
PROVABLY SECURITY FOR OAEP+-RSA AND
SAEP -RABIN

Laurent Floor, 5533937
Supervised by prof. dr. G. Cornelissen

15 june 2018

A thesis submitted for the bachelor Mathematics, TWIN

Contents

1 Introduction 3

2 Introduction to cryptography 4
2.1 Symmetric-key cryptography . 4
2.2 Asymmetric-key cryptography . 4

3 What is provable security? 5
3.1 Importance . 5
3.2 Definition . 5
3.3 Reduction argument . 5

4 Mathematics behind cryptography 7
4.1 The multiplicative group . 7
4.2 Multiplicative group and primes . 7
4.3 Chinese Arithmetic . 8

5 The RSA function 9
5.1 The RSA primitive . 9

6 The Rabin primitive 10
6.1 The Rabin primitive . 10

7 Optimal asymmetric encryption padding+-RSA 11
7.1 Padding tools . 11
7.2 OAEP+-RSA . 11
7.3 Security Claim . 12

8 Simple asymmetric encryption padding-Rabin 14
8.1 SAEP -Rabin . 14
8.2 The Coppersmith Theorem . 15
8.3 Security claim . 15

9 Conclusion 18
9.1 Factoring or inverting . 18
9.2 Reduction tightness . 18
9.3 Discussion . 18
9.4 Provable security . 19

2

1 Introduction

In modern communication cryptography plays an essential role. Digital messages contain not only
private but also valuable information. Using public-key cryptography we are able to protect our bank
transactions and mail traffic against eavesdroppers. This stresses the importance of having the most
secure protocol to encrypt our digital messages.
To find the most secure encryption protocol we must compare security of different protocols.
This thesis is about a mathematical description of provable security of communication. The thesis is
divided into three parts. First we give the definitions of public-key cryptography and provable security.
In the second part two important encryption functions and their mathematical background are given.
Finally, two encryption protocols, based on the encryption functions, are discussed and their security
is proven. In this way we are able to give a statement which protocol is preferable to use.

Public key cryptography and provable security

In chapter 2 we give a short introduction to the conventions in cryptography. We restrict ourselves
this thesis to an active adversary in a public-key cryptography setting. This means that the receiver
generated a public key for encrypting and private key for decrypting. The adversary, the one that
tries to break the encryption protocol, is allowed to ask decryptions from the receiver that knows the
private key.
After the outline about cryptography we give in chapter 3 a definition for the security of a protocol.
A message is encrypted secure if from the ciphertext we can get no information about the message.
This is formalized in definition 3.2 of indistinguishable security.

RSA and Rabin

Before we apply this definition to some protocols we introduce two important encryption-functions.
In chapter 5 we discuss the well-known RSA encryption-function. Secondly, we treat in chapter 6
encryption with the Rabin-function. The mathematical background behind this cryptographic primi-
tives is treated in chapter 4.
It appears that both encryption-functions are vulnerable to attacks if used naively. Therefore, the
functions will be combined with a padding-protocol which randomizes the function before encryption.

Cryptographic protocols and their security

In chapter 7 and 8 we give the cryptographic protocols OAEP+-RSA and SAEP -Rabin, the com-
bination of the padding-protocols OAEP+ and SAEP with the RSA respectively Rabin function.
For both protocols we give a security proof in the form of a reduction argument. This means that
breaking the security of the protocol implies that a non-efficient solvable mathematical problem can
solved fast. Factoring a integer N into primes reduces to SAEP -Rabin and finding the inverse of
f(x) = xe mod N reduces to OAEP+-RSA.
Comparing the security claims of the protocols in chapter 9 we find that the SAEP -Rabin is preferred
to use. In practice, most times the RSA-function is used. According to Koblitz and Menezes [9] this
stress the importance of accessibility and understandability of the field of provable security.

I thank my supervisor prof. dr. G. Cornelissen for providing me with the interesting subject of
this thesis and giving me valuable suggestions to explore the subject.

3

2 Introduction to cryptography

Cryptography is all about the question if we are able to send messages safely. In this chapter we
give a brief introduction to the most important features of cryptography. First we set up the scheme
of communication. Then we give a short description about the distinction between symmetric and
asymmetric cryptography.
For the basis of communication we need a sender and receiver. Literature calls the sender of the
messages Alice and the receiver Bob. Introducing the adversary Charly1, we have to search for a
protocol such that Charly is not able to intercept information contained in the message. To make this
possible Alice and Bob have agree on an encryption protocol E for Alice and a decryption protocol D
for Bob. Those protocols contain at least an encryption and decryption function: fencr,K and fdecr,K
respectively, which depends on key information K.

2.1 Symmetric-key cryptography

The most simple way to encrypt and decrypt messages is when the sender and receiver have the same
key. In this symmetric-key system Alice and Bob use the same key to execute their protocols. For
example, we consider the Caesar Cipher. Given a message m, the sender shift every character of m
by k places in the alphabet to get the ciphertext. For the receiver is it easy to trace back the original
message by shifting every character k places back.
The core of symmetric-key cryptography is that both Alice and Bob have to keep the same key private.
Therefore, it is also called private-key cryptography. There are multiple ways to design and perform
symmetric-key cryptography. But in every case we get into the same difficulties. There are two
important problems using symmetric-key cryptography. First the question arises how Alice and Bob
agree on the key-information. In earlier times there were possibilities to exchange the information
physically or personally. Nowadays, in a time of worldwide communication it is nearly impossible to
transfer keys in an secure way. Secondly, as in the case of the Caesar Cipher, it is often easy to get
information about the key from the ciphertext. Counting how often some characters appear and using
knowledge how often these letters appear in texts you can reduce information about the plaintext. To
solve this you can use for every character a different replacement. This has the disadvantage that you
need a very long key to encrypt and decrypt messages.

