The Diagnosing Behaviour of Intelligent Tutoring Systems

Renate van der Bent

August 2018

Supervisors:
Johan Jeuring
Chris Janssen

Master Thesis Artificial Intelligence

'/JJAN

Universiteit Utrecht

Abstract

Intelligent Tutoring Systems (ITSs) need to determine the quality of stu-
dents’ responses to provide relevant feedback. This thesis presents a sys-
tematic literature review comparing the diagnostic processes of 40 I'TSs of
various domains. It investigates what kinds of diagnoses are made and how
they are made. It also compares the processes across domains and across
four tutoring approaches: model tracing, example tracing, constraint-based
and intention-based approaches. The analysis identified eight aspects that
ITSs diagnose: Correctness, Difference, Redundancy, Type of Error, Com-
mon Errors, Order, Preference and Time. All ITSs diagnose Correctness.
Mathematics tutors diagnose Common Errors more often than programming
tutors, and programming tutors diagnose Type of Error more often than
mathematics tutors. There do not seem to be any differences between ap-
proaches. A general model was made that represents all diagnostic processes.

Contents

1

Introduction

1.1 How Intelligent Tutoring Systems work
1.1.1 Model tracing
1.1.2 Constraint-basedo
1.1.3 Example tracingo
1.1.4 Intention-based

1.2 Providing feedback oL

1.3 Research proposal L

Related work

Method

3.1 Selecting Intelligent Tutoring Systems

3.2 Analysis

Results

4.1 Diagnostic aspects

4.2 Diagnostic aspects per Intelligent Tutoring System
4.2.1 Correctness o i e e e
4.2.2 Difference e
423 Redundancy.
424 Typeof Error
4.2.,5 Common Errors
4.2.6 Order e
4.2.7 Preference
4.2.8 Time. e

4.3 Diagnostic aspects per Approach and Domain
4.3.1 Per Approach
4.3.2 PerDomaino

4.4 Diagnostic Processes L e

Discussion

Conclusion

References

Appendix A

Appendix B

10

11
11
12
12
13
15
16
17
18
19
20
20
20
21
23

34

36

37

43

44

1 Introduction

Intelligent tutoring systems (ITS) are educational tools that are designed to aid students
in their learning by providing personalized feedback. These interactive software systems
are not meant to replace classroom teaching, but rather to provide supplemental indi-
vidual tutoring to a large number of students. Human one-on-one tutoring is thought to
be the most effective form of education [1], but it is often expensive. ITSs use techniques
from Artificial Intelligence to capture effective human tutoring behaviours in computer
programs, making individual tutoring available on a large scale and at a low cost.

Diagnosis is an important factor in tutoring. ITSs typically provide feedback on
students’ responses. A tutoring system needs to accurately diagnose a response to make
sure that feedback is relevant and personalized. To date, there has not yet been any
research that compares how different systems handle response diagnosis. In the proposed
research I will investigate how different ITSs across various domains diagnose responses.

The aim of this research is to do a systematic literature review of available step-
based tutoring systems, with the goal of classifying the diagnostic processes of these
systems. Such research is important because a better understanding of the diagnosing
behavior of I'TSs could lead to better ITS design in the future. It provides insight into
what kind of diagnostics are possible. The proposed research does not take into account
the effectiveness of tutoring systems. However, the results of this research could be
combined with results from effectiveness studies to get a better understanding of what
kind of diagnostic processes are likely to be more effective. This knowledge could inform
the design of tutoring systems that provide feedback effectively and efficiently.

Before explaining the current study, a common background needs to be established.
Therefore, this thesis is structured as follows. In this chapter I will explain how I'TSs
work and what the different approaches to tutoring are. Then I will discuss the different
kinds of feedback and why response diagnosis is an important factor in tutoring. I will
end the chapter by introducing the study presented in this thesis. Chapter 2 discusses
related work. Chapter 3 describes the method, the results are presented in chapter 4
and chapter 5 and 6 provide a discussion and conclusion, respectively.

A note on terminology: the term tutor can refer to either a human tutor or an ITS.
Throughout this thesis, I will treat the terms ITS and tutor as synonyms and I will
always refer to a human tutor as human tutor, to avoid confusion.

1.1 How Intelligent Tutoring Systems work

A tutor has a task domain, e.g. it might be designed to teach students algebra, program-
ming in a specific language, or physics. In most I'TSs, a student works on a sequence of
tasks from the task domain. For example, a task in an algebra tutor could be to solve a
quadratic equation. The sequence of tasks is managed by an outer loop [2], which decides
what tasks to give to a student. How tasks are selected varies per system. ITSs often
require students to complete tasks in multiple steps, where “a step is a user interface
action that the student takes in order to achieve a task” [2]. Whereas the outer loop
is concerned with tasks, the steps within a task are managed by the inner loop. Tasks

can differ in granularity. Granularity refers to the amount of steps required to complete
a task, and reflects the amount of reasoning required per step. A larger grain size of
the user interface requires more reasoning per user interaction [3]. It should be noted
that not all tutoring systems have an inner loop. Those that do not are generally called
Computer-Assisted Instruction [4]. The current study only concerns ITSs, i.e. tutoring
systems with an inner loop.

The inner loop has several responsibilities. Most commonly it provides feedback on
steps, hints on what step to take next, assesses the student’s knowledge, and reviews
solutions. Some systems only give mimimal feedback. Usually this is information about
whether the step is correct or incorrect. Other tutors give error-specific feedback in addi-
tion to minimal feedback. Error-specific feedback is meant to help students understand
why a step was incorrect and is aimed at preventing similar errors. Hints about next
steps are meant to help students who get stuck and do not know how to proceed to solve
a task. Assessment of a student’s knowledge is an analysis of the student’s competence.

There are several approaches to checking and diagnosing student’s responses. These
are explained in the following sections.

1.1.1 Model tracing

Students’ errors in procedural skills are rarely random. In fact, they are often minor
variations on a correct procedure that can be precisely defined [5]. These types of errors
are known as bugs in the literature. ITSs that have bug catalogs to recognize errors
are using the model tracing approach. Model tracing is a paradigm first developed by
Anderson et al. [4], for providing individualized tutoring to students. This approach is
based on the ACT* theory of cognition and involves constructing performance models
[6]. A performance model consists of a set of correct rules rules for solving a specific
problem, the “ideal model”, and a bug catalog consisting of common misconceptions.
The ideal model can thus generate a solution path for the problem. The collection of
“buggy” rules allows the model to recognize incorrect solutions. The performance model
thus allows the tutoring system to trace the student’s cognitive states by comparing the
student’s responses to production rules in the model.

1.1.2 Constraint-based

In the constraint-based approach to tutoring, knowledge is not represented in the form
of production rules, but rather in the form of constraints [7]. Tutoring systems using
a constraint-based model check students’ responses against a set of constraints for a
solution to a problem. As a result, solutions are deemed correct so long as they do
not violate any constrains. This is in contrast to the model tracing approach, where
responses are usually considered to be incorrect if they are not recognized by the model.

1.1.3 Example tracing

A third approach is example tracing [8]. Example tracing tutors were developed as a
trade-of between development cost and instructional power. They can be almost as
powerful as model tracing tutors, but require significantly less time to develop. In these
tutors, solutions are demonstrated by an expert. These can be correct or incorrect
solutions. Solutions can be generalized to problems that are similar. A student’s so-
lution is then compared to the expert solutions. Compared to the model tracing and
constraint-based approach, this approach is easy to use and inexpensive for tutor au-
thors. A drawback is that it is only ”pseudo intelligent”, and ITSs using example tracing
sometimes cannot recognize all possible solutions to a problem.

1.1.4 Intention-based

Intention-based diagnosis was first implemented in PROUST, an automated bug detector
for Pascal programming [9]. This approach aims to understand the intended structure
and function of ”designed artifacts”, particularly program code. It can distinguish er-
rors in intention from errors in the implementation. The intention-based approach is
motivated by the empirical finding that beginner programmers often fix surface level
implementations of bugs rather than the underlying bugs themselves. To properly di-
agnose these types of mistakes, a program needs to have knowledge of the intended
function of the program, and knowledge of how a student intended to achieve that func-
tion. For example, students often confuse the meaning of if- and while-statements. If a
student writes a buggy program using a while-statement that results in an infinite loop,
when she meant to use the functionality of an if-statement, pointing out the infinite
loop is not helpful. Rather, feedback should focus on the difference between if- and
while-statements.

1.2 Providing feedback

Narciss [10] identifies five types of feedback. These types are also used in a review of
programming tutors [11], [12]. Knowledge about task constraints (KTC) involves hints
on task requirements and hints on task-processing rules, i.e. how to approach an exercise.
Knowledge about concepts (KC) encompasses explanations about subject matter and
examples illustrating concepts. The third type is knowledge about mistakes (KM). This
type of feedback can involve the number of mistakes, a description of the mistake or the
type of mistake. Keuning et al. [11], [12] distinguish five types of mistakes, although
these are specific to the domain of programming (e.g. compiler errors). Knowledge
about how to proceed (KH) involves bug-related hints for error correction, hints on
task-processing steps and hints on how to improve a solution. Lastly, there is knowledge
about meta-cognition, which involves guiding questions or explanations of strategies.
To give relevant KM and KH type feedback on a student’s response, an I'TS needs to
analyze the response and diagnose any errors. For example, a system cannot generate
a description of a mistake and give information about how to correct it, if it does not

diagnose the student’s error. Therefore, an important responsibility of the inner loop is
what VanLehn [2] calls step analysis and what Heeren and Jeuring [13] call the diagnose
service. In line with Heeren and Jeuring I will refer to it as the diagnose service.

