,nrow=M,ncol=N+1)
for(j in 1:N){

Integral[,j+1] <- Integral[,j]+W[,j]*dW[,j]
}

# Now we will plot the sample paths of the integral process
cl <- rainbow(M)
plot(time,Integral[1,],col=cl[1],type="l",ylab="Ito integral",

ylim=c(-3,10))
for(u in 2:M) lines(time,Integral[u,],col=cl[u])
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Code for figure 6.1: [2] Simulation 11.3

# In this program we will simualte 30 sample paths for the geometric
# Brownian motion

N <- 500 # Number of time steps
M <- 30 # Number of sample paths
mu <- 0.15 # Drift coefficent
sigma <- 0.25 # Standard deviantion
Y <- 10
dt <- Y/N
time <- seq(0,Y,by=dt)

# We will now simualte the process
dW <- sqrt(dt)*matrix(rnorm(N*M),M)
S_0 <- 1 # Starting value of the Geo. Brow. Motion
S <- matrix(S_0,ncol=N+1,nrow=M)
for(i in 1:N){

S[,i+1]<-S[,i]+mu*S[,i]*dt+sigma*S[,i]*dW[,i]
}

# We will now plot the sample paths
cl <- rainbow(M)
plot(time,S[1,],col=cl[1],type="l",ylab="S",

ylim=c(0,20))
for(j in 2:M) lines(time,S[j,],col=cl[j])
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Appendix B

Additional results

In this appendix we will shortly mention and prove some results from analysis and measure the-
oretic probability which will be used in this thesis.

Theorem B.1: Let (X, || · ||) be a normed space then every convergent sequence (xn) ⊂ X is
a Cauchy-sequence.

Proof :
Let ε > 0. Because (xn) is a convergent sequence, say it converges to some x ∈ X, there exists
N ∈N such that for all m,n>N we have ||xn−x||, ||xm−x||< ε

2 . Then by the triangle inequality
we have

||xn−xm||= ||xn−x+x−xm|| ≤ ||xn−x||+ ||x−xm||<
ε

2 + ε

2 = ε

Thereby proving the lemma.

�

Theorem B.2: Let V denote the set of stochastic processes as defined in section 4.1 and let f ∈V.
Then there exists a sequence of simple processes (fn) converging to f .

Proof :
We will present the proof as given by [9](p.24-25)

Lemma B.2.1: Let g ∈ V be bounded and continuous for every ω ∈ Ω. Then there exists a
sequence (fn) of simple processes such that

lim
n→∞

E

[∫ T

0
(g−fn)2dt

]
= 0

Proof :
Define fn(t,ω) =

∑n−1
j=0 g(tj ,ω)1[tj ,tj+1] then fn is a simple process because gn(tj , ·) is Ftj meas-

urable. Note that limn→∞
∫ T
0 (g−fn)2dt= 0 because g(·,ω) is continuous for every ω. Therefore

we have

lim
n→∞

E

[∫ T

0
(g−fn)2dt

]
= 0

by the bounded convergence theorem.

�
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Lemma B.2.2: Let h∈V be bounded. Then there exist a sequence of bounded functions (gn)⊂V
that are continuous for every ω and n and

lim
n→∞

E

[∫ T

0
(h−gn)2dt

]
= 0

Proof :
Assume |h(t,ω)| ≤M for all (t,ω). For every n let φn be a non-negative function continuous
function on R defined such that

(i) φn(x) = 0 if x≤− 1
n and x≥ 0

(ii)
∫
Rφn(x)dx= 1

Define
gn(t,ω) =

∫ t

0
φn(s− t)h(s,ω)ds

Then g(·,ω) is continuous for each ω and |gn(t,ω)| ≤M . Because h ∈ V we note that gn(t, ·) is
Ft measurable for all t. From this limn→∞

∫ T
0 (h−gn)2dt= 0 for every ω. Hence by the bounded

convergence theorem we have

lim
n→∞

E

[∫ T

0
(h−gn)2dt

]
= 0

�

Lemma B.2.3: Let f ∈ V. Then there exists a sequence (hn)⊂V of bounded functions such that

lim
n→∞

E

[∫ T

0
(f −hn)2dt

]
= 0

Proof :
Define

hn(t,ω) =

 −n if f(t,ω)<−n
f(t,ω) if −n≤ f(t,ω)≤ n
n if f(t,ω)> n

Then the statement follows from the dominated convergence theorem.

�

We will now conclude the proof of theorem B.2. Let f ∈ V. Then by lemma B.2.1, B.2.2 and B.2.3
we can find a sequence of simple functions (fn) such that

lim
n→∞

E

[∫ T

0
(f(t,ω)−fn(t,ω))2dt

]
= 0

thereby proving the theorem.

�

Theorem B.3: Gronwall’s Inequality:
Let g : [0,a]→ [0,∞) be a continuous function. Assume there are constants C,K ≥ 0 such that

g(t)≤ C+K

∫ t

0
g(d)ds

for every t ∈ [0,a] then g(t)≤ CeKt for every t ∈ [0,a]
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Proof :
Assume C > 0 and define the function

G(t) = C+K

∫ t

0
g(s)ds

We then have G(t) ≥ g(t) and G(t) ≥ C > 0. We have G′(t) = Kg(t) ≤ KG(t) hence we see
d
dt logG(t)≤K. Also note that G(0) = C hence logG(t)≤ logG(0) + tK. From this we conclude

g(t)≤G(t)≤G(0)eKt = CeKt

�

The following two theorems are stated in [2] theorem 12.1

Theorem B.4: Doob’s L2 inequality
Let (Ω,F ,(Ft)t≥0 ,P) be a probability space with a filtration. Let {Mt}t≥0 be a martingale defined
on this probability space. Let p ∈ (1,∞) then for T > 0 we have∣∣∣∣∣

∣∣∣∣∣ sup
0≤t≤T

Mt

∣∣∣∣∣
∣∣∣∣∣
2

≤ 2||MT ||2

Theorem B.5: Cauchy-Schwarz:
Let (Ω,F ,P) be a probability space and let {Ys}0≤s≤t be a predictable process such that Ys(ω) is
continuous for almost every ω ∈ Ω. Then

sup
0≤s≤t

∣∣∣∣∫ s

0
Yrdr

∣∣∣∣2 ≤ t∫ t

0
Y 2
r dr
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