2.2 Asymmetric-key cryptography

Because of these drawbacks, asymmetric cryptography is used today. In protocols using this principle
the receiver Bob generates two kinds of key information, first the public information key Ke for Alice
to encrypt messages and secondly the private information key Kd is kept secret to decrypt ciphertext.
In cryptography, we search for functions that satisfy the condition fencr,Ke = f−1decr,Kd

. These functions
we call the primitives. Besides this, the most important requirement is that an adversary Charly
cannot execute fdecr,Kd

unless he knows Kd. The meaning of this is that in the eyes of Charly the
encryption primitive is a one-way function. Before introducing some examples of such primitives, we
give a definition for the security of the protocols.

1In contrast to Alice and Bob, the adversary has no fixed name. This varies in literature from Marvin [3] for a
malicious attacker to Eve for an eavesdropper.

4

3 What is provable security?

In this section we give a mathematical definition of provable security. In the next chapters this
definition will be applied to some cryptographic protocols, like RSA. First we stress the importance of
an appropriate definition. Thereafter, we introduce the mathematical definition of provable security.
We conclude this section by explaining the way in which this definition is usually used to claim the
security of the protocol.

3.1 Importance

Answering the question when a cryptographic protocol is secure, is more difficult than it seems at first
glance. The simple answer says that an encrypted message is secure when an adversary is not able
to get any information about the message from the cipher text. Or stated conversely, a protocol is
secure if all kinds of attacks are fruitless. In this sense attacks and security are opposite sides of the
same coin and are each others complements. [1, Section 3.3] In practice we see in the course of time
that new weaknesses are found in protocols and the security is being at stake.
This emphasizes the importance for a formal definition of provable security. Such a definition says
under which conditions and against which attacks a cryptographic protocol is secure. In this way the
strength and weakness of each system is clear. We then have the opportunity to discuss and compare
the security of different protocols. [11]

3.2 Definition

Before we give a formal definition of provable security, we want to introduce two kinds of adversaries.
Their difference is based on the abilities the attackers have. An adversary can be passively breaking
the protocol, only making use of the public information of the receiver and a challenged ciphertext c.
On the other hand, the attacker can actively ask information of the receiver. [11, Page 6]

Definition 3.1 (Active adversary). An attacker of a protocol is an active adversary if he is allowed
to ask decryption of chosen ciphertexts not equal to c.

An active adversary can forge a Chosen Ciphertext Attack (CCA). It follows that if a system is
secure against CCA, also a passive adversary is not able to break the security of the protocol with
success. We restrict ourselves only to active attacks.
An informal definition of provable security for public-key cryptography goes as follows. Let Alice
encrypt her message m by the public key information Ke of Bob to get the ciphertext y = fencr,Ke(m).
We can say that this message is secure against CCA if it is (for an active attacker Charlie) not feasible
to get any information about m by analysing y, even if he may request for decryptions of ciphertexts
not equal to y. In this notion, called semantic security, the concept of information is not described.
This solution for this problem is elaborated in the definition of indistinguishable security. It is proven
that both definitions are equivalent for active and passive adversaries. [9, Section 1.3]
In the definition of indistinguishable secure we look at the probability for Charley to have success
for choosing the correct message from a ciphertext. Charley has two plaintext messages m1 and m2.
Randomly, one of these message is encrypted with ciphertext y∗. Charley breaks the security if he can
decide which message is encrypted with a probability greater than 50%. [9, Section 1.3] [11, Chapter 3]

Definition 3.2 (Indistinguishable security). Given ε > 0small, an encryption protocol E is indistin-
guishable secure against Chosen Chiphertext Attacks if an active adversary has an algorithm A with
executing time t to determine which of the two messages is encrypted with a chance equal or less than
1/2 + ε.

3.3 Reduction argument

In cryptographic analyses the word ’proof’ is a misleading term. A security proof suggest a 100
percent guarantee that a system is safe to use. History teaches us the fallacy of this statement. So
we better talk about arguments that support a security claim. In cryptographic analyses reduction

5

arguments are the most common. In this kind of argument we compare a cryptographic system with an
unsolvable or a very hard mathematical problem. For instance, breaking Rabin is as hard as factoring
a big integer N .
We say a mathematical problem P1 reduces to a cryptographic problem P2 if the hardness of P1

implies the hardness of P2. Suppose we have an adversary A who breaks the cryptographic problem
(for example Rabin). If we can use A to build another algorithm B to solve the mathematical problem
(as factorization), P1 reduces to P2. After centuries of research we expect that factorization can
not be done in an efficient way, hence we claim that there is also no efficient algorithm to solve
Rabin. [1, Section 2.2] [10, Section 5] In the security proof we analyze the differences between A
and B. We assumed that A solved the cryptographic protocol E. Following definition 2 given in
the previous paragraph, the adversary succeeded in time tA with probability of success greater than
1/2 + ε.
For algorithm B we get an execution time tB with probability of success εB. The assumption that B
solves a mathematically hard problem gives that tB is large. The step where A reduces to B needs
tR = tB − tA time. This is the reduction time. To study tB and tR we can give a statement about
tA. For example, we assumed that tB is large and if we find that the reduction step is very fast hence
tR is small, gives that the adversary needs much time to break the cryptographic problem. This we
summarize in the following definition: [8, Definition 9.17] [9, Page 7]

Definition 3.3 (Reduction argument). Assume algorithm A solves the cryptographic protocol E in
time t with a chance of success greater than 1/2 + ε. A mathematical problem P1 reduces to E if there
exist an polynomial algorithm B that solves from A the problem P1 in time tB.