The diagnose service essentially performs formative assessment. Black and William
define formative assessment as “encompassing all those activities undertaken by teach-
ers, and/or by their students, which provides information to be used as feedback to
modify the teaching and learning activities in which they are engaged” [14]. In other
words, formative assessment is needed to generate feedback for remediation. While this
definition does not mention I'TSs, it is assumed that I'TSs are also capable of providing
formative assessment.

Black and William note that teachers rarely use formative assessment in practice.
Instead, teachers generally tend to focus on superficial learning and low-level skills such
as recall, and mostly provide summative feedback, i.e. grading. Similar results were
found by Chi et al. [15]. They examined whether human tutors can accurately assess the
level of understanding of students. Their analysis of human tutoring sessions found that
human tutors often fail to recognize knowledge deficits, false beliefs and misconceptions
that students have. This is unfortunate, because formative assessment has been found
to be very effective at improving learning [14]. ITSs that use formative assessment could
therefore lead to improved learning.

Formative assessment requires a detailed diagnosis of a student’s problems. Nitko and
Brookhart [16] distinguish six approaches to diagnosis of learning problems, namely (1)
profiling content areas strengths and weaknesses, (2) prerequisite knowledge and skills
deficits, (3) mastery of specific objectives, (4) identifying student’s errors in performance,
(5) knowledge structure analysis and (6) component competencies of problem solving.
The fourth approach, identifying student’s errors in performance, is the most relevant for
ITSs. The goal of this approach is to identify and classify errors in student’s performance,
so that remedial instruction can be provided. To a lesser extent, the fifth approach is
also used in ITSs.

1.3 Research proposal

Because different I'TSs handle response diagnoses differently, in this thesis I will compare
the diagnosing behaviour of several ITSs, across various domains. Section 3 describes
the inclusion criteria for the selection of ITSs to be compared. Specifically I want to
study what aspects the diagnose services distinguish and how these are composed. With
aspects I mean for example correct rules, buggy rules or constraints. I will compare
the diagnostic processes to each other and see if it is possible to make an abstraction or
general scheme that they all use. To do this, I will develop a labeling system to categorize
the diagnose services and their aspects. I believe that the analysis of diagnose services in
ITSs contributes to a better understanding of the diagnosing behavior of I'TSs in general.
The results of this study could in future research be linked to the effectiveness of tutoring
systems, thus leading to a better understanding of what kind of diagnose services are
possible and most effective. This knowledge could be used to improve tutoring systems
in the future.

My thesis aims to answer the question: How do intelligent tutoring systems deter-
mine the quality of student’s responses? This will be divided into three main questions.
Firstly, what aspects can be distinguished in the diagnosis of student’s responses? Sec-
ondly, how are these aspects composed in the learning environment? Once these ques-
tions have been answered for all selected learning environments, I will compare them
to each other and attempt to answer a third question: are there patterns or perhaps
even a general scheme that can be identified in the diagnostic process of the different
learning environments? L.e. are there diagnostic aspects that are used in all systems, and
do they diagnose student’s responses in a similar order or following a general scheme?
When answering this last question, I will also make a distinction between systems using
different approaches to calculating feedback, e.g model-tracing versus constraint-based
approaches, and I will make a distinction between domains, e.g. mathematics tutors
versus physics tutors.

2 Related work

To date, there is not yet any research on how ITSs across domains diagnose responses.
However, there is some related work that is limited to certain domains. Chanier et al. [17]
reviewed the ways errors are analyzed in several I'TSs for second language learning. They
distinguish two kinds of systems: “computational-error systems” and “early deeper Error
Analysis systems”. These differ in the variety of errors they can handle, and in the level
of detail of the error diagnosis.

“Computational-error systems” generally use a computational grammar and a parser
to recognize errors in natural language sentences. The ITSs using this approach that
were analyzed are the French Grammar Analyser, XTRA-TE, Menzel’s system and the
ILTS for German. In the French Grammar Analyser, the computational grammar codes
all errors explicitly. The authors note that incorrect sentences are occasionally accepted
and sometimes wrong corrections are proposed by the system. XTRA-TE is a Chinese-
English tutor, that uses a multi-pass parser to diagnose errors. It makes a distinction
between syntactic and semantic errors, but cannot recognize word order problems. Men-
zel’s system is an ITS that teaches German. This system uses constraints to diagnose
errors. When an error is encountered, the systems selects the minimum set of constraints
that have been violated. The ILTS for German has a similar approach as XTRA-TE,
but can also handle some word order problems.

The “Early systems with deeper error analysis” that were reviewed are VP2 and
ALICE. VP2 is an ITS for native Spanish speakers learning English. It also uses a
computational grammar, but unlike the previously mentioned systems, it parses students’
responses using both an English and Spanish grammar. This way errors can be explained
in terms of the Spanish grammar. ALICE is an I'TS for native Italian speakers learning
English or French. It combines the use of a bug catalog with pattern matching to identify
errors. Furthermore, NOBILE, IFAAR, the ET system and Zock’s system were briefly
reviewed.

Other related work evaluates diagnosis services in individual systems. For instance,
El-Kecha et al. [18] evaluate the diagnosing behavior of PépiMep, a diagnosis system for
algebra that is part of a web-based mathematics platform. The system can distinguish
13 different patterns in student’s responses.

3 Method

3.1 Selecting Intelligent Tutoring Systems

For a learning environment to be included in this review, it needs to meet three criteria.
The documentation describes (1) an intelligent tutoring system, that (2) is capable
of providing feedback at the level of individual steps and that (3) has been used in
classrooms and not just in experimental settings, or, alternatively, tested on data from
real students. The first and second criteria ensure that the learning environment has an
inner loop with a diagnosis service. The third criterium ensures ecological validity, i.e.
that the learning environment can make realistic diagnoses.

I will go through several selection rounds, to find relevant papers and to make sure
that all the ITSs meet the three criteria. There are two ways in which I will find ITSs
to include in this study. Firstly, I will consider systems from three reviews. Keuning et
al. [12] (manuscript in preparation) classify the types of feedback given in programming
tutors. Specifically, from this review I will include the systems that were labeled as
providing feedback on task-processing steps, because these are assumed to meet the first
two criteria. A review on the effectiveness of tutoring by VanLehn [3] classified systems
as “answer-based”, “step-based”, or “substep-based”. From this review I will include
systems classified as “step-based” or “substep-based” to meet the inclusion criteria. I
will also consider the papers reviewed in Cheung and Slavin [19], which reviews the
effectiveness of educational software in mathematics.

Secondly, to find additional papers, I will conduct a literature search. A preliminary
search in several academic search engines (Google Scholar, Scopus and ERIC) revealed
that Scopus produced the most relevant search results. See Table 1 for the search terms
and the resulting number of documents. Relevance of articles was judged by reading the
abstract and when necessary by skimming through the article. The search term that
produced the most relevant results was “intelligent AND (tutoring OR tutor) AND
systems AND ((step AND based) OR stepwise)” in Scopus. This resulted in 195
documents. Using the same terms in ERIC always resulted in fewer documents, i.e.
mostly a subset of documents found in Scopus. Searches in Google Scholar resulted in
much more, but on average less relevant, documents. The papers found in Scopus were
a subset of those found in Google Scholar. For this reason I will use the 195 documents
found in Scopus for my analysis.

This initial selection of papers will be checked to see if the systems that are described
meet the selection criteria. I will do this by first reading the abstracts, and discarding
any articles that clearly do not meet all criteria. If it is unclear based on the abstract
whether a system meets all criteria, I will read the full paper, again discarding any that
do not meet the criteria. If they do, they will be included in the final selection. The
goal is to have around 40 to 60 papers in the final selection.

Search Term Google Scholar | Scopus | ERIC
intelligent AND tutoring AND systems AND (step- 4,270 27 9
based OR stepwise)

tutor AND (step-based OR stepwise) 9,870 45 13
“learning environment” AND stepwise 13,100 52 19
“learning environments” AND (stepwise OR ”"step 8,280 55 25
based”)

“computer assisted” AND (learning OR instruction) 12,800 63 33
AND (stepwise OR “step based”)

intelligent AND (tutoring OR tutor) AND systems 130,000 195 51
AND ((step AND based) OR stepwise)

Table 1: The number of documents found in Google Scholar, Scopus and ERIC per
search term

3.2 Analysis

I will categorize the ITSs described in the selected papers by approach (model tracing,
example tracing, constraint-based, intention-based) and by domain. Then, starting with
a small subset of papers (around 10), I will iteratively design a system for labeling and
categorizing the diagnose services and which aspects are diagnosed. Using this labeling
system [will then categorize the rest of the selected I1TSs.

Once all the diagnose services have been labeled, I will check whether there are any
differences between approaches or domains, by comparing the frequency at which aspects
are diagnosed per approach and per domain. I will also try to capture the diagnostic
processes in diagrams and try to abstract a general model or models from the labeling
system. The labeling of the ITSs and the general model(s) are the end products of this
thesis.

10

4 Results

The final selection of papers includes 47 papers covering 40 ITSs. A full overview of
the ITSs, with corresponding references, domain and tutoring approach can be found in
Appendix A. There are 26 model tracing tutors, 8 example tracing tutors, 11 constraint-
based tutors and one Intention-based tutor. Note that an ITS can have multiple ap-
proaches. Some (e.g. Andes and Mathtutor) use constraints in combination with a
model tracing or example tracing approach. It is unclear which approach the Technical
Troubleshooting tutor uses.

The results are structured as follows. Section 4.1 describes the diagnostic aspects 1
have found based on a small sample of papers, and that are used to label the rest of
the I'TSs. Section 4.2 discusses the results of the diagnostic aspects per ITS and gives
examples. Section 4.3 describes the frequency of aspects per approach and domain.
The flow of information and the general models representing the diagnostic process are
described in section 4.4.