Remark. The reduction time is bounded by the magnitude of input size n, tR = O(f(n)) for some
function f . If the reduction step is small, for example tR = log n or tR = n, we have a tight reduction.
Otherwise we have a non-tight reduction. We prefer to have a tight reduction, because then we are
more safe to argue that tA is big. [10, Section 4]

6

4 Mathematics behind cryptography

Before we get into the examples of cryptographic primitives, some mathematical background is given.
We give the most important theorems so that we can smoothly discuss the RSA and Rabin functions
in chapter 5 and 6. In general we use the mathematical knowledge as given in [8] and [15, Chapters 5
and 6].

4.1 The multiplicative group

For the mathematical background of the RSA and Rabin primitive we need to have a brief introduction
to modular arithmetic. First, we define the modular group ZN as the equivalence classes of integers
modulo N . Integers a and b are equivalent if they are congruent a ≡ b mod N . This group is closed
under addition.
For RSA we need a group which is closed under multiplication. This group, a subset of ZN , is defined
in the following way.

Definition 4.1 (Multiplicative group). The multiplicative group modulo N is a group of equivalence
classes of integers given by Z∗N = {a ∈ ZN |∃a′ ∈ ZN : a · a′ = 1}.
The number of elements is defined as the Euler’s totient ϕ(N) = |Z∗N |.

The set-up of this group can also be given by looking at the divisors of the modulus. The greatest
common divisor of integers a, b ∈ N is defined as the largest integer d such that d divides both a and
b, notation gcd(a, b) = d. Two integers a, b are relative prime if gcd(a, b) = 1.

Theorem 4.1. An element m ∈ ZN is an element of Z∗N if and only if gcd(m,N) = 1.

Proof. Suppose gcd(m,N) = 1, from the Euclidean algorithm we get lm+ kN = 1 for some integers
k, l. This implies that lm+ kN mod N = lm mod N = 1. We see that the inverse of m is l. Hence
m ∈ Z∗N .
For the other direction, we assume that m ∈ Z∗N , and thus we have m ·m′ = 1 mod N . This gives us
that for some k we can write mm′ + kN = 1, which implies that gcd(m,N) = 1.

4.2 Multiplicative group and primes

In this subsection we explore more features of the multiplicative group. We study the special case
when we choose the modulus of the group equal to a prime number. We start by studying the Euler
totient. For a divisor d of n we write d|n.

Theorem 4.2.
∑

d|N ϕ(d) = N .

Proof. Let Zd = {a|1 ≤ a ≤ N ∧ gcd(a,N) = d} a set. Every element k ∈ Z∗N belongs precisely to
one Zd, hence N =

∑
d|N |Zd|. We construct the bijective function g : Zd → Z∗N/d with a 7→ a/d. We

conclude by writing N =
∑

d|N |Zd| =
∑

d|N |Z∗N/d| =
∑

d|N ϕ(d)

If we choose the modulus of N = pk then we can easily calculate the result of the Euler’s totient-
function.

Corollary 4.1. If N = pk then ϕ(pk) = (p− 1)pk−1.

Proof. From the previous theorem we can write that ϕ(p) +ϕ(p2) + ...+ϕ(pk) = pk and subtract this
from ϕ(p) + ϕ(p2) + ...+ ϕ(pk−1) = pk−1, giving ϕ(pk) = pk − pk−1 = (p− 1)pk−1.

Another mathematical result we need, we get from the Lagrange Theorem on groups. We restrict
ourselves to Abelian groups.

Theorem 4.3. For a finite Abelian group G with unit element e, for every x ∈ G we have x|G| = e.

Proof. We construct the bijective function which maps the group to itself G → G, g 7→ xg. Now we
write

∏
g∈G g =

∏
g∈G gx = x|G|

∏
g∈G g, which implies the equality.

7

We apply this theorem to the multiplicative groups in the following theorems.

Theorem 4.4. For a relatively prime to N we have aϕ(N) = 1 mod N .

Proof. If a is relatively prime to N , then a ∈ Z∗N . Now we use theorem 4.3 to get aϕ(N) = a|Z
∗
N | = 1

mod N .

For a group with modulus equal to a prime, from Theorem 4.4 Fermat’s Little Theorem follows.

Corollary 4.2 (Fermat’s Little Theorem). For p is prime such that gcd(a, p) = 1 we get ap−1 = 1
mod N

4.3 Chinese Arithmetic

The RSA and Rabin-primitives use the modular group with modulus N = p ·q with p, q primes. Using
the Chinese Remainder Theorem we can map elements in Zp and Zq to ZN .
First we define Wp,Wq ∈ ZN . Because gcd(p, q) = 1, from theorem 4.1 it follows that there is an
integer yp ∈ Zq such that p · yp = 1 mod q. Let Wq = p · yp mod n ∈ ZN . Similarly, we construct
Wp = q · yq mod N ∈ Zq with yq such that q · yq = 1 mod p.

Theorem 4.5 (Chinese Remainder Theorem). If p and q are primes and p 6= q, the function f :
Zp × Zq → ZN , (a1, a2) 7→ a = a1 ·Wp + a2 ·Wq mod N maps every element in Zp × Zq unique to an
element in ZN .

Proof. Let a = a1 · Wp + a2 · Wq mod N , then a mod p = a1 · 1 + a2 · 0 = a1 and a mod q =
a1 · 0 + a2 · 1 = a2. Hence we can define the inverse of f as f−1(a) = (a mod p, a mod q).
Further notice that f is injective and surjective, hence f is a homomorphism. The number of elements
in the groups are equal: |ZN | = N = p · q = |Zp| · |Zq| = |Zp × Zq|, hence every element in Zp × Zq

maps to an unique element in ZN .

8

5 The RSA function

One of first and most well known primitives is the so called RSA-function. The name is derived from
the scientists who proposed the primitive in 1977: Rivest, Shamir and Adleman.

5.1 The RSA primitive

We describe the operation of the RSA-primitive. [13] Choose the modulus N = p ·q, where p and q are
large prime numbers. Now we have the multiplicative group Z∗N with order ϕ(N) = (p−1)(q−1). Let
e and d be two integers satisfying e · d = 1 mod ϕ(N). The modulus N and the encryption exponent
e are the public information of the RSA system. We define the RSA primitive as

fencr,e(x) = xe mod N.

To decrypt the ciphertext we use the inverse

fdecr,d(x) = xd mod N.

Given a message m ∈ ZN we can verify the operation of the primitive. After encryption we get the
ciphertext c = me mod N . For deciphering it is intuitively seen that cd = mde = m, but we make it
explicit in the following claim.

Claim 5.1. Applying fdecr,d to ciphertext c = me gives the plaintext m.

Proof. Given is the encrypted message c = me, the public and private key. We have chosen these keys
such that e · d = 1 mod ϕ(N). This implies there is an integer k such that e · d− 1 = k(p− 1)(q− 1).
If gcd(p,m) = 1 we can write from Fermat’s Little theorem med = med−1m = mk(p−1)(q−1)m =

(mp−1)k(q−1)
m = m mod p. In the same we say if gcd(q,m) = 1 then med = m mod q.

Now we assume gcd(p,m) 6= 1. Because p is prime m = 0 mod p and therefore med −m = 0 mod p.
In the same way if gcd(q,m) 6= 1 then med = m mod q.
It follows that med is multiple of q and p. From the Chinese Remainder Theorem 4.5 it follows that
for some l we have med −m = l · p · q gives med = m mod N

9

6 The Rabin primitive

Another asymmetric cryptographic system is the Rabin cryptosystem. Two years later than RSA,
Rabin published his technique. [12] The security of the Rabin encryption protocol is based on the as-
sumption that factorization is difficult. In this section we discuss the operation of the Rabin primitive.

6.1 The Rabin primitive

The Rabin function is a special case of the RSA-function. Where in RSA the key generated also
the encryption exponent, in Rabin the exponent is chosen to be two. Instead of finding the inverse
function of the exponent, we have to find roots of the ciphertext.
Like RSA we again choose two large prime numbers to construct the modulus N = p ·q. [8] We restrict
the primes in the following way: p ≡ q ≡ 3 mod 4. This restriction is not necessary for Rabin, but
we use it to simplify the decryption and because it is applied in practice. Given a message m, the
encryption function squares m modulo N :

fencr,N (x) = x2 mod N.

The security of Rabin is based on the assumption that for N you can not find the roots of the
ciphertext, but for p and q it is possible. Hence, if you can factor an integer N ∈ N you can break
Rabin using the decryption steps.
To decrypt a ciphertext c = y2 mod N we use the Chinese Remainder Theorem 4.5 to map the
solution in Zp and Zq to ZN . From the restriction on p, we see that p+1

4 is an integer modulo N .

Hence we can write for c: zp = c
p+1
4 mod p. When we square this, we get z2p = c ·c

(p−1)
2 mod p. From

theorem 4.4 we know that the last term is c
(p−1)

2 = y(p− 1) = 1 mod p.
If gcd(c, p) 6= 0 we see that c ∈ Z∗N and thus it has an inverse. Hence, both zp and −zp ≡ p − zp
mod p are the roots of c modulo p.
If gcd(c, p) = 0 we see that only zp = 0 is an root. In the same way we find a solution for c mod q.
Remark that for at most one of the prime numbers we can have a zero root.
We can then easily calculate four (or two) resulting roots using the Chinese Remainder Theorem.
To decide which of these roots is the correct message, you need more information about the message.
For example the length or the content of the message. In chapter 8 we will come back on this issue.

10

7 Optimal asymmetric encryption padding+-RSA

In chapter 5 we described the RSA-function. In practice, it is not applicable to use an encryption
system where the protocol consist of applying the primitive. Suppose the adversary has as target
message m with ciphertext y encrypted with RSA and encryption exponent e. If Charly is an active
adversary as in definition 3.1, he is able to ask the decryption of y′ = y ·m′e and gets m′m. Then
Charly can divide by m′ to find the target message. [9, Page 6]
To protect us against such Chosen Ciphertext Attacks (CCA) we pad each message before encrypting.
In this chapter we will describe one of the padding protocols together with the RSA primitive. Finally,
we give and prove a security claim for OAEP+-RSA.

7.1 Padding tools

To protect our communication against CCA we have to randomize the message. We enlarge the
encryption-protocol E with a modification phase P . Before the primitive is applied, the message is
randomized by some tools we will describe here. Suppose we have a message m with bitlength l. This
means the message is an element of set {0, 1}l. In P we construct from m a padded message y with
bitlength k ≥ l. In literature, k is called the security parameter. The ciphertext is then calculated
from y by applying the primitive.
First we give some possible tools to blind m. After this we describe in the next paragraph an example
of an encryption-protocol with a padding phase. The most used way to randomize m is introducing
a random integer r. The sender chooses for every message a unique r. He appends this integer to y
such that an adversary can not track r down if he knows only the ciphertext c.
Another important tool for P is the use of hash-functions. These are random functions where the
inverse function cannot be computed. An ideal hash-function has the property that from the output
we can not deduce any information about the input. In that sense, hashing is the same as encryption,
with the difference that for encryption you have a decryption-function. For example in OAEP+ the
hash-function SHA1 (Secure Hash Algorithm) is used. [15, Section 7.3]

Definition 7.1 (Hash-function). A hash-function h : {0, 1}l0 → {0, 1}l1 is called ideal if given b ∈
{0, 1}l1 it is not feasible to find a such that f(a) = b without trying all possibilities.