4.1 Diagnostic aspects

Based on a small sample of papers (n=10), I determined that ITSs diagnose the following
aspects: Correctness, Difference, Redundancy, Type of Error, Common Errors, Order,
Preference and Time. These are explained below. To illustrate these aspects, unless
otherwise specified, the running example will be the following algebra problem: ”Solve
for x: bx +6 =7zx".

Correctness is a binary measure that indicates whether a submitted answer or step
matches an ideal answer or step. Possible outcomes are correct, incorrect or un-
known. For instance, if a student writes bx+7x+6 = 0 as the next step, this will be
diagnosed as incorrect because it does not match the ideal next step 5x—7xz+6 = 0.
If a student writes 5z + 6 — 7z = 0, this will be considered correct because it is
semantically equivalent to the ideal answer. In constraint-based approaches, a re-
sponse is considered correct if it does not violate any constraints and incorrect if
it does.

Difference is a measure similar to correctness, in that it indicates whether an answer
or step matches an ideal answer or step. However, whereas Correctness is a binary
measure, Difference refers to how far-off a submitted answer or step is to the ideal
answer or step, on a scale. The outcome can be a number or a percentage. A
difference of zero indicates a correct answer. For instance, suppose the difference
is measured by edit distance. In the above incorrect response, the difference is
one, because it takes one edit (i.e. replace ”+” with ”-”) to change the incorrect
response into a correct answer.

Redundancy refers to steps that are unnecessary or superfluous in an ideal solution.
This also includes steps that are too small to be recognized as a meaningful step.
Possible outcomes are redundant, not redundant or unknown. For instance, if a

11

student rewrites 5x —7x 4+ 6 = 0 as —7z + 5z + 6 = 0, that step can be considered
redundant.

Type of Error refers to a classification of errors. Possible outcomes differ per ITS. For
example, if a student writes 5z — (7x + 6 = 0, that can be classified as a syntax
error.

Common Errors or Buggy Rules are misconceptions that students may have. Possible
outcomes differ per ITS. A buggy rule for the running example could be ”If an
expression has the form ax + b = cx, the next step is ax 4+ cx + b = 0”. Following
this rule leads to the incorrect answer of 5x + 7z 4+ 6 = 0.

Order refers to the order in which a student takes steps. Possible outcomes are correct
order, incorrect order or unknown Note that this diagnosis has a bigger granularity
than other diagnoses, i.e. it is a diagnosis over multiple steps.

Preference If a problem has multiple solutions, some solutions may be preferable over
others. Possible outcomes are preferred, not preferred or unknown. For instance,
in a programming tutor, one algorithm may produce the correct result but be less
efficient than another algorithm. Preference can also be due to pedagogical reasons,
when a teacher wants students to use a certain approach rather than another one,
because it does not fit in the curriculum.

Time refers to the time it takes for a student to submit a step or solve a problem. The
outcome is a measure of time in milliseconds or seconds. While many systems
measure Time, only some use it for diagnostic purposes. This aspect was only
labeled when Time was used for diagnostic purposes.

4.2 Diagnostic aspects per Intelligent Tutoring System

A full overview of the diagnosed aspects per ITS can be found in Appendix B. This
section will describe the findings of each diagnostic aspect and give examples illustrating
how they manifest in I'TSs.

4.2.1 Correctness

All tutors diagnose whether a step is correct or incorrect. There are only two ITSs
for which this is the only diagnosed aspect, namely Design-A-Plant [20], [21] and Tech-
nical Troubleshooting Tutor [22]. All other tutors also diagnose other aspects besides
Correctness.

Design-A-Plant is a design-based learning environment that teaches botanical anatomy
and physiology to middle school children. In a typical problem, a student’s task is to
design a plant that can survive in a given environment. A student chooses plant com-
ponents from a library, and when she has put together a complete plant, the program
tests whether the plant would survive in the environment. Whether a plant survives in
an environment is checked using constraints. Every environment has constraints that a

12

plant needs to meet to survive. If (a part of) a plant violates a constraint, it is considered
incorrect.

The Technical Troubleshooting Tutor is a learning environment that teaches trou-
bleshooting in aircraft electrical systems. The student is presented with a realistic system
fault simulation of an aircraft. The student’s task is to inspect the system and perform
tests to find out where and why the fault occurred. When a student selects an area
where the fault could not have occurred, this is considered an mistake.

The Quantum Accounting ITS [23] tutors students to analyze business transactions.
In a typical session, a student sees a list of transactions, and selects one to work on.
The student then types in her analysis, i.e. the accounting effects of the transaction.
An analysis is considered incorrect if it does not match the model answer. The tutor
provides relevant feedback on the correctness of each effect. Students also have the
opportunity to ask questions about the transaction. In addition to Correctness, the
Quantum Accounting ITS also diagnoses Type of Error. The tutor is illustrated in
Figure 1.

Ms. Lindquist [24] teaches symbolization, i.e. converting word problems into alge-
braic expressions. The ITS uses a natural language dialog to simulate a conversation
between a student and a tutor, based on observations of tutoring sessions by experi-
enced human tutors and findings from cognitive research. During a tutoring session,
Ms. Lindquist presents an algebra word problem and asks a student to represent it in
an algebraic expression. If the student has trouble doing this, the I'TS will ask questions
to help the student. For example, some questions simplify the problem for the student,
break the problem down into steps, ask the student to explain their answer or prompt
the student to translate an expression into English. The ITS compares a student’s re-
sponse to the solution produced by the production model to determine the correctness.
In addition to Correctness, MS.Lindquist also diagnoses Type of Error and Common
Errors.

4.2.2 Difference

There are five I'T'Ss that diagnose the difference between a student’s answer and the ideal
answer. The Artificial Intelligence Tutoring System (AITS) [25] teaches various topics
in AI, and in particular search algorithms. In a typical exercise, students are shown
a graph and asked to give the nodes that result from applying a search algorithm to
the graph. Thus, answers are represented as a sequence of nodes. The tutor uses edit
distance to calculate the similarity between a student’s answer and the correct answer,
where the edit distance is calculated as the minimal cost of transforming the student’s
answer into the correct answer using node relabeling, node insertion and node deletion.
In addition to Correctness and Difference, AITS also diagnoses Redundancy and Type
of Error.

APROPOS2 [26] is an automated debugger for Prolog programs. A program in Pro-
log consists of a series of predicates and rules. A student is given a task and is asked to
write a program to solve the task. APROPOS2 then checks the program to find bugs
and suggests ways to fix them. It captures Difference in a penalty score. Programs

13

New Problem Instructions Video Demo Help Session Transcript Close B -
Transaction List Ac ing Equati A g Journal Accounting Ledger

Accounting Equation

b - Purchased $500 in equipment, paying $100 cash and promising the rest on a

note due in one year.

Assets - Liabilities + Equity &
Equipment Notes Payable | Cash v |
+300 - +400 MR e

Check my work:
Your answer for Equipment is exactly right. Everything you entered for Notes Payable
is also right. Cash is used in this ransaction, but it is not an equity account.

Ask a Question

Analyzing the Event

How will this affect the business’ assets?

Will this cause liabilities or equity to change?

What accounts are affected by this transaction?

What am | trying to do here?

What's the difference between assets, liabilities and equity?
How can you tell if this is actually a business transaction?
What is given and what was received in this ttansaction?

ASK?

| £

Accounting Eq_uation Transcri_pt

Done

Figure 1: Screenshot of error entry and tutor’s confirming and corrective feedback in
Quantum Accounting [23].

are represented by templates called Prolog-frames (P-frames). The P-frame of a stu-
dent’s algorithm is matched against possible solution P-frames. The lower the penalty
score is, the better the match. An algorithm that is computationally equivalent to a
solution algorithm gets a penalty score of 0. In addition to Correctness and Difference,
APROPOS2 also diagnoses Redundancy, Type of Error, Common Errors, Order and
Preference.

(Why2-)Autotutor [27] is a dialogue-based tutor for qualitative physics and computer
literacy. During a typical session, the tutor asks a question that requires approximately a
paragraph to answer sufficiently. To determine whether an answer is complete, Autotutor
uses a Latent Semantic Analysis (LSA) score to represent the difference between the
student’s answer and the ideal answer. Every question has expectations associated with
it. An expectation represents an aspect of a correct answer. An ideal correct answer
is the set of all expectations of a question. For example, if a correct answer has five

14

expectations embedded in it, AutoTutor expects a complete answer to mention all five
expectations. A student’s responses to a question are matched to the expectations using
an LSA score. If all responses match an expectation above a certain threshold, the
expectation is considered covered. When a student gives an incomplete answer, the
tutor asks follow-up questions until all expectations have been covered. In addition to
Correctness and Difference, (WHhy2-)Autotutor also diagnoses Common Errors.

In AzAR 3.0 [28], a foreign language pronunciation ITS, Difference denotes how close
the pronunciation of a phone! is to the reference pronunciation. The voice interactive tu-
tor teaches pronunciation in second language acquisition and supports several languages,
namely German, Polish, Russian, Czech and Slovak. It uses a Hidden Markov Model-
based classifier and speech signal analysis to recognize a student’s input, and compares
it to a reference model of a native speaker. The difference is communicated to students
using a color scale from red to green, where red indicates a mispronounced phone and
green indicates perfect pronunciation. In addition to Correctness and Difference, AzAR
3.0 also diagnoses Type of Error and Common Errors.

The Research Methods Tutor (RMT) [29] teaches research methods in psychology
using natural language dialogue. An animated pedagogical agent asks a student ques-
tions and analyses the student’s response using Latent Semantic Analysis. It compares
responses to expected responses and creates a vector representation of both. The sim-
ilarity between the student’s response and the expected response is represented by the
vectors’ cosine. Since this is a measure of similarity, where 1 means the response is
equivalent to the expected response, the Difference is actually 1 minus the vectors’ co-
sine.