The last tool we discuss is adding zero-bits to m. In chapter 8 we merge m with l0 zero-bits. We
denote this concatenation with m0 = m||0l0 . The advantage of this tool is that after decryption the
receiver can check if the input was generated in a proper way.

7.2 OAEP+-RSA

In this paragraph we describe the encryption-system OAEP+-RSA. This system consist of the padding
protocol OAEP+ with the RSA-primitive. We notice that the padding protocol can be combined with
another encryption primitive. The protocol OAEP+ was introduced by Shoup as a revised version
OAEP . [14, Section 6]
First we choose the security parameter k = l+ l0+1l where l is the bitlength of message m and k ≤ N ,
where N is the modulus of RSA. Second the protocol needs three independent ideal hash-functions:

G : {0, 1}l0 → {0, 1}l

H1 : {0, 1}l+l1 → {0, 1}l0

H2 : {0, 1}l+l0 → {0, 1}l1

We define the ⊕ or XOR-function in the following way:

Definition 7.2 (XOR-function). The function ⊕ : {0, 1}l × {0, 1}l → {0, 1}l is defined for every bit
ai and bi of the bit strings a and b as

ai ⊕ bi =

{
0 if ai = bi = 0 or ai = bi = 1

1 if (ai = 1 and bi = 0) or (ai = 0 and bi = 1).

11

Further the sender chooses a random integer r ∈ {0, 1}l0 . Now we can encrypt m with the following
steps:

s = (G(r)⊕m)||H2(r||m),

t = H1(s)⊕ r,
c = fRSA,e(y) = fRSA,e(s||t).

The decryption for ciphertext c is done by working out the next tree steps:

y = s||t = fRSA,d(c),

r = t⊕H1(s),

m = G(r)⊕ s1

where s1 are the first l bits of s. An ciphertext is valid if H2(r||m) = s2, the last l1 bits of s.

7.3 Security Claim

In this paragraph we give the argument of the security of OAEP+-RSA . We follow the proof as given
in [14, Section 6].

Theorem 7.1. Assume G,H1 and H2 are ideal hash-functions. Assuming there is an adversary A
who breaks OAEP+-RSA with running time t and probability of success greater than 1/2 + ε, and
qd, qH1 , qH2 and qG are the number of queries made by the adversary,
then there is an algorithm B that inverts the RSA-primitive with execution time

t+O(qGqH1k
2 + (qG + qH2 + qH1 + qd)k)

and chance of success greater than

ε− qH2 + qd
2l1

− (qd + 1)qG
2l0

.

Proof. For the proof we assume there is an adversary A who breaks OAEP+-RSA. Given two messages
m0 and m1 and the decryption y∗ of m∗ = mb with b ∈ {0, 1} random chosen. Then A give as output
b′ with probability that b = b′ equal to 1/2 + ε.
We want to compare A to algorithm B. To do this we build algorithms A1, A2 and A3. Between each
of the algorithms we describe the reduction. Further, we deal with an active adversary. Hence the
adversary queries for values of the hash-functions, asks decryptions for some ciphertexts and save this
data in the sets SH1 , SH2 , SG and Sq with cardinality qH1 , qH2 , qG and qd.

Difference on saved data

We construct algorithm A1 that can decrypt ciphertext only if the parts of the decryption are in the
sets SH1 and SH2 . The algorithm acts like the adversary, except for the difference we describe here.

1. Given a ciphertext y, the algorithm A can calculate all decryption steps properly. This is not
for true A1, it rejects y when (r, x) /∈ SH2 . To analyze the difference in the probability for this
case we write the following.
Assume A1 has to decrypt ciphertext y 6= y∗. If r = r∗ and m = m∗ then s2 6= s∗2. This will
be rejected in A and so in A1. Hence r 6= r∗ or m 6= m∗. If H2(r||m) is never queried, it has a
random output c′. The probability that this is equal to c is given by P (c = c′) = 1

2l1
. Given an

total of qd decryptions, the probability that a ciphertext is not rejected by A1 when (r, x) /∈ SH′
is qd

2l1
.

2. Secondly we also rejects ciphertext where s /∈ SH . Given an ciphertext y 6= y∗ this splits in two
cases. First we describe when s = s∗ and in the next case we describe when s 6= s∗.
Assume A1 has to decrypt y 6= y∗ with s = s∗. This implies t 6= t∗ and r 6= r∗. The ciphertext
is valid when accidentally H2(r||m) = H2(r

∗||m∗), the probability for this is
qH2

2l1
.

12

3. Assume A1 has to decrypt y 6= y∗ with s 6= s∗. This implies t = t∗. Because the adversary never
queries H(s), from r = t⊕H(s) we see that r is independent. The probability r ∈ SG is qdqG

2l1
.

We conclude that the difference of success between both A and A1 is the sum of the chances described
in the following three cases:

|P (Succes of A)− P (Succes of A1)| ≤
qH2 + qd

2l1
+
qdqG
2l0

.