4.2.3 Redundancy

Five ITSs can diagnose redundancy. These are Dragoon [30], APROPOS2, AITS, Ke-
uning14 [31] and PHP ITS [32]. Some ITSs treat redundancy as an error, while others
don’t. Dragoon is an ITS that tutors students in modeling dynamic systems. In a typical
problem, a student has to construct a directed graph representing a model of a dynamic
system. In some of the problem descriptions, not all facts and numbers are relevant to
the problem. When a student tries to define an unnecessary parameter, it is redundant,
and Dragoon gives appropriate feedback. Dragoon treats redundancy as an error. In
addition to Correctness and Redundancy, Dragoon also diagnoses Type of Error.

As mentioned earlier, in APROPOS2, programs are represented by P-frames. Stu-
dents’ programs are mapped to reference P-frames to find the best match. NOMATCH is
a special P-frame which is used when no other match could be found. When a predicate
definition or a subgoal is mapped to NOMATCH, it is considered redundant.

In AITS, an answer is redundant when the number of nodes in a node sequence is
greater than the number of nodes in the ideal answer.

Keuningl4 is an ITSs based on the IDEAS framework [13]. It teaches imperative
programming. Keuningl4 can diagnose another form of redundancy: similarity, although

! Phone is a linguistic term meaning a speech sound that is not specific to any language.

15

this function is currently not used. A program is diagnosed as similar when no significant
changes have been made since the last submission. Since a step with no significant
changes is unnecessary and superfluous, similarity is a form of redundancy. In addition
to Correctness and Redundancy, Keuningl4 also diagnoses Type of Error and Preference.

The PHP Intelligent Tutoring System teaches programming in PHP to beginner
programmers. The ITS uses first order logic and Al concepts to represent states of
programs and state changes. An exercise is specified by a set of facts about the Initial
State and the Overall Goal. Redundant code in a student’s program is found by keeping
track of dependencies in a status diagram. If there are facts that do not contribute
to any facts in the Overall Goal, those facts are considered unnecessary. Redundant
code is considered incorrect. In addition to Correctness and Redundancy, PHP ITS also
diagnoses Type of Error.

4.2.4 Type of Error

Type of Error is the second most commonly diagnosed aspects, with 28 ITSs making
this diagnosis. Only a few of these are illustrated here. The error categories that are dis-
tinguished vary greatly per system and also depend on the domain. HBPS [33] teaches
word /story problems in algebra. In a typical session, a student has to express relation-
ships between quantities in algebraic expressions. For example, a problem description
might be "Mike’s father is three times as old as Mike. 4 years ago, he was four times
older. How old is Mike?” The pogram distinguishes type I and type II errors. A type
I error is when a student successfully identifies a relationship between quantities but
expresses it incorrectly. Type II errors are when a student fails to identify a correct
relationship between quantities. In addition to Correctness and Type of Error, HBPS
also diagnoses Common Errors.

As mentioned earlier, an answer in AITS consists of a sequence of nodes. The
number of nodes is checked against the correct answer to see if an answer is complete.
The contents of the nodes is checked to see if they are accurate. Therefore, this ITS
distinguishes three types of errors: complete but inaccurate, incomplete but accurate,
and incomplete and inaccurate.

In the Invention Lab [34], a student learns scientific inquiry by inventing methods
for calculating target properties of data. Students go through cycles of ranking the
data, designing a method and evaluating it until the constructed method is valid. If the
ranking is correct, the tutor checks whether any constraints are violated. If there are, in
the next cycle, the dataset will be generated in such a way that the conceptual errors are
exposed, i.e. the proposed method will not work on the new datasets. Thus, this system
identifies the type of error and then generates datasets that specifically target the error.
In addition to Correctness and Type of Error, the Invention Lab also diagnoses Common
Errors.

Newton’s Pen [35] uses a ”"pentop computer”, i.e. a pen with an integrated digi-
tizer and processor. The ITS teaches statics, which is a part of mechanical engineering
concerning forces on bodies. Newton’s Pen uses various image recognition techniques
to recognize diagrams drawn on paper. The tutor can identify which properties of a

16

diagram are (in)correct. For example, it might give an error message about the location
or orientation of an arrow.

With the exception of The LISP Tutor [36], [37] and the ACT Programming Tutor
[38], all programming tutors also distinguish types of error. The most basic distinction
in a programming tutor is between syntax errors and semantic errors, but several tutors
also make more detailed distinctions.

4.2.5 Common Errors

There are 19 I'TSs that can diagnose common errors. Only a few of them are illustrated
here. All of the Cognitive Tutors (ACT Programming Tutor, Geometry Explanation
Tutor [39], [40], Geometry Tutor [41], Mathtutor [42], Ms. Lindquist [24] and The LISP
Tutor [36]) use buggy rules. They have an ideal model, i.e. a simulation of how an ideal
student would solve the problem at hand. They have production rules, that the ideal
model uses to construct programs. They also have a set of buggy rules. Buggy rules are
production rules that represent common incorrect steps. At each step a student takes,
a cognitive tutor tries to match the step to a production rule or buggy rule. If a step
matches a buggy rule, it is considered incorrect and relevant feedback is given.

AskElle [43] teaches beginner programmers Haskell, a functional programming lan-
guage. In this I'TS, solutions are represented by strategies, which describe the process
of solving a problem. It describes what steps need to be taken and how the steps re-
late to each other. A diagnose service tries to derive a submitted (possibly incomplete)
program from the previously submitted program using any rules that are allowed by the
strategy. If the student’s program does not appear in the set of expected programs, the
tutor checks if it can derive the program using known wrong approaches. In addition to
Correctness and Common FErrors, Ask-Elle also diagnoses Type of Error and Preference.

PLATO [44] is a framework for educational games based on Tutoring by Issue and
Example. One of those games is an arithmetic game called "How the west was won”.
In the game, a student and the computer take turns creating arithmetic expressions
from three randomly selected numbers and solving them. The goal of the game is to get
students to create many different kinds of expressions. The value of the expression is
also the number of steps the player can take on a board. Figure 2 illustrates the game
board. The board has shortcuts and players can "bump” each other back. Because
of this, it is beneficial to use different strategies depending on the situation. Since
students often use a single strategy, the tutor’s feedback focuses on getting the student
to try different strategies. PLATO uses a paradigm of ”Issues and Examples” to tutor
students. An issue is activated when the student’s behaviour indicates that they don’t
know a certain concept or skill. Issues can be considered common errors because they
represent strategies that students often have trouble with. In addition to Correctness
and Common Errors, PLATO also diagnoses Type of Error and Preference.

17

1
7 2
4 1
3 3
2 3 2
1

3
lTOWNO 2 3 4 5 6 7 8 9 \'
\ /
/ 19 18 17 16 15 14 13 12 11| 10 TOWN

1
TOWN 20

!/ 39 38 37 36 35 3% 33 32 3130 7

—t

21 22 23 24 25 26 27 28 29 \
!

TOWN 40 |41 42 43 44 45 L6 47 48 49 \

/ 59 58 57 56 55 54 53 52 51{ 50 TOWN
!
TOWN 60 }61 62 63 64 65 66 67 68 69 \!

Figure 2: Screenshot of the game board and the randomly selected numbers in PLATO.
[44]

4.2.6 Order

Four ITSs diagnose the order of steps. These are Mathesis [45], [46], APROPOS2 [26],
Mathtutor and CIRCSIM-TUTOR [47], [48]. The Mathesis tutor teaches algebra to high
school students. Mathesis has a feature called intelligent task recognition. Any algebraic
expression can be entered into the tutor and is recognized by it. The tutor then generates
model solutions that a student’s solution can be compared to. Order is diagnosed by
checking for operator precedence. To solve an algebraic expression, a student selects a
part of it that she wants to work on. The student then selects an operation that she
wants to perform on the selected part, from a drop-down menu. The tutor checks its
internal representation of the expression to see if the selection has the highest operator
precedence and whether the selected operation is the correct step to take, and provides
feedback about it to the student. In addition to Correctness and Order, Mathesis also
diagnoses Type of Error and Common Errors.

APROPOS2 checks the order of clauses and subgoals of a program, because in Prolog
these can affect the outcome and efficiency of a program. It attempts to find wrong orders
by heuristic code-matching.

18

Mathtutor is an example tracing tutor based on several Cognitive Tutors in the
mathematics domain. Solutions and common errors are captured in behaviour graphs.
In a behaviour graph, an author can specify whether steps can be taken in any order,
or whether a strict order must be followed. Steps can be grouped together and nested,
and the order can then be specified on a per-group basis. In addition to Correctness and
Order, Mathtutor also diagnoses Common Errors.

CIRCSIM-Tutor is a dialogue-based ITS, which tutors students on circulatory phys-
iology, specifically the way blood pressure is stabilized in the body. In a typical session,
before the dialogue begins, a student fills in a table specifying which changes take place
in seven components when something in the circulatory system is disturbed. Based on
errors in this table, the I'TS plans a tutoring dialogue. The tutor also takes into account
the order in which values are added to the table, where some orders are considered in-
correct. The reason for this is that the order of entry is thought to reflect the student’s
reasoning process. In addition to Correctness and Order, CIRCSIM-Tutor also diagnoses
Type of Error.

4.2.7 Preference

There are five ITSs that use a preference diagnosis. These are APROPOS2, Andes
[49], Ask-Elle, Keuningl4 and PLATO. In both APROPOS2 and Ask-Elle, efficient
algorithms are preferred over inefficient ones. In both of these tutors, when a student
submits an inefficient program, the tutor will respond that, while correct, the algorithm
is suboptimal.

Ask-Elle and Keuningl4 also diagnose another type of Preference, in the form of
detours. A program has a detour when all its steps are valid, but it does not follow
a strategy. The program is correct, but not preferred, because in these tutors it is
preferable for a program to follow a strategy.