Pass the primitive

Now we construct algorithm A2 that, given ciphertext c, tries for all elements of SH1 and SH2 to find
a root y by computing for each pair (r′,m′) ∈ SH2 :

s′ = (G(r′)⊕m)||H2(r
′||m′)

t′ = H(s′)⊕ r
y′ = f(s′||t′)

If we find a y′ = y the algorithm is successful. From the definition from A1 we see that the probability
for success for A2 is the same. Indeed, the probability that you construct from the saved sets a y equal
to a random y′ is the same as that you choose a random y′ such that is equal to one of the y that can
be made from the saved sets.
This step needs a lot of work. We build an table of (r,m), in total of qG · qH1 values. For every value
we need TRSA time to evaluate the RSA encryption function. For the RSA-primitive we need to raise
y with length k to the power e. In practice an exponent e is chosen such that the complexity of the
function is O(k2). [15, Section 6.1].
The time to build the table is (qG + qH1 + qH2 + qd)k. Gathering this, we get the final bound of the
algorithm

O(qGqH1k
2 + (qG + qH1 + qH2 + qd)k)

Conclusion

The last step is to go from A2 to an algorithm A3 which is fully random. We define the success
probability of A3 as 1/2.
In the current context the difference between A2 and A3 is the knowledge if r∗ is queried or not in
A3 though the adversary. There are two cases. The probability that r∗ is queried and also in the list
SG is given by qG

2l0
. The other possibility is that r∗ is not queried and hence not in SG. That is only

possible if there is an algorithm B with running time t′ that with success ε′ can find the inverse.
Now we write the final conclusion. The relation of probability of the success of A2, A3 and B can
written as:

|P (Success of A2)− P (Success of A3)| ≤
qG
2l1

+ P (Success of inverting)

P (Success of A1)−
1

2
≤ qG

2l0
+ ε′

1

2
+ ε− qH2 + qd

2l1
− qDqG

2l0
− 1

2
≤ qG

2l0
+ ε′

ε′ ≥ ε− qH′ + qd
2l1

− qDqG
2l0

− qG
2l0

13

8 Simple asymmetric encryption padding-Rabin

Another padding encryption protocol is the Simple Asymmetric Encryption padding, proposed by
Boneh [4], combined with the Rabin primitive. In this chapter we first give the working of protocol.
We apply in this case the Rabin primitive as encryption function. After this, we give a proof of the
security of SAEP -Rabin. We follow in this chapter the discussion of SAEP -Rabin in [8, Section 9.5.1].

8.1 SAEP -Rabin

Like Rabin, described in chapter 6, we choose the modulus N = p · q with p ≡ q ≡ 3 mod 4. To
let the protocol work, we give some restriction on the length of the modulus. Let k ∈ N the security
parameter. We choose p and q such that the bitlength is k

2 + 1. Then the modulus has length k + 2.
This means that 2k+1 ≤ N < 2k+2.
To encrypt a message m with bitlength l, we take the following steps. First we append to the message
l0 zero bits to get

m0 = m||0l0 .

We choose a random integer r of bitlength l1 and apply the ideal hash-function h : {0, 1}l1 → {0, 1}l0+l

in the following way to get the padding message

y = (m0 ⊕ h(r))||r.

We find the ciphertext by squaring the padding message

c = y2 mod N.

Figure 1: A schematic representation of the SAEP protocol.

For the working of the decryption and for the proof we constrain the lengths of the padded message.
We say l ≤ k

4 and l + s0 ≤ k
2 and k = l + l0 + l1. Remark that y is now a k bit-string, hence is an

integer with 2k−1 ≤ y < 2k+1.
The last conclusion is important for the decryption. The integers y and N have length k- and respec-
tively k + 2-bits. If we calculate the roots of c, we delete the roots that are bigger than N

2 . Then two
or one root remain that are possibilities for y.
If two roots remain, we call these y1 and y2. Working the protocol backwards, we find y1 = v1||r1 and
y2 = v2||r2. From here we can compute m0

1 = v1 ⊕ r1 and m0
2 = v2 ⊕ r2. For both, we check if the

last l0-bits are zeros. The one where this is the case, that is the original message. There is a small
change, this is the case for both m0

1 and m0
2. But this occurs with an ignorable probability.

14

8.2 The Coppersmith Theorem

Before we give the security claim, we state the Coppersmith theorem without proof. This theorem is
an important tool for the proof of the security of SAEP -Rabin. [7, Corollary 1] [8, Theorem 9.18]

Theorem 8.1 (Coppersmith). Let N ∈ N, and the function f : ZN → ZN a polynomial function of
degree d. Then there is an efficient algorithm which finds in time O(1d log(N)) all x ∈ Z such that

f(x) = 0 mod N and |x| < N
1
2 .

From this theorem the next corollary follows:

Corollary 8.1. Let N, c ∈ N and f(x) : ZN → ZN , x 7→ x2 − c. Then there is an efficient algorithm

which finds solutions in O(12 log(N)) time for |x| < N
1
2 .

Remark that, this corollary we cannot apply to the Rabin primitive. For the function f(x) = x2−c
we find only roots y smaller than N

1
2 < 2

k+1
2 . Because the roots y has to have length k we know

2k−1 ≤ y < 2k.
To relate the Coppersmith Theorem to the SAEP -Rabin we state the following lemma. [7]

Lemma 8.1. Let y = m||t||r be a bit-string an unknown root of c in ZN of bit length k, and the
lengths of m, t and r are respectively l, l0 and l1 such that l ≤ k

4 and l + l0 ≤ k
2 . Then:

1. If r is given then y can be calculated in O(12 log(N)) time.

2. If m is given and another ciphertext c′ such that the last l0 + l1 bits of y′ are equal to y, then y
can be calculated in O(14 log(N)) time.

Proof. We want to find solutions y for y2 = c mod N . In this proof we treat both conclusions
separately.

1. Assume we know r. We want to calculate v = m||t. Following the assumption, we get

|v| < 2l+l0 ≤ 2
k
2 < N

1
2 . Another remark we need to make is v||0s1 = 2s1 · v.

We consider the polynomial f(x) = (2s1x + r)2 − c mod N . This satisfied the Coppersmith
Theorem and we calculate v and y in O(12 log(N)) time.

2. Assume we know m. We want to calculate w = t||r. Further we assume we have an another
element c′ ∈ ZN such that the y′2 = c′ mod N with y′ = m′||w. Now we compare y and y′ to
get an polynomial function for which we can apply the Coppersmith Theorem.
Because only the first bits are different, we can write y′ = y+ 2s0+s1δ, with δ = m−m′. Notice

that |δ| < 2l ≤ 2
k
4 < n

1
4 . To solve δ, we have to find the roots of the function f(x) = X2− c and

g(X, δ) = (X + 2s0+s1δ)2 − c′. Referring to [8, p. 309] we state that this gives an polynomial of
degree 4. Here we can apply Coppersmith’s Theorem and find w and y in O(14 log(N)) time.

8.3 Security claim

Now we have stated the Coppersmith Theorem and Lemma 8.1 we can give and prove the security
claim. We follow the proof as described in [8, Section 9.1.5]

Theorem. Assume the h is ideal hash-function. Assuming adversary A breaks SAEP -Rabin with
running time t and probability of success greater than 1/2+ε, and qd resp. qh the number of decryption
and hashes queried by A,
then there is an algorithm B for factoring the modulus N with execution time t + O(12qhqd log(N) +
1
4qd log(N)) and chance of success greater than 1

6 · ε · (1−
qd
2s0 − 2 qd

2s1).

15

Proof. In this proof we construct an algorithm B that can factor the modulus N into the primes p
and q. We will design an algorithm B1 in the next part of the proof that can find roots of an integer
c with c = y2 mod N . We will show that the probability of success for B1 to find a root y is bigger
than ε · (1− qd

2s0 − 2 qd
2s1 and the execution time is t+O(12qhqd log(N) + 1

4qd log(N).
If B1 finds a root a′ 6= a, then we can easily find one of the prime dividers of N by calculating
gcd(a′ − a,N). The probability for this condition is minimized by 1

6 . [8]. We conclude that B factors
N with probability of success greater than 1

6 · ε · (1−
qd
2s0 − 2 qd

2s1).

Algorithm B1

We will give the design of B1. The adversary A is interacting with B1. We need the datasets S for
the queries of r and h(r) that A made. We write the cardinality of this set as |S| = qd. There are
three options that A can query for B1:

1. The adversary queries for a hash-value of r. Then

(a) if r ∈ S then reply with h(r) to B1,

(b) else B1 tries to find a root y of c following point 1 of Lemma 8.1.

(c) If this is successful, then B1 has done his task. Else B1 saves r and a random chosen h(r)
in S.

2. The adversary queries for a ciphertext c′. Then

(a) B1 try to find a root y from point 2 of Lemma 8.1.

(b) If this is not successful then B1 tries to find to find roots for c′ for all r′ ∈ S with point 1
of Lemma 8.1. If B1 successful find a root and the belonging message m′ is valid, then it
return m′.

(c) Else B1 returns that c′ is an invalid ciphertext.

3. The last option is when A give message m1 and m2 and S give a random encryption c.

Analysis of B1

In this section of the proof we analyze algorithm B1 and give the change of success to find roots y1,2
of c. First we give two cases in which B1 successfully finds y1 or y2 with yi = vi||ri, i = {0, 1}.

1. The algorithm B1 find y1 or y2 if r1 or r2 is queried in step 1(b) of the algorithm.

2. The algorithm B1 find y1 or y2 if a ciphertext c′ such that the l0 + l1 bits of the corresponding
roots are the same as y1, y2, by step 2(a) of the algorithm.

Thirdly we have the case that step 2(b) is successful in finding a message:

3. The algorithm B1 is successful in finding a message if A queries a ciphertext c′ and if A has
previously asked for h(r).

Now we look at two options where B1 is not successful and fails in to find proper roots.

4. The first difference between B1 and Alice is that B1 has to restrict to the values that are saved.
Hence, if one of the two messages m0,m1 is encrypted with ciphertext c it is possible that B1

does not find the message.
It is possible that B1 finds one of the roots, but this give no proper message: h(ri) 6= (mb)||0l0
for b = 0, 1. Hence, we did not queried the right ri. The probability that we queried r1 or r2 is
≤ 2 qd

2l1
.

5. The last difference between B1 and Alice is that all previous cases are valid, but B1 rejects a
ciphertext c′. This is only possible if h(r′) is never queried before. The probability for the case
that h(r′) is queried is ≤ 2 qd

2l0
.

16

The adversary A has success chance of 1
2 + ε to break SAEP -Rabin. If A does not have the data

S this probability is 1
2 . Hence, the probability to find a root in step 1 and 2 is ε. As we argue the

change of cases 4 and 5 are smaller than 2 qd
2l1

+ 2 qd
2l0

. Hence the probability of success of algorithm B1

is greater than ε · (1− 2 qd
2l1

+ 2 qd
2l0

).
Finally we analyse the runtime of B1. This is the summation of the time that A needs and the
steps as described in the previous paragraph. The first is given as time t. The last is bounded by
O(12qdqh log(N) + 1

4qd log(N). Hence total the running time of B is

t+O(
1

2
qdqh log(N) +

1

4
qd log(N)).

17

9 Conclusion

In this section we want to compare the result of the security proof as described in the previous chapters.
We discuss the assumptions behind the theorems and the difference between them. In [9, Section 4]
Koblitz and Menezes give two main points where SAEP+-Rabin has advantage to OAEP+-RSA.