Andes is a tutor for college level physics. Andes diagnoses preference for pedagogical
reasons. In a typical exercise, a student draws a coordinate system and vectors, defines
variables and then writes equations. After every input action, the element in question
is coloured green or red, indicating correct or incorrect, respectively. To promote con-
ceptual understanding of physics, the system encourages students to write down major
principles instead of immediately applying them to a problem. When students do not
do this, the equation is coloured green because it is correct, but they lose points and
are given a warning message because it is not the preferred approach. In addition to
Correctness and Preference, Andes also diagnoses Type of Error.

In PLATO, students are free to choose a playing strategy, but some strategies are
preferred by the tutor over others. When a student makes a suboptimal move, the tutor
does not immediately give feedback. It only gives feedback when the student repeatedly
makes suboptimal moves, which indicates that she does not know that other strategies
can be used.

19

4.2.8 Time

Only one ITS uses time to diagnose students, namely Zatarain-Cabadal3 [50]. This
ITS is an affective tutor for arithmetic embedded in a social network. It uses response
time to estimate the difficulty of a question. Students perform an initial diagnostic
test to assess their knowledge level. Questions are ranked according to difficulty, and
their weights correspond with their difficulties. The result of the test determines the
learning level and teaching method of the exercises. The tutor tracks how long it takes
to answer questions. A longer response time is interpreted as the student having difficulty
answering the question.

4.3 Diagnostic aspects per Approach and Domain

In this section, the frequency at which aspects are diagnosed is compared between ap-
proaches and domains. This gives insight which aspects are most common in each
approach and domain. Section 4.3.1 looks at the frequency per approach, and section
4.3.2 looks at the frequency per domain.

4.3.1 Per Approach

There are four approaches: model tracing tutors, example tracing tutors, constraint-
based tutors and intention-based tutors. Note that the categories partially overlap.
There are five I'TSs that are in both the model tracing and constraint-based category,
and one ITS (Mathtutor) is in both the example tracing and constraint-based category.
Also note that, of the 40 I'TSs included in this study, only one uses an intention-based
approach. Table 2, 3, 4 and 5 show the frequency of aspects in model tracing tutors,
example tracing tutors, constraint-based tutors and the intention-based tutor, respec-
tively.

Model Tracing tutors 26
Correctness 26
Type of Error 16
Common Errors 14
Preference 3
Difference 2
Order 2
Redundancy 1
Time 1

Table 2: Frequency of aspects in model tracing tutors

There do not seem to be any differences between approaches.

20

Example Tracing tutors

Correctness

Type of Error
Common Errors
Difference
Redundancy
Order

Preference

=N WO W W[~J| co| Qo

Table 3: Frequency of aspects in Example Tracing tutors

Constraint-based tutors 11
Correctness 11
Type of Error 8
Common Errors 5
Preference 3
Difference 1
Redundancy 1
Order 1

Table 4: Frequency of aspects in Constraint-based tutors

4.3.2 Per Domain

While the domains of the I'TSs vary greatly, they can be roughly grouped into four do-
mains: Mathematics, Programming, Physics and Other domains. Mathematics includes
domains such as algebra, arithmetic and geometry. Programming includes programming
in specific languages, and more general domains such as object-oriented design and data
structures. Physics includes qualitative physics and statics. Other domains include
everything else, such as botany, foreign language pronunciation, database design and
aircraft engineering. See Appendix A for all domains. Note that the categories overlap
partially. (Why2-)Autotutor is in both the Physics and the Other Domains category
because it teaches both physics and computer literacy. iList is in both the Programming
and Other Domains category. This is because it teaches students about lists, which are
important data structures in programming, but the tutor does not teach programming,
per se. Rather, it teaches how lists behave, which is a more general topic of computer
science. Table 6, 7, 8 and 9 show the frequency of aspects per domain, for Mathematics,
Programming, Physics and Other domains, respectively.

An interesting finding is that ITSs in the domain of mathematics more often diagnose
Common Errors than ITSs in the other domains. 90.9% of math tutors diagnose Common
Errors, compared to only 33.3% of programming tutor, 50% of physics tutors and 33.3%
of tutors in other domains. In the domain of programming, I'TS diagnose Type of Error

21

Intention-based tutors
Correctness 1
Type of Error 1

Table 5: Frequency of aspects in Intention-based tutors

Mathematics 11
Correctness 11
Common Errors 10
Type of Error 5
Order 2
Preference 1
Time 1

Table 6: Frequency of aspects in Mathematics tutors

more often than in the other domains. 86.7% of programming tutors diagnose Type of
Error, compared to 45.5% of mathematics tutors, 75% of physics tutors and 66.7% of
tutors in other domains. Also, Redundancy is diagnosed in three Programming tutors
and two Other Domain tutors, but not in any Mathematics and Physics tutors. That
is 20% of Programming tutors and 17% of Other Domains, compared to none of the
Mathematics and Physics tutors. Again, no statistical analysis was used to determine
the significance of these results, due to the small sample size and the exploratory nature
of this research. The rest of the aspects seem to be diagnosed at a similar frequency
across domains.

22

Programming 15
Correctness 15
Type of Error 13
Common Errors 5
Redundancy 3
Preference 3
Difference 1
Order 1

Table 7: Frequency of aspects in Programming tutors

Physics
Correctness
Type of Error

Common Errors
Difference

el e B 1RSI RN S

Preference

Table 8: Frequency of aspects in Physics tutors

4.4 Diagnostic Processes

In this section, the flow of information in ITSs leading to a diagnosis is illustrated
in diagrams. Not all ITSs are represented here, because the diagnostic process was not
always described in enough detail to make a diagram. White nodes represent input, green
nodes represent diagnostic I'TS components and purple nodes represent a diagnosis.

Figure 3 shows the most basic diagnostic process in an ITS. This diagram applies
to Assistment, Design-a-Plant and Quantum Accounting. In these tutors, a student’s
submitted response is checked against a single ideal solution. If it matches, the response is
correct. If not, the response is incorrect. Although Assistment and Quantum Accounting
have an additional diagnostic aspect, namely Type of Error, this is not shown in the
diagram. This is because it is unclear where the Type of Error is determined. RMT’s
diagnostic process is very similar, except that it uses cosine similarity to check whether
an answer matches the expected response.

23

Other domains 12
Correctness 12
Type of Error

Common Errors

Difference

Redundancy
Order

N |]| 0O

Table 9: Frequency of aspects in Other Domain tutors

Correctness no Incorrect
Matches solution?

yes

Correct

Figure 3: Assistment, Design-
a-Plant, Quantum Accounting

Difference <1
. e Incorrect
Cosine similarity?

=1

Correct

Figure 4: RMT

Figure 5 shows how Redundancy and Correctness are diagnosed in Dragoon. A node
is redundant when it matches a distractor node, correct if it is equivalent to the ideal
answer, and incorrect otherwise. Dragoon also diagnoses Type of Error, but it is unclear
from the paper how this is determined.

24

Step
Node

Redundancy yes ’
Matches distractor node? leaalicos s

no

Correctness yes C .
Equivalent to ideal answer? orrec

no

Incorrect ’

Figure 5: Dragoon

The information flow in AITS is illustrated in figure 6. The ITS calculates Difference
in the form of edit distance. This information is used to infer Correctness. If the edit
distance is zero, the node sequence is correct. Otherwise, AITS checks the number of
nodes and the content of the nodes in the submitted answer, and uses this to determine
Redundancy and the Type of Error. Redundancy is treated as a Type of Error. The
complete and accurate diagnoses are labeled as types of errors. This might seem counter-
intuitive, but this is because Type of Error in this ITS is a combination of completeness
and accuracy, so a step can be complete but inaccurate, incomplete but accurate or in-
complete and inaccurate. The diagnosis complete and accurate will never occur because
in that case the edit distance is zero, and thus the step will be diagnosed as correct.

25

Step
Node sequence

Difference =0

o) C t
Edit distance to ideal answer orrec ’

> 0

T.o.E: |> Ideal answer Redundancy | _ 1501 apsyer | T.o.E: ’

Redundant | <z LIoeE @F (i ‘ Complete
Number of nodes

< Ideal answer

T.o.E:
Incomplete

Type of Error yes T.o.E:
Nodes match ideal answer? Accurate

no

T.o.E: ’
Inaccurate

Figure 6: AITS

Figure 7 shows the flow of information in Mathesis. A student selects a part of an
algebraic expression. Mathesis then checks whether the selected part has the highest
operator precedence. If not, the order of steps is incorrect. If the selection does have
operator precedence, the student can then select an operation to apply to the selection.
Mathesis checks whether the operation matches the ideal answer. If it does not match,
the operation is incorrect. If it does, the student types in the result of applying the
operation to the selected part of the algebraic expression. Mathesis checks whether the
result matches the ideal answer. If it does not, it checks whether it matches the result
of any known buggy rule.

26

Step

Algebraic expression

Order no [-
Operator precedence? neorrect order

yes l

Step
Operation

Correctness no 1 .
. . ncorrec
Operation matches ideal answer?

yes

Step
Resulting expression

Correctness yes C .
.) orrec
Expression matches ideal answer?
no
Common Errors yes

Matches buggy rule? Common mistake by buggy rule

no

Incorrect ’

Figure 7: Mathesis

Figure 8 illustrates the information flow in HBPS. First, the I'TS checks whether the
input is a letter or an expression. A letter is always valid. If it is an expression, the I'TS
checks whether the expression matches an edge in the hypergraph that represents the
problem. This is done by checking if all variables that occur in the expression also occur
in an edge. If a match is found, this means the student correctly identified a relationship
between the variables. However, it does not necessarily mean that the relationship was
correctly expressed. Therefore, HBPS then checks whether the operations and the order
of variables match those in the edge. If not, this is classified as a Type I Error. If no
matching edge is found, this is classified as a Type II Error, which means a student

27

was unable to correctly identify a relationship between variables. The ITS then further
checks whether the error can be explained by a buggy rule, or if it is an unknown mistake.

Step

Letter or expression

Correctness Letter
- Correct
Letter or expression’

Expression

Correctness
& Type of Error
Matches edge?

T.o.E: | no
Type II Error]

yes
Common Errors

Matches buggy rule?

Correctness
no T.o.E:
no os & Type of Error Tvoe I Error
Order and operators match? yp
Incorrect ’ \

‘ Common mistake by buggy rule

Figure 8: HBPS

Figure 9 shows the basic information flow in a cognitive tutor. This diagram applies
to the ACT Programming Tutor, the LISP Tutor and the Geometry Tutor and also to
PAT2Math. First, the ITS checks whether a submitted answer matches any production
rule. If it does, the answer is correct. If it does not, the I'TS checks whether it matches
a known buggy rule. If it does, it is a common mistake by buggy rule. If not, it is an
unknown mistake. The other cognitive tutors (Geometry Explanation Tutor, Mathtu-
tor and Ms. Lindquist) have slightly different components. The diagnostic process in
Mathtutor is very similar, as is shown in figure 10. Because Mathtutor uses an example
tracing approach, unlike the other cognitive tutors, this tutor uses interpretations instead
of production rules. An interpretation is a path in a behaviour graph that represents
a (possibly buggy) solution. An interpretation includes a specification of the order of
steps. Therefore, when an answer matches an interpretation, this automatically means
that the Order is correct. The information flow of The Geometry Explanation Tutor
and Ms. Lindquist could not be captured in a diagram because they are dialogue-based
tutors. The diagnostic process of these tutors is more complicated, and is not fully

28

explained in detail in the respective papers.

Step
Program

Correctness yes

Matches production rule? Correct

no

Common Errors

es
Matches buggy rule? *){y Common mistake by buggy rule

no

‘ Incorrect ’

Figure 9: ACT Programming Tutor,
LISP Tutor, Geometry Tutor, PAT2Math

Correctness yes
& Order 4>{ Correct and correct order
Matches interpretation?

no

Common Error

yes .
Matches buggy interpretation? 4% Common mistake by buggy rule

no

Incorrect ’

Figure 10: Mathtutor

The diagnostic process of the Invention Lab is shown in Figure 11. Students make
a prediction about the ranking of two datasets. For instance, suppose the task is to
invent a method to calculate the spread of a dataset. A student is presented with two
datasets which she can use to test her method. Firstly, the student makes a prediction
about the ranking of the datasets, i.e. which dataset has a larger spread. Then, the

29

student demonstrates a method to calculate the spread, by applying it to examples from
the datasets. The ITS checks whether the same method is applied to both datasets. If
not, this is classified as a method error. If it is, the ITS checks whether the method
results in the predicted ranking. If the ranking is different, the method is incorrect. If
the ranking is the same, the ITS checks whether the method violates any constraints. If
no constraints are violated, the invented method is considered correct.

Step
Prediction and method

Correctness
& Type of Error
Same method applied to both datasets?

no T.o.E: ’
Method Error

yes
Correctness no I .
Ranking matches prediction? neorrec
yes
Correctness no C "
Any constraints violated? orrec
yes
Common Errors no Incorrect ’
Common Error constraints?
yes

Common mistake by constraint violation’

Figure 11: The Invention Lab

The diagnostic process in Keuningl4 is illustrated in figure 12. A submitted piece
of code is compared to known strategies. If the code follows a strategy, it is correct
and expected. If it does not follow a known strategy, the tutor checks whether any
significant changes were made to the code since the last submitted step. If not, the code
is considered similar to the last step and thus redundant. If not, the ITS checks whether
the code is recognized as a valid step since the last submitted step. If it is, the code is
correct but a detour, and thus it is not preferred. If no valid step is recognized, the tutor
tests the program to check whether the output is as expected. If the output is different,

30

the program is incorrect. If the output is correct, the program is correct but unknown.

Step
Program

Correctness

Follows strategy? Correct ’

no

yes
Redundancy yes

Similar?

Redundant ’

no

Preference yes

Step recognized? ——| Correct but not preferred’

no
Correctness yes C .
Correct output? orrec
no
Incorrect ’

Figure 12: Keuningl4

The diagnostic process in Ask-Elle is similar to that of Keuning14, with the addition
of buggy rules and preferred strategies. The process is illustrated in figure 13. A sub-
mitted piece of code is compared to known strategies. If the code follows a strategy, the
tutor checks whether the used strategy is optimal or if there are other, more preferable,
strategies. If there aren’t, the program is correct and expected. If the strategy is not
the preferred strategy, the program is correct but suboptimal. If it does not follow a
known strategy, the I'TS checks whether it recognizes any known wrong approaches that
represent common mistakes. If no common mistakes are found, the I'TS checks whether
the code is recognized as a valid step since the last submitted step. If it is, the code
is correct but a detour, and thus it is redundant. If no valid step is recognized, the
program is incorrect and unknown.

31

Step

Correct but not preferred

Program
Correctness yes Preference no
Follows strategy? Preferred strategy?
yes
no ‘ Correct ’

Common Errors| yes

Buggy rule? ——— Common mistake by buggy rule

no

Correctness yes
& Preference —»‘ Correct but not preferred’
Step recognized?

no

Incorrect ’

Figure 13: Ask-Elle

Figure 14 illustrates the information flow in PHP ITS. As was explained before, in
this ITS program states and state changes are represented using first order logic and
an exercise is specified by a set of facts about the Initial State and the Overall Goal.
Firstly, the tutor checks whether all necessary facts are present in the code. If there
are facts missing, the code is incorrect. Which facts are missing determines the Type of
Error. If all necessary facts are present, the tutor checks whether all of them contribute
to the Overall Goal. If there are facts that do not contribute to the Overall Goal, those
facts are considered Redundant.

32

Step
Program

Correctness no .)
All facts present? ncorrec

Type of Error
e Which facts are missing? —| Type of Error
Redundancy L,{ ’
All facts contribute to OG? Redundant
yes
Correct ’

Figure 14: PHP ITS

33

5 Discussion

The aspects that I'TSs diagnose are Correctness, Difference, Redundancy, Type of Er-
ror, Common Errors, Order, Preference and Time. Of these, Correctness is the most
common. It is diagnosed in all systems. Correctness can be considered the most basic
diagnostic aspect because other aspects depend on it. For instance, Type of Error relies
on Correctness, because you must first establish that there is an error to determine what
kind of error it is. Preference also depends on Correctness, because it must first be
established that an answer is correct to determine whether it is the preferred correct
answer.

Figure 15 illustrates the general diagnostic process. A dashed border indicates that
the components are optional. All tutors check whether a step is correct. This is done
using Correctness or Difference. Before this is done, however, some tutors check the
Order of steps or check how much Time it took to submit the step. After it has been
determined that a step is correct, some tutors check whether a step is Preferred. Some
tutors also check whether a correct step is Redundant. For incorrect steps, some tutors
check whether the step contains Common Errors, and what Type of Error was made.
Lastly, some tutors check whether an incorrect step is redundant. Note that, as was
mentioned before, some tutors consider Redundancy as an error, while others treat it as

correct.

Correctness
or Difference

; Preference i Common Errors i
'or Redundancy ' or Redundancy '

_____________ ior Type of Error

Figure 15: General diagnostic process

After Correctness, the most commonly diagnosed aspects are Type of Error and
Common Errors. The frequency of these aspects differs per domain. Common Errors is
the second most frequently diagnosed aspect in mathematics tutors, while that is Type of
Error in programming tutors. This is perhaps due to the solution space in each domain.

34

In mathematics, problems typically have only a single correct solution, and there are
only a few ways to get to the solution. This makes buggy rules a very suitable approach
to finding errors. Since the solution space is small, the kinds of errors that students
make can be anticipated relatively easily. In the domain of programming, the solution
space is usually very large, which makes Common Errors less feasible. Type of Error
is perhaps easier to determine in programming than in mathematics. In programming,
the most basic categorization of errors is to make a distinction between syntactic and
semantic errors. A syntactic error is easy to detect because a program will not run when
it has a syntactic error. In mathematics, syntactic errors can also occur but are much
less common than in programming errors. More research is needed to further investigate
this difference between domains.

Only one ITS, Zatarain-Cabadal3, diagnoses Time. It does this because the time it
takes to answer a question is thought to reflect the difficulty of the question. Since there
is only one ITS that does this, it seems to be an outlier. Why don’t more I'TSs diagnose
time? It can be argued that Time is not a good measure of difficulty. Most ITSs can
be accessed at home, without supervision. This makes it difficult to monitor how much
time is actually spent on answering a question. A student might take a long time to
answer simply because she is taking a break away from the computer, or because she is
doing something else at the same time. Perhaps this is why most ITSs do not use Time
for diagnosis.

Some ITSs make more fine-grained diagnoses than the ones discussed in this study.
Arendsl7 [51] builds on the IDEAS framework [13] but provides additional diagnose
services. This is because it is an I'TS for the domain of microcontroller I/O programming,
in which expressions can be semantically equivalent even when an incorrect step has
been submitted. To handle these situations, the ITS can diagnose expressions that
are semantically equivalent while also following a buggy rule, or expressions that are
expected by a strategy despite not being semantically equivalent. Since these types of
diagnoses are very specific to a domain, they are too fine-grained for the purposes of this
research, which compares diagnostic processes across domains.

A limitation of this study is that it bases the analysis of diagnostic processes on the
papers written about the ITSs, rather than on the source code of the ITSs. Unfortu-
nately, not all papers provide an in-depth description of how diagnosis is done. Because
of this it was not possible to describe the diagnostic process of some systems, since it is
unclear how some aspects were determined. This also makes the analysis partly a matter
of interpretation. For example, does a detour fall under Redundancy, Common Errors
or Preference? In cases where I was unsure about an I'TS, I consulted my supervisor for
a second opinion.