9.1 Factoring or inverting

The first difference we discuss between the security of OAEP+-RSA and SAEP -Rabin is the math-
ematical problem in the reduction argument.
The security claim of OAEP+-RSA reduces to finding the inverse of the RSA-function. In [3] Boneh
describe an overview of possible attacks on the RSA primitive. Most of the attacks can be prevented
by customizing the protocol. Requirements can be set on the private and public keys. For example an
attack described by M. Wiener gives restrictions on the private key d. Wiener proved that if N = p · q
is the modulus of the RSA function and the private exponent is d < 1

3N
1
4 then an adversary Charly

can find d efficiently.
If the receiver has to take the restrictions in account, the RSA-function is a secure primitive to use.
The assumption that there is no efficient method to find the inverse is still valid.
The security claim of SAEP+-Rabin reduces to the factoring of integers. History shows that math-
ematicians not find an efficient algorithm to find prime divisors of an integer. Theoretically such an
algorithm can exist, but cryptographers assume it will not be found soon.
The assumption of factoring appears better than the inverting assumption. So SAEP+-Rabin is in
favor to choose in cryptographic above OAEP+-RSA. [8, Section 3.3] [9]
However, in the field of ’provable security’, one of the most important questions is whether factoring
reduces to finding the inverse of RSA. The quest for an answer is illustrated by papers with titles like
’Breaking RSA may not be equivalent to factoring’ [5] and ’Breaking RSA May Be As Difficult As
Factoring’ [6]. [10, Section 2]

9.2 Reduction tightness

A second difference between the security proofs is the tightness of the reduction. The reduction
gap of OAEP+-RSA is O(qGqH1k

2 + (qG + qH2 + qH1 + qd)k). We choose the security parameter
k approximately equal to N , we can estimate the reduction gap O(N2). If we compare this to the
reduction gap O(logN) of SAEP -Rabin, we see that the last one has a tight reduction. Considering
this difference SAEP -Rabin is again preferably to use.
The reduction of OAEP+-RSA is not a tight reduction. How can we respond on this? Koblitz and
Menezes describe several reactions to a non-tight reduction. These vary from ”a non-tight reduction is
better than noting at all” and ”the protocol is secure in practice, even a tight reduction may simply not
exist” to ”the protocol is in fact insecure, but an attack has not yet been discovered.” [10, Section 4]
In my opinion a non-tight reduction for the RSA protocol does not imply that it is insecure. During
the implementation of the protocol one has to be aware of the non-tightness of the reduction and must
choose a larger modulus N .
A further remark is that the security proof of OAEP+-RSA in chapter 7 was for all exponents e.
In [14, Section 7.2], Shoup argued that for e = 3 there exist a tight reduction. In the proof he used
theorem 8.1 of Coppersmith.

9.3 Discussion

After the comparison of two important points we can conclude that SAEP -Rabin is the best choice.
Koblitz and Menezes summarize this conclusion ”Boneh shows that it is actually much better to apply
Rabin encryption (...) rather than the RSA function, for two reasons: (1) the assumption that finding
eth roots modulo n is hard is replaced by the weaker and more natural assumption that factoring is
hard (...); and (2) the reduction argument is tight.” [9, Page 9]
Given this conclusion, it is remarkable to see that in practice Rabin is rarely used. Cryptographers
distrust the Rabin primitive. The reason for this distrust is that for the Rabin encryption they found

18

the first tight-reduction argument for security claim ever that however, failed in a Chosen Ciphertext
Attack. For SAEP -Rabin this suspicion is unfounded, because a stage of padding is added.

9.4 Provable security

In 1994, Bellare and Rogaway introduced the OAEP padding protocol. [2] Seven years later Shoup
found a fallacy in the security proof of the protocol and he proposed the OAEP+ padding protocol. [14]
This shows that there is still much to be gained for the field of ’provable security’. The question was
raised how serious security proofs are taken. The reduction argument must be reviewed by other
mathematicians to find that the proof is correct. [9, Page 39]
As nowadays the overwhelmingly majority of our communication is over the internet, we need to find
the best way to protect the content of our communication. Mathematicians play an important role
in searching for encryption primitives and security proofs. This important role in an important topic
calls for accessibility, comprehensibility and reliability of ’provable security’. The mathematicians
Koblitz and Menezes started in 2006 with a series of papers to work towards this goal2. This thesis
arose from diving in the material of some of these papers.

2On the website http://anotherlook.ca/ the papers of Koblitz and Menezes are collected.

19

References

[1] Mihir Bellare. Practice-oriented provable-security. In International Workshop on Information
Security, pages 221–231. Springer, 1997.

[2] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Workshop on the Theory
and Application of of Cryptographic Techniques, pages 92–111. Springer, 1994.

[3] Dan Boneh. Twenty years of attacks on the f cryptosystem. Notices-American Mathematical
Society, 46:203–213, 1999.

[4] Dan Boneh. Simplified OAEP for the RSA and Rabin functions. In Annual International Cryp-
tology Conference, pages 275–291. Springer, 2001.

[5] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In International Conference on the Theory and Applications of Cryptographic Techniques, pages
59–71. Springer, 1998.

[6] Daniel RL Brown. Breaking RSA may be as difficult as factoring. IACR Cryptology ePrint
Archive, 2005:380, 2005.

[7] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabili-
ties. Journal of Cryptology, 10(4):233–260, 1997.

[8] Hans Delfs, Helmut Knebl, and Helmut Knebl. Introduction to cryptography, volume 3. Springer,
2015.

[9] Neal Koblitz and Alfred Menezes. Another look at ”provable security”. Journal of Cryptology,
20(1):3–37, 2006.

[10] Neal Koblitz and Alfred Menezes. Another look at provable security. II. In International Con-
ference on Cryptology in India, pages 148–175. Springer, 2006.

[11] Neal Koblitz and Alfred Menezes. Another look at security definitions. Advances in Mathematics
of Communications, 7(1):1–38, 2013.

[12] Michael O Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical report, Massachusetts Inst. of Tech. Cambridge Lab for Comp. Science, 1979.

[13] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[14] Victor Shoup. OAEP reconsidered. In Annual International Cryptology Conference, pages 239–
259. Springer, 2001.

[15] Gerard Tel. Cryptografie, beveiliging van de digitale maatschappij. Instituut voor Informatica en
Informatiekunde Universiteit Utrecht, 2006.

20