I believe that the analysis of diagnose services in I'T'Ss contributes to a better under-
standing of the diagnosing behavior of I'TSs. For future research, the results of this study
could be combined with results from evaluations of the effectiveness of tutoring systems
(e.g. [3]). This would give insight into which diagnostic processes are most effective
at improving learning. This insight could then inform the design and development of
tutoring systems in the future.

35

6 Conclusion

The goal of this thesis was to explore the literature about the different Intelligent Tu-
toring Systems that are available, and gain insight into the diagnostic process of these
systems. The research questions that this study aims to answer were the following:
Firstly, what aspects can be distinguished in the diagnosis of student’s responses? Sec-
ondly, how are these diagnostic aspects determined in the learning environment? Lastly,
are there patterns or a general scheme that can be identified in the diagnostic process
of the different learning environments? I.e. are there aspects that are diagnosed in all
systems, and do they diagnose student’s responses in a similar manner across domains
and approaches?

Concerning the first question, there are eight aspects of student’s responses that I'TSs
diagnose: Correctness, Difference, Redundancy, Type of Error, Common Errors, Order,
Preference and Time. The second question was answered in section 4.4. Unfortunately,
it was not possible to represent every diagnostic process in a diagram. Although the
diagrams vary greatly between systems, a general model describing all I'TSs was proposed
in sectionb. Most importanly, all ITSs diagnose Correctness. There do seem to be
differences in domains and approaches. The main difference in domains is that Common
Errors is the second most frequently diagnosed aspect in mathematics tutors, while that
is Type of Error in programming tutors. The analysis found no difference between the
four tutoring approaches.

36

7
1]

[10]

[11]

References

Douglas C Merrill, Brian J Reiser, Michael Ranney, and J Gregory Trafton. Effective
tutoring techniques: A comparison of human tutors and intelligent tutoring systems.
The Journal of the Learning Sciences, 2(3):277-305, 1992.

Kurt VanLehn. The behavior of tutoring systems. International journal of artificial
intelligence in education, 16(3):227-265, 2006.

Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring
systems, and other tutoring systems. Educational Psychologist, 46(4):197-221, 2011.

John R Anderson, C Franklin Boyle, and Brian J Reiser. Intelligent tutoring sys-
tems. Science(Washington), 228(4698):456-462, 1985.

John Seely Brown and Kurt VanLehn. Repair theory: A generative theory of bugs
in procedural skills. Cognitive science, 4(4):379-426, 1980.

John R Anderson, C Franklin Boyle, Albert T Corbett, and Matthew W Lewis.
Cognitive modeling and intelligent tutoring. Artificial intelligence, 42(1):7-49, 1990.

Antonija Mitrovic, Pramuditha Suraweera, and Brent Martin. Intelligent tutors for
all: The constraint-based approach. IEEFE Intelligent Systems, 22(4):38-45, 2007.

Kenneth R Koedinger, Vincent Aleven, Neil Heffernan, Bruce McLaren, and
Matthew Hockenberry. Opening the door to non-programmers: Authoring intel-
ligent tutor behavior by demonstration. In International Conference on Intelligent
Tutoring Systems, pages 162—-174. Springer, 2004.

W Lewis Johnson. Intention-based diagnosis of novice programming errors. Morgan
Kaufmann, 1986.

Susanne Narciss. Feedback strategies for interactive learning tasks. Handbook of
research on educational communications and technology, 3:125—144, 2008.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic re-
view of automated feedback generation for programming exercises. In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, pages 41-46. ACM, 2016.

Hienke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic review of au-
tomated feeback generation for programming exercises. Manuscript in preparation,
2017.

Bastiaan Heeren and Johan Jeuring. Feedback services for stepwise exercises. Sci-
ence of Computer Programming, 88:110-129, 2014.

Paul Black and Dylan Wiliam. Assessment and classroom learning. Assessment in
Education: principles, policy & practice, 5(1):7-74, 1998.

37

[15]

[18]

[26]

Michelene TH Chi, Stephanie A Siler, and Heisawn Jeong. Can tutors monitor
students’ understanding accurately? Cognition and instruction, 22(3):363-387,
2004.

Anthony J Nitko and Susan M Brookhart. Fducational Assesment of Students 6nd
FEdition. Boston: Pearson Education, Inc, 2011.

Thierry Chanier, Michael Pengelly, Michael Twidale, and John Self. Conceptual
modelling in error analysis in computer-assisted language learning systems. In In-

telligent tutoring systems for foreign language learning, pages 125-150. Springer,
1992.

Naima El-Kechal, Elisabeth Delozanne, Dominique Prévit, Brigitte Grugeon, and
Frangoise Chenevotot. Evaluating the performance of a diagnosis system in school
algebra. In International Conference on Web-Based Learning, pages 263-272.
Springer, 2011.

Alan CK Cheung and Robert E Slavin. The effectiveness of educational technology
applications for enhancing mathematics achievement in k-12 classrooms: A meta-
analysis. Fducational research review, 9:88-113, 2013.

James C Lester, Brian A Stone, Michael A O’Leary, and Robert B Stevenson.
Focusing problem solving in design-centered learning environments. In International
Conference on Intelligent Tutoring Systems, pages 475-483. Springer, 1996.

James C Lester, Brian A Stone, and Gary D Stelling. Lifelike pedagogical agents
for mixed-initiative problem solving in constructivist learning environments. User
modeling and user-adapted interaction, 9(1-2):1-44, 1999.

Scott D Johnson et al. Application of cognitive theory to the design, development,
and implementation of a computer-based troubleshooting tutor. 1992.

Benny G Johnson, Fred Phillips, and Linda G Chase. An intelligent tutoring system
for the accounting cycle: Enhancing textbook homework with artificial intelligence.
Journal of Accounting Education, 27(1):30-39, 2009.

Neil T Heffernan and Kenneth R Koedinger. An intelligent tutoring system incor-
porating a model of an experienced human tutor. In International Conference on
Intelligent Tutoring Systems, pages 596—608. Springer, 2002.

Foteini Grivokostopoulou, Isidoros Perikos, and Ioannis Hatzilygeroudis. An edu-
cational system for learning search algorithms and automatically assessing student
performance. International Journal of Artificial Intelligence in Education, 27(1):
207240, 2017.

Chee-Kit Looi. Automatic debugging of prolog programs in a prolog intelligent
tutoring system. Instructional Science, 20(2-3):215-263, 1991.

38

[27]

[33]

[34]

[37]

Arthur C Graesser, Peter Wiemer-Hastings, Katja Wiemer-Hastings, Derek Harter,
Tutoring Research Group Tutoring Research Group, and Natalie Person. Using
latent semantic analysis to evaluate the contributions of students in autotutor. In-
teractive learning environments, 8(2):129-147, 2000.

Grazyna Demenko, Agnieszka Wagner, and Natalia Cylwik. The use of speech
technology in foreign language pronunciation training. Archives of Acoustics, 35(3):
309-329, 2010.

Elizabeth Arnott, Peter Hastings, and David Allbritton. Research methods tutor:
Evaluation of a dialogue-based tutoring system in the classroom. Behavior Research
Methods, 40(3):694-698, 2008.

Jon Wetzel, Kurt VanLehn, Dillan Butler, Pradeep Chaudhari, Avaneesh Desali,
Jingxian Feng, Sachin Grover, Reid Joiner, Mackenzie Kong-Sivert, Vallabh Patade,
et al. The design and development of the dragoon intelligent tutoring system for

model construction: lessons learned. Interactive Learning Environments, 25(3):
361-381, 2017.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Strategy-based feedback in
a programming tutor. In Proceedings of the Computer Science Education Research
Conference, pages 43-54. ACM, 2014.

Dinesha Weragama and Jim Reye. Analysing student programs in the php intelligent
tutoring system. International Journal of Artificial Intelligence in Education, 24
(2):162-188, 2014.

Miguel Arevalillo-Herraez, David Arnau, and Luis Marco-Giménez. Domain-specific
knowledge representation and inference engine for an intelligent tutoring system.
Knowledge-Based Systems, 49:97-105, 2013.

Ido Roll, Vincent Aleven, and Kenneth R Koedinger. The invention lab: Using a
hybrid of model tracing and constraint-based modeling to offer intelligent support in
inquiry environments. In International Conference on Intelligent Tutoring Systems,
pages 115-124. Springer, 2010.

WeeSan Lee, Ruwanee de Silva, Eric J Peterson, Robert C Calfee, and Thomas F
Stahovich. Newton’s pen: A pen-based tutoring system for statics. Computers &
Graphics, 32(5):511-524, 2008.

Albert T Corbett, John R Anderson, and Eric G Patterson. Student modeling
and tutoring flexibility in the lisp intelligent tutoring system. Intelligent tutoring
systems: At the crossroads of artificial intelligence and education, pages 83—106,
1990.

John R Anderson and Brian J Reiser. The lisp tutor. Byte, 10:159-175, 1985.

39

[38]

[39]

[48]

[49]

Albert T Corbett and John R Anderson. Locus of feedback control in computer-
based tutoring: Impact on learning rate, achievement and attitudes. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 245-252.
ACM, 2001.

Vincent Aleven, Octav Popescu, and Kenneth R Koedinger. Towards tutorial dialog
to support self-explanation: Adding natural language understanding to a cognitive
tutor. In Proceedings of Artificial Intelligence in Education, pages 246-255. Citeseer,
2001.

Vincent Aleven, Octav Popescu, and Kenneth Koedinger. Pilot-testing a tutorial
dialogue system that supports self-explanation. In International Conference on
Intelligent Tutoring Systems, pages 344-354. Springer, 2002.

John R Anderson, C Franklin Boyle, and Gregg Yost. The geometry tutor. In
1JCAI pages 1-7, 1985.

Vincent Aleven, Bruce M McLaren, and Jonathan Sewall. Scaling up programming
by demonstration for intelligent tutoring systems development: An open-access
web site for middle school mathematics learning. IEEE Transactions on Learning
Technologies, 2(2):64-78, 2009.

Johan Jeuring, Alex Gerdes, and Bastiaan Heeren. A programming tutor for haskell.
In Central European Functional Programming School, pages 1-45. Springer, 2012.

Richard R Burton and John Seely Brown. A tutoring and student modelling
paradigm for gaming environments. ACM SIGCUE QOutlook, 10(SI):236-246, 1976.

Dimitrios Sklavakis and Ioannis Refanidis. An individualized web-based algebra
tutor based on dynamic deep model tracing. In Hellenic Conference on Artificial
Intelligence, pages 389-394. Springer, 2008.

Dimitrios Sklavakis and Ioannis Refanidis. Mathesis: An intelligent web-based
algebra tutoring school. International Journal of Artificial Intelligence in Education,
22(4):191-218, 2013.

Nakhoon Kim, Martha Evens, Joel A Michael, and Allen A Rovick. Circsim-tutor:
An intelligent tutoring system for circulatory physiology. In International Confer-
ence on Computer Assisted Learning, pages 254—266. Springer, 1989.

Michael Glass. Some phenomena handled by the circsim-tutor version 3 input
understander. In Proceedings of the Tenth Florida Artificial Intelligence Research
Symposium, Daytona Beach, pages 21-25. Citeseer, 1997.

Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A Shapiro, Robert Shelby, Linwood
Taylor, Don Treacy, Anders Weinstein, and Mary Wintersgill. The andes physics
tutoring system: Lessons learned. International Journal of Artificial Intelligence in
Education, 15(3):147-204, 2005.

40

[50]

[51]

[52]

Ramon Zatarain-Cabada, Maria Lucia Barréon-Estrada, Yasmin Hernandez Pérez,
and Carlos Alberto Reyes-Garcia. Designing and implementing affective and in-
telligent tutoring systems in a learning social network. In Mezican International
Conference on Artificial Intelligence, pages 444-455. Springer, 2012.

Hugo Arends, Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. An intelligent
tutor to learn the evaluation of microcontroller i/o programming expressions. In
Proceedings of the 17th Koli Calling Conference on Computing Education Research,
pages 2-9. ACM, 2017.

Kurt VanLehn, Pamela W Jordan, Carolyn P Rose, Dumisizwe Bhembe, Michael
Bottner, Andy Gaydos, Maxim Makatchev, Umarani Pappuswamy, Michael Ringen-
berg, Antonio Roque, et al. The architecture of why2-atlas: A coach for qualitative
physics essay writing. In International Conference on Intelligent Tutoring Systems,
pages 158-167. Springer, 2002.

Arthur C Graesser, Shulan Lu, George Tanner Jackson, Heather Hite Mitchell,
Mathew Ventura, Andrew Olney, and Max M Louwerse. Autotutor: A tutor with
dialogue in natural language. Behavior Research Methods, Instruments, and Com-
puters, 36(2):180-192, 2004.

Kenneth R Koedinger and John R Anderson. Reifying implicit planning in geome-
try: Guidelines for model-based intelligent. Computers as cognitive tools, page 15,
2013.

Leena M Razzaq, Mingyu Feng, Goss Nuzzo-Jones, Neil T Heffernan, Kenneth R
Koedinger, Brian Junker, Steven Ritter, Andrea Knight, Edwin Mercado, Ter-
rence E Turner, et al. Blending assessment and instructional assisting. In AIED,
pages 555—562, 2005.

Glenn Blank, Shahida Parvez, Fang Wei, and Sally Moritz. A web-based its for
00 design. In Proceedings of Workshop on Adaptive Systems for Web-based Ed-

ucation at 12th International Conference on Artificial Intelligence in FEducation
(AIED’2005). Amsterdam, the Netherlands, pages 59-64, 2005.

JS Song, SH Hahn, KY Tak, and JH Kim. An intelligent tutoring system for
introductory ¢ language course. Computers & Education, 28(2):93-102, 1997.

Gerhard Weber and Peter Brusilovsky. Elm-art: An adaptive versatile system for
web-based instruction. International Journal of Artificial Intelligence in Education
(IJAIED), 12:351-384, 2001.

David Arnau, Miguel Arevalillo-Herrdez, Luis Puig, and José Antonio Gonzélez-
Calero. Fundamentals of the design and the operation of an intelligent tutoring
system for the learning of the arithmetical and algebraic way of solving word prob-
lems. Computers € Education, 63:119-130, 2013.

41

[60]

[61]

[62]

[63]

Jun Hong. Guided programming and automated error analysis in an intelligent
prolog tutor. International Journal of Human-Computer Studies, 61(4):505-534,
2004.

Davide Fossati, Barbara Di Eugenio, Stellan Ohlsson, Christopher Brown, and Lin
Chen. Data driven automatic feedback generation in the ilist intelligent tutoring
system. Technology, Instruction, Cognition and Learning, 10(1):5-26, 2015.

Kelly Rivers and Kenneth R. Koedinger. Data-driven hint generation in vast solu-
tion spaces: a self-improving python programming tutor. International Journal of
Artificial Intelligence in Education, 27(1):37-64, 2017.

Wei Jin, Tiffany Barnes, John Stamper, Michael John Eagle, Matthew W Johnson,
and Lorrie Lehmann. Program representation for automatic hint generation for a
data-driven novice programming tutor. In International Conference on Intelligent
Tutoring Systems, pages 304-309. Springer, 2012.

Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. Evalu-
ation of guided-planning and assisted-coding with task relevant dynamic hinting. In
International Conference on Intelligent Tutoring Systems, pages 318-328. Springer,
2014.

Edward R Sykes. Design, development and evaluation of the java intelligent tutoring
system. Technology, Instruction, Cognition €& Learning, 8(1), 2010.

Pramuditha Suraweera and Antonija Mitrovic. Kermit: A constraint-based tutor
for database modeling. In International Conference on Intelligent Tutoring Systems,
pages 377-387. Springer, 2002.

Patricia A Jaques, Henrique Seffrin, Geiseane Rubi, Felipe de Morais, Céassio Ghi-
lardi, Ig Ibert Bittencourt, and Seiji Isotani. Rule-based expert systems to support
step-by-step guidance in algebraic problem solving: The case of the tutor pat2math.
Ezxpert Systems with Applications, 40(14):5456-5465, 2013.

42

8 Appendix A

ITS Domain M. C.
(Why2-)Atlas [52] Qualitative physics .

(Why2-) Autotutor [27], [53] Physics & Computer literacy .

ACT Programming Tutor [38] Programming o

AITS [25] Search algorithms

Andes [49] Physics . .
ANGLE [54] Geometry .
APROPOS2 [26] Prolog programming

Ask-Elle [43] Haskell programming . .
Assistment [55] Mathematics .

AzAR 3.0 [28] Foreign language pronunciation

CIMEL ITS [56] OO design and programming .
CIRCSIM-TUTOR [47], [48] Circulatory physiology .

C-Tutor [57] C programming

Design-A-Plant [20], [21] Botany .
Dragoon [30] Dynamic systems

ELM-ART [58] LISP programming °

Geometry Explanation Tutor [39], [40] Geometry .

Geomtery Tutor [41] Geometry .

HBPS [33], [59] Algebra word problems o

Hong04 [60] Prolog programming .

iList [61] Computer Science .
ITAP [62] Python programming

Jin12 [63] Programming

Jin14 [64] Programming

JITS [65] Java programming °

KERMIT [66] Database design .
Keuningl4 [31] Imperative programming

Mathesis [45], [46] Algebra

Mathtutor [42] Mathematics .
Ms. Lindquist [24] Algebra word problems .

Newton’s Pen [35] Statics o .
PAT2Math [67] Algebra .

PHP ITS [32] PHP programming

PLATO [44] Arithmetic

Quantum Accounting [23] Accounting o

RMT [29] Psychology research methods °

Technical Troubleshooting Tutor [22] Aircraft engineering o? o?
The Invention Lab [34] Scientific inquiry . .
The LISP Tutor [36], [37] LISP programming .

Zatarain-Cabadal3 [50]

Arithmetic

Table 10: M. = Model tracing, E. = Example tracing, C. = Constraint-based,

I. = Intention-based

43

9 Appendix B

ITS Corr. | D. | R. | T.o.E. | Comm. | O. | P. | T.

(Why2-)Atlas [52]

(Why2-) Autotutor [27], [53]

ACT Programming Tutor [38]

ATTS [25]

Andes [49]

ANGLE [54]

APROPOS2 [26]

Ask-Elle [43]

Assitment [55]

AZAR 3.0 [28]

CIMEL ITS [56]

CIRCSIM-TUTOR [47], [48]

C-Tutor [57]

Design-A-Plant [20], [21]

Dragoon [30]

ELM-ART [58]

Geometry Explanation Tutor [39], [40]

Geomtery Tutor [41]

HBPS [33], [59]

Hong04 [60]

iList [61]

ITAP [62]

Jin12 [63]

Jin14 [64]

JITS [65]

KERMIT [66]

Keuning14 [31]

Mathesis [45], [46]

Mathtutor [42]

Ms. Lindquist [24]

Newton’s Pen [35]

PAT2Math [67]

PHP ITS [32]

PLATO [44]

Quantum Accounting [23]

RMT [29]

Technical Troubleshooting Tutor [22]

The Invention Lab [34]

The LISP Tutor [36], [37]

Zatarain-Cabadal3 [50]

Table 11: Corr. = Correctness, D. = Difference, R. = Redundancy, T.o0.E. = Type of
Error, Comm. = Common Errors, O. = Order, P. = Preference, T. = Time

44